
Simulation Based Execution Time
Analysis of SDF Applications on

Heterogeneous MPSoCs Using Measured
Delay Distributions

Von der Fakultät für Informatik, Wirtschafts- und Rechtswissenschaften der Carl von
Ossietzky Universität Oldenburg zur Erlangung des Grades und Titels

Doktor der Ingenieurwissenschaften (Dr.-Ing.)

angenommene Dissertation

von Herrn Ralf Stemmer
geboren am 23. Mai 1987 in Meschede

Gutachter: Prof. Dr.-Ing. Wolfgang Nebel

Weiterer Gutachter: Prof. Dr. Sébastien Le Nours

Tag der Disputation: 22. Januar 2024

ii

Summary
Embedded systems become more and more part of the everyday life. With the boom of
the Internet-of-Things the amount of those small computer systems increased tremen-
dously. Also the complexity of tasks they have to do changed from simple control
algorithms to image-processing, video-processing or even Artificial Intelligence. There-
fore Heterogeneous Multi-Processor Systems-on-a-Chip (HMPSoCs) are commonly
used to execute those software systems. To increase power and cost efficiency, a trade-off
between the resources of the hardware and the needs of the software must be found.
While optimizing the mapping of the software on the hardware components the perfor-
mance impact must be evaluated to guarantee a certain quality of service. Classical
formal analysis methods are often too compute intensive for MPSoCs. Simulation based
approaches can improve the scalability.

In my work, I present a simulation based approach to analyze timing behavior of
software executed on HMPSoCs. Therefore I use the distribution of execution times for
the performance model. This method provides a more realistic estimation of execution
times of an application. Goal of this work is, to provide a suitable method for design
space exploration of HMPSoCs. For my approach strict models are used for modeling
hardware and software. This reduces the complexity of the performance analysis. The
hardware is a set of composable tiles with private memory for instructions and local data.
The software model differentiates between computation and communication phases.
This allows to determine when and where interference can happen. To characterize
the system, the execution time of computation phases of the software components get
measured. By keeping the distribution of execution times instead of just abstracting the
data to best-case and worst-case delay, the analysis results are more representative to
the actual behavior of the real system. Shared resources like communication interface
and shared memory get modeled in detail.

For evaluation, a heterogeneous MPSoC with up to 7 processing elements is used.
This HMPSoC is used to run different applications like a Sobel-Filter (simple example)
and a JPEG-Decoder (computation intensive). For the evaluation the analyzed execution
time gets compared to measured execution times of the same mapping. Therefore the
execution time from the beginning to the end of an iteration of sample applications gets
analyzed and measured. This is done for various applications with different mappings
for several hardware configurations.

The proposed analysis method allows an insight into the distribution of execution
times of possible mappings for an application on an HMPSoC. Kernel Density Estimation
as inference technique showed good results and allowed to not just get a reasonable
average execution time but also a representative distribution function of possible
execution times as simulation result. To get a well suited distribution function for an
actor, it is important to characterize this actor on all different instruction set architectures
with all different combinations of available hardware accelerators like floating point
units or hardware multiplier. While measuring a certain mapping and configuration
usually took more than 2 h, the simulation finished within less than 45 min in most
cases. The modeling and analysis approach presented in this thesis allowed a prediction
of the average execution time of a certain mapping and configuration with an error less
than 5 %.

iii

Zusammenfassung
Eingebettete Systeme werden mehr und mehr Teil des täglichen Lebens. Mit dem
Boom der Internet-of-Things ist die Anzahl kleiner Computersysteme enorm gestiegen.
Auch die Komplexität der Aufgaben, die sie erfüllen müssen, hat sich von ein-
fachen Steuerungsalgorithmen bis hin zu Bildverarbeitung, Videoverarbeitung oder
gar künstlicher Intelligenz gesteigert. Daher werden heterogene Mehrprozessorsys-
teme auf einem Chip (HMPSoCs) häufig zur Ausführung dieser Softwaresysteme
verwendet. Um die Energie- und Kosteneffizienz zu erhöhen, muss ein Kompromiss
zwischen den Ressourcen der Hardware und den Anforderungen der Software gefunden
werden. Bei der Optimierung des Mappings der Softwarekomponenten auf die Hard-
warekomponenten müssen die Auswirkungen auf die Leistung bewertet werden, um
eine gewisse Qualität der von der Software zu erfüllenden Leistung zu gewährleisten.
Klassische formale Analysemethoden sind oft selbst für kleine Mehrprozessorsysteme
zu rechenintensiv. Simulationsbasierte Ansätze können die Skalierbarkeit verbessern.

In meiner Arbeit präsentiere ich einen simulationsbasierten Ansatz um das Timing-
Verhalten von Software zu analysieren, die auf HMPSoCs ausgeführt wird. Dazu
verwende ich die Verteilung der Ausführungszeiten für das Ausführungszeitmodell.
Diese Methode bietet eine realistischere Abschätzung der Ausführungszeiten einer
Anwendung. Ziel dieser Arbeit ist es, eine geeignete Methode für die Design Space Ex-
ploration von HMPSoCs bereitzustellen. Für meinen Ansatz werden strikte Modelle für
die Modellierung von Hardware und Software verwendet. Dadurch wird die Komplexität
der Ausführungszeitanalyse reduziert. Die Hardware ist ein Menge komponierbarer
Tiles mit privatem Speicher für Instruktionen und lokale Daten. Das Softwaremodell
unterscheidet zwischen Berechnungs- und Kommunikationsphasen. Dadurch lässt sich
bestimmen, wann es zu Engpässen bei dem Zugriff auf gemeinsame Ressource, wie zum
Beispiel ein Kommunikationsbus, auftreten können. Um das System zu charakterisieren,
wird die Ausführungszeit der Berechnungsphasen der Softwarekomponenten gemessen.
Indem man die Verteilung der Ausführungszeiten verwendet, anstatt die Daten nur auf
Best-Case- und Worst-Case-Verzögerungen zu abstrahieren, sind die Analyseergebnisse
repräsentativer für das tatsächliche Verhalten des realen Systems. Gemeinsam genutzte
Ressourcen wie Kommunikationsschnittstellen und gemeinsam genutzter Speicher
werden im Detail modelliert.

Für die Evaluierung wird ein heterogener MPSoC mit bis zu 7 Prozessoren ver-
wendet. Auf diesem HMPSoC laufen verschiedene Anwendungen wie ein Sobel-Filter
(einfaches Beispiel) und einen JPEG-Decoder (rechenintensiv). Für die Auswertung
wird die analysierte Ausführungszeit mit gemessenen Ausführungszeiten desselben
Mappings verglichen. Dazu wird die Ausführungszeit vom Beginn bis zum Ende
einer Iteration der Beispielanwendungen analysiert und gemessen. Dies geschieht
für verschiedene Anwendungen mit unterschiedlichen Mappings für verschiedene
Hardware-Konfigurationen.

Die vorgeschlagene Analysemethode erlaubt einen Einblick in die Verteilung der
Ausführungszeiten möglicher Mappings für eine Anwendung auf einem HMPSoC. Ker-
nel Density Estimation (KDE) als Abstraktion der charakterisierten Ausführungszeiten
zeigte gute Ergebnisse in der Evaluation. KDE ermöglichte es nicht nur eine relativ
präzise durchschnittliche Ausführungszeit als Simulationsergebnis zu erhalten sondern

iv

Zusammenfassung v

auch eine repräsentative Verteilungsfunktion der möglichen Ausführungszeiten. Um
eine gute und repräsentative Verteilungsfunktion für eine Softwarecomponente zu erhal-
ten, ist es wichtig, diese Komponente auf allen verschiedenen Befehlssatzarchitekturen
mit allen verschiedenen Kombinationen von verfügbaren Hardware-Beschleunigern,
wie eine Gleitkommaeinheiten (FPU) oder einen Multiplizierer in Hardware, zu charak-
terisieren. Während die Messung eines bestimmten Mappings und einer bestimmten
Konfiguration normalerweise mehr als 2 Stunden dauerte, wurde die Simulation
in den meisten Fällen in weniger als 45 Minuten abgeschlossen. Der in dieser Ar-
beit vorgestellte Modellierungs- und Analyseansatz ermöglichte eine Vorhersage der
durchschnittlichen Ausführungszeit für eine bestimmtes Mapping und eine bestimmte
Hardwarekonfiguration mit einem Fehler von weniger als 5 %.

Contents
1 Introduction . 1

1.1 Motivation . 1
1.2 Research Questions . 3
1.3 Contributions . 4
1.4 Prior Publications . 4
1.5 Work Flow . 5
1.6 Structure . 7

2 Related Work . 8
2.1 Overview of Analysis Approaches . 8
2.2 Simulation Based Approaches . 8
2.3 Formal Approaches . 9
2.4 Hybrid Probabilistic Methods . 10
2.5 Execution Time Estimation . 13

3 Software, Hardware and Delay Models . 15
3.1 Model of Computation . 15

3.1.1 Buffers . 15
3.1.2 Actors . 16
3.1.3 Ports . 17
3.1.4 Channels . 18

3.2 Model of Architecture . 18
3.2.1 Execution Platform . 19
3.2.2 Tile . 20
3.2.3 Processing Element . 20
3.2.4 Memory . 21
3.2.5 Interconnect . 21

3.3 Delay Model . 22
3.3.1 Delay . 22
3.3.2 Modeling Delay Occurrence Probability 22
3.3.3 Delay Distribution Inference . 23
3.3.4 Computation Delay Set . 25

3.4 Communication Delay Models . 26
3.4.1 Cycle Accurate Model . 29
3.4.2 Transaction Level Model . 32
3.4.3 Message Level Model . 33

3.5 System Model . 34
3.5.1 Mapping . 35
3.5.2 Scheduling . 35

vi

Contents vii

4 Characterization and Analysis Approach . 37
4.1 Delay Measurement Infrastructure . 37

4.1.1 Measuring Pipelined Execution . 38
4.1.2 Proposed Measurement Infrastructure . 40
4.1.3 Verification of Delay Measurement Infrastructure 42

4.2 Characterization . 43
4.2.1 Computation Delay Distribution . 44
4.2.2 Abstract Communication Delay . 47
4.2.3 Elementary Communication Delays . 50

4.3 Simulation . 51
4.3.1 SystemC TLM Interface . 52
4.3.2 SDF Application . 52
4.3.3 Delay Vector . 53
4.3.4 Monitor . 53
4.3.5 MoC Implementation . 53
4.3.6 MoA Implementation . 54
4.3.7 Simulation Configuration . 55

4.4 Work Flow . 56

5 Models and Simulation Evaluation . 58
5.1 Evaluation Setup . 58

5.1.1 Sobel Filter . 59
5.1.2 JPEG Decoder . 60
5.1.3 Evaluation Platform . 61

5.2 Evaluation Concept . 62
5.3 Experiment Execution and Functional Verification 64
5.4 Computation Model Evaluation . 65

5.4.1 Experiment Setup . 66
5.4.2 Experiment Results . 66
5.4.3 Discussion . 68

5.5 Communication Model Evaluation . 70
5.5.1 Experiment Setup . 70
5.5.2 Experiment Results . 70
5.5.3 Discussion . 71

5.6 Simulation Time Evaluation . 72
5.6.1 Experiment Setup . 72
5.6.2 Experiment Results . 73
5.6.3 Discussion . 75

6 Discussion . 77

7 Conclusion . 79

Contents viii

8 Future Work . 82

9 References . 83
References . 84

Chapter 1
Introduction

1.1 Motivation

This thesis proposes a simulation based execution time analysis of synchronous dataflow
applications executed on Heterogeneous Multi-Processor Systems-on-Chips (HMP-
SoCs). For execution time characterization, a measurement based approach is followed.

Execution time analysis of software can be important in many domains with many
different goals. This work focuses on data flow applications like sensor data processing
as it can be found in automotive systems. In automotive context, for example automated
vehicles, the safety of the system is crucial. The safety of such a system is not just
based on functional correctness, but also on its timing behavior. A system that works
functional correct, but provides its computation result too late, may still be unsafe.
Examples for such time critical systems are emergency braking systems or air-bag
controllers. Other factors like the development cost of the design of such systems are
also an important consideration. To achieve a good trade-off for a safe but cost efficient
system, early design space exploration for engineering suitable system components as
well as early performance assessment is important for design decisions.

For this performance assessment, models of the system under analysis are created
and analyzed. There are different approaches for execution time analysis that can be
categorized as formal approaches, simulation based approaches and hybrid approaches
that combine both [Gaj+09]. A detailed examination of advantages and disadvantages
of the different analysis approaches has been done in Sec 2.1.

Formal approaches can scale well for larger systems under analysis, but lack of the
possibility to consider different states of components which may be necessary to model
shared resources access. State based methods can apply model checking techniques to
fully explore the state space of a model, which does not scale well. Formal approaches
can give certain guarantees like a upper and lower execution time bounds, but these
guarantees come with the downside of a high analysis time and overestimated execution
time bounds as analysis result. In conclusion, state based formal approaches tend
to not scale well with large systems regarding analysis time [Fak+15]. Furthermore,
formal methods tend to overestimate execution times [Per+09] which can lead to design
decisions for too cost intensive hardware that is capable to run the software fast enough.

Simulation based execution time analysis can be faster than state based formal
methods and can provide a tighter execution time bound [Ste+19c]. Drawback is a lack
of guarantee that the simulated system never violates the analyzed timing bounds. With

1

1.1 Motivation 2

a simulation it cannot be guaranteed that the whole state space got fully covered. There
can be cases after a certain amount of simulation runs that have not yet been simulated.

In this thesis, focus is on data processing algorithms as they could be used in feedback
control systems (FCS). FCS get regularly input data to adapt a system to follow a certain
set value. This input might be preprocessed sensor data. An example for preprocessing
data that is used by a FCS can be a JPEG encoded image that gets sent from an image
sensor (camera) once every second. The image then needs to be decoded and additional
image filters may need to be applied to provide input to a feedback control algorithm
that the current state of the system controls. If, in rare cases, one input sample does
not come in time, the feedback controller may still be in a safe and functional state. A
feedback controller that works on video data may still function if one frame once in
a while gets dropped because the decoding algorithm misses its deadline. Thus, tight
execution time bounds allow more cost efficient hardware selection without the risk of
violating safety requirements in case a deadline is missed from time to time.

The execution time of data processing algorithms like a JPEG-decoder can vary for
several reasons. There are data dependent execution paths inside the algorithm leading
to different execution times. Further execution paths can be introduced by the compiler
to work around missing hardware support for example for floating point operations. In
context of Multi-Processor System-on-a-Chip shared hardware resources are another
cause of varying execution times.

Providing a distribution of possible execution times as analysis result can support
the designer to decide if a hardware fits certain requirements. If the average execution
time is close to the worst simulated execution time the system may more likely violate a
deadline than a system where the average execution time is closer to the best simulated
time.

To perform an execution time analysis, models for the software application and the
hardware platform, on which the software gets executed, are required. The level of detail
of theses models have a huge impact on accuracy and analysis time. Furthermore, delays
annotated to the model to perform execution time analysis need to be characterized.
The proposed methods and models are developed to be used in context of design space
exploration, not for safety analysis. This allows focus on an abstract but fast modeling
and analysis approach to allow the system designers to narrow down the design space
during early development. For a more mature product more detailed and time consuming
approaches may be needed to guarantee a safe operation.

For delay characterization, a measurement based approach is proposed. This approach
can provide cycle accurate delays while being independent from the hardware platform,
while static code analysis would be tight to specific instruction set architectures.
Furthermore, a measurement based approach allows to model the probability distribution
function of delays of the characterized system component. Giving this distribution
function as input into the simulation, allows the simulation to predict the delay
distribution of the overall system. This gives the designers further information about
how likely deadlines may be missed.

1.2 Research Questions 3

1.2 Research Questions

This thesis addresses the research questions formulated in the following list. These
questions originated from discussion with my colleague Maher Fakih about his PhD
thesis [Fak16]. Especially questioning the formal analysis approach he followed and
the scalability issues he was facing with this approach. In early research presented
in [Ste+17; Ste+19c] these questions have been refined and extended by addressing
a measurement based approach for characterization and a simulation based analysis
approach. In related work (See Chap 2) several analysis approaches have been presented
and compared with most of them addressing similar challenges, each with focus
on different aspects. One focus of my thesis is following a practical analysis and
characterization approach that could be used for design space exploration or early
product design decision making. This leads to the question on how well the proposed
techniques and models work on realistic systems and how well their scalability is.

1. Are measured delays a suitable abstraction for timing of application functions?
2. What is necessary to predict execution time distributions of an application on an

MPSoC in short time?
3. How can I achieve good accuracy for analyzing realistic systems?
4. How can I achieve good scalability for analyzing realistic systems?
5. What are the limitations of my approach when applying to consumer of-the-shelf

platforms?

The first question addresses the suitability of abstraction for software. In context
of execution time analysis, a suitable abstraction of a software application allows
representing its execution delay as accurate as needed for an accurate overall system
analysis. Since the characterization of software function is done following a measurement
based approach, a simulation based execution time analysis makes only sense when
the simulation is faster than using the characterization measurement infrastructure
to simply measure an instance of the final product configuration. Furthermore the
followed characterization and analysis strategy should be capable to scale up with
realistic systems. A realistic system to the understanding of the author of this thesis, is a
software application that fulfills a reasonable task that cannot be analyzed by a human
looking at its instructions. This software then should be executed on a Multi-Processor
System-on-a-Chip with more than two processing elements. Since use-case of the
presented analysis approach is not safety analysis but design space exploration, an error
less than 10 % is the desired goal for accuracy.

In the conclusion, Chap 7, the answers to the research questions are presented and
discussed.

1.4 Prior Publications 4

1.3 Contributions

The following contributions are presented in this thesis:

1. A simulation based real-time analysis approach for heterogeneous tile-based
MPSoCs and applications following the Synchronous Dataflow (SDF) constraints
(Sec 4.3).

2. An interference free execution time measurement infrastructure for characterizing
SDF actor computation delay and for shared interconnect characterization. (Sec 4.1,
Sec 4.2)

3. A probabilistic execution time analysis approach based on measurement based
characterization (Sec 4.1) and probability density functions (Sec 3.3).

4. A workflow for simulation based real-time analysis, modeling and characterization
using measured delay information (Sec 4.4).

5. A comparison of different abstraction levels for execution time, using accuracy
and scalability of the analysis as metric. Compared have been a single average
delay with an uniform distribution between worst and best observed execution time,
Gauss distribution and a Kernel Density Estimation approach (Sec 3.3, Sec 5.4)

6. A comparison of different abstraction levels for state based communication models.
A cycle accurate model (Sec 3.4.1) and transaction level model (Sec 3.4.2) have been
created and evaluated together with a third model, a message level model (Sec 3.4.3)
by Vu et al ([Vu+21]). For evaluation accuracy and scalability was used as metric.
(Sec 3.4, Sec 5.5).

1.4 Prior Publications

Most of the concepts I present in this thesis have already been published by me in
peer reviewed scientific journals, conferences and workshops. This section provides
an overview of these publications and their contributions. A list of my publications in
context of this thesis is provided in Chap 9.

My first publication leading me towards the research and research questions I present
in this thesis was 2017 in [Ste+17]. For that publication I applied some concepts and
models from the PhD thesis [Fak16] of my former colleague Maher Fakih. I adopted his
model checking based real time analysis approach for MPSoCs to finite state machine
based scenario aware dataflow graphs (FSM-SADFG) [Stu+08].

In [Ste+19c] I used a measurement infrastructure that has been developed and
published ([SFS17]) by Christof Schlaak for his master thesis under guidance and
support by me and Maher Fakih. An improved and specialized adaptation of this
measurement infrastructure (Sec 4.1.2) is used to characterize the execution time of
synchronous dataflow actors (Sec 3.1). These data have been used for execution time
analysis using statistical model checking.

1.5 Work Flow 5

Evaluation

Simulation

Characterization

Software
Evaluation
Platforms

Chapter 4.2 Chapter 4.3

Hardware Software Time Simulation

Product Identified
Hardware

Chapter 5

Modeling
Chapter 3

Fig. 1.1 Overview of the modeling, characterization and simulation workflow presented in this thesis.
In the evaluation, simulated timing characteristics get compared to actually observed timings.

In [Ste+19a] I first presented the use of a SystemC simulation for real time analysis.
There I also introduced the “Cycle Accurate” communication model that is described in
detail in Sec 3.4.1. This was also the first publication with my colleague Hai-Dang Vu
from the Université de Nantes. We did a feasibility study published as technical
report [Ste+19b] where we investigated in statistical model checking techniques that
got further investigated and applied in the PhD thesis of Hai-Dang Vu [Vu21].

The models and simulation have been improved and further evaluated in [Ste+20].
Focus was accuracy and scalability of the simulation compared against a simple
static analytical model. Therefore a seven tiles MPSoC (Sec 5.1.3) and a JPEG
decoder (Sec 5.1.2) have been developed and introduced that are used by me in this
thesis as well as by Hai-Dang Vu.

In [Ste+21] I first introduced Kernel Density Estimation to derive actor delays from
measured data. I compared different computation delay distribution functions and
different communication models including the “Message Level” (Sec 3.4.3) model
introduced by Hai-Dang Vu in [Vu+21]. Furthermore I introduced the “Transaction
Level” model (Sec 3.4.2) as hybrid between the cycle accurate and message level model.

1.5 Work Flow

This section describes the work flow followed in this thesis for the modeling, charac-
terization and execution time analysis. An abstract view on this work flow is shown

1.5 Work Flow 6

in Fig. 1.1. The purpose of this flow is to help embedded systems designers to answer
the question, which hardware fits best to execute a given software within certain time
constraints with as low costs as possible. This solution, fast and cheapest hardware that
runs a certain software, is the product (Fig. 1.1 Gray) that the designer who uses the
proposed approach aims for. For evaluation of the models and the process the simulation
results get also compared against the actual observed behavior.

The rectangles with solid lines represent system components like software or
hardware. Rounded rectangles with dashed lines describe processes. The arrows
represent the flow of artifacts of the process which can be a system component or
information gained by one process required by another one. The black ellipses annotate
the chapter or section of this document in which the labeled processes are described in
detail.

Through the whole document, a unique color scheme is used to represent certain
components and artifacts. Hardware, hardware components and hardware models are
colored in purple. Software, software components and software models are colored
in magenta. Delay information for both, hardware or software as well as the overall
system execution time are colored in green. The simulation and simulation processes or
simulation components are colored in blue. Data and data dependency related aspects
are colored in brown. Other artifacts or processes are colored in gray.

The workflow (Fig. 1.1) starts with the software which shall be deployed on a product
and a set of evaluation platforms that provide execution platforms with features and
instruction set architectures that are candidates for the final product hardware. The
MPSoCs on the evaluation platforms can be less powerful (Lower clock frequency, less
processing elements) and therefore less expensive than the MPSoC that is later required
for the product, because the evaluation platforms are only used for characterizing small
parts of the software that shall be deployed later. Anyway all features like a floating
point unit and instruction set architectures that shall be considered for design space
exploration must be available and supported for the characterization process.

The given software and all MPSoCs of all evaluation platforms will be modeled.
These models are an abstract representation of the software and the execution platforms
of the evaluation hardware with the purpose of fast execution time analysis for a design
space exploration. For the software, the Synchronous Data Flow model (SDF) [LM87]
is used which allows to isolated independent parts of the software, and models the
data flow between those independent parts. For the hardware, a tile based model as
proposed by [Fak+15] is used, which allows to represent multi processor system on
chips (MPSoCs) as a set of independent tiles. These models allow a composable
representation of sub components of hardware and software. The modeling process is
described in detail in Chap 3. The models are used in the simulation for configuring the
simulated platform.

To be able to do an execution time analysis, delay information need to be annotated
to the models. These delays are collected during the characterization process. Therefore
each part of the software, corresponding to its model, gets executed on each kind

1.6 Structure 7

of execution platform. This is done by extending the hardware and software with
measurement infrastructure. This measurement infrastructure then provides observed
execution times. To characterize the communication between software components, and
therefore the inter-processor communication of the considered MPSoCs, the system bus
behavior gets modeled in detail. Details of the characterization are described in Sec 4.2.

The models of the software and execution platforms, together with the characterized
delay information are then given into a simulation process. This process starts with
mapping software components on a possible execution platform that will be simulated.
The execution platform can be configured in any way, as long as only features and
instruction set architectures are used that have been modeled and characterized. Then
the overall execution time of the software executed on such a hardware is simulated. The
result of the simulation is a distribution of simulated execution times. This process can
be repeated until a suitable hardware configuration and mapping has been found. The
simulation is described in detail in Sec 4.3. Beside using the simulation for execution
time analysis, functional simulation is also possible for testing the application code.
Functional tests are not focus of this work. Still this feature is used to verify experiment
setups.

The output of the simulations of potential execution platforms are information of
platform configurations and mappings of the software components on those platforms.
This information supports the designer of the hardware/software system to decide which
hardware to build or buy, and how to map the software in an efficient way on that
hardware.

For evaluation (Chap 5) the measurement infrastructure is used for measuring the
overall execution time of the software executed on a certain hardware configuration.
This actual observed execution time execution time distribution is then used to compare
the execution time distribution predicted by the simulation.

1.6 Structure

The document continues with presenting and discussing related work in Chap 2.
In Chap 3 the software, hardware and delay models used in this thesis are presented.
Chap 4 presents the characterization and analysis methods and processes for annotating
delay information to the models and how they are used within the simulation. In Chap 5
the presented models and simulation are evaluated and discussed. The overall concept is
discussed in Chap 6. Chap 7 concludes this thesis and provides answers to the research
questions from Sec 1.2. Chap 8 presents future work and potential applications.

Chapter 2
Related Work

2.1 Overview of Analysis Approaches

Timing analysis approaches are commonly (e.g. [Gaj+09]) classified as:

1. Simulation-based approaches, which partially test system properties based on a
limited set of stimuli,

2. Formal approaches, which statically check system properties in an exhaustive way,
and

3. Hybrid approaches, which combine simulation-based and formal approaches.

In the following sections related work following these approaches are presented
and discussed. The chapter ends with discussing different execution time estimation
techniques.

2.2 Simulation Based Approaches

Different simulation-based approaches exist to evaluate multi-processor architecture
performance early in the design process. In the proposed approaches, models of
hardware-software systems are formed by combining an application model and a
platform model. In the early design phase, a full description of application functionalities
is not mandatory and workload models of the application are used. A workload model
expresses the computation and communication loads like time or power consumption
that an application causes when executed on platform resources. Such performance
models are then generated as executable descriptions and simulated. The execution time
of each load primitive is approximated as a delay, which is typically estimated from
measurements on real prototypes or analysis of low level simulations. SystemCoDesigner
[Kei+09], Daedalus [Erb+07], SCE [Döm+08], Palladio [BKR07], and Koski [Kan+06]
are good examples of academic approaches. They are compared in [Ger+09]. Other
existing academic approaches are presented by Kreku et al. in [Kre+08] and by Arpinen
et al. in [Arp+09]. Furthermore, some industrial frameworks such as Intel CoFluent
Studio [Int], Timing Architect [Arc], ChronSIM [Chr], TraceAnalyzer [Tra], Space
Codesign [Spa] and Visualsim from Mirabilis Design [Mir] have emerged as well.

In [LMS13] Lu et al. address resource conflict based timing accuracy problem in
temporally decoupled transaction level simulation by an analytical approach. Delay
formulas are proposed according to shared resource usage and availability. They are

8

2.3 Formal Approaches 9

then used during simulation to adapt the end of each synchronization request. The
presented communication models in this thesis are sensitive to execution delay of the
communication participants. Thus my contention delay model can dynamically adapt
to communication changes based on the computation delay of the communication
participants.

Simulation-based approaches require extensive architecture analysis under various
possible working scenarios. Furthermore, created system models can hardly be exhaus-
tively simulated. Due to insufficient corner case coverage, simulation-based approaches
are thus limited to determine guaranteed limits about system properties. One other
important issue concerns the accuracy of created models. As architecture components
are modeled as abstractions of low level details, there is no guarantee that the created
architecture model reflects with good accuracy the whole system performance. Finally,
with the rising complexity of many-core platforms, execution of simulation models also
increase simulation time.

In my work I follow a hybrid approach by using an analytical communication model
and a probabilistic computation model within a simulation. For my approach, lack of
guarantees is not a concern because the simulation is used for design space exploration,
not for safety analysis. Scalability regarding simulation time and accuracy have been
investigated in the evaluation chapter (See Sec 5.6 of this thesis).

2.3 Formal Approaches

Due to insufficient corner case coverage, simulation-based approaches are insufficient to
determine guaranteed limits about system properties. Different formal approaches have
thus been proposed to analyze MPSoCs and provide hard real-time and performance
bounds. These formal approaches are commonly classified as state-based approaches
and analytical approaches.

Most of the available static real-time methods are of analytical nature (c.f. [Per+09]
for an overview). Since analytical methods depend on solving closed-form equations
(characterizing the system temporal behavior), they have the advantage of being scalable
to analyze large-scale systems. MPA-RTC [Hua+12] and SymTA/S [Hen+05] are two
representatives of compositional analytical methods for multi-core systems.

Despite their advantages of being scalable, analytical methods abstract from state-
based operation mode of the analyzed system such as complex state-based arbitration
protocols or inter-processor communication task dependencies. This leads to pessimistic
over-approximated results compared to state-based methods [Per+09]. Many recent
approaches for the software timing analysis on many- and multi-core architectures are
built on state-based analysis techniques. The two main considered application classes
are data flow based applications, for example modeled as synchronous data flow graphs
(SDFGs), [KW16; Ske+15; Zhu+15; TS15; Ahm+14; MG13; Yan+10] and generic

2.4 Hybrid Probabilistic Methods 10

real-time task-based applications [NWY99; HV06; Lv+10; Gus+10; Gia+12; BHM08;
Zha11; Bük13]. State-based real-time methods are based on the fact of representing
the analyzed system as a transition system (states and transitions). Because the real
operation states of the hardware and software behavior are reflected, tighter results can
be obtained compared to analytical methods. However, state-based approaches allow
exhaustive analysis of system properties at the expense of time-consuming modeling
and analysis effort.

In [Fak+15], the adoption of model-checking for real-time analysis of SDFGs
running on MPSoCs with shared communication resources is presented. Especially, it
is highlighted in [Fak+15] that state-based approaches can hardly address systems made
of high number of heterogeneous components. This approach utilizes timed automata to
represent tasks and arbitration protocols for buses and memories. It uses Best- (BCET)
and Worst-Case Execution Time (WCET) intervals as lower and upper bounds of the
estimated execution time of a specific platform.

Since the approach I propose in this thesis requires models of multiple MPSoCs,
high modeling effort is a downside. Furthermore the trade-off between analysis time,
modeling effort (abstraction) and accuracy make formal approaches more suitable for
safety analysis of single hardware-software systems, and less interesting for design
space estimation. The approach presented in this work is a hybrid approach with a
probabilistic computation model combined with a formal state based communication
model. However, the pure formal approach of Fakih [Fak+15] was a starting point for
the simulation based hybrid approach presented in this thesis. A hybrid approach using
a statistical model checker has been used to evaluate the idea of an analysis considering
distribution functions of measured delays [Ste+19c].

2.4 Hybrid Probabilistic Methods

Probabilistic models are frequently adopted to model systems where uncertainty and
variability need to be considered. In the context of embedded systems, probabilistic
models represent a means of capturing system variability coming from system sensitivity
to environment and low level effects of hardware platforms. Probabilistic models like
discrete time Markov chains or Markov automata can be used to appropriately capture
this variability. Probabilistic models are extensions of labeled transition system and allow
variations about execution times and state transitions to be considered. Quantitative
analysis of probabilistic models can be used to quantify to what extent a given time
property is satisfied. Numerical approaches exist that compute the exact measure of
the probability at the expense of time-consuming analysis effort. As an illustration,
the adoption of probabilistic model checking for evaluation of dynamic data-flow
behaviors is presented in [KW16]. Markov automata are used as the fundamental
probabilistic model to capture and analyze architectures. Characteristics as application

2.4 Hybrid Probabilistic Methods 11

buffer occupancy, timing performance and platform energy consumption are estimated.
However, this approach is restricted to fully predictable platforms with low influence of
platform resources on timing variations.

Another approach to analyze probabilistic models is to simulate the model for many
runs and monitor simulations to approximate the probability that time properties are met.
Statistical Model Checking (SMC) has been proposed as an alternative to numerical
approaches to avoid an exhaustive exploration of the state-space model. SMC refers to
a series of techniques that are used to explore a sub-part of the state-space and provides
an estimation about the probability that a given property is satisfied. SMC designates a
set of statistical techniques that present the following advantages:

• As classical model checking approach, SMC is based on a formal semantic of
systems that allows to reason on behavioral properties. SMC is used to answer
qualitative questions (Is the probability for a model to satisfy a given property
greater or equal to a certain threshold?) and quantitative questions (What is the
probability for a model to satisfy a given property?).

• It simply requires an executable model of the system that can be simulated and
checked against state-based properties expressed in temporal logics. The observed
executions are processed to decide with some confidence whether the system
satisfies a given property.

• As a simulation-based approach, it is less memory and time intensive than exhaustive
approaches.

Various probabilistic model-checkers support statistical model-checking, as for example
UPPAAL-SMC [Dav+11], Prism [KNP11], and Plasma-Lab [JLS12]. This approach
has been considered in various application domains [Bul+12].

The usage of UPPAAL-SMC to optimize task allocation and scheduling on multi-
processor platform is presented in [Che+15]. Application tasks and processing elements
are captured in a Network of Price Timed Automata (NPTA). It is assumed that each
task execution time follows a Gaussian distribution.

Authors in [Caz+13a; Caz+16] propose a measurement-based approach in combina-
tion with hardware and/or software randomization techniques. Their goal is to conduct
a probabilistic worst-case execution time (pWCET) through the application of Extreme
Value Theory (EVT). While I in contrast aim for predicting the distribution of possible
execution times aiming towards a high accurate prediction of the average execution
time.

An iterative probabilistic approach has been presented by Kumar [Kum09] to model
the resource contention together with stochastic task execution times to provide estimates
for the throughput of SDF applications on multiprocessor systems.

In [Nou+14b] the integration of SMC methods in a system-level verification approach
is presented. It corresponds to a stochastic extension of the BIP formalism and associated
tool set [Bas+11]. An SMC engine is presented to sample and control simulation
execution in order to decide if the system model satisfies a given property. The
preparation process of time annotations in system model is presented in [Nou+14a]

2.4 Hybrid Probabilistic Methods 12

where a statistical inference process is proposed to capture low-level platform effects on
application execution. A many-core platform running an image recognition application
is considered and stochastic extension of BIP is then used to evaluate the application
execution time.

A solution is presented in [NLQ16] to apply SMC analysis methods for systems
modeled in SystemC. The execution traces of the analyzed model are monitored
and a statistical model checker is used to verify temporal properties. The monitor is
automatically generated based on a given set of variables to be observed. The statistical
model-checker is implemented as a plugin of the Plasma-Lab [Boy+13].

As I pointed out in [Ste+21], [Nou+14a] et al. propose a statistical inference process
to capture low level platform effects on computation execution time. Based on multiple
runs of a studied application on the targeted true platform, the Distribution Fitting
method [Le 10] is adopted to statistically learn the best distribution that fits the
observed data. Created probabilistic models are then simulated in conjunction with
statistical model checking methods to estimate probability that timing properties are
met. However, the execution times of the multiple paths in software are not identified.
Moreover, influence of shared communication resources is not explicitly separated from
computation execution time. In [BPT10], Bobrek et al. propose an approach to raise the
abstraction level of simulation while still estimating contention at shared resources such
as memories and buses. It interleaves an event-driven simulation to coarsely capture
processor execution overhead with an analytical stochastic model used to estimate
contention for shared resources.

In my work I follow a formal state based approach for the communication model. The
communication is modeled on instruction level which allows to consider computation
time (execution of instruction that do not interfere with shared resourced) within the
communication process that does interfere with shared resources. For the computation
model I follow an abstract probabilistic approach by describing the execution time
of functional units as probability density function. I combine simulation with the
analytical expression of shared resource effects on communication. This approach
allows time-consuming simulation events to be significantly reduced while maintaining
a good level of accuracy.

Tab. 2.1 compares related simulation based method that follow a hybrid and
probabilistic approach. It shows the related work that use hybrid probabilistic methods
in the first column. The other columns compare these approaches against the approach
I follow in this thesis for computation and communication models separately. For the
computation model, related work is compared regarding using a probabilistic model
while for communication it is compared regarding using a state based analytical model.
Empty circles () indicate that a different approach has been used. Filled circles ()
indicate a similar approach and half filled circles () an approach that follows a similar
concept in a different direction.

The approches [Che+15; Caz+16; Kum09; KW16] use no [Caz+16], or very
abstract distribution functions to like Gass distribution [Che+15] model computation

2.5 Execution Time Estimation 13

Table 2.1 Classification of related simulation based hybrid probabilistic methods.

Related work
Probabilistic

Computation Model
Low Level State Based
Communication Model

Bobrek et al. [BPT10]
Cazorla et al. [Caz+16]
Kumar et al. [Kum09]
Chen et al. [Che+15]
Katoen et al. [KW16]
Nouri et al. [Nou+14a]
This work

delays. Or they focus on predicting the probability of a certain worst case execution
time (pWCET)[KW16; Caz+16]. The approaches [BPT10; Nou+14a] focusing on a
probabilistic communication model. While [BPT10] only comes with a state based
approach to model computation delay. In contrast to my work, all use very high level
communication models while I propose an instruction level state based model. The
communication models of [Che+15; Kum09; KW16] in contrast use abstract high level
communication models.

2.5 Execution Time Estimation

All of the above mentioned analysis approaches and the approach presented in this
thesis, rely on the estimation of execution times. For the simulation-based and some
probabilistic approaches, the estimation can be performed through a detailed instruction
set architecture simulation model at instruction- or even cycle-accurate level. This
involves very time consuming simulations and belongs to the class of measurement-
based execution time analysis techniques, that have to deal with the rare-event problem1.
Another technique is timing back-annotation to functional or analytical system models,
applying timing measurement or static timing analysis approaches. For most real-time
systems, the Worst-Case Execution Time (WCET), which is a safe upper bound of all
observable execution times, is the most relevant metric. Sometimes also the Best-Case
Execution Time (BCET) is considered in combination with WCET in a [BCET,WCET]
interval. Static timing analysis [Wil+10] is the state-of-the-art technique to determine
the WCET and BCET respectively. With the adoption of today’s MPSoCs, limitations
of static timing analysis are becoming apparent [Cul+10].

Source-level simulation of software has been proposed to preserve simulation
accuracy [Bri+15]. The source code of the software is annotated with timing extracted
from machine code analysis.

1 Rare events are events that occur with low frequency but which have potentially widespread impact,
e.g. on the execution time.

2.5 Execution Time Estimation 14

For modern multi-processor architectures, measurement-based approaches can
overcome some problems of static timing analysis [Kir+05]. But this comes at a price,
since measurement-based timing analysis is facing the rare-event problem, its analysis
results are either largely over-approximated (using a large safety margin) or untrustworthy
(due to a missing probability analysis). To overcome these challenges for measurement-
based timing analysis for modern processors and multi-core systems, the work in the
context of the projects PROARTIS2 [Caz+13b] and PROXIMA3 [Caz+16] propose a
new way for timing analysis. Instead of applying improved static analysis, a measurement
based approach in combination with hardware and/or software randomization techniques
to conduct a probabilistic worst-case execution time (pWCET) through the application
of extreme value theory (EVT) has been proposed. Both projects have successfully
assessed that measurement based execution time analysis with the combination of EVT
can be used to construct a worst-case probability distribution.

In my work I apply measurement based delay analysis of restricted and well
analyzable Models of Computation (MoCs). I use measured execution time and
probabilistic inference methods to estimate execution time variability in data-dependent
software. The Kernel Density Estimation (KDE) [Ros56; Par62] method is adopted to
infer distribution laws based on a limited set of evaluated execution paths. The proposed
approach allows getting a distribution of possible execution times as result, not only a
best, average or worst case execution time. For fast simulation, computation is abstracted
to a distribution of delays instead of relying on instruction accurate simulation.

2 Probabilistically Analysable Real-Time Systems (http://www.proartis-project.eu)
3 Probabilistic real-time control of mixed-criticality multicore and manycore systems (http://www.
proxima-project.eu)

http://www.proartis-project.eu
http://www.proxima-project.eu
http://www.proxima-project.eu

Chapter 3
Software, Hardware and Delay Models

3.1 Model of Computation

I use Synchronous Data Flow (SDF) [LM87] as computation model (MoC). SDF is
used to describe the data flow between actors via communication channels. SDF allows
a strict separation of computation (compute) and communication phases (read, write)
of actors. A simple example of an SDF graph is shown in Fig. 3.1. The formal syntax
of an SDF graph (SDFG) as it is used in this thesis gets defined in this section.

Definition 3.1 An SDF graph (SDFG) is a tuple 𝐺 = (A, C,P,B, 𝛾) where A is a
finite non-empty set of Actors 𝐴 that represent the computational part of an SDF based
application. C is a finite set of Channels 𝐶 which represent the communication between
actors. P is a finite set of ports that connects actors with channels and define the data
rate for communication. B is a finite set of buffers that store data which is transferred
between actors. The repetition vector 𝛾 describes the execution order of the actors to
execute a full iteration of the SDF graph.

The strict separation of computation and communication phases of SDF applications
allow to distinguish between computation delay models and communication delay
models later presented in this thesis in Sec 3.3.

3.1.1 Buffers

To maintain distinction of computation and communication when implementing and
mapping a SDF application on hardware, it is important to define the ownership of
buffers.

9
9

9
9

1

1
1

1

Get
Pixel ABS

GX

GY2 2

2Actor

Channel

Initial Token Port

Token Rate

Label

Fig. 3.1 Example of a synchronous data flow graph

15

3.1 Model of Computation 16

During computation, Actors may only access private memory that is accessible
without interference with other Actors. During communication, data that got produced
by one Actor needs to be accessible by a consuming Actor. Therefore shared memory is
required.

Definition 3.2 A Buffer 𝐵𝑋 ∈ B is defined as a tuple 𝐵𝑋 = (𝑆𝑖𝑧𝑒, 𝐴𝑑𝑑𝑟𝑒𝑠𝑠, 𝑆𝑡𝑎𝑡𝑒).
The size 𝑆𝑖𝑧𝑒 ∈ N>0 defines how many tokens 𝑡 can be stored in the buffer. The
position of the buffer in memory (Sec 3.2) is given by the attribute 𝐴𝑑𝑑𝑟𝑒𝑠𝑠 ∈ N0. The
𝑆𝑡𝑎𝑡𝑒 ∈ {full, empty} says if tokens can be written into the buffer (𝑆𝑡𝑎𝑡𝑒 = empty)
or read from the buffer (𝑆𝑡𝑎𝑡𝑒 = full). 𝑋 ∈ {P, S} defines if a buffer is considered a
private buffer 𝐵P so that it can only be accessed by one actor 𝐴, or if it is a shared
buffer 𝐵S that can be accessed by two actors. One that writes to it, and one that reads.

Definition 3.3 A Token 𝑡 ∈ #”
𝑡 is an abstract representation of data. A token vector #”

𝑡

describes an ordered series of tokens. In context of software code also called data array.

Assumption 1. All tokens requires the same amount of memory to store the data it
represents. The number of bits of a toke is the same amount of bits of a data word of the
hardware architecture the modeled software is executed on.

Buffer access follows the First In First Out (FIFO) principle.

Assumption 2. The FIFO access is blocking. An actor can only switch to its compute
phase after it read all tokens from all incoming channels.

3.1.2 Actors

Definition 3.4 An Actor 𝐴 𝑓 ∈ A represents an inference free functional part 𝑓 of a
software. An actor is a tuple 𝐴 𝑓 = (#”

𝑃 In,
#”
𝑃Out, 𝑓) consisting of a finite set of input and

output ports #”
𝑃 In,

#”
𝑃Out ⊆ {P, ∅}, and 𝑓 as label representing the functionality of the

actor.

An actor 𝐴 𝑓 represents an atomic behavior (software function 𝑓) of a software
application that gets input data, processes it without interfering with other actors
and provides the result as output. Data is abstracted as token 𝑡 ∈ #”

𝑡 . Actors have no
hidden internal state. If the execution of an actor depends on its previous execution, it
communicates this state to itself via a feedback communication channel as it is the case
for the example actor 𝐴𝐺𝑒𝑡𝑃𝑖𝑥𝑒𝑙 in Fig. 3.1.

An actor consists of up to three different execution phases: A computation phase
(compute) and two communication phases (read, write).

During the read phase of an actor, each input port of the input port vector #”
𝑃 in of an

actor reads the input data #”
𝑡 𝑥 from a shared buffer 𝐵S

𝑥 of a channel 𝐶𝑥 into the private
buffer 𝐵P

𝑝𝑖
of port 𝑖. This is done sequentially for each input port.

3.1 Model of Computation 17

The input data stored in the private buffers of the input ports will then be processed
by the function 𝑓 of the actor during the compute phase. The results get stored in the
private buffers of the output ports.

During the write phase, these output port buffers are then written into the shared
buffers of the channels that are associated to the output port similar to the read phase

An actor can only switch to its compute phase after all required tokens have been
read from all incoming channels. After the compute phase, the actor switches into write
phase to write all tokens to the outgoing channels.

While each actor has an execution phase, the read and write phases are optional.
Actors that only generate data without having any input are called Producer Actor.
Actors that only read and process input data without having any output are called
Consumer Actor.

For example, a producer actor can be a software function that gets data from a
hardware sensor. An example for a consumer actor can be a software function that sets
an actuator. In both cases, the behavior of the sensor or the actuator are part of the actor
model with respect to functionality as well as execution time.

Assumption 3. During the compute phase, no interference with any other actor can
occur.

The hardware used to execute an actor must support Assumption 3. For MPSoCs
this separation only works when the instructions are placed on separated memories,
connected with separate interconnects to the processing element as it is realized in
tile-based hardware platforms. Details are described in the Model of Architecture
section (Sec 3.2),

3.1.3 Ports

A Port is the interface between an actor 𝐴𝑥 and a channel 𝐶𝑦 . Ports are used to transfer
tokens from a local buffer 𝐵P

𝑖
of a port 𝑝𝑖 of an actor into a shared buffer 𝐵S

𝑦 of a
channel 𝐶𝑦 . The amount of tokens that get transferred is defined by the port rate 𝑅𝑎𝑡𝑒.
Ports have a direction 𝐷𝑖𝑟 and can either read (input ports) or write (output ports) to a
channel.

Definition 3.5 A Port 𝑝 ∈ P is a tuple 𝑝 = (𝐷𝑖𝑟, 𝑅𝑎𝑡𝑒, 𝐵P) where 𝐷𝑖𝑟 ∈ {In,Out}
defines if it is an input or output port. The port rate 𝑅𝑎𝑡𝑒 ∈ N>0 defines how many
tokens are transferred by the port during one read or write phase. Each port has a local
buffer 𝐵P ∈ B to store tokens that have been read from a corresponding channel or
tokens that are ready to be written to a channel.

Following sections will refer to the implementation of the port behavior as
ReadTokens function for input ports and WriteTokens function for output ports.

3.2 Model of Architecture 18

These functions implement the behavior or copying data between local buffers ab-
stracted as ports and shared buffers abstracted as channels.

During the read phase of an actor, all input ports of that actor read tokens from there
associated channels. The token rate defines how many tokens are read. During the write
phase, all output ports write their tokens into their associated channels.

Reading and writing is a blocking process. Ports are processed in order. The reading
process is blocked until all tokens, depending on the token rate, have been read from a
port. Then tokens from the next port of an actor are read. The writing process is done
in a similar manner.

3.1.4 Channels

Channels are used to communicate data between two actors. Channels represent shared
FIFO buffers (𝐵S) that can be mapped to any memory that is accessible by the output
port of a producer (an actor that writes on that channel) and the input port of a consumer
(an actor that reads from that channel). During the read phase of an actor, tokens get
read from the channels buffer. During the write phase, tokens get written into the
channel. Each port of all actors is connected to exactly one channel, and all channels
are connected to one input port and one output port.

Definition 3.6 C ⊆ P ×P is a set of channels (represented as edges in the visual syntax
of SDF). A Channel 𝐶 ∈ C is a tuple 𝐶 = (𝐵S,

#”
𝑡 Init) where 𝐵S ∈ B is a buffer to store

tokens that get written into the channel 𝐶. Channels connect actors via ports. A channel
may be initialized with initial tokens #”

𝑡 Init. A shared buffer 𝐵S
𝑥 referrers to the token

buffer of the channel 𝐶𝑥 ∈ C.

Initial tokens #”
𝑡 Init are written into shared memory of a channel once before executing

an SDF application. They are used to solve deadlocks by feedback loops between one
or multiple actors.

3.2 Model of Architecture

The Model of Architecture (MoA) is based on the definition from [Fak+15] which I have
updated and generalized in [Ste+17; Ste+19c; Ste+19a]. This section presents the tile
based MPSoC architecture model used in this thesis with a detailed view on processing
element interfaces and considering heterogeneous instruction set architectures (ISA). A
simple example of such a platform is shown in Fig. 3.2.

3.2 Model of Architecture 19

Tile T1

Processing Element
PE1

Shared Memory
MS1

Interconnect I1

...
Private Memory

MP1

Tile Tn

Processing Element
PEn

Private Memory
MPn

FPU

Fig. 3.2 Example of an execution platform with n tiles. All tiles are connected to a shared memory
via an interconnect.

3.2.1 Execution Platform

On a very abstract view on an embedded multi processor system, these execution
platforms (𝐸𝑃) consists of following hardware components:

• A set of processing elements (PE) that execute the instructions of a software.
• A set of memory (M) that stores data and instructions.
• A set of interconnects (I) that connects the processing elements with memory.
To be able to execude software components without interfering with other software

components (See Assumption 3), software needs to be executed on isolated tiles (T)
with instructions and local data stored in private memory (M𝑃).

Definition 3.7 An Execution Platform 𝐸𝑃 contains all hardware components needed
to execute software. It is defined as 𝐸𝑃 ⊆ T × I ×M𝑆 , where T is a finite non-empty
set of Tiles on that code gets executed in isolation, M𝑆 is a finite set of shared memory
and I is a finite set of interconnects that connect tiles (𝑇 ∈ T) with each other and with
shared memory (𝑀𝑆 ∈ M𝑆).

There are some basic assumptions that apply to each component inside the execution
platform:

A word processed on a processing element has the same size as a word transferred
by an interconnect and the same size a word inside a memory has. Overhead like start
or stop bits is neglected by the model.

Assumption 4. The data word size in bits is the same for each component.

Beside the word length, also the clock frequency needs to be the same for each
component. So for each component, one clock cycle takes the same amount of time.

3.2 Model of Architecture 20

Considering dynamic voltage and frequency scaling as well as different clock domains
are not subject of this work1.

Assumption 5. The clock frequency of each component is the same. The clock frequency
does not change over time.

3.2.2 Tile

To make the execution platform composable with respect to time (Assumption 3) an
environment needs to be created that allows multiple processing elements executing
software without interfering with each other. A tile ensures this composability by
isolating a processing element with its own private memory from interaction with
shared resources during the execution of instructions. This is limited to code that only
works on local data. Interference with other tiles can happen when the code accesses
shared resources.

Definition 3.8 A Tile is a single processing element 𝑃𝐸 ∈ PE with a private memory
𝑀𝑃 ∈ M𝑃 . It is defined as a tuple 𝑇 = (𝑃𝐸, 𝑀𝑃). Where 𝑃𝐸 ∈ PE is a processing
element with a specific instruction set architecture and feature set (like a Floating Point
Unit) and 𝑀𝑃 is private memory connected to the processing element via dedicated
peer-to-peer connection. Tiles have only a single processing element and one private
memory.

Assumption 6. A tile represents an isolated processing environment that does not
interfere in any way with other tiles or execution platform components, as long as
no shared resources are accessed. Instructions and local data are stored on private
memory only.

3.2.3 Processing Element

A processing element 𝑃𝐸 ∈ PE implements an instruction set architecture (ISA).
Software instructions mapped to a processing element will be executed by it. Different
processing elements can implement different ISAs or come with different ISA features
like a floating point unit (FPU) or hardware multiplier (MUL).

Definition 3.9 A Processing Element 𝑃𝐸 ∈ PE is a tuple 𝑃𝐸 = (𝐼𝑆𝐴, F) Where 𝐼𝑆𝐴

references to the instruction set architecture implemented by the processing element. F
is a set of optional ISA features and accelerators enabled for this processing element.

1 Applying clock gating to adapted models has been evaluated by Oliver Klemp within his master
thesis supervised by Maher Fakih and me. Published in [Kle+19]

3.2 Model of Architecture 21

An example of a processing element implementing the MicroBlaze architec-
ture [Xil21] with enabled FPU and hardware multiplier is𝑃𝐸 = (MicroBlaze, {FPU,MUL}).

3.2.4 Memory

In context of this thesis, memory is used for two different purposes. There is private
memory M𝑃 and shared memory M𝑆 . For each processing element 𝑃𝐸𝑖 ∈ PE there
exists a dedicated memory 𝑀𝑖 ∈ M𝑃 called private memory. This private memory can
only be accessed by its associated processing element.

A shared memory 𝑀𝑘 ∈ M𝑆 is accessible by multiple processing elements PE𝑘 ⊆
PE This memory is used for data exchange between multiple tiles.

Definition 3.10 The set of memories M = M𝑃 ∪M𝑆 represents all memories of an
execution platform 𝐸𝑃. A Memory 𝑀 ∈ M is defined as tuple 𝑀 = (𝑆, 𝑑𝑟 , 𝑑𝑤) where
𝑆 ∈ N>0 is the memory size in bytes. 𝑑𝑟 the delay (or access time) to read from the
memory and 𝑑𝑤 the delay for write access.
Memory delay 𝑑𝑟 ,𝑤 is defined in Sec 3.3

Assumption 7. The memory access delay 𝑑𝑟 and 𝑑𝑤 are assumed being constant. This
assumption is valid for static memory (SRAM). This implies the absence of additional
caches and in-memory-logic which may lead to variance in memory access time.

Assumption 8. For data exchange between different tiles shared memory is used.
Shared memory is connected via a shared interconnect to the processing elements.

3.2.5 Interconnect

Interconnects are used to connect tiles with shared memory. This allows processing
elements of tiles to exchange data with processing elements of other tiles.

Definition 3.11 An Interconnect 𝐼 ∈ I connects Tiles T with shared memory M𝑆 .
Where I ⊆ T ×M𝑆 is a shared interconnect.

Assumption 9. It is assumed that for each word that gets transferred the interconnect
needs to be arbitrated.

Assumption 10. A First Come First Serve arbitration protocol is assumed for all
interconnects.

3.3 Delay Model 22

3.3 Delay Model

In context of this thesis, time is the primary metric used to characterize the performance
of hardware and software. Relative time is denoted as delay that represents the amount
of clock cycles an activity takes between start and finish. Using clock cycles instead of
time in seconds makes the model independent from the actual clock frequency.

3.3.1 Delay

Definition 3.12 A Delay 𝑑𝑥 ∈ N0 represents the amount of clock cycles required to
perform an action 𝑥.

Assumption 11. All clock cycles used inside a model are derived from the same global
clock. Each clock cycle represents the same amount of time. There is no jitter between
clock cycles. The clock runs with a steady and constant frequency.

Delay can be represented as single value or as a vector of multiple delays. Depending
on the complexity of hardware or software components the same functional behavior
can lead to different delays. In this case the probability for a certain delay to occur
needs to be modeled. This is described in Sec 3.3.2. An example where a single delay
is enough to describe timing behavior is access time of local memory:

Definition 3.13 As defined in Def. 3.10, each memory has a read access delay 𝑑𝑟 and a
write access delay 𝑑𝑤 .
𝑀.𝑑𝑟 ,𝑤 ∈ N0 ∀𝑀 ∈ M𝑃 and 𝑀.𝑑𝑟 ,𝑤 ∈ N>0 ∀𝑀 ∈ M𝑆 .
The delay is given in clock cycles per data word.

As defined in definition 3.13 private memory can have, but is not limited to, an access
time of 𝑑𝑟 ,𝑤 = 0∀𝑀𝑃 ∈ M𝑃 clock cycles. A common use case for a memory access
time are instruction memories where the actual access time is part of the instruction
execution time (Usually called instruction fetch phase). To avoid having the instruction
fetch delay twice, in the memory access model and in the execution delay model,
setting the memory access time to 𝑑𝑟 = 0 is necessary. Following Assumption 7, for all
memories static RAM and no caches have been used.

3.3.2 Modeling Delay Occurrence Probability

Delay inside an embedded system can vary for many reasons. For example low level
effects like Pipelining of code execution in a processing element or resource contention
on shared hardware components. On higher level, the execution of software can vary
in time because of different data dependent execution paths. Therefore a single delay

3.3 Delay Model 23

may not always be sufficiently represent the time behavior of hardware or software
component.

To be able to consider different possible delays 𝑑𝑥 for the same action 𝑥, a vector of
delays #”

𝑑 𝑥 is used.

Definition 3.14 A Delay Vector #”
𝑑 𝑥 contains multiple possible delays [𝑑𝑥,0, . . . , 𝑑𝑥,𝑛]

for an action 𝑥. The number of times the same delay 𝑑𝑥,𝑖 occurs inside the delay vector
determines its probability of occurrence [Mar63].

The distribution of delays in a delay vector #”
𝑑 𝑥 represent the observed distribution

of delay performing an activity 𝑥 took. Either as record of observed delay or as set of
delays following a distribution function after applying inference techniques on observed
delays.

Delays are stored in a delay vector in a way that their occurrence in the delay vector
represent their observed or calculated probability. The probability of a delay 𝑑𝑖 to occur
is represented by the occurrence of that delay 𝑑𝑖 in the delay vector #”

𝑑 𝑥 . So when one
delay exists only once in the delay vector, it occurs with the probability of 1/| #”

𝑑 𝑥 |. If
the same value occurs twice, it comes with the probability of 2/| #”

𝑑 𝑥 |. A delay 𝑑𝑎 that
occur twice as often as different delay 𝑑𝑏 is also stored twice as often in the delay
vector: #”

𝑑 = [𝑑𝑎, 𝑑𝑎, 𝑑𝑏]. Its probability to occur is 𝑃 (𝑑𝑎) = 2/3.

Definition 3.15 The probability 𝑃 (𝑑𝑖) of a delay 𝑑𝑖 ∈ #”
𝑑 𝑥 follows the probability

density function of the observed delays of an action 𝑥:
𝑃Distribution (𝑑𝑖) ≈ 𝑃Observed (𝑑𝑖) ∀𝑑𝑖 ∈

#”
𝑑 𝑥

Where Distribution represents the distribution function used to abstract the observed
distribution of delays.

3.3.3 Delay Distribution Inference

There are several ways to address the variation of delays of an observed system. The
most easy way is to calculate the average of all observed delays. Often the whole range
of possible delays must be considered. In this case a uniform distribution of delays
between the Best Observed Execution Time (BOET) and the Worst Observed Execution
Time (WOET) can be a valid abstraction. Distribution functions can also be used to
extrapolate the observed delays to get a safety margin to the BOET and WOET. For a
more accurate delay model more sophisticated distribution functions can be used to fit
the observed distribution of delays. For a general way to abstract the distribution of
delays based on observation, Kernel Density Estimation (KDE) [Ros56; Par62] can be
applied to the observed delays.

A measurement infrastructure like the one used for this work which is described
in Sec 4.1.2 provides delay samples of an observed actor. The series of samples are called
Delay Vector #”

𝑑 𝑆 . These samples can easily be used to obtain best and worst observed

3.3 Delay Model 24

ds

s

P(d)

d

P(d)

d
d

s

d

s

s

s

P(d)

d

d

s s

Uniform

Gauss

KDE

Fit PDF
Generate
Samples

Shuffle
Samples

Obtain
Samples

d

d

d

1 2 3 4

Fig. 3.3 Workflow of generating a vector of random delays following a specific distribution function.

execution time as well as the average observed execution time of that actor. Because the
observed behavior does not cover all possible delays, different post-processing steps can
be applied to the samples to get a more general description of the timing characteristics
of an actor. To abstract how the actor execution time can be in general, a distribution
function needs to be fit to the observed occurrence of measured delays.

In Fig. 3.3 this process is shown with an example where from observed samples 1⃝
a more generalized delay vector gets derived. This is done by fitting a probability
distribution function to the observed delay vector (2⃝). Simple distribution functions
can be an uniform distribution interpolating between worst and best observed delay.
Or a Gauss distribution that focus more on the average observed delay but also covers
rare delays lower than the best, and higher than the worst observed delay. For software
this can be a very error prone abstraction process especially with the goal to analyze
the distribution of delays of the overall system. The challenge is to represent data
dependency. Different branches of a software function can lead to very different delays.
A more sophisticated method to obtain a distribution function based on measured data
can be Kernel Density Estimation [Par62; Ros56].

The Kernel Density Estimation assumes for each sample 𝑑𝑖 ∈ #”
𝑑 𝑆 a weighted

distribution function 𝑃kernel (𝑑𝑖) - the kernel. In this thesis a Gauss distribution is used as
kernel. The sum of these kernels results in a smooth distribution function representing
the whole data set.

From the distribution function, a new delay vector gets generated Fig. 3.3 3⃝. This
new delay vector provides delays following the desired distribution function. To use the
derived delay vector for analysis, the elements of the vector get shuffled to achieve a
random order 4⃝. This is important to not just use all best case delays of all actors at
the begin of a simulation and all worst case delays at the end. A combination of a better
case and a worse case for a partial actor delay could lead to a worst case for the overall
execution time.

3.4 Communication Delay Models 25

Managing

000000d4 <WriteTokens>:
 lwi r8, r5, 12
 lwi r3, r8, 0
 bnei r3, -4
 lwi r4, r5, 4
 beqi r4, 40
 lwi r9, r5, 20
 addk r4, r3, r0
 lw r7, r4, r6
 addik r3, r3, 1
 sw r7, r4, r9
 lwi r7, r5, 4
 cmpu r18, r7, r3
 bltid r18, -20
 addik r4, r4, 4
 addik r3, r0, 1
 swi r3, r8, 0
 rtsd r15, 8
 or r0, r0, r0

void WriteTokens(
 channel_t *channel,
 token_t inputtokens[])
{
 // Poll for empty buffer
 while(*(channel->full));

 // Write token into channel buffer
 for(int i=0; i<channel->prate; i++)
 {
 channel->tokens[i]=inputtokens[i];
 }

 // Flag buffer as full
 *(channel->full) = 1;
}

Macro BlocksInstructionsCommunication Implementation

Done?

Copying

Preparing

Empty?

Polling

Initializing

Fig. 3.4 The communication source code for writing tokens into a channel buffer has been compiled
and its instructions analyzed to identify Macro Blocks for modeling communication. Based on a figure
I published in [Ste+19a].

In the computation model evaluation section Sec 5.4 I compare the different
distribution functions (Uniform, Gauss, KDE-Based) regarding accuracy.

3.3.4 Computation Delay Set

The computation time of functional behavior highly depends on the processing element
the code implementing the function got executed on. This leads to individual delay
distributions for each actor on each specific type of Tile. Different types of Tiles may
have different accelerators like a floating point unit or even a totally different instruction
set architecture. To be able to perform a design space exploration, for each combination
of Actor and Tile, the corresponding delay vector needs to be available for analysis of
certain Actor-Tile mappings. So each combination of SDF-Application 𝐺 and execution
platform 𝐸𝑃 a set of delays D needs to exist:

Definition 3.16 A delay set D = T × A is a set of delay vectors #”
𝑑 𝐴,𝑇 ∈ D where

#”
𝑑 𝐴,𝑇 represents the computation delay of an actor 𝐴 on a tile 𝑇 .

3.4 Communication Delay Models 26

3.4 Communication Delay Models

The communication delay model requires more effort compared to the computation
model. To cover interference on the shared resources, there are four aspects to consider:

• The communication between actors includes computational parts for accessing the
private memory data and calculating addresses. This violates the assumption that
computation and communication are separated (Assumption 3).

• The amount of traffic generated on the interconnect depends on the number of
tokens that get communicated. Since the token rate of all ports are static and defined
before run-time, this information can be used for simplification of a model.

• The communication function needs to wait and check repetitively the state of the
channels buffer to have tokens or space available (aka polling) (Assumption 2).
Polling on shared resources add interference points to the model.

• To model bus contention as precisely as possible, the moment and delay of shared
memory access must be as accurate as possible. This requires a sophisticated
communication model with the risk of significantly increase analysis time.

Conceptually communication between two SDF actors is realized via channels.
During the write phase of an actor, data generated by one of the actor gets copied from
the local buffer of the writing actor into a FIFO buffer that is associated with the channel
that connects those actors. During the read phase of the other actor, data gets copied
from the channel’s FIFO buffer into the local buffer of the reading actor. Before copying,
the writing actor needs to ensure the FIFO buffer has enough space and the reading
actor needs to ensure the FIFO buffer has enough tokens to read. This leads to a very
similar pattern for the reading and writing functions, listed in Fig. 3.4 (left). Looking
at the instructions after compiling the functions that implement the communication
between actors, macro blocks can be identified Fig. 3.4 (middle, and right). These
macro block pattern is identical for reading and writing. The instructions of each macro
block are different. Because the pattern of macro blocks is strong related to the source
code, it is most likely identical with any instruction set architecture. In the example
given in Fig. 3.4 the Xilinx MicroBlaze [Xil21] instruction set architecture has been
used.

The communication function consists of five macro blocks. The Initializing macro
block that prepares the Polling block. During polling, the state of the FIFO buffer of a
channel gets checked. After that, a Preparing macro block prepared the Copying loop in
that tokens get copied from private memory to shared memory or from shared memory
to private memory. The last macro block, Managing, updates the FIFO buffer state.
Beside the instructions directly related to the communication algorithm, also instructions
introduced by the compiler for implementing the application binary interface (ABI),
like setting up the stack pointer for local variables, is included.

3.4 Communication Delay Models 27

(b) Transaction Level

(c) Message Level

Initializing Waiting Preparing Copying Managing

Initializing Waiting Writing

np++ np-- nw++ nw--

Preparing

nc++ nc--

Get FIFO State Wait for Event

nc++ nc--

Update State Set FIFO State

Channel Update Channel Update

Channel UpdateChannel Update

Write Phase of an Actor

(a) Cycle Accurate
Initializing Polling Preparing Copying Managing

Pre-Write Write Post-Write

nc++ nc-- nc++ nc--

Update State Set FIFO StatePre-Read Get FIFO State Post-Read

nc++ nc--

Until FIFO
Is ready

For each
Token

Pre-Write Write Post-Write

nc++ nc--

Fig. 3.5 Simulation steps of the communication model of an actor write phase using the following
three approaches:
(a) Cycle Accurate [Ste+19a], (b) Transaction Level [Ste+21], (c) Message Level [Vu+21].
This figure has been published by me first in [Ste+21].

During the work on this thesis I followed two different approaches, published in
[Ste+19a; Ste+21] and a third approach by Hai-Dang Vu et al. [Vu+21]. Each of the
approaches are visualized in Fig. 3.5 first published by me in [Ste+21].

Fig. 3.5 shows the process of writing tokens from an actor into a channels memory
during the Write Phase of the execution of an actor. The write process has been
split into four to five macro blocks, depending on the abstraction level of the model
communication model. Two of the presented models use events to improve simulation
speed. Waiting for an event, and raising an event are denoted by red arrows. Some parts
of the communication process are split into sub-parts to present further details that
are mentioned in the model descriptions in Sec 3.4.1 and Sec 3.4.2. The gray boxes
annotate conditions how often a sub-part gets executed.

All models consider a First Come First Serve communication policy (Assumption 10)
for communicating tokens between actors using a shared memory. The different
variables 𝑛 in Fig. 3.5 denotes the amount of tiles that are accessing a shared resource
simultaneously. The proposed models use this number as parameter to consider
increasing contention on the interconnect with increasing number of communication
participants. For the Cycle Accurate (CA) and Transaction Level (TL) models, all
communicating tiles 𝑛𝑐 are considered equally. The Message Level (ML) model
distinguishes between writing tiles 𝑛𝑤 , reading tiles 𝑛𝑟 and polling tiles 𝑛𝑝 that are
waiting for a free or filled FIFO buffer. So 𝑛𝑐 = 𝑛𝑤 + 𝑛𝑟 + 𝑛𝑝. While the CA and TL
model consider each token individually, the ML models formulas for calculating certain

3.4 Communication Delay Models 28

time spans and considers all consumed or produced tokens at once, denoted by 𝑇 . The
suffix ++ denote increasing the value of a variable 𝑛 ∈ {𝑛𝑐, 𝑛𝑤 , 𝑛𝑟 , 𝑛𝑝} when switching
from one communication part to another. The suffix -- is used to decreasing the value
of a variable.

The SDF model allows strict separation of communicational and computational
parts of an application (See Sec. 3.1). When implementing an application following
SDF semantics this separation vanishes, because the communication requires executing
instructions on the processing element. So the communication includes computational
parts as well. During these computational parts (like incrementing an index or jumping
in a loop), no interconnect access takes part. Remember that the instructions and local
data are stored in private memory so that instruction execution does not interfere with
data communication in the context of SDF application execution. The individual parts
of the individual communication models are described in the following sub sections.

Three different approaches have been used to address the communication modeling
challenge. All models represent a specific implementation of the communication
algorithm on a certain hardware platform. Each of of the models considers a different
abstraction level. In the evaluation (Sec 5.5) these models are compared regarding
accuracy and simulation speed.

The Cycle Accurate (CA) model (Sec 3.4.1), first presented in [Ste+19a], comes with
a low abstraction of the communication driver. This model considers the instructions
executed on the processing element to perform communication, as well as the delays
during communicating single tokens over the interconnect. This model is visualized at
the top of Fig. 3.5.

The Message Level (ML) model (Sec 3.4.3), first presented in [Vu+21], is an
abstract model focussing on communicating a whole set of Tokens at once. Individual
communication and instruction execution steps are abstracted to simple messages.
Therefore the interconnect usage is pre-calculated based on active communicating
processing elements. This model is visualized at the bottom of Fig. 3.5.

The Transaction Level (TL) model (Sec 3.4.2), first presented in [Ste+21], abstracts
the polling phases of the communication to reduce simulation overhead. The cycle
accurate model requires a lot of simulation time compared to the message level model, as
a comparison of simulation time in [Vu+21] showed. For simulation time optimization
the transaction level model abstracts polling on a channel FIFO buffer inside the
simulation by using events instead of modeling and simulating the polling process
cycle accurate. This model is visualized in the middle of Fig. 3.5. The TL model
is an enhancement of the CA model with the knowledge gained by the ML model
construction.

3.4 Communication Delay Models 29

Managing

000000d4 <WriteTokens>:
 1 lwi r8, r5, 12
 SR ? lwi r3, r8, 0
 1/3 bnei r3, -4
 1 lwi r4, r5, 4
 1 beqi r4, 40
 1 lwi r9, r5, 20
 1 addk r4, r3, r0
 1 lw r7, r4, r6
 1 addik r3, r3, 1
 SW ? sw r7, r4, r9
 1 lwi r7, r5, 4
 1 cmpu r18, r7, r3
 1/2 bltid r18, -20
 1/1 addik r4, r4, 4
 1 addik r3, r0, 1
 SW ? swi r3, r8, 0
 2 rtsd r15, 8
 1 or r0, r0, r0

void WriteTokens(
 channel_t *channel,
 token_t inputtokens[])
{
 // Poll for empty buffer
 while(*(channel->full));

 // Write token into channel buffer
 for(int i=0; i<channel->prate; i++)
 {
 channel->tokens[i]=inputtokens[i];
 }

 // Flag buffer as full
 *(channel->full) = 1;
}

 1 lw r7, r4, r6
 1 addik r3, r3, 1
 SW ? sw r7, r4, r9
 1 lwi r7, r5, 4
 1 cmpu r18, r7, r3
 1/2 bltid r18, -20
 1 addik r4, r4, 4

 /* … */
// Simulate Copying Tokens
for(int i=0; i<channel.prate; i++)
{
 sc_core::wait(2, sc_core::SC_NS);
 this->Interconnect.WriteToken();
 sc_core::wait(5, sc_core::SC_NS);
}
 /* … */

4

3

3

2

4

Communication ModelingMacro Block
Identification

Static Code
Analysis

Communication
Implementation

C

Real System

A

Done?

Copying

Preparing

Empty?

Polling

Initializing
B

3

1

Fig. 3.6 Workflow of creating a communication model for a SystemC simulation based on static code
analysis. (Based on [Ste+19a]).

3.4.1 Cycle Accurate Model

This section recapitulates my work on the Cycle Accurate communication model first
published in [Ste+19a] and recapitulated in [Ste+21].

The Cycle Accurate communication model is cycle accurate from perspective of
executed instructions of the communication drivers running on the connected processing
element. It is not signal accurate from perspective of the interconnect, meaning that not
each bit change on the signal lines of the communication interface is modeled. The
detailed arbitration process, in this work considered being a First-Come-First-Serve
(FCFS) arbitration, is abstracted as a look up table that defines observed penalty delays
depending on the amount of contender 𝑛𝑐 (Fig. 3.5). Building up this look up table is
part of the characterization process described in Sec 4.2.

The Cycle Accurate communication model represents the communication process
between an actor and shared memory as accurate as possible. The model focuses on the
software communication drivers and can be easily applied to different interconnects.
The modeling steps are visualized in Fig. 3.6 using the function to write tokens from
an Actor into the FIFO buffer of a Channel (WriteTokens) as example. The process
for modeling the reading function ReadTokens is the same. The modeling process is
demonstrated using the MicroBlaze instruction set architecture.

To identify the delay spent on the local tile, and the delay spent for transferring data
between a tile and shared memory, the source code of the communication functions
needs to be compiled for the target platform. The compiled functions can then be
disassembled (Fig. 3.6 A⃝). Creating assembly code from the source code directly may
lead to inconsistency between the assembly code and the binary code because some

3.4 Communication Delay Models 30

compiler/assembler optimization may have not been applied yet. Compiling the source
code first to the binary that shall be executed and then using a disassembler to generate
the mnemonic representation of this code mitigates this effect.

After disassembling the communication functions, the amount of clock cycles to
execute each instruction needs to be annotated to the assembly code. This process
requires knowledge about the Instruction Set Architecture. The execution time of each
instruction must be derived from the datasheet of the execution platform. In general the
instructions can be grouped into three different types of instructions.

• Instructions with a single execution time.
• Instructions with multiple conditional execution times.
• Instructions that access shared resources leading to contention based execution

times.

The example code in Fig. 3.6 A⃝ shows assembly code for Xilinx MicroBlaze [Xil21]
processors. This architecture comes with pipelined instruction execution which has
to be considered. According to the datasheet “one instruction is completed on every
cycle”[Xil21]. Exceptions, also documented in the datasheet, have been considered as
well. These exceptions correspond to the different types of instructions and have been
annotated in Fig. 3.6 as well (2⃝, 3⃝).

The simplest case are instructions that have a single fixed amount of clock cycles it
takes to execute them. The lwi 1⃝ for example loads data from private memory which
takes always a delay of 𝑑𝑙𝑤𝑖 = 1 clock cycle. This proposition is valid because the model
of architecture guarantees interference free access to private memory (Assumption 6).

Then there are instructions that have a variable execution time. For example branching
instructions execution time 2⃝ which is based whether a jump to a new address is
performed or not. There may be corner cases where it can be assumed that such an
instruction has a fixed execution time based on knowledge of the algorithm. For example
a check for a variable to be zero can be considered being always false when the developer
knows that the algorithm does not allow the variable being zero. In the example code
this situation occurs one line above 1⃝ (beqi) where the amount of tokens to transfer is
checked. The communication function never transfers 0 Tokens.

The third type of instructions access shared resources. In 3.6 A⃝ these lines are
marked with 3⃝. Instruction that access shared memory are annotated with SR (Shared,
Read) and SW (Shared, Write). Such an instruction performs a read or write access to
a shared memory via a shared interconnect. The execution time of these instructions
highly depends on the resource contention. This situation needs to be considered in
the model. The actual execution time of these instructions will be determined during
simulation of the communication.

The delay annotated code to transfer tokens from an actor to a FIFO buffer of a
channel, or from such a FIFO buffer to an actor, can be split into different macro
blocks. The macro blocks in Fig. 3.6 B⃝ are equivalent to the phases shown in the
communication model overview in 3.5.

3.4 Communication Delay Models 31

Each macro block can consist of instructions that only access data from local memory
or registers, instructions that write a word into memory that is connected to a shared
interconnect or instructions that read a word from such a shared memory. Further more
macro blocks may be executed in loops. In this case the loop-instructions are part of
the computational overhead of a block. The execution time of macro blocks that only
access local resources can be determined by static code analysis and later summed up
to a single delay. The analysis of macro blocks that contain instructions that access
shared resources can only provide a computation delay offset. The communication time
with the shared resources will be determined by the simulation and require further
characterization processes of the interconnection (See Sec 4.2.2).

There are five macro blocks for reading or writing tokens: Initializing, Polling or
Waiting, Preparing, Copying and Managing. Both, reading and writing, have the same
structure and only varies in the amount of clock cycles for computation, interconnect
accesses and loop cycles. Combining several instructions to a single macro block
reduces the amount of simulation steps compared to considering and simulating each
instruction delay individually.

The Initializing-Block represents necessary instruction execution to prepare for
initiating the communication process with a FIFO buffer on a shared memory. This
also includes programming language specific setup of the context of a function but also
algorithmic behavior like initializing temporary variables used inside the WriteTokens
function.

The Polling-Block abstracts the process of polling for a valid channel buffer state.
For reading, the FIFO buffer of the channel must contain enough tokens to read, for
writing, the FIFO must contain enough space for tokens to write. Reading and Writing
is blocking. So the loops stays active until the required buffer state is given. The polling
process is modeled in detail considering the computational overhead for the polling
loop and each interconnect access for checking the FIFO state.

The Preparing-Block represents setting up the copy-loop to transfer tokens between
private local memory of an actor and the shared memory of the channel. Part of this
preparation is to initialize a counter variable and to get the token rate that represents
how may tokens will be copied into the channel buffer.

The Copying-Block models the token transfer of tokens. When modeling a write
process, this is the transfer of tokens from a producing actor into the FIFO buffer of
a channel. Modeling a reading process, this is the transfer from the FIFO buffer of a
channel into the private local memory of a consuming actor. This is usually a loop
that gets executed as many times as tokens need to be transferred. The amount of loop
iterations is strictly related to the consume or produce rate of the port of an actor for
a specific channel. Each token is handled individually considering the computation
overhead of the loop and the communication part of the token transfer.

The Managing-Block updates the meta data of the communication channel like the
fill-state of the FIFO buffer. This phase also includes the return instruction to leave
the called communication function.

3.4 Communication Delay Models 32

After identifying the macro blocks they can be transferred into a structure that can
be simulated. Fig. 3.6 C⃝ shows this process on the example of simulating the copying
process of data in SystemC. Instructions with static delays can be consolidated as a
single SystemC wait statement. Instructions annotated with SW or RW to highlight
shared resource access are represented as individual interconnect accesses 4⃝. The
interconnect model considers a fixed delay offset for the shared memory access, and
an additional contention penalty depending on how many processing elements trying
to access the shared interconnect (See Fig. 3.5 𝑛𝑐). Details about the interconnect
contention penalty delay are described in Sec 4.2.2.

3.4.2 Transaction Level Model

This section recapitulates my work on the Transaction Level communication model
first published in [Ste+21].

The Transaction Level model shown in the middle of Fig. 3.5 is based on the Cycle
Accurate model described in Sec. 3.4.1. To improve simulation speed, the polling
process is modeled using events.

The Cycle Accurate model describes each iteration of polling on the FIFO buffer
state. On a real system with a configuration where most of the actors are executed
in parallel, most of the time these actors are polling on the FIFO buffer waiting for
data that can be processed. Because each polling iteration consists of computational
and communicational parts, multiple simulation steps are required. This decreases the
simulation speed tremendously. To avoid these simulation steps, the polling process
is simulated using events instead of explicitly simulating the polling communication.
When the FIFO buffer is not in the state that it must be to perform the read or write
process, the simulated actor waits for an event that signals a state change inside the
FIFO buffer. For each channel exists an exclusive event signal. The state update event is
triggered after another simulated actor updated the FIFO buffer state. An actor writing
into a buffer triggers that event after it wrote all its tokens into the FIFO buffer. An
actor reading from a buffer triggers that event after it read all its tokens from the FIFO
buffer. So the simulation kernel can easily skip the polling activity without simulating
each individual polling attempt. Simulated actors that are in a waiting situation during
their read or write phase do not require simulation time and therefore CPU load.

Similar to the Cycle Accurate model, the Transaction Level model also considers a
fixed delay offset for the shared memory access, and an additional contention penalty
depending on how many processing elements trying to access the shared interconnect
(See Fig. 3.5 𝑛𝑐). In contrast to the Cycle Accurate model, the Transaction Level model
assumes continuous bus access by the polling actors. Any computational overhead
where the bus is not accessed is ignored.

3.4 Communication Delay Models 33

3.4.3 Message Level Model

This section summarizes our work first published in [Vu+21] and recapitulated in
[Ste+21]. The key idea of the Message Level model comes from my colleague Hai-
Dang Vu and has been fully documented in his PhD Thesis [Vu21].

Of the three communication models presented in this thesis (Shown in Fig. 3.5), the
Message Level model is the most abstract one. This makes it also the fastest one when
it comes to simulation time as shown in the communication model evaluation Sec 5.5.

The goal behind the Message Level model is, similar to the Transaction Level model,
to reduce the amount of simulation steps and so to increase the simulation speed. To still
achieve a good level of accuracy a hybrid approach is used that combines simulation
and analytical models.

In the Message Level part of Fig. 3.5, four steps for writing tokens are shown:
Initializing, Waiting, Preparing and Writing. The same structure can be considered for
reading tokens.

The analytical part of model is used to formulate the duration of each communication
phase shown for the Message Level model in Fig. 3.5. The simulation is used for
taking into account potential penalty delays due to contention at shared resources.
For calculating the contention penalty delays, the amount of communicating actors is
tracked in the simulation. Same to the other communication models presented in this
chapter, the number of communicating actors is represented by 𝑛 in the model as well.
In contrast to the other models, this model differentiates between polling (𝑛𝑝), reading
(𝑛𝑟) and writing (𝑛𝑤) actors.

Similar to the Cycle Accurate and Transaction Level models the Initializing-Step
represents the overhead of initializing the transfer of tokens into a FIFO buffer or out of
it. Same for the Preparing-Block that represents the overhead of setting up the loop for
the bulk transfer of tokens.

The Waiting-Step is modeled by using synchronization events between reading and
writing tokens on a same FIFO buffer. These events are shown in Fig. 3.5 by the red
arrows. When the FIFO buffer in that the tokens should be written is full, the Waiting
phase is entered. Once the reading tokens function finishes accessing the buffer and
frees buffer space to write to, it sends an event to trigger the writing tokens function
to start writing. This synchronization method reduces the number of polling states
considered by the simulation kernel, similar as it has been done in the Transaction Level
model (See Sec 3.4.2).

The Writing-Step models the transfer of one or more tokens into the channel buffer.
The writing duration is computed using an analytical model built from the knowledge of
elementary communication phases and the bus arbitration policy. This analytical model
is explained in detail in [Vu21]. In our approach, the timed Petri net (TPN) formalism
is adopted to formulate the relationships between elementary communication steps.
It represents a timed extension of Petri nets for which time is expressed as minimal
durations on the sojourn of tokens on places [Bac+92]. The adoption of the TPN

3.5 System Model 34

formalism allows to describe different communication situations with different numbers
of tiles and simultaneous processing of reading and writing tokens into different channel
buffers.

The variables 𝑛𝑝, 𝑛𝑤 , 𝑛𝑟 shown in Fig. 3.5 (Message Level diagram) are used to
trace the communication situation by counting the number of on-going Waiting-Step
(𝑛𝑝) that represents polling activity, Writing-Step (𝑛𝑤) and Reading-Step (𝑛𝑟). These
are the steps an actor can be in while it is in its communication phase. At the beginning
of each communication phase, the variables are incremented. They get decremented at
the end of each phase. The communication duration for reading or writing tokens is
calculated based on those variables.

After the time for communicating the tokens passed, an event gets triggered notifying
that the communication process has finished. The combination of using events and
pre-calculating the estimated communication delays increases the simulation speed
compared to the other communication models

The analytical part of the Message Level model require some elementary delays
[Vu21]. While all delays used in the Cycle Accurate and Transaction Level model are
from the perspective of the instruction execution on a specific processing element, the
elementary delays used in the ML model are from the perspective of the communication
bus. So these delays represent the amount of clock cycles between different active and
idle state changes of the bus used for communicating with a shared resource. This
also included for example the delay between the last word sent for checking a buffer
state during the polling phase, and the first token read or written into the buffer during
the reading or writing phase. From this delay, the computation overhead between the
polling and reading/writing phase can be derived.

3.5 System Model

For characterization, simulation and evaluation, the system under analysis needs to
be built from its software and hardware components. This requires mapping of the
software (actors and channels) to hardware components (tiles and memory), explained
in Sec 3.5.1. Actors mapped on tiles need to be scheduled (Sec 3.5.2).

In Fig. 3.7 an example of a mapped and scheduled system (right) is shown. Inputs
of the mapping and scheduling process are an application following following SDF
semantic as defined in Sec 3.1 and an execution platform following the tile based
architecture presented in Sec 3.2.

The actors of the SDF application are mapped to the tiles on that they will be
executed. The channels used by the actors for communication are mapped to local or
shared memory. The example SDF application shown in Fig. 3.7 is the Sobel-Filter
use-case that is described in detail in Sec 5.1.1.

3.5 System Model 35

Tile T1

Processing Element

Shared
Memory

Interconnect

Private Memory

Tile T2

Processing Element

Private Memory
9

9

9
9

1

1
1

1

Get
Pixel ABS

GX

GY2 2

2

GetPixel GX GY ABS

C1 C2

C3

C4

C5

C1

C2

C3

C4

C5

MS

Interconnect

T2T1

Mapping &
Scheduling

Fig. 3.7 Example mapping of a four-actor SDF application on a two-tile hardware. Some channels are
mapped to private memory, some to shared memory. Actors on a tile are scheduled in static order.

3.5.1 Mapping

Definition 3.17 The actor mapping function 𝜃 : A × T maps each actor 𝐴𝑖 ∈ A to a
single tile 𝑇𝑗 ∈ T .

Definition 3.18 The channel mapping function 𝜇 : C ×M𝑃 ∪M𝑆 maps each channel
𝐶𝑖 ∈ C to a single private or shared memory 𝑀 𝑗 ∈ M𝑃 ∪M𝑆 .

If the producing actor and consuming actor of a channel is mapped to the same
tile, the channel can be mapped to private memory. Otherwise the channel needs to be
mapped to shared memory, so that both tiles can access the memory.

In Fig. 3.7, the channels 𝐶1 and 𝐶2 are mapped to the private memory of tile 𝑇1
because both actors accessing those channels are mapped to the processing element of
the same tile. So there is no need to use shared resources for communication. However,
this design decision is optional. All channels can be mapped to shared memory, but
only some channels can be mapped to some private memory.

3.5.2 Scheduling

Since multiple actors can be mapped to one tile, these actors need to be scheduled.
A static order scheduling strategy is used to make sure all actors are scheduled in a
predictable order and without run-time overhead by more sophisticated scheduling
algorithms. An algorithm to determine the local scheduling order of the actors on a
single processing element of a multi-processor system has been described by[Dam+12].
It is based on the repetition vector of the SDFG as it is presented in [Stu07]. In context
of this thesis, one execution of the whole SDF application from the first actor until the
last actor in the scheduling has been executed is called iteration. The time it takes is
called iteration execution time or iteration duration.

3.5 System Model 36

Assumption 12. The SDF application is self scheduled with static order. There is
no execution time overhead for scheduling actors. After one actor finished its writing
phase, the next actor on the tile starts with its read phase. In case any depending actor
(that gets executed on a different tile) did not write its token on the incoming channel of
the scheduled actor, the scheduled actor polls on the buffers channel until the data is
available, which is part of its read phase.

Chapter 4
Characterization and Analysis Approach

4.1 Delay Measurement Infrastructure

For an execution time analysis delays are required. These delays can be obtained in
several ways. One example can be static code analysis as it has been done for the Cycle
Accurate communication model (Sec 3.4.1). Another approach which has been followed
in this work is measurement based execution time observation.

In Fig. 4.1 two extensions (green) to a tile based execution platform (purple) are
shown. One extension is a communication measurement component that is connected
to the main communication interconnect of the tile based system. Via this connection,
ongoing communication can be observed from the interconnect on signal level. The
observed information can then be sent via a dedicated bus to a host system, without
interfering communication on the main interconnect. This communication observation
approach has been used by [Vu21] to characterize the Message Level communication
model described in Sec 3.4.3. In context of his and my work we used the Xilinx System
Integrated Logic Analyzer (SystemILA1)

Bus

Bus

TnT0 MS

Communication M.

Computation Delay Measurement

Interconnect

...

Fig. 4.1 Concept for measuring computation and communication delay. The execution platform (purple)
is equipped with different measurement infrastructures (green) for computation and communication
characterization. The computation measurement infrastructure is connected to all 𝑛 tiles of the
evaluation platform, the communication measurement infrastructure is connected to the communication
interconnect.

1 Xilinx System Integrated Logic Analyzer, https://www.xilinx.com/products/

intellectual-property/system-ila.html, Visited 06.01.2023

37

https://www.xilinx.com/products/intellectual-property/system-ila.html
https://www.xilinx.com/products/intellectual-property/system-ila.html

4.1 Delay Measurement Infrastructure 38

For observing computation delay, a computation delay measurement infrastructure
needs to be connected to the processing units that execute the code that needs to
be characterized. Therefore a measurement infrastructure has been created based on
concepts first published by Schlaak et al [SFS17]. The measurement infrastructure
concept from [SFS17] has been enhanced by supporting measuring pipelined SDF-
application iterations as described in Sec 4.1.1 In Sec 4.1.2 the implementation of
the measurement infrastructure gets described and in Sec 4.1.3 the verification of this
implementation is presented.

The core idea behind the measurement concept is, that a counter clocked with the
same frequency of the processing elements is used to count the amount of clock cycles
between a Start and Stop signal. These signals are sent from the processing elements
via a peripheral bus to a dedicated measurement component. After a measurement
has been performed the results, amount of clock cycles passed between Start and Stop
signal, will be transferred to a host computer via a dedicated Universal Asynchronous
Receiver and Transmitter (UART) interface.

4.1.1 Measuring Pipelined Execution

Fig. 4.2 (a), shows the execution of the example application from Fig. 3.7 of Sec 3.5 over
time. Three iterations, highlighted by the indices of the actor names, of the Sobel-Filter
use-case (Sec 5.1.1) are shown. The 4 actors of the Sobel-Filter are mapped to 2 tiles in
a way that pipelined execution is possible. While the ABS actor of the first iteration is

t

1 2 1 3 2 3

d1

d1

d3

d3

GP1 X1

Y1

X2

Y2

X3

Y3 ABS3

2 5

ABS1 ABS2

GP2 GP3

W
ro

ng
Co

rr
ec

t 6

d1 d3

d2

T1

T2

(a) Sobel-Execution

(b) Actual Iteration Durations

(c) Wrong Measurement

(d) Correct Measurement

1 3 4

Fig. 4.2 Pipelining can lead to invalid measured iteration durations. To address this, counters are used
to match Start events to their corresponding Stop events.

4.1 Delay Measurement Infrastructure 39

still being executed on 𝑇2, the GetPixel (GP) actor for the next iteration already started
being executed on 𝑇1.

To measure the iteration duration of executing the Sobel-Filer application, with each
begin of the execution of the GetPixel actor, a Start signal gets sent to the measurement
infrastructure. At the end of the ABS execution a Stop signal gets sent. The actual
iteration durations are shown in Fig. 4.2 (b). Because of the pipelining behavior,
measuring each duration exceeds the capability of the measurement infrastructure that
can only perform one measurement at a time.

Applying the measurement technique presented in [SFS17] leads to wrong measure-
ments as shown in Fig. 4.2 (c). For better explanation, Start and Stop events mentioned
in this text are enumerated by numbers inside black circles. Start events are visualized
by an upwards directed arrow, Stop events by a downwards directed arrow.

The first shown iteration is measured correct. The Start signal 1⃝ from the first
iteration starts the measurement process. A second start signal 2⃝ triggered by the start
of the second iteration gets correctly ignored, because the measurement infrastructure
is already in measurement state. Then the Stop signal 3⃝ from the first iteration occurs
and stops the measurement. A valid delay 𝑑1 of the first iteration has been measured.

When the third iterations starts, a new Start signal 4⃝ gets send to the measurement
infrastructure and starts a new measurement. Now, the Stop signal 5⃝ triggered by the
still executed second iteration stops the measurement again. When in measurement
state, the infrastructure finished a measurement as soon as a Stop signal arrived. Instead
of measuring the actual iteration duration of the third iteration from the Start and
Stop signals of the third iteration, only the time difference between the start of the
third iteration and the end of the second iteration is measured. This leads to a wrong
duration 𝑑3 for the third iteration.

To address this issue, the measurement concept from [SFS17] needs to be improved.
The issue that leads to the wrong measured delays of pipelined execution is the lack
of knowledge which Start and Stop signal belongs to which iteration. To solve this
issue, each Start and each Stop needs to get an ID that connects the individual signal
to an iteration which triggered that signal. To accomplish this, the Start and Stop
signals are used to increment two counters. With each Start signal a Starts-Counter gets
incremented, and with each Stop signal a Stops-Counter gets incremented. In Fig. 4.2 (d)
the individual counter values are annotated at the bottom right of the arrows of the Start
and Stop signals.

If now a Start signal occurs, the Starts-Counter value gets incremented and the mea-
surement started. When a Stop signal comes, the Stops-Counter value gets incremented
and compared to the Starts-Counter value. If the values of the two counters do not
match, the Stop signal gets ignored (Fig. 4.2 (d) 6⃝). Only a Stop signal that leads to
a Stops-Counter value that matches the Starts-Counter value stops the measurement.
This leads to a valid iteration duration 𝑑3.

The amounts of bits for the counters can be low since an overflow would not affect the
concept of having two counters with identical value to finish a measurement. Anyway,

4.1 Delay Measurement Infrastructure 40

Time Measurement Unit (TMU)Time Measurement Controller (TMC)

UARTController

ready
ready

send txdtrigger

ready ready

send txd

datacounter

triggerController
trigger

readystart

startid

stop

stopid

35

start

stop

n

3

n

3

Counter
start

startid

start

Counter
stop

stopid

stop

≥1

≥1

Fig. 4.3 Hardware components (purple) of the Time Measurement Infrastructure (green). The Time
Measurement Controller (TMC) coordinates starting and stopping a measurement that gets performed
by the Time Measurement Unit (TMU). The TMU sends measured delays via UART to a host computer.
For simplicity clock and reset signals are not shown.

both counters need to have the same bit width and must represent values larger than the
maximum of parallel running iterations.

4.1.2 Proposed Measurement Infrastructure

The TMx measurement infrastructure was first presented by Schlaak et al. in [SFS17].
The now refined version was first presented in [Ste+20]. The infrastructure is split into
multiple components. Details of the implementation in hardware (purple) of two of
them (TMC and TMU) are shown in Fig. 4.3 (green). For simplicity reason, clock and
reset signals are not explicit show. Still, all shown components are connected to the
system clock and system reset signal. For this measurement method, it is important that
all components are clocked with the same frequency (Assumption 5 - All components
are connected to the same clock).

To connect each tile with the time measurement infrastructure (TMC and TMU)
a third component, the Timing Measurement infrastructure Bridge (TMB) is used.
This bridge is not explicit shown in Fig. 4.3. Purpose of this bridge is to translate a
data package from a processing element’s communication interface (for example a
peripheral bus) into the individual control signals (Start/Stop) expected by the Timing
Measurement Controller (TMC). This bridge may need to be adapted to the peripheral
interface of the processing element that shall be connected to the Time Measurement
infrastructure. For each tile that gets connected to the TMC, one TMB is used that
provides one Start and one Stop signal. When connecting 𝑛 tiles to the TMC, 𝑛 Start
and 𝑛 Stop signals needs to be combined into a single Start and a single Stop signals as
it is required for the Time Measurement Controller (TMC). This is done with a 𝑛 input
OR-gate as shown in Fig. 4.3.

4.1 Delay Measurement Infrastructure 41

Assumption 13. To avoid any interferences with other tiles it is assumed that the
measurement infrastructure is connected to an individual dedicated interface. This can
be a General Purpose Input/Output (GPIO) interface or a peripheral bus.

The management of the individual Start/Stop signals from the tiles are managed by
the Timing Measurement Controller (TMC). Whenever a start or stop signal comes
from any of the tiles, a start signal is sent to the TMU. For the measurement it is not
important to distinguish between tiles.

When characterizing only the compute phase of a single actor, Start and Stop will
come from the same tile the actor is mapped to. When, for example, the whole iteration
of SDF application as shown in Fig. 4.2, the Start signal will come from a tile 𝑇1 before
the actor 𝐴GetPixel gets executed. The Stop signal may come from tile 𝑇2 after execution
the actor 𝐴ABS.

In case of pipelined execution of an SDF application, it is important to keep track
which Start/Stop signal correlated to which iteration of the execution as described
in Sec 4.1.1. Therefore the Start and Stop signal are routed through a counter com-
ponent (See Fig. 4.3). These counters extend the Start/Stop signals with an iteration
ID. A 3 bit counter has been used to be sure to have more IDs than required for the
evaluation platform (Described in Sec 5.1.3) that could allow pipelined execution of
up to seven stages, depending on the mapping and scheduling of the JPEG use-case
application Sec 5.1.2. The Start/Stop signals as well as their IDs are inputs to a state
machine. This state machine controls the TMU component, which is responsible for
measuring and communicating the delay between a Start and Stop signal with the same
ID.

The Time Measurement Unit (TMU) is basically a counter clocked with the same
cycle rate the processors have. The counter increments its counter value with each clock
cycle, as long as the trigger signal, which is controlled by the TMC, is high. The counter,
part of the TMU Controller, can be started and stopped from any tile individually via
the TMC without interference. So that Assumption 6 and Assumption 3 are not violated.
When the counter got stopped, the TMU sends its counter value via UART to a host
computer that collects all measured data. After the data has been sent, the counter gets
reset and the ready signal gets set to inform the TMC that a new measurement can start.

The physical UART protocol allows transmission of single bytes (8 bit). When
transferring multiple bytes, a logical protocol needs to ensure, that the begin and end of
a series of bytes (a package) can be identified by the receiver within the stream of data
it receives. To allow sending counter values larger than one byte, the most significant
bit (MSB) is used to mark a byte as the first byte of a multi-byte counter value. If the
MSB is set, a new series of bytes starts. If the MSB is not set, it is a byte that is within
a series. When the host computer starts listening to the byte stream, it needs to skip
all incoming bytes until the first one gets received with its MSB set. Because one bit
of a transferred byte is reserved, the number of bits used for the counter should be a
multiple of seven to make use of all available bit in a data package. The implementation

4.1 Delay Measurement Infrastructure 42

of a protocol for identifying the begin of a counter value within a data stream is also an
extension to the implementation and concept presented in [SFS17].

For measuring the delay between Start and Stop, a 35 bit counter is used. The
execution platform that is used for evaluation is clocked with a frequency of 100 MHz.
A 28 bit counter could measure delay up to approximate two seconds. For most cases
this should be enough. To be on the safe side for applications that come with long
iteration delays a counter with 35 bit has been used which requires only one byte more
in the data package sent to the host computer. This allows measuring delays up to
approximate 343 seconds. The Time Measurement Infrastructure has been implemented
with the hardware description language VHDL and gets synthesised together with the
evaluation hardware (Sec 5.1.3) on an Field Programmable Gate Array (FPGA). The
source code is of the measurement infrastructure if part of the evaluation setup that is
available for download2.

4.1.3 Verification of Delay Measurement Infrastructure

To ensure the Time Measurement Infrastructure is working correct, it got tested on
different abstraction levels. Each hardware sub-component shown in Fig. 4.3 (purple)
has been individually tested using signal and cycle accurate simulations inside the Xilinx
Vivado Design Suite. Furthermore, also within the simulation, the TMC and TMU
components have been tested. The Time Measurement infrastructure Bridge (TMB)
has been generated by a code generator inside the Xilinx Vivado Design Suite. The
Measurement Infrastructure components and sub-components have been tested regarding
functional correctness and timing behavior.

Beside the component tests, the measurement infrastructure has been instantiated
and tested on a real FPGA, together with Xilinx MicroBlaze processors. On those
processors, test code got executed. The measurement infrastructure has been used to
measure the delay of these test cases. Additionally, the execution times of the test cases
have been calculated manually, by summing up the execution times as documented in
the datasheet for the instantiated processor.

In context of these tests, the influence of the measurement infrastructure on the
execution of the code which gets observed has been characterized. That the presented
measurement concept is intrusive has already been evaluated in [SFS17]. To send a Start
or Stop signal from a processing element to the TMB periphery component, code needs
to be executed. Executing code takes some clock cycles which impacts the execution
time characteristic of the whole system. For example the delay introduced by the Start
or Stop instruction can lead to a small shift in the moment an actor communicates
data over a shared interconnect. This can lead to cause or avoid contention on the
interconnect. To guarantee that the system equipped with Start and Stop instructions

2 Evaluation code and data: https://zenodo.org/record/7976829, visited 28.05.2023.

https://zenodo.org/record/7976829

4.2 Characterization 43

JTAG

UART

TMB1 TMB2

AXI Interconnect

TMB0 MS

M
U
L

FP
U

TMC TMU

SystemILA

Fig. 4.4 Evaluation platform (purple) for characterization providing three tile types. One without
hardware accelerator, one with hardware multiplication (MUL) and one with floating point unit (FPU).
The platform is equipped with different measurement infrastructure (green) for computation and
communication characterization.

does not change its behavior in production, the Start and Stop instructions need to be
replaced by No Operation (NOP) instructions that take the exact same clock cycles for
execution as proposed in [SFS17].

4.2 Characterization

For the delay models of the execution of an actor, the compute phase needs to be
characterized depending on the hardware features of the tile the code is executed on.
Additionally the timing characteristics of the interconnection between tiles and shared
memory need to be characterized.

The characterization is based on several techniques. Most of the characterization is
done measurement based. Only one exception has been made for the computational
part of the Cycle Accurate communication model (Sec 3.4.1) which uses static code
analysis. Still the shared memory access is measurement based.

For the compute phase the amount of clock cycles for executing the instructions is
measured. This is done for different input data (input tokens) to cover as many execution
paths as possible. Since the code of an actor changes on different processors (e.g. with
and without FPU), for each processor flavor this characterization needs to be done.

Fig. 4.4 shows an instance of an execution platform conforming to the model of
architecture from Sec 3.2. This instance consists of three tiles with a MicroBlaze
processor as processing element. Each tile comes with a slightly different configuration
of the processing element. Tile 𝑇MB0 comes with a MicroBlaze without any accelerators.
Tile 𝑇MB1 has a processing element extended with hardware multiplication. Tile 𝑇MB2
provides a processing element that is equipped with a floating point unit. The tiles

4.2 Characterization 44

are connected to a shared memory 𝑀𝑆 with an AXI Interconnect. Additional to the
execution platform a measurement infrastructure has been added (Green).

One part of the measurement infrastructure (Fig. 4.4(green)) is used to characterize
the interconnect on signal level. This is required for the elementary delays used by the
Message Level communication model (Sec 3.4.3) by [Vu+21]. Details of the Message
Level characterization can be found in Sec 4.2.3. The observed data is provided by a
JTAG interface. Another part is the TMx measurement infrastructure described in Sec 4.1
that consists of a Time Measurement Controller (TMC) and a Time Measurement
Unit (TMU). The TMx infrastructure focus on observing execution delays at instruction
level and is used for characterizing computation delays (Sec 4.2.1) as well as the
communication delay (Sec 4.2.2) for the Cycle Accurate and Transaction Level models
(Sec 3.4.1, Sec 3.4.2). The observed delays are provided by an UART interface.

For the MicroBlaze based system shown in Fig. 4.4, the AXI Stream Interfaces is
used as peripheral bus to not interfere with the AXI Interconnect system bus.

4.2.1 Computation Delay Distribution

Annotating delays to the compute phase of an actor can be challenging depending on
how many execution paths the algorithm, implemented in the actor, provides. In Fig. 4.5
three different actors from the use-cases later described in Sec 5.1 are shown. The figure
shows three different abstraction levels of how data dependent computation delay can
be obtained and simulated. I published this concept of addressing data dependency first
in [Ste+21].

The ABS actor (Fig. 4.5a) comes with only four different execution paths, depending
on its two input tokens X and Y. In this case, static code analysis can be applied to get
the amount of clock cycles required for executing each individual path. Alternatively
precise stimuli data can be generated to measure all known execution paths. Inside the
simulation, each execution path can be identified and the corresponding delay to that
execution path can be used to proceed simulated time. To do so, functional simulation
is mandatory since the values of the input token define the execution path that needs to
be simulated. There can be many situation where just looking at the source code of an
actor may not be enough to identify its execution paths during runtime.

The IDCT actor for the JPEG-Decode use-case (Sec 5.1.2) shown in Fig. 4.5b
comes with many execution paths that are not easy to cover. It implements an inverse
discrete cosine transformation. The execution path depends on the 64 incoming tokens
that represent an 8 × 8 matrix with 12 bit precision per element [TT93]. Additional
to the many executions paths on source level, it uses lots of floating point operations.
Compiling such an actor for a processing element without floating point unit adds many
more execution paths to the binary. Still, expert knowledge about the data characteristics
can be used to create three different sets of stimuli data. The IDCT actor gets executed

4.2 Characterization 45

SimulateMeasureGenerate Stimuli

Compute Phase
if(X < 0 and Y < 0)
 wait(71);
else if(X < 0 or Y < 0)
 wait(62);
else
 Wait(53);
// Functional Simulation
process(X, Y);

1

1

ABS

X
X = –X

Y = –Y

X < 0

Y < 0

…
Y

X ≥ 0 Y∧ ≥ 0
X < 0 Y∧ ≥ 0
X ≥ 0 Y∧ < 0
X < 0 Y∧ < 0

Measurement

Identify Paths

53
62
62
71

Simulate

Compute Phase

wait(GetDelay(MCU));

Apply KDEMeasureExecute

(a
) F

ew
 P

at
hs

(c
) M

an
y

Pa
th

s

Get
MCU

3

3

3 64

64

64

IDCT

64

64

(b
) I

nt
er

m
ed

ia
te

Compute Phase
if(TokenType == Y)
 wait(GetDelay(Y));
if(TokenType == Cr)
 wait(GetDelay(Cr));
if(TokenType == Cb)
 wait(GetDelay(Cb));

Y

Cr

Cb

Y, Cr, Cb

Fig. 4.5 Data dependency considerations for computation delay simulation shown on three different
abstraction levels. Differentiating between each individual execution path (a), several sets of stimuli
data (b) or a purely black box approach (c).
This figure has been published by me first in [Ste+21].

for each of three different color channels used for JPEG encoded images. Each of these
color channels uses a different level of compression. This leads to different computation
delay characteristics. As shown in Fig. 4.5b for each color channel a separate set of
measured data can be collected. These different characteristics are shown in Fig. 4.6.
The plot also shows, that each color channel leads to a different average execution
time (dashed line) of an actor. On the measured delays inference techniques like Kernel
Density Estimation can be applied to inter and extrapolate the distribution of observed
delays to increase the coverage of possible execution paths. For the simulation, only
the type of data - the color channel in this example - needs to be differentiated. In the
proposed JPEG-Decoder use-case, instead of a single IDCT actor, three types of IDCT
actors are modeled. All three actors use the exact same implementation of the inverse
discrete cosine transformation but are used for processing different color channels. So
each of the three types comes with a different computation delay representation.

The GetMCU actor in Fig. 4.5c implements several de-compression algorithms like
run length decoding and Huffman decoding. It provides 8 matrices (Minimum Coded
Unit block, MCU) for each of the three color channels from a bit stream. Similar to
the IDCT actor, static code analysis is not reasonable. In this particular case, expert

4.2 Characterization 46

361300 389600 417900 446200 474500 502800 531100 559400
0.00

0.06

0.12

0.18

0.24

0.30

Iteration Duration [Cycles]

Pr
ob

ab
ilb

ty
IDCT_Y
IDCT_Cr
IDCT_Cb

Fig. 4.6 Distribution of computation delays of the IDCT actor of a JPEG-Decoder. Using the same
implementation of the algorithm leads to different delay characteristics depending on the color channel
on that the algorithm gets applied to.

knowledge of the algorithm inside the actor cannot help to differentiate different sets of
stimuli data. In this case the actor can only be considered as black box. Anyway, the
delay characteristics of the actor can be measured. Applying Kernel Density Estimation
further smoothes the data. Inside the simulation, the actor is then represented by a single
“random” delay following the distribution function derived from the measured delays.

With the measurement infrastructure presented in Sec 4.1, the execution time of
actors can be characterized without knowledge of the algorithm and its implementation
of the actor. The distribution of observed execution times of an actor can be derived
from the measured samples so that they can be used in a probabilistic models. The
inference process is described in Sec 3.3.

To measure the delay of the execution of an actor, Start and Stop instructions to
trigger the Timing Measurement Unit need to be placed around the function call of the
compute phase of an actor. So after reading all incoming tokens, before the compute
phase starts, the start of the measurement gets triggered. After the compute phase ends
and before the write phase starts, the stop of the measurement gets triggered.

Because the execution time varies on different execution platform, this process
needs to be repeated on all different types of tiles. Beside hardware differences, also
differences in the data that gets processed by an actor can lead to different execution
times. Fig. 4.4 shows an execution platform with three different types of tiles. Each
actor of an SDF application needs to be characterized for each of those tiles.

There can be different execution paths that are taken depending on input data. Some
data dependency can be obvious like if statements in the source code or loops that have
an iteration count depending on input data. Other data dependency can be introduced by
the compiler and may not be obvious from the source code. The compiler can introduce
additional execution paths by applying code optimization techniques or by replaying
operations, that cannot be performed by the target platform, with software solutions.

4.2 Characterization 47

1.00

1480 1910 2340 2770 3200 3630 4060
0.00

0.03

0.06

0.09

0.12

Iteration Duration [Cycles]

Pr
ob

ab
ili

ty
Without HW Multiplication
With HW Multiplication

Fig. 4.7 Distribution of computation delays of the Inverse Quantization actor for the Y-channel of a
JPEG-Decoder. Using the same implementation of the algorithm leads to different delay characteristics
depending is the processing element is equipped with hardware multiplication or not.

Fig. 4.7 shows the distribution of the same inverse quantization source code applied
to the Y-channel of a JPEG-Decoder. The inverse quantization is a loop with a fixed
length of 64 iterations. In each iteration a single multiplication is performed. In green,
the code got compiled and executed on a processing element that got extended by
a hardware multiplier so that multiplication takes always the same amount of clock
cycles. In red the same code got compiled for the same processing element just with
deactivated hardware multiplication, so that the compiler had to use soft-multiplication.
Another example are floating point operation in the source code that may need to be
executed on a processing element without a floating point unit.

Obtaining just one sample may not be enough. To get a realistic characteristic, many
samples need to be taken with representative input data given to the characterized actor
if possible. For all actors modeled in this thesis 1 000 000 samples have been measured.
In case of the GetMCU, each observed execution time occurs at least 7812 times3 in
the set of measured samples.

4.2.2 Abstract Communication Delay

For the Cycle Accurate and Transaction Level communication model (Sec 3.4) the
delay of a read and write access to a shared memory is required. This sub section
describes the characterization of these read and write accesses to a shared memory for
the evaluation platform used and described in Chap 5.

On a MicroBlaze processor that is used as processing element on the evaluation
platform, memory accesses are performed by the lw and lwi instructions for reading.

3 Identifying the lowest repetition of an observed delay for the GetEncodedImageBlock actor:
sort -n GetEncodedImageBlock.txt | uniq -c | sort -n | head

4.2 Characterization 48

Table 4.1 Observed shared memory access delay with 0 to 6 bus contender. The access has been
differentiated between read and write access. For each setup, 1000 samples have been taken. There
was no variance between the samples.

Access Reading Contender Writing Contender
0 1 2 3 4 5 6 1 2 3 4 5 6

Read 12 17 15 23 31 39 47 12 19 14 19 24 29
Write 9 15 12 20 28 36 44 9 16 11 16 21 26

For writing the instructions sw and swi can be used [Xil21]. Each instructions transfers
a single token at a time.

The read and write access to the private memory can be determined from the
MicroBlaze datasheet [Xil21]. Private memory access always takes 1 Cycle for reading
or writing [Xil21]. Furthermore it can be guaranteed that there will be no contention on
the interface between the processing element and its private memory. So the access
time will always be the same.

In contrast to private memory access, shared memory access delays are highly
dependent of the activity on the shared interconnect between the processing element
and the shared memory.

To obtain the read and write access delays to shared memory via an shared
interconnect, the execution time of the read and write instructions has been measured.
To ensure no pipelining effect on processor level for executing instructions influence
the result of the measurement, the code needs to be prepared to cause pipeline stalls
whenever this can happen. For example, after executing a load instruction, the next
instruction should be an instruction that processes the loaded data. If a Stop signal
gets send right after executing a load instruction, the data transfer may not yet finished.
Depending on the processor architecture, the additional execution time of the processing
instruction may need to be subtracted.

The evaluation platform (Sec 5.1.3) has 7 tiles. One tile has been used to measure the
shared memory access delay. Several situations have been observed to characterize the
communication delay of the interconnect of the evaluation platform. Reading or writing
a token into the shared memory from one tile without any other processing elements
accessing the same memory. And two times six other characterization processed to
observe changes of the delay depending on the contention of the interconnect. Therefore
the six other tiles have been used to continuously read or write tokens to or from the
same shared memory. For each measurement, 1000 Samples have been taken. The
results of the characterization is shown in Tab. 4.1. All delays are given in clock cycles.

Tab. 4.1 shows the access delay for reading or writing a single token to a shared
memory while 0 to 6 contender are reading or writing tokens to the same shared memory.
For the used memory and interconnect, the delay only depends on the access type (read
or write) and the amount of contenders. If these parameters are fixed, no variance in
communication delay have be observed.

4.2 Characterization 49

Number of Contenders

De
la

y
/ C

yc
le

s

0 1 2 3 4 5 6

10

20

30

40

50

12

17 19
23

31

39

47
Access Contender
Read
Read
Write
Write

Reading
Writing
Reading
Writing

Fig. 4.8 Plot of observed shared memory access delay with 0 to 6 bus contender. The access has been
differentiated between read and write access. The worst observed delay are marked by a red circles.

The shared memory access delay data from Tab. 4.1 is visualized in Fig. 4.8. In most
cases writing is faster because the write-instructions do not need to wait for the shared
memory to response with data. Also writing bus contenders can release the bus access
earlier. For reading data, the observed processing element as well as the contenders
need to wait, and therefore hold the bus access, until the shared memory responses with
the requested data.

Fig. 4.8 clearly shows an anomaly for one and two contenders. For example, reading
a token from shared memory is faster with two other reading processing elements
(15 cycles) instead of only one (17 cycles). This anomaly can be reproduced but has not
been investigated further. It may be an optimization artifact from the interconnect or
memory IP component that has been used.

The Cycle Accurate and Transaction Level communication models (Sec 3.4) require
a single memory access delay based on the amount 𝑛𝑐 of contender. There is no
distinction between reading and writing contender. So for each amount 𝑛𝑐 of contender,
the worst observed shared memory access delay is used as highlighted by the red
circles in Fig. 4.8. The Cycle Accurate and Transaction Level communication models
do not differentiate between different types of contention. Therefore always the worst
observed delay is used. To refine the models with regard to consider different types of
bus accesses remains future work.

4.2 Characterization 50

Table 4.2 Elementary delays from [Vu21]. The delays are given in clock cycles. They are used for the
Message Level communication model of the evaluation platform used in my and [Vu21] thesis.

Mem. Access Init. Waiting Pre Post

Reading 𝑑𝑟 = 8 𝑑𝑖𝑛𝑖𝑡𝑟 = 15 𝑑𝑟𝑙 = 14 𝑑𝑝𝑟𝑟 = 15 𝑑𝑝𝑜𝑟 = 11
Writing 𝑑𝑤 = 5 𝑑𝑖𝑛𝑖𝑡𝑤 = 16 𝑑𝑤𝑙 = 13 𝑑𝑝𝑟𝑤 = 15 𝑑𝑝𝑜𝑤 = 9
Polling 𝑑𝑝 = 8 𝑑𝑝𝑙 = 7

4.2.3 Elementary Communication Delays

The Message Level communication model (See Sec 3.4.3), required a different ap-
proach of characterization. This section provides a summary of how these elementary
communication delays have been extracted from the communication interface of the
execution platform used in this thesis. All details of the model and the characterization
process can be read in the PhD Thesis of my colleague Hai-Dang Vu [Vu21].

In contrast to the Cycle Accurate and Transaction Level models, the delays of the
Message Level model (Sec 3.4.3) are not modeled from the perspective of the execution
of specific communication related instructions. The Message Level model delays, here
called elementary delays, are obtained from the signals activity on the communication
bus.

To get the elementary delay, the signals of the communication interface need to
be observed. Therefore the evaluation platform got equipped with the Xilinx System
Integrated Logic Analyzer (SystemILA4) as shown in Fig. 4.4. The SystemILA IP
component can be used to monitor the bus activity of the Xilinx AXI4LITE interconnect
used as communication interface between the processing elements and shared memory
of the evaluation platform used for this thesis.

The integrated logic analyzer has then been used to observe the valid-state signals
during reading and writing tokens to shared memory. From these observation the
elementary delays have been derived. The actual data transfer has been characterized
between shared memory and processing element as well as the time between transfers
that represent local computation time on the communicating processing element.

The results of this characterization process for the execution platform used in this
thesis can be found in Tab. 4.2. The table lists all parameters of the Message Level Model
as described in Sec 3.4.3 and [Vu21]. The rows of the table address the communication
driver macro blocks described in Sec 3.4. The values are given in clock cycles.

4 Xilinx System Integrated Logic Analyzer, https://www.xilinx.com/products/

intellectual-property/system-ila.html, Visited 06.01.2023

https://www.xilinx.com/products/intellectual-property/system-ila.html
https://www.xilinx.com/products/intellectual-property/system-ila.html

4.3 Simulation 51

MoC

MoA

SystemC TLM Interface

SDFApplication Monitor

PrivateMemory SharedMemory

core::Master core::Bus core::Slave

DelayVector

Interconnect

delay_vector_map application
monitor

outgoing_channels
incoming_channels

monitor

monitor

actors

tile
producer

consumer

channels

target_socket target_sockets

0

1 0..*

0..*0..*1..*1

1 1..*

0

11 1 1 1

0..*

1

0..*

2

0..*0..*

1

1..* 1

Actor Channel

Tile Memory

Fig. 4.9 Architecture of the simulation code as UML class diagram. The clock symbols show in
which classes delay is simulated.

4.3 Simulation

This section describes the simulation developed for execution time analysis. The
SystemC simulation is a representation of the whole system: Hardware, software and
their temporal and (optional) their functional behavior. It models the mapped and
scheduled SDF application on a specific hardware platform. Each simulation is also
configured to use a specific communication model introduced in Sec 3.4 and delay
representation for the computational part of the simulated application.

Beside timing behavior, the simulation is also capable by simulating the functional
behavior of the software system. This is an optional feature that can be used to further
investigate data dependent delays. It is also used to verify functional correct behavior of
the simulation and the system under analysis (See Sec 5.3). The functional simulation
is focusing on the algorithmic level and is not signal accurate.

In Fig. 4.9 an overview of the architecture of the simulation is shown. It follows
the UML standard for class diagrams [OMG17]. Classes are colored corresponding
to the models and concepts they implement. Magenta for model of computation,
purple for model of architecture related classes. Blue classes implement simulation
infrastructure. The class that handles the application code that shall be executed when

4.3 Simulation 52

running a functional simulation is colored in brown. Delay related parts are colored
in green. All classes that simulate timing behavior are annotated by a green clock
symbol. The following sub sections provide further information about the concepts and
implementation of the simulation.

The source code is of the simulation if part of the evaluation setup that is available for
download5. It has been published6 first in context of my journal article in 2021 [Ste+21].

4.3.1 SystemC TLM Interface

To simulate timing characteristics of a hardware-software system, the simulation kernel
SystemC [AS12] is used. SystemC is a C++ library to describe the timing behavior of
hardware and software components and simulate them in an event based simulation.
There are several different abstraction level supported. In context of this thesis, the
Transaction-level Modeling (SystemC-TLM) layer is used.

Three base classes Master, Bus and Slave provide an abstract interface to the
SystemC simulation kernel. They use the SystemC Transaction-level Modeling interface
of SystemC. Multiple slave components and multiple master components can be
connected to a bus. When data from a Master instance shall be transferred to a Slave
instance or vice versa, an instance of the Bus class coordinates the activation of the
master and slave components.

To simulate delay, the SystemC wait function is used. Since the wait function
requires a time unit, the unit SC NS for nanoseconds is used. Anyway instead of
nanosecond, all delay numbers are given in clock cycles. And so, also the simulation
result represents clock cycles. So for simulation, one clock cycle is defined to take 1 ns.

4.3.2 SDF Application

Beside the execution time characteristics the simulation can also simulate functional
behavior of the application. The SDFApplication class implements dynamic loading
of application code and data to simulate functional behavior as well as different sets
of input data. Instructions and data need to be provided as shared object file. The
instructions needs to be compatible with the instruction set architecture of the processor
that runs the simulation. An Actor instance can use this class to execute a specific
function represented by this actor.

5 Evaluation code and data: https://zenodo.org/record/7976829, visited 28.05.2023.
6 Simulation source code: https://zenodo.org/record/4876805, visited 05.05.2023. Published
in context of [Ste+21].

https://zenodo.org/record/7976829
https://zenodo.org/record/4876805

4.3 Simulation 53

4.3.3 Delay Vector

The DelayVector class implements the inference techniques described in Sec 3.3.
Each instance of this class reads and processes the characterization data measured for a
single hardware setup and actor. When starting the simulation, the measured samples
of the actor-tile combination that will be simulated gets loaded. Then the delay vector
following a specified distribution function gets derived from that samples. The resulting
delay vector gets cached and provided the delays used for each simulation run.

For the calculation of the distribution functions, the Python module SciPy [Vir+20]
is used within helper functions called within an embedded Python environment that is
part of the simulation. The randomization of delay returned by GetDelay is done by
the GNU Scientific Library (GSL) [Gal+07].

The delay vector class provides a single method GetDelay that returns a different,
random delay 𝑑𝑥 each time called. The value ranges of the delays and their distribution
corresponds to the desired distribution function that shall be used.

For drawing a random delay 𝑑𝑥 from a delay vector #”
𝑑 𝑦 with a probability 𝑝 = 𝑃z (𝑑𝑥)

where 𝑧 represents an arbitrary probability distribution function a method demonstrated
in [Mar63] is used. A fixed amount of memory is allocated and filled with values so
that the probability of a value to occur within the fixed amount of memory is of the
same probability of the value to occur in the distribution to represent [Mar63].

4.3.4 Monitor

The Monitor class provides methods to trace simulated delay. In general it is used to
trace how long an iteration of an SDF application for a given setup takes. This is then
one sample of the results of the simulation. After one iteration of the simulated SDF
application is done, the delta delay in simulated clock cycles between the start and end
of that iteration is stored in a file. It also allows to output results from the functional
simulation to verify that the application works correct.

For debugging and verification the monitor can also trace state changes in execution
of SDF actors by tracing the Read, Compute and Write phases. Furthermore the com-
munication steps of the communication models as well as memory access (Read/Write)
can be traced.

4.3.5 MoC Implementation

The model of computation described in Sec 3.1 is implemented by the two classes
Actor and Channel.

4.3 Simulation 54

The Actor class provides a general view of the implementation and delay charac-
teristics of an actor. It implements the execution semantic of SDF actors and provides
interfaces to other components of the simulation. This class is a pure virtual class
and requires a derived class representing a specific actor and that provides at least an
implementation of the Compute phase. Optionally the derived class can implement the
Read or Write phase, when actual data instead of abstract tokens shall be transferred for
functional simulation.

For the compute phase, actual application code can be loaded and executed with
the help of the SDFApplication class. For the read an write phases, references to
instances of the Channel class can be used to transfer tokens to other actors.

For simulating the execution time of the compute phase of an actor, delays from an
instance of the DelayVector class are used. Because a delay vector only describes the
execution time distribution of an actor on a specific configuration of a tile, a set of delay
vectors is given to each instance of the actor class. Depending on which type of tile the
actor gets mapped, the related delay vector is used.

To simulate an actor, a new class must be derived from the abstract base class
Actor. The derived class can optionally provide functional code and actually transfer
data through channels. Anyway it must implement the Compute method with at least
drawing a random delay via the GetDelay method from its delay vector and pass that
delay to the SystemC wait function.

Individual actors can be marked as starting actor or ending actor. These actor trigger
the monitor that observes the simulated execution time of a single iteration of an SDF
application. A starting actor is the first actor that gets execution in an iteration. The
ending actor is the last actor of an iteration.

The Channel class implements the communication between actors. This includes
the implementation of the communication delay models from Sec 3.4. The channel class
provides two methods: ReadTokens and WriteTokens that implement the functional
behavior of their counter parts in the real system as well as the timing behavior
corresponding the selected communication model. Because only instances of the Tiles
class can communicate tokens between other tiles via shared memory, each channel
needs to know the tile the producer actor is mapped to as well as the tile the consumer
actor is mapped to. These can be the same tile for local communication.

When mapping an actor instance to a tile, a reference to that tile instance is given to
the actor. This reference is used to configure all channels that are connected to the actor.

4.3.6 MoA Implementation

The model of architecture described in Sec 3.2 is implemented with the classes
Tile, Memory, and Interconnect. While Memory comes with two derived classes
PrivateMemory and SharedMemory.

4.3 Simulation 55

InferenceMeasured Delays Communication SimulationComputation Simulation

TL

ML

Actors

Tiles

Read

Write

AVG

Unif.

Gauss

Inference

CA Com. Driver

Interconnect

KDE Compute

ReadDelay

WriteDelayKDE

Fig. 4.10 Example of a simulation setup. Based on [Ste+21]

The Memory class implements the FIFO access semantics and simulates the read
and write delay to access the memory. Only the actual read or write delay of accessing
a token in the memory is simulated. The communication delay simulation between
memory and a tile is implemented by the Channel class.

The two classes PrivateMemory and SharedMemory are derived from the Memory
class. Shared memory will be handled by SystemC as a slave device. Therefore it also
inherits from the Slave class. From perspective of the simulation, private memory is
not a dedicated hardware component. So the Tile class is derived from the private
memory class and inherits the behavior of the memory, while the private memory class
does not have any dependencies to the SystemC simulation.

The tile class is a SystemC module with a thread (a SystemC SC THREAD) that gets
started with the start of the simulation. Inside the thread of each tile all actors assigned
to a tile get initialized first. Then for a configured amount of iterations, each assigned
actor gets executed. The Tile class implements the static order scheduling of Actor
instances.

TheInterconnect class implements the functional part of the First Come First Serve
arbitration protocol. Arbitration penalty delays are simulated by the communication
model implementation inside the Channel class.

4.3.7 Simulation Configuration

Fig. 4.10 presents an abstract view on the execution of a simulation run with focus on the
setup of the simulation. The simulation allows to choose between different computation
delay models and communication models.

Before being able to run simulations, the simulated actors on the simulated tiles
need to be characterized. Therefore, for each combination of actors and tiles the
actor computation time needs to be measured. Based on the observed data, different
distribution functions can be derived. Furthermore, the communication interconnect
needs to be characterized following at least one of the proposed models form Sec 3.4.
In context of this thesis, 1 000 000 samples have been measured. From these samples
the average value, a uniform distribution and a Gauss distribution can be derived.
Furthermore Kernel Density Estimation using Gauss kernels has been applied. In the

4.4 Work Flow 56

Identified
Hardware

Simulation

Software
Evaluation
Platforms

Characterization Analysis

Modeling

Product

Tile-Types
Shared

Resources SDF Graph

⚙Measurement
Infrastructure

Measurements

Communication
Delay Model

Computation
Delay Model

Mapping & Configuration

EvaluationEvaluation
Board

Fig. 4.11 A refined version of Fig. 1.1 showing the components of the Modeling, Characterization
and Analysis processes.

example from Fig. 4.10, KDE has been selected as computation delay model and the
Message Level communication model for the communication phases of an actor.

When simulating the compute phase of an actor (Fig. 4.10, second box), one delay
following the distribution function that has been configured to be used for the simulation
is drawn. This delay represents the computation time for the actor for one simulated
actor execution.

For simulating the read and write phase, one of the three communication models gets
executed, base on which one has been selected when starting the simulation (Fig. 4.10,
third box). The models will proceed the simulated time based on the amount of activity
on the shared interconnect.

4.4 Work Flow

In Fig. 4.11 a detailed version of the proposed work flow of Fig. 1.1 from Sec 1.5 is
shown. The Modeling, Characterization and Analysis sections (dashed boxes) have
been expanded by the actual components involved in those processes. Goal of the
proposed work flow is to support the design of a product that executes a given software
on hardware. Again, hardware related parts are colored in purple, software related parts
in magenta. Delay related components in green, and simulation related components in
blue.

During the Modeling process, described in Chap 3 a SDF representation of the
software under analysis gets created as well as a platform model describing tiles that

4.4 Work Flow 57

execute the software and shared resources for communication between tiles. These
models are then used for the simulation and for configuring the simulation. To support
execution time analysis, these models need to be annotated with delay which is done by
the characterization process.

During the Characterization process (Sec 4.2), that gets the created models as
input, these models get annotated with delays. For getting the delays required for the
computation and communication simulation the measurement infrastructure form Sec 4.2
is required. An evaluation board that is capable to implement the modeled tiles and
shared interconnects and that can execute the software is set up, configured and extended
by the measurement infrastructure. The characterization requires measurements for all
actors on all tile types. A tile type represent tiles with certain instruction set architectures
and hardware accelerators. In the context of this thesis, three tile types exist. All have
the same instruction set but different hardware accelerators. More details in Sec 5.1.3.
The result of the computation delay characterization is a delay set (Sec 3.3 Def. 3.16)
that represents the computation time of each actor of a software on each type of tile.

The models from the modeling process and the delay data from the characterization
process are input for the Analysis process that has been described in Sec 4.3. The
simulation process starts with the product designer choosing a certain mapping and
configuration to execute the given software on. Then this mapping and configuration
gets simulated. After the simulation the designer has to evaluate if the simulation results
fulfill the requirements of the product. If not, a different mapping and/or configuration
can be tried. If the simulation results look promising for a good execution time and
hardware resource trade-off the hardware that has been identified by the analysis as best
suited needs to be build or bought. Then the software can be deployed with the analyses
mapping on the selected hardware configuration.

Chapter 5
Models and Simulation Evaluation

5.1 Evaluation Setup

This section describes the setup of hardware and software for the evaluation of the
hardware and software models as well as the simulation itself. Two SDF applications
with different complexity are used. A Sobel-Filter (Sec 5.1.1) as a small and easy
to handle application, and a JPEG Decoder (Sec 5.1.2) as a more realistic but
challenging example. Both SDF graphs of those applications are shown in Fig. 5.1. The
evaluation setup including hardware, software, measurement infrastructure, simulation
and all characterization and evaluation data are available for download1. The source
code of both applications have been published2 first in context of my journal article
in 2021 [Ste+21]. The evaluation execution platform (Sec 5.1.3) together with the
measurement infrastructure form Sec 4.1.2 gets instantiated on an FPGA. For the
evaluation different mapping and configurations are applied to evaluate the computation
models (Sec 5.4), communication models (Sec 5.5) and the simulation (Sec 5.6).

Get
MCU

IQY

IQC r

IQC b

IDCTY

IDCTC r

IDCTC b

YCrCb
RGB

64

64

64

64

64

64

64

64

64

64

64

64

64

64

64

64

64

643

3

3

(b) JPEG-Decoder

9
9

9
9

1

1
1

1

Get
Pixel ABS

GX

GY

(a) Sobel-Filter

2 2

2

Fig. 5.1 SDF model of a Sobel-Filter (left) and a JPEG-Decoder (right). This figure has been published
by me first in [Ste+20].

1 Evaluation code and data: https://zenodo.org/record/7976829, visited 28.05.2023.
2 Sobel-Filter and JPEG-Decoder source code: https://zenodo.org/record/4876805, visited
05.05.2023. Published in context of [Ste+21].

58

https://zenodo.org/record/7976829
https://zenodo.org/record/4876805

5.1 Evaluation Setup 59

5.1.1 Sobel Filter

One of the SDF application used for the evaluation is a Sobel-Filter [Sob14]. Its SDF
graph representation is shown in Fig. 5.1a. The Sobel-Filter is an high pass filter for
two dimensional data and is usually being used for edge detection in images.

This application comes with only four actors, listed in Eqn. 5.1 Each of these Actors
have relative simple computation phases with few execution paths which make them
highly predictable. The execution paths of the Sobel-Filter can be identified manually.
For the GetPixel actor, there are 9 execution paths depending on the position of tokens
(3 × 3 pixels matrix) that get read form the input data. The ABS actor has 4 execution
paths depending on its two input tokens. In case a hardware multiplier is available the
actors GX and GY have only one execution path. If not, the delay highly depends on the
input data and is no longer easy to analyze manually.

ASobel = {𝐴GetPixel, 𝐴GX, 𝐴GY, 𝐴ABS} (5.1)

The amount of data communicated between the actors is relative high compared
to the small computational part. Even though the JPEG decoder transfers more token
over its channels the computation load during compute phase is much higher. The
combination of simple computation and relative high communication makes modeling
errors in the communication model have higher impact on the Sobel model than errors
in the computation model.

Two additional features make this application an interesting case study for heteroge-
neous MPSoCs. The core of the Sobel-Filter algorithm is a convolution with a 3 × 3
matrix. The involved integer multiplication benefits from hardware multiplication. The
fact that the edge detection in horizontal and vertical direction implemented by the two
actors GX and GY can be parallelized allows concurrent execution of the two actors.

Input data processed by the GetPixel actor is a 48× 48 Pixels gray scale noise image.
Other patterns like plain black, a horizontal gradient from white to black and a white
cross on black background have been considered as well. The noise image lead to
most different execution times compared to the regular patterns. In contrast the overall
average execution time was only less then nine clock cycles (0.25 %) higher. The input
data is hard coded in the GetPixel actor for simplicity reasons. Output data generated
by the ABS actor gets discarded. The handling of input and output data is discussed in
detail in Chap 6. Only the sampling position in X and Y coordinates is used as actor
input. In Fig. 5.1a these position data is shown as feedback loop of the GetPixel actor.
The position gets initialized by (0, 0).

5.1 Evaluation Setup 60

5.1.2 JPEG Decoder

As second use-case a JPEG-Decoder, modeled as shown in Fig. 5.1b is used as an
realistic example with high data dependent actor delays. It reads a JPEG [VJ94] encoded
image from memory and decodes it into an array of RGB-Pixel data.

A JPEG encoded image consists of segments called minimum coded unit block
(MCU). Each iteration of the JPEG decoder decodes one MCU with a size of 8×8 Pixels.
In context of JPEG a pixel is split in three color channels: Y, Cr, Cb - (Luminance,
Red-Difference Chroma and Blue-Difference Chroma). The last actor 𝐴YCrCb RGB of
the JPEG-Decoder consolidates these three color channels and transfers them into
RGB (Red, Green, Blue) color channels.

The JPEG-Decoder comes with actors that have different requirements to perform
well on an embedded platform. For example the inverse discrete cosine transformation
(IDCT) benefits a lot from a floating point unit. The inverse quantization (IQ) benefits
from a hardware integer multiplier.

A challenge that comes with the JPEG-Decoder is the high variety of data dependent
execution paths of some actors. This makes it barely possible to statically analyze the
actors like the GetMCU actor. Getting the MCU inside the GetMCU actor involves
variable length decoding, run length decoding and Huffman decoding. This leads to a lot
data dependent execution paths. Modeling such an actor benefits from a characterization
based on measurements.

The JPEG-Decoder use-case is selected to challenge the computation modeling
approach regarding accuracy and the communication models regarding simulation time.
Due to its high computational load compared to the communicated tokens, errors in the
communication model have a relative low impact.

The separation of an MCU into different color channels allows performing the
decoding process for each color channel in parallel as shown in Fig. 5.1b. This
separation can also be used to reduce the variety of execution times by characterizing
the individual actors based on the color channel they decode. In Eqn. 5.2 three individual
instances of the IQ and IDCT actors are considered in the sets of actors AJPEG. The
functional code of the IQ actors or IDCT actors are the same. But the execution time
model of each kind of the actors are different.

AJPEG = {𝐴GetMCU, 𝐴IQ𝑌
, 𝐴IQ𝐶𝑟

, 𝐴IQ𝐶𝑏
, 𝐴IDCT𝑌

, 𝐴IDCT𝐶𝑟
, 𝐴IDCT𝐶𝑏

, 𝐴YCrCb RGB}
(5.2)

The JPEG decoder shown in Fig. 5.1b as well as its implementation is purely
academic and does not use any optimization except for a FastIDCT implementation of
the 𝐴IDCT𝑌,𝐶𝑟,𝐶𝑏

actors. The implementation of the decoder follows the recommendation
from [TT93].

The input data is hard coded in the first actor (GetMCU) for simplicity reasons. The
last actor of the SDF application does a color transformation from the YCrCb color

5.1 Evaluation Setup 61

JTAG

UART

TMB1 TMB2TMB0 MS

M
U
L

M
U
L

TMC TMU

SystemILA

TMB3

M
U
L

TMB4 TMB5

FP
U

FP
U TMB6

FP
U

AXI Interconnect

Fig. 5.2 Evaluation platform (purple) with measurement infrastructure (green). The platform has
7 tiles (T) and a shared memory (MS). Some tiles have a Floating Point Unit (FPU) or a hardware
multiplier (MUL). The measurement infrastructure consists of the Time Measurement Controller
(TMC) that merges all control signals from the tiles to trigger the Time Measurement Unit (TMU).
The SystemILA is used for the Message Level Communication model configuration and is removed
afterwards.

model into the RGB color model. Output data generated by this actor gets discarded.
The handling of input and output data is discussed in detail in Chap 6.

The execution time of an actor highly changes based on the color channel it decodes.
This is because each color channel is encoded with different compression strength.
For example red-difference chroma channel (Cr) usually gets encoded with higher loss
than the luminance (Y) channel. Higher compression rate, or higher loss, reduces the
amount of information the decode can use to restore the original image. Therefore less
calculations are need to be performed.

5.1.3 Evaluation Platform

For the experiments I use a heterogeneous multi-processor system with 7 tiles as shown
in Fig. 5.2. The purple part of the platform represents the actual execution platform to
run the Sobel-Filter (Sec 5.1.1) and the JPEG-Decoder (Sec 5.1.2) application. The
green components represent the measurement infrastructure used for characterization
of the models. Furthermore the measurement infrastructure is used to observe the
execution of the use-case application to evaluate the accuracy of the execution times
predicted by the simulation presented in Sec 4.3.

The individual tiles of the execution platform use a Xilinx MicroBlaze [Xil21] soft
core as processing element that is equipped with private memory for storing local

5.2 Evaluation Concept 62

Computation
Delay Model

Communication
Delay Model

Software

Hardware

FPGA Simulation
Speci-

fication
Measurement
Infrastructure

MoC

MoA
Synthesis

Mapping

HW Design

SW Design

Characterization

Measurement

Configure Simulation Run

Measured
Iterations

Analysed
Iterations

≟

Compilation

Fig. 5.3 Evaluation concept showing characterization and evaluation steps. Artifacts are shown as
boxes, processes as circles. Based on [Ste+19a]

data and instructions of the software executed on that processing element. The tiles
TMB1, TMB2, TMB3 are extended by a hardware multiplication unit (MUL). All other
processing element use soft multiplication. Tiles TMB4, TMB5, TMB6 are extended with
a floating point unit (FPU). All other processing elements do floating point operation in
software. Tile TMB0 has no FPU and no hardware multiplication unit. Furthermore there
exists a shared memory (MS) that is used for communication between the tiles. All tiles
and the shared memory are connected to the same shared bus, an AXI Interconnect.

The time measurement infrastructure consists of three components. The Time
Measurement Controller (TMC) and the Time Measurement Unit (TMU) that are used
to measure execution time of software or parts of software executed on one or more
processing elements (See Sec 4.1.2 for details). The third component is the Xilinx
System Integrated Logic Analyzer (SystemILA3) used for configuring the Message
Level communication model as described in Sec 4.2.3

The hardware platform as shown in Fig. 5.2 including the timing measurement
infrastructure has been synthesized and instantiated on the FPGA part of the Xilinx
Zynq-70004 SoC.

5.2 Evaluation Concept

For evaluating the concept shown in Fig. 5.3 is followed. This concept is a concrete
implementation of the workflow presented in Sec 4.4. In contrast to the proposed
workflow, the hardware and software is designed to strictly follow the constraints of the
models instead of using the models to approximate existing hardware or software. This
guarantees that the hardware and software do not violate any assumptions of the models.
Furthermore the measurement infrastructure is not only used for characterization but

3 Xilinx System Integrated Logic Analyzer, https://www.xilinx.com/products/

intellectual-property/system-ila.html, Visited 06.01.2023
4 Xilinx Zynq-7000 SoC on an ZC702 Evaluation Kit, https://www.xilinx.com/products/
boards-and-kits/ek-z7-zc702-g.html, Visited 20.05.2023

https://www.xilinx.com/products/intellectual-property/system-ila.html
https://www.xilinx.com/products/intellectual-property/system-ila.html
https://www.xilinx.com/products/boards-and-kits/ek-z7-zc702-g.html
https://www.xilinx.com/products/boards-and-kits/ek-z7-zc702-g.html

5.2 Evaluation Concept 63

also for measuring the overall system execution time. This execution time is then used
to compare the actual observed execution time distributions with the execution time
distribution predicted by the simulation for accuracy evaluation.

The rectangles represent artifacts like models, data and components. These artifacts
are processed in multiple steps. The processes are visualized by small circles. The
arrows represent data flow from an artifact as input of a process, and the output of a
process into new artifacts.

Base on the architecture model (MoA) a tile based execution platform gets designed.
The designed hardware gets equipped with measurement infrastructure. This execution
platform is described in Sec 5.1.3.

The evaluation software described in Sec 5.1.1 and Sec 5.1.2 gets designed following
the constraints of the applied computation model (MoC). The software gets annotated
with instructions to trigger the measurement infrastructure of the evaluation hardware.

The hardware gets synthesized and instantiated on a field programmable gate
array (FPGA). Then the software actors gets mapped to the individual tiles of the
hardware on that they then get executed. The hardware platform instantiation is only
done once because it does not change for different experiments. Still, not all tiles may
be used in all experiments. Due to the tile based design, inactive tiles have no influence
to the overall system behavior and therefore can be assumed to not exist.

The compilation and mapping of the software needs to be done for each experiment.
It must be ensured that each time, the compiled instructions are the same to not change
the execution time of the software. For characterization and all experiments the same
compiler is used with the same configuration. Compile-Time optimization techniques
have been deactivated to ensure that each time the code gets compiled, the resulting
instructions and instruction order is the same. A less drastic measure would be to check
which optimization techniques are deterministic and only apply those.

After deploying the hardware and software to the FPGA the characterization process
starts. For the communication model, the interconnect gets characterized. Since some of
the communication models presented in Sec 3.4 require knowledge of the instructions
executed during communication, the compiled binary code needs to be known. In
particular how long the execution time of the instructions take that are related to the
communication between actors on different tiles. The computation delay model of the
individual actors get characterized for each tile type. Once the characterization is done,
the delay models can be used for different experiments.

The simulation uses these characterized models depending on the configuration
of the system that shall be simulated. The simulation configuration is described in
detail in Sec 4.3.7. Each configuration gets simulated for 1 000 000 iterations of the
simulated SDF application. Each simulation run provides one possible execution time
of one iteration. This leads to 1 000 000 iteration delays approximately representing the
distribution of possible execution times of the simulated system.

For evaluation, the results of the simulation gets compared to the actual measured
behavior of the simulated system. The results are compared regarding accuracy of the

5.3 Experiment Execution and Functional Verification 64

Setup

Evaluation

Verification

Models

SDF
Application

RuntimeHost Library Target Library Test App.

Golden Model

Hardware
Platform

Characterization

Real System

⚙ ⚙Experiment
Configuration ⚙

Evaluation Measurements

Simulation

==

Fig. 5.4 Process of setting up an experiment and verifying that it works functional correct by
comparing the results against a golden model.

average execution time as well as the similarity of the distribution functions of the
execution time.

5.3 Experiment Execution and Functional Verification

Before an experiment setup as described in Sec 5.1 can be used to evaluate the models
and analysis process, it must be ensured that the setup works as expected. Therefore the
results of the functional execution of the software executed in simulation and on the
real evaluation platform are compared against a golden model.

In Fig. 5.4 this process of running experiments is described. Each experiment
consists of three phases, shown in the figure by the gray boxes with dashed lines. The
Setup phase prepares the experiment, the Verification phase ensures that the hardware,
software and simulation used for the experiment is working functionally correct. The
Evaluation phase then uses the simulation and the real system to evaluate the models
and processes proposed in this thesis.

The setup phase prepares the experiment as shown in Fig. 5.4. This phase uses the
SDF application code that will be used for the experiments and its delay characterization
needed for the simulation. Each experiment consists of three execution environments:
The Simulation that shall be evaluated, the Real System that will be used to compare
the results of the simulation with and the Golden Model that is used to verify that the
simulation and the real system are working functionally correct.

The SDF application code (Sobel-Filter form Sec 5.1.1 or JPEG-Decoder form Sec 5.1.2)
gets compiled three times, once for each execution environment. The Host Library
is used to do a functional simulation of the application on the host system that runs

5.4 Computation Model Evaluation 65

simulation. A Target Library to execute the application on the actual evaluation platform.
And a Test Application that executes the code as regular Linux application that is
independent from the simulation and the simulated system.

The Simulation gets compiled and linked together with the host library of the SDF
application. This allows to not only simulate the time behavior of the system under
analysis but also the functional behavior of a certain experiment configuration.

The Real System, the system under analysis, gets instantiated for example on an
FPGA. Therefore the synthesized hardware platform described in Sec 5.1.3 is used. For
the hardware platform a prepared generic SDF runtime applications gets compiled and
linked against the target library regarding the desired experiment configuration and
mapping. Then the applications are written into the platform memory to be executed.

The Golden Model is a set of output that got generated by an application that
implements the same algorithm as the SDF applications form the Host Library and
Target Library implement. Running the three implementations in simulation, the system
under analysis must result in the same output generated by the golden model.

In the verification phase, the functional correctness of the simulation and the real
system gets checked. Both, the simulation and the system under analysis must output
the exact identical results. Furthermore, to ensure that not both system are generating
wrong data because of a mapping or scheduling issue, these results must also match the
results of the golden model.

When it is ensured that the evaluation setup works as expected, the actual evaluation
phase can begin. Therefore the simulation gets executed (optional without functional
simulation to improve performance). Furthermore the execution time of running the SDF
application executed on the real system gets measured. The simulated and measured
iteration delays are then used to evaluate the simulation and the models used inside the
simulation.

5.4 Computation Model Evaluation

To model the delay of the computational part of an SDF application, different delay
representations can be used. The most simple solution can be the average observed
delay. Usually there exist a best and worst observed execution time. These can be
interpolated using a uniform distribution of possible execution times. Alternatively,
a simple Gauss distribution function can be fitted to the observed delays. A more
sophisticated inference technique is Kernel Density Estimation. This section evaluates
the differences of these delay representation approaches. The same configuration gets
simulated with different computation delay representations. The results are compared
against the actual observed iteration execution time. As metric the accuracy of the
average execution time and the similarity of the distribution of execution times is used.

5.4 Computation Model Evaluation 66

Table 5.1 Analysis results for a single tile system using different actor computation delay representa-
tions. The table shows the average iteration delay 𝑑 in clock cycles, the error compared to the observed
delay and the Bhattacharyya distance (B.Dist.) between observed and simulated delay distribution.

Sobel JPEG
𝑑 Error B.Dist. 𝑑 Error B.Dist.

Measured 4124 2 376 894
Average 4275 3.661 % 3.442 2 381 099 0.177 % 1.877
Uniform 4114 −0.242 % 0.680 2 241 058 −5.715 % 0.129
Gauss 4275 3.661 % 0.445 2 381 141 0.179 % 0.445
KDE 4273 3.613 % 2.335 2 381 074 0.176 % 0.058

Simulation split into 5 processes, each on a dedicated processor core
of an Intel® CoreTM i7-5930K (3.5 GHz).

5.4.1 Experiment Setup

To eliminate influence of the communication model on the error, only a single tile
mapping is considered. All actors are mapped to tile 𝑇0. This tile does not provide
hardware multiplication or an FPU. So all multiplications and floating point operations
are done in software, leading to many possible execution paths. All channels are mapped
to the private memory of tile 𝑇0 to avoid any communication overhead.

This mapping gets executed on the real evaluation platform and 1 000 000 samples
of the iteration execution times are measured. The same mapping gets simulated for
one million samples for each of the distribution functions used to represent the actor
computation delays.

The accuracy gets evaluated by comparing the measured average iteration execution
time with the simulated one of each simulation. Furthermore the similarity of the distri-
bution of the simulated iteration execution times gets compared against the distribution
of the measured execution times. Therefore the Bhattacharyya distance [Bha43] is
used as metric. The Bhattacharyya distance describes the similarity of two probability
distribution functions. The lower the distance is, the more similar the distribution
functions are.

5.4.2 Experiment Results

Tab. 5.1 shows the results of the computation model evaluation experiments. The overall
execution time of 1 000 000 iterations have been measured for each, the Sobel and the
JPEG setup. Each simulation has simulated 1 000 000 iterations for each investigated
distribution function. The results show the average iteration execution time 𝑑 in clock
cycles, and the error of the simulated average iteration delay compared to the observed

5.4 Computation Model Evaluation 67

3770 3930 4090 4250 4410 4570
0.00

0.21

0.42

0.63

0.84

1.05

Iteration Duration [Cycles]

Pr
ob

ab
ili

ty

Average
Uniform
Gauss
KDE
Measured

(a) Sobel results comparison

1.00

1453000 1889000 2325000 2761000 3197000 3633000
0.00

0.04

0.08

0.12

0.16

0.20

Iteration Duration [Cycles]

Pr
ob

ab
ili

ty

Average
Uniform
Gauss
KDE
Measured

(b) JPEG simuation results comparison

Fig. 5.5 Comparison of the observed iteration delay distribution (green) to the simulated ones using
different distribution functions as representation for actor delays. The dashed lines show the average of
the distribution.

ones are presented. Beside the error, the Bhattacharyya distance (B.Dist.) is given
to compare the similarity of the distribution of iteration delays of the simulation
compared to the observed distribution. The smaller the distance is, the better match the
distributions.

The data show that using a uniform distribution for presenting actor delays lead to an
under approximation of the average iteration delay. This can be seen for both use-cases,
Sobel with and error of −0.2 % and JPEG with −5.7 %. For the Sobel experiment, the
Gauss distribution leads to the lowest Bhattacharyya distance with 0.445. The iteration
delay distribution for the JPEG is closest to the observed one using Kernel Density
Estimation. There the Bhattacharyya distance is 0.058.

The different inference techniques to get the individual actor delays barely impact
the simulation speed. There may be minor differences in preprocessing data which
is negligible compared to other influences on the simulation speed caused by other
applications running on the simulation computer. For the Sobel simulation all simulations
took about 5 min each. The JPEG simulations took about 1 h and 45 min for each
simulation.

The Bhattacharyya distance represents the similarity of the analyzed distribution
function compared to the observed one. In Fig. 5.5 the iteration execution time
distributions from the simulation as well as the observed implementation of the Sobel
and JPEG application are shown. The distribution of the actually observed iteration
delays distribution is shown in green. The distribution of the simulated iteration delays
are shown in brown for the results when using average delays for actor execution.
For uniform delay distributions the resulting distribution is shown in red, for a Gauss
distribution in purple and for the Kernel Density Estimation approach in blue. The
vertical dashed lines show the corresponding average execution time.

5.4 Computation Model Evaluation 68

0.080.290.55

3770 3900 4030 4160 4290 4420
0.00

0.01

0.02

0.03

0.04

0.05

Iteration Duration [Cycles]

Pr
ob

ab
ili

ty

Uniform
Measured

(a) Sobel simulation best result

1730000 1961000 2192000 2423000 2654000 2885000
0.00

0.04

0.08

0.12

0.16

0.20

Iteration Duration [Cycles]

Pr
ob

ab
ili

ty

KDE
Measured

(b) JPEG simulation best result

Fig. 5.6 Comparison of the observed iteration delay distribution (green) to the simulated ones using
different distribution functions as representation for actor delays. The dashed lines show the average of
the distribution.

The Sobel experiment Fig. 5.5a show that the Gauss and KDE based simulations
result in a similar distribution function with nearly the same average value as also Tab. 5.1
shows. In contrast the uniform representation for actors lead to an average value closer
to the observed average.

The results of the JPEG experiment in Fig. 5.5b clearly show that the JPEG decoder
comes with some best case peaks (green/Measured). These rare best case events are
fully covered by the results of the simulation using a uniform distribution as actor
delays (red/Uniform). Anyway, other distribution functions lead to a more accurate
average iteration delay prediction. It is also visible that the KDE approach leads to a
distribution with its highest probability right in between the two peaks of the most often
observed execution times. (better visible in Fig. 5.6b).

5.4.3 Discussion

The experiments show that using a uniform distribution to describe the distribution of
delays of an actor leads to under approximation. The reason for this is, that rare best
observed delays get a too significant weight. The average delay is closer to the worst
observed delays which can be seen on the example of the 𝐴𝐺𝑋 Actor shown in Fig. 5.7a.
Still there may be some rare execution paths that lead to much lower delays. This can be
explained by algorithmic optimizations that allows skipping functionality depending on
input data. For example the software multiplication used when no hardware multiplier
is available, can be reduced to a few instructions when one of the factors is zero.

A closer look at the measured data (Fig. 5.6a green) of the Sobel application show
two peaks that are close to the best observed iteration delays. These peaks are better

5.4 Computation Model Evaluation 69

0.82

610 630 650 670 690 710
0.00

0.03

0.06

0.09

0.12

0.15

Iteration Duration [Cycles]

Pr
ob

ab
ili

ty

Modeled
Measured

(a) Actor 𝐴GX of the Sobel Application

387600 427300 467000 506700 546400 586100
0.00

0.06

0.12

0.18

0.24

0.30

Iteration Duration [Cycles]

Pr
ob

ab
ili

ty

Modeled
Measured

(b) Actor 𝐴IDCT Y of the JPEG Application

Fig. 5.7 Example of an actor compute phase delay distribution mapped on a tile without any hardware
accelerators. 1 000 000 samples have been measured (green). For the modeled distribution, Kernel
Density Estimation has been applied.

covered by the uniform distribution than other distributions because rare best cases
have the same weight as common average cases. These characteristics are propagated
from the input distribution functions to the simulation result.

In Fig. 5.6b the measured iteration execution time of the JPEG decoder compared
to the simulated execution time using KDE as actor delay model shows the advantage
of KDE. Similar to the Sobel application, also the JPEG application has some much
faster execution paths than the average paths as shown in Fig. 5.7b on the example
of the 𝐴IDCT Y Actor. These faster paths are covered by the KDE approach while still
maintaining the focus, the most likely execution times, around the observed average.
Here the faster execution times of an actor compute phase occurs less often than values
around the average case. For the simulation this leads to an overall iteration execution
that is not false balanced as it happens with an uniform distribution. Still these short
execution paths occur more often than using just a Gauss distribution that more likely
provide delays around the average delay of an actor.

The computation model evaluation also shows that for simple applications like the
Sobel filter application, assuming a Gauss distribution for actor delays may be sufficient
enough. For more complex application like the JPEG decode, Kernel Density Estimation
provides a better input for analysis. Regarding simulation speed, the computation delay
model has no significant impact on the simulation execution time. Still, KDE requires
a slightly higher (still negligible) preprocessing time for the delay data used by the
simulation.

5.5 Communication Model Evaluation 70

5.5 Communication Model Evaluation

For the communication model, three different abstraction levels have been proposed
in Sec 3.4. The Cycle Accurate model comes with a detailed representation of individual
instruction execution delays and token communication steps for each token. The abstract
Message Level model comes with highest abstraction, only modeling high level macro
blocks of the communication process without looking explicitly at any computation. In
between the hybrid Transaction Level model is based on the detailed cycle accurate
model but reduces simulation steps by abstracting polling phases to one single simulation
step. This section evaluates these three different approaches regarding accuracy and
simulation time.

5.5.1 Experiment Setup

The configuration of the evaluation platform focus on high communication load on
the shared interconnect. The mappings of the Sobel and JPEG applications are shown
in Tab. 5.2. All actors are spread over all existing tiles of the evaluation platform. This
mapping causes all actors that are not in their compute phase to poll the channel status
and cause lots of bus contention. The computation complexity gets reduced as good as
possible by mapping actors to tiles that provide accelerators the actors benefit from with
respect to minimize execution paths. All channels are mapped to shared memory even
those that could be mapped to private memory to further increase communication load.

These mappings get executed on the real evaluation platform and 1 000 000 samples
of the iteration execution times are measured. The same mapping gets simulated for one
million samples for each of the communication models. For the simulation, only the
average computation delay of an actor is used to represent the actors compute phase.

The accuracy gets evaluated by comparing the measured average iteration execution
time with the simulated one of each simulation. Furthermore the simulation time gets
measured by simply execute the simulation inside the Linux shell bash using the
command time in front of the actual simulation executable. The real execution time is
used to evaluate the simulation time.

I did these simulations and published the data in [Ste+21]. The data from those
experiments have been used for Tab. 5.3.

5.5.2 Experiment Results

Tab. 5.3 shows the results of the communication model evaluation experiments. 1 000 000
iterations have been measured or simulated. The results show the average iteration
execution time 𝑑 in clock cycles. In parentheses the error compared to the measured

5.5 Communication Model Evaluation 71

Table 5.2 Mapping for the Sobel and JPEG communication experiments. All channels have been
mapped to shared memory.

GetPixel GX GY ABS

Sobel 𝑇1 𝑇2 𝑇3 𝑇0

GetMCU IQY IQCr IQCb IDCTY IDCTCr IDCTCb YCrCb RGB

JPEG 𝑇0 𝑇1 𝑇2 𝑇3 𝑇4 𝑇5 𝑇6 𝑇0

Table 5.3 Results of the communication evaluation using different communication models. The table
shows the average iteration delay 𝑑 in clock cycles. The error compared to the observed delay the
measurement and simulation time 𝑡 is given as HH:MM:SS and the speed-up. The results have been
presented first in [Ste+21].

Sobel JPEG
𝑑 Error 𝑡 𝑡𝑀/𝑡𝑆 𝑑 Error 𝑡 𝑡𝑀/𝑡𝑆

Measured 3097 00:07:15 941 060 05:13:02
Cycle Accurate 4623 (49.273 %) 00:19:40 0.4 1 071 080 (13.816 %) 56:29:35 0.1
Transaction Level 2940 (−5.069 %) 00:05:02 1.4 927 239 (−1.469 %) 01:24:36 3.7
Message Level 3105 (0.258 %) 00:01:49 4.0 941 171 (0.012 %) 00:23:50 13.1

Simulation split into 16 processes, each on a dedicated processor core of an AMD OpteronTM Proces-
sor 6328 (3.5 GHz) at OFFIS e.V. www.offis.de, accessed on 24. May 2021

iteration delay is given. The required simulation time 𝑡𝑆 to simulate all one million
iterations are given in hours, minutes and seconds. Furthermore the speed-up is shown
to comparing the time 𝑡𝑀 it took to measure compared to the time 𝑡𝑆 it took to simulate.

Both use-cases show a similar picture of the communication models. The Cycle
Accurate model has the highest error with 13.8 % for the JPEG application simulation.
Furthermore it took more than 56 h to simulate all one million iterations. The Message
Level model has the lowest error with 0.012 % for the JPEG use-case. It also provides
the fastest simulation time with only about 24 min for the JPEG application. In this
experiment the simulation was more than 13 times faster than measuring. The Transaction
Level model provides a moderate simulation speed but results in underestimated iteration
delay.

5.5.3 Discussion

For both applications, the Message Level shows best performance and accuracy.
Compared to the Transaction Level model it is 3.55 times faster simulating the JPEG
application and 13.13 times faster than the actual measurement.

The Cycle Accurate communication model leads to an enormous slow down of the
simulation. Even though one million iterations have been simulated on 16 CPU cores

www.offis.de

5.6 Simulation Time Evaluation 72

in parallel, the simulation took more than ten times longer (10.828) for simulating the
JPEG use-case than the actual execution on the evaluation platform. Combined with the
high error of the result makes the Cycle Accurate model least suitable for analysis of
possible platform configuration, and especially not for design space exploration.

The high error of the Cycle Accurate model can be explained by the fact, that this
model does not differentiate between read or write access to the shared memory. Only
the amount of communicating tiles is used to obtain communication delay. As Fig. 4.8
from Sec 4.2.2 shows that there can be huge difference in communication delay
depending of contenders performing read or write accesses to the shared memory. The
cycle accurate model only considers the worst case delay for 𝑛 contender. This can lead
to an error of up to 21 clock cycles for 6 contender, which is nearly as high as the best
case of 26 clock cycles per transferred token when all six contender perform a write
access. This error sums up with each simulated token communicated.

The Transaction Level modes has a lower error that the Cycle Accurate error and
leads to faster simulation time as well. With the TL model, simulation is up to 3.7 times
faster than measuring a platform configuration. The error of −5.1 % or better makes
it a reasonable communication model. Still, it is not as accurate and not as fast as the
Message Level model. The Message Level model differentiates between read and write
access, which leads to higher accuracy.

5.6 Simulation Time Evaluation

In this section the accuracy and performance of the simulation gets evaluated. Therefore
simulations of different complexity regarding number of simulated tiles are compared.
The JPEG application is used as realistic use-case and reasonable mappings are applied.

5.6.1 Experiment Setup

The JPEG use-cases will be simulated for different mappings, each mapping using
a different amount of tiles. The individual mappings are defined in Tab. 5.4. The
experiments are labeled JPEGx with x representing the amount of tiles used to execute
the application.

Reasonable Heterogeneous Multi-Processor System-on-a-Chip (HMPSoC) configu-
rations have been simulated. When possible, channels are mapped to private memory.
The actors are mapped in a way that they benefit from available hardware accelerators
like hardware multiplication or floating point units. Furthermore the mapping should
allow pipelined execution of the applications. So a next iteration of execution can
already start while the previous iteration is still running.

5.6 Simulation Time Evaluation 73

Table 5.4 Mapping for different JPEG experiments. Tiles 1,2,3 have hardware multipliers, Tiles 4,5,6
FPUs. When possible, channels are mapped to private memory, otherwise on shared memory.

JPEG: GetMCU IQY IQCr IQCb IDCTY IDCTCr IDCTCb YCrCb RGB

JPEG2 𝑇0 𝑇4 𝑇4 𝑇4 𝑇4 𝑇4 𝑇4 𝑇4
JPEG3 𝑇0 𝑇1 𝑇1 𝑇1 𝑇4 𝑇4 𝑇4 𝑇4
JPEG4 𝑇0 𝑇1 𝑇1 𝑇1 𝑇4 𝑇4 𝑇4 𝑇5
JPEG5 𝑇0 𝑇1 𝑇2 𝑇3 𝑇1 𝑇2 𝑇3 𝑇4
JPEG6 𝑇0 𝑇1 𝑇2 𝑇2 𝑇4 𝑇5 𝑇6 𝑇6
JPEG7 𝑇0 𝑇1 𝑇2 𝑇3 𝑇4 𝑇5 𝑇6 𝑇6

For the simulation of the computation delay model, the Kernel Density Estimation
approach is applied. This approach showed best accuracy in the computation evaluation
in Sec 5.4. As communication model, the Message Level approach will be used.
In Sec 5.5 this approach showed better accuracy for high communication load and best
simulation performance.

The individual mappings get executed on the real evaluation platform to measure
1 000 000 samples of the iteration execution times. The same mappings get simulated
for one million samples as well.

The accuracy gets evaluated by comparing the measured average iteration execution
time with the simulated one of each simulation. Additional, the best and worst mea-
sured execution time gets compared to the best and worst simulated execution timed.
Furthermore the similarity of the distribution of the simulated iteration execution times
gets compared against the distribution of the measured execution times. Therefore the
Bhattacharyya distance [Bha43] is used as metric.

To evaluate the simulation performance the simulation gets executed inside the Linux
shell bash using the command time in front of the actual simulation executable. The
real execution time is used to evaluate the simulation time by comparing it with the time
it took to measure the actual execution. Therefore the time between the first sample got
received until the one millionth sample got received get measured.

5.6.2 Experiment Results

Tab. 5.5 shows the results of the simulation evaluation experiments. Each pair of line
shows the measured iteration of a mapping from Tab. 5.4 compared to the simulation of
that mapping. 1 000 000 iterations have been measured or simulated for each experiment.
The minimum, average and maximum simulated or measured iteration execution times
are given in clock cycles. The error given in the Err.Avg. column shows the error of
the simulated average iteration execution time compared to the measured one. The
Bhattacharyya distance in the B.Dist. column expresses the similarity of the simulated

5.6 Simulation Time Evaluation 74

Table 5.5 Results of the simulation evaluation using different mappings. The Err.Avg. column
represents the error of the simulated average iterate execution time compared to the measured one.
Measurement and simulation time is given as HH:MM:SS. The Bhattacharyya distance (B.Dist.)
describes the similarity of the distribution functions, and 𝑡𝑀/𝑡𝑆 the speed-up of the simulation
compared to the measurement.

Experiment Min. Avg. Max. Err.Avg. B.Dist. Time 𝑡 𝑡𝑀/𝑡𝑆
JPEG2 Measured 124 304 493 832 725 228 02:27:25
JPEG2 Simulated 121 092 495 685 766 441 0.38 % 0.112 00:40:57 3.6
JPEG3 Measured 108 586 466 642 702 117 02:26:22
JPEG3 Simulated 88 293 479 333 749 063 2.72 % 0.123 00:38:51 3.8
JPEG4 Measured 111 914 469 974 705 433 02:26:48
JPEG4 Simulated 87 855 479 974 750 118 2.13 % 0.106 00:39:29 3.7
JPEG5 Measured 1 090 546 1 535 249 1 671 340 05:32:48
JPEG5 Simulated 917 308 1 573 158 1 727 461 2.47 % 1.700 00:39:34 8.4
JPEG6 Measured 106 287 463 531 702 363 02:26:45
JPEG6 Simulated 86 709 477 363 746 914 2.98 % 0.120 00:40:41 3.6
JPEG7 Measured 107 016 464 251 703 092 02:27:18
JPEG7 Simulated 88 554 479 134 748 652 3.21 % 0.122 00:39:34 3.7

Simulation split into 5 processes, each on a dedicated processor: Intel® CoreTM i7-5930K (3.5 GHz).

iteration execution times distribution with the actual observed one. The smaller the
distance is, the better match the distributions of iteration execution times. The Time
column lists how long the experiments took. The last columns shows how much faster
the simulation is, compared to the measurement of the one million samples.

The error of the average simulated iteration execution time compared to the observed
time is increasing from 0.38 % for the mapping of the application on only two tiles
to 3.21 % for the mapping of the same application on seven tiles. The error over number
of tiles is plotted in Fig. 5.8. In all cases, the simulated best execution was below
the observed best execution time. Also the simulated worst execution time was in all
experiments above the observed worst execution time. The average measured execution
time was always below the simulated one.

The Bhattacharyya distance of the measured and simulated iteration execution time
distribution is within the range of 0.112 for the 2-tile mapping and 1.7 for the 5-tile
mapping.

The simulation time was constant around 40 min. In any cases the simulation of
one million iterations was faster than the measuring one million samples of the actual
execution. In most cases simulation was about 3.6 to 3.8 times faster. For the 5-tile
mapping, the simulation was 8.4 times faster.

5.6 Simulation Time Evaluation 75

Number of Tiles

Si
m

ul
at

io
n

Er
ro

r

2 3 4 5 6 7

1%

2%

3%

4%

2.72%
2.47%

3.21%
2.98%

2.13%

0.38%

Fig. 5.8 Error of the simulated average iteration execution time for mappings using 2 to 7 tiles.

5.6.3 Discussion

In all cases shown in Tab. 5.5, the measured iteration execution times are within
the boundaries of the best and worst simulated execution times. The applied Kernel
Density Estimation inference technique smoothes the distribution of the measured
computation delays of the characterized actors. This leads to possible computation
delays of an actor higher and lower than the actual observed ones. These higher and
lower delays representing individual actor compute phases widens the boundaries of
best and worst simulated overall iteration execution time. This is on purpose, because
rare cases of better or worse computation delays that have not been observed during the
characterization of an actor might be covered as well.

Fig. 5.8 shows that with more tiles the error between measured and simulated average
iteration execution times raises. This can be explained by the increase of communication
and interconnect contention. The more communication takes place, the more influence
of the communication model error comes on top of the computation error.

Looking towards using the simulation for design space exploration, the case of JPEG3
versus JPEG5 mapping is interesting. The simulated as well as the actual observed
iteration execution time show that the mapping using three tiles is much faster than
the mapping using 5 tiles. The 3-tiles mapping one iteration takes in average 479 333
clock cycles. With the 5-tiles mapping it takes more than 3 times longer with 1 573 158
clock cycles. The reason behind the increased execution time lays in the designers

5.6 Simulation Time Evaluation 76

strategy for assigning the actors of the JPEG decoder to the tiles on that they will be
executed. For both mappings, the goal was to allow pipelined execution. Furthermore,
the actor 𝐴𝐺𝑒𝑡𝑀𝐶𝑈 had to be mapped to tile 𝑇0 because this was the only tile with
enough private memory to store the data and instructions of that actor. These two
were common constraints. Different constraints have been applied for using hardware
accelerators. With JPEG3, the inverse quantization (IQ) actors have been mapped to
a tile with hardware multiplier and the inverse discrete cosine transformation (IDCT)
actors have been mapped to a tile with FPU. For the JPEG5 mapping, the strategy was
different. There, the 𝐴𝐺𝑒𝑡𝑀𝐶𝑈 and 𝐴𝑌𝐶𝑟𝐶𝑏 𝑅𝐺𝐵 were mapped to separate tiles, then for
the remaining six actors three tiles were still free. Since the JPEG decoder can decode
each of the three color channels in parallel, for each color channel the corresponding IQ
and IDCT actor have been mapped to the same tile - a tile with hardware multiplier, but
without floating point unit. This design decision lead to the situation that the floating
point operations of the IDCT had to be done in software which increased the execution
time.

The execution time of the simulation is constant about 40 min for any mapping.
In contrast the time it takes to measure the same amount of samples that have been
simulated depends on the actual execution time it takes to execute the software under
analysis. This can clearly be seen by the experiments JPEG5. The 5-tile mapping lead
to slow execution of the JPEG decoder because actors with floating point operations
have been mapped to tiles that do not provide a floating point unit, leading to perform
the floating point operations in software. In this case the simulation was up to 8.4
times faster. For more suitable mappings the measurement of one million samples took
about 2 h and 27 min. In those cases the simulation was around 3.7 times faster.

The simulations of this experiment have been split into 5 individual processes that
have been executed in parallel on a multi-core CPU with 6 physical CPU cores. Each
simulation process only had to simulate 200 000 of the 1 000 000 iterations. The parallel
execution has significant influence on the simulation time shown in Tab. 5.5. With
more available CPU cores the simulation time can be further decreased. Measuring one
million samples on real hardware can also be increased by operating multiple evaluation
platforms.

Chapter 6
Discussion

This section discusses the limitations of the approach and models presented in this thesis.
A discussion of the research questions form Sec 1.2 follows in the conclusion Chap 7.

The proposed methods and models are developed to be used in context of design
space exploration, not for safety analysis. This allows focus on an abstract and fast
modeling and analysis approach to allow the system designers to narrow down the
design space during early development. For a more mature product more detailed and
time consuming approaches may be needed to guarantee a safe operation.

Since the characterization of software function is done following a measurement
based approach, a simulation based execution time analysis makes only sense when
the simulation is faster than using the characterization measurement infrastructure
to simply measure an instance of the final product configuration. Still, the approach
allows simulating much larger systems than used for characterization. This makes
the design space exploration cost efficient by doing characterization on cheap system
configurations and simulating expensive system configurations.

For characterization, representative input data is required. Not only to cover all
possible execution paths of the code that gets characterized but also to get a representative
distribution function of the observed execution times. For the Sobel use-case which
implements an edge detection algorithm, a white noise image has been used. Compared
to an image of a cross, a gradient and a pure black image, the best and worst observed
execution times of these images have been covered by the white noise image. Still, the
distribution function is different for each input image. The JPEG-Decoder has been
characterized using a landscape photo made on a sunny day in summer in the early
afternoon. The characteristics of this image is different to a photo of an object at night.
Luminance and texture are different for both image classes. For example texture has
an impact on the execution paths of the inverse discrete cosine transformation of the
JPED-Decoder. Luminance has an impact on the importance of different color channels,
and therefore change the distribution functions for each of them. The huge influence of
the input data on the characterization makes it important to be careful with selecting
stimuli data for this modeling approach.

Beside the importance of stimuli data, constraints on the execution environment
introduced by the models need to be considered. The presented approach has strict
limitations on memory hierarchy. Constraints are, that there are no memory caches
and that processing elements have private local memory for code and local data. Many
modern MPSoCs are equipped with large shared memory and caches for quick access.
Even though there might be private local memory available for a processing element it

77

6 Discussion 78

might be only a cache that regularly gets synchronized with a larger shared memory. To
make the proposed approach available to more COTS platform, addressing caches in
the models is mandatory.

The presented use-cases are algorithms that process defined input data to defined
output data. The implementations used in the evaluation and for characterization have
their input data hard coded in the starting actor, and discard their output data produced
by the ending actor. In real-world situations, the input data would come for example
from a sensor and the output would be used by external actuator or other software
applications. The assumption that input and output data “appear” and “disappear” in
actors may be valid. The compute phase of an actor could implement sensor or actuator
drivers. An sensor driver actor can get data from sensors that are then processes within
the SDF-Application until an actuator driver actor gives over the data to a different
hardware/software system. Still, there are some constraints for those drives, even
though they can be abstracted as computational component. The driver may need to
access external hardware components. This must not be done using the main system
interconnect since access to this interconnect is only allowed during read and write
phase, and only to communicate via channels. In most cases sensors and actuators may
be connected to a peripheral bus that can be accessed without interfering the main
system bus. This is also the case in the proposed execution platform of this thesis.
Another constrain is, that the access to external hardware within the driver actors
does not interfere with the measurement infrastructure that is also using a peripheral
bus. This constraint is also fulfilled by the proposed architecture since MicroBlaze
processors come with several independent periphery buses. This is not necessarily the
case for other architectures.

Chapter 7
Conclusion

In this thesis I presented a modeling and analysis approach for execution time analysis of
synchronous dataflow (SDF) applications on Heterogeneous Multi-Processor Systems-
on-Chips (HMPSoCs). For the analysis I follow a simulation based approach using
measured delay distributions.

Several research questions have been identified and presented in the introduction
in Sec 1.2. To conclude this thesis, I will present the answers to these questions in the
following paragraphs.

Are measured delays a suitable abstraction for timing of application functions?
The model of computation used in this thesis (SDF, See Sec 3.1) allows dividing
application into several interference free components, called actors. The compute phase
of an actor can be represented by its computation delay for time analysis. In Sec 3.3 I
showed how to deal with low level hardware effects and data dependency influencing
the execution delay. Instead of a single delay like the average of measured delays, the
distribution of the observed delays is used. The representation of computation delays
by a delay distribution functions (Described in Sec 3.3) has been evaluated in Sec 5.4.
A Gauss distribution was well suited for simple applications like a Sobel-Filter. A more
complex use-case, a JPEG decoder, required a more sophisticated inference technique
to obtain a delay distribution that represents the computation phase of an actor. Kernel
Density Estimation showed good results and allowed to not just get a reasonable average
execution time with error less than 5 % but also a representative distribution function of
possible execution times as simulation result. To get a well suited distribution function
for an actor, it is important to characterize this actor on all different instruction set
architectures with all different combination of available hardware accelerators like
floating point units or hardware multiplier. Furthermore, for the later usage of the
characterized application representative stimuli data needs to be applied.

What is necessary to predict execution time distributions of an application on an
MPSoC in short time? In context of this thesis a simulation should be executed faster
than gathering the same amount of data by simply measuring of a real platform. Using
SDF as computation model and representing the computation as delays following a
certain distribution function has been shown as fast and accurate method in Sec 5.4 to
model and simulation the computational part of an application. The communication
model still was a challenge. Three different approaches have been presented in Sec 3.4.
These models have been evaluated and compared in Sec 5.5. The Message Level model
first introduced by [Vu+21] allowed the fastest simulation by still maintaining good
accuracy. In Sec 5.6 the performance of the simulation presented in this thesis has been

79

7 Conclusion 80

evaluated. While measuring a certain mapping and configuration usually took more
than 2 h, the simulation finished within less than 45 min in most cases. In all cases
the simulation was faster. The simulation was executed on a general purpose desktop
computer. The simulation allows parallel execution on a compute cluster with many
CPU cores that can further reduce simulation time.

How can I achieve good accuracy for analyzing realistic systems? In Sec 5.6 I
showed the analysis of a JPEG-Decoder application executed on a Heterogeneous
Multi-Processor System-on-a-Chip with 7 tiles and different hardware accelerators. The
accuracy depends on the quality of the communication model and the computation delay
model. Since the computation delay model is based on the distribution of measured delays
representative stimuli data is mandatory for good accuracy. The communication models
presented in this thesis rely on a deeper understanding of the software, or hardware
implementation of the communication drivers or interconnects. The modeling and
analysis approach presented in this thesis allowed a prediction of the average execution
time of a certain mapping and configuration with an error less than 5 % (Tab. 5.5).
For modeling the computation time, Kernel Density Estimation has been applied on
measured execution times. For the characterization, data dependencies and hardware
introduced variance in execution time has been considered. In comparison with several
communication models, the Message Level model first introduced by [Vu+21] provided
best accuracy. The software application fulfilled all assumptions introduced by the used
computation model (Sec 3.1). The up to seven tiles MPSoC fulfilled all assumptions
introduced by the architecture model (Sec 3.2). Applying the presented approach to
software or hardware that violates these assumptions can have a negative impact on the
accuracy.

How can I achieve good scalability for realistic systems? The evaluation showed that
an important aspect for this approach, when it comes to scalability, is the right choice
of abstraction of communication. In Sec 5.5 I compared three different communication
models. The Message Level model by [Vu21] showed best performance. Even with
high communication activity, the simulation was executed within 24 min (Tab. 5.3).
Beside the simulation itself, the characterization can become a time consuming process.
The evaluation platform used in this thesis consists of three different tile types. Each of
the 8 actors of the JPEG-Decoder application had to be characterized for each tile type.
Therefore 24 times one million samples of the actor execution have been measured.
This is only required once, but still can become time consuming for a higher variety of
tiles or applications with more actors. For the evaluation of the simulation in Sec 5.6 I
simulated a JPEG-Decoder that consists of 8 actors on an MPSoC with up to 7 tiles
within an analysis time of less than 45 min (Tab. 5.5). The simulation time was barely
increasing with increasing number of tiles. In any cases the simulation was multiple
times faster than measuring the execution time on a real instance of the simulated system.
For the evaluation, 1 000 000 iterations have been simulated in total. These number of
iterations can be distributed to several instances of the simulation. In most cases five
instances of the simulation have been executed in parallel, each simulating 200 000

7 Conclusion 81

iterations. These processes were executed on a desktop computer. High performance
computer with many CPU cores would allow more parallel instances and therefore
faster simulation. Simulating only one iteration on the i7-5930K CPU used for most
of the evaluation is computed in 8.8 s including the setup phase of the simulation and
preprocessing the actors computation delay data (Applying Kernel Density Estimation).

What are the limitations of my approach when applying to consumer of-the-shelf
platforms? The proposed analysis and characterization rely on software that can be
represented as SDF graph (Sec 3.1) and a tile based hardware architecture (Sec 3.2). For
the characterization, the hardware additionally need to provide a dedicated peripheral
interface or GPIO port to allow connecting measurement infrastructure (Sec 4.1.2)
to the hardware platform without interfere with the execution of the software under
analysis. For evaluation, a custom hardware platform has been designed and instantiated
on a Field Programmable Gate Array (FPGA). Beside a highly customized hardware
platform of-the-shelf MPSoCs exists, that also fulfills the requirements for the proposed
approach. One example is the Parallax Propeller1. The Propeller is a MPSoC that
comes with 8 independent tiles called “Cog” connected to a shared interconnect called
“Hub”. The Hub implements a round-robin arbitration protocol. Each tile comes with
private memory for 512 words. For data exchange between Cogs (Tiles), a 32 kB shared
memory exist. Furthermore it is possible to connect external measurement infrastructure
to GPIO pins that can be accessed by the Cogs without interfering with each other.

1 Parallax Inc. Propeller 1 https://www.parallax.com/propeller/, visited 05.01.2023

https://www.parallax.com/propeller/

Chapter 8
Future Work

To allow more complex bus systems a probabilistic communication time model instead
of the analytical ones presented in this thesis, can be beneficial. Furthermore a fully
probabilistic model allows Statistical Model Checking (SMC) techniques. By moving
from a hybrid simulation model using a probabilistic approach for computation and
analytic approach for communication to a fully probabilistic simulation model, the
application of more advanced probabilistic analysis methods such as SMC [Ste+19a;
Nou+14a] become feasible. SMC approaches reduces the required number of simulation
runs by using statistical algorithms such as Monte-Carlo or Sequential Probability Ratio
Test (SPRT). By controlling the number of simulation runs, a trade-off between high
confidence and fast analysis time is possible. The instrumentation and monitoring of
SystemC models to carry out statistical analysis were presented in [NLQ16]. A first
evaluation has been done in a technical report [Ste+19b] by me and Hai-Dang Vu and
further investigated by Hai-Dang Vu as contribution to our publication in [Ste+19a].

In the context of WCET analysis, authors in [Caz+13a; Caz+16] proposed a mea-
surement based approach in combination with hardware and/or software randomization
techniques to conduct a probabilistic worst-case execution time (pWCET) through the
application of Extreme Value Theory (EVT) [And70]. In future work, the usage of
EVT for the proposed models can be assessed. EVT can potentially be applied on our
execution time distributions to provide an analytic pWCET.

For more complex applications, tool support can improve handling data dependencies.
Automation can be applied to identifying all relevant actor internal execution paths,
and annotate them with execution times or execution time distributions. Within this
automation process, automatic characterization can be integrated so that stimuli data
activating certain execution paths can be generated, the actor executed and its delay
distribution for the stimulated execution paths observed.

My colleague Quentin Dariol follows the analysis approach presented in this thesis
for his PhD thesis . He uses some modeling and characterization techniques as well
as the simulation for modeling and analyzing artificial neural networks (ANN) on
MPSoCs [Dar+22]. He extends the models and characterization technique to also allow
analyzing the power consumption of ANNs on MPSoCs [Dar+23].

An important topic for future work is loosening the constraints made to the hardware
architecture so that the techniques presented in this thesis can be applied to more
of-the-shelf hardware platforms. My colleague Hai-Dang Vu addressed the extension
of the presented models to allow Dynamic RAM memory and caches in his PhD
thesis [Vu21].

82

Chapter 9
References

My Publication

This section lists all publications I did as main author or as co-author in context of this
thesis. This includes workshop and conference papers as well as journal articles. All
listed publications are peer reviewed and follow scientific standards. Beside the listed
peer reviewed publications, a technical report [Ste+19b] has been published. Details
about the context and contributions are presented in Sec 1.4. The list is ordered by
the publication date. Each entry starts with a reference to the actual reference entry
in the generated reference list is the next section. Publications where I am the main
contributor are marked with a star (★).

• [Ste+17] ★ Ralf Stemmer, Maher Fakih, Kim Grüttner and Wolfgang Nebel;
“Towards State-Based RT Analysis of FSM-SADFGs on MPSoCs with Shared
Memory Communication”. In Proceedings of the 9th Workshop on Rapid Simulation
and Performance Evaluation: Methods and Tools. ACM. 2017

• [SFS17] Christof Schlaak, Maher Fakih and Ralf Stemmer “Power and Execution
Time Measurement Methodology for SDF Applications on FPGA-based MPSoCs”.
In arXiv preprint arXiv:1701.03709. 2017

• [Kle+19] Oliver Klemp, Maher Fakih, Kim Grüttner, Ralf Stemmer and Wolfgang
Nebel “Experimental Evaluation of Scenario Aware Synchronous Data Flow
based Power Management”. In Proceedings of the International Conference on
Omni-Layer Intelligent Systems. 2019

• [Ste+19c] ★ Ralf Stemmer, Henning Schlender, Maher Fakih, Kim Grüttner and
Wolfgang Nebel “Probabilistic State-Based RT-Analysis of SDFGs on MPSoCs
with Shared Memory Communication”. In 2019 Design, Automation & Test in
Europe Conference & Exhibition (DATE). March 2019

• [Ste+19a] ★ Ralf Stemmer, Hai-Dang Vu, Kim Grüttner, Sébastien Le Nours,
Wolfgang Nebel and Sébastien Pillement “Experimental evaluation of probabilistic
execution-time modeling and analysis methods for SDF applications on MPSoCs”.
In 2019 International Conference on Embedded Computer Systems: Architectures,
Modeling, and Simulation (SAMOS). Springer. July 2019

• [Ste+20] ★ Ralf Stemmer, Hai-Dang Vu, Kim Grüttner, Sébastien Le Nours,
Wolfgang Nebel and Sébastien Pillement “Towards Probabilistic Timing Analysis
for SDFGs on Tile Based Heterogeneous MPSoCs”. In 10th European Congress
on Embedded Real Time Software and Systems (ERTS 2020). 2020

83

REFERENCES 84

• [Vu+21] Hai-Dang Vu, Sébastien Le Nours, Sébastien Pillement, Ralf Stemmer
and Kim Grüttner “A Fast Yet Accurate Message-level Communication Bus Model
for Timing Prediction of SDFGs on MPSoC”. In Asia and South Pacific Design
Automation Conference ASP-DAC 2021 (Virtual Conference). 2021

• [Ste+21] ★ Ralf Stemmer, Hai-Dang Vu, Sébastien Le Nours, Kim Grüttner,
Sébastien Pillement and Wolfgang Nebel “A Measurement-based Message-level
Timing Prediction Approach for Data-Dependent SDFGs on Tile-based Heteroge-
neous MPSoCs”. In Applied Sciences 11.14. Multidisciplinary Digital Publishing
Institute. 2021

• [Dar+22] Quentin Dariol, Sébastien Le Nours, Sébastien Pillement, Ralf Stemmer,
Domenik Helms and Kim Grüttner “A Hybrid Performance Prediction Approach
for Fully-Connected Artificial Neural Networks on Multi-core Platforms”. In
International Conference on Embedded Computer Systems: Architectures, Modeling,
and Simulation (SAMOS). Springer. 2022

• [Dar+23] Quentin Dariol, Sébastien Le Nours, Domenik Helms, Ralf Stemmer,
Sébastien Pillement and Kim Grüttner “Fast Yet Accurate Timing and Power
Prediction of Artificial Neural Networks Deployed on Clock-Gated Multi-Core
Platforms”. In Proceedings of the DroneSE and RAPIDO: System Engineering for
constrained embedded systems. 2023

References

[Ahm+14] Waheed Ahmad et al. “Resource-Constrained Optimal Scheduling of
Synchronous Dataflow Graphs via Timed Automata”. In: Proceedings of
14th IEEE International Conference on Application of Concurrency to
System Design (ACSD). IEEE, 2014.

[And70] C. W. Anderson. “Extreme value theory for a class of discrete distributions
with applications to some stochastic processes”. In: Journal of Applied
Probability 7.1 (1970), pp. 99–113. doi: 10.2307/3212152.

[Arc] Timing Architect. http://www.timing-architects.com.
[Arp+09] T. Arpinen et al. “Performance Evaluation of UML-2 Modeled Embedded

Streaming Applications with System-Level Simulation”. In: EURASIP
Journal on Embedded Systems 2009, 826296 (2009).

[AS12] Accellera and the SystemC community. “IEEE Standard for Standard
SystemC Language Reference Manual”. In: IEEE Std 1666-2011 (Revision
of IEEE Std 1666-2005) (2012), pp. 1–638. doi: 10.1109/IEEESTD.
2012.6134619.

[Bac+92] F. Baccelli et al. Synchronization and linearity, an algebra for discrete
event systems. New York: Wiley & Sons Ltd, 1992.

https://doi.org/10.2307/3212152
https://doi.org/10.1109/IEEESTD.2012.6134619
https://doi.org/10.1109/IEEESTD.2012.6134619

REFERENCES 85

[Bas+11] A. Basu et al. “Rigorous Component-Based System Design Using the
BIP Framework”. In: IEEE Software 28.3 (May 2011), pp. 41–48. issn:
0740-7459. doi: 10.1109/MS.2011.27.

[Bha43] Anil Bhattacharyya. “On a measure of divergence between two statistical
populations defined by their probability distributions”. In: Bull. Calcutta
Math. Soc. 35 (1943), pp. 99–109.

[BHM08] Aske Brekling, Michael R. Hansen, and Jan Madsen. “Models and
formal verification of multiprocessor system-on-chips”. In: The Journal
of Logic and Algebraic Programming. The 16th Nordic Workshop on the
Prgramming Theory (NWPT 2006) 77.1-2 (Sept. 2008), pp. 1–19. issn:
1567-8326.

[BKR07] Steffen Becker, Heiko Koziolek, and Ralf Reussner. “Model-based perfor-
mance prediction with the palladio component model”. In: Proceedings
of the 6th international workshop on Software and performance. 2007,
pp. 54–65.

[Boy+13] Benoıt Boyer et al. “PLASMA-lab: A flexible, distributable statistical
model checking library”. In: Quantitative Evaluation of Systems: 10th
International Conference, QEST 2013, Buenos Aires, Argentina, August
27-30, 2013. Proceedings 10. Springer. 2013, pp. 160–164.

[BPT10] A. Bobrek, J. M. Paul, and D. E. Thomas. “Stochastic Contention Level
Simulation for Single-Chip Heterogeneous Multiprocessors”. In: IEEE
Transactions on Computers 59.10 (2010), pp. 1402–1418.

[Bri+15] O. Bringmann et al. “The next generation of virtual prototyping: Ultra-fast
yet accurate simulation of HW/SW systems”. In: 2015 Design, Automation
Test in Europe Conference Exhibition (DATE). 2015, pp. 1698–1707.

[Bük13] Matthias Büker. “An Automated Semantic-Based Approach for Creating
Task Structures”. Dissertation. University of Oldenburg, 2013.

[Bul+12] P. Bulychev et al. “Statistical model checking for priced timed automata”.
In: In Proc. 10th workshop on quantitative aspects of programming
languages and systems (QAPL’12). 2012.

[Caz+13a] Francisco J Cazorla et al. “Proartis: Probabilistically analyzable real-time
systems”. In: ACM Transactions on Embedded Computing Systems (TECS)
12.2s (2013), p. 94.

[Caz+13b] Francisco J. Cazorla et al. “PROARTIS: Probabilistically Analyzable
Real-Time Systems”. In: ACM Trans. Embed. Comput. Syst. 12.2s (May
2013), 94:1–94:26. issn: 1539-9087. doi: 10.1145/2465787.2465796.
url: http://doi.acm.org/10.1145/2465787.2465796.

[Caz+16] Francisco J. Cazorla et al. “PROXIMA: Improving measurement-based
timing analysis through randomisation and probabilistic analysis”. In:
Digital System Design (DSD), 2016 Euromicro Conference on. IEEE.
2016, pp. 276–285.

https://doi.org/10.1109/MS.2011.27
https://doi.org/10.1145/2465787.2465796
http://doi.acm.org/10.1145/2465787.2465796

REFERENCES 86

[Che+15] M. Chen et al. “Variation-aware evaluation of MPSoC task allocation and
scheduling strategies using statistical model checking”. In: 2015 Design,
Automation Test in Europe Conference Exhibition (DATE). Mar. 2015,
pp. 199–204.

[Chr] ChronSIM. http://www.inchron.com/tool-suite/chronsim.html.
[Cul+10] C. Cullmann et al. “Predictability considerations in the design of multi-

core embedded systems”. In: Proceedings of the Embedded Real Time
Software and Systems Congress (ERTS2) 2010. 2010.

[Dam+12] Morteza Damavandpeyma et al. “Modeling static-order schedules in
synchronous dataflow graphs”. In: 2012 Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE. 2012, pp. 775–780.

[Dar+22] Quentin Dariol et al. “A Hybrid Performance Prediction Approach for
Fully-Connected Artificial Neural Networks on Multi-core Platforms”. In:
International Conference on Embedded Computer Systems: Architectures,
Modeling, and Simulation (SAMOS). Springer. 2022, pp. 250–263.

[Dar+23] Quentin Dariol et al. “Fast Yet Accurate Timing and Power Prediction of
Artificial Neural Networks Deployed on Clock-Gated Multi-Core Plat-
forms”. In: Proceedings of the DroneSE and RAPIDO: System Engineering
for constrained embedded systems. 2023, pp. 79–86.

[Dav+11] Alexandre David et al. “Statistical Model Checking for Networks of Priced
Timed Automata”. English. In: Formal Modeling and Analysis of Timed
Systems. Ed. by Uli Fahrenberg and Stavros Tripakis. Vol. 6919. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2011, pp. 80–96.
isbn: 978-3-642-24309-7.

[Döm+08] R. Dömer et al. “System-on-Chip Environment: A SpecC-Based Frame-
work for Heterogeneous MPSoC Design”. In: EURASIP Journal on
Embedded Systems 2008 (2008).

[Erb+07] C. Erbas et al. “A Framework for System-Level Modeling and Simulation
of Embedded Systems Architectures”. In: EURASIP Journal on Embedded
Systems (2007).

[Fak+15] Maher Fakih et al. “State-based real-time analysis of SDF applications on
MPSoCs with shared communication resources”. In: Journal of Systems
Architecture - Embedded Systems Design 61.9 (2015), pp. 486–509. issn:
1383-7621. doi: http://dx.doi.org/10.1016/j.sysarc.2015.04.
005. url: http://www.sciencedirect.com/science/article/
pii/S1383762115000326.

[Fak16] Maher Fakih. “State-Based Real-Time Analysis of Synchronous Data-flow
(SDF) Applications on MPSoCs with Shared Communication Resources”.
PhD thesis. Universität Oldenburg, 2016.

[Gaj+09] Daniel D Gajski et al. Embedded system design: modeling, synthesis and
verification. Springer Science & Business Media, 2009.

https://doi.org/http://dx.doi.org/10.1016/j.sysarc.2015.04.005
https://doi.org/http://dx.doi.org/10.1016/j.sysarc.2015.04.005
http://www.sciencedirect.com/science/article/pii/S1383762115000326
http://www.sciencedirect.com/science/article/pii/S1383762115000326

REFERENCES 87

[Gal+07] Mark Galassi et al. “The gnu scientific library reference manual, 2007”.
In: URL http://www.gnu.org/software/gsl (2007).

[Ger+09] A. Gerstlauer et al. “Electronic System-Level Synthesis Methodologies”.
In: IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 28.10 (2009), pp. 1517–1530.

[Gia+12] Georgia Giannopoulou et al. “Timed Model Checking with Abstractions:
Towards Worst-Case Response Time Analysis in Resource-Sharing Many-
core Systems”. In: Proc. International Conference on Embedded Software
(EMSOFT). Tampere, Finland: ACM, Oct. 2012, pp. 63–72.

[Gus+10] Andreas Gustavsson et al. “Towards WCET Analysis of Multicore Archi-
tectures Using UPPAAL”. In: WCET. 2010, pp. 101–112.

[Hen+05] Rafik Henia et al. “System Level Performance Analysis - the SymTA/S
Approach”. In: IEE Proceedings Computers and Digital Techniques. 2005.

[Hua+12] Kai Huang et al. “Embedding Formal Performance Analysis into the
Design Cycle of MPSoCs for Real-time Streaming Applications”. In:
ACM Trans. Embed. Comput. Syst. 11.1 (Apr. 2012), 8:1–8:23. issn:
1539-9087. doi: 10.1145/2146417.2146425. url: http://doi.acm.
org/10.1145/2146417.2146425.

[HV06] Martijn Hendriks and Marcel Verhoef. “Timed automata based analysis of
embedded system architectures”. In: Parallel and Distributed Processing
Symposium, 2006. IPDPS 2006. 20th International. IEEE, 2006, 8–pp.

[Int] Intel. Intel CoFluent Studio. http://www.intel.com/content/www/us/
en/cofluent/intel-cofluent-studio.html.

[JLS12] C. Jegourel, A. Legay, and S. Sedwards. “A Platform for High Perfor-
mance Statistical Model Checking - plasma”. In: In Proc. International
Conference Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’12). 2012, pp.498–503.

[Kan+06] T. Kangas et al. “UML-Based Multiprocessor SoC Design Framework”.
In: ACM Transactions on Embedded Computing Systems 5.2 (May 2006),
pp. 281–320.

[Kei+09] J. Keinert et al. “SystemCoDesigner-An automatic ESL synthesis ap-
proach by design space exploration and behavior synthesis for streaming
applications”. In: ACM Trans. Des. Autom. Electro. Syst. 14.1 (Jan. 2009),
pp.1–23.

[Kir+05] Raimund Kirner et al. “Using measurements as a complement to static
worst-case execution time analysis”. In: Intelligent Systems at the Service
of Mankind 2.8 (2005), p. 20.

[Kle+19] Oliver Klemp et al. “Experimental Evaluation of Scenario Aware Syn-
chronous Data Flow based Power Management”. In: Proceedings of
the International Conference on Omni-Layer Intelligent Systems. 2019,
pp. 80–85.

https://doi.org/10.1145/2146417.2146425
http://doi.acm.org/10.1145/2146417.2146425
http://doi.acm.org/10.1145/2146417.2146425

REFERENCES 88

[KNP11] M. Kwiatkowska, G. Norman, and D. Parker. “PRISM 4.0: Verification of
Probabilistic Real-time Systems”. In: In Proc. International Conference
on Computer Aided Verification (CAV’11). July 2011, pp. 585–591.

[Kre+08] J. Kreku et al. “Combining UML2 Application and SystemC Platform
Modelling for Performance Evaluation of Real-Time Embedded Systems”.
In: EURASIP Journal on Embedded Systems 2008 (Jan. 2008), 6:1–6:18.

[Kum09] Akash Kumar. “Analysis, design and management of multimedia multi-
processor systems”. PhD thesis. Eindhoven University of Technology,
2009.

[KW16] Joost-Pieter Katoen and Hao Wu. “Probabilistic Model Checking for
Uncertain Scenario-Aware Data Flow”. In: ACM Trans. Des. Autom.
Electron. Syst. 22.1 (Sept. 2016), 15:1–15:27. issn: 1084-4309. doi:
10.1145/2914788. url: http://doi.acm.org/10.1145/2914788.

[Le 10] Jean-Yves Le Boudec. Performance Evaluation of Computer and Commu-
nication Systems. EPFL Press, Lausanne, Switzerland, 2010.

[LM87] Edward A Lee and David G Messerschmitt. “Synchronous data flow”. In:
Proceedings of the IEEE 75.9 (1987), pp. 1235–1245.

[LMS13] K. Lu, D. Müller-Gritschneder, and U. Schlichtmann. “Analytical timing
estimation for temporally decoupled TLMs considering resource conflicts”.
In: 2013 Design, Automation Test in Europe Conference Exhibition
(DATE). 2013, pp. 1161–1166.

[Lv+10] M. Lv et al. “Combining Abstract Interpretation with Model Checking for
Timing Analysis of Multicore Software”. In: 2010 31st IEEE Real-Time
Systems Symposium. 2010, pp. 339–349.

[Mar63] George Marsaglia. “Generating discrete random variables in a computer”.
In: Communications of the ACM 6.1 (1963), pp. 37–38.

[MG13] Avinash Malik and David Gregg. “Orchestrating Stream Graphs Using
Model Checking”. In: ACM Trans. Archit. Code Optim. 10.3 (Sept.
2013), 19:1–19:25. issn: 1544-3566. doi: 10.1145/2512435. url:
http://doi.acm.org/10.1145/2512435.

[Mir] MirabilisDesign. www.mirabilisdesign.com.
[NLQ16] Van Chan Ngo, A. Legay, and J. Quilbeuf. “Statistical Model Checking

for SystemC Models”. In: 2016 IEEE 17th International Symposium on
High Assurance Systems Engineering (2016), pp. 197–204.

[Nou+14a] A. Nouri et al. “Building faithful high-level models and performance
evaluation of manycore embedded systems”. In: ACM/IEEE International
conference on Formal methods and models for codesign. 2014.

[Nou+14b] Ayoub Nouri et al. “Statistical model checking QoS properties of systems
with SBIP”. In: International Journal on Software Tools for Technology
Transfer 17.2 (2014), pp. 171–185.

[NWY99] Christer Norstrom, Anders Wall, and Wang Yi. “Timed automata as task
models for event-driven systems”. In: Real-Time Computing Systems and

https://doi.org/10.1145/2914788
http://doi.acm.org/10.1145/2914788
https://doi.org/10.1145/2512435
http://doi.acm.org/10.1145/2512435

REFERENCES 89

Applications, 1999. RTCSA’99. Sixth International Conference. IEEE,
1999, pp. 182–189.

[OMG17] Object Management Group (OMG). OMG Unified Modeling Language
(OMG UML). Dec. 2017.

[Par62] Emanuel Parzen. “On Estimation of a Probability Density Function and
Mode”. In: Ann. Math. Statist. 33.3 (Sept. 1962), pp. 1065–1076. doi:
10.1214/aoms/1177704472. url: https://doi.org/10.1214/
aoms/1177704472.

[Per+09] Simon Perathoner et al. “Influence of Different Abstractions on the
Performance Analysis of Distributed Hard Real-time Systems”. In: Des.
Autom. Embedded Syst. 13.1-2 (June 2009), pp. 27–49. issn: 0929-5585.
doi: 10.1007/s10617-008-9015-1. url: http://dx.doi.org/10.
1007/s10617-008-9015-1.

[Ros56] Murray Rosenblatt. “Remarks on Some Nonparametric Estimates of a
Density Function”. In: Ann. Math. Statist. 27.3 (Sept. 1956), pp. 832–
837. doi: 10.1214/aoms/1177728190. url: https://doi.org/10.
1214/aoms/1177728190.

[SFS17] Christof Schlaak, Maher Fakih, and Ralf Stemmer. “Power and Execution
Time Measurement Methodology for SDF Applications on FPGA-based
MPSoCs”. In: arXiv preprint arXiv:1701.03709 (2017).

[Ske+15] Mladen Skelin et al. “Model checking of finite-state machine-based
scenario-aware dataflow using timed automata”. In: Industrial Embedded
Systems (SIES), 2015 10th IEEE International Symposium on. IEEE, 2015,
pp. 1–10.

[Sob14] Irwin Sobel. “An Isotropic 3x3 Image Gradient Operator”. In: Presentation
at Stanford A.I. Project 1968 (Feb. 2014).

[Spa] SpaceCoDesign. www.spacecodesign.com.
[Ste+17] Ralf Stemmer et al. “Towards State-Based RT Analysis of FSM-SADFGs

on MPSoCs with Shared Memory Communication”. In: Proceedings
of the 9th Workshop on Rapid Simulation and Performance Evaluation:
Methods and Tools. ACM. Jan. 2017, p. 6.

[Ste+19a] Ralf Stemmer et al. “Experimental Evaluation of Probabilistic Execution-
Time Modeling and Analysis Methods for SDF Applications on MPSoCs”.
In: 2019 International Conference on Embedded Computer Systems:
Architectures, Modeling, and Simulation (SAMOS). Springer. July 2019,
pp. 241–254.

[Ste+19b] Ralf Stemmer et al. Feasibility Study of Probabilistic Timing Analysis
Methods for SDF Applications on Multi-Core Processors. Research
Report. IETR ; OFFIS, Mar. 2019. url: https://hal.archives-
ouvertes.fr/hal-02071362.

[Ste+19c] Ralf Stemmer et al. “Probabilistic State-Based RT-Analysis of SDFGs
on MPSoCs with Shared Memory Communication”. In: 2019 Design,

https://doi.org/10.1214/aoms/1177704472
https://doi.org/10.1214/aoms/1177704472
https://doi.org/10.1214/aoms/1177704472
https://doi.org/10.1007/s10617-008-9015-1
http://dx.doi.org/10.1007/s10617-008-9015-1
http://dx.doi.org/10.1007/s10617-008-9015-1
https://doi.org/10.1214/aoms/1177728190
https://doi.org/10.1214/aoms/1177728190
https://doi.org/10.1214/aoms/1177728190
https://hal.archives-ouvertes.fr/hal-02071362
https://hal.archives-ouvertes.fr/hal-02071362

REFERENCES 90

Automation & Test in Europe Conference & Exhibition (DATE). Mar.
2019.

[Ste+20] Ralf Stemmer et al. “Towards probabilistic timing analysis for SDFGs
on tile based heterogeneous MPSoCs”. In: 10th European Congress on
Embedded Real Time Software and Systems (ERTS 2020). 2020, paper–59.

[Ste+21] Ralf Stemmer et al. “A Measurement-Based Message-Level Timing
Prediction Approach for Data-Dependent SDFGs on Tile-Based Hetero-
geneous MPSoCs”. In: Applied Sciences 11.14 (2021), p. 6649.

[Stu+08] Sander Stuijk et al. “FSM-based SADF”. In: Technical report, Eindhoven
University of Technology, Department of Electrical Engineering (2008).

[Stu07] Sander Stuijk. Predictable mapping of streaming applications on multi-
processors. 2007.

[Tra] TraceAnalyzer. http://www.symtavision.com/products/symtastraceanalyzer/.
[TS15] Rajesh Kumar Thakur and Y. N. Srikant. Efficient Compilation of Stream

Programs for Heterogeneous Architectures: A Model-Checking based
approach. Tech. rep. IISc-CSA-TR-2015-2. Indian Institute of Science,
India, 2015. url: http://www.csa.iisc.ernet.in/TR/2015/2/
TechReport2015.pdf.

[TT93] International Telegraph and The Telephone Consultative Committee.
“ITU-T Recommendation T. 81”. In: (1993).

[Vir+20] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python”. In: Nature Methods 17 (2020), pp. 261–272. doi:
10.1038/s41592-019-0686-2.

[VJ94] CCITT Study Group VIII and the Joint Photographic Experts Group.
Information technology – Digital compression and coding of continuous-
tone still images: Requirements and guidelines. Standard. International
Organization for Standardization, Feb. 1994.

[Vu+21] Hai-Dang Vu et al. “A Fast Yet Accurate Message-level Communication
Bus Model for Timing Prediction of SDFGs on MPSoC”. In: Asia and
South Pacific Design Automation Conference ASP-DAC 2021 (Virtual
Conference). 2021, p. 1183.

[Vu21] Hai Dang Vu. “Fast and Accurate Performance Models for Probabilistic
Timing Analysis of SDFGs on MPSoCs”. PhD thesis. Universite de
Nantes, 2021.

[Wil+10] Reinhard Wilhelm et al. “Static Timing Analysis for Hard Real-Time
Systems”. In: Verification, Model Checking, and Abstract Interpretation:
11th International Conference, VMCAI 2010, Madrid, Spain, January 17-
19, 2010. Proceedings. Ed. by Gilles Barthe and Manuel Hermenegildo.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 3–22. isbn:
978-3-642-11319-2. doi: 10.1007/978-3-642-11319-2_3. url:
https://doi.org/10.1007/978-3-642-11319-2_3.

http://www.csa.iisc.ernet.in/TR/2015/2/TechReport2015.pdf
http://www.csa.iisc.ernet.in/TR/2015/2/TechReport2015.pdf
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1007/978-3-642-11319-2_3
https://doi.org/10.1007/978-3-642-11319-2_3

REFERENCES 91

[Xil21] Xilinx. MicroBlaze Processor Reference Guide. UG984 (v2021.2). Infi-
neon Technologies AG. Oct. 2021.

[Yan+10] Yang Yang et al. “Automated bottleneck-driven design-space exploration
of media processing systems”. In: Proceedings of the Conference on
Design, Automation and Test in Europe. DATE ’10. Dresden, Germany:
European Design and Automation Association, 2010, pp. 1041–1046.

[Zha11] W. Zhang. “Bounding Worst-Case Performance for Multi-Core Processors
with Shared L2 Instruction Caches”. In: Journal of Computing Science
and Engineering 5.1 (2011), pp. 1–18.

[Zhu+15] Xue-Yang Zhu et al. “Static Optimal Scheduling for Synchronous Data
Flow Graphs with Model Checking”. In: FM 2015: Formal Methods.
Springer, 2015, pp. 551–569. url: http://link.springer.com/
chapter/10.1007/978-3-319-19249-9_34.

http://link.springer.com/chapter/10.1007/978-3-319-19249-9_34
http://link.springer.com/chapter/10.1007/978-3-319-19249-9_34

	Introduction
	Motivation
	Research Questions
	Contributions
	Prior Publications
	Work Flow
	Structure

	Related Work
	Overview of Analysis Approaches
	Simulation Based Approaches
	Formal Approaches
	Hybrid Probabilistic Methods
	Execution Time Estimation

	Software, Hardware and Delay Models
	Model of Computation
	Buffers
	Actors
	Ports
	Channels

	Model of Architecture
	Execution Platform
	Tile
	Processing Element
	Memory
	Interconnect

	Delay Model
	Delay
	Modeling Delay Occurrence Probability
	Delay Distribution Inference
	Computation Delay Set

	Communication Delay Models
	Cycle Accurate Model
	Transaction Level Model
	Message Level Model

	System Model
	Mapping
	Scheduling

	Characterization and Analysis Approach
	Delay Measurement Infrastructure
	Measuring Pipelined Execution
	Proposed Measurement Infrastructure
	Verification of Delay Measurement Infrastructure

	Characterization
	Computation Delay Distribution
	Abstract Communication Delay
	Elementary Communication Delays

	Simulation
	SystemC TLM Interface
	SDF Application
	Delay Vector
	Monitor
	MoC Implementation
	MoA Implementation
	Simulation Configuration

	Work Flow

	Models and Simulation Evaluation
	Evaluation Setup
	Sobel Filter
	JPEG Decoder
	Evaluation Platform

	Evaluation Concept
	Experiment Execution and Functional Verification
	Computation Model Evaluation
	Experiment Setup
	Experiment Results
	Discussion

	Communication Model Evaluation
	Experiment Setup
	Experiment Results
	Discussion

	Simulation Time Evaluation
	Experiment Setup
	Experiment Results
	Discussion

	Discussion
	Conclusion
	Future Work
	References
	References

