
Fakultät II – Informatik, Wirtschafts- und Rechtswissenschaften

Department für Informatik

Decomposition of Stability Proofs for
Hybrid Systems

Dissertation zur Erlangung des Grades eines Doktors der Ingenieurwissenschaften
(Dr.-Ing.)

vorgelegt von

Jens Oehlerking

Gutachter:

Prof. Dr.-Ing. Oliver Theel

Prof. Dr. Martin Fränzle

Datum der Verteidigung: 16.12.2011

First, I would like to thank the people from my group, the System Software and
Distributed Systems Group of the University of Oldenburg, for providing me with a
friendly and supportive work environment, and for spirited discussions. I’d also like
to thank the members of the Networking and Telecommunications and Environmental
Informatics groups for lunch time talk, cake, and crazy movies.

This thesis would not have been possible without the people within the AVACS re-
search center. Dear colleagues in Oldenburg, Saarbrücken, Freiburg, and Prague, I am
grateful for the inspiration and constructive feedback you provided during our regular
meetings. Also, I would like to mention Robert Rucker, who programmed the hybrid
system simulation engine that helped me create some of the images in this thesis.

The best thing about being young

is not knowing how stupid you are.

The worst thing about growing old

is forgetting how stupid you were

when you were young.

N. Senada

iii

Abstract

The verification of hybrid systems, encompassing both discrete-time and continuous-
time behavior, is a problem of rising importance. Hybrid behavior occurs wherever a
digital system, operating in discrete time, interacts with a real-world environment, which
evolves in continuous time. One desired property of hybrid systems is global asymptotic
stability. A globally asymptotically stable system converges toward a pre-defined target
state from everywhere in the state space. This property guarantees that the system is
robust to temporary external disturbances, correcting their effects on its own accord.
Stability proofs are usually conducted with the help of so-called Lyapunov functions,
which act as generalized energy functions of the system. A Lyapunov function maps each
of the possible system states onto an energy value, such that the energy decreases as the
system evolves. The existence of such a function serves as a proof of global asymptotic
stability. Furthermore, numerical methods for the computation of such functions exist,
allowing for automated stability verification. While these methods work well for small-
scale systems, they do, however, not scale up well to systems with large discrete state
spaces that appear in many real-world applications. Therefore, it is desirable to conduct
these computations in a decompositional manner, solving many small-scale problems
instead of one large-scale problem.

This thesis bridges this gap by introducing an automatable decomposition methodol-
ogy that works on hybrid automaton models. A hybrid automaton is viewed as a graph
and decomposed into sub-components, for which Lyapunov function computation are
conducted individually. The results of these computations are then combined to yield a
stability proof for the entire system. These local proofs are not only more lightweight
than the larger (and possibly intractable) standard proof, but also allow for the local-
ization of the problem if the computation fails, and the compositional construction of
complex stable hybrid automata. The decomposition takes place on two levels: strongly
connected components and cycles of the automaton. Our results prove that strongly
connected components can be analyzed completely separately. For the cycle-based sec-
ond level, properties of Lyapunov functions are exploited to combine local proofs into a
global proof.

Furthermore, the results are extended to the domain of probabilistic hybrid automata,
which are a combination of hybrid systems and Markov processes. The decomposition
results in this thesis are generalized to this setting, to allow for automatable decompo-
sitional stability proofs for probabilistic systems. For both non-probabilistic and prob-
abilistic systems, the decompositional approach is also exploited to yield a set of rules
for the structured construction of stable hybrid systems with complex discrete behavior.
Furthermore, we derive a general method for the hierarchical component-based design
of stabilizing hybrid controllers for a given plant, building on the decomposition results.

v

Kurzzusammenfassung

Die Verifikation hybrider Systeme mit sowohl zeitdiskretem als auch zeitkontinuierlichem
Verhalten ist ein Problem mit wachsender Bedeutung. Hybrides Verhalten tritt immer
dann auf, wenn ein digitales System mit einer sich zeitkontinuierlich entwickelnden realen
Umgebung interagiert. Eine wünschenswerte Eigenschaft hybrider Systeme ist globale
asymptotische Stabilität. Ein global asymptotisch stabiles System konvergiert von je-
dem Zustand im seinem Zustandsraum zu einem vordefinierten Zielzustand, womit das
System in der Lage ist, die Effekte vorübergehender externer Störungen selbstständig zu
korrigieren. Stabilitätsbeweise werden üblicherweise mittels so genannter Ljapunowfunk-
tionen durchgeführt, die als eine generalisierte Energiefunktion des Systems fungieren.
Eine Ljapunowfunktion bildet jeden möglichen Systemzustand auf einen Energiewert
ab, so dass der Energiewert entlang der Systemläufe des Systems monoton sinkt, und
die Existenz solche einer Funktion beweist globale asymptotische Stabilität. Des Weit-
eren existieren numerische Methoden, um solche Funktionen zu berechnen. Hiermit
wird die automatische Verifikation der Stabilität hybrider Systeme ermöglicht. Diese
Methoden funktionieren zwar zuverlässig auf kleinen Systemen, die Skalierbarkeit auf
Systeme realistischer Größe ist aber in der Regel nicht gegeben. Aus diesem Grund
ist es wünschensert, Stabilitätsverifikation dekompositionell durchzuführen, so dass das
Lösen mehrerer kleiner Verifikationsprobleme an die Stelle des Lösens eines großen Ver-
ifikationsproblems treten kann.

Diese Arbeit schließt diese Lücke durch ein automatisierbares Dekompositionsver-
fahren auf hybriden Automaten, in dem die Automaten als Graphen aufgefasst und
zerlegt werden. Auf den resultierenden Teilautomaten können dann die notwendigen
Berechnungen einzeln durchgeführt werden, deren Resultate dann wieder zu einen Be-
weis der Stabilität des Gesamtsystems zusammengefügt werden können. Diese lokalen
Berechnungen sind nicht nur einfacher handhabbar als der Standardbeweis, sondern er-
lauben auch eine Fehlerdiagnose, falls der Beweis fehlschlägt, und den kompositionellen
Entwurf komplexer stabiler Automaten. Die Dekomposition findet auf zwei Ebenen
statt: starke Zusammenhangskomponenten und Zyklen. Die Ergebnisse dieser Arbeit
zeigen, dass starke Zusammenhangskomponenten vollständig unabhängig voneinander
betrachtet werden können, während auf der Zyklenebene Eigenschaften von Ljapunow-
funktionen für den Beweis genutzt werden können.

Des Weiteren werden die Ergebnisse generalisiert für probabilistische hybride Auto-
maten, eine Kombination aus hybriden Automaten und Markowprozessen. Die Dekom-
position wird auf diese Systemklasse übertragen, so dass automatische, dekomposi-
tionelle Stabilitätsbeweise auch für diese Systemklasse möglich werden. Sowohl für
nicht-probabilistische als auch für probabilistische Systeme wird der Dekomposition-
sansatz zudem ausgenutzt, um eine Menge an Regeln für den strukturierten Entwurf
stabiler hybrider System aufzustellen. Zudem wird hieraus ein Verfahren abgeleitet,
welches den hierarchischen, komponentenbasierten Entwurf stabiler hybrider Regler für
eine gegebene Regelstrecke ermöglicht.

vii

Contents

1 Introduction 1

1.1 Stability Verification of Hybrid Systems 4

1.2 Contribution of this Thesis . 8

1.3 Thesis Outline . 12

2 Stability Verification of Hybrid Systems – The State of the Art 13

2.1 Hybrid System Models . 13

2.2 Stability Properties . 16

2.2.1 Lyapunov Stability Properties . 16

2.2.2 Generalized Stability Properties 18

2.2.3 Stochastic Stability Properties . 19

2.3 Lyapunov Functions . 19

2.3.1 Lyapunov Theorems . 20

2.3.2 Automatic Computation of Lyapunov Functions 22

2.3.3 Identification of Stabilizing Controllers 23

2.3.4 Lyapunov Functions as Barrier Certificates 24

2.4 Other Methods for Stability Proofs . 24

2.5 Decompositional Verification and Compositional Design 25

3 Lyapunov Function Computation for Hybrid Systems 27

3.1 Notation . 27

3.2 Modeling Hybrid Systems . 29

3.2.1 Solutions to Differential Inclusions 29

3.2.2 Hybrid Automata . 33

3.3 Global Asymptotic Stability and Lyapunov Functions 39

3.3.1 Global Asymptotic Stability . 39

3.3.2 Lyapunov Functions . 42

3.4 Lyapunov Functions as Barrier Certificates 51

3.5 Computing Lyapunov Functions . 53

3.5.1 Linear Matrix Inequalities . 54

3.5.2 LMIs for Stability Proofs . 55

3.5.3 The Sums-of-squares Decomposition 61

3.5.4 Estimating Convergence Times . 62

3.6 Numerical Solution of LMI Problems . 64

3.6.1 Available Software . 65

3.6.2 Brief Outline of Semidefinite Programming Algorithms 65

ix

Contents

3.6.3 Numerical Issues . 67
3.6.4 Checking SDP Results . 69

3.7 Example . 70
3.8 Summary . 74

4 Decompositional Stability Analysis 77
4.1 Decomposing Hybrid Automata . 78
4.2 Graph Structures . 81
4.3 Decomposition of Stability Proofs into Strongly Connected Components . 88
4.4 Decomposition within Strongly Connected Components 97
4.5 Lyapunov Functions for Single Cycles . 118

4.5.1 Local Constraint Systems as LMIs 119
4.5.2 Continuous versus Discontinuous Lyapunov Functions 121
4.5.3 Common versus Piecewise Lyapunov Functions 125
4.5.4 Reachability Analysis within Cycles 126

4.6 Cruise Control Example . 128
4.7 Refining the Border Node Predicates . 141

4.7.1 Approximation Refinement for Two Intersecting Cycles 143
4.7.2 Approximation Refinement for Strongly Connected Components . 151

4.8 Summary . 154

5 Stability Analysis of Stochastic Hybrid Systems 157
5.1 Probabilistic Hybrid Automata and Stochastic Stability 157
5.2 Lyapunov Functions for Probabilistic Systems 162
5.3 Decomposition Techniques . 168

5.3.1 Decomposition of Probabilistic Hybrid Automata into Strongly
Connected Components . 171

5.3.2 Decomposition of Probabilistic Hybrid Automata into Simple Cy-
cles . 173

5.3.3 MDP-based Decomposition of Probabilistic Hybrid Automata within
Strongly Connected Components 175

5.4 Summary . 177

6 Structured Design of Stable Systems 179
6.1 Stability-preserving Transformations of Hybrid Automata 179
6.2 Component Based Design of Stable Hybrid Automata 187

6.2.1 Plants and Components . 188
6.2.2 Stability Proofs via Lyapunov Function Projections 193

6.3 Summary . 197

7 Conclusion and Future Work 199
7.1 Conclusion . 199
7.2 Future Work . 204

x

1 Introduction

This thesis tackles a particularly difficult problem in the field of automatic verification,
namely global asymptotic stability proofs of hybrid systems. Consider a classic control
loop setup as given in Figure 1.1. This loop consists of a plant, which should be driven
toward a desired value, and a controller communicating with the plant through sensors
and actuators. The desired value, the set point, is selected externally. For instance, the
controller could represent a heating system controlling the temperature of a room via
some heating and cooling devices. In this example, the plant is a model of the room, and
the controller measures and influences its temperature, while the set point is the desired
temperature which is set by the (human) operator of the system. Additionally, external
disturbances might influence the plant. Whenever such an external disturbance occurs,
perturbing the room temperature, we now expect the controller to steer the temperature
back to this set point after the disturbance has ceased. Furthermore, we expect this to
happen in an acceptable time frame and also expect there is no significant overshoot or
undershoot in temperature. Also, when the operator changes the set point, we require
the temperature to converge toward this new value.

Plant

Controller

Actuator
Settings

Sensor
Readings

External
Disturbances

Set
Point

Figure 1.1: Classic Control Setup

In control theory, convergence to the set point is guaranteed by the system property
called asymptotic stability. The property is defined with respect to a so-called equilibrium
point, which in our example is the set point. Asymptotic stability implies converges to
the equilibrium point in the absence of external disturbances. This is a property of the
system as a whole, including both the plant and the controller, the closed-loop system.
Figure 1.2(a) shows such a convergent trajectory, and Figure 1.2(b) shows a divergent
trajectory of an unstable system. For a globally asymptotically stable system, we require

1

1 Introduction

that all trajectories of the system are of the type shown in Figure 1.2(a). Divergent, as
well as oscillating trajectories must not exist in such a system. Here, the word “global”
implies that this property holds for all initial states. The initial states can, for instance,
be interpreted as the state after an external disturbance has perturbed the system or
after a new set point has been chosen. In contrast, the property local asymptotic stability
only guarantees such a behavior for some parts of the state space, which are often called
regions of attraction. To make local stability properties useful in practice, the region of
attraction must be sufficiently large.

equilibrium

(a) trajectory of a globally asymptotically
stable system

equilibrium

(b) trajectory of an unstable (divergent)
system

Figure 1.2: Trajectories of Stable and Unstable Systems

The simplest form of asymptotically stable temperature control loop is given by the
differential equation Ṫ = −cT , where T is the difference between the actual room tem-
perature and the set point, and where c is a positive constant describing the convergence
rate. This system will simply exponentially converge toward T = 0 for any initial state,
as x(t) = x(0)e−ct is the solution of the differential equation. This means that the room
temperature will always converge back to the set point, from any initial state. Therefore,
the system described by this differential equation is globally asymptotically stable.

Of course, closed-loop models of real systems usually contain several variables which
may interact in complex ways, making the analysis of this stability property much more
complicated. For instance, a proportional-integral temperature controller could contain
an additional internal variable x modeling the integral part, leading to a control loop
described by the differential equations Ṫ = −c1T − c2x and ẋ = T , for some positive
constants c1 and c2. For this system, some (basic) knowledge of control theory is required
to decide whether it is stable for given constants c1 and c2. This type of controller can
also consider the history of the temperature T via the integrator variable x. Example
trajectories of such a system with c1 = 0.1 and c2 = 0.005 are given in Figure 1.3.

Since global asymptotic stability

• implies that any transient external disturbance on the system variables is eventu-
ally compensated,

2

0 10 20 30 40 50
−2

−1

0

1

2

3

4

5

t

T
(t

)

(a) temperature vs. time

−2 −1 0 1 2 3 4 5
−20

−10

0

10

20

30

40

T

x

(b) temperature vs. integrator variable

Figure 1.3: Example Trajectories for the Proportional-integral Temperature Controller

• guarantees that, upon changing the set point of a system, the new set point is
tracked properly with the system state converging towards it, and

• lends itself well to some very efficient analysis methods,

it is a central property of a control loop which is of great interest in the control commu-
nity.

Clearly, asymptotic stability entails a conjunction of liveness properties: for any radius
around the set point, we then know that the system state will eventually stay within
this radius, if the system behaves as modeled. Since liveness properties imply “that
something good eventually happens,” and not necessarily with a bound on the overall
time, they are inherently more difficult to prove than safety properties (i.e., properties
implying that “something bad never happens”). This additional difficulty stems from
the fact that one must ensure that there is a continuing progress in the system’s behavior
towards the goal (in our case, towards the equilibrium). How this progress is defined
depends very much on the system itself. For instance, as indicated in Figure 1.3, the
proportional-integral temperature controller can slightly overshoot the set point, so that
the temperature might temporarily move away from the equilibrium. Thus, it is not
sufficient to simply measure progress by the Euclidean distance to the set point. For
safety properties, on the other hand, it is sufficient to prove that an action leading to
something bad is forbidden at all times. Therefore, traditional verification approaches for
discrete systems (e.g., model checking) generally have greater difficulties solving liveness
problems than safety problems.

Another degree of difficulty in the problems addressed in this thesis stems from the
class of systems that is considered. Hybrid systems are systems which operate on a
continuous time line, but can exhibit both continuous evolution of some variables (usually
given by ordinary differential equations or inclusions), as well as discrete updates of some
variables. Such system models occur in fields like embedded system design, industrial
automation, networked control, or biological systems, as well as many other application
scenarios. For instance, a digital autopilot system has to interact with a continuously

3

1 Introduction

changing environment, and software controlling chemical processes has to deal with
chemical reactions happening in real time. Historically, the analysis of continuous-time
behavior lies within the domain of applied mathematics and control theory, while the
models for discrete behavior usually stem from computer science. Hybrid systems lie on
the boundary between these two worlds, combining continuous evolution of the system
state with discrete events representing different modes of operation and logic based
decision making.

The discrete behavior often takes the form of discrete switches between different con-
trol strategies. For instance, the temperature controller could implement “emergency
behavior” for very high or very low temperatures. When one of these emergency sit-
uations occurs, then the controller would switch to a different differential equation for
controlling the continuous variables, in this case the temperature.

One powerful hybrid system model consists of an augmented finite automaton, whose
discrete states (also called modes) describe the discrete part of the hybrid system. Each
discrete state is then mapped onto a differential equation (or inclusion), describing the
evolution of the system’s continuous variables while the system is in this particular dis-
crete state, and optionally some invariant constraints that must hold while the automa-
ton is in this discrete state. Discrete events are modeled as transitions from one discrete
state to another one, and can be triggered by guard conditions which may fire if the
continuous variables take a certain value (e.g., the temperature controller switches if the
room temperature becomes too high), random experiments (i.e., probabilistic switches)
or even completely non-deterministically (i.e., discrete events are seen as outside in-
fluences that can occur unpredictably). The guard conditions are often interpreted as
“lazy,” that is, if a guard becomes true the corresponding transition can be taken, but
taking them is not required unless the current invariant condition is also violated. This
model class is called hybrid automaton [Alur et al., 1993]. More elaborate variants of
hybrid automata also allow for probabilistic transitions, which can be used to represent
discrete random events influencing the system, leading to probabilistic hybrid automaton
models.

Figure 1.4 gives an example of a hybrid temperature control loop. It is given as a
hybrid automaton. The three nodes describe three modes of operation, from left to
right: a heating mode increasing the temperature with a constant rate of four (active for
low temperatures T ≤ −10), a mode capable of both heating and cooling with a linear
factor c = 0.4 (active for temperatures −10 ≤ T ≤ 10), and a cooling mode decreasing
the temperature with rate four (active for high temperatures T ≥ 10). The arrows
model the possible transitions between the modes and are labeled with guard conditions
enabling the transitions. The arrows going into the states from below denote possible
initial states of the system.

1.1 Stability Verification of Hybrid Systems

One important challenge is the verification of such systems — the formal proof of prop-
erties of a given model of a hybrid system. For hybrid system models, verification

4

1.1 Stability Verification of Hybrid Systems

Ṫ = 4
T ≤ −10

Ṫ = −0.4T
−10 ≤ T ≤ 10

Ṫ = −4
T ≥ 10

T ≥ −10

T ≤ −10

T ≥ 10

T ≤ 10

T ≤ −10 −10 ≤ T ≤ 10 T ≥ 10

Figure 1.4: Hybrid Temperature Control Loop

approaches need to combine the knowledge of both worlds: Methods for discrete ver-
ification (for instance, model checking) must be augmented with methods for treating
the continuous parts of the system, while methods from control engineering and calculus
(e.g., solution concepts for differential equations, Lyapunov functions, frequency space
analysis) need to be modified to allow for logic-based discrete switches.

In general, asymptotic stability properties for hybrid systems are undecidable, even for
very simple classes of hybrid systems, for example linear systems with saturation [Blondel
& Tsitsiklis, 1999, 2000; Blondel et al., 2001b]. Direct methods of proving stability bear
little promise, since one would need to prove a liveness property on uncountably many
unboundedly long system trajectories. Therefore, the most widely taken approach is
indirect: instead of verifying convergence of every single system trajectory, a state-based
approach is used. For every state the system can enter (consisting both of a continuous
and a discrete part), a function measuring an “energy value” of a state is computed,
such that it always indicates progress.

These functions are termed Lyapunov functions [Lyapunov, 1907] (see Figure 1.5 for an
illustration) and are a well known tool from control theory, originally used for stability
proofs for purely continuous or purely discrete systems. Lyapunov functions can be
pictured as a kind abstract “energy function” of the hybrid system. If global asymptotic
stability is to be shown, this function must be chosen such that

• the only energy minimum is at the equilibrium point,

• the energy is strictly decreasing along all trajectories everywhere except at the
equilibrium, and

• the energy grows unboundedly with growing distance from the equilibrium.

The existence of such a function implies global asymptotic stability of the system.
Classic control theoretic results typically use only a single such function for the entire
state space of a system. Therefore, the entire behavior of a system is abstracted away
by a single function of this type, whose existence serves as a proof of global asymptotic

5

1 Introduction

Figure 1.5: Quadratic Lyapunov Function and Convergent Trajectory

stability. Lyapunov functions can be seen as a generalization of similar concepts from
the computer science community for proving liveness conditions, for example ranking
functions, variant functions or termination functions.

For some classes of systems, it is possible to automatically identify such Lyapunov
functions, thus conducting a proof of global asymptotic stability. For instance, for a
single linear differential equation, this requires the solution of a system of linear equa-
tions, the Lyapunov equation. In this case the Lyapunov function is quadratic. For more
complex systems, this process becomes increasingly difficult. A parametrized Lyapunov
function template can be devised, with a number of free parameters. Finding adequate
valuations for these parameters such that a Lyapunov function is obtained can then be
viewed as a constraint system which must be solved. However, since automatic methods
are not widely in use, the identification of a suitable function is still often left to the
intuition of the engineer.

With the increased interest in hybrid systems in the 1990s, there were efforts to trans-
port these results, which were originally conceived for purely continuous systems, to the
hybrid domain [Branicky, 1998; Johansson & Rantzer, 1998; Pettersson, 1999; Hafstein,
2004; Lazar & Jokić, 2010]. The approach of employing a single Lyapunov function is
not always suitable for the hybrid case. Especially if the dynamics in different modes of
operation are radically different, one might not succeed in identifying a single closed-form
Lyapunov function. This lead to the idea of employing multiple Lyapunov functions of a
chosen parametric form for different modes of operation or different parts of the contin-
uous state space [Branicky, 1998]. For instance, for a temperature controller, the control
strategies for normal and emergency operation could be different enough such that there
might be no closed-form Lyapunov function which can be derived from a template.

As it turned out, this multiple Lyapunov function approach results in a constraint sys-

6

1.1 Stability Verification of Hybrid Systems

tem that can still be solved relatively efficiently. One method for the computation of such
function results in constraint systems which can be viewed as special class of non-linear,
convex optimization problems, namely semidefinite programming (SDP) problems [Jo-
hansson & Rantzer, 1998; Pettersson, 1999; Parrilo, 2003; Prajna & Papachristodoulou,
2003]. To compute a Lyapunov function in this manner, a parametrized function tem-
plate is devised by hand (typically piecewise quadratic or piecewise polynomial), and
the free parameters in the function are automatically filled with valid values by numer-
ical software. In the hybrid case, more than one local Lyapunov function can be used
(usually one per discrete mode, although sometimes even more are necessary), as long
as certain additional conditions amongst the functions are satisfied. The problem can
then be reduced to a non-linear but convex optimization problem that can be solved
efficiently for small-to-medium sized problems.

The limited use of the semidefinite programming based approach in verification soft-
ware is at least partly caused by the following facts:

• There is a significant increase in complexity with respect to the size of the hybrid
model. The problem size grows linearly with the number of modes of operation
and the number of possible mode transitions, leading to high-degree polynomial
blowup in computation time.

• The numerical software can only provide approximate solutions, which in any case
need to be checked by verifying that all constraints are actually satisfied (via
eigenvalue computation) before they can be assumed to be correct. This is possible
in an automated manner, but it requires extra effort.

• Numerical instability is a problem, since large-scale hybrid systems with complex
discrete behavior have a tendency to produce poorly conditioned optimization
problems, such that existing solutions are not necessarily found.

Nevertheless, these methods work very well for hybrid automata with simple discrete,
but possibly complex continuous behavior.

Other Lyapunov methods are, for instance, based on linear optimization [Hafstein,
2004; Lazar & Jokić, 2010]. In this case, increased numerical stability is traded for a de-
crease in flexibility for the Lyapunov functions, which are usually restricted to piecewise
linear functions. Therefore, these methods often require a relatively fine-grained parti-
tioning of the state space. This somewhat limits the applicability to higher-dimensional
state spaces, as the number of partitions can be expected to grow exponentially with
the number of continuous variables. On the other hand, convex optimization-based ap-
proaches like semidefinite programming can often avoid this blowup because only coarser
partitionings (or no partitionings at all) are needed, exploiting the larger search space
for the functions.

Since it is difficult to prove asymptotic stability of a control loop, it is also difficult to
design hybrid controllers maintaining this property. This is caused by the fact that local
arguments cannot be easily combined into global arguments for asymptotic stability.
Adding new modes of operation to an existing hybrid controller can easily break the

7

1 Introduction

stability property, and one needs to examine the interaction between the old controller
and the new mode of operation to come to a conclusion about the stability of the resulting
system. Since the SDP-based methods can only be used to prove asymptotic stability
of a system as a whole, they are not particularly useful during such a design process.
Ideally, one would want to have conditions on the original hybrid system and on the
newly added mode of operation which are sufficient for stability of the composed system
and able to actually prove stability for a large class of systems.

1.2 Contribution of this Thesis

This thesis focuses on stability proofs for hybrid systems via semidefinite programming
based methods, striving to

• make the Lyapunov function computation methods more tractable in practice, and

• allowing the structured design of stable hybrid systems.

This is achieved by exploitation of the discrete structures of the system, resulting in the
possibility of

• decomposition of large, possibly intractable proofs into several smaller, tractable
sub-proofs,

• composition and transformation rules on hybrid systems such that the resulting
systems are provably stable, and

• hierarchical, component based design of stable hybrid controllers.

While semidefinite programming is used as a method of choice for Lyapunov function
computation in the scope of this thesis, the results are however general in the sense that
they can be applied to any alternative method yielding Lyapunov functions for hybrid
systems.

The decomposition takes place on two levels. First, a hybrid automaton can be de-
composed into its strongly connected components, which can be treated completely sep-
arately. These separate sub-proofs per component still yield an overall proof of global
asymptotic stability on the entire system. Figure 1.6 shows a hybrid automaton that
is decomposed into its strongly connected components, as indicated by the dashed red
lines.

The second level of decomposition then takes place within the strongly connected com-
ponents. Refer to Figure 1.7 as an example of a hybrid automaton which is decomposed
into a number of cyclic sub-components, with the “slicing” being indicated by the dashed
lines. The discrete states which are bisected by these lines act as the connection points
between the different sub-components. In this case, the sub-components are cycles of
the automaton. Cycles are a convenient choice for the sub-components as then no fixed
point computations are needed for the decomposition. Using the decomposition theo-
rems in this thesis, these cycles each result in separate constraint systems, which can

8

1.2 Contribution of this Thesis

v̇ = −0.1v
−15 ≤ v ≤ 15

v̇ = −2.5
5 ≤ v ≤ 30

N1 B1
13 ≤ v ≤ 15

5 ≤ v ≤ 11

v̇ = −0.1v
−15 ≤ v ≤ 15

v̇ = −2.2
5 ≤ v ≤ 30

N2 B2
13 ≤ v ≤ 15

5 ≤ v ≤ 11

v̇ = −0.1v
−15 ≤ v ≤ 15

v̇ = −1.9
5 ≤ v ≤ 30

13 ≤ v ≤ 15 5 ≤ v ≤ 11

N3 B3
13 ≤ v ≤ 15

5 ≤ v ≤ 11

true

true

true

true

Figure 1.6: Decomposition of a Hybrid Automaton into Strongly Connected Components

be solved one by one. However, in this case, some information from previous per-cycle
computation needs to be taken into account for its neighbor cycles, in order to arrive at
an overall stability proof. This information takes the shape of Lyapunov function sets for
the intersection nodes which are used to guarantee “compatibility” of the computations
for the different cycles.

These two levels of decomposition are also applied to probabilistic hybrid automata,
which is possible in a relatively straightforward manner. The property shown in this case
is essentially a form of “stability with probability one” that allows for non-convergent
trajectories as long as their probability mass is zero. For this class of systems, a third level
of decomposition is possible, based on abstracting the probabilistic hybrid automaton
into a Markov decision process.

We then also utilize the core decompositional arguments to formulate rules for the
composition and modification of globally asymptotically stable hybrid automata, such
that the stability property is maintained. Taking the compositionality paradigm one
step further, we also outline how this type of composition can be employed for library-
based design of hybrid controllers stabilizing a given plant. This approach allows for
component-based hierarchical construction of controllers. For each component, infor-
mation hiding is in place, such that only the stability-relevant information is visible on
a component’s interface. This information takes the form of Lyapunov functions.

9

1 Introduction

ẋ = v
v̇ = −0.052v − 0.001x

−15 ≤ v ≤ 15
−500 ≤ x ≤ 500

ẋ = 0
v̇ = 1.5
v ≤ −5

−5 ≥ v ≥ −6∧
x+ = 0

−15 ≤ v ≤ −14

ẋ = 1
v̇ = −1.2− x

v ≥ 5
0 ≤ x ≤ 1.3

ẋ = 1
v̇ = −1.2− x

v ≥ 5
0 ≤ x ≤ 1.3

ẋ = 0
v̇ = −2.5
v ≤ 5

15 ≥ v ≥ 14∧
x+ = 0

5 ≤ v ≤ 6∧
0 ≤ x ≤ 1.2∧

x+ = 0 15 ≥ v ≥ 14∧
x+ = 0

x ≥ 1.3

5 ≤ v ≤ 6∧
1.25 ≤ x ≤ 1.35

x+ = 0

Figure 1.7: Cyclic Decomposition of a Hybrid Automaton

While results on stability proof decomposition of the continuous-time part of the hy-
brid system (e.g., through input-to-state stability [Heemels et al., 2007] or small gain
theorems [Liberzon & Nešić, 2006]) already existed at the time of writing, discrete de-
composition of stability proofs was not systematically researched. This thesis aims to fill
this gap and establishes a method for “slicing” hybrid automata with complex discrete
structures into easier to handle sub-automata, as well as a composition rule set as an
aid in the design process. In the end, this kind of slicing eases both the analysis and
the synthesis of stable hybrid systems, as stability of a hybrid automaton is notoriously
hard to see even for an experienced engineer. This is especially true when the discrete
structures are complex. Eventually, the aim is to provide the engineer with methods
that can be used during the design process to identify new behavior that can be added
to an automaton without breaking stability. The hope is that the results given in this
thesis pave the way for a structured design process that does not require the designer
to understand the intricacies of hybrid automata. Instead, it would be sufficient to pe-
riodically ask a verification tool (that can provide quick answers since it only works on
a sub-automaton) and follow a set of simple rules.

The main contributions of this thesis are the following:

• We provide a number of theorems for the decomposition of stability proofs into
a number of smaller sub-proofs. These theorems are based on Lyapunov func-
tion computation, but they are not restricted to a particular computation method
for these functions. The decomposition is graph-based and works on the hybrid
automaton’s discrete structure.

• We give algorithms which can be used to exploit these theorems in a fully automatic

10

1.2 Contribution of this Thesis

verification tool. These algorithms work by interpreting a hybrid automaton as
a graph and by successively conducting local proofs on parts of the automaton.
Parts of the automaton for which such a proof has taken place are then removed,
resulting in a step-by-step reduction procedure.

• We transfer the decomposition results to probabilistic hybrid systems, hybrid sys-
tems with probabilistic transitions. Again, graph-based decomposition can be
conducted on this class of systems in a similar manner.

• We present a set of composition and transformation rules on hybrid automata
that preserve stability. These rules are based on the decomposition theorems and
can be used for synthesis of stable hybrid systems, both non-probabilistic and
probabilistic.

• We outline a framework for hierarchical, component-based design of globally asymp-
totically stable hybrid systems based on Lyapunov functions. These results are
again based on the decomposition results and allow hierarchical design of hybrid
controllers. Information hiding takes place within each controller component, so
that only the information directly required for a stability proof is visible on the
component’s interface.

The questions to be answered in this thesis include:

• How can a stability proof for a hybrid system be split into sub-proofs that can be
conducted one by one, still yielding a proof for the whole system?

• Are there cases where this decomposition is complete or can even be stronger than
standard Lyapunov analysis?

• Given two hybrid systems which are known to be stable, how can we make sure
that a new system obtained by switching between the two is also stable, re-using
as much information as possible?

• If we introduce probabilistic behavior into a hybrid system, can we guarantee
stability with a certain probability without having to re-do the complete proof?

The author’s key publications related to the results presented in this thesis are:

• [Oehlerking & Theel, 2009a], presenting the basic decomposition methods given in
Chapter 4,

• [Oehlerking & Theel, 2009b], extending these decomposition methods to the do-
main of probabilistic hybrid systems and stochastic stability properties, as dis-
cussed in Chapter 5,

• [Damm et al., 2010], discussing component-based structured design of stable and
safe hybrid systems, with the stability part being discussed in Chapter 6.

11

1 Introduction

The hope is that these results narrow the gap between theory and practice, eventu-
ally making it possible to supply reliable software tools for automated stability/liveness
verification of hybrid systems, as a complement for the existing verification tools, which
can already tackle safety proofs reasonably well.

1.3 Thesis Outline

After this introduction, in Chapter 2 gives a detailed discussion of the current state
of the art in stability verification for hybrid systems, including contributions from the
computer science, mathematics and control engineering domains. A special focus is on
Lyapunov related methods, as these are central to this thesis.

Chapter 3, contains an in-depth recapitulation of existing results in stability verifi-
cation via Lyapunov function computation. This chapter lays the formal groundwork
for the remainder of the thesis, including definitions of the hybrid system model, global
asymptotic stability and several types of Lyapunov functions. Most importantly, the
linear matrix inequality (LMI) based method for Lyapunov function computation is
described in detail.

Chapter 4 then contains the first major contribution of the thesis: a decompositional
framework for stability analysis based. The decomposition theorems presented in this
chapter have been geared toward linear matrix inequality based Lyapunov function com-
putations, but can in general be used with any method capable of computing such func-
tions. For LMI based methods, algorithms are then described which allow the automatic
execution of such a decompositional analysis.

Chapter 5 contains the second major contribution of the thesis: the transfer of the
results from Chapter 4 to the stochastic domain. There, the hybrid automaton definition
is first extended to deal with probabilistic transitions. The standard Lyapunov results,
as well as the decomposition algorithm are then transferred to this domain, allowing
automated stability analysis also for stochastic models.

In Chapter 6, these analysis techniques are then turned into synthesis rules for globally
asymptotically stable hybrid systems, both in the non-stochastic and the stochastic
domain. The result is a rule set that can be used to incrementally construct a globally
asymptotically stable hybrid system, without the necessity to verify the system as a
whole. Furthermore, a component-based design approach supporting information hiding
is proposed, which can also deal with delayed switching between components. This design
approach allows the hierarchical construction of a stabilizing controller for a given plant,
based on the decomposition results from Chapter 4.

Finally, Chapter 7 gives a conclusion and a brief overview on open problems and
possible extensions of the decomposition.

12

2 Stability Verification of Hybrid Systems –
The State of the Art

This chapter gives an overview on results in the area of hybrid system stability verifi-
cation and the state of the art at the time of writing. First, hybrid system models in
general are discussed in Section 2.1. Then, an overview of the different stability defi-
nitions in the literature is given in Section 2.2. Section 2.3 describes previous research
concerned with Lyapunov function theorems for the non-hybrid and the hybrid case,
respectively. This also includes a discussion of methods for the automatic computation
of such functions. Section 2.4 gives an overview of non-Lyapunov based methods for
stability proofs available in the literature. Finally, decomposition of stability proofs is
discussed in Section 2.5.

Note that this chapter is not intended to present an in-depth description of the meth-
ods, but instead provides a brief overview of related work. Key definitions, theorems and
methodologies that are relevant within the scope of this thesis are described in detail in
Chapter 3.

2.1 Hybrid System Models

Hybrid systems are systems consisting of a combination of continuous and discrete be-
havior. Hybrid system models must therefore include formalisms to adequately represent
either type of behavior. This section gives an overview of various classes of hybrid mod-
els that are of importance for design and analysis today. Generally, these models require
one formalism (such as ordinary/partial/algebraic/stochastic differential equations or
inclusions) for the continuous part and another formalism (automata, logical structures,
switch planes, Markov chains) for the discrete part. To obtain models for hybrid systems,
these formalisms need to be combined in some manner.

One way of viewing a hybrid system, particularly from the control-theoretic viewpoint,
is as a so-called switched system [Liberzon, 2003]. This type of hybrid control loop model
was first proposed by Witsenhausen [1966]. Here, the system is viewed as a feedback
control loop with a continuous-time plant and a continuous-time controller (see Fig. 2.1).
However, the controller is not one single component, but instead consists of a collection
of sub-controllers, only one of which is connected to the plant at any time. The plant and
the sub-controllers are usually modelled as systems of ordinary differential equations or
inclusions. The switching between the controllers can be modelled non-deterministically
via external input [Daafouz et al., 2002], randomly via a probability distribution [Di-
marogonas & Kyriakopoulos, 2004; Chatterjee & Liberzon, 2006], or deterministically
by selecting a fixed switching strategy depending on the system state [Pettersson &

13

2 Stability Verification of Hybrid Systems – The State of the Art

Lennartson, 1996; Prajna & Papachristodoulou, 2003]. Deterministic strategies are of-
ten chosen to minimize a given cost function, for instance by achieving the fastest pos-
sible convergence. Switching strategies are often represented by switch planes in the
state space which trigger a change in discrete state when they are crossed [Pettersson &
Lennartson, 1996; Prajna & Papachristodoulou, 2003]. While this model is close to the
control-theoretic view of a feedback control system (and many hybrid systems actually
represent feedback control of some sort), expressiveness of the discrete model is limited.
For instance, lazy “can”-switches (as opposed to urgent “must”-switches) are not ex-
pressible. Furthermore, discrete updates to continuous variables (e.g., variable resets)
are often not included in these types of models.

Switching Signal
(external or dependent

S
el

ec
to

r

Hybrid
Controller

Diff. Eq. 1

Diff. Eq. 2

Diff. Eq. 3

Diff. Eq. 4

Plant

Diff. Eq.

on system state)

Figure 2.1: Illustration of a Switched System Model

Another hybrid system model sees the system as a differential equation or inclusion
with a discontinuous right-hand side. In this type of system, the discrete state is not
explicitly modelled, but is derived from the continuous state. This means, that, in
general, each discrete state is associated with a sub-set of the state space. A differential
equation or inclusion is considered active once the continuous state is in its area of
responsibility. Therefore, it is not directly possible to model phenomena like hysteresis,
where the same continuous state is associated with different discrete states, depending
on the history of the trajectory. Also here, discrete updates of continuous variables are
usually not modelled. An example of a differential equation with discontinuous right-
hand side is for example

14

2.1 Hybrid System Models

ẋ =







−1, if x > 0
0, if x = 0
1, if x < 0

See [Cortés, 2008] for a detailed discussion of such systems, with many adaptions of
results from standard non-hybrid systems with continuous right-hand sides. A draw-
back of this modeling approach is the relative inexpressiveness with respect to discrete
structures of the system.

If such a differential equation or inclusion with discontinuous right-hand side also
allows for discrete updates of continuous variables, then this is related to the notion of
impulsive systems [Hespanha et al., 2008]. Impulsive systems are differential equations
allowing for sudden (impulsive) changes of variable values. Here, the discrete state is
modelled as just another (continuous) system variable which happens to stay constant
when no switching occurs. Switches are implicitly defined as the points in time when
these variables do change. Impulsive differential equation systems can, for instance, be
of the form

ẋ = f(t, x(t)) for t 6= {t1, . . . , cn}
x+ = g(t, x(t)) for t ∈ {t1, . . . , cn}

By allowing both discontinuities and impulsive behavior in differential equations or
inclusions, a larger class of hybrid systems can be covered.

On the other end of the spectrum are automaton based models. Since automata are
naturally capable of expressing the discrete component of a system’s behavior, they have
to be enriched to deal with the continuous dynamics. This leads to the concept of hybrid
automata [Alur et al., 1993]. Here, the nodes (corresponding to discrete states) and
edges (corresponding to discrete state transitions) of the automaton are labeled with
differential equations or inequalities and guard conditions on the continuous variables,
respectively. The differential equation/inequality associated with a node describes how
the continuous state evolves when its current discrete state corresponds to the node.
The guard conditions are usually first-order predicates over the continuous variables,
describing when a transition can or must be taken (depending on the semantics of the
particular model). Hybrid automata can also be augmented with input/output notions
to facilitate parallel compositions [Lynch et al., 2003]. The class of hybrid automaton
models has been used extensively by the computer science community and forms the
basis for many safety and reachability verification approaches (for example, [Henzinger
& Rusu, 1998; Frehse, 2008]). Hybrid automaton models can also be extended to deal
with systems containing discrete random experiments, leading to so-called probabilistic
hybrid automata [Sproston, 2000].

One particular hybrid automaton model will be used in this thesis and is defined in
Section 3.2. An extended model with probabilistic switching will also be employed in
Chapter 5.

Other models for hybrid systems replace differential equations by partial differential
equations [Bayen et al., 2004], differential algebraic equations [Mitchell & Susuki, 2008],

15

2 Stability Verification of Hybrid Systems – The State of the Art

or stochastic differential equations [Cassandras & Lygeros, 2007] in place of the differen-
tial equations or inclusions. A related modeling paradigm proposes the use of programs
instead of automata for the basic discrete structure. Hybrid programs [Platzer & Que-
sel, 2008] enrich program structures with means of expressing continuous evolution and
non-determinism.

For use with discrete-time analysis tools, purely discrete-time equivalents of many
of these models exist, called discrete-time hybrid systems [Ferrari-Trecate et al., 2002;
Bemporad et al., 2002; Feng, 2002]. For instance, differential equations can be replaced
by difference equations. These purely discrete models are often the result of some dis-
cretization of a continuous-time hybrid automaton. While these systems are strictly
speaking not hybrid (despite the somewhat misleading name) but purely time-discrete,
their structures are similar to the hybrid systems they approximate, with some (discrete)
variables taking over the function of the continuous-time variables. However, these dis-
crete variables can then still take values in the real numbers, leading to a potentially
uncountable state space. These purely discrete systems can then, for instance, be ana-
lyzed with discrete-time tools, like discrete-time model checkers. Of course, great care
must be taken to avoid fatal modeling errors because of inadequate sampling rates.

2.2 Stability Properties

This section summarizes different stability definitions for feedback control systems.
While all of these definitions describe properties that imply some sort of robustness
to disturbances, different system models and different application contexts require a
variety of stability notions. Figure 2.2 illustrates some of the key stability definitions
discussed below.

2.2.1 Lyapunov Stability Properties

Some very commonly used stability definitions for autonomous systems (systems without
explicitly modeled external input) are subsumed under the term Lyapunov stability [Lya-
punov, 1907]. The basic notions are stability and attractivity . These are usually defined
with respect to an equilibrium state of the system, a state where the time derivatives of
all continuous variables are zero. Such an equilibrium state is therefore stationary in the
sense that it is never left by any system behavior allowed by the model. Without loss of
generality, this equilibrium state can be assumed to be the origin of the state space. A
differential equation or inclusion with a different equilibrium can always be transformed
into one where the equilibrium is at the origin by a simple translation of the coordinate
system.

Stability is a boundedness condition, implying that any bound on the distance to
the equilibrium is respected for all times, if one chooses the initial state close enough.
Attractivity requires the convergence of each trajectory to the origin. If a system is
both stable and attractive, it is asymptotically stable. Stability and attractivity can
be defined globally , for all initial states, or locally , only for some initial states. For
linear differential equations, local (asymptotic) stability with respect to some open set

16

2.2 Stability Properties

region of

attraction

(a) Local Asymptotic Stability

target region

(b) Region Stability

invariant set

(c) Invariant Set Stability (d) Limit Cycle Stability

Figure 2.2: Stability Notions

containing the equilibrium always implies global (asymptotic) stability. In this case,
the proof is simple: show that the system matrix is Hurwitz. The system matrix is
the matrix A in the vector notation ẋ = Ax, where x is the system state vector. The
matrix A is Hurwitz if and only if the real parts of all eigenvalues are negative, which
is equivalent to global asymptotic stability. Truly local stability properties are usually
associated with a so-called region of attraction (see Figure 2.2(a)), defining a set of
initial states from which convergence is guaranteed [Chesi, 2004; Ratschan & She, 2010;
Tan & Packard, 2008]. In case of non-linear or hybrid system dynamics, there can also
be multiple equilibria, each with its own region of attraction. If a non-linear system
is linearized in the origin and the linearized system is globally asymptotically stable,
then the original system is locally asymptotically stable with some basin of attraction
under come continuity assumptions. A stronger property that can be shown with the
help of some Lyapunov-based proof methods is exponential stability , implying at least

17

2 Stability Verification of Hybrid Systems – The State of the Art

exponentially fast convergence. This property is tied to quadratic Lyapunov functions
and can be used to estimate the convergence rate of an asymptotically stable system
[Pettersson, 1999]. These stability definitions can be stated both for continuous time
(and therefore for hybrid systems, which operate in continuous time) and discrete time
(and therefore discrete-time hybrid systems). The notion of global asymptotic stability
will be formally defined in Section 3.3 and acts as the property to be shown by the
decompositional methods in Chapter 4. As these stability definitions are part of the
control systems canon, they are discussed in most basic textbooks on the subject [Khalil,
1996; Sontag, 1998; Liberzon, 2003].

For systems with input signals, similar stability properties can be defined. Generally,
these properties require some condition on the input signal and imply a stability-like
property on either the system’s state or an output signal. Some common stability prop-
erties here are input-to-state stability (ISS) and input-to-output stability (IOS) [Khalil,
1996]. If a system is ISS (IOS), then boundedness of the input signal implies bound-
edness of the system state (output signal), and convergence of the input signal implies
convergence of the system state (output signal). This class of properties can also be
shown by Lyapunov-type analysis [Cai & Teel, 2005; Heemels et al., 2007; Hespanha
et al., 2008].

2.2.2 Generalized Stability Properties

Another type of stability property relaxes the convergence requirement from a single
target state to an entire target set of states. This is termed stability with respect to an
invariant set [Khalil, 1996; Ye et al., 1998; Cai et al., 2008; Ratschan & She, 2010] or
region stability [Podelski & Wagner, 2006]. In the former case, the target set needs to
be invariant, that is, it cannot be left, once entered (see Figure 2.2(c)). Proofs for this
type of stability property can again be conducted via Lyapunov-like arguments, together
with LaSalle’s invariance principle [Khalil, 1996]. Informally speaking, these arguments
require a decreasing function measuring the distance to an internal point of the target set.
The region stability approach is more flexible in the sense that it also allows the system
state to leave the target again, as long as this happens only finitely long (see Figure
2.2(b)). There are no constraints on the allowed behaviors within such an invariant
set region, once it has been reached by a trajectory. However, in practice, systems are
usually designed with a specific behavior in mind, even if they do not converge to a single
state. For these cases, stability can also be generalized to convergence toward a behavior
of the system, and not a state. One example is the so-called limit cycle stability (see
Figure 2.2(d), where a system with inherently periodic behavior is required to converge
toward some limit cycle [Khalil, 1996].

This limit cycle represents state set, so that, when it is reached, all system trajectories
will follow a prescribed cyclic behavior, for instance continuing to move in a loop for all
future times. In this case, every trajectory of the system (or every trajectory starting
within a sub-set of the state space, if it is interpreted as a local property) is required
to converge to the limit cycle, eventually approximating the cyclic behavior arbitrarily
close. In other words, convergence is not defined with respect to a state, but a periodic

18

2.3 Lyapunov Functions

trajectory. This notion of stability, while different from Lyapunov stability, can still be
partly shown with similar methods. For instance, so-called Poincaré maps [Khalil, 1996]
can be used to construct a system whose asymptotic stability implies the stability of
a limit cycle of the original system. This is done by problem-specific sampling of the
trajectories. For example, all time instances where a trajectory crosses a hyperplane
could comprise the sequence of sample points, and convergence of the sample point
sequence on the hyperplane then implies stability with respect to some limit cycle. This
stability notion has received considerable interest in the control community [Rubensson
& Lennartsson, 2000; Hiskens, 2001; Simić, 2002; Girard, 2003; Gonçalves, 2005], but
there has not yet been a strong push toward automated proofs, at the time of writing.

2.2.3 Stochastic Stability Properties

For stochastic systems, many variations of stability properties exist, usually consisting
of a non-stochastic stability notion which is relaxed probabilistically. Since stability
definitions can be endowed with probabilism in various manners, the result is a large
collection of possible definitions, which are often not uniformly named in the literature.

Since global asymptotic stability is the conjunction of global stability (i.e., a bound-
edness condition) and global attractivity (i.e., convergence to an equilibrium state),
probabilities can be introduced to both of these sub-properties individually. For exam-
ple, for stability, three notions of stochastic stability based on convergence notions for
random variables can be defined: almost sure stability, stability in the mean, stability in
probability [Loparo & Feng, 1996]. Similar definitions are possible for the attractivity
property.

For instance, global stability in probability means that, for any ǫ-ball around the equi-
librium and any positive probability p, if a trajectory starts close enough to the equi-
librium, it can be guaranteed that it stays within the ǫ-ball forever with probability p.
On the other hand, the stronger notion of almost sure global stability is equivalent to
requiring that this is the case with probability 1 [Kozin, 1972]. As one can see, there
are a multitude of ways of introducing probability measures into stability definitions,
making it especially important to precisely define stochastic stability properties.

For some results on stability in probability without the convergence property, see [Di-
marogonas & Kyriakopoulos, 2004], or for results on almost sure asymptotic stability for
systems under random switching via Lyapunov-like functions see [Chatterjee & Liberzon,
2007].

2.3 Lyapunov Functions

This section discusses Lyapunov function based results for stability proofs and their
automation potential. First, we deal with results providing Lyapunov function theorems
for stability proofs. Next, a survey of automatic computation methods based on these
results is given. Finally, we discuss work dealing with the utilization of Lyapunov-like
functions also for safety proofs. Again, this section is only intended to give a brief

19

2 Stability Verification of Hybrid Systems – The State of the Art

overview of the literature. In-depth discussion of results that are directly relevant to the
thesis then follows in Chapter 3.

2.3.1 Lyapunov Theorems

The basic idea of employing an energy-like function to indirectly prove stability, also
known as Lyapunov’s second method , dates back to observations on mechanical systems
[Lyapunov, 1907] and has since become part of the control systems canon. The basic
Lyapunov function theorems for the non-hybrid case can be found in almost any basic
textbook covering non-linear control theory (e.g., [Sontag, 1998, p. 218] and [Khalil,
1996]). In the literature, there are variants for asymptotic and non-asymptotic Lyapunov
stability [Pettersson, 1999], differential inclusions, also with discontinuous right-hand
sides [Cortés, 2008], local stability properties, stability with respect to invariant sets [Cai
et al., 2008], input-to-state stability [Heemels et al., 2007], or stochastic stability [Loparo
& Feng, 1996]. More recently, there also have been efforts to relax the Lyapunov function
conditions by allowing the function values to actually increase over a timespan, as long
as this is compensated in the long run [Ahmadi & Parrilo, 2008]. Completeness results
guaranteeing the existence of Lyapunov functions (also known as converse theorems)
have also been derived, covering special classes of systems. For instance, it is very well
known that there exists a quadratic Lyapunov function for any asymptotically stable
linear differential equation. In this case, the result is even constructive, allowing for the
computation of the function via the so-called Lyapunov equation [Sontag, 1998, p. 213].
Such converse theorems for hybrid systems are briefly discussed later in this section.

For hybrid systems, most classical Lyapunov function results are not directly appli-
cable, as they usually require continuity of the vector field as a prerequisite. However,
many adaptions of Lyapunov function theorems to the hybrid case exist [Pettersson &
Lennartson, 1996; Johansson & Rantzer, 1998; Branicky, 1998; Chatterjee & Liberzon,
2006; Cai et al., 2008; Cortés, 2008]. A simple approach is to use a common Lyapunov
function for all discrete modes [Liberzon, 2003; Vu & Liberzon, 2005]. If no discrete
updates of continuous states are possible, then this actually proves asymptotic stabil-
ity for all possible switching behaviors between the discrete modes of the system. In
other words, for such a system the usage of a common Lyapunov function means that
all knowledge about the discrete structures of the system is discarded. For this reason,
this approach is restrictive, as many stable example systems do not allow for a common
Lyapunov function for all modes [Johansson & Rantzer, 1998]. An alternative approach,
pioneered by Branicky [1994], allows the use of one Lyapunov function per mode. Here,
in addition to the standard Lyapunov function conditions, the entry point sequence for
each mode needs to have non-increasing energy values, that is, the sequence of continues
states attained by the trajectory upon entering a new discrete mode (see Figure 2.3(a)).
To facilitate the computation of Lyapunov functions, often a stronger condition is used:
non-increasingness of the Lyapunov function over time. In this case, it is required that
the new Lyapunov function value after the switching (and possible application of a dis-
crete update of the continuous variables) is not larger than the value before the switching
[Pettersson & Lennartson, 1996; Pettersson, 1999] (see Figure 2.3(b)). Clearly, this con-

20

2.3 Lyapunov Functions

V1(x(t))
V2(x(t))

V1(x(t))
V2(x(t))

t

(a) LF with non-increasing entry points

V1(x(t))

V2(x(t))

V1(x(t)) V2(x(t))

t

(b) strictly non-increasing LF

Figure 2.3: Piecewise Lyapunov Functions over Time

dition implies the one given by Branicky. It does, however, have the advantage that the
Lyapunov conditions can be formulated completely independently of individual trajec-
tories, only using state based (and not time based) constraints. This approach can also
be extended to allow for more than one Lyapunov function per mode (or, equivalently,
a discontinuous Lyapunov function), each covering only one part of a partitioned state
space [Pettersson & Lennartson, 1996; Pettersson, 1999; Oehlerking et al., 2007].

For systems with inputs, similar Lyapunov theorems exist, for instance based on so-
called input-to-state stability (ISS) Lyapunov functions [Heemels et al., 2007]. Alterna-
tively, constrained inputs can simply be collapsed into a differential inclusion, resulting
in an autonomous system with non-deterministic dynamics which already factor in any
outside disturbances.

In most cases, equivalents of the results for the discrete-time domain exist, transferred
in a straightforward manner from the discrete-time domain [Kalman & Bertram, 1960;
Feng, 2002; Rubensson & Lennartsson, 2000]. Essentially, there is a negativity constraint
on the difference of Lyapunov function values between a state and its predecessor state,
instead of on the time derivative of the Lyapunov function, yielding a concept that is
similar to a ranking or termination function.

Converse theorems for Lyapunov functions have always been of great interest within
the control community, and some results have also been obtained for hybrid systems.
Only very recently, a general converse theorem guaranteeing the existence of Lyapunov
functions for globally asymptotically stable hybrid systems has been presented [Cai et al.,
2007, 2008]. For some important earlier results concerning local existence of Lyapunov
functions for locally asymptotically stable hybrid systems, see, for instance, [Ye et al.,
1998]. However, these results are not directly amenable for automation, that is, they
do not provide an actual algorithm for obtaining the functions. For specific types of
systems and Lyapunov functions, specialized constructive theorems exist, for example
for piecewise affine systems and piecewise quadratic Lyapunov functions [Pettersson &
Lennartson, 1997] or for twice continuously differential equations and piecewise linear
Lyapunov functions [Hafstein, 2004]. However, since stability of even simple hybrid
system classes is undecidable [Blondel et al., 2001a,b], one can in practice only hope
for constructive converse theorems for limited classes of systems and limited types of
Lyapunov functions. In the hybrid domain, these converse theorems are still only of lim-

21

2 Stability Verification of Hybrid Systems – The State of the Art

ited practical relevance, also because the computation of an existing Lyapunov function
might be too costly. Also, if an algorithm fails to identify a Lyapunov function for a
hybrid system, this is does usually not disprove stability.

2.3.2 Automatic Computation of Lyapunov Functions

While Lyapunov function theory has been well established for manual proofs of stability
properties, automatic computation of such functions for hybrid systems was effectively
not researched until the mid-1990s. The most common methods for such computa-
tions employ linear and non-linear optimization techniques. Here, parametrized func-
tion templates are used, and constraints on the free parameters formulated, such that
the resulting function has the desired Lyapunov property. Often the functions are only
defined piecewise, that is, different function templates are used for different parts of a
partitioned hybrid state space. Numerical algorithms are then used to obtain a solu-
tion fulfilling all constraints, yielding the desired Lyapunov function. If the Lyapunov
function template allows for only (piecewise) linear functions, then this problem can be
mapped onto a (possibly very large) linear optimization problem [Hafstein, 2004; Lazar
& Jokić, 2010], based on Farkas’ lemma or the mean value theorem. However, quadratic
Lyapunov function templates are more commonly used, because such functions allow
for symmetries that are useful in countering state space explosion with respect to the
number of continuous states in the system. Quadratic Lyapunov function templates,
in general, require less partitioning and therefore scale better to systems with high-
dimensional state spaces. Furthermore, quadratic functions allow the formulation of
the Lyapunov function constraints as so-called linear matrix inequalities [Boyd et al.,
1994], which result in non-linear, but still convex, optimization problems [Pettersson &
Lennartson, 1996; Johansson & Rantzer, 1998; Pettersson, 1999]. These problems can be
solved by descent-like interior point optimization methods in polynomial time [Boyd &
Vandenberghe, 2004; Nesterov & Nemirovskii, 1994]. This LMI formulation is based on
the Positivstellensatz and can guarantee positiveness/negativeness of functions without
having to examine any individual value within their range. The software tools that are
available for the solution of this kind of problem are discussed in depth in Section 3.6.1.

Pettersson & Lennartson [1996] employed the so-called S-procedure [Yakubovich,
1977] to formulate LMI problems that only represent local conditions on a part of the
state space. With this technique, a family of local Lyapunov functions for parts of the
state space can be computed, such that they prove stability for the entire system. Here,
the LMI problems can become rather large because additional free parameters need to
be added to the optimization problem for each local Lyapunov functions, as well as aux-
iliary variables required for the S-procedure. Therefore, one has to take care to keep
the partitionings as coarse as possible in order to maintain tractability of the problem
in practice. Johansson & Rantzer [1998] proposed a restricted, but computationally
more benign variant of a multiple Lyapunov function approach. There, the individual
local Lyapunov functions are not completely independent, but related by a fixed scaling
matrix that is derived from the partitioning. This effectively reduces the solution space,
but results in numerically simpler optimization problems.

22

2.3 Lyapunov Functions

However, direct application of LMI methods is limited to (piecewise) quadratic Lya-
punov functions and linear/affine dynamics. To lift these restrictions, the sums-of-
squares decomposition [Parrilo, 2003; Parrilo & Jadbabaie, 2007; Parrilo & Lall, 2003;
Peet et al., 2006; Prajna & Papachristodoulou, 2003; Papachristodoulou & Prajna, 2005;
Papachristodoulou, 2004] can be applied to permit the analysis of non-affine systems and
the search for non-quadratic Lyapunov functions. The basic idea is an (in general con-
servative but sound) substitution of non-quadratic terms in the constraints by quadratic
constraints, resulting again in LMIs. This approach can also be combined with the
S-procedure or the various concepts for multiple Lyapunov functions.

One might also think about using techniques from model checking/satisfiability check-
ing for the computation of Lyapunov functions. However, Lyapunov function conditions
inherently contain alternating quantifiers as they are of the type:

∃p ∈ R
n : ∀x ∈ R

n : f(p, x) ≥ 0,

where f is a function to R which is parameterized in p. This type of formula is
hard to verify, and for instance beyond the capabilities of satisfiability checkers such as
HySAT [Fränzle et al., 2007]. One can view the LMI formulation as a convenient way of
eliminating the “∀”-quantifier, turning the problem into one that is purely existential by
exploiting the very specific nature of the problem. As of now, only limited attempts to
compute Lyapunov-like functions via symbolic methods have been undertaken (see, for
example, [Gulwani & Tiwari, 2008], which replaces inequality by equality constraints).

2.3.3 Identification of Stabilizing Controllers

In the domain of control theory, it is important to differentiate between the concept
of “stability” and the concept of “stabilization” or “stabilizability.” While stability is
a property of an entire control loop, comprising of both plant and controller, stabiliz-
ability is a property of just the plant. If there exists a controller that can be used in
a feedback loop to stabilize an inherently unstable plant, the plant is stabilizable. The
process of identifying such a controller is known as “stabilization” of the plant. The
stabilization problem can also be solve using Lyapunov function methods, by identifying
control Lyapunov functions for the plant that imply constraints on admissible stabilizing
controllers. However, this problem is much more complex than proving stability, since
the search space (comprising both the free parameters in the Lyapunov function and
the controller) is in generally non-convex. Instead of LMI-based methods, stabilization
problems can be solved with bilinear matrix inequalities, which are unfortunately much
more difficult to solve than LMIs [Zhai et al., 2003]. To remedy this problem, relaxations
of these non-convex problems have been devised, see for instance [Prajna & Jadbabaie,
2004; Lazar & Jokić, 2010]. However, conservatism remains an issue in case of such
relaxations. A related problem is the synthesis of a controller which steers a system
trajectory to a designated part of the state space [Habets et al., 2006].

23

2 Stability Verification of Hybrid Systems – The State of the Art

2.3.4 Lyapunov Functions as Barrier Certificates

Lyapunov-like methods have also been employed for proofs of safety properties. Since
the energy value of standard Lyapunov functions is generally non-increasing over time,
the set of all reachable states from one initial state can be restricted to those states that
have a lower energy value. When quadratic Lyapunov functions are used, the result
is an ellipsoidal over-approximation of the reachable set. Additionally, sums-of-squares
techniques can also be employed to deal with complex dynamics. A contour line of
a Lyapunov-like function used in this manner is also referred to as a barrier certificate
[Prajna & Jadbabaie, 2004; Prajna & Rantzer, 2005], and the function itself is also called
criticality function [Damm et al., 2007], as it indicates the distance to a critical state in
an abstract manner. Barrier certificates are special cases of differential invariants in the
sense of Platzer & Clarke [2008].

The computational techniques for this type of analysis are essentially the same as for
stability proofs, with some relaxations to the Lyapunov properties. For instance, it is
not necessary to require that the function has a global minimum at the origin, as actual
convergence is not part of the proof obligation. However, using this technique, safety and
stability can also be shown together, re-using the Lyapunov functions from the stability
proof for the safety proof [Damm et al., 2010].

2.4 Other Methods for Stability Proofs

Previous work on stability verification for hybrid systems that does not directly rely on
Lyapunov functions has been relatively sparse. Also, proofs of unbounded-horizon con-
vergence require some way of tracking “progress,” so that such methods usually contain
Lyapunov-type arguments in some quantity. One approach by Podelski & Wagner [2006]
uses sampling of trajectories, such that stability with respect to a target region in the
state space is implied by the finiteness of the sampling point sequence. However, this
finiteness property is again a termination problem, which is solved through the compu-
tation of ranking functions. Ranking functions can again be seen as a special case of
Lyapunov functions.

Another method not directly using Lyapunov functions employs joint spectral radii,
that is, the largest eigenvalues of a matrix obtained by multiplying the system matrices
of a discrete-time switched system in any order [Parrilo & Jadbabaie, 2007]. Here, the
goal is a proof of contractiveness by calculating an upper bound to the spectral radius.

Another different view uses the gains associated with individual modes of a switched
linear system and combines them to yield a stability proof [Langerak et al., 2003]. This
approach exhibits strong parallels to the theory of piecewise quadratic Lyapunov func-
tions [Langerak & Poldermans, 2005] and is not directly applicable to richer classes of
systems.

If there is an explicit upper bound on the time for convergence (which usually means
that there also must be a bounded state space), then convergence is a reachability
problem. The question whether a target set S is reachable in t0 time units is then
equivalent to the question whether the predicate ¬S ∧ t > t0 is unsatisfiable. This

24

2.5 Decompositional Verification and Compositional Design

simpler class of problems can therefore be solved by tools like PHAVer [Frehse, 2008],
although complexity and the quality of reachable set over-approximations remain an
issue, especially with long time horizons and rich dynamics.

2.5 Decompositional Verification and Compositional Design

In general, decompositional techniques for stability proofs of hybrid systems have, at
the time of writing, not received wide attention. However, some interesting results are
summarized in this section. One possible approach is decomposition along the continuous
variables of a system, that is, grouping a system into connected sub-systems, each with
their own differential equations. These sub-systems are then connected via input-output
relations. Such block diagrams are a standard notation in control theory, and widely
exploited to show properties for connected linear (non-hybrid) systems. There have
been some attempts of transferring these types of results to the hybrid domain. Viewing
a system as a number of interconnected components with input-output relations can
exploited for small gain theorems. These theorems allow the composition of two sub-
systems, each with input and output signal, in a feedback loop, such that the resulting
system is stable. This is achieved by imposing constraints on the gains of the two
systems, that is, the level of “amplification” of the input signal they cause on the output.
In recent years, several small-gain theorems for hybrid systems have been presented.
[Laila & Nešić, 2003; Liberzon & Nešić, 2006; Nešić & Liberzon, 2005]. However, such
gains remain hard to compute for hybrid systems, so that these ideas are not yet widely
used in verification. Input-to-state stability as described above can also be exploited for
this kind of decomposition [Heemels & Weiland, 2008; Dashkovskiy et al., 2008].

A second possibility is decomposition in the discrete domain, for instance the graph
structure of a hybrid automaton. However, decomposition of stability proofs along this
axis has, to the best of the author’s knowledge, not been systematically conducted.
This kind of decomposition is especially crucial, since real-life digital controllers can
easily have hundreds of discrete states, and this system size can simply not be tackled
without any notion of decomposition. Therefore, one goal of this thesis is systematic
decomposition of hybrid systems (given as hybrid automata) on its discrete states.

Compositional design methodologies for hybrid systems are already supported through
tools like Matlab Simulink and Stateflow, but such tools do not currently support a struc-
tured design process leading to a verifiable system. Another formalism for expressing
sequential as well as parallel formalisms are HyCharts [Grosu & Stauner, 2002], which
provide a graphical notation for hierarchical hybrid system design. Compositional de-
sign methodologies for safe hybrid systems are for instance based on o-minimal hybrid
automata [Casagrande et al., 2008], hybrid I/O automata [Frehse et al., 2004] (in both
cases for parallel composition) or differential invariants [Platzer & Clarke, 2008] (for
transition composition). However, these methodologies do not cover stability properties.

As the decomposition of stability proofs employing the graph structure of hybrid
automata was not sufficiently researched until now, this thesis contributed to the state
of the art by contributing to closing this gap. In addition to this, the results will

25

2 Stability Verification of Hybrid Systems – The State of the Art

also be used to derive rules for structured design, such that both the analysis and the
design of stable hybrid automata is eased considerably. We will continue in Chapter 3
by describing in detail how stability proofs can be automated and then introduce the
general decomposition procedure in Chapter 4.

26

3 Lyapunov Function Computation for
Hybrid Systems

This chapter gives the basic definitions, theorems and verification methods for global
asymptotic stability proofs. First, some basic notation is introduced in Section 3.1.
Then, the hybrid system notion used in the remainder of this thesis, namely hybrid
automata with differential inclusions, is defined formally in Section 3.2. This includes a
discussion of solution concepts of differential inclusions and hybrid phenomena like Zeno
behavior. Next, global asymptotic stability is formally defined in Section 3.3, together
with Lyapunov functions. The application of Lyapunov functions for safety proofs via
barrier certificates is then discussed in Section 3.4. Next, LMI-based Lyapunov function
computation methods are reviewed in detail in Section 3.5, followed by a discussion
of the underlying numerical methods in Section 3.6. Finally, a detailed cruise control
example of an automatic Lyapunov function computation is given in Section 3.7. The
chapter is then concluded by a summary in Section 3.8.

This chapter is intended to provide the groundwork for the decompositional analysis
in the following chapter. The verification methods in this chapter are “monolithic” in
the sense that discrete structures are not explicitly exploited. Instead, the problem of
identifying a Lyapunov function for a system results in a single and possibly large LMI
problem. The decompositional treatment then follows in Chapter 4, building on the
“monolithic” results.

3.1 Notation

This section gives some basic definitions and notations that are used extensively in this
thesis.

Definition 3.1 (Sets). Let R be the set of real numbers and let R
+ be the set of all

non-negative real numbers. For a set X, P(X) defines the power set of X, that is, the
set of all sub-sets of X.

Definition 3.2 (Matrix and Vector Notation). For a matrix M ∈ R
m×n, the matrix

MT ∈ R
n×m denotes its transpose. For a column vector v ∈ R

n×1, vT ∈ R
1×n denotes

the row vector resulting from the matrix transposition. Individual entries of vectors and
matrices are identified by subscripts in parentheses, such that v(i) is the i-th element of
vector v and M(i,j) is the entry in the i-th row and j-th column of M . For a row vector

vT ∈ R
1×n and a column vector w ∈ R

n×1,
〈

vT
∣

∣ w
〉

denotes the scalar product . For a
square matrix M ∈ R

n×n, tr(M) =
∑n

i=1m(i,i) denotes its trace.

27

3 Lyapunov Function Computation for Hybrid Systems

Definition 3.3 (Norms). For a p > 1, define the p-norm of x as

||x||p =

(

∑

i

|x(i)|p
)1/p

.

The Euclidean norm of x is the special case p = 2, that is,

||x|| =
√

∑

i

|x(i)|2.

Define the infinity norm of x as

||x||∞ = max
i

|x(i)|.

Definition 3.4 (Closed Ball). Define B(x, ǫ) ⊆ R
n, x ∈ R

n, ǫ > 0 as the closed ball
around x with radius ǫ, B(x, ǫ) = {y ∈ R

n| ||y − x|| ≤ ǫ}.

Definition 3.5 (Sequence). Finite or infinite sequences will be denoted with parentheses
(e.g., (mi)) when referring to the sequence itself, and the i-th element of the sequence
m will be written mi, without parentheses.

Definition 3.6 (Convex and Conic Sets and Hulls). A set X ∈ R
n is called convex , if

x, y ∈ X =⇒ ∀λ ∈ [0, 1] : λx+ (1− λ)y ∈ X,

implying that when two points lie in X then so does the line segment connecting them.
A set X ∈ R

n is called conic, if

x, y ∈ X =⇒ ∀λ1, λ2 ≥ 0 with λ1 + λ2 > 0 : λ1x+ λ2y ∈ X,

implying that the cone spanned by any two points in X (without its “tip”) is still in X.

Next, we define the convex and conic hulls. The convex hull of a set of points xi ∈ R
n

is defined as

convex ({x1, . . . , xm}) =
{

x ∈ R
n

∣

∣

∣

∣

∣

∃λi ≥ 0 :
∑

i

λi = 1 ∧ x =
∑

i

λixi

}

.

The conic hull is defined as

cone({x1, . . . , xm}) =
{

x ∈ R
n

∣

∣

∣

∣

∣

∃λi ≥ 0 : (∃i : λi > 0) ∧ x =
∑

i

λixi

}

.

Note that this definition of the conic set and hull is non-standard in the sense that we
exclude the “tip of the cone,” the value x = 0. This is achieved by explicitly requiring
that one λi is strictly positive. In a similar manner we also define the convex and the

28

3.2 Modeling Hybrid Systems

conic hull of sets of functions. Let fi : R
n → R

n, 1 ≤ i ≤ m, be a family of real-valued
functions. The convex hull of the functions fi is the set

convex ({f1, . . . , fm}) :=
{

∑

i

λifi

∣

∣

∣

∣

∣

(∀i : λi ≥ 0) ∧
(

∑

i

λi = 1

)}

.

The conic hull is

cone({f1, . . . , fm}) :=
{

∑

i

λifi

∣

∣

∣

∣

∣

(∀i : λi ≥ 0) ∧ (∃i : λi > 0)

}

.

Remark 3.1 (Predicate Notation of Sets). We will frequently use first-order predicates
to describe sets over the reals. For instance, the predicate x ≤ 6 ∧ y ≤ 0 could be used
to represent the set {x, y ∈ R | x ≤ 6 ∧ y ≤ 0}. For ease of reading, the terser predicate
notation is sometimes used in place of a verbose set notation, if there is no danger of
confusion.

3.2 Modeling Hybrid Systems

This section defines the hybrid system formalism as it is used in this thesis. Hybrid
systems are modelled as hybrid automata, which are finite automata whose nodes and
edges are labeled reflecting the system’s continuous behavior. This model has the ad-
vantage that hybrid systems can be seen as automata, and ultimately as a special type
of graph. The decomposition techniques described in Chapter 4 make extensive use of
this graph structure.

However, before these systems can be defined, a discussion of solution concepts for
differential equations and inclusions is necessary. Differential inclusions will be attached
to the nodes of the automaton to describe the continuous evolution of the hybrid system.

3.2.1 Solutions to Differential Inclusions

A solution is a continuous-time behavior that is permitted by a differential equation
or inclusion. A solution to a differential equation ẋ = f(x), x ∈ R

n, is a differentiable
function x : R+ → R

n, such that ẋ(t) := dx
dt (t) = f(x(t)) for all t. In contrast, differential

inclusions are of the form ẋ ∈ F (x), where F : Rn → P(Rn) maps each x onto a whole
set of values for ẋ. According to the Carathéodory solution concept [Cortés, 2008], at
almost all given times t (that is, all but some singular time instants), the time derivative
ẋ(t) must lie within the set F (x). Differential inclusions are therefore a more general
model for continuous dynamics than differential equations, since they can also model
dynamics with uncertainties resulting from only inexact knowledge of the system to be
modelled. Furthermore, standard differential equations are also covered by this model,
if F (x) is a singleton set for each x. All the results in this thesis apply to systems with
differential inclusions, unless otherwise noted. The formal definition is given next.

29

3 Lyapunov Function Computation for Hybrid Systems

Definition 3.7 (Differential Inclusion). A differential inclusion is a set inclusion in the
form ẋ ∈ F (x), x ∈ R

n, where F : R → P(Rn) is a set-valued function.

In order to formally define solutions of differential inclusions, we first need to define
absolutely continuous functions.

Definition 3.8 (Absolute Continuity). A function f : I → R
n, I ⊆ R is called absolutely

continuous, if for all compact sub-intervals J of I and for all ǫ > 0 there exists a δ > 0,
such that for all finite sequences of pairwise disjoint intervals (xi, yi) ⊆ J the following
holds:

∑

i

|xi − yi| < δ =⇒
∑

i

||f(xi)− f(yi)|| < ǫ.

For differential inclusions, we define solutions according to the Carathéodory solution
concept as follows.

Definition 3.9 (Carathéodory Solution of a Differential Inclusion). A (Carathéodory)
solution to a differential inclusion ẋ ∈ F (x) is an absolutely continuous function x :
R
+ → R

n such that ẋ(t) ∈ F (x) for almost all t.

Remark 3.2. Absolute continuity implies that x(t) is differentiable almost everywhere.
This means abrupt changes of direction for x(t) are possible, as long this behavior is
restricted to a null set of times (i.e., a set of measure zero). For instance, a solution
of the differential inclusion ẋ ∈ [−1, 1] can abruptly change its time derivative between
ẋ = 1 and ẋ = −1 on a null set. Moreover, absolute continuity of x(t) implies that for
the Lebesgue integral

x(t) = x(0) +

∫ t

0
ẋ(τ)dτ

for all t, so that differential inclusions can be cast into an integral form similar to
differential equations.

Under certain assumptions, the existence and the uniqueness of a solution to a dif-
ferential equation or inclusion can be guaranteed. The following two theorems serve as
examples of such conditions. A variety of results requiring slightly different preconditions
exists in the literature [Cortés, 2008]. One result uses the notion of upper semicontinuity,
which is an extension of the standard continuity definition on real-valued functions to
set-valued functions like F (x).

Definition 3.10 (Upper Semicontinuity of Set-valued Functions). A function F : Rn →
P(Rn) is called upper semicontinuous, if for all x ∈ R

n and ǫ > 0 there exists a δ > 0
such that F (y) ⊆ {y1 + y2 ∈ R

n| y1 ∈ F (x) ∧ y2 ∈ B(0, ǫ)} for all y ∈ B(x, δ).

Under some additional conditions, upper semicontinuity of the right hand side of a
differential inclusion implies the existence of at least one solution from every initial value
x0 ∈ R

n.

30

3.2 Modeling Hybrid Systems

Theorem 3.1 (Existence of Solutions [Cortés, 2008]). Let ẋ ∈ F (x) be a differential
inclusion. If F (x) is non-empty, convex, closed, upper semicontinuous, and

∃c > 0 : ∀x ∈ R
n : ∀y ∈ F (x) : ||y|| ≤ c(1 + ||x||),

then there is a solution to ẋ ∈ F (x) for every initial value x(0) ∈ R
n.

In order to show the uniqueness of a solution to differential inclusion, an additional
Lipschitz-like property is required, similar to Lipschitz continuity in the Picard-Lindelöf
theorem for differential equations. One such property is one-sided Lipschitz continuity,
which is defined as follows.

Definition 3.11 (One-sided Lipschitz Continuity). A function F : Rn → P(Rn) is called
one-sided Lipschitz-continuous, if there exists a scalar c > 0, such that for almost every
x1, x2 ∈ R

n :

∀y1 ∈ F (x1), y2 ∈ F (x2) : (x1 − x2)
T (y1 − y2) ≤ c(||x1 − x2||).

This condition then gives us a uniqueness result on solutions of differential inclusions.

Theorem 3.2 (Uniqueness of Solutions [Cortés, 2008]). Let ẋ ∈ F (x) be a differential
inclusion, where F (x) is non-empty, convex, closed, upper semicontinuous, and one-
sided Lipschitz-continuous, then ẋ ∈ F (x) has at most one solution for every initial
value x0 ∈ R

n.

For differential inclusions for which F (x) is just a singleton set for all x, we will
usually use the standard differential equation notation ẋ = f(x) instead of ẋ ∈ F (x).
The stability analysis methods presented in this thesis can deal with initial conditions
that permit no solutions, as well as with initial conditions that permit several (or even
infinitely many) solutions. The results simply apply to all solutions that exist. For
a discussion on criteria for the existence and uniqueness of solutions for differential
inclusions, we refer to [Cortés, 2008; Frankowska & Aubin, 2009].

Next, we give two examples for differential inclusions, namely a control loop modelling
a simple cruise control system and a model of a battery.

Example 3.1 (Proportional-Integral Speed Controller). Consider a cruise control ap-
plication consisting of a plant P modeling a vehicle and a hybrid controller C. The
controller C influences the acceleration of the vehicle, so that the acceleration signal a is
an output of C and an input to P . Additionally, assume that the reaction of the vehicle
to the acceleration signal a is not precise. Instead, the vehicle can only guarantee to
keep its actual acceleration within 2.5% of the value requested by the controller. This
is modelled by another input to P , a relative disturbance value s. Therefore, the plant
dynamics are given by

v̇ = s · a
s ∈ [0.975, 1.025]

31

3 Lyapunov Function Computation for Hybrid Systems

The controller has the task of bringing the value of v toward 0. Here v can be
seen as modeling the velocity differential between the current velocity and a desired
set point. The controller consists of the differential equation ẋ = v and the equality
a = −0.001x − 0.052v, where x is the variable keeping track of the integral of v.

After eliminating the variables a and s, the result is a differential inclusion for the
closed-loop system:

v̇ ∈ convex (−0.000975x − 0.0507v,−0.001025x − 0.0533v)

ẋ = v

−150 −100 −50 0 50 100 150
−10

−8

−6

−4

−2

0

2

4

6

8

10

x

v

Figure 3.1: Simulation Runs for Example 3.1

Regardless of how the bounded disturbance s (now modelled by a differential inclusion)
behaves within its bounds, the system will converge to v = x = 0. In fact, the system is
globally asymptotically stable. Figure 3.1 gives example plots for this system. For each
initial state, two possible trajectories are plotted, representing the extremal dynamics
in the convex hull on the right hand side of the differential inclusion for v̇.

Example 3.2 (Kinetic Battery Model [Manwell & McGowan, 1993]). One example for
a differential inclusion is the model of a battery. There are two continuous variables in
the system: the bound charge b and the available charge a. Energy can be drained from
the available charge a (as long as a > 0). As the available charge decreases, energy from
the bound charge b is made available. However, this does not happen instantaneously.
Instead, the transition rate between bound and available charge depends on the difference

32

3.2 Modeling Hybrid Systems

between the two charges. The larger the difference, that is, the more the available charge
has been depleted, the higher the rate. If the energy that is drained from the battery
is not constant, but assumed to vary between two bounds EL and EH , then the battery
dynamics can be described by the differential inclusion

[

ȧ

ḃ

]

∈ F

([

a
b

])

:=

{[

−E + k(b− a)
−k(b− a)

]∣

∣

∣

∣

EL ≤ E ≤ EH

}

for some fixed EL, EH , k > 0. The energy E is subtracted from the available charge a,
and the transfer rate between the bound and the available charge is given by k(b−a). If
E were zero, then the system would eventually converge to b = a, with the total charge
a+ b remaining constant at all times.

Since this differential inclusion fulfills all conditions of Theorem 3.1, this implies that
there exists at least one solution for each initial state However, F (x) is not one-sided
Lipschitz-continuous, and there are infinitely many possible trajectories for every initial
state.

3.2.2 Hybrid Automata

With a definition of differential inclusions and a solution concept for the continuous
dynamics, it is possible to define hybrid automata and their solutions. Here, the solution
concept is based on two-dimensional time. Essentially, this means we keep track both
the progress of continuous time (one dimension) and the number of switches (the other
dimension) separately. The advantage lies in some extra expressiveness: we can deal
with multiple sequential switches at the same time instant more easily. The syntax
is based on a finite automaton, for which we attach general differential inclusions (as
defined above) to the discrete states (the modes of operation of the hybrid automaton).
Furthermore, invariant sets are also attached to the modes, describing conditions that
must hold while a mode is active. The edges can be labeled with guard conditions (also
modelled as sets) and updates on the continuous states which are applied once an edge
is taken.

Definition 3.12 (Hybrid Automaton). A hybrid automaton H is a tuple

(M,S,V,T ,Flow , Inv , Init),

where

• M is a finite set of modes,

• S = R
|V| is the continuous state space,

• V is the set of continuous variables, with each variable corresponding to a coefficient
of the vectors x ∈ S, in some fixed order,

• T is a set of transitions given as tuples (m1,m2, G, U), where

– m1 ∈ M is the source mode,

33

3 Lyapunov Function Computation for Hybrid Systems

– m2 ∈ M is the target mode,

– G ⊆ S is the closed guard set ,

– U : S → S is the update function for the continuous state variables,

• Flow : M → [S → P(S)] is the flow function, mapping each mode onto a set-
valued function which in turn maps each x ∈ S onto a closed sub-set of S, which
is taken as the right-hand side of a differential inclusion ẋ ∈ Flow (m)(x),

• Inv : M → P(S) is the invariant function, mapping each mode onto a closed
sub-set of the continuous state space, and

• Init ⊆ M× S is the closed set of combinations of initial discrete and continuous
states.

All initial, invariant, flow, and guard sets are always assumed to be closed in this
model. Concerning the kind of stability analysis presented in this thesis, this is not a
serious restriction. For the Lyapunov function computation methods, open sets would
have to be over-approximated by enclosing closed sets. In other words, any proof of
stability we obtain using these Lyapunov-based methods for a system with some open
sets also implies the same property for the system obtained by replacing the open sets by
their closures. Therefore, to simplify matters, it is helpful to assume closedness already
in beforehand.

Remark 3.3. Hybrid automata will often be depicted graphically in the scope of this
thesis. Such a representation consists of the underlying graph, labeled with invariants,
flows, guards, and updates. While invariants Inv(m) and guards G are defined as sets of
states, we will usually label the nodes and edges with predicates describing these sets.
For instance, a node label a ≥ 5 means that the invariant is the set

{

x ∈ S
∣

∣x(j) ≥ 5
}

,
where the variable a ∈ V corresponds to the j-th coefficient in x. If more than one
predicate appears in one node or on one edge, then the invariant/guard is represented
by the conjunction of the predicates. If no update function is given on an edge, we
assume the identity function U(x) = x. Flows are given by differential equations or
inclusions. Initial states will be represented by arrows pointing to discrete modes, but
not originating from a node. These “initial edges” are labeled with a predicate specifying
the conditions on the continuous variables under which a system trajectory is allowed to
start in this particular mode. The Init set is then represented by the disjunction of the
predicates implied by all these initial edges. For example, two initial edges, one pointing
to mode m1 with predicate x ≤ 5, and one pointing to mode m2 with predicate x ≥ 5
represent the initial set {(m, s)|(m = m1 ∧ x ≤ 5) ∨ (m = m2 ∧ x ≥ 5)}.

Definition 3.13 (Solutions of Hybrid Automata). Let H be a hybrid automaton. Let
(ti) be a possibly infinite sequence ti ∈ R

+ ∪ {∞}, representing the switching times of
the system such that

• t0 = 0,

34

3.2 Modeling Hybrid Systems

• ti ≥ ti−1 for all i > 0, and

• only the final element of a finite sequence (ti) may have the value ∞.

A solution of the hybrid automaton H is a possibly infinite sequence of tuples (mi, xi),
with

• mi ∈ M and

• xi : [ti, ti+1] → S (or xi : [ti, ti+1) → S in case ti+1 = ∞) a function which is
absolutely continuous on [ti, ti+1] (or [ti, ti+1), respectively),

• (ti) is a switching time sequence of infinite length if (mi, xi) is of infinite length,
and one element longer than (mi, xi) otherwise,

such that:

1. (m0, x0(0)) ∈ Init ,

2. for all ti ≤ t < ti+1 : xi(t) ∈ Inv(mi),

3. for all ti ≤ t < ti+1 : ẋi(t) ∈ Flow (m)(xi(t)) for almost all t,

4. for all ti+1, i > 0 which are not the final element of (ti), there exists a mode
transition (m, m̃,G,U), such that

a) limt↑ti+1
xi(t) ∈ G,

b) xi+1(ti) = U(xi(ti)),

c) mi = m,

d) mi+1 = m̃,

5. if (ti) is infinite, then limi→∞ ti = ∞.

A solution is called infinite if (ti) is infinite and diverges to infinity or if (ti) is finite and
its final element is ∞. It is called finite otherwise. The sequence (mi) is called the mode
sequence corresponding to the solution.

Definition 3.14 (Discrete, Continuous, and Hybrid State). For a given solution and
a time t ≥ 0, the value of the mi with the uniquely determined index i such that
ti ≤ t < ti+1 is called the discrete state at time t and is denoted by m(t). Similarly, the
function value xi(t) such that ti ≤ t < ti+1 is the continuous state at time t and is denoted
by x(t). Furthermore, the state before an update is defined as x(t−i+1) := limt↑ti+1

x(t).
Any function x : I → S with I = [0, r], r ∈ R

+ or I = R
+ such that x(t) is the

continuous state at time t of a solution of H is called a trajectory of the system. The
tuple (m(t), x(t)), as a function of t, defines the hybrid trajectory of H, giving the hybrid
state at time t. A hybrid trajectory is called extendable, if it is the prefix of another
hybrid trajectory and non-extendable otherwise.

35

3 Lyapunov Function Computation for Hybrid Systems

Essentially, a trajectory is the evolution of the hybrid automaton’s continuous state.
Note that trajectories are often discontinuous, as discontinuities can be introduced
through the update functions. Asymptotic stability talks about trajectories, disregarding
the discrete states the system goes through.

Note that, whenever a discrete update of the continuous state occurs at time t via
the update function, the continuous state at time t is defined as the new state after
the update. If there are multiple mode switches at the same time instant t, m(t) is the
mode the system reaches after all such switches, and x(t) is the continuous state after
all corresponding discrete updates have been applied.

Example 3.3 (Hybrid Kinetic Battery Model). Figure 3.2 shows a hybrid automaton
model of a battery that is recharged at a constant rate, if the total charge falls below a
threshold.

The discharge mode is very similar to the differential inclusion from Example 3.2.
In addition to the differential inclusion, the invariant set {(a, b) | a+ b ≥ 5 ∧ a ≥ 0} has
been added to the mode by simply labeling it with corresponding predicates. According
to its invariant, this mode must be left once the total charge a+ b drops below five or a
becomes negative.

The charge mode governs the battery recharge with some constant rate R. The energy
gain is added to the available charge (and potentially converted into bound charge, if
it is note needed immediately). The invariants for the charge mode only require the
two charges to remain positive. Therefore, the system can remain in charge mode for a
potentially unbounded time (maximum capacity of the battery is not modelled here).

There are two transitions between these two modes. As soon as the total charge drops
below six, the battery can go into charge mode. Note that it must recharge as soon as
the total charge drops below five, as the invariant set of the left hand side mode is left
at that point, forcing the mode transition. Therefore, between a total charge of five and
six, there is a non-deterministic choice of whether to take the transition or not.

The second transition leads back from the charge mode and may be taken, once the
total charge is at least eight again.

ȧ ∈ [−EH + k(b− a),
−EL + k(b− a)]

ḃ = −k(b− a)
5 ≤ a + b
a ≥ 0

ȧ = R+ k(b− a)

ḃ = −k(b− a)
a ≥ 0
b ≥ 0

discharge charge
a+ b ≤ 6

a+ b ≥ 8

a, b ≥ 0

Figure 3.2: Hybrid Kinetic Battery Model

A phase plot of the system, with parameters EL = 0.8, EH = 1.2, R = 1 and k = 1,
and initial values a = 3 and b = 0 is pictured in Figure 3.3. Note how the effect of
the uncertainty introduced by the differential inclusion is visible on the top part of the
“loop,” which jitters considerably. For the purpose of this simulation, a new value for
the non-deterministic part in the differential inclusion for ȧ in the discharge mode was

36

3.2 Modeling Hybrid Systems

2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4
0

0.5

1

1.5

2

2.5

3

3.5

4

a

b

Figure 3.3: Phase Plot of Battery Model

selected randomly every 0.1 time units, and each transition was taken as soon as possible.
Even though it may seem as if this system stabilizes with respect to some periodic

behavior (or a region in the state space), this is not the case, since the location of the
“loop” depends on the initial state of the system. The term “stability” is generally used
when there is one specific point/area of convergence, regardless of the initial state.

Infinitely many switches at the same time instant t do not result in valid solutions of
the hybrid automaton as defined in Definition 3.13, since the sequence ti would have to
be infinite and convergent to t, which would contradict Condition 5. Sequences (mi, xi)
violating Condition 5 of Definition 3.13 (and therefore not being a valid solution of the
hybrid automaton), but fulfilling all other conditions are termed Zeno. Condition 5 can
therefore be interpreted as a restriction of the class of behaviors that are considered a
solution to non-Zeno behaviors.

We permit the occurrence of Zeno behavior (i.e., the existence of such non-solution
sequences) in the hybrid automata that are considered for stability analysis. However,
since solutions of hybrid automata are per definition free of Zeno behavior (due to
Condition 5), and since stability analysis will be applied to solutions only, it will simply
be ignored in the analysis.

Note that infinitely fast switching in a hybrid system is often not desired in the first
place. If it is intentional (e.g., sliding mode control), the Zeno behavior can, for instance,
be eliminated by “covering” the part the state space that exhibits Zeno behavior (e.g.,
a sliding surface) by a new mode with an associated differential inclusion that explicitly
models the sliding behavior. This approach is related to the Filippov solution concept
[Zolezzi, 2002], which eliminates sliding mode Zeno behavior by applying this idea. The

37

3 Lyapunov Function Computation for Hybrid Systems

following example is a modified version of the battery model from Example 3.3, exhibiting
Zeno behavior.

Example 3.4 (Battery Model with Zeno Behavior). The battery model in Figure 3.4
differs from Example 3.3 only in one guard. Recharging may now be stopped when the
total charge is at least six instead of eight. This introduces possible Zeno behavior. If
the total charge reaches six, it is possible to switch to the charge mode. However, as the
guard of the reverse transition is also true at this moment, the system may switch back
again immediately. This cycle can be repeated infinitely often, without any time passing,
leading to an infinite, but convergent sequence of switching times. We do, however, not
consider this case a solution of the hybrid automaton, so that this possible behavior
would be ignored in any subsequent analysis.

ȧ = −E + k(b− a),
EL ≤ E ≤ EH

ḃ = −k(b− a)
5 ≤ a+ b
a ≥ 0

ȧ = R+ k(b− a)

ḃ = −k(b− a)
a ≥ 0
b ≥ 0

a+ b ≤ 6

a+ b ≥ 6

discharge charge

a, b ≥ 0

Figure 3.4: Kinetic Battery Model with Zeno Behavior

The next example shows a useful non-Zeno variant of the battery model that permits
finite trajectories.

Example 3.5 (Battery Model with Non-extendable Finite Trajectories). Figure 3.5
shows a model of a battery that permits non-extendable finite hybrid trajectories when-
ever the available charge a reaches 0. When this happens, the invariant of the left hand
side state is invalidated, but the guard of the outgoing transition is not satisfied. Such
a model makes sense, if it is seen as a part of a larger automaton obtained through
decomposition. For instance, this automaton could actually be a sub-automaton of a
larger model that contains special handling for the case a = 0, by an outgoing transition
leaving the sub-automaton from the left hand side node. This is the reason why such
models are useful, and explicitly considered in the scope of this thesis.

ȧ = −E + k(b− a),
EL ≤ E ≤ EH

ḃ = −k(b− a)
5 ≤ a+ b
a ≥ 0

ȧ = R+ k(b− a)

ḃ = −k(b− a)
a ≥ 0
b ≥ 0

a+ b ≤ 6
a > 0

a+ b ≥ 8

a, b ≥ 0

discharge charge

Figure 3.5: Kinetic Battery Model with Non-extendable Finite Trajectories

38

3.3 Global Asymptotic Stability and Lyapunov Functions

3.3 Global Asymptotic Stability and Lyapunov Functions

This section gives a formal definition of the stability property that is central to this
thesis: global asymptotic stability. This definition is independent of the hybrid nature
of a system and applicable to any dynamical system operating in continuous time. Next,
Lyapunov functions are formally introduced, first for systems with purely continuous
dynamics and then for hybrid systems.

3.3.1 Global Asymptotic Stability

The state xe ∈ R
n the system is supposed to converge to is also called the system’s equilib-

rium state. A system given by a single continuous differential inclusion ẋ ∈ F (x), x ∈ R
n

cannot be globally asymptotically stable unless F (xe) = {0}, that is the equilibrium state
is never left, once entered. By convention, we assume that the equilibrium state the sys-
tem is expected to converge to is always at 0. Of course, in practical applications it is
often the case that the system is supposed to converge to some other continuous state.
A cruise controller, for instance, might be expected to force the velocity v to converge
to a given target value v0, representing a set point of the system. In this case, the equi-
librium can be artificially shifted to 0 by variable substitution. If the set point is xe, the
variable x can be replaced by a new variable x̄ = x−xe. The result is a new differential
equation in x̄, whose right hand sides are shifted accordingly. The equilibrium will be
x̄ = 0, which is equivalent to x = xe. Moreover, global asymptotic stability of a system
with respect to an equilibrium at 0 implies global asymptotic stability for any set point,
as long as the control strategy is independent of the actual set point. This is the case
if the control strategy can be formulated only in terms of x̄. Therefore, without loss
of generality, the equilibrium state can assumed to be 0 for stability analysis. This is
particularly important for the Lyapunov function computation methods, because the
algorithms generally assume an equilibrium at 0.

If a system has an equilibrium state at 0, then global asymptotic stability can be
defined as follows.

Definition 3.15 (Global Asymptotic Stability [Khalil, 1996]). A continuous-time dy-
namic system H is called globally stable (GS) if for all ǫ > 0 there exists a δ > 0 such
that for all (finite or infinite) trajectories x(·) of H and for all times t for which x(t) is
defined:

||x(0)|| < δ =⇒ ||x(t)|| < ǫ.

H is called globally attractive (GA) if for all infinite trajectories x(t) of H

lim
t→∞

x(t) = 0, that is, ∀ǫ > 0 : ∃t0 ≥ 0 : ∀t > t0 : ||x(t)|| < ǫ.

A system that is both globally stable and globally attractive is called globally asymptot-
ically stable (GAS).

In a nutshell, global stability is a boundedness condition (see Figure 3.6(a)). For any
bound ǫ on the distance to the equilibrium state 0, by bounding the possible initial

39

3 Lyapunov Function Computation for Hybrid Systems

states with the δ-ball, we only obtain trajectories that stay within the ǫ-ball. In other
words, by allowing only small enough deviations from 0, represented by initial states, it
is always possible to stay within a bound on all states, such that “small” disturbances
only lead to “small” errors in the long run.

Global attractivity covers the actual convergence to the desired state (see Figure
3.6(b)). This property can be viewed as a conjunction of infinitely many liveness proper-
ties: For every epsilon-ball B(0, ǫ) (the dashed circle) around the origin, every trajectory
will eventually enter B(0, ǫ) and never leave it again. Note that convergence does usually
not mean that the equilibrium state is actually reached. It is sufficient to approach it
infinitely close. This means that a globally attractive system is also region stable with
respect to any region containing the equilibrium in its interior.

δ

ε

(a) Global Stability

ε

(b) Global Attractivity

Figure 3.6: Global Asymptotic Stability

The acronym “GAS” is used both as a noun and as an adjective in this thesis, meaning
either “globally asymptotically stable” or “global asymptotic stability.”

Note that the basic definitions of stability and attractivity neither constrain the ǫ-
deviation nor the convergence rate. It is, however, possible to quantify these values
as a side product of Lyapunov-function-based verification. Convergence rates for the
attractivity property are discussed in Section 3.5.4.

For hybrid systems, global asymptotic stability talks only about trajectories, repre-
senting the evolution of a system’s continuous state over time. The discrete behavior
of a system only influences asymptotic stability indirectly, as mode switchings force the
system to follow different differential inclusions, leading to different trajectories. Only
the continuous state is required to converge to 0. In fact, it is easy to construct GAS
systems for which the discrete state does not converge at all, but oscillates forever. A
simple system with this behavior is given in Example 3.6.

In the literature, global asymptotic stability for hybrid systems is also sometimes

40

3.3 Global Asymptotic Stability and Lyapunov Functions

defined with the additional stipulation that there do not exist any non-extendable finite
trajectories. The notion of GAS used in this thesis does not require this assumption and
is also sometimes termed preasymptotic stability [Cai et al., 2008].

As a counterpart to global stability, there also exist definitions of local stability prop-
erties, where stability and attractivity are only fulfilled for initial states x(0) that lie
within certain sub-sets, called regions of attraction. This thesis focuses on global sta-
bility properties, but adaptions for the local case are possible in many cases by adequate
restriction of a system’s invariants.

Example 3.6 ([Johansson & Rantzer, 1998]). Consider the hybrid system given in
Figure 3.7. The two discrete modes are combined by a switching strategy that results
in convergence to the equilibrium from any initial state. This example illustrates that
it is in general not a necessary condition that the Euclidean distance to the equilibrium
decreases monotonically.

ẋ1 = −0.1x1 + x2

ẋ2 = −5x1 − 0.1x2

|x1| ≤ |x2|

ẋ1 = −0.1x1 + 5x2

ẋ2 = −x1 − 0.1x2

|x1| ≥ |x2|

|x2| ≥ |x1|

|x1| ≥ |x2|

true true

Figure 3.7: Globally Asymptotically Stable Two-mode System

As can be seen in the plot of an example trajectory given in Figure 3.8, this distance
will actually sometimes increase for some time. Lyapunov functions, as they are defined
in the following section, provide a generalization of such a distance measure that can
also be applied to this system.

Sometimes, we only want a system to be GAS for some of its variables. For instance,
some system variables might only have a helper role inside a controller, not representing
any physical properties. If some system variables do not need to fulfill the stability
property, then we call this GAS with respect to a sub-set of variables, as defined below.

Definition 3.16 (Global Asymptotic Stability with Respect to a Sub-set of Variables).
Let H be a hybrid automaton, and let V ′ be a sub-set of the variables of H. For a system
state vector x ∈ S, let x|V ′ be the sub-vector only containing the values of variables in
V ′. A continuous-time dynamic system H is called globally stable (GS) with respect to
V ′ if for all ǫ > 0 there exists a δ > 0 such that for all functions x|V ′(·) and for all t for
which x|V ′(t) is defined we have

||x(0)|| < δ =⇒ ||x|V ′(t)|| < ǫ.

H is called globally attractive (GA) with respect to V ′ if for all functions x|V ′(t), we have

lim
t→∞

x|V ′(t) = 0, that is, ∀ǫ > 0 : ∃t0 ≥ 0 : ∀ t > t0 : ||x|V ′(t)|| < ǫ,

41

3 Lyapunov Function Computation for Hybrid Systems

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x1

x2

Figure 3.8: Example Trajectory for the System Given in Figure 3.7

where 0 is the origin of R|V ′|. A system that is both globally stable with respect to V ′

and globally attractive with respect to V ′ is called globally asymptotically stable (GAS)
with respect to V ′.

Note that, for the global stability property, the bound on the initial state x(0) considers
all variables while the bound on the overall reachable states only refers to variables in
V ′. This is because variables in V ′ will usually still have dependencies with variables
outside V ′. If there is no bound on the initial state of those other variables, then it is
usually not possible to prove a bound on the overall states of variables in V ′.

3.3.2 Lyapunov Functions

Throughout this thesis, Lyapunov functions are used to prove the global asymptotic
stability property given by Definition 3.15. In this section, the theorems for conducting
such a proof are presented. They allow the conclusion that the existence of a Lyapunov
function does indeed imply global asymptotic stability. See Figure 3.9 for an image of
a Lyapunov function with a superimposed trajectory (in black) which converges and
along which the Lyapunov function value is strictly decreasing. First, systems consisting
only of a single differential inclusion are covered (comparable to hybrid automata with
just one discrete mode, no transitions, and an invariant true), and then the Lyapunov
function definition is extended to hybrid automata. For this purpose, another definition
using individual local functions for the discrete modes of the automaton is given.

First, we define class K∞ functions, which are in turn used to define Lyapunov func-

42

3.3 Global Asymptotic Stability and Lyapunov Functions

Figure 3.9: Quadratic Lyapunov Function and Convergent Trajectory

tions.

Definition 3.17 (Class K∞ Functions [Khalil, 1996]). A function f : R+ → R
+ is of

class K∞ if and only if:

• f(0) = 0,

• f is strictly monotonically increasing, and

• limx→∞ f(x) = ∞.

Theorem 3.3 (Lyapunov Functions [Pettersson, 1999; Cortés, 2008]). Let ẋ ∈ F (x), x ∈
R
n, be a differential inclusion. If there exists a continuously differentiable function

V : Rn → R, called Lyapunov function, such that

(1) there exist class K∞ functions f1 and f2 such that for all x ∈ R
n f1(||x||) ≤ V (x) ≤

f2(||x||),

(2) there exists a class K∞ function f3 such that for all x ∈ R
n: V̇ (x) ≤ −f3(||x||),

where V̇ (x) := sup
{〈

dV
dx (x)

∣

∣ y
〉∣

∣y ∈ F (x)
}

,

then the continuous-time system given by the differential inclusion is GAS.

Here, dV
dx (x) denotes the gradient of V at x, given as a row vector. The time derivative

V̇ of V is defined as the supremum of the scalar product of this gradient (describing the
rate of change of V with respect to x) and any behavior allowed by the differential
inclusion, given as a column vector (describing the rate of change of x with respect to
time).

43

3 Lyapunov Function Computation for Hybrid Systems

We require continuous differentiability for the Lyapunov functions since compositions
of continuously differentiable and absolutely continuous functions are again absolutely
continuous. This means that V (x(t)) is also absolutely continuous, which is instrumental
for concluding GAS of the system, as the evolution of V (x(t)) can then be cast into an
integral form as in Remark 3.2.

Remark 3.4 (Global Exponential Stability [Pettersson, 1999]). A special case of a class
K∞ function is f(x) = αx for some α > 0. If the class K∞ functions f1, f2, and f3 are
of this type in the above theorem, then one can furthermore conclude that all system
trajectories converge with an exponential convergence rate. This is called exponential
stability . This restricted notion of stability has the advantage that the convergence rate
can be used to estimate the convergence time from any starting state to any target region
around the equilibrium. The computational method that will be described in Section
3.5 generally show exponential stability.

If F (x) is a singleton set for all x, then the system can be represented as a differential
equation ẋ = f(x). In this case, condition (2) reduces to

(2’) there exists a class K∞ function f3 such that for all x ∈ R
n: V̇ (x) ≤ −f3(||x||),

where V̇ (x) :=
〈

dV
dx (x)

∣

∣ f(x)
〉

.

For a system consisting only of a single differential inclusion, we need to identify a
function that is positive everywhere but in the origin, where it is required to be zero, as
it is bounded from above by a class K∞ function. Furthermore, Condition (2) stipulates
that the function decreases along every solution of the differential inclusion, except in
the origin. This implies convergence to the origin.

To extend this theorem to hybrid systems, it is necessary to account for the discon-
tinuities introduced by the switching. A simple way of achieving this is by imposing
additional conditions on the Lyapunov functions, such that the discrete updates trig-
gered by the transitions cannot lead to an increase of the Lyapunov function value. This
leads to the concept of common Lyapunov functions. Here, all discrete modes of hybrid
automaton share the same Lyapunov function.

Theorem 3.4 (Common Lyapunov Functions [Pettersson, 1999]). Let H be a hybrid
automaton according to Definition 3.12. If there exists a continuously differentiable
function V : S → R, called a common Lyapunov function, such that

(1) there exist class K∞ functions f1 and f2 such that for all x ∈ ⋃

m∈M Inv(m):
f1(||x||) ≤ V (x) ≤ f2(||x||),

(2) for each m ∈ M there exists a class K∞ function f3 such that for all x ∈ Inv(m):
V̇m(x) ≤ −f3(||x||), where V̇m(x) := sup

{〈

dV
dx (x)

∣

∣ y
〉∣

∣y ∈ Flow (m)(x)
}

,

(3) for each mode transition (m1,m2, G, U) ∈ T : x ∈ G =⇒ V (U(x)) ≤ V (x),

then H is globally asymptotically stable.

44

3.3 Global Asymptotic Stability and Lyapunov Functions

Note that Condition (3) is trivially true in case all updates U are the identity func-
tion. In this case, the guards G of the transitions are of no consequence, which in turn
implies that the hybrid automaton H is GAS regardless of the switching strategy that
is employed. This illustrates the conservatism of the common Lyapunov function ap-
proach: For this class of systems, common Lyapunov functions can only be identified if
the system would be stable under any switching strategy.

For instance, the system given in Example 3.6 is globally asymptotically stable, but
this cannot be shown by a common Lyapunov function. The reason for this is the
existence of possible alternative switching strategies that would not result in a stable
hybrid system. For such cases, refined notions of Lyapunov functions for hybrid systems
are needed.

t1 t2 t3

V(x(t))

t

Figure 3.10: Piecewise Continuous Lyapunov Function over Time

A common approach here is to allow for multiple local Lyapunov functions for the
different discrete modes (see Figure 3.10) [Branicky, 1998]. The family of these local
Lyapunov functions then forms the global Lyapunov function. Each of the local functions
fulfills Conditions (1) and (2) of Theorem 3.4, whenever the modem can be active, that is
whenever the current continuous state x is allowed by its invariant Inv(m). Furthermore,
upon switching from one discrete mode to another, the local Lyapunov function value
of the source mode may not be lower than that of the target mode. Discrete switchings
between modes, each with its own Lyapunov function, must not increase the global
Lyapunov function value. Under these circumstances, stability of a hybrid system given
by a hybrid automaton can be shown by identifying a family of suitable local Lyapunov
functions, one function per mode.

Theorem 3.5 (Discontinuous Lyapunov Functions [Pettersson, 1999]). Let H be a
hybrid automaton according to Definition 3.12. If for each m ∈ M there exists a
continuously differentiable Vm : S → R such that

(1) for each m ∈ M there exist class K∞ functions f1 and f2 such that for all x ∈
Inv(m): f1(||x||) ≤ Vm(x) ≤ f2(||x||),

(2) for each m ∈ M there exists a class K∞ function f3 such that for all x ∈ Inv(m):

45

3 Lyapunov Function Computation for Hybrid Systems

V̇m(x) ≤ −f3(||x||), where V̇m(x) := sup
{〈

dV
dx (x)

∣

∣y
〉∣

∣y ∈ Flow (m)(x)
}

,

(3) for each mode transition (m1,m2, G, U) ∈ T : x ∈ G =⇒ Vm2
(U(x)) ≤ Vm1

(x),

then the hybrid automaron H is globally asymptotically stable. The function Vm is
called a local Lyapunov function (LLF) of H for mode m. The family of Vm,m ∈ M
forms a function V (x,m) : Rn×M → R, where V (x,m) = Vm(x). This function V (x,m)
is called a global Lyapunov function (GLF) of H.

The theorem given in [Pettersson, 1999] deals with differential equations in place
of differential inclusions. However, the proof given in [Pettersson, 1999, p. 87] can be
applied with only very minor changes (i.e., replacing continuously differentiable solutions
for differential equations with absolutely continuous Carathéodory solutions) for the
more general case of Theorem 3.5. Theorems 3.3 and 3.4 are simply special cases of
Theorem 3.5.

Example 3.7. For the system from Example 3.6, it is now possible to prove stabil-
ity via Lyapunov functions. A possible discontinuous Lyapunov function is given as
Vm1

(x1, x2) = 5x21 + x22 and Vm2
(x1, x2) = x21 + 5x22 [Johansson & Rantzer, 1998].

Sometimes, even one local continuous Lyapunov function per mode might not be
enough. In this case, it is possible to allow for a discontinuous Lyapunov function even
within a single node. This can be achieved by partitioning its invariant set into several
sub-sets, each with its own (continuous) Lyapunov function. Theorems for this case are
variants of Theorem 3.5, where the invariants Inv(m) are replaced by these sub-sets.
Additionally, one needs information on the possible transition directions between sub-
sets, to formulate inequality conditions in the vein of Condition (3). Another way of
viewing this refinement is as a re-formulation of the hybrid automaton. It is possible
to split a mode of a hybrid automaton into several new modes, each covering a part of
the original mode’s invariant set, and each inheriting the continuous dynamics of the
old mode. The transitions between the new modes must at least include all transitions
between the partition sets which trajectories could have taken in the original system. In
this case, all trajectories of the old system will also be trajectories of the new system,
so that stability of the latter implies stability of the former. This usage of multiple Lya-
punov functions for a single mode is directly equivalent to conducting stability analysis
corresponding to Theorem 3.5 (i.e., using one Lyapunov function per mode) for the new
system. However, such a mode splitting must be performed very carefully to be of any
use: Brute-force splitting will lead to an exponential growth in complexity which renders
the problem of identifying Lyapunov function intractable in practice very quickly. See
[Oehlerking et al., 2007] for a detailed discussion. A special case of node splitting will
also be employed in Chapter 4 to facilitate decomposition of hybrid automata.

Lyapunov functions (either continuous or discontinuous) for any given hybrid automa-
ton are closed under conic combination.

Theorem 3.6 (Cones of Lyapunov Functions). Let H be a hybrid automaton and, for
each 1 ≤ i ≤ k, let V i be a GLF for H. Then, all functions in cone({Vi | 1 ≤ i ≤ k})
are also global Lyapunov functions for H.

46

3.3 Global Asymptotic Stability and Lyapunov Functions

This theorem follows directly from the Definition 3.5, since also class K∞ functions
form a convex cone. It is straightforward to see that both the sum of two Lyapunov func-
tions and the product of a Lyapunov function and a positive scalar are again Lyapunov
functions.

Remark 3.5. The fact that the “tip of the cone” is not included in Definition 3.6
is motivated by Theorem 3.6 stating that all conic combinations of (global or local)
Lyapunov functions are again (global or local) Lyapunov functions for the same system
or mode, except for the constant zero function. Clearly, the function f(x) = 0 cannot be
a Lyapunov function in any case, since it does not decrease strictly along any trajectory.

The property expressed by Theorem 3.6 has a very important consequence: Since
conic hulls are also always convex, the problem of identifying a Lyapunov function for
a given system is always convex, and therefore solvable by convex optimization. This
property will also play a central role in the decomposition methods in Chapter 4.

One special case is a system where only some continuous variables are required to
converge to 0. The corresponding stability property, GAS with respect to a sub-set of
variables, has already been given in Definition 3.16. In this case, we have the option to
choose a Lyapunov function that does not depend on the non-convergent variables at
all. Consequently, the Lyapunov theorem can be relaxed as follows.

Theorem 3.7 (Lyapunov Functions for a Sub-set of System Variables). Let H be a
hybrid automaton according to Definition 3.12 and let V ′ ⊂ V. Let x|V ′ be the sub-
vector of x ∈ S only containing values of variables in V ′. If for each m ∈ M there
exists a set of variables Vm with V ′ ⊆ Vm ⊆ V and a continuously differentiable function
Vm : S → R such that

(1) for each m ∈ M there exist class K∞ functions f1 and f2 such that for all x ∈
Inv(m): f1(||x|Vm

||) ≤ Vm(x) ≤ f2(||x|Vm
||),

(2) for each m ∈ M there exists a class K∞ function f3 such that for all x ∈ Inv(m):
V̇m(x) ≤ −f3(||x|Vm

||), where V̇m(x) := sup
{〈

dV
dx (x)

∣

∣ y
〉∣

∣y ∈ Flow (m)(x)
}

,

(3) for each mode transition (m1,m2, G, U) ∈ T : x ∈ G =⇒ Vm2
(U(x)) ≤ Vm1

(x),

then the hybrid system H is globally asymptotically stable with respect to V ′.

The difference to Theorem 3.5 lies in the fact that Vm is no longer required to grow
with increasing absolute value of variables outside V ′. In particular, we can now also have
Lyapunov functions which do not depend on these variables at all, which was impossible
in Theorem 3.5. However, it can still be desirable to have a these variables explicitly
appear in the Lyapunov function term, especially, if they have a noticeable effect on
variables that do lie in V ′. In general, any variables that have an effect on the behavior
of the variables on V ′ in mode m should be included in Vm. If, however, a variable is
not needed at all in mode m and if does not change in mode m (for instance, because it
only plays a role in some other modes), then there is no need to force it to appear in Vm.
The following Example 3.8 is such a case where a variable is not needed in a mode and

47

3 Lyapunov Function Computation for Hybrid Systems

its derivative is therefore set to zero. In this case, it would not be possible at all to find
a LLF for this mode unless this variable is excluded from Vm, as it remains unchanged
over time.

With the help of Theorems 3.3, 3.4, 3.5, and 3.7, it is possible to conduct a proof
of global asymptotic stability by identifying suitable Lyapunov functions. This proof
can be conducted by hand, if one manages to find a suitable Lyapunov function (or a
family of local Lyapunov functions) for the system. However, for complex systems, this
is usually a complicated and time-consuming task, requiring a lot of insight into the
structure and the behavior of the system. Therefore, it is very desirable to automate
this process. It is, of course, not possible to search the entire space of functions, so
we must restrict the search space to a parametrized sub-space. The next section gives
an overview about the linear-matrix-inequality-based methods for Lyapunov function
computation that are used as building blocks for decompositional proofs in this thesis.
In theory, these methods can be applied to a large class of systems, but in many cases,
their usefulness is undermined by numerical issues that still make it challenging to find
solutions in practice. These drawbacks will be discussed in Section 3.5.

The following example illustrates the use of Lyapunov functions for stability proofs.

Example 3.8 (Cruise Control Example). Consider an extension of the proportional-
integral controller of Example 3.1 on page 31. The plant remains the same as before, but
the controller is now hybrid. The controller C is modelled as a hybrid system consisting
of a proportional-integral (PI) controller sub-system that is active if v is near 0, and two
sub-systems that model so-called saturations, that is, “cut-offs” for maximal and minimal
acceleration. A PI-controller is a linear system and would therefore violate comfort
requirements of maximal acceleration and deceleration for large velocity differentials.
This is remedied by the inclusion of the two additional modes. Each of the three modes
of operation has a different “area of responsibility” in the state space, which is reflected
in its particular invariant. The modes are as follows:

• A deceleration mode m1, setting a = −2, which models a constant braking effort:
This mode is responsible for situations when the vehicle is considerably too fast,
and therefore associated with the invariant 5 ≤ v.

• a PI-control mode m2, with an additional internal variable x, representing the
integrator part (i.e., ẋ = v), and setting a = −0.001x − 0.052v: This mode is
responsible for the smooth approach to v = 0, and therefore associated with the
invariant −15 ≤ v ≤ 15.

• a acceleration mode m3, setting a = 1.5, which models a constant maximal ac-
celeration: This mode is responsible for situation when the vehicle is considerably
too slow, and therefore associated with the invariant −5 ≥ v.

To arrive at a hybrid automaton model for the system, one has to build a closed-loop
model subsuming plant and controller dynamics. For each mode, the flow function and
invariant set are simply constructed from the conjunction of the plant dynamics and the

48

3.3 Global Asymptotic Stability and Lyapunov Functions

P
v̇ = s · a

C

a
v

s ∈ [0.975, 1.125]

Figure 3.11: Cruise Controller Setup

ẋ = 0
v̇ ∈ [−2.05,−1.95]
v ≥ 5

ẋ = v
v̇ ∈ convex (−0.000975x − 0.0507v,

−0.001025x − 0.0533v)
v ≥ −15
v ≤ 15
x ≥ −500
x ≤ 500

ẋ = 0
v̇ ∈ [1.425, 1.5375]
v ≤ −5v ≤ 7∧

x+ = 0
v ≥ 12

v ≤ −12

v ≥ −7∧
x+ = 0

v ≥ 5

−15 ≤ v ≤ 15
∧x = 0

v ≤ −5

m1

m2

m3

Figure 3.12: Cruise Control Automaton

49

3 Lyapunov Function Computation for Hybrid Systems

controller dynamics of the mode in question. Also, a suitable switching strategy should
be selected. This leads to the hybrid automaton model as given in Figure 3.12. Note
that some additional constraints on the integrator variable x have been imposed, namely
−500 ≤ x ≤ 500. This additional invariant can be exploited for the stability analysis
and does not reduce the number of possible trajectories, as states with |x| > 500 are
not reachable from the initial states in any case. This can, for instance, be verified with
barrier certificate techniques (see Section 3.4).

Note that the variables s and a, which did not appear on any left-hand sides of differ-
ential equations or inclusions, have been eliminated to arrive at a simpler description.
The variable s has simply been replaced by the interval that bounds it, and the ac-
celeration a is equal to v̇. The transitions have been chosen to avoid chattering (i.e.,
transitions back and forth between modes in quick succession). This is achieved by a
hysteresis-like switching strategy that also prevents Zeno behavior.

Proving global asymptotic stability of this system with respect to equilibrium point
v = 0 and a sub-set of variables V ′ = {v} requires us to identify a Lyapunov function
Vmi

for each of the three modes, such that all conditions of Theorem 3.7 are fulfilled.
For Vm2

, since v directly depends on x, we set Vm = {x, v}. One example function
fulfilling Conditions (1) and (2) of 3.7 is

Vm2
(v, x) = 46.7455x2 + 1101.9vx + 20729v2.

For the modesm1 andm3, the variable x is of no consequence, as it remains unchanged.
Therefore, we set Vm1

= Vm3
= {v}. We can pick any quadratic function in v with

positive coefficient, for example

Vm1
(v, x) = Vm3

= v2.

These Lyapunov functions need not depend on x, since the value of variable x is of no
consequence for the behavior of variable v, and since x will be reset to 0, once we return
to mode m2. These functions fulfill Condition (1) on v ≥ 5 and v ≤ −5, and the time
derivative V̇ is given as −4v for mode m1 and 3v for mode m3, respectively. Both of
these functions fulfill Condition (2) on the invariant of the corresponding mode.

However, one can easily see that Condition (3) is not satisfied for all transitions of
the hybrid automaton for these LLFs. Computing Lyapunov functions separately for
all modes, as we have done, is not guaranteed to produce a global Lyapunov function.
To obtain functions Vmi

which do not have this problem, we can, for instance, choose
Vm1

= 200000v and Vm3
= −200000v. In this case, also Condition (3) is satisfied.

Figure 3.13 gives visualizations of the global Lyapunov function obtained in this man-
ner. In Figure 3.13(a), an example trajectory of the system is shown, starting at v = −15
in mode m3. The red/dashed part of the trajectory shows the time spent in m3. Even-
tually, the system switches to mode m2, which is shown by the green/solid part of the
trajectory, and converges to v = x = 0. Figure 3.13(b) shows the evolution of the global
Lyapunov function value over time. Note that the function is strictly decreasing over
time along the trajectory. As soon as the switch to m2 occurs (around time t = 5),
there is a discontinuity in the overall global Lyapunov function, which is visible as a

50

3.4 Lyapunov Functions as Barrier Certificates

sudden drop of the Lyapunov function value. The Lyapunov function value eventually
converges to 0. Figures 3.13(c) and 3.13(d) show the Lyapunov functions for modes
m3 and m2, respectively. Superimposed on the function surfaces is the segment of the
example trajectory belonging to the particular mode. The Lyapunov function for mode
m1 is not shown, as it is simply the mirror image of Vm3

along the plane v = 0, and the
example trajectory does not enter the mode m1.

(a) two-dimensional trajectory plot

V
(v
(t
),
x
(t
))

t

(b) Lyapunov function over time

(c) Lyapunov function plot for m3 (d) Lyapunov function plot for m2

Figure 3.13: Cruise Control System: Example Trajectory and Lyapunov Functions

3.4 Lyapunov Functions as Barrier Certificates

A concept that is related to Lyapunov functions is the so-called barrier certificate [Prajna
& Jadbabaie, 2004]. If one is interested in proving safety (i.e., the non-reachability of
a pre-specified set of undesirable states), then a function with Lyapunov-like properties
can be employed. The basic idea is to find a function fulfilling a relaxed version of
the Lyapunov condition on the time derivative. To be exact, a function V such that
V̇ (x) ≤ 0 is required, and if this is the case, then we know that V is always monotonically

51

3 Lyapunov Function Computation for Hybrid Systems

decreasing over time, but not necessarily strictly decreasing. If, at time t, we have
V (x(t)) ≤ c for some positive c, then we know that all states x with V (x) > c will
remain unreachable for all future times.

Therefore, if we have such a function V , we can prove safety if we identify a value c
such that V (x0) ≤ c for all initial states and such that V (x) > c for all unsafe states.
See Figure 3.14 for an illustration.

Initial Set

Contour Line V(x)=c

Possibly

Reachable

States

Figure 3.14: Barrier Certificate Separating Initial and Unsafe States

Since the conditions on Lyapunov functions (as in Theorem 3.3) are stronger than those
on barrier certificate functions, every Lyapunov function can also be used to conduct
a safety proof with respect to some unsafe region, allowing a joint proof of stability
and safety. The only additional effort needed to conduct the safety proof consists of
identifying a suitable constant c.

In the same vein as for discontinuous Lyapunov functions, discontinuous functions can
also serve as barrier certificates. The conservative approach is to require that function
V does not increase upon switching from one mode to another (as in Theorem 3.5).
However, it is also sufficient to require that, upon switching from m1 to m2, the set of
states the system can attain after the switch is again separated from the unsafe region
by a contour line V (m2, x) = cm2

for the target mode. When taking this approach, each
mode m may have its own threshold cm, separating all possible initial states of the mode
(taking into account all incoming transitions) from the unsafe set.

In other words, V may increase, as long as this increase is not so severe that the
safety requirement can be violated at some point. See Fig. 3.15 for an illustration of an
admissible behavior of the function V over time. The dotted lines depict the thresholds
cm which guarantee that the system is still safe. Since these threshold might differ
depending on the active mode, they may change upon every mode switch. The value of
the function V , represented by the solid lines, must not increase while a mode is active.
Upon a mode switch, however, function V is allowed to increase, as long as the threshold
for the new mode is not exceeded.

The following section introduces methods for the automatic computation of Lyapunov
functions. These methods can also be applied for the computation of barrier certificates
with only minor changes [Prajna & Jadbabaie, 2004].

52

3.5 Computing Lyapunov Functions

V (t)

t

Figure 3.15: Admissible Behavior of a Barrier Certificate Function V over Time

3.5 Computing Lyapunov Functions

This section details the actual computation of parametrized Lyapunov functions for
certain classes of hybrid systems. These computations are based on linear matrix in-
equalities (LMI) [Boyd et al., 1994], which can be used to formulate the Conditions
(1)-(3) of Theorem 3.5 as conditions on matrices. These inequalities contain unknowns
that represent the free parameters of a Lyapunov function template. For the standard
LMI approach to stability proofs, such templates are quadratic functions of the form
V (x) = xTPx, where P is a symmetric matrix of free parameters, for example

P =





p1 p2 p3
p2 p4 p5
p3 p5 p6





for a three dimensional system, with the pi being the parameters. These free parameters
will be bound to fixed values, such that a global Lyapunov function according to Theorem
3.5 results. This problem can be mapped onto a class of non-linear, convex optimization
problems called semidefinite programming (SDP) problems, which can in turn be solved
by numerical algorithms.

The approaches presented in this section have one common characteristic: they look
at the hybrid system in a monolithic fashion. All parts of the system (i.e., differential
inclusions, invariant, guards, updates) are mapped onto corresponding linear matrix
inequality constraints. The resulting constraint system is then converted into one SDP
problem, which is handed over to a solver. If the solver is able to find a solution
(i.e., values for the parameters, such that Conditions (1)-(3) of Theorem 3.5 are all
fulfilled), then it will return valuations for the free parameters. The computed Lyapunov
function can then be used as a certificate of global asymptotic stability. However, the
methods discussed below have their limitations, which is a main motivation for the
decompositional methods which are the central focus of this thesis. These limitations will
be discussed in detail in Section 3.6.3. The decomposition methods that are presented

53

3 Lyapunov Function Computation for Hybrid Systems

in Chapter 4 split the problem of computing a Lyapunov function into several local LMI
problems.

In order to conduct Lyapunov function computations, a few restrictions need to be
formulated. The first one is that the differential inclusions need to be convex.

Definition 3.18 (Convex Differential Inclusion). A differential inclusion ẋ ∈ F (x) is
called convex , if there exist m functions fi : R

n → R
n, 1 ≤ i ≤ m, such that for all x

F (x) = {y | y ∈ convex ({f1(x), . . . , fm(x)})} .

A convex differential inclusion has the property that all the behaviors it allows lie in
a convex set, given by finitely many corner points. At any point in time, the system
may behave according to any differential equation ẋ = fi(x), or any differential equation
corresponding to a convex combination of the functions fi.

Note that the use of convex differential inclusions is more restrictive than the use of
general differential inclusions ẋ ∈ F (x). However, convex differential inclusions are still
sufficient to model most of the uncertain dynamics that arise in hybrid system applica-
tions. For instance, bounded disturbances on the system dynamics can be modelled in
this fashion, in the same manner as in Example 3.8. If a disturbance does not result
in a convex right-hand side of a differential inclusion, then it is also usually possible to
over-approximate the system behavior in a convex manner.

Secondly, we need to restrict the type of functions that are allowed as corner points
of the cone, that is, the functions fi. Direct application of LMI based methods requires
that these functions are either linear or affine. The same restriction applies to the update
functions. However, with the sums-of-squares decomposition [Parrilo, 2003] (see Section
3.5.3), this restriction can be circumvented to a certain degree. Note that an affine
function f : Rn → R

n can always be written in the form f(x) = Ax+ b, where A is an
n× n-matrix and b is a vector of size n.

Thirdly, the Lyapunov function template is of the form V = xTPx, and therefore the
computed Lyapunov functions are all quadratic. Again, the sums-of-squares decomposi-
tion allows for more general classes of Lyapunov functions, most notably higher-degree
polynomials.

3.5.1 Linear Matrix Inequalities

The first step of a Lyapunov function computation involves the formulation of the Lya-
punov function conditions as a linear matrix inequality (LMI). To formally define LMIs,
we first need to define the positive semidefiniteness operator on matrices.

Definition 3.19 (Semidefiniteness). A function f : Rn → R is called positive semidefi-
nite, if f(x) ≥ 0 for all x. A function f is called negative semidefinite if −f is positive
semidefinite. A matrix M is positive (negative) semidefinite, if the quadratic function
f(x) = xTMx is positive (negative) semidefinite. This is denoted by M � 0 (M � 0).

Semidefiniteness is a useful property: even though it is a global condition that holds
for all x, semidefiniteness of a quadratic function V = xTPx can be checked without

54

3.5 Computing Lyapunov Functions

explicitly looking at any specific values of V (x). Instead, semidefiniteness can be decided
by looking at the matrix P only, for instance by computing its eigenvalues. If the
real parts of all eigenvalues of P are non-negative, then P is positive semidefinite, and
therefore also the function V (see Section 3.6.4).

Moreover, the semidefiniteness operator “�” is a conic operator that can be used
to define optimization problems that are still convex and can be solved with relative
efficiency [Boyd & Vandenberghe, 2004]. One can informally see this as taking linear
optimization problems and replacing the “≥” operator on scalars with the “�” operator
on matrices. Linear matrix inequalities are a way of formalizing such optimization
problems.

Definition 3.20 (Linear Matrix Inequality [Boyd et al., 1994]). A linear matrix inequal-
ity (LMI) is an inequality of the form

F0 +

m
∑

i=1

λiFi � 0,

where λi ∈ R, 1 ≤ i ≤ m and the Fi, 0 ≤ i ≤ m are symmetric matrices in R
n×n. The

λi are the free variables of the LMI. A solution to an LMI is a valuation of the free
variables λi such that the inequality is fulfilled.

Multiple linear matrix inequalities can always be collapsed into one inequality. For
instance, the inequalities λM1 � 0 and λM2 � 0, with λ ∈ R, if they should be solved
simultaneously, are equivalent to the LMI

[

λM1 0
0 λM2

]

� 0.

Using this type of diagonal block structure, any family of LMIs can be viewed as a single
LMI. Therefore, there is no need to differentiate between systems of LMIs and a single
LMI. Both terms will be used interchangeably from this point on.

Instead of writing down the left hand side of an LMI as sums of products of a scalar
and a matrix, shorthand notations are also frequently used. For instance, the inequality
ATX+XA � 0, where X is a symmetric matrix of unknowns, and A is a (not necessarily
symmetric) matrix with fixed entries, can be expanded into an LMI by extracting all
entries of X as scalars λi. Since this matrix product notation is much more concise, it
will occur frequently in the scope of this thesis.

3.5.2 LMIs for Stability Proofs

To prove global asymptotic stability, the Lyapunov conditions of Theorems 3.3, 3.4, 3.5,
and 3.7 can be formulated as linear matrix inequalities. For the non-hybrid case of
Theorem 3.3 the LMI constraint system look as follows.

Theorem 3.8 (LMI for Asymptotic Stability of Linear, Convex Differential Inclusions
[Boyd et al., 1994, p.62]). Let fi(x) = Aix be a set of linear functions, forming a convex

55

3 Lyapunov Function Computation for Hybrid Systems

differential inclusion ẋ ∈ F (x). Denote as I the n×n identity matrix. Then, ẋ ∈ F (x) is
globally asymptotically stable if and only if there exists an α > 0, such that the following
LMI has a solution:

Find P ∈ R
n×n and α ∈ R, such that

P − αI � 0

for all i : AT
i P + PAi + I � 0

The variable α has been introduced to model the class K∞ function f1 from Theorem
3.3. This is equivalent to setting f1(||x||) to xT (αI)x = α||x||2. The constraint V (x) ≤
f2(||x||) is not needed here, since such a function f2 will always exists for a quadratic
V . Without loss of generality, the class K∞ function f3 has been set to ||x||2. No
additional scalar variable is needed since Lyapunov functions form a convex cone, so
that the solution can always be linearly scaled as desired.

Note that the fi are all assumed linear, and not affine. This is no restriction, because
a single convex differential inclusion including an affine, but not linear function fi cannot
be globally asymptotically stable in 0. One possible trajectory would always follow this
fi, and since fi(0) 6= 0, it can not converge to 0.

As opposed to most other Lyapunov theorems, especially concerning hybrid systems,
the existence of a solution to this LMI is both a necessary and a sufficient condition for
global asymptotic stability. If the differential inclusion is in fact a differential equation
ẋ = f(x), then each P solving the LMI is the solution of the Lyapunov equation of the
form ATP + PA = −Q for some positive definite matrix Q [Khalil, 1996].

Theorem 3.8 exploits the fact that, whenever a function V is a Lyapunov function for
an entire family of differential equations ẋ = fi(x) (with respect to the same class K∞

functions), it is also a Lyapunov function for the convex differential inclusion defined by
the fi. The Lyapunov Condition (2) from Theorem 3.3 is closed under convex combina-
tion of the dynamics. If

〈

dV
dx (x)

∣

∣ f1(x)
〉

and
〈

dV
dx (x)

∣

∣ f1(x)
〉

fulfill Condition (2), then

so does
〈

dV
dx (x)

∣

∣ λf1(x) + (1− λ)f2(x)
〉

= λ
〈

dV
dx (x)

∣

∣ f1(x)
〉

+ (1 − λ)
〈

dV
dx (x)

∣

∣ f2(x)
〉

,
if 0 ≤ λ ≤ 1. Therefore, as long as the continuous variables evolve according to some
convex combination of the functions fi, the Lyapunov function V will decrease along all
trajectories, guaranteeing GAS. For this reason, it is sufficient to show that Condition
(2) is fulfilled only for the finitely many “corner point” functions fi.

In the scope of a hybrid automaton, LMI methods can also be applied to affine convex
differential inclusions, that is, differential inclusions for which the “corner point” dynam-
ics are of the form ẋ = Aix + bi. Note that this also includes dynamics with constant
right hand sides, which occur often in hybrid system models, for example when mod-
eling timeouts or saturation. This trick consists of the introduction of another system
variable, which represents the constant 1. In other words, we define the vector

x̄ =

[

x
1

]

,

56

3.5 Computing Lyapunov Functions

and use this new vector x̄ in the LMI. In this manner, a differential equation ẋ = Ax+b
is simply represented as

˙̄x =

[

A b
0 0

]

x̄,

and the parametric term x̄T P̄ x̄, P̄ ∈ R
(n+1)×(n+1), can be used to represent functions

with quadratic, linear, and constant parts.

In order to extend these results for the computation of Lyapunov functions to hybrid
automata, one major restriction must be overcome: LMI conditions are always global,
or, in other words, positive semidefiniteness is a condition on all values of x. When
dealing with hybrid automata, guards and invariants usually restrict the set of states
where something specific can happen. For instance, there is no need to prove Lyapunov
conditions for states where the invariant does not hold, as no continuous evolution is
possible from such a state anyway. Therefore, a method for expressing Lyapunov condi-
tions only for some states is needed. This gap between globality and locality is bridged
by the S-procedure, [Yakubovich, 1977]. The S-procedure is a relaxation that can be
used to represent local positiveness conditions by global positiveness conditions.

Theorem 3.9 (S-procedure [Boyd et al., 1994, p.23]). Let fi : R
n → R, 0 ≤ i ≤ m. If

there exist λi ≥ 0, 1 ≤ i ≤ m, such that

∀x ∈ R
n : f0(x)−

m
∑

i=1

λifi(x) ≥ 0,

then, for all x ∈ R
n,

∀x ∈ {y ∈ R
n | ∀i, 1 ≤ i ≤ m : fi(y) ≥ 0} : f0(x) ≥ 0

Moreover, if m = 1, and the function f1 is quadratic, then the two conditions are
equivalent.

The S-procedure allows the replacement of a locality condition, given as a number of
positiveness conditions ∀i, 1 ≤ i ≤ m : fi(y) ≥ 0, by a subtractive term. If we want to
show positiveness of some function f0 on a set where all these positiveness conditions
hold, then we can also show global positiveness of f0 minus this additional term instead.
In the simplest case, when there is just a single quadratic positiveness condition f1 ≥ 0,
this transformation is exact.

Regions of the state space that can be represented by such a single condition in this
exact case (combined with the substitution trick described above) are conic sections
(see Fig. 3.16), including conic shapes and ellipsoids. For instance, if f0(x) ≥ 0 is to
hold for all x with ||x|| ≤ 1, then this region can be represented by a quadratic function
f1 = 1−∑m

i=1 x
2
(i). The local condition

∀x ∈
{

y ∈ R
n

∣

∣

∣

∣

∣

1−
m
∑

i=1

x2(i) ≥ 0

}

: f0(x) ≥ 0

57

3 Lyapunov Function Computation for Hybrid Systems

is then equivalent to the global condition that there exists a λ ≥ 0 such that

∀x ∈ R
n : f0(x)− λ

(

1−
m
∑

i=1

x2(i)

)

≥ 0.

This constraint can then be expressed as an LMI that is equivalent to the original
problem, if the function f0 is also quadratic.

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5
−1.5

−1

−0.5

0

0.5

1

(a) Three-dimensional Double Cone

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

(b) Central Vertical Cut

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

(c) Off-Center Vertical Cut

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

(d) Horizontal Cut

Figure 3.16: Quadratic S-procedure: Possible Conic Sections in Three Dimensions

For other region shapes, the functions fi must be chosen to over-approximate the
region. In this case, it becomes useful to use more than one function fi, with the region
itself lying in the intersection of their positive sets (see Figure 3.17).

Since the λi are free variables eventually to be assigned valuations by the LMI solver,
using multiple functions fi gives extra degrees of freedom for finding a solution. One way

58

3.5 Computing Lyapunov Functions

Figure 3.17: Multiple Quadratic S-procedure Functions for a Single Set

to view this is to interpret the sum
∑m

i=1 λifi(x) as a linear combination of the shapes
represented by the functions fi. Through the free variables λi, the solver can effectively
select any over-approximation of the region that is a linear combination of the fi. In
theory, it is therefore helpful to give as many fi as possible, as this can only increase
the size of the the solution space by allowing possibly better approximations of a region.
In practice, one must however take care not to overburden the solver with the extra
variables λi, and not to introduce numerical instability by including badly conditioned
matrices. How to arrive at quadratic S-procedure functions fi for various shapes of
regions is discussed in detail in [Pettersson, 1999]. For instance, general polytopes can
be represented by a number of quadratic functions, each representing the product of two
constraining hyperplane constraints. Box-shaped regions can be represented by a single
function representing an ellipsoid over-approximation.

With the help of the S-procedure, LMIs for Lyapunov function computation for hybrid
automata can now be stated. The S-procedure is used to exploit the information given by
the guards and invariants of the hybrid automaton, and restrict conditions appropriately.

Theorem 3.10 (LMI for Asymptotic Stability of Hybrid Automata with Convex, Affine
Differential Inclusions [Pettersson, 1999]). Let ǫ > 0 and let H be a hybrid automaton.
Let the Qm

j ∈ R
(n+1)×(n+1) be matrices, such that for every mode m ∈ M,

x ∈ Inv(m) =⇒ [x, 1]Qm
j

[

x
1

]

≥ 0,

and let the Re
j ∈ R

(n+1)×(n+1) be matrices, such that for every transition e ∈ T with
guard set G

x ∈ G =⇒ [x, 1]Re
j

[

x
1

]

≥ 0.

Assume that Flow (m) is a convex, affine differential inclusion for each m, spanned by
a set of functions fm

i (x) = Am
i x+ bmi . Furthermore, assume that, for each transition e,

59

3 Lyapunov Function Computation for Hybrid Systems

the associated update function is affine with U(x) = Aex+ be. Define

Ĩ =

[

I 0
0 0

]

,

where I is the n× n identity matrix. If the LMI problem

Find Pm ∈ R
(n+1)×(n+1) and α, β, µm

j , νmj , ηmj , ϑe
j ∈ R, such that

α− ǫ � 0 (3.1)

β − ǫ � 0 (3.2)

for all m, j : µm
j , νmj , ηmj � 0 (3.3)

for all e, j : ϑe
j � 0 (3.4)

for all m : Pm −
∑

j

µm
j Qm

j − Ĩ � 0 (3.5)

for all m : Pm +
∑

j

νmj Qm
j − βĨ � 0 (3.6)

for all m, i :

[

(Am
i)T 0

(bmi)T 0

]

Pm + Pm

[

Am
i bmi
0 0

]

+
∑

j

ηmj Qm
j + αĨ � 0 (3.7)

for all e = (m1,m2, G,Aex+ be) :

Pm1
−
[

(Ae)T 0
(be)T 1

]

Pm2

[

Ae be

0 1

]

−
∑

j

ϑe
jR

e
j � 0 (3.8)

has a solution, then the hybrid automaton H is GAS.

Theorem 3.10 is a combination of a result for discontinuous systems with differential
inclusions [Cortés, 2008, p.63] and the LMI theorem for hybrid systems with differential
equations [Pettersson, 1999, p.97]. The LMI Constraints (3.1) to (3.4) are all one-
dimensional and therefore only non-negativeness conditions on R. Constraints (3.5) to
(3.8) directly correspond to the conditions in Theorem 3.5. Here, the matrices Qm

j and
Re

j are S-procedure terms representing invariants and guards, respectively. If a solution
to the LMI is found, then the local Lyapunov function for each discrete mode m is given
by

Vm(x) = [x, 1]Pm

[

x
1

]

.

The family of functions Vm forms the global Lyapunov function, proving global asymp-
totic stability as per Theorem 3.5.

Additionally, LMI problems can also contain linear objective functions, linear func-
tions on the free variables (both scalars and entries of matrix variables) that are to be
maximized/minimized. Possible uses for these functions are the computation of the best

60

3.5 Computing Lyapunov Functions

possible convergence rate estimate (see Section 3.5.4) or optimization wih respect to the
variables of certain LLFs for the decompositional methods of Chapter 4.

Note that the matrix Ĩ is used here to represent the class K∞ function f(||x||)) =
||x||2. As per Remark 3.4, this means that the system is not only GAS, but globally
exponentially stable if a solution is found. Therefore, the method cannot be used to
prove GAS for systems that converge slower than exponentially. However, such systems
can often be converted into exponentially stable systems by assuming overall bounds
on the continuous system states. This will also be illustrated for the detailed example
presented in Section 3.7.

If only GAS with respect to a sub-set of variables V ′ is of interest, then the matrix
Ĩ in Constraints (3.5), (3.6) and (3.7) should be replaced by a matrix containing a 1 in
each diagonal entry corresponding to a variable in Vm.

For modes m with 0 ∈ Inv(m), the LLF cannot contain any constant or linear parts,
as Vm(0) is required to be zero. For such modes, the last row and column of Pm can
therefore be set to zero in beforehand, reducing the number of free variables. It also
advisable to do this for numerical reasons, as SDP solvers will usually not be able to
return an exact zero solution for these values. Therefore, the returned “solution” for Pm

would be slightly invalid in this case.
An alternative to the representation of right hand sides of differential inclusions by

polytopic sets is the so called full-block S-procedure, which can represent differential
inclusions with ellipsoid right hand sides. Doing so results in an LMI which is comparable
in size to an LMI for two corner points for the polytopic set. Depending on the differential
inclusion, it can be beneficial to choose this approach over the one presented above. An
application of this alternative approach can for instance be found in [Donkers et al.,
2009].

3.5.3 The Sums-of-squares Decomposition

The LMI problem in Theorem 3.10 can be used to compute piecewise quadratic Lyapunov
functions for piecewise affine hybrid systems. If the system in question is not piecewise
affine, or if a non-quadratic Lyapunov function is required to prove stability of a system,
then this method cannot be used directly. However, it is possible to transform the
problem of computing of such Lyapunov functions into an LMI problem with the help
of the sums-of-squares (SOS) decomposition [Papachristodoulou & Prajna, 2002]. The
basic idea is to substitute higher degree polynomial (or even transcendental) terms in
the Lyapunov constraints by low-degree polynomial terms, such that the existence of a
solution for the transformed system implies the existence of a Lyapunov function for the
original system.

For instance, if we want to show that the function

f(x) = x4 − x3 + x2

is non-negative, we can substitute x2 with a new variable z, obtaining a new function

f̃(x, z) = z2 − xz + x2 = [x, z]P

[

x
z

]

61

3 Lyapunov Function Computation for Hybrid Systems

with

P =

[

1 −0.5
−0.5 1

]

.

It is known that the semidefiniteness of P implies the non-negativity of f [Parrilo,
2003]. Therefore, this type of substitution allows us to reduce the Lyapunov conditions
on a non-quadratic function to a semidefiniteness problem of a matrix, making the
positiveness problem above amenable for solution with LMI methods. Note that, for
the decomposition of polynomials into sums of squares of polynomials, the opposite
implication is not true. In some special cases, namely polynomials in one variable, any
quadratic polynomials (trivially, since they do not need any substitution at all), and
quartic polynomials in two variables, equivalence holds. This question of equivalence
for the more general case of rational functions is also known as Hilbert’s 17th problem
[Reznick, 2000].

The sums-of-squares decomposition can also be employed in conjunction with the S-
procedure, so that it is possible to represent different region shapes by non-quadratic
functions. Furthermore, S-procedure-like additive terms can be used to exploit the im-
plicit equality constraints induced by the substitution. For instance, the additional con-
straint that z = x2 in the above example can be modelled by introducing an unbounded
new variable µ, and augmenting the constraint P � 0 to:





1 −0.5 0
−0.5 1 0
0 0 0



+ µ





1 0 0
0 0 −0.5
0 −0.5 0



 � 0

Some SDP solvers (like SeDuMi [Romanko et al., 1999]) also support equality con-
straints directly, making this construction unnecessary. See Section 3.6.1 for a detailed
list of software tools.

3.5.4 Estimating Convergence Times

While the existence of a Lyapunov function for a dynamic system is sufficient to guar-
antee global asymptotic stability, this proof does not directly provide a bound on the
convergence rate of the system. In practice, one is usually not only interested in con-
vergence to some point (as guaranteed by the attractivity property), but the system
state should also be within some distance to the equilibrium in a certain time. It is
possible to arrive at estimates for the convergence rate of the system by looking at the
convergence rate of the Lyapunov function. In a nutshell, one can view the behavior of
the Lyapunov function over time as a trajectory of a one-dimensional dynamic system,
the only dimension being the Lyapunov function value. This simple system is globally
asymptotically stable only if this is the case for the original system. A similar parallel
can be established between the convergence rates of the two systems. This is done by
characterizing sub-sets of the state space of the original system by their Lyapunov func-
tion values. Because the convergence rate of a Lyapunov function can be easily encoded
in LMI problems, doing so provides a convenient method for obtaining upper bounds on
convergence times to designated target sets.

62

3.5 Computing Lyapunov Functions

It is possible to directly obtain an upper bound on the convergence rate of the system
from a solution to the LMI problem (3.1)-(3.8). This is due to the facts that such a
solution guarantees exponentially fast convergence, and that it is possible to derive this
exponential convergence rate. Define α′ = α/β. Together with Constraint (3.7), we then
know that

V̇m(x) ≤ −α||x||2 ≤ −(α/β)Vm(x) = −α′Vm(x)

This inequality can be viewed as a linear differential inclusion in a single variable V .
Together with Condition (3.8), which guarantees non-increasingness of the function V
V during mode switches, the solution of this differential inclusion implies that for any
trajectory x(t):

V (x(t)) ≤ e−α′tV (x(0)).

Therefore, V converges exponentially to 0, with rate α′. However, this rate α′ can be
somewhat conservative, especially if the dynamics are non-linear. Essentially, the rate
α′ represents the slowest exponential convergence rate of all modes of the hybrid system.

Better convergence rate estimates can usually be obtained by encoding the inequality
V̇ ≤ −α′V directly into the LMI. To achieve this, Constraint (3.7) can be replaced by

for all m, i :

[

(Am
i)T 0

(bmi)T 0

]

Pm + Pm

[

Am
i bmi
0 0

]

+
∑

j

ηmj Qm
j + α′Pm � 0 (3.9)

It is also possible to select a suitable objective function for the convex optimization
problem corresponding to the LMI, such that the matrices Pm guaranteeing the optimal
convergence rate estimates can be found. This is achieved by forcing the optimization
algorithm to maximize the variable α′ [Pettersson, 1999].

Note that, even in case the optimal value of α′ is identified, the actual convergence
rate of the system might be much higher (and the convergence time lower) than the
computed bound, if it is impossible to stay in the slowest mode for all t. The switching
logic is not exploited when computing the upper bound, and generally a worst case
approach is taken.

In order to convert the convergence rate information given by the variable α′ into
convergence time information for a given set of initial and target states, some simple
additional computation steps are necessary. First, we need an upper bound on the
Lyapunov function values for the set of initial states Init . This problem is equivalent to
identifying the minimal Lyapunov function value c, such that

x ∈ Init =⇒ V (x) ≤ c.

If the function V is quadratic, non-negative and zero only at the origin, the sub-level
sets of V are ellipsoids and therefore convex. If Init is a bounded polytope, then checking
this inequality for a given c can simply be achieved by checking whether V (xi) < c for

63

3 Lyapunov Function Computation for Hybrid Systems

Init

V(x) = c

V(x) > c

V(x) < c

(a) initial set over-approximation

V(x) < c

Target

(b) target set under-approximation

Figure 3.18: Representing Initial and Target Sets by Lyapunov Function Contour Lines

all corner points xi of Init (see Figure 3.18(a)). This turns the problem of finding the
minimal c into a simple one-dimensional optimization problem.

For the target set Target , we need to make a slightly more complicated computation.
We need to identify a scalar c, such that

V (x) ≤ c =⇒ x ∈ Target .

This problem is equivalent to finding a suitable ellipsoid that lies entirely inside the
target region (see Figure 3.18(b)). For quadratic Lyapunov functions and bounded
polytopic target sets, the problem of finding the such a maximum value of c can also be
cast into an optimization problem. In this case, there is an LMI representation of the
problem (see [Boyd et al., 1994, p.70] for a detailed discussion).

If we know an upper bound c1 > 0 for V (x), x ∈ Init , and a c2, such that V (x) ≤
c2 =⇒ x ∈ Target , this allows us to bound the maximum time ∆ it can take for any
trajectory starting in Init to converge to Target by the inequality

∆ ≤ 1

α′
ln

(

c1
c2

)

.

If tighter estimates for convergence times are desired, one can, for instance, exploit
dwell time information (i.e., the time spent in each mode by the trajectories), or con-
duct reachability analysis, viewing the time as another system variable with differential
equation ṫ = 1. However, the latter approach does not have the generality of rate-based
analysis, since it only allows the computation of convergence time with respect to one
initial set and one target set, whereas the computation of a convergence rate allows the
simple computation of convergence times for all initial and target sets, as long as the
possible Lyapunov function values on these sets can be bounded, as discussed above.

3.6 Numerical Solution of LMI Problems

Having obtained LMI representations of Lyapunov function computation problems, as
given above, the remaining step is the solution of these LMI problems. Since LMI
problems always have a convex solution set, descent-like methods can be used to find

64

3.6 Numerical Solution of LMI Problems

such a solution. This section gives an overview of such techniques and the possible pitfalls
one must seek to avoid. First, we give an overview of the different software packages
for LMI specification and solution that were available at the time of writing. Then, a
brief summary of the methods employed by these tools is given. Finally, practical issues
relating to the numerical stability of these methods are discussed. In particular, we focus
on how to assure sufficient accuracy of the results, which is crucial if the results of the
computations are to be used for automatic verification.

3.6.1 Available Software

LMI problems can be solved with help of so-called semidefinite programming (SDP)
solvers. A variety of free SDP tools have been developed, including the Matlab-based
solvers SeDuMi and SDPT3 [Toh et al., 1999], and the standalone solvers CSDP [Borchers,
1999], DSDP [Benson et al., 2000] and SDPA [Yamashita et al., 2003]. Most of these
tools have seen updates in recent years. SDPA’s sparse matrix input format continues
to be supported by other tools, for example CSDP. Additionally, the commercial solvers
PENSDP and PENNON [Kočvara & Stingl, 2003] are available. VSDP [Jansson, 2006]
is a MATLAB wrapper around the solvers SDPT3 and SDPA that computes rigorous
error bounds on the solution of an SDP problem, also taking floating point arithmetic
errors into account. For Matlab, various tools for the direct specification of LMI exist,
which in turn call one of the solvers listed above. These include the Multiparametric
Toolbox (MPT) and Yalmip [Löfberg, 2004]. Figure 3.19 gives the current version and
website of the different tools at the time of writing.

Tool Version Website

CSDP 6.10 https://projects.coin-or.org/Csdp/

DSDP 5.8 http://www-unix.mcs.anl.gov/DSDP/

MPT 2.6.3 http://control.ee.ethz.ch/~mpt/

PENSDP 2.2 http://www.penopt.com/

PENNON 0.9 http://www.penopt.com/

SDPA 7.3.1 http://sdpa.indsys.chuo-u.ac.jp/sdpa/

SDPT3 4.0 http://www.math.nus.edu.sg/~mattohkc/sdpt3.html

SeDuMi 1.3 http://sedumi.ie.lehigh.edu

SOSTOOLS 2.03 http://www.cds.caltech.edu/sostools/

VSDP 0.1 http://www.ti3.tu-harburg.de/jansson/vsdp/

YALMIP 20101122 http://control.ee.ethz.ch/~joloef/yalmip.php

Figure 3.19: SDP Tools and Websites

3.6.2 Brief Outline of Semidefinite Programming Algorithms

The solution set to any LMI problem always forms a convex set. Therefore, standard
convex optimization techniques can be employed to approximate a solution to an LMI

65

https://projects.coin-or.org/Csdp/
http://www-unix.mcs.anl.gov/DSDP/
http://control.ee.ethz.ch/~mpt/
http://www.penopt.com/
http://www.penopt.com/
http://sdpa.indsys.chuo-u.ac.jp/sdpa/
http://www.math.nus.edu.sg/~mattohkc/sdpt3.html
http://sedumi.ie.lehigh.edu
http://www.cds.caltech.edu/sostools/
http://www.ti3.tu-harburg.de/jansson/vsdp/
http://control.ee.ethz.ch/~joloef/yalmip.php

3 Lyapunov Function Computation for Hybrid Systems

that optionally is minimal with respect to some linear objective function. This section
gives a brief overview about the general techniques used for solving convex optimization
problems in general and LMI/SDP problems in particular. For a detailed and rigorous
discussion we refer to [Boyd & Vandenberghe, 2004] and [Nesterov & Nemirovskii, 1994].
The methods employed by any individual solver software (see Figure 3.19) might also
vary slightly and contain further optimizations. However, the purpose of this section
is not an exhaustive discussion, but a general overview. Information about the actual
algorithm used for a particular solver is usually available in its documentation.

In a nutshell, convex optimization methods are descent-based. A sequence of points
in the state space is computed, such that the value of the objective function and/or the
degree of violation of the LMI constraints decreases in every step. As opposed to linear
optimization, SDP solvers usually employ interior point methods instead of surface-based
methods. This means that the sequence of points that is computed will not only lie on the
solution set’s surface, but also pass through its interior. It is notable that interior point
methods result in polynomial time complexity with respect to the size of the constraint
system [Nesterov & Nemirovskii, 1994]. There are algorithms for which time complexity
for a single iteration step lies in O(n3) with respect to the number of variables as well
as with respect to the number of constraints, while the number of iteration steps can be
expected to grow logarithmically in either case.

An important concept for the solution is Lagrangian duality . The Lagrangian of an op-
timization problem is a function which is obtained from its objective function by adding
weighted terms representing the degree of violation of the constraints. These weights
are the so-called Lagrangian multipliers. With the help of this concept, a dual problem
for any SDP problem can be constructed. The original (primal) problem minimizes the
objective function with respect to the constraints, and is of the form

minimize cTx

with respect to M0 +

n
∑

i=1

x(i)Mi � 0,

where the Mi are matrices over the reals. The dual problem has the Lagrangian
multipliers as unknowns and maximizes the infimum of the Lagrangian over all x with
respect to a positiveness condition over the multipliers. It is of the form

maximize tr(M0Y)

with respect to tr(Mi) + c(i) = 0 for all 1 ≤ i ≤ n

Y � 0

where Y is a matrix representing the Lagrangian multipliers. As long as the solution
set to the primal problem has a non-empty interior, strong duality holds, that is, the
solutions of the primal and dual problems coincide. Moreover, feasible points of the
primal problem (i.e., point fulfilling the constraints) always give an upper bound on

66

3.6 Numerical Solution of LMI Problems

the optimal value of cTx, while feasible points of the dual problem always give a lower
bound. Therefore, by solving the primal and dual problems simultaneously, accuracy
bounds on the results can be derived and used as stopping conditions. The difference
between the current upper and lower bounds is called the duality gap and can be used
to measure the quality of a solution returned by the SDP solver.

However, the computation of a suitable descent direction for the primal and dual
problems is in general not easy, since the optimization problem is non-linear. To this
end, the solution of systems of linear equations are required, for instance, to do the
equivalent of a Newton step. Progress is unfortunately not necessarily guaranteed if the
problem is badly conditioned. In particular, this occurs if the matrix representing the
linear equation system turns out to be singular or near-singular. The likelihood of such
problems tends to increase with the dimensionality of the optimization problem. Once a
direction has been established, a line search is conducted in that direction, determining
the next point of the sequence. Essentially, this involves picking the point on a line
in the descent direction that minimizes the objective function value (or maximizes the
Lagrangian). If it is not possible to find a suitable new point with a lower objective
function value, then the algorithm will terminate unsuccessfully.

3.6.3 Numerical Issues

Due to the nature of SDP algorithms and the fact that all computations rely on floating
point numbers, there are some inherent problems that must be overcome, if one wants to
use these tools for rigorous verification. We will now outline these problems and mention
how they are dealt with in the scope of this thesis.

Successful termination does not always mean a useful result: SDP algorithms usu-
ally terminate when the infeasibility measures of the primal and dual problems and the
duality gap are all sufficiently small. Here, “sufficiently small” means that the error is
below a certain threshold relative to the computed solution. Depending on the numer-
ical conditioning of the problem, this may or may be not sufficient. For instance, if a
computed solution contains both very large (e.g., 106) and very small values (e.g., 10−6),
then a relative accuracy that would normally be deemed acceptable (e.g., 10−12) might
mean that the errors on the small values might still be of magnitude 106 · 10−12 = 10−6

which is sometimes not enough to produce reliable results. Such problems can sometimes
be avoided by re-scaling the problem (i.e., eliminating either the high or the low values).
Nevertheless, it is always advisable to double-check all solutions that are returned by an
SDP solver. Such a posteriori checking is described in Section 3.6.4.

Termination with failure does not always mean a useless result: On the other hand,
SDP solvers can report failure for many reasons. If the problem is not found to be
downright infeasible, then the solvers will often be able to compute a solution with
reduced accuracy, despite reporting failure (i.e., the result is interpreted as a failure
because a desired accuracy could not be reached). If this is the case, the result might
still be salvaged after double-checking whether all of the LMI conditions are satisfied.

67

3 Lyapunov Function Computation for Hybrid Systems

Implicit equality constraints can cause problems: If, in a hybrid system, two modes
are connected by two transitions, one in each direction, and these transitions have the
same guard set and no discrete update, then the corresponding Lyapunov functions
are theoretically required to be equal on the guard set. This is mirrored in the LMI
by two constraints modeling inequality conditions in both directions, resulting in an
implicit equality condition. Naturally, numerical algorithms will usually be unable to
exactly fulfill both these constraints, as this would require floating point numbers that
are identical. For such cases, a special treatment is needed to keep the results numerically
stable. See Section 4.5 on how to deal with this problem. A special case occurs when
computing a Lyapunov function x̃TPx̃ for a mode whose invariant contains the origin.
In this case, the Lyapunov function cannot contain a constant or linear part (as no class
K∞ functions could bound it from above in that case). Therefore, the entries in the
last row and column of P can be set to 0 in beforehand. In this case, if no convergence
rate estimate is needed, even Condition (3.2) can theoretically be dropped, since the
existence of a suitable value of β can always be guaranteed.

Reduction of the number of variables might improve numerical stability: In theory,
the addition of further S-procedure terms to an LMI can only lead to a larger solu-
tion space. In practice, however, the size of the LMI (both in terms of the number
of constraints and the number of variables) is an important consideration. Additional
S-procedure terms (especially if they contain ill-conditioned matrices) carry the risk of
causing numerical problems which make it impossible to find any solution at all. There-
fore, it is useful to remove all non-necessary terms from the LMI. In particular, this
includes terms carrying the implicit equality constraint that their multiplier is zero.

Large, irregular LMI problems are much more likely to attract numerical problems:
Small-scale LMI problems can be solved reliably, unless they are very ill-conditioned.
Larger, irregular LMI problems, especially those corresponding to Lyapunov function
computation for a hybrid system with many modes, will however run an increasing
danger of encountering one of the above problems. This makes LMIs like the one given in
Theorem 3.10 hard to solve in practice, once the hybrid system becomes more complex.
Direct computations for hybrid systems with more than a handful of discrete states
are difficult, unless their structure is very regular. This is a main motivation for the
decompositional methods in Chapter 4, which lead to small, local LMIs.

If the SDP solver fails, then there is little information on what caused the problem:
Unless the problem was found to be infeasible by the solver, the failure of an SDP
solver does not give further information on how to remedy this situation, for instance
by amending the controller behavior. Naturally, the larger the LMI problem, the more
problematic diagnosis becomes. It could be the case that the problem is badly scaled,
containing both very large and very small matrix entries, or that the problem is infeasible
or marginally feasible to begin with. Again, decompositional methods as described in
Chapter 4 are helpful, since local computations support problem detection.

68

3.6 Numerical Solution of LMI Problems

Optimal solutions with respect to linear objective functions will lie on the boundary
of the feasible set: Since SDP solvers numerically approximate solutions to the SDP,
this means that the “solution” returned under these circumstances will often lie outside
the actual feasible set, but just barely. To obtain a real solution that robustly fulfills
the LMI constraints, additional measures are needed. This problem is also addressed by
the decompositional methods in Chapter 4, by computing a set of Lyapunov function
instead of only one function. This allows for the easy computation of robust solutions
to the corresponding LMI by averaging several “extremal” solutions.

3.6.4 Checking SDP Results

As discussed in the previous section, SDP algorithms are not always entirely robust in
the sense that also false positives can be returned, that is, “solutions” which in fact do
not fulfill the LMI constraints. This section discusses means of countering this problem.

Since the results of an SDP computation provide valuations for all free variables in
the LMI, a simple approach is a posteriori checking of the constraints. By inserting
the values returned by the software, and multiplying out the matrices for each LMI
constraint, one arrives at a single matrix that is supposed to be positive (or negative)
semidefinite. We will now give methods for checking definiteness of matrices. First, we
need to define the minors of a matrix, which can be used for an equivalent and robustly
checkable formulation of (semi-)definiteness.

Definition 3.21 (Minors). Let M ∈ R
n×n be a matrix. Let I ⊂ {1, . . . , n} be a non-

empty set of column/row indices for M . The determinants of all matrices that can
be obtained from M by keeping only the rows and columns in such a set I are called
principal minors of M . If I is of the form {1, . . . ,m}, 1 ≤ m ≤ n, then a principal minor
is called leading principal minor .

We now give a basic equivalence theorem that can be used to double-check the values
returned by SDP solver software.

Theorem 3.11 (Checking Semidefiniteness [Bhatia, 2007]). Let M ∈ R
n×n be a sym-

metric matrix. Then, the following statements are equivalent.

1. M � 0.

2. All eigenvalues of M are non-negative.

3. All principal minors of M are non-negative.

Therefore, a posteriori checking of semidefiniteness conditions involves either the nu-
meric computation of matrix eigenvalues, which can be done efficiently up to machine
precision, or the computation of the principal minors, which can be done in exact arith-
metic, but is only feasible for very small matrices. This can be done separately for each
LMI constraint, so that the size of matrices to be considered generally depends linearly
on the size of the continuous state space (after the sums-of-squares transformation, if
applicable).

69

3 Lyapunov Function Computation for Hybrid Systems

For example, LMI front-end YALMIP provides a checkset routine which automatically
carries out a semidefiniteness test on all matrices obtained in this manner. This also
includes the scalar constraints, which result in 1× 1 matrices. For all such matrices, the
smallest eigenvalue is computed, and if it is non-negative, then the matrix is positive
semidefinite (modulo possible inaccuracies in the eigenvalue computation, which are
usually negligible).

If this is not the case, but the negative eigenvalues are very close to zero, then the
problem can be remedied. This occurs relatively frequently due to the inherent inaccura-
cies caused by the numerical approach. If the offending values are related to S-procedure
constraints in the LMI from Theorem 3.10, then we can simply set them to zero and
re-run the solver. If they are related to the scalar variables α or β, then α or β will be
slightly smaller than ǫ, which is not a problem, as long as either variable remains strictly
positive. In this case no additional measures are needed. If we obtain small negative
eigenvalues for any of the Constraints (3.5), (3.6), or (3.7), then this is also not a major
problem, as we have used matrices Ĩ or multiples thereof to robustify the LMI problem.
A slightly negative eigenvalue therefore only means possible inaccuracies in the values
of α and β, which can affect possible convergence rate estimates, but not the overall
stability result. If such inaccuracies occur in Constraint (3.8), however, some care must
be taken. Here, a negative eigenvalue close to zero means that there is a slight increase
of the Lyapunov function value upon switching. To remedy this, another positive slack
variable multiplied with matrix Ĩ could be introduced, or the Lyapunov functions for
the two offending modes could explicitly be set equal on the switch set (see, for example,
[Johansson & Rantzer, 1998] or the discussion in Section 4.5.2).

3.7 Example

Consider the hybrid system from Example 3.8. This system was shown to be GAS.
However, it does not converge exponentially fast, as the convergence rates for the modes
m1 and m3 do not depend linearly on the distance to the equilibrium (i.e., the class
K∞ cannot be linear as required by the LMI approach). In order to convert this system
in to one that is exponentially stable, we need to add a global invariant to the system
which is conjoined with all mode invariants and guards. Since, in reality, such bounds
will almost always exist, this is not a major drawback. In this case, we choose the global
invariant

−20 ≤ v ≤ 20 ∧−500 ≤ x ≤ 500.

The mode dynamics are represented as

ẋ ∈ convex ({Ami

1 x+ bmi

1 , Ami

2 x+ bmi

2 })
for mode mi with the following matrices and vectors:

Am1

1 =

[

0 0
0 0

]

, bm1

1 =

[

0
1.425

]

70

3.7 Example

Am1

2 =

[

0 0
0 0

]

, bm1

2 =

[

0
1.5375

]

Am2

1 =

[

0 1
−0.000975 −0.0507

]

, bm2

1 =

[

0
0

]

Am2

2 =

[

0 1
−0.001025 −0.0533

]

, bm2

2 =

[

0
0

]

Am3

1 =

[

0 0
0 0

]

, bm3

1 =

[

0
−1.95

]

Am3

2 =

[

0 0
0 0

]

, bm3

2 =

[

0
−2.05

]

For the invariant sets Inv(m1), Inv(m2), and Inv(m3) for the three modes, the follow-
ing S-procedure matrices can be derived according to the procedure from [Pettersson,
1999] (rounded to six digits). Each matrix represents an ellipsoid set over-approximating
the box-shaped mode invariants.

Qm1 =





0 0 0
0 −0.008899 −0.111111
0 −0.111111 −0.388889





Qm2 =





0.000002 0 0
0 −0.002222 0
0 0 1





Qm3 =





0 0 0
0 −0.008899 0.111111
0 0.111111 −0.388889





The guards for the four transitions e1, e2, e3, and e4 can be represented by the following
matrices. Again, the matrices represent ellipsoids.

Re1 =





−0.000002 0 0
0 −0.5 −3
0 −3 −17





Re2 =





−0.000002 0 0
0 −0.222222 −3
0 −3 −39.5





Re3 =





−0.000002 0 0
0 −0.5 3
0 3 −17





Re4 =





−0.000002 0 0
0 −0.222222 3
0 3 −39.5





71

3 Lyapunov Function Computation for Hybrid Systems

Recall that the variable sets Vm1
and Vm3

were chosen to contain only v, since x
remains constant in these modes. Therefore, define the matrix J , which will be used to
represent the class K∞ functions for modes m1 and m3 as follows.

J =





0 0 0
0 1 0
0 0 0





For mode m2, Vm2
must contain both x and v, therefore the matrix

Ĩ =





1 0 0
0 1 0
0 0 0





takes this role. For this system, we can now formulate the LMI problem whose solu-
tion yields a GLF proving GAS with respect to the variable v (and exponentially fast
convergence). The constraint system looks as follows:

72

3.7 Example

Find P1, P2, P3 ∈ R
3×3 and

α, β, µm1 , µm2 , µm3 , νm1 , νm2 , νm3 , ηm1

1 , ηm1

2 , ηm2

1 , ηm2

2 , ηm3

1 , ηm3

2 , ϑe1 , ϑe2 , ϑe3 , ϑe4 ∈ R,
such that

α− ǫ � 0

β − ǫ � 0

µm1 , µm2 , µm3 , νm1 , νm2 , νm3 , ηm1

1 , ηm1

2 , ηm2

1 , ηm2

2 , ηm3

1 , ηm3

2 � 0

ϑe1 , ϑe2 , ϑe3 , ϑe4 � 0

P1 − µm1Qm1 − J � 0

P2 − µm2Qm2 − Ĩ � 0

P3 − µm3Qm3 − J � 0

P1 + νm1Qm1 − βJ � 0

P2 + νm2Qm2 − βĨ � 0

P3 + νm3Qm3 − βJ � 0
[

(Am1

1)T 0
(bm1

1)T 0

]

P1 + P1

[

Am1

1 bm1

1

0 0

]

+ ηm1

1 Qm1 + αJ � 0

[

(Am1

2)T 0
(bm1

2)T 0

]

P1 + P1

[

Am1

2 bm1

2

0 0

]

+ ηm1

2 Qm1 + αJ � 0

[

(Am2

1)T 0
(bm2

1)T 0

]

P2 + P2

[

Am2

1 bm2

1

0 0

]

+ ηm2

1 Qm2 + αĨ � 0

[

(Am2

2)T 0
(bm2

2)T 0

]

P2 + P2

[

Am2

2 bm2

2

0 0

]

+ ηm2

2 Qm2 + αĨ � 0

[

(Am3

1)T 0
(bm3

1)T 0

]

P3 + P3

[

Am3

1 bm3

1

0 0

]

+ ηm3

1 Qm3 + αJ � 0

[

(Am3

2)T 0
(bm3

2)T 0

]

P3 + P3

[

Am3

2 bm3

2

0 0

]

+ ηm3

2 Qm3 + αJ � 0

Pm1
−
[

(Ae1)T 0
(be1)T 1

]

Pm2

[

Ae1 be1

0 1

]

− ϑe1Re1 � 0

Pm2
−
[

(Ae2)T 0
(be2)T 1

]

Pm1

[

Ae2 be2

0 1

]

− ϑe2Re2 � 0

Pm3
−
[

(Ae3)T 0
(be3)T 1

]

Pm2

[

Ae3 be3

0 1

]

− ϑe3Re3 � 0

Pm2
−
[

(Ae4)T 0
(be4)T 1

]

Pm3

[

Ae4 be4

0 1

]

− ϑe4Re4 � 0

Turning over this constraint system to the SDP solver CSDP [Borchers, 1999] leads
to a solution with accuracy of 10 decimal places after 19 iterations and 0.13 seconds
on a 2x2GHz CPU. The results for the LLFs are as follows (rounded to six digits and
normalized):

73

3 Lyapunov Function Computation for Hybrid Systems

Pm1
=





0 0 0
0 2.165988 −1.596379
0 −1.596379 −0.362564





Pm2
=





0.004218 0.013248 0
0.013248 2.553457 0

0 0 0





Pm3
=





0 0 0
0 2.158351 1.621242
0 1.621242 −0.294953





Note that the values that are given as zero are only zero after rounding. However,
the value in the lower right of matrix Pm2

must be exactly zero if Pm2
is to represent a

valid LLF. Therefore, it can be advantageous to re-run the solver, setting these values
to exactly zero in beforehand to arrive at more accurate results. The same applies to
Pm1

and Pm3
, where the first row and column consists only of zero entries.

3.8 Summary

In this chapter, a hybrid system model, stability notions, Lyapunov function techniques,
and methods for the automatic computation of Lyapunov functions from the literature
have been introduced. The hybrid system model is based on automata, which are en-
riched with differential inclusions and constraints on the continuous variables to produce
a model combining the expressivity of both domains. Stability proofs via Lyapunov func-
tions can be conducted automatically for this type of system model by employing linear-
matrix-inequality-based methods. These methods result in a number of constraints,
which are simultaneously solved with numerical methods. The solution of such a con-
straint system yields a Lyapunov function acting as a certificate of global asymptotic
stability. However, this type of analysis:

• does not exploit any special knowledge we have about the discrete structure of the
automaton,

• frequently runs into numerical problems for complex systems,

• does not give useful feedback in case of failure, and

• cannot easily be exploited for system design, as it is difficult to directly derive
useful design rules for stable hybrid automata.

Therefore, the following chapter focus on the possibilities of exploiting the discrete
structures of the automaton to address these issues. The backbone of the analysis will
still be LMI-based, but it will be shown how some extra purely discrete reasoning can
greatly reduce the complexity of the individual LMIs to be solved. This reasoning

74

3.8 Summary

takes the form of decomposition: partitioning hybrid automata into sub-automata, each
associated with a smaller LMI problem. The decomposition is structured such that still
a proof of global asymptotic stability for the entire system can be obtained. To this end,
we give theorems allowing us to re-compose local proofs of stability on sub-automata
again into a global proof.

75

4 Decompositional Stability Analysis

This chapter contains one of the main contributions of this thesis: a decompositional
framework for automatic Lyapunov function computation for hybrid automata, based
on the discrete structure of the automaton which are interpreted as a directed graph.

First, the difficulties and the benefits of discrete-state-based decomposition of hybrid
automata are discussed in Section 4.1. The graph-theoretic groundwork required for the
decomposition is then presented in Section 4.2. Section 4.3 contains the first level of
decomposition, based on the strongly connected components of the underlying graph.
Several decomposition theorems are presented and proved, together with a discussion
on how these theorems can be exploited in practice. The key observation on this level
of decomposition is that it can be conducted losslessly (i.e., a decompositional proof
is possible for all systems for which a monolithic proof is possible) and even permits
attractivity proofs for systems which are not GAS in some cases.

In Section 4.4, the second decomposition step inside the strongly connected compo-
nents is conducted. The theorems presented in this section can generally deal with
different types of further sub-partitionings, but from a practical standpoint focus on a
decomposition into simple cycles. This decomposition is driven by Lyapunov-function-
based reasoning, conservatively under-approximating sets of Lyapunov functions by sim-
pler representations, namely conic polytopes. The required computations can take the
form of linear matrix inequalities, but the results are general enough to potentially allow
the use of different types of algorithms for the Lyapunov function computation.

This is followed by a discussion on how to efficiently and reliably conduct Lyapunov
function computations on simple cycles, which form the bottom level of decomposition,
in Section 4.5. Some special structures in the underlying graph are identified and ex-
ploited for LMI-based computations. Most notably, cases where the use of separate local
Lyapunov functions for different adjacent modes does not result in an increased solution
space are identified. In this case, it is possible to cut down the size of the LMI problems
losslessly by employing common or dependent Lyapunov functions for such modes. Fur-
thermore, reachability checks can be conducted at this stage, to identify non-traversable
cycles which can subsequently be ignored.

A detailed walkthrough of an example system, a cruise controller with complex braking
model, is then given in Section 4.6. The system models a proportional-integral veloc-
ity controller with a saturation mode modeling maximal acceleration and two types of
brakes. These types of brakes can be interpreted as a service brake resulting in a rela-
tively small deceleration, and therefore meeting comfort requirements, and an emergency
brake resulting in a stronger deceleration. Each brake is modeled such that the full brak-
ing effect cannot be achieved immediately. Instead, there is a gradual increase of braking
power until the maximum is reached. In total, the system consists of six modes of oper-

77

4 Decompositional Stability Analysis

ation with linear and constant differential equations, and non-deterministic transitions
modeling an entire set of possible switching strategies. The theorems and algorithms of
Sections 4.3, 4.4, and 4.5 are applied to this system explained in detail based on this
example. The result is a decompositional stability proof for the system.

Then, in Section 4.7, methods for the iterative refinement of the approximations are
discussed. First, we discuss refinement algorithms for two intersecting cycles of the
automaton. Two types of algorithms are given: an exhaustive algorithm and a heuristic-
based approach which is not complete, but much more efficient in most cases. Then, these
results for two cycles are extended to entire strongly connected components. Finally,
Section 4.8 concludes the chapter.

4.1 Decomposing Hybrid Automata

Decomposition techniques of (not necessarily hybrid) systems along their continuous
variables have a long tradition in the control community, and can be interpreted as
decomposing a system into blocks that run in parallel (e.g., manifesting themselves as
the block diagrams commonly used in control theory and by tools like Matlab Simulink).
For instance, results on input-to-state stability or small-gain theorems, with adaptions
to the hybrid domain, exist [Laila & Nešić, 2003; Liberzon & Nešić, 2006; Nešić &
Liberzon, 2005; Heemels & Weiland, 2008], and can be used to break down stability proof
obligations per block. Nevertheless, these techniques are hard to use for verification,
unless the individual blocks are only loosely coupled. Generally, much information is
lost if one tries to separate continuous variables that are strongly interrelated, making
stability proofs often impossible in such cases.

In contrast, decomposition along the discrete axis, resulting in a sequential composi-
tion of different sub-systems, has not been significantly exploited for stability analysis
in the control community. One reason is that this is general difficult to do, since stabil-
ity properties, and especially convergence, often depend on the interplay of the various
modes of operation. This leads to difficulties in dividing a proof into per-mode obliga-
tions. Nevertheless, having methods for applying this type of decomposition is highly
desirable. The motivation is threefold:

• For hybrid automata with many discrete states, the LMI problem given in Theorem
3.10 is complex and there is a high likelihood of running into numerical problems
making it impossible to solve. Therefore, the automatic computation of a solution
is often impossible with satisfactory accuracy, or requires some manual re-scaling
of parts of the automaton in order to avoid numerical problems. Decompositional
analysis results in LMI problems that are local on parts of the automaton, spanning
less modes and hence avoiding such problems in many cases. Instead of handing
over all proof obligations directly to the SDP solver, exploitation of discrete struc-
tures can greatly increase the chance of obtaining a robust result from the solver
for large automata.

• Standard LMI-based analysis cannot easily be used for construction of stable hy-

78

4.1 Decomposing Hybrid Automata

brid automata, since the interplay between different parts of the automaton, which
causes stability or instability, is not directly visible in the model. Instead, the inter-
dependencies between the different discrete states are presented to the SDP solver.
However, the solver will generally not make explicit use of the discrete structures
of the automaton. In contrast to this standard monolithic analysis, a decomposi-
tional approach can also be used for composition, by deriving verifiable conditions
that imply “composability” of two automata, such that the resulting automaton is
still stable. With the help of compositional reasoning, incremental construction of
stable hybrid automata becomes possible. Both from a theoretical and practical
perspective, decomposition results can provide insight into what “makes or breaks”
a particular system’s stability property. Unlike many safety properties, whether
or not a system is stable is difficult to see even for the experienced engineer.

• Many realistic hybrid system models (e.g., autopilot systems) will have many more
discrete modes than continuous variables, making decomposition along the discrete
states more promising. Furthermore, with the help of additional modes, it is also
possible to approximate the behavior of continuous variables that are difficult to
handle, for instance because of non-linearities. This can for example be done by
piecewise linear approximation, where each newly introduced segment of the state
space with linear dynamics can again be interpreted as an additional mode.

Stability is in general not preserved under transition composition of hybrid automata,
as the following examples show.

ẋ = x− 100y
ẏ = 10x+ y
0 ≤ x+ y

ẋ = x+ 10y
ẏ = −100x+ y
0 ≥ y

m1 m2

x+ y ≤ 0

y ≥ 0

true true

Figure 4.1: Stable System with Two Unstable Differential Equations

Example 4.1 (Unstable Differential Equations Resulting in a Stable Hybrid System).
Consider a hybrid system H1 (taken from [Pettersson, 1999]), given by the the hybrid
automaton in Figure 4.1. The differential equations of both individual modes m1 and
m2 are individually not globally asymptotically stable. This can for instance be verified
by checking that their system matrices are not Hurwitz (i.e., some eigenvalues have
positive real parts). However, as a whole, the hybrid systemH1 is globally asymptotically
stable. This is achieved by a smart switching between the two unstable modes that
is enforced by the guards and invariants. This shows that non-stability of individual
differential equations is not necessarily preserved under transition composition, as there
might nevertheless exist switching strategies stabilizing the system. See Figure 4.2 for
some example trajectories. The trajectories for m1 and m2 diverge, slowly spiraling
away from the origin. The trajectory of H1 shown in the figure starts at x = 0.1 and

79

4 Decompositional Stability Analysis

x

y

(a) Mode m1

x

y

(b) Mode m2

x

y

(c) Hybrid System H1

Figure 4.2: Example Trajectories for The System From Example 4.1

y = 0.3 and converges to the equilibrium. In fact, this is the case for all trajectories of
the system. This can be shown with help of the LMI methods described in Section 3.5
[Pettersson, 1999, p.115].

ẋ = −x− 100y
ẏ = 10x− y
0 ≤ x− y

ẋ = −x+ 10y
ẏ = −100x − y
0 ≤ x

m1 m2

x− y ≤ 0

x ≤ 0

true true

Figure 4.3: Unstable System with Two Stable Differential Equations

y

x

(a) Mode m1

x

y

(b) Mode m2

x

y

(c) Hybrid System H2

Figure 4.4: Example Trajectories for The System From Example 4.2

Example 4.2 (Stable Differential Equations Resulting in an Unstable Hybrid System).
In contrast, the hybrid system H2 given by the automaton in Figure 4.3 consists of two
modes that are GAS. Trajectories of the differential equations of the individual modes

80

4.2 Graph Structures

and H2 are given in Figure 4.4. In both cases, the trajectories converge, spiraling inward.
However, H2 is not stable, since the switching logic has been chosen such that for each
time interval spent in m2 the distance to the equilibrium increases significantly. The
result is a divergent trajectory starting at x = 1 and y = 3.

Since neither stability nor instability are preserved under switching between two sub-
systems, composition/decomposition rules need to exploit knowledge on both the discrete
structures (i.e., the underlying graph) and the continuous structures (i.e., the differential
equations, invariants and guards) of the automaton. Therefore, the goal of this chapter
is the derivation of local conditions on the automaton that ensure composability of the
stability results for the sub-automata. This enables us to also do decomposition, by

1. splitting the automaton into suitable sub-automata,

2. proving stability properties on these sub-automata, plus some information to iden-
tify stability-preserving switching strategies between these sub-automata, and fi-
nally

3. combining these results into a stability proof for the entire system.

In line with the Lyapunov-based proof methods presented in Section 3.5, the decompo-
sition rules are based on Lyapunov functions. However, Lyapunov function computations
will only be done locally on the automaton, that is, only for as small as possible subsets
of M at a time. We compute Lyapunov function for sub-automata, and prove theorems
that ensure compatibility of these functions, such that existence of a global Lyapunov
function for the entire automaton is guaranteed. This completes the stability proof. This
global Lyapunov function will not need to be be explicitly computed, but a procedure to
derive this function, if so desired, is presented. The decomposition results are applicable
to both standard and probabilistic hybrid automata, and to a certain degree also to
systems with stochastic differential equations. In the probabilistic setting, even stronger
decompositions are possible under certain circumstances. This case will be discussed in
Chapter 5.

4.2 Graph Structures

This section gives the graph theoretic definitions that are required for the decomposition.
First, we need to define sub-automata of a hybrid automaton. Informally, sub-automata
are simply automata that can be obtained by removing transitions and/or modes.

Definition 4.1 (Sub-Automaton). A sub-automaton of a hybrid automaton H is a
hybrid automaton H ′ with MH′ ⊆ MH , SH′ = SH , VH′ = VH , TH′ ⊆ TH , FlowH′(m) =
FlowH(m) and InvH′(m) = InvH(m) for all m ∈ MH′ , and

InitH′ = (InitH ∩ (MH′ × SH′)) ∪
{(m2, x

′) ∈ MH′ × SH′ | ∃(m1,m2, G, U) ∈ TH − TH′ : ∃x ∈ G : x′ = U(x))}.

Denote this relation as H ′ ⊆ H.

81

4 Decompositional Stability Analysis

The initial states for the sub-automaton include all initial states of the original au-
tomaton which relate to modes in the sub-automaton, plus all states resulting from
incoming edges into the sub-automaton.

Next, we move on to definitions of graphs and their sub-components. We will view
hybrid automata as a special type of graph for the purpose of decomposition.

Definition 4.2 (Graph). A (directed) graph G is a tuple (VG, EG, L
V
G, L

E
G), where

• VG is a set of nodes,

• EG is a multiset of edges e ∈ VG × VG, and

• LV
G and LE

G are labeling functions mapping VG and EG, respectively, to some label
set.

A sub-graph G′ = (VG′ , EG′ , LV
G′ , LE

G′) of G is a graph such that

• VG′ ⊆ VG,

• EG′ ⊆ EG, and

• LV
G′ and LE

G′ are the restrictions of LV
G and LE

G onto VG′ and EG′ , respectively.

The degree of a node v ∈ V is defined as the cardinality of the set of incident edges,
|{(v1, v2) ∈ E | v1 = v ∨ v2 = v}|. Similarly, the indegree and outdegree are defined as
|{(v1, v2) ∈ E | v2 = v}| and |{(v1, v2) ∈ E | v1 = v}|, respectively.

Definition 4.3 (Graphs Associated with Hybrid Automata). The graph associated with
a hybrid automaton H = (M,S,V,T ,Flow , Inv , Init) is G(H) = (V,E,LV , LE) with

• V = M,

• E is a multiset with one edge e = (m1,m2) for each transition (m1,m2, G, U) ∈ T ,

• LV (v) = pred (Flow (v)) ∧ pred(Inv(v)), and

• LE(e) = pred(G) ∧ pred(U), where (m1,m2, G, U) ∈ T is the transition corre-
sponding to edge e.

with pred (Inv(v)) and pred(G)) being predicates describing the sets Inv(v) and G,
pred(Flow (v)) being the differential inclusion Flow (v) in predicate notation, and pred(U)
being the update function U in predicate notation, as discussed in Remark 3.3.

Note that the graph associated with a hybrid automaton does not contain information
on the Init predicate. Since initial states do not play any role in Lyapunov function
constraint systems, we do not directly exploit this information, so that there is no need
to include it in the graph-theoretic model. Initial states can, however, be helpful for a
priori reachability analysis, allowing us to tighten invariants and guard of the automaton
according to the reach set. For this analysis, the Init predicate should be kept separately.

82

4.2 Graph Structures

The graph G(H ′) of a sub-automaton H ′ ⊆ H will therefore always be a subgraph of
G(H). We also need the notion of paths to define the decomposition. A path is simply
a sequence of connected edges in a graph. A single node or edge of a graph can also be
traversed multiple times by a path, unless the path is simple. Closed paths lead back to
the same node where they started from.

Definition 4.4 (Path). A path in a directed graph G is a finite sequence of edges
e1, . . . , en, ei = (vi, v

′
i) ∈ EG, such that for all 1 < i ≤ n v′i−1 = vi holds. A path is

closed if v1 = v′n and simple if all vi 6= vj for all i 6= j.

Each directed graph can be decomposed into a number of sub-graphs called strongly
connected components. They are defined as follows.

Definition 4.5 (Strongly Connected Component). A strongly connected component
(SCC) of a directed graph G is a maximal sub-graph G′, such that for each pair of
nodes n1 6= n2 in G′ there exists a path in G′ from n1 to n2.

Here, maximal is taken to mean that no further nodes and edges can be added to the
sub-graph such that the existence of such paths is preserved. An SCC G′ will always
contain all edges in G connecting nodes in G′, since adding edges alone cannot destroy
the existence of connecting paths.

Note that the family of SCCs for a graph is unique, since SCCs are always maximal
(i.e., no edges or nodes can be added without destroying strong connectedness). If two
SCCs are connected via an edge, there cannot be another connecting edge between the
SCCs in the other direction. Therefore, a partial order on the SCCs of a graph can be
defined as follows.

Definition 4.6. For a graph G = (V,E,LV , LE) Define the successor relation “≺” on
strongly connected components C1 = (V1, E1, L

V
1 , L

E
1) and C2 = (V2, E2, L

V
2 , L

E
2) as

follows:

C1 ≺ C2 :⇐⇒ ∃(v1, v2) ∈ E : v1 ∈ V1 ∧ v2 ∈ V2.

Each node in the graph belongs to exactly one SCC, while each edge belongs to at
most one. Edges not belonging to any SCC are also called bridges.

Remark 4.1 (Computation of Strongly Connected Components). The time complexity
for computing the SCCs of an arbitrary graph is O(|V | + |E|), for instance by using
Tarjan’s Algorithm [Tarjan, 1972].

See Figure 4.5 for an example of an SCC decomposition. Another level of decomposi-
tion within an SCC deals with cycles, which are subgraphs which can be covered by a
single closed path.

Definition 4.7 (Cycle). A cycle of graph G is a subgraph G′ for which there exists a
closed path e1, . . . , en with ei = (vi, v

′
i) such that EG′ is the set of all edges ei on the

path and VG′ is the set of the nodes vi of any such edges. A cycle is simple if there exists
a simple closed path with this property.

83

4 Decompositional Stability Analysis

Figure 4.5: Decomposition of a Graph into SCCs (bridges dashed)

A cycle cover of a graph is a family of simple cycles covering all its nodes and edges.

Definition 4.8 (Cycle Cover). A cycle cover of a graph G is a set of simple cycles
{C1, . . . , Cn}, Ci = (Vi, Ei, L

V
i , L

E
i), such that

⋃

i Vi = VG and
⋃

iEi = EG.

See Figure 4.6(a) for a non-simple cycle in an SCC. Figure 4.6(b) then depicts a cycle
cover of this SCC, consisting of three simple cycles.

(a) cycle of a graph (bold), consisting of two
simple cycles

(b) simple cycle cover consisting of three cy-
cles (solid/black, dashed/red, dashed/blue)

Figure 4.6: Cycles and Cycle Covers

Within an SCC, each node and each edge within an SCC lies on at least one simple
cycle. Therefore, each SCC possesses at least one cycle cover. Bridges do not lie on any
cycles of the graph, but do not belong to any SCC either.

Remark 4.2 (Computation of Cycle Covers). While the problem of finding a cycle cover
for an SCC with the minimal sum of cycle lengths is NP-hard, there exist numerous
polynomial-time algorithms which can guarantee upper bounds on the cover size. See
[Thomassen, 1997] and the references therein for a discussion. If the goal is just the
computation of any cycle cover (without constraints in its size), then simple depth-first
or breadth-first search can be used to successively identify cycles covering previously
uncovered edges until the entire graph is covered. Since SCCs always permit a cycle
cover, this simple greedy algorithm is guaranteed to terminate.

84

4.2 Graph Structures

For each cycle of a cycle cover of an SCC, the nodes which also intersect with other
cycles in the cover have a special role in the decomposition. They are called border
nodes, since the cycle borders the “rest of the SCC” in these nodes.

Definition 4.9 (Border Node). A border node of a cycle Ci in a simple cycle cover
{C1, . . . , Cn} is a node b ∈ VCi

, such that there exists a j 6= i with b ∈ VCj
.

Note that the border nodes of a cycle are exactly all nodes of the cycle which have a
degree larger than two in the full graph.

As a tool for visualizing the decomposition properties, we will now define so-called
constraint graphs. Constraint graphs are graphs with one node corresponding to each
mode and one edge corresponding to each non-loop transition of the automaton. Here,
loop transitions are taken to be transitions from a mode back and back to the same mode.
Nodes and edges are labeled with the Lyapunov function constraints corresponding to
the mode or transition in question instead of differential inclusions, invariants, guards
or updates. This means that each node label will represent a constraint on the LLF of
that particular mode and each edge label will represent a constraint on the two LLFs
of the modes corresponding to the two incident nodes in the constraint graph. Since
loop transitions a represented as a constraint on just one LLF, they are not represented
as edges in the constraint graph. Instead, the constraint is attached to the node itself.
As Lyapunov functions constraints come in two classes, constraints on the dynamics of
a single mode and constraints on two neighboring modes due to discrete transitions,
there are no ternary or higher-degree constraints in terms of LLFs. Note that constraint
graphs do not allow multiple edges in the same direction between two nodes. Instead,
such multiple edges are collapsed into one edge and their constraints are conjoined.
Therefore, the edges are given as a simple set and not as a multiset. Formally, constraint
graphs are defined as follows.

Definition 4.10 (Constraint Graphs). The constraint graph C(H) = (VC , EC , L
V
C , L

E
C)

of a hybrid automaton H with underlying graph G(H) = (VG, EG, L
V
G, L

E
G) is a graph

with:

1. VC = VG

2. EC = {(m1,m2) ∈ EG | m1 6= m2}

3. LV
C(m) is the conjunction of Constraints (1) and (2) from Theorem 3.7 for the

mode m and all Constraints (3) corresponding to loop transitions attached to m,
that is,

LV
C (m) :⇐⇒









∃f1, f2 in class K∞ :
x ∈ Inv(m) =⇒ f1(||x|Vm

||) ≤ Vm(x) ≤ f2(||x|Vm
||)

∧ ∃f3 in class K∞ : x ∈ Inv(m) =⇒ V̇m(x) ≤ −f3(||x|Vm
||)

∧ ∀(m,m,G,U) ∈ T : (x ∈ G =⇒ Vm(U(x)) ≤ Vm(x))









85

4 Decompositional Stability Analysis

4. LE
C((m1,m2)) is Constraint (3) from Theorem 3.7 for all transitions (m1,m2, G, U),

m1 6= m2, that is,

LE
C((m1,m2)) :⇐⇒

∧

(m1,m2,G,U)∈TH

(x ∈ G =⇒ Vm2
(U(x)) ≤ Vm1

(x))

Define constr (H) as the conjunction of all constraints in C(H), that is:

constr (H) :=
∧

m∈VC

LV
C(m) ∧

∧

e∈EC

LE
C(e)

The predicate constr (H) subsumes all constraints on a GLF for the hybrid automaton
H, and also allows us to analyze sub-problems generated by sub-automata of H.

We will usually express the constraints LV
C (m) and LE

C((m1,m2)) as LMI problems,
as detailed in Theorem 3.10. In this case, the nodes are labeled with instances of the
inequalities (3.3), (3.5), (3.6), and (3.7), and the edges are labeled with instances of
the inequalities (3.4) and (3.8). The constraints (3.1) and (3.2) do not talk about any
individual LLFs, and therefore must be satisfied in addition to constr (H), in order to
obtain a valid GLF for the system.

In informal discussions, for ease of writing, we will often identify a hybrid automaton
with its graph. For instance, the “SCCs of hybrid automaton H” are actually the SCCs
of G(H), and also the SCCs of C(H), since automaton and constraint graph share the
same graph structure, apart from initial states and loops.

The following example illustrates the use of the constraint graph notion, and its visu-
alization.

Example 4.3 (Velocity Controller with Wear and Tear). Figure 4.7 shows a hybrid
automaton modeling a very simple velocity control system. There are two types of
modes: those modes modeling the engine behavior (labeled N1, N2, and N3), and those
modes modeling the brakes (labeled B1, B2, and B3). The engine behavior is given as a
simple univariate linear differential equation. The continuous variable v represents the
velocity differential, the difference of current velocity and the desired set point. Initially,
the system will be in mode N1, if the velocity is close to the set point v = 0 or too
low, or in mode B1, if the velocity is significantly too high, switching between these two
modes as appropriate. However, at any point in time, the system can take a transition
from N1 to N2 or from B1 to B2, respectively. While N1 and N2 are identical in terms
of behavior, B2 can achieve less deceleration than B1, modeling an aging process of the
brake, representing wear and tear and resulting in reduced braking effect. Since this
transition can take place at any time, the hybrid automaton actually models all possible
timings of the aging. The same applies to N3 and B3, the latter of which again results
in a further decreased braking power.

86

4.2 Graph Structures

v̇ = −0.1v
−15 ≤ v ≤ 15

v̇ = −2.5
5 ≤ v ≤ 30

N1 B1
13 ≤ v ≤ 15

5 ≤ v ≤ 11

v̇ = −0.1v
−15 ≤ v ≤ 15

v̇ = −2.2
5 ≤ v ≤ 30

N2 B2
13 ≤ v ≤ 15

5 ≤ v ≤ 11

v̇ = −0.1v
−15 ≤ v ≤ 15

v̇ = −1.9
5 ≤ v ≤ 30

13 ≤ v ≤ 15 5 ≤ v ≤ 11

N3 B3
13 ≤ v ≤ 15

5 ≤ v ≤ 11

true

true

true

true

Figure 4.7: Cruise Controller with Wear and Tear

Figure 4.8 gives the constraint graph for this system with:

cNi
:⇐⇒ ∃f1, f2 in class K∞ : −15 ≤ v ≤ 15 =⇒ f1(||v||) ≤ VNi

(v) ≤ f2(||v||)
∧ ∃f3 in class K∞ : −15 ≤ v ≤ 15 =⇒ V̇Ni

(v) ≤ −f3(||v||), i ∈ {1, 2, 3}
cBi

:⇐⇒ ∃f1, f2 in class K∞ : 5 ≤ v ≤ 30 =⇒ f1(||v||) ≤ VBi
(v) ≤ f2(||v||)

∧ ∃f3 in class K∞ : 5 ≤ v ≤ 30 =⇒ V̇Bi
(v) ≤ −f3(||v||), i ∈ {1, 2, 3}

cNi,Bi
:⇐⇒ 13 ≤ v ≤ 15 =⇒ VBi

(v) ≤ VNi
(v), i ∈ {1, 2, 3}

cBi,Ni
:⇐⇒ 5 ≤ v ≤ 11 =⇒ VNi

(v) ≤ VBi
(v), i ∈ {1, 2, 3}

cNi,Ni+1
:⇐⇒ VNi+1

(v) ≤ VNi
(v), i ∈ {1, 2}

cBi,Bi+1
:⇐⇒ VBi+1

(v) ≤ VBi
(v), i ∈ {1, 2}

Formally, this graph is given as (VG, EG, L
V
G, L

E
G) with:

VG = {N1, N2, N3, B1, B2, B3}
EG = {(N1, N2), (N2, N3), (B1, B2), (B2, B3), (N1, B1), (B1, N1), (N2, B2),

(B2, N2), (N3, B3), (B3, N3)}
LV
G(v) = cv

LE
G((v1, v2)) = cv1,v2

87

4 Decompositional Stability Analysis

cN1
cB1

cN1,B1

cB1,N1

cN2
cB2

cN2,B2

cB2,N2

cN3
cB3

cN3,B3

cB3,N3

cN1,N2

cN2,N3

cB1,B2

cB2,B3

Figure 4.8: Constraint Graph for the Cruise Controller

The predicate constr (H) is the conjunction of all these constraints, representing a
sufficient condition for GAS of the system. When conducting a monolithic stability
proof, one would search for a family of LLFs Vm fulfilling this constraint system.

4.3 Decomposition of Stability Proofs into Strongly Connected
Components

The first step of decomposition of a stability proof for a hybrid automaton is based on
strongly connected components. Intuitively, the argument is simple. Consider a hybrid
automaton with a graph structure as in Figure 4.5 on page 84. Any mode sequence of
an infinite trajectory of this automaton can either:

• stay inside the first (i.e., leftmost) SCC forever, or,

• take a transition to the second SCC, staying there forever, or,

• take a transition from the second to the third (i.e., rightmost) SCC and stay there
forever.

In the first case, existence of a global Lyapunov function for the first SCC implies
convergence of x(t) to 0. Now, whenever x(t) → 0, then this also holds for all suffixes
of x(t). Conversely, if any suffix of x(t) converges to 0, then so does x(t). Therefore,
for the second case, it is sufficient to look at the suffix of x(t) starting at the time
the switch to the second SCC takes place. This suffix converges to 0, if there exists a
GLF for the second SCC. This is equivalent to convergence of x(t). The same applies
to the third case and third SCC. Therefore, it is sufficient to have one separate GLF

88

4.3 Decomposition of Stability Proofs into Strongly Connected Components

for each SCC. Most importantly, these Lyapunov functions need not be interrelated in
any way. It is not necessary to have a decrease of the global Lyapunov function upon
transitioning between SCCs to prove convergence. Therefore, the edges corresponding to
these transitions are dashed in Figure 4.5. They are not mapped onto Lyapunov function
constraints. The constraint graph for the hybrid automaton can therefore be decomposed
into the constraint graphs pertaining to the SCCs. Then, for each SCC Ci, the constraint
system constr (Ci) can be solved independently to complete the attractivity proof for the
entire system. The constraints implied by the bridges of the automaton are not needed
here and can be dropped completely.

To also prove stability (that is, global asymptotic stability instead of just global attrac-
tivity), one additional condition needs to be satisfied: the update functions associated
with the bridges need to bounded by linear functions. If this property holds, global
asymptotic stability as a whole can be shown by this decomposition. This boundedness
property can be checked in beforehand, before any GLF computations take place, as the
argument is not related to the parameters for the Lyapunov functions at all. A theorem
formalizing this decomposition, with a complete proof, is given next.

Theorem 4.1 (Decomposition into Strongly Connected Components). Let H be a hy-
brid automaton. If all sub-automata pertaining to the SCCs of H are globally attractive
then so is H. If all SCCs Ci are globally stable and all transitions (m1,m2, G, U) corre-
sponding to bridges of G(H) are sub-linear , that is,

∃c > 0 : ∀x ∈ G : ||U(x)|| ≤ c||x||,

then H is globally stable.

Proof.
Global Attractivity:
Let x(t) be a fixed infinite trajectory of H, and (mi) the associated mode sequence.

Let (Ck) be the sequence of SCCs (mi) enters, in order. Since no SCC can occur twice
in (Ck), and the total number of SCCs is finite, (Ck) must be finite. Let t0 be the point
in time when x(t) enters the final SCC of Ck and let x̃(t) = x(t− t0). Since SCC Ci is
globally attractive, we have x̃(t) → 0 for t → ∞, which implies x(t) → 0.

Global Stability:
Let P be the set of all possible SCC sequences C0 ≺ . . . ≺ Cn, connected by all

possible bridge sequences (bi) of H, with bi = (mi, m̃i, Gi, Ui). Let ci be a sub-linearity
factor of bi. We will now prove global stability of the overall system by successively
applying in an alternating manner: 1) the stability property of an SCC, and 2) the sub-
linearity property of the bridge leading into the SCC. This is first done for an individual
p ∈ P . Let ǫ > 0. Select a p ∈ P . Let x(t) be a trajectory corresponding to p (i.e., the
associated mode sequence traverses the SCCs Ci in the order given by p), and let (ti)
be the sequence of switching times between the Ci. Let xi(t) be the trajectory segment
corresponding to Ci. Beginning with Cn, we have

∃ δpn > 0∀t ≥ tn : (||xn(tn)|| < δpn =⇒ ||xn(t)|| < ǫ) .

89

4 Decompositional Stability Analysis

In particular, we also have δpn ≤ ǫ. Exploiting sub-linearity, we then obtain

||xn−1(tn)|| < δpn/cn−1 =⇒ ||Un(xn−1(tn))|| < δpn

for the bridge between Cn−1 and Cn. In the same fashion, for 0 < i < n, we can conclude

∃ δpi > 0∀t ∈ [ti, ti+1] :
(

||xi(ti)|| < δpi =⇒ ||xi(t)|| < δpi+1/ci
)

,

which implies δpi ≤ δpi+1/ci. For the bridge between Ci−1 and Ci we have

||xi−1(ti)|| < δpi /ci−1 =⇒ ||Un(xi−1(ti))|| < δpi .

Finally, for C0, we arrive at

∃ δp0 > 0∀t ∈ [0, t0] : (||x0(t0)|| < δp0 =⇒ ||x0(t)|| < δp1/c0)

and δp0 ≤ δp1/c0. Set

ǫ′ :=
ǫ

∏

imin(1, ci)

Since ǫ ≤ ǫ′ and for all i > 0

δpi /ci−1 ≤ δpn/

n−1
∏

j=i

cj ≤ ǫ/

n−1
∏

j=i

cj ≤ ǫ′,

together with the sequence of implications for the Ci and the bridges above, this implies

||x(0)|| ≤ δp0 =⇒ ∀t : ||x(t)|| ≤ ǫ′.

In other words, all trajectories corresponding to p and starting within a δp0-ball around
the origin will stay within an ǫ′-ball at all times, for any ǫ > 0. Since ǫ and ǫ′ are related
by a fixed factor only, this implies the existence of a suitable δp0 for any ǫ′. We will now
take all these δp0-balls for the different p ∈ P and a given ǫ′ and combine them into one
bound that guarantees the desired boundedness condition over all p ∈ P . For any ǫ′,
define δp(ǫ′) as the corresponding δp0 . Now, take the minimum over all p:

δ(ǫ′) := min{δp(ǫ′) | p ∈ P}.

This minimum exists, as P is finite. This gives us

∀ǫ′ > 0, t ≥ 0 : ||x(0)|| < δ(ǫ′) =⇒ ||x(t)|| < ǫ′,

which completes the proof.

If we are concerned only with GAS with respect to only a subset of variables V ′ ⊆ V,
then the sub-linearity constraint must be replaced by

∃c > 0 : ∀x ∈ G : ||U(x)|| ≤ c||x|||V ′ .

90

4.3 Decomposition of Stability Proofs into Strongly Connected Components

In that case, the proof can be conducted in the same manner.

Sub-linear transitions include cases like the identity function (i.e., no actual update)
or linear update functions of the form U(x) = Ax, where x is the state vector and A
is a matrix. Not all transitions with constant updates are sub-linear. For instance, the
one-dimensional update function U(x) = 5 with guard x = 2 is sub-linear with factor
c = 2.5. If the guard is changed to true, this update is not sub-linear with respect to
any factor. Therefore, in order to conclude stability, it is paramount to have guards
that are as strict as possible, including few or no states which are actually unreachable.
Reachability-based tightening of guards can possibly be used to salvage sub-linearity
and therefore stability.

Example 4.4. Figure 4.9 shows the velocity controller system of Example 4.3, decom-
posed into its SCCs. The system can be decomposed into three two-mode automata,
each of which represents one wear and tear stage. Each sub-automaton can now be ana-
lyzed completely separately. Since the bridges of the original automaton had no discrete
updates of the continuous variables, global attractivity and stability are preserved un-
der this decomposition. The three sub-automata can be therefore analyzed completely
independently for GAS, with completely separate GLF computations.

In case the update on a bridge is not sub-linear, the decomposition actually produces
stronger results than solving the monolithic problem. Consider the following example.

Example 4.5 (Attractive, but Unstable System). The system given by Figure 4.10
consists of two globally asymptotically stable modes (which can again be verified by
eigenvalue computation). Therefore, per Theorem 4.1, the whole system is attractive.
However, the update function U(x) = 5 is not sub-linear on x = y. Therefore it is
not possible to conclude global asymptotic stability of the system. In fact, the system
is not globally asymptotically stable. Select an ǫ < 5. No matter how close to the
origin we start, the trajectory following the dynamics of m1 will eventually activate the
guard x = y. This can, in turn, trigger the transition, with the update function setting
variable x to 5. Therefore, there is no δ-ball around the origin, for which all trajectories
starting there are guaranteed to stay within the ǫ-ball around the origin for all future
times. See Figure 4.11 for some example trajectories. Note that x can eventually be
set to 5, regardless of initial state, so, the stability condition is, for instance, violated
for ǫ = 4. Therefore, global stability does not hold for this system. This implies per
contraposition of Theorem 3.5 that there can be no GLF for the entire automaton.
Therefore, monolithic Lyapunov function computation to prove convergence must fail.
However, if we use the decomposition proposed in Theorem 4.1, we are able to prove
attractivity decompositionally. This leads to the following important observation.

In case a hybrid automaton is globally attractive, but not globally stable, there cannot
exist a continuous or discontinuous Lyapunov function for the whole system. However,
all of the individual sub-automata corresponding SCCs of the automaton might be at-
tractive, if viewed in isolation. According to Theorem 4.1, this implies attractivity of the
entire system. Therefore, in this case, the decomposition can actually lead to stronger

91

4 Decompositional Stability Analysis

v̇ = −0.1v
−15 ≤ v ≤ 15

v̇ = −2.5
5 ≤ v ≤ 30

N1 B1
13 ≤ v ≤ 15

5 ≤ v ≤ 11

v̇ = −0.1v
−15 ≤ v ≤ 15

v̇ = −2.2
5 ≤ v ≤ 30

N2 B2
13 ≤ v ≤ 15

5 ≤ v ≤ 11

v̇ = −0.1v
−15 ≤ v ≤ 15

v̇ = −1.9
5 ≤ v ≤ 30

N3 B3
13 ≤ v ≤ 15

5 ≤ v ≤ 11

13 ≤ v ≤ 15 5 ≤ v ≤ 11

true true

true true

Figure 4.9: Velocity Controller with Wear and Tear Decomposed into three SCCs

results than the standard monolithic verification. The decomposition into SCCs can
be employed to enlarge the set of possible Lyapunov function for proving attractivity
only. For the system in Example 4.5, this turns an infeasible constraint system into two
feasible constraint systems.

If one is only interested in proving global attractivity, then it suffices to consider
SCCs in which trajectories can potentially stay infinitely long, that is, SCCs that can
be the final SCC a trajectory moves into. This is a consequence of the proof of global
attractivity of Theorem 4.1, which only requires the last SCC in (any possible) sequence
to be GAS. For global stability, in contrast, knowledge of the stability of all reachable
SCCs is required in the proof, even if they are only transient. Unreachable SCCs can
trivially be ignored in any case. This is formalized in the following corollary.

Corollary 4.1. Let H be a hybrid automaton and let C1, . . . , Cn be all strongly con-
nected components of H for which there exists a trajectory with a mode sequence en-
tering but never leaving the component. If all Ci are globally attractive, then so is
H.

92

4.3 Decomposition of Stability Proofs into Strongly Connected Components

ẋ = −x− 10y
ẏ = 10x− y

ẋ = −x
ẏ = −y

m1 m2

x = y ∧
x+ = 5true

Figure 4.10: Attractive, Unstable System

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−6

−4

−2

0

2

4

6

8

t

x,
 y

(a) Initial state x = 6, y = 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2

−1

0

1

2

3

4

5

6

7

8

t
x,

 y

(b) Initial state x = 3, y = 1

Figure 4.11: Example Trajectories for the System Given in Figure 4.10, state versus time

The following theorem implies that this decomposition is not conservative with respect
to Lyapunov functions. In other words, whenever it is possible to identify a GLF for the
entire system, it is also possible to find individual GLFs for all SCCs.

Theorem 4.2. Let H be a hybrid automaton and let C1, . . . , Cn be the SCCs of hybrid
automaton H. If there exists a GLF V (x,m) for H, then there exists a GLF for each
SCC Ci.

This property follows directly from the fact that a GLF can be split up into several
Lyapunov functions on the sub-automata. The implication is that there exists no system
for which the constraint system has a solution, but the corresponding decompositional
constraint systems do not. Therefore, there is no loss in considering all SCCs individ-
ually. As discussed above, the class of systems for which attractivity can be shown
decompositionally is even larger. On top of this, we obtain the additional benefit that
the resulting constraint systems are also smaller than in the monolithic case, and are
therefore more easily solved.

Note that there might be a different representation of the same system as a hybrid au-
tomaton that consists of smaller SCCs and therefore results in a less difficult Lyapunov
function computation problem for the individual SCCs. To discover such representa-
tions, for instance by replacing one large SCC by two smaller ones exhibiting equivalent
continuous behavior, reachable set computation can be employed. An example of this is
given next.

Example 4.6 (Hybrid System with Hidden SCCs). Figure 4.12 gives a very simple
example of a hybrid automaton which has an equivalent representation with a higher

93

4 Decompositional Stability Analysis

number of SCCs. The original automaton consists of two SCCs, one containing only
mode m1, and one containing modes m2 and m3. The two dashed edges labeled x = 0
are not reachable, since the modesm1 andm2 are entered with x 6= 0, and the differential
equations ẋ = −2x and ẋ = −3x, respectively, cannot result in trajectories crossing the
plane x = 0. Therefore, these two transitions can simply be removed from the automaton
without changing its semantics. The result is a hybrid automaton with three single-mode
SCCs.

ẋ = −x

ẋ = −2x

ẋ = −3x
m1

m2

m3

0.1 ≤ x ≤ 1

−1 ≤ x ≤ −0.1

x = 0 x = 0
true

Figure 4.12: Hybrid Automaton with Hidden SCCs (Unreachable Edges Dashed)

This kind of system simplification also can be conducted with help of LLFs of the
individual modes, as discussed in Section 3.4, since each LLFs can be used to gener-
ate suitable barrier certificates. The barrier certificate constraint Vm ≤ c can then be
conjoined with both the mode invariant and the guards of all outgoing edges, with-
out changing the semantics of the hybrid automaton. If any edge receives a guard false
through this procedure, it can be removed. Therefore, it can be advantageous to conduct
LLF computations for all modes before making GLF computations for the entire system
or its SCCs. This first analysis can also help tightening the guards and invariants of the
system and therefore increase the success rate of the GLF computation that follows.

For SCCs of hybrid automata that are transient, there is also another interpretation
of their stability property. Lyapunov functions imply the absence of infinite trajectories
that do not converge to the equilibrium point. If the equilibrium point is not reachable
within the sub-automaton H corresponding to the SCC, then the existence of a GLF for
H tells us that there can in fact be no infinite trajectories as per Definition 3.13 at all
in H. In other words, all trajectories of H must be finite, as some invariant will always
be violated at some point in time with no guards active within the SCC itself. In this
case, the Lyapunov function takes the role of a termination function of the component,
proving that, eventually, the invariant of the currently active mode is violated with no
active guard to continue the run of the system. For all SCCs with this property, their
corresponding GLFs actually prove the transience of the component.

In fact, the traditional definition of a discrete-time termination function is directly
related to Lyapunov functions. Termination functions are required to decrease at least
by some positive ǫ at every time step and to be bounded from below. While Lyapunov
functions do not, in general, possess an absolute minimum decrease rate (i.e., a negative

94

4.3 Decomposition of Stability Proofs into Strongly Connected Components

upper bound to V̇ (x) over all x), they do so on any closed set I that does not contain
the equilibrium xe. This closed set can, for instance, be a mode invariant. Furthermore,
Lyapunov functions are always bounded from below. This means that termination can
also be shown with Lyapunov techniques. See Figure 4.13 for an illustration, with I
denoting the closed set and the dashed line denoting a contour line of the Lyapunov
function which is eventually crossed left to right. Since it is not possible to return to I
after crossing the contour line, this implies the “termination” of I.

xe

Vm(x) =
minx̃∈I Vm(x̃)

I

Figure 4.13: Lyapunov Function Vm as Termination Function for Set I

While it may seem at first sight that Lyapunov functions impose stronger constraints
than termination functions, since they are used to show convergence to a state, this is
actually not the case. Lyapunov conditions must only hold for states that are actually
reachable within the mode in question. This means that, if the chosen equilibrium lies
outside the invariant set, we actually do not prove convergence within this mode. This
is because no constraints at all are imposed in a neighborhood around the equilibrium
which does not intersect with the invariant set. Therefore, if we were to show only
termination of a mode with help of a LLF, we could theoretically pick any state as
“equilibrium” which possesses such a neighborhood. With this degree of freedom, a
Lyapunov function becomes exactly a termination function for the mode in question.

The following corollary considers the case that the SCCs do not share the same equi-
librium. Instead, each SCC is allowed to have a separate equilibrium state. In this
case, Lyapunov functions can be used to prove convergence to some equilibrium for each
trajectory.

Corollary 4.2 (Convergence to Multiple Equilibria). If each SCC Ci of hybrid automa-
ton H has a (possibly different) equilibrium xCi

, then the existence of a GLF VCi
for

each SCC implies for each trajectory x(t) of hybrid automaton H that there exists an i
with x(t) → xCi

.

This is a direct consequence of Theorem 4.1.
In the same vein as for the termination discussion above, equilibria which are not

covered by any invariant of the SCC they belong to can be excluded. This follows

95

4 Decompositional Stability Analysis

directly from the termination arguments: in this case, the GLF of the SCC serves as a
proof that the SCC is transient, meaning that each trajectory entering it will leave it
again at some future point in time. Since this unreachable equilibrium plays no role in
the convergence result itself, the GLF of the transient component could, as discussed
above, theoretically use any xe ∈ S as “equilibrium point.”

Remark 4.3. When using this decomposition technique, note that one does not obtain
a GLF for the entire system, but only for the system’s SCCs. Therefore, upon switching
from one SCC to another, it is possible to observe an increase in Lyapunov function
value. As shown in Theorem 4.1, this is still sufficient to prove attractivity, and if
bridges are sub-linear, then also sufficient to prove global stability. However, one is
sometimes interested not only in a stability proof, but also in a truly global Lyapunov
function serving as a certificate of this property. For such cases, it is possible to construct
a GLF for the entire system from the GLFs VCi

of the SCCs Ci. The basic idea is that
scalar multipliers are applied to the VCi

, such that the conditions implied by the bridges
(which were not used in any of the sub-LMIs for the SCCs) are also satisfied.

A simple solution is as follows. Consider a system with two SCCs C1 and C2 connected
by a single sub-linear bridge (m1,m2, G, U), where m1 is a mode of SCC C1 and m2 is
a mode of SCC C2. One additional assumption is that the guard G is contained in the
invariant Inv(m1). If this is not the case, then the hybrid system can be equivalently
reformulated accordingly. Now assume that we have two GLFs VC1

and VC2
for the two

SCCs, computed from the LMI problem in Theorem 3.10. We need to apply a positive
multiplier λ to VC1

in order to obtain a GLF for the entire hybrid automaton. From the
LMI constraint (3.5) of Theorem 3.10, it is clear that VC1

(x,m1) ≥ ||x||2 for x ∈ Inv(m1).
Furthermore, constraint (3.6) implies that there exists a β > 0 with VC2

(x,m2) ≤ β||x||2
for all x. Assume that c is the sub-linearity factor for the bridge. Then,

(1/β)VC2
(U(x),m2) ≤ ||U(x)|| ≤ c||x|| ≤ cVC1

(x,m1).

Therefore,

VC2
(U(x),m2) ≤ βcVC1

(x,m1).

The scalar βc is a possible such multiplier, but not necessarily the optimal one. To
obtain better multipliers for VC1

, we can also formulate this as a univariate optimization
problem: find the minimal multiplier such that the bridge constraint (3.8) of Theorem
3.10 is fulfilled. This is again an LMI problem where the S-procedure can be used in
the usual manner, and the multiplier is the only unknown.

For a system with several SCCs, one simply exploits the relative order defined by
the “≻” relation. All SCCs which are final (i.e., have no successors) do not receive a
multiplier. We then first assign multipliers to their predecessors and then continue to
work backwards through the system. If an SCC has several outgoing bridges, then the
maximal multiplier resulting from these computations must be used.

Obviously, this simple decomposition into SCCs can only serve as a first step. While
hybrid automata can consist of several SCCs, for instance modeling different layers of

96

4.4 Decomposition within Strongly Connected Components

emergency behavior, the individual SCCs can still be very large. For instance, consider
a system that 1) detects an emergency, 2) reacts accordingly and then 3) switches back
to normal behavior, once the hazardous situation has been averted. The returning
transition from emergency to standard control strategies makes a decomposition into
SCCs impossible. Clearly, there is a need for a decomposition strategy within an SCC.
Such a method is proposed in the next section.

4.4 Decomposition within Strongly Connected Components

The decomposition of a hybrid automaton into SCCs can be achieved in a lossless man-
ner, as far as the existence of Lyapunov functions is concerned. This is guaranteed by
Theorem 4.2. However, inside an SCC, this is generally no longer the case, as dependen-
cies between sub-graphs within an SCC are bidirectional, whereas dependencies between
SCCs are unidirectional because of the relative order of SCCs. As demonstrated in Ex-
amples 4.1 and 4.2, switching back and forth between two subsystems preserves neither
stability nor instability. Therefore, stability proofs for each subsystem in isolation can-
not be combined into a stability proof for a composed automaton without exploiting of
additional information.

The first question to be answered is: “What kind of graphs should be used as a basis
for decomposition inside SCCs?” There are many possibilities, but in the scope of this
thesis, the decomposition is based on cycles. The justification is as follows, and the
points are discussed in detail below.

• Each node (=mode) and each edge (=transition) within an SCC lies on at least
one simple cycle.

• By solving LMI problems on cycles, one can conduct decomposition and avoid
explicit fixed point iterations.

• For large classes of systems, the length of simple cycles in a SCC is relatively small,
while the number of cycles can often be large.

Each node (=mode) and each edge (=transition) within an SCC lies on at least one
simple cycle: It is possible to cover an SCC completely, using only cycles. Each cycle
can be broken down into a number of simple cycles, that is, cycles which do not contain
the same node twice. Moreover, cycle covers can be computed efficiently (see Remark
4.2), and these graph algorithms will generally not be the bottleneck of the computation.
Computation times for the actual GLFs corresponding to the cycles can be expected to
dominate these costs.

By solving LMI problems on cycles, one can conduct decomposition and still avoid
explicit fixed point iterations: Imagine a decomposition approach where one 1) looks
at each mode individually, 2) solves its local LMI problem and then 3) tries to fit together
the individual solutions (i.e., LLFs) to obtain a stability proof. Within a cycle consisting

97

4 Decompositional Stability Analysis

of three modes m1,m2m and m3, with transitions from m1 to m2, m2 to m3, and m3 to
m1, one would start by solving the constraint system for m1, obtaining a LLF Vm1

. In
a second step, one would then try to compute a Vm2

, such that the constraints imposed
by the transition from m1 to m2 are also satisfied. Therefore, this second computation
would need the previously computed function Vm1

as input. If this succeeds, one would
repeat the procedure for m3, whose LLF Vm3

would implicitly depend on Vm1
and Vm2

.
However, Vm3

would have to fulfill two constraints: the decreases upon transitioning
from m2 to m3 and from m3 to m1. With the wrong choice for Vm1

in the first step or
the wrong choice for Vm2

in the second step, this problem is likely to have no solution.
This would force us to again re-compute a different Vm1

, then Vm2
, and then hope for a

better situation. This iteration would have to be repeated until a fixed point is reached,
that is all three Vmi

are compatible.

Contrarily, using an LMI solver for this cycle alleviates this problem, since the descent-
like methods used in the non-linear optimization routines effectively consider all three
modes at once. Therefore, all fixed point computations are left to the optimization
software, resulting in a clean and more transparent composition that does not have to
cope with this problem directly. This makes cycles a favorable abstraction point for both
compositional design and decompositional analysis.

While it might seem that systems containing cycles of cycles would remain a problem,
this is not the case. This problem can be alleviated by a node splitting operation
that preserves the semantics of the hybrid automaton, but can be used to get rid of
such circular dependencies among cycles. Therefore, the computational procedure for
the decomposition proposed in this chapter is such that, even in this case, fixed point
iteration can be avoided. However, the cost of such a decomposition naturally increases
with the interconnectedness of the sub-graphs to be decomposed.

For large classes of systems, the length of simple cycles in a SCC is relatively small,
while the number of cycles can often be large: Scenarios with cycle lengths of more
than three are not all too common. For this to occur, the hybrid system needs to go
through a fixed sequence of modes in a fixed order. In the control domain, this might
occur when, after a switch, the new dynamics need a “warm up phase,” until they reach
full effect. However, long sequences of such transient states do not seem to occur in many
applications. In fact, most of the time, transitions between two modes will be possible
in both directions, resulting in a simple cycle of length two. In contrast, a hybrid model
can often have many cycles. If a mode is used to model some temporarily different
behavior, then this will usually be reflected by a cycle, often of length two: a mode with
an incoming edge (with the activation condition of the differing behavior as guard) and
an edge leading back to the rest of the system (with the exit condition as guard). The
tendency to have many small cycles makes this decomposition particularly attractive, as
the result is a strong decomposition resulting in many sub-components. While automata
obtained as the parallel composition of various sub-automata sometimes exhibit larger
cycles, methods for parallel decomposition can be employed to treat the sub-automata
separately, alleviating this problem. However, methods for parallel decomposition are

98

4.4 Decomposition within Strongly Connected Components

not within the scope of this thesis and therefore not discussed in detail.

For these reasons, simple cycles are a suitable choice for further decomposition. How-
ever, global asymptotic stability of two cyclic automata does not have any general im-
plication with respect to the stability of a composition, unless they are composed in a
manner that results in two separate SCCs. Therefore, additional information is needed
to combine the results from the two cycles. This leads to the second question to be
answered: “What kind of information do we need to store for the computations for the
individual cycles?” This information needs to be such that we can always ensure cor-
rectness. However, it is in general impossible to avoid forfeiting completeness, compared
to the monolithic computation. In other words, when decomposing individual SCCs, the
class of systems for which a monolithic stability proof is theoretically possible is larger
than the class of systems for which a decompositional stability proof is theoretically
possible. This is in contrast to the decomposition into SCCs, which is lossless, and also
permits attractivity proofs of more systems than before. However, in Section 4.7, we
will introduce a refinement procedure that can be used to reduce this gap.

The goal is to choose the level of decomposition such that this additional incom-
pleteness is outweighed by the gain of practical tractability of the problem. We want
to be able to conduct decompositional stability proofs in cases were the computations
become numerically difficult or simply too computationally complex for the monolithic
case. Nevertheless, there is a tradeoff between tractability and completeness here. The
more information we keep in between cycles, the closer we will be to the monolithic case,
leading to frequent numerical instability, and, generally, strongly coupled computations
for the individual cycles and a weak decomposition. On the other end of the scale, if
we keep little information, we effectively reduce the number of systems for which sta-
bility can be shown, while keeping the individual computations simple and relatively
decoupled. In addition, the incompleteness is counterweighed by new opportunities for
composition and re-design. If a Lyapunov function computation for a sub-system fails,
it is clear that something must be changed in this sub-system to avert the problem. A
strong decomposition means that these sub-systems will be small, making the identifi-
cation of the problematic, stability-destroying system parts easier. Furthermore, even
during the design process, criteria for the choice of switching or control strategies for
individual transitions or modes can be formulated based on the decomposition results.
This increased transparency is a great advantage in the decompositional approach, very
often outweighing its inherent incompleteness.

There will be systems that are more or less amenable to decomposition. They key prop-
erty is the connectedness of the discrete structures. Clearly, tightly interacting modes
will be difficult to separate without incurring major conservativeness in the computa-
tions. This is not avoidable, so the composition techniques are developed with systems
with a “somewhat sparse” discrete structure in mind. Generally, tree-shaped structures
are easiest to decompose (even losslessly, as was shown in Section 4.3), while systems
represented by fully connected automata are hardest to decompose. Therefore, for prac-
tical application of the decomposition, an a priori decision process identifying the parts
of the systems to be decomposed might be useful. If cliques (i.e., fully connected sub-

99

4 Decompositional Stability Analysis

graphs) can be identified in the graph, then they can be marked as non-decomposable,
if so desired. While the decomposition techniques will still work for fully connected
graphs, their efficiency will suffer, so that it might be valuable to exclude parts of the
automaton from the decomposition.

In order to conduct cyclic decomposition, a decision on how to represent the informa-
tion to be kept “inbetween computations” needs to be made. Since the stability analysis
in this thesis is based on the notion of Lyapunov functions, it is natural to also use
Lyapunov functions in the decomposition. The property that is exploited is that the set
of all Lyapunov functions for any system (continuous/discontinuous Lyapunov functions
for continuous/discrete/hybrid systems) will always form a convex cone (see Theorem
3.6).

This has an important consequence: Whenever we have finitely many global Lya-
punov functions V i for a given hybrid system H, then their conic hull will only contain
Lyapunov functions of H. This means that conic, polytopic infinite sets of Lyapunov
functions can be represented efficiently by just keeping track of the GLF V i. These GLF
V i form the “corner points” of the conic polytope. Moreover, conic polytopic sets can
be used to under-approximate the actual sets of Lyapunov functions fulfilling the mono-
lithic LMI constraints arbitrarily closely. Therefore, we will employ polytopic cones of
Lyapunov functions to ensure that the stability proofs of the individual cycles lead to a
stability proof for the entire system.

To decompose a system (i.e., its constraint graph) into simple cycles, we need a simple
cycle cover (see Definition 4.8), which acts as a basis of the decomposition. Such a cyclic
decomposition exists, since each node and edge inside an SCC lies on at least one cycle.
The idea is to first identify a cycle to be examined. Then the constraint system for
this cycle is solved not only once, but several times with different objective functions,
in order to obtain the information that we need in order to ensure “compatibility with
the following computations.” We only choose cycles that overlap with the rest of the
graph in at most one border node. If no such cycle exists, a transformation procedure
on the hybrid automaton is invoked to produce one. After the computations, this cycle
(apart from the border node, which is potentially shared with other cycles) is collapsed
and replaced by the computed compatibility information. This information comes in the
form of a conic polytopic set of LLFs for the border node, and is attached to it as an
extra constraint. Per Theorem 3.6, we can simply represent this set of LLFs by its corner
points, representing an infinite set of functions by a finite set. The resultant constraint
graph is smaller as all non-border nodes of the reduced cycle have been removed. Most
importantly, the constraint system does not talk about these nodes any more. Moreover,
since the newly added predicate only refers to LLFs for the border node, the “size”
of the information that is kept is not dependent on the number of nodes that have
been removed. Therefore, there is no additional blowup with respect to the size of the
collapsed cycle, as the complexity of the predicates is not dependent on the number
of nodes that have been abstracted away. This procedure is then repeated until the
constraint graph is reduced to an empty graph, and the conic constraints for the border
nodes are taken into account for any further constraint systems containing the node.
Eventually, this procedure will result in a step-by-step computation of a cycle cover,

100

4.4 Decomposition within Strongly Connected Components

interrupted by possible transformation steps to produce reducible cycles.
See Figure 4.14 for an illustration of an example. A system of two cycles, represented

by its constraint graph, is reduced in this example. First, one of the cycles is picked
(either one would be possible, as both of them have exactly one border node), in this
case the left one. By obtaining multiple solutions to its constraint system (that is, the
constraints c1 to c4 and c8 to c11), a conic predicate Rb on the free parameters of the
LLF for the border node b is computed, and attached to b. Then, all non-border nodes of
the left cycle are removed, and there are no constraints referring to their LLFs left in the
constraint graph after this removal. Instead, the removed nodes and their corresponding
constraints (as well as the constraint c4) have been subsumed by predicate Rb, which
only talks about the LLF Vb of the border node. After the reduction, only one cycle
remains. Therefore, to prove GAS of the entire graph, one would then only have to solve
the constraint system consisting of c5 to c7, c12 to c15, and Rb.

Thus, two sub-graph-local computations have taken the place of one global computa-
tion. We call the nodes that have such predicates Rb attached reduced nodes.

c1

c2

c3

c4

b

c5

c6

c7

c8
c9

c10c11
c12

c13

c14c15

(a) before reduction

Rb

b

c5

c6

c7

c12 c13

c14c15

(b) after reduction

Figure 4.14: Constraint Graphs before and after Cycle Reduction

Definition 4.11 (Reduced Nodes). A reduced node b corresponding to cycle C in a
constraint graph is a node that is labeled with a predicate Rb which has been obtained
by collapsing cycle C. For a reduced node b, define cycle(b) as the corresponding cycle
C.

Recall that border nodes (as defined in Definition 4.9) of cycle C with respect to some
cycle cover are the nodes of C that are also part of other cycles in the cover. During
a reduction step, all non-border nodes of a cycle are removed, and the predicate Rb is
attached to the border node. Therefore, the reduction procedure turns border nodes
into reduced nodes. One can simply view reduced nodes as border nodes to which the
reduction has already been applied.

Assume that the SCC contains at least one cycle. The computational method is the
summed up in Algorithm 1. The equivalent transformation in line 3 will be described
in detail later in this section, as well as methods for arriving at the predicate Rb, as
required in line 10.

In case no Lyapunov function is found in lines 7 or 10, this could have several causes:

101

4 Decompositional Stability Analysis

1 repeat

2 if there are no cycles with at most one border node then

3 equivalently transform the graph to produce one;
4 end

5 select a cycle C with at most one border node;
6 if cycle C has no border nodes then

7 compute a GLF for C;
8 end

9 if cycle C has one border node b then

10 compute a conic constraint Rb on the free parameters of Vb that implies
the existence of a GLF;

11 replace the constraint for b in the constraint graph by Rb, thereby
turning b into a reduced node;

12 end

13 remove all non-border nodes of the cycle C from the graph, together with all
edges of the cycle C;

14 until graph is empty;

Algorithm 1: Reduction Algorithm Outline

• the cycle C does not have a GLF of the chosen parametrization: This can be
checked by disregarding all constraints Rb from previously reduced cycles and re-
placing them by the original constraints on the reduced nodes before the reduction.
In Figure 4.14(b), this would mean that also the constraint system consisting of c4
to c7 and c12 to c15 has no solution. If there is no solution even in this case, then on
can attempt to use a different Lyapunov function parametrization for some of the
nodes in C, or possibly the system is in fact unstable. In both cases, we now have
the information that changes need to be made to C (either the hybrid automaton
itself or the Lyapunov function parametrizations) in order to successfully conduct
a stability proof.

• the cycle C, disregarding all constraints Rb from previously reduced cycles, pos-
sesses GLFs but the overall automaton does not: This means that the interplay
of cycle C and other cycles in the automaton causes the instability. In this case,
changes to LLF parametrizations or system behavior in any of the involved cycles
can potentially result in a successful stability proof. The culprit is not a simple
cycle, but the non-simple cycle which is the union of the involved cycles.

• the overall hybrid automaton possesses GLFs which are not found because the
predicate Rb is too conservative: In this case, we can backtrack to cycle(b) and
refine the Rb. In the context of Figure 4.14(b), we would try to identify a better
predicate Rb by looking at the first cycle again, in the hope that this allows the
GLF computation for the second cycle.

• the overall hybrid automaton possesses GLFs which are not found because a border
node predicate computed earlier was too conservative: This can for instance occur

102

4.4 Decomposition within Strongly Connected Components

if the system consists of three cycles in a row and the problem is caused by an
inadequate predicate Rb for the first cycle. This means that further backtracking
is needed.

These points are all discussed in detail in Section 4.7, where a refinement and back-
tracking procedure that can also detect the guaranteed non-existence of GLFs for two
intersecting cycles is presented.

The following theorem forms the foundation of the computation of the predicates Rb

in line 10 of Algorithm 1. Note that it works not only for decomposition into cycles, but
also into arbitrary sub-graphs, as long as they only intersect in one node.

Theorem 4.3 (Decomposition within SCCs and Stability). Let

H = (M,S,V,T ,Flow , Inv , Init)

be a hybrid automaton, with two sub-automata

C1 = (M1,S1,V1,T1,Flow 1, Inv1, Init1)

and
C2 = (M2,S2,V2,T2,Flow 2, Inv 2, Init2),

and let b ∈ M be a mode of H such that:

• M1 ∪M2 = M,

• T1 ∪ T2 = T ,

• M1 ∩M2 = {b}, and

• T1 ∩ T2 = ∅.
Let the V i

C1
, 1 ≤ i ≤ k, be a family of GLF for sub-automaton C1. If there exists a GLF

VC2
: S ×M2 → R for sub-automaton C2 such that the constraint Rb defined as

Rb :⇐⇒ VC2
(·, b) ∈ cone({V i

C1
(·, b)|1 ≤ i ≤ k})

holds, then the hybrid automaton H is GAS.

Proof. We prove that there exists a GLF for H. Per assumption, for each i, V i
C1

is a GLF

for sub-automaton C1. Per Theorem 3.6, this implies that all V ∈ cone
({

V i
C1

∣

∣ 1 ≤ i ≤ k
})

are also GLFs for sub-automaton C1. Additionally, VC2
is a GLF for sub-automaton C2

and VC2
(·, b) ∈ cone

({

V i
C1
(·, b)

∣

∣ 1 ≤ i ≤ k
})

. Let the λi be the multipliers of VC2
(·, b)

in this conic set. Then, define the function V : S ×M → R with

V (·,m) =

{

∑k
i=1 λiV

i
C1
(·,m) if m ∈ M1 \ {b}

VC2
(·,m) if m ∈ M2

All constraints in constr (C2) are fulfilled by V , as they are already satisfied by VC2
. The

constraints in constr (C1) are fulfilled by each V i
C1

and therefore also by their weighted
sum with respect to the λi. Since constr (H) = constr (C1) ∧ constr (C2), this implies
that V is a GLF for H.

103

4 Decompositional Stability Analysis

Since the LLF constraints for mode b are the same for both sub-graphs, they can
actually be dropped for C2 and replaced by the Rb above. Every function in the conic
hull of the V i

C1
(·, b) will already be a LLF for b, also in the constraint system for C2.

Therefore, Rb implies that VC2
(·, b) is a LLF and the original constraints for b become

redundant for C2.

The constraint Rb requires the LLF for mode b for the second sub-automaton to be
inside the conic hull of the LLFs for mode b for the first sub-automaton. This means that
we require the existence of non-negative multipliers λi (at least one of which is strictly
positive), such that the weighted sum of the V i

C1
(·, b) (which is always a LLF for b), is the

LLF VC2
(·, b) for C2. For a scenario with two intersecting cycles, the implication of this

theorem is as follows. For the first cycle C1, we need to compute a number of different
GLFs V i

C1
, ideally such that their conic hull covers a large portion of the solution space.

For the second cycle C2, we then simply use a different parametrization for the LLF of
the border node. This LLF is parametrized as

VC2
(·, b) = λiV

i
C1
(·, b).

Here, the multipliers λi become the new free parameters for the LLF, with the addi-
tional restriction that they must be non-negative and at least one of them positive. The
number of the GLFs V i

C1
and of the multipliers λi can be chosen freely. The more GLFs

we compute for C1, the closer we can approximate the actual solution set by the conic
hull. On the other hand, each additional GLF introduces another free variable λi for
the second cycle C2. Therefore, the replacement of a border node constraint by a conic,
polytopic constraint does only incur local, simple changes to the constraint system. If
the GLFs V i

C1
are well chosen, not many corner points are needed and we can keep the

constraint system for C2 small.

Representing the under-approximation of the solution set by a predicate corresponding
to a conic polytope has one additional advantage: it is straightforward to add this
constraint to an LMI problem for a neighboring cycle. This is discussed in Section 4.5.

If we can arrange the cycles of an SCC in a partial order, then the reduction process
can simply be applied repeatedly. Imagine a SCC which simply consists of a number
of cycles Ci, where Ci and Ci+1 always share a single border node and no other cycle
intersection exists (as in Figure 4.15(a)). In this case, we can start by applying the
reduction procedure to C1. We compute a number of GLFs for C1 and obtain the conic
predicate Rn4

for the node n4, which then takes the role of a reduced node. Then, we
take the constraint system for C2 (containing the predicate Rn4

), and obtain with a
number of GLFs for C2. Due to the additional constraint Rn4

, all of these GLFs have
the property that there always exists a compatible GLF for C1, and therefore a GLF for
the graph C1 ∪C2. We then obtain a new predicate Rn7

for the reduced node n7, which
is taken into account for C3. Once the constraint system for C3 is solved, we terminate.

If, instead of a “list of cycles,” the graph is a “tree of cycles” (see Figure 4.15(b)), the
procedure works the same, except that one cycle can now contain more than one reduced
node. We would start with one of the three cycles with just one border node (C1, C2,
or C4). In case of C2 or C4, we then obtain a list of cycles after one reduction step. If

104

4.4 Decomposition within Strongly Connected Components

it is C1, then we again have the choice between three cycles for the next reduction (C2,
C3, or C4).

However, at this point, this approach is not applicable in situations where

• two cycles overlap in more than one node, or

• the cycles are again connected in a cyclic pattern.

n1

n2

n3

n4

n5

n6

n7

n8

n9

n10C1 C2 C3

(a) list of cycles

n1 n2

n3 n4

n5

C1

C2

C3

C4

(b) tree of cycles

Figure 4.15: List and Tree of Cycles

First, consider the case where two cycles are intersecting in more than one node. For
instance, assume that they intersect in border nodes b1 and b2. See Figure 4.16 for an
illustration. Then, it is not in general sufficient to compute a Pb1 and a Pb2 and attach
these to the nodes. The reason is that not every LLF computed in this manner for border
node b1 will be compatible with every LLF for border node b2. Instead, we would need
to under-approximate the Cartesian product of the two solution spaces for Vb1 and Vb2 .
This is always correct, since again convexity can be exploited in the same way as above.
However, in this case we have to under-approximate a solution set of double dimension,
which will naturally result in greater losses and more computation steps. Therefore, the
result would be a predicate Rb1,b2 containing information about both modes at once. So
we cannot simply attach this predicate to a node upon reduction, but have to attach it
to an edge connecting b1 and b2 in the constraint graph (creating such an edge if it does
not exist). If the two sub-graphs even overlapped in three nodes, the result would be
an under-approximation in tripled dimension and a new hyperedge between the three
nodes. While this approach is generally possible, there is another way of dealing with
multiple overlappings: equivalent transformations of the hybrid automaton.

Here, the idea is to reduce the number of border nodes per cycle. This is achieved
by choosing a border node and splitting it into several nodes, each having a degree of
two, with only one incoming and one outgoing edge. In order to keep the semantics of
the hybrid automaton (i.e., with respect to trajectories) unchanged, every combination
of incoming and outgoing edge that is possible in the original automaton results in a

105

4 Decompositional Stability Analysis

c1

c2 c3

b1

c5

c6

c10

c9 c11

c12

c4

b2

c7

c8

c13

(a) before reduction

c3

c4 c5

c6

b1

b2

c11

c12Rb1,b2

c13

(b) after reduction

Figure 4.16: Cycles with Two Border Nodes

new mode with this particular combination of incoming and outgoing edge. Therefore,
all trajectories of the original automaton will also remain possible in the transformed
automaton. This means that applying such a transformation always correctly preserves
global asymptotic stability.

See Figure 4.17 for an illustration of the splitting procedure for a single mode with
indegree two and outdegree two. Figure 4.17(a) shows a mode with two incoming and two
outgoing transitions and Figure 4.17(b) the result of the splitting. Each of the 2 · 2 = 4
new modes receives the same invariant and flow as the original mode. Furthermore, each
new mode is connected by one incoming and outgoing edge, each of them corresponding
to a transition of the original automaton. The source mode for the incoming transition
and the target mode for the outgoing transition remain the same as before. Furthermore,
each combination of incoming and outgoing transition is represented with exactly one of
the new modes.

After splitting, it might also be possible to exclude some of the new modes, because
their outgoing transition is not reachable from their incoming transition. This can for
instance be done by computing a LLF for the new mode and using it to obtain a barrier
certificate (see Section 3.4). It it is indeed unreachable, then the new mode can be
removed immediately, provided that this does not happen to all modes with the same
incoming transition. This is to make sure that the case where we enter the original mode
through one of the incoming transitions without ever take an outgoing transition is still
covered in the new automaton. We require at least one mode with every incoming edge
to ensure this.

Apart from their role in reachability computations to tighten guards and invariants,
initial sets should not be treated as an additional incoming edge. Instead, all new
modes obtained through splitting should simply inherit the initial “edge” in the graphical
depiction of the hybrid automaton from the original mode. This is because the knowledge
of possible initial states has no use in Lyapunov-based stability verification beyond a
priori reachability analysis. Remember that initial states are not represented in the
Lyapunov constraints and therefore have no effect on a system’s constraint graph.

Since the splitting operations take place on the hybrid automaton itself, they can
also simply be mirrored on the constraint graph. The newly acquired nodes inherit the

106

4.4 Decomposition within Strongly Connected Components

Inv(m)
Flow (m)

G1 ∧ U1 G2 ∧ U2

G3 ∧ U3 G4 ∧ U4

(a) before splitting

Inv(m)
Flow (m)

Inv(m)
Flow (m)

Inv(m)
Flow (m)

Inv(m)
Flow (m)

G1 ∧ U1

G3 ∧ U3

G1 ∧ U1

G4 ∧ U4

G2 ∧ U2

G3 ∧ U3

G2 ∧ U2

G4 ∧ U4

(b) after splitting

Figure 4.17: Splitting a Node

constraint from the original node (including predicates Rb). The same holds for the
edges. Therefore, all new nodes obtained as a result of splitting a reduced node will be
reduced nodes corresponding to the same cycle.

(a) before splitting (b) after splitting

Figure 4.18: Eliminating Border Nodes through Node Splitting

Figure 4.18 shows how a border node can be eliminated through this procedure. Figure
4.18(a) shows a graph with a simple cycle cover consisting of two cycles with length four.
These cycles intersect in two nodes. By splitting one of these two border nodes in two

107

4 Decompositional Stability Analysis

(as its indegree is two and its outdegree one), we obtain two new modes, each inheriting
invariants and guards from the old one, as depicted in Figure 4.18(b). Each of these new
nodes has degree two, and there is only one border node remaining. Therefore, we can
now apply the reduction procedure on one of the two cycles.

Theorem 4.4 (Splitting Modes). Let H = (M,S,V,T ,Flow , Inv) be a hybrid automa-
ton, and let m̃ ∈ M be a mode of H. Let

o(m̃) = {o0, . . . , ok−1}

be the set of all outgoing transitions of m̃ and let

i(m̃) = {i0, . . . , il−1}

be the set of all incoming transitions. Let q := k ·l be the product of the indegree and the
outdegree of m̃. H is globally asymptotically stable if and only if the hybrid automaton

H ′ = (M′,S ′,V ′,T ′,Flow ′, Inv ′)

with

1. M′ = (M − {m̃}) ∪ {m̃0, . . . , m̃q−1},

2. S ′ = S,

3. V ′ = V,

4. T ′ = T − {(m,m′, G, U) ∈ T |m = m̃ ∨ m′ = m̃}∪
{(m̃n,m

′, G, U) | 0 ≤ n ≤ q − 1 ∧ oj = (m̃,m′, G, U) ∈ o(m̃) ∧ nmodulo k = j}
∪ {(m, m̃n, G, U) | 0 ≤ n ≤ q − 1 ∧ ij = (m, m̃,G,U) ∈ i(m̃) ∧ ⌊n/k⌋ = j},

5. Flow ′(m) = Flow (m) for m /∈ {m̃1, . . . , m̃q} and Flow ′(m̃1) = . . . = Flow ′(m̃q) =
Flow (m̃), and

6. Inv ′(m) = Inv(m) form /∈ {m̃1, . . . , m̃q} and Inv ′(m̃1) = . . . = Inv ′(m̃q) = Inv(m̃)

is globally asymptotically stable.

Proof. We will show that the hybrid automata H and H ′ permit exactly the same
trajectories x(t). Since the system remains unchanged outside mode m̃ and its incident
edges, we only need to show that all trajectories passing through m̃ in the original
system H have an equivalent trajectory passing through one of the modes m̃n in hybrid
automaton H ′ and vice versa.

First, show that all trajectories of hybrid automaton H have an equivalent trajectory
in hybrid automaton H ′. Let x(t) be a trajectory of hybrid automaton H. Without loss
of generality, assume that the associated mode sequence (mi) will eventually enter mode
m̃. Let T1 = (m1, m̃,G1, U1) ∈ T be the transition through which mode m̃ is entered.

Then, by construction of T ′, there exist k − 1 different modes m̃n with incoming
transitions (m1, m̃n, G, U). Furthermore, each of these modes m̃n has the same flow and

108

4.4 Decomposition within Strongly Connected Components

invariant as mode m̃. Therefore, if (mi) does not leave mode m̃, the property is shown.
If (mi) does leave mode m̃ through a transition T2 = (m̃,m2, G2, U2) ∈ T , then, again
by construction, there exists exactly one outgoing edge (m̃n,m2, G2, U2) ∈ T ′ from one
of the modes m̃n. Therefore, whenever (mi) enters mode m̃, there exists an equivalent
of the corresponding trajectory segment in hybrid automaton H ′.

The argument for the existence of a corresponding trajectory in hybrid automaton
H for each trajectory in hybrid automaton H ′ is similar. Let x(t) be the trajectory
of hybrid automaton H ′ with mode sequence (mi). Whenever (mi) enters one of the
modes m̃n, there is an equivalent to the transition in hybrid automaton H, leading into
mode m̃. Since mode m̃ has the same flow and invariant as all the modes m̃n, there
is a corresponding trajectory segment in hybrid automaton H. If the mode m̃n is left
again through some transition, there is a corresponding transition with the same guard,
update, and target mode in hybrid automaton H.

The goal of this transformation is to reduce the number of intersections of cycles in
the simple cycle cover. Splitting a node is a method of explicitly separating a system’s
mode sequences (which correspond to the paths of the underlying graph) into disjoint
paths. This approach can be used to produce cycles that only overlap with the rest of
the graph in exactly one node. The reduction procedure can then be applied to these
cycles. If the splitting is done correctly (how this must be done is detailed later in this
section), then this procedure will always terminate. A reduction step means that the
cycle that was reduced can now be traversed any number of times within any path of
the remaining graph — the predicate Rb ensures that such a traversal still leads to a
monotonic decrease of the Lyapunov function value. The key observation is that we do
not need to enumerate the (infinitely many) paths/mode sequences. If we intertwine
the splitting and the reduction, it is sufficient to compute predicates Rb for some cycles
only, regardless of the system. Any mode sequence/path of the original system can be
constructed as a concatenation of these simple cycles.

There is also a different way of viewing this transformation. Since the new modes
inherit all behavior from the original mode m̃, the two things that differ between the new
modes m̃n are the incoming and outgoing transitions (only one of each) and, potentially,
the Lyapunov functions. Whenever mode m̃ is entered through transition t1, at the time
of entering it is not clear which mode m̃n would be entered in the transformed system,
since there might be several possible nodes that are all connected via an equivalent
of transition t1. Only when mode m̃n is left again via transition t2, it is clear which
mode m̃n was the right one to continue the mode sequence: the transition connected to
the equivalent of t2. All other choices lead to finite solutions, as the matching outgoing
transition is missing. If mode m̃ is not left again, then it can be any m̃n. Since all modes
m̃n can have different Lyapunov functions (theoretically also with possibly different
parametrizations), this choice of m̃n can be interpreted as a choice of Lyapunov function.
Mapping this back on the original system, this is comparable to choosing a different LLF
for mode m̃, depending on how m̃ is entered and left. Therefore, it is suddenly possible to
have more than one LLF for a mode, and in contrast to other approaches with multiple

109

4 Decompositional Stability Analysis

LLFs per mode (see, for instance, [Oehlerking et al., 2007]), the Lyapunov function is not
chosen in a static manner, based on some partitioning of the state space, but based on
knowledge that is only available at runtime. This knowledge is the particular sequence
of transitions that is used to enter and leave the node. Since the outgoing transition
also plays a role here, when simulating a system run, it is not even clear which LLF
should be used during simulation time, but only afterwards, when we know what the
next transition is. Therefore, this node splitting approach is equivalent to the option
of choosing a LLF based on the mode sequence of the particular system run, not only
in the past, but also in the future. Quite possibly, this extra degree of freedom might
allow for more Lyapunov function computations than without the splitting. However,
this question is not approached in this thesis.

When using the splitting operation, we need to take care to apply it properly. When
splitting without care, we can potentially do so in a cyclic manner. Imagine that we split
mode m1 which lies on a cycle C containing modes m1 to mn. After splitting m1, m2

will have a degree greater than two, so this mode can be split. In this manner, we can
continue splitting along the cycle, until we again arrive at one of the new modes obtained
by splittingm1. It can again be split, creating an infinite sequence of splitting operations.
We want to avoid this situation, since the goal is to produce cycles intersecting with the
rest of the graph only in a single node. Repeated splitting along a cycle is equivalent to
“unrolling” the cycle, creating unboundedly many internally disjoint cyclic paths (i.e.,
paths which may only overlap in the starting and end nodes), each corresponding to a
number of traversals of the original cycle. These cyclic paths are of no use to us, since
we are interested in creating simple cycles with a single border node and not in unrolling
a cycle into its non-simple cycles.

The countermeasure is simple: At any point of the reduction process, we protect a
number of modes from splitting. To avoid circular splitting, at least one mode on each
simple cycle (and therefore at least one mode on each cycle overall) is protected in this
manner. All other modes can be split freely. This strategy guarantees that, eventually,
after some splittings and reductions, we can unprotect one of these modes. This happens
because cycles with just one protected node are reduced one by one. Eventually, no such
cycles will remain, allowing us to unprotect a single node and still maintain the existence
of one protected node per cycle. This is repeated until only one protected mode is left.
At that point, it is possible to reduce the graph to the empty graph.

A key observation is that this works for all SCCs, even if they contain cycles of cycles.
Through the splitting process, they will be gradually unrolled, resulting in an equivalent
hybrid automaton without cycles of cycles. The GLF then applies to this equivalent
automaton, completing the stability proof.

Of course, in order for this to work, we have to assume that the GLF computations
for the individual cycles are always successful. Section 4.7 deals with situations where
this is not the case. The following theorem gives a computational procedure which is
guaranteed to terminate.

Theorem 4.5. Let H be a hybrid automaton consisting of a single SCC with at least
one cycle. Consider the following reduction procedure:

110

4.4 Decomposition within Strongly Connected Components

1. Pick a set N ⊆ MH , such that for every cycle C of constraint graph C(H) there
exists a node m ∈ N with m ∈ VC .

2. Find a conic hull of GLFs for all simple cycles in the graph which contain exactly
one border node b. Reduce these cycles as per Theorem 4.3, replacing the constraint
on the border node b by a conic constraint Rb.

3. If only one cycle is left in the graph, compute a GLF for it and terminate.

4. Check, whether any node m ∈ N lies only on cycles also containing other nodes
in N . If yes, pick such an m, remove it from N , and return to Step 2.

5. If there are nodes in M−N with degree higher than 2, then pick one, split it as
per Theorem 4.4, and return to Step 2.

If all reduction steps are successful (i.e., GLFs for every reduced cycle in Steps 2 and
3 can be found), then the algorithm will always terminate, and hybrid automaton H is
GAS.

Proof. After Step 1, there are no cycles in any C(G) that do not contain nodes that
are also in N . Splitting operations on M−N preserve this property, as do reductions.
In Step 4, we only remove nodes from N when they are redundant. Therefore, we can
conclude that this property always holds throughout the reduction procedure.

We will now show that, under this precondition, the check in Step 4 will eventually
be successful, resulting in the removal of one node in N . Until this is the case, Steps 2,
3 and 5 are executed in an alternating manner.

For any pair of nodes m1 and m2 in N (m1 = m2 included), consider the sub-graph
Gm1,m2

of G consisting exactly of all nodes and edges that lie on paths starting in node
m1, ending in node m2 and not crossing any nodes in N inbetween.

Since all cycles contain at least one mode which is in N and since Gm1,m2
cannot

contain any other nodes in N besides the nodes m1 and m2, Gm1,m2
cannot contain any

cycles which do not contain either m1 or m2. This prohibits infinite application of the
splitting operation in any Gm1,m2

, as long as N remains unchanged. Splitting nodes
inside a Gm1,m2

as long as possible eventually results in one disjoint path from m1 to m2

for each (not necessarily disjoint) path from node m1 to node m2 in the original graph
(see Figure 4.20). At that point, no further splittings are possible.

Now, consider the case m1 = m2. In this case, repeated application of the splitting
as in Step 5 eventually results in a sub-graph Gm1,m1

consisting only of simple cycles.
Furthermore, due to the disjointness of the paths, all of these cycles will overlap with
the rest of C(G) in only one mode: m1 (see Figure 4.19).

Therefore, all of these cycles are eventually reduced in Step 2, so that Gm1,m1
only

consists of m1 itself. This results in a graph where all simple cycles containing node m1

must contain at least another node from N , as all cycles containing only node m1 have
been eliminated. Therefore, at this point we are able to remove node m1 from N in Step
4.

111

4 Decompositional Stability Analysis

We can then repeat the procedure, and |N | decreases with every repetition, until it
reaches 1. Eventually, only a single cycle is left, which can then be eliminated in Step 3,
causing the termination of the algorithm. By Theorems 4.3, and 4.4, this proves GAS
of hybrid automaton H.

m1 m2

(a) before repeated splitting

m1 m2

(b) after repeated splitting

Figure 4.19: Repeated Splitting Resulting in Disjoint Paths, m1 6= m2

m1

(a) before repeated splitting

m1

(b) after repeated splitting

Figure 4.20: Repeated Splitting Resulting in Simple Cycles Overlapping in m1 = m2

Example 4.7. Figure 4.21 shows an example for a reduction based on this computa-
tional procedure. The node labels are not the constraints, but just the names of the
modes for easier reference. Initially, we set N = {m1,m4} (see Figure 4.21(a)). Since
there are no reducible cycles and since no node in N is superfluous, we directly proceed
to Step 5, picking a node not in N to be split. Both modes m2 and m3 can be split
into two new nodes — here we picked mode m2. The resulting graph is shown in Figure

112

4.4 Decomposition within Strongly Connected Components

4.21(b). The algorithm returns again to Step 2. Since cycle C1 is now reducible, we con-
duct the GLF computation for this cycle. Assuming that this computation is successful,
we obtain the graph in Figure 4.21(c). At this point, no further reducible cycles exist.
However, we find that there is no single cycle in the graph containing mode m4, but not
mode m1. Therefore, we can remove mode m4 from N in Step 4. Since mode m4 is
now splittable, we can now proceed by splitting this node in two, resulting in the graph
shown in Figure 4.21(d). Reduction of the cycle C2 then gives us Figure 4.21(e). Then
we can split m3 (Figure 4.21(f)) and reduce cycle C3 (Figure 4.21(g)). The result is a
single cycle C4 which can be reduced in a final step, causing the successful termination
of the algorithm.

The complexity of this reduction procedure, measured by the number of GLF compu-
tations needed, relates to the size of the cycle cover that is computed implicitly. How
this cycle cover looks like depends on the choices for N and the nodes that are split.
If no splittings are needed at all, then the number of GLF computations will be in
O(|E|) in the worst case. If splittings are needed, then the complexity depends on the
resultant graph after the splittings. Generally, the exponential growth in the number of
cycles in a fully connected graph means that decomposition based on discrete states is
not recommended in these cases. Instead, it is often desirable to use a common LLF for
modes in such cliques in the graph, effectively treating a fully (or nearly fully) connected
sub-graph as a single node. A criterion is, for instance, given in Section 4.5.

Since it is desirable to keep the constraint graph small after splitting, it is a reasonable
heuristic to first split nodes with a low product of indegree and outdegree and to place
nodes with a high product of indegree and outdegree in the set N . To come up with
a set N initially, one can, for instance, use a simple greedy approach: Initially, N is
empty. We then look for a cycle in the graph and add its highest-degree node to N . In
the next step, we look for another cycle not containing any nodes in N , again adding
the node with the highest degree product. We continue this procedure until no further
cycles of this type can be found. While this simple procedure is not guaranteed to give
an optimal set N , it is not costly and usually results in the highest-degree nodes being
protected from splitting. Optimal strategies or sub-optimal strategies with guaranteed
bounds on the number of reductions are beyond the scope of this thesis and can be seen
as potential future work.

This decompositional proof process does not explicitly compute a GLF for the en-
tire SCC. Instead, just the existence of this function is guaranteed, which is sufficient
to conclude GAS. To obtain an actual GLF, a simple additional step is needed. For
this, we need to keep track of the cycle reduction order. We do so with the help of a
reduction graph, which has a node for each reduced cycle, and directed edges signifying
the reduction dependencies between cycles. If a cycle C, at the time of its reduction,
contains predicates Rb resulting from the reduction of other cycles Ci, an edge from C
to Ci is introduced. An edge can be interpreted as representing the reduction order of
two overlapping cycles. Later, in Section 4.7, we will also use this reduction graph to
do backtracking-based refinement of the Rb predicate. Formally, we define this graph as
follows.

113

4 Decompositional Stability Analysis

m1 m2

m3 m4

(a) initial graph

m1 m1
2

m3 m4

m2
2

C1

(b) after splitting of m2

m1 m1
2

m3 m4

(c) after reduction of C1

m1 m1
2

m3 m1
4 m2

4

C2

(d) after splitting of m4

m1

m3 m1
4

(e) after reduction of C2

m1

m2
3m1

3 m1
4

C3

(f) after splitting of m3

m1

m1
3 m1

4

C4

(g) after reduction of C3

Figure 4.21: Example Reduction Procedure (nodes in N denoted with thick lines)

114

4.4 Decomposition within Strongly Connected Components

Definition 4.12 (Reduction Graph). A reduction graph is a graph which is constructed
throughout the reduction process as follows.

• When reducing a cycle Ci, add a new reduction graph node representing this cycle.
For ease of notation, we will identify a cycle Ci with its corresponding reduction
graph node. This new cycle name must be unique.

• If, at the time of reduction, Ci contains reduced nodes, for each such node m add
an edge in the reduction graph from the node labeled Ci to the node labeled with
cycle(m), and label the edge with m.

• When splitting a reduced nodem in the constraint graph into j new nodes, take the
sub-tree of the reduction graph rooted in the node labeled cycle(m) and multiply
it into j copies of itself.

Throughout the reduction process, the reduction graph will always be a forest, with
the root nodes being the cycles corresponding to the reduced nodes that can currently
be found in the constraint system. After the reduction has been completed, the graph
will be a tree with the root node representing the cycle that was reduced last.

Example 4.8. Figure 4.22 shows how the reduction graph for the example of Figure
4.21 is constructed incrementally. After the reduction of cycle C1, there is just one node
in the reduction graph, labeled with C1 (see Figure 4.22(a)). Since node m4 is split
in two new nodes in Figure 4.21(d) and since m4 is the reduced node corresponding to
cycle C1, we duplicate the sub-tree rooted in this reduction graph node (i.e., only the
node itself). Cycle C2 contains one of these newly obtained reduced nodes, namely m2

4.
Therefore, when we reduce cycle C2, we must add an edge from one of the reduction
graph nodes labeled C1 to the node for cycle C2 and label it withm2

4 (see Figure 4.22(b)).
Cycle C3 then contains reduced node m1, with cycle(m1) = C2, therefore another edge
must be added upon reduction of cycle C3 (see Figure 4.22(c)). Note that the roots of
the sub-trees of the reduction graph are always labeled with the cycles whose reduced
nodes are currently present in the graph. At this point, we have one reduced node
corresponding to cycle C1 (the node m1

4) and one reduced node corresponding to cycle
C3 (the node m1). In a final step, we then reduce cycle C4, which contains both of these
nodes. Therefore, two edges must be added resulting in the final reduction graph given
in Figure 4.22(d).

The reduction graph can be used to obtain a hybrid automaton H ′ which is equivalent
to the original automaton H, but has a tree-like cycle structure. This is simply achieved
by piecing together the cycles given by the nodes of the reduction graph, with each
edge of the reduction graph specifying the overlapping node. In other words, two cycles
overlap in node m if and only if there is an edge labeled m in the reduction graph. Note
that cycles which appear multiple times in the reduction graph must also be multiplied.
The time complexity of the reduction/splitting procedure in case splittings occur is in
O(|E′|) in the worst case, where E′ is the edge set of G(H ′).

Figure 4.23 gives the graph structure of this equivalent automaton for the reduction
graph in Figure 4.22(d). The cycle C1 appears twice, and each occurrence is allowed to

115

4 Decompositional Stability Analysis

C1

(a) at Figure 4.21(c)

C1 C1

C2

m2
4

(b) at Figure 4.21(e)

C1 C1

C2

C3

m2
4

m1

(c) at Figure 4.21(g)

C1 C1

C2

C3

C4

m2
4

m1

m1

m1
4

(d) final

Figure 4.22: Reduction Graph Construction for the Example from Figure 4.21

have its own Lyapunov function. The GLF which we can compute for the SCC is for
this equivalent hybrid automaton.

Remark 4.4 (GLF computation within an SCC). In order to compute a GLF for
an SCC, we also need to keep track of the following information during the reduction
process:

• all the computed GLFs V k
C for each cycle C (for the root cycle Cr, this is only one

GLF V 1
Cr
), and

• for each computed GLF V k
C , the λi-parameters as per Theorem 4.3 for the LLF

V k
C (·,m) of each reduced node m in C, as λi(C,m, k), such that

V k
C (·,m) =

∑

i

λi(C,m, k)V i
cycle(m)(·,m).

These multipliers λi(C,m, k) arise directly as unknowns in the constraint system and
are therefore readily available. To compute a GLF, we now traverse the reduction tree
top-down (i.e., starting with the last reduced cycle), and

• set the LLFs of all modes m lying on the root cycle Cr to the LLFs of the computed
GLF for this cycle, that is V (·,m) = V 1

Cr
(·,m),

• for each outgoing reduction graph edge of Cr, labeled with m, define λ̃i(Cr,m) :=
λi(Cr,m, 1),

116

4.4 Decomposition within Strongly Connected Components

m1
2

m2
4

m1

m2
3m1

3 m1
4

m2
2 m3

2

C1 C1

C2

C3
C4

Figure 4.23: Graph Structure of a Hybrid Automaton Equivalent to Figure 4.21(a), Cor-
responding to Reduction Graph 4.22(d)

• for each non-root node of the reduction graph, labeled with C and connected via
an edge labeled with m to a parent reduction graph node labeled with Cp:

– for all modes m of cycle C which do not have a LLF assigned yet, set the
LLF to V (·,m) =

∑

i λ̃j(Cp,m)V i
Cp

(·,m),

– for all outgoing edges, labeled with m, of the node labeled with C in the
reduction graph, define λ̃k(C,m) :=

∑

i λ̃i(Cp,m)λi(C,m, k)

These LLFs form a GLF of the SCC. The intuition is as follows. Since the splitting
procedure has resulted in a tree-shaped dependency structure between the GLFs of the
cycles, we start with the GLF for the final cycle. We know that there exists a GLF for
the rest of the automaton which is compatible with it. To compute this GLF, we use
the same procedure that was already employed in the proof of Theorem 4.3: we generate
the GLF of the neighboring cycles by using the λi-parameters. The actual GLF for a
neighboring cycle is simply the sum of the GLFs computed during the decomposition,
weighted by the λi induced from the parent cycle. The λ̃i(C,m) are used to represent
the information on the GLF in the conic hull which was selected in the parent node.
This information is then propagated “down the reduction graph,” and the corresponding
LLFs for the nodes in each cycle are selected.

For the reduction graph in Figure 4.22(d), we start with the nodes in cycle C4 (m1,
m2

3, and m1
4) and assign to them LLFs from the computed GLF for C4. The λi-variables

used for the LLF of m1 are then named the λ̃i(C4,m1). The LLF for the additional mode
in cycle C3 (this is only m1

3) is then obtained by weighting the LLFs from the computed
GLFs for cycle C3 by these multipliers λ̃i(C4,m1). Since C3 has another child cycle,

117

4 Decompositional Stability Analysis

we also need to compute the weighting parameters for the next level, the multipliers
λ̃k(C3,m1), which are obtained as a linear combination from the multipliers λ̃i(C4,m1)
and the variables λi(C3,m1, k). Similarly, we assign a LLF to mode m2

2 through the
instance of cycle C1 connected via mode m1

4. Then, we can assign LLFs to modes m1
2

and m1
4 (though cycle C2) and mode m3

2 (through the second occurrence of cycle C1),
resulting in a GLF for the entire automaton in Figure 4.23.

As can be seen, no complex computations are required to obtain a LLF. In fact, if
we compute multiple LLFs for the root cycle, we can even characterize an infinite set
of GLFs for the SCC, by taking the conic hull of the individual GLFs computed in the
above fashion (see Theorem 3.6). In general, it does not matter in which exact order
the reduction graph is traversed, as long as the traversal is done top-down.

4.5 Lyapunov Functions for Single Cycles

This section describes the actual computation of Lyapunov functions and border predi-
cates for the single cycles obtained through decomposition. We have chosen to employ
the LMI-based methods described in Section 3.5, since the problem sizes are now much
smaller. For systems with a moderately complex discrete transition relation, LMI meth-
ods in general behave quite well. Furthermore, LMI problems are just another repre-
sentation of a particular type of convex optimization problems, and the solvers for this
class of problems generally allow optimization of the solution in a particular direction.
These optimal values directly correspond to the “corner points” of the border predicates.
However, note that it is, of course, also possible to employ different Lyapunov function
computation techniques (for instance based on linear programming or purely symbolic
methods), as long as Lyapunov functions serving as extremal points of the conic under-
approximation can be computed. The solution proposed in this section is to be taken as
one particular choice of back-end that works well on a relatively large class of systems.

First, in Section 4.5.1, we discuss how the constraints generated by Theorem 4.3 can
be expressed as LMI problems. In particular, we also describe how to identify “good”
functions V i

Ci
that are not redundant and result in acceptable coverage of the solution

space. However, in this section only static strategies are discussed. Dynamic refinement
of the under-approximation is then examined in detail in Section 4.7.

The second focus of this section is the avoidance of numerical problems by formulating
the optimization problems in a well-posed manner. Most importantly, implicit equality
constraints in the optimization problems should be avoided whenever possible, since
problems containing such constraints are intrinsically numerically unstable. For instance,
this occurs when the same hyperplane triggers a transition between two modes in both
directions. In this case, the Lyapunov conditions from Section 3.5 implicitly require
equality of the respective local Lyapunov functions. The solution to this problem is to
make the equality constraint explicit, by already encoding it in the problem formulation.
This problem is dealt with in Section 4.5.2.

Furthermore, there are cases where the usage of different LLFs for different modes of
a sub-automaton does not make sense. Specifically, one can identify situations where

118

4.5 Lyapunov Functions for Single Cycles

LLFs of a certain parametrization for the modes of a cycle must be equal. In this case,
one should use a common Lyapunov function for the cyclic sub-automaton instead of a
piecewise one. Section 4.5.3 will give a discussion of such situations.

Also, sometimes reachability analysis can be used to conclude that a cycle can in fact
not be fully traversed. This can happen if the outgoing transition of a mode in the cycle
is unreachable from the incoming transition. In this case, the GLF computation for the
cycle becomes superfluous. This is discussed in Section 4.5.4.

4.5.1 Local Constraint Systems as LMIs

For cyclic constraint graphs not containing reduced nodes, the LMI problem can simply
be formulated as in Theorem 3.10, with global Constraints (3.1) and (3.2), Constraints
(3.3), (3.5), (3.6), and (3.7) per mode and Constraints (3.4) and (3.8) per edge. Suppose
there is a reduced node in the constraint graph of cycle C, corresponding to hybrid
system mode m. Furthermore suppose that the conic constraint Rm is of the form

VC(·,m) ∈ cone({V m
i (·) | 1 ≤ i ≤ k}),

where each V m
i is a quadratic function, such that

V m
i (x̃) = x̃TSm

i x̃.

Then we can represent this constraint Rm in the LMI by adding scalar variables λm
i and

the LMI constraints

for all i : λm
i − ǫ � 0

for some small ǫ > 0. Furthermore, all occurrences of the matrix Pm in edge constraints
must be replaced by the weighted sum

k
∑

i=1

λm
i Sm

i .

The matrix variable Pm, as well as all S-procedure-variables pertaining to modem can
be dropped entirely, as can all Constraints (3.3), (3.5), (3.6), or (3.7) for mode m. This
procedure is equivalent to using this weighted sum as the new parametrization for Pm,
which is no longer a matrix variable with arbitrary entries, but a structured matrix which
must lie in a prescribed conic set. Note that this representation is slightly conservative,
as we required all multipliers λm

i to be strictly positive, whereas all but one multiplier
could be exactly zero in the original constraint. If ǫ is small, this is however of little
practical consequence. This ǫ should be chosen based on the numerical properties of the
solver that is used. Typically, ǫ will lie in the area of 10−6 to 10−8, for double precision
floating point software like CSDP, as a guard against numerical inaccuracies inherent to
the solvers. Since a good value of ǫ will also sometimes depend on the problem itself,
it is also possible to try various ǫ-values, followed by a check of the solution obtained,
until a satisfactory solution is found.

119

4 Decompositional Stability Analysis

Another question that remains to be answered is how to compute the individual LLFs
V m
i during the decomposition process. Fortunately, SDP solvers allow not only for the

formulation of constraints as LMIs, but also for linear objective functions on any of the
free variables. In particular, this includes the free parameters of the Lyapunov functions,
that is, the entries of the P -matrices. Therefore, it is possible to identify solutions (i.e.,
Lyapunov functions) which maximize/minimize the individual free parameters, yielding
solutions that always lie on the boundary of the solution set in some direction. Since we
are interested only in keeping the LLFs V b

i of the border node b, we only need to chose
optimization directions based on the free parameters of V (·, b). Their conic hull is then
an under-approximation of all LLF for border node b which are part of at least one GLF
for the entire cycle. Furthermore, if this computational approach is used, the corner
points of the convex set will be extremal points of the exact set of admissible LLFs for b,
yielding better under-approximations than if some internal points were used. However,
one must take care when doing these computations, for several reasons.

As the solution set is not only convex, but also conic, it is natural that extremal points
in some directions do not exist. In this case, the SDP solver will usually identify the
optimization problem as infeasible, as there is no optimum in the specified direction.
This can be alleviated by fixing the values of a single free LLF parameter relative to
other parameters of the same LLF (e.g., by setting it to some positive number minus the
sum of the other parameters), thereby just considering a “slice” of the conic solution set,
or by artificially constraining the solution set with absolute bounds on the parameter
values.

p1

p2

Figure 4.24: Normal-Boundary Intersection of a Two-dimensional Set with Two Vari-
ables p1 and p2

In mulitobjective optimization, this idea is also called normal-boundary intersection
[Das & Dennis, 1998]. See Figure 4.24 for an illustration of an under-approximation
of a convex set by the convex hull of some extremal points in various optimization
directions. It is important that these optimization directions are spaced appropriately, as
to avoid too conservative under-approximations. However, in general, “good” spacings

120

4.5 Lyapunov Functions for Single Cycles

are determined by the shape of the set to be under-approximated, so the choice of
directions must be handled heuristically.

To avoid exponential blowup, a possible starting point for high-dimensional problems
is the choice of two optimization directions per LLF parameter of the border node: one
maximizing the variable and one minimizing it. This means that the representation of
the under-approximation will grow linearly with the number of variables. A procedure for
adding new directions while exploiting information on the automaton is then presented
in Section 4.7. Since LLFs can have many free variables, especially if the sums-of-squares
decomposition is employed, it is in general desirable to keep the magnitude of the number
of optimization directions small, if at all possible. If the LLF Vb is parametrized as
x̄TPx̄, P ∈ R

n×n, then there are n(n + 1)/2 free variables and n(n + 1) optimization
directions to be covered. We can then simply solve the LMI problem n(n+ 1) times for
the different directions, yielding n(n+ 1) extremal points spanning the convex cone for
the LLFs of the border node. If this is not sufficient to prove GAS of the system, then the
refinement procedures described in Section 4.7 can be used to add further optimization
directions.

4.5.2 Continuous versus Discontinuous Lyapunov Functions

When two modes of a hybrid system are connected by transitions in both directions,
and both of these transitions have the same guard set which can be represented by a
hyperplane and no discrete update, then the two LLFs must be equal on this boundary.
In this case, it is advisable to set the corresponding LLFs equal a priori, instead of letting
the SDP software find a solution where the corresponding constraints are fulfilled. The
reason is simple: the software approximates a solution, and if the actual solution is of
lower dimension than the solution space, it usually returns something that is a marginal
non-solution, slightly violating the constraints. This is the case in the scenario outlined
above, as there is a reduced number of degrees of freedom: the LLF of the second mode
can only take parameters that match the LLF of the first mode in the sense that equality
on the boundary results.

The countermeasure is to encode this reduced dimensionality already in the LMI
problem formulation. For linear guards and quadratic LLFs this works as follows: The
Lyapunov function for one of the two modes is encoded normally in the LMI problem.
However, we explicitly define the Lyapunov function for the other mode as the weighed
sum of the Lyapunov function of the first mode and some matrix terms dependent on the
guard. These matrix terms are selected such that the corresponding quadratic function
will be zero on the guard set. The result is a LLF for the second mode which is equal to
the LLF on the first mode on the guard set. Moreover, in the linear guards/quadratic
LLFs case, these matrices are not only easy to to compute, but this approach is also
lossless. This means that all LLFs for the second mode that can conceivably be part of
the GLF for the cycle can be constructed in this manner.

Theorem 4.6 (Continuous Piecewise Lyapunov Functions). Let G be a set of the form
G = {x ∈ R

n | cTx + d = 0} for some non-zero vector c ∈ R
n and some scalar d ∈ R.

121

4 Decompositional Stability Analysis

Let ei ∈ R
n+1 be the i-th canonical basis vector of Rn+1. Define

Qi(c, d) := ei[c
T , d] +

[

c
d

]

eTi

Let V1 be a function of the form

V1(x) = [xT , 1] P1

[

x
1

]

for some symmetric (n+ 1)× (n+ 1)-matrix P . Then, for all

V2(x) = [xT , 1] P2

[

x
1

]

such that V1(x) = V2(x) for all x ∈ G, there exists a family of multipliers λi ∈ R such
that

P2 = P1 +
∑

i

λiQi(c, d).

Proof. Let V1 be a function as above. Assume without loss of generality that c(1) 6= 0.

Note that cTx+ d = 0 is equivalent to x(1) =
∑n

j=2(−c(j)/c(1)x(j))− d/c(1). Define C :=
[−c(2)/c(1), . . .− c(n)/c(1),−d/c(1)] and let I be the n× n identity matrix. Furthermore,
define

P̄ := [CT , I]P

[

C
I

]

for some symmetric matrix P ∈ R
n+1×n+1. We will now treat P as a matrix of unknowns

and consider the constraint system P̄ = 0. Since P is symmetric, it has (n+1)(n+2)/2
unknowns. Multiplying out P̄ results in a matrix of dimension n×n. P̄ = 0 is equivalent
to all matrix entries of P̄ being 0, and P̄ has n(n + 1)/2 distinct entries. Therefore,
identifying values for the entries in P such that P̄ = 0 is a linear equality system with
(n+ 1)(n + 2)/2 parameters and n(n+ 1)/2 constraints. We then obtain

P̄(i,j) = c(i)c(j)P(1,1) + c(i)P(1,j+1) + c(j)P(i+1,1) + P(i+1,j+1).

Due to the last summand this means that all constraints P̄(i,j) = 0 are linearly indepen-
dent. Therefore, the solution space for P̄ = 0 has dimension (n+1)(n+2)/2−n(n+1)/2 =
(n2 + 3n+ 2− n2 − n)/2 = n+1. We will now show that for all i, the matrix −Qi(c, d)
is a P that solves P̄ = 0. Inserting −Qi(c, d) for P , we obtain:

P̄ := [CT , I](−Qi(c, d))

[

C
I

]

=

[CT , I]

(

−ei[c
T , d] −

[

c
d

]

eTi

)[

C
I

]

=

−[CT , I]ei[c
T , d]

[

C
I

]

− [CT , I]

[

c
d

]

eTi

[

C
I

]

122

4.5 Lyapunov Functions for Single Cycles

This term is equal to zero, since

[cT , d]

[

C
I

]

= 0.

Since the n + 1 matrices −Qi(c, d) are also linearly independent, they form a basis for
the solution space of P̄ = 0. Therefore, every solution for P̄ = 0 can be constructed as
P =

∑

i λi(−Qi(c, d)) for some family of λi ∈ R. Now set P = P1 − P2. Observe that
for all x ∈ R

n, the vector

x̄ =

[

C
I

]

x

will lie in G. Therefore, x ∈ G =⇒ xT (P1 − P2)x = 0 implies that P̄ = 0. For all
P1 − P2 which are equal on G (when interpreted as quadratic functions), the −Qi(c, d)
then form a basis. This means that there exists a family of λi ∈ R, such that P1 −P2 =
∑

i λi(−Qi(c, d)), which concludes the proof.

Consider a hybrid system with just two modes m1 and m2 and two transitions, given
as (m1,m2, G1, I) and (m2,m1, G1, I), where G1 = {x ∈ R

n | cT1 x+ d1 = 0} is a guard
set, and I is the identity function. In this case, the LLF V (x,m1) can be parametrized
as a quadratic function in the usual manner, as

V (x,m1) = [xT , 1] P1

[

x
1

]

.

Then, it is losslessly possible to set

V (x,m2) = [xT , 1]

(

P1 +
∑

i

λiQi(c1, d1)

)

[

x
1

]

with free parameters λi. With this parametrization, equality of the two Lyapunov
functions for cTx + d = 0 is automatically preserved. Furthermore, V (x,m2) requires
only n + 1 free parameters, instead of (n + 2)(n + 1)/2. If there is a third mode m3,
connected with mode m2 by two transitions (m2,m3, G2, I) and (m3,m2, G2, I) with
G2 = {x ∈ R

n|cT2 x + d2 = 0}, then another sum of matrices and parameters can be
added:

V (x,m3) = [xT , 1]

(

P1 +
∑

i

λiQi(c1, d1) +
∑

i

µiQi(c2, d2)

)

[

x
1

]

The LMI constraints introduced by Johansson & Rantzer [1998] exhibit some simi-
larities to this approach, as equality of LLF on the switching surfaces is also enforced a
priori. In their work, this was achieved by setting the LLFs in a fixed relation depending
on the switching surfaces. This was achieved by parametrizing the LLFs as xTF T

mTFmx,
where F describes the switch surface, and T is a matrix of free parameters shared by
all modes. In contrast to this, in Theorem 4.6, the LLFs of different modes are not in

123

4 Decompositional Stability Analysis

a fixed relation. Instead, the relation is governed by the choice of the multipliers λi,
yielding extra degrees of freedom.

A particular class of systems where this approach is useful are regular grids. Suppose
that some complex non-linear differential equation has been approximated by a gridding
approach: put a Cartesian grid over the state space and turn every box into a mode of
a hybrid automaton, each of them with relatively simple (e.g., linear/affine) dynamics.
In this case, we have precisely the scenario as described above. Two neighboring boxes
always form a cycle of length two, as they are connected by bidirectional edges, with a
guard set corresponding to the boundary of the boxes (see Fig. 4.25).

m0,0 m1,0 m2,0 m3,0

m0,1 m1,1 m2,1 m3,1

m0,2 m1,2 m2,2 m3,2

Figure 4.25: Regular Grid with 4 · 3 Modes

In this case, we can assign a LLF parametrization to a single box, and then use the
result of Theorem 4.6 to obtain an LMI system with relatively few free variables. For
each column of the grid, free variables λi as described above are introduced. For each
row, introduce free variables µi.

Assume that the mi,j are the modes of the system, where i is the column and j is the
row. If m0,0 is the single box whose LLF receives the full parametrization. The LLFs of
other boxes of the 0-th column are then obtained from the function V (·,m0,0) and the
weighted sums of the multipliers λi and the Qi-matrices for the transitions as outlined
above.

The same is done for the j-th row with the multipliers µj and the Qj-matrices. For
the entry in the i-th column and j-th row, these weighted sums are simply summed up,
so the LLF parametrization for mode m2,1 is

(x,m2,1) = [xT , 1]

(

P0,0 +
∑

i

λ1
iQi(c1, d1) +

∑

i

λ2
iQi(c2, d2)) +

∑

i

µ1
iQi(e1, f1)

)

[

x
1

]

,

where P0,0 is the LLF for mode m0,0, λ
k
i and µl

i are the newly introduced parameters

124

4.5 Lyapunov Functions for Single Cycles

for the k-th column and l-th row, and cTk x+dk = 0 and eTl x+fl = 0 are the hyperplanes
describing the transitions between the columns and rows.

Using a standard LMI approach, the number of free variables would grow linearly
with the number of cells. On the contrary, with this approach, the growth is just linear
in the number of columns and rows. The result is an LMI problem of greatly reduced
complexity. As shown in Theorem 4.6, this problem is equivalent to the original one.

We can also conduct this kind of analysis a priori, identifying sub-graphs which require
a continuous GLF. This includes cycles of length two and grids, which can be seen as
collections of such cycles. Since, only some λ-multipliers need to be added for each mode,
and not fully parametrized LLF, one can decide not to decompose such sub-graphs at all.
This can be reflected in the constraint graph by merging all the nodes on the cycles/the
grid into a single node with the conjunction of all the constraints. This transformation
would effectively protect the sub-automaton from being decomposed.

4.5.3 Common versus Piecewise Lyapunov Functions

As discussed above, in some situations, the constraints on a global Lyapunov function
implicitly impose equality of two local Lyapunov functions of a hybrid system. Specifi-
cally, this occurs in the following situation.

Theorem 4.7 (Equality of two LLFs). Let m1 and m2 be two neighboring modes of
a hybrid automaton H, with two transitions (m1,m2, G1, I) and (m2,m1, G2, I), where
G1 and G2 are guard sets and I is the identity function on R

n (i.e., no discrete update
occurs). Suppose there is a global Lyapunov function V (x,m) for H as per Theorem
3.5, such that for each mode m, V (·,m) is a polynomial. If the interior of G1 ∩ G2 is
non-empty, then we have V (x,m1) = V (x,m2).

Proof. Show that ∀x : V̄ (x) := V (x,m1)− V (x,m2) = 0. Since the interior of G1 ∩ G2

is non-empty, there exists an x0 ∈ R
n and an ǫ > 0, such that B(x0, ǫ) ∈ G1 ∩ G2.

Constraint (3) of Theorem 3.5 gives us x ∈ G1 =⇒ V̄ (x) ≥ 0 and x ∈ G2 =⇒ V̄ (x) ≤
0. Therefore, for all x ∈ B(x0, ǫ), we have V̄ (x) = 0. Since V̄ is a polynomial, this
implies ∀x : V̄ (x) = 0 and V (x,m1) = V (x,m2).

This theorem can be interpreted as follows. If, on a cycle of two nodes, the guards
of both edges overlap on a set whose interior is not empty, and there are no discrete
updates, then it is not useful to designate different polynomial LLFs for the two nodes.
Instead, it is sufficient to employ a common LLF for the nodes in question. This is
achieved by using common parameters in the two LLFs, effectively reducing the search
space of the SDP problem. This result can also be generalized to larger cycles as follows.

Corollary 4.3 (Equality of LLFs on a cycle). Let H be a cyclic hybrid automaton with
modes m0, . . . ,mr. Let the transitions be given as (m0,m1, G0, I), . . . , (mr,m0, Gr, I),
where the Gi, 0 ≤ i ≤ r, are guard sets and I is the identity function on R

n. Suppose
there is a global Lyapunov function V (x,m) for H as per Theorem 3.5, such that for
each mode mi, V (x,mi) is a polynomial. If the interior of

⋂

i Gi is non-empty, then we
have V (x,mi) = V (x,mj) for all i, j.

125

4 Decompositional Stability Analysis

Proof. Each transition gives us a constraint

x ∈ Gi =⇒ V (x,mi) ≥ V (x,mi+1modulo (r+1)).

Since there exists an x0 ∈ R
n and an ǫ > 0, such that B(x0, ǫ) ∈

⋂

Gi, we have for all
x ∈ B(x0, ǫ) :

V (x,m0) ≥ V (x,m1) ≥ . . . ≥ V (x,mr) ≥ V (x,m0)

and therefore ∀i 6= j, x ∈ B(x0, ǫ) : V (x,mi) = V (x,mj). With the same arguments as
in the previous proof, this gives us V (x,m0) = . . . = V (x,mr) for all x ∈ R

n.

Whether the interior of the intersection of the guards in a cycle is empty is often easy
to check. For instance, if the guard sets are of the form gi = {x ∈ R

n | pi(x) ≥ 0}, and
p is continuous, then it is sufficient to find an x0 with ∀i : pi(x) > 0. If the pi are
linear, then this is a linear optimization problem, and if they are convex, this is a convex
optimization problem. If the interior can be shown to be non-empty, the entire cycle
can use the same polynomial Lyapunov function template, and this does not restrict the
set of computable GLFs. This kind of analysis can also be conducted as a preprocessing
step, before starting the decomposition. If such cycles can be detected in the graph,
then we know that a common LLF should be used. Therefore, we can as well merge the
nodes into one node in the constraint graph, simplifying the subsequent decomposition.

4.5.4 Reachability Analysis within Cycles

When a reducible cycle has been identified, it can be beneficial to perform another check
before conducting the Lyapunov function computation. Within the cycle, there might
be edges which are actually unreachable, effectively interrupting the cycle. Once this
happens, the cycle decomposes into a number of one-mode SCCs, and (if all edges have
sub-linear updates) this means that it is sufficient to only provide LLFs for each mode.
Since many of these modes will also be part of other cycles for which the GLF com-
putation has already been completed, we will often already have such LLFs, rendering
any further computations unnecessary for the cycle. This reachability check can, for
instance, be carried out with the help of such LLFs for the modes, employing them as
barrier certificates that prove the unreachability of the guard of the outgoing edge (as
discussed in Section 3.4).

One important point to note is that initial states of the SCC can be disregarded for
such a reachability check. Instead, we only need to determine whether each guard of
an outgoing edge of a mode of the cycle is reachable from within the mode, under the
assumption that the mode was entered through its incoming edge. We can disregard
the case when the mode was initial. The reasoning is as follows. Consider a cycle with
a single initial mode, as depicted in Figure 4.26(a). We want to verify that the edge
labeled with a sub-linear guard/update g2/U2 can be removed from the cycle.

Consider the hybrid automaton given in Figure 4.26(b), which was obtained by split-
ting the mode m1 into two modes m1

1 and m2
1. Mode m2

1 is reachable only if it is the
initial state of the mode sequence, while mode m1

1 can only be entered after traversing

126

4.5 Lyapunov Functions for Single Cycles

m2

m1

g1/U1 g2/U2

I1

(a) before splitting

m2

m2
1 m1

1

g1/U1

g2/U2
g2/U2

I1

(b) after splitting

Figure 4.26: Reachability Analysis within a Cycle

the cycle at least once. Clearly, these two hybrid automata are equivalent. However,
mode m2

1 has been split off into a separate SCC and can therefore be treated completely
separately. The reason this transformation is possible lies in the fact that an initial
“edge” can only be taken once, and for this reason separated from the rest of the cycle.
Therefore, we just need to show that guard g2 is unreachable within mode m1

1 only when
starting from the transition g1/U1 in order to break the cycle. If this is the case, then
the entire cycle decomposes into one-mode SCCs for which only a separate LLF needs
to be provided. If such a one-mode SCC consists of a reduced node, then a GLF for
the automaton it was obtained from has already been computed, making any further
computations unnecessary.

Additionally, the cycle could also be entered through incoming edges which are not
part of the cycle. It is also possible to conduct a reachability analysis for all such incoming
transitions separately. If the cycle can be broken for all such incoming transitions, then
it can be unrolled into a sequence of SCCs, rendering the GLF computation unnecessary.

While reachability analysis can be used a priori, before any splitting or reduction,
there are also some benefits from doing this separately for each cycle. In order to remove
an edge in a general hybrid automaton, we need to make sure that it is unreachable,
no matter how its source mode was entered. This may or may not be possible — in
fact, it may be the case that the edge proved to be unreachable only for some ways of
entering the mode. In this case, we cannot simplify the automaton. When conducting
reachability analysis per cycle, however, we have isolated one way of entering the mode.
So it is possible to remove a duplicate of this edge for some cycles (making their analysis
superfluous), but not for others.

In theory, one could also continue to unroll a cycle. By repeated reachability analysis,
iterating around the cycle, it may be possible to prove that the cycle can only be traversed
finitely often. With a similar argument as for the initial states, a prefix can then be split

127

4 Decompositional Stability Analysis

off into a separate SCC, and the unreachable edge removed, again resulting in a graph
consisting of one-mode SCCs. However, this is of no use if there is no upper bound
on the number of traversals for the cycle, and very costly if the number of traversals is
large, so Lyapunov-based analysis will often be preferable.

We will now give a detailed example demonstrating the cycle based decomposition
as well as the Lyapunov function computations for the individual cycles. The example
contains also some instances of cycles which can be broken via reachability analysis.

4.6 Cruise Control Example

This section describes in detail the application of the decompositional stability verifica-
tion approach to a relatively complex hybrid system modeling a cruise controller.

The hybrid automaton defining the system is given in Figure 4.27. The goal is to drive
the velocity of a vehicle toward a set point defining a target velocity. The differential
between current and target velocity (in m/s) is modeled by the continuous variable v,
such that v > 0 implies that the current velocity is too high and v < 0 implies that it
is too low, compared to the set point. There are two auxiliary continuous variables, x
and t, which are not required to converge. Therefore, we are interested in proving GAS
with respect to the set of variables {v}.

To avoid clutter, the initial states are not drawn in Figure 4.27. We assume that each
discrete mode m may be initial, as long as initially x ∈ Inv(m) holds.

The discrete behavior of the system is defined through six modes of operation. The
mode N models a PI controller which is active around v = 0, and drives the velocity
differential v towards 0 asymptotically. Here, the auxiliary variable x takes the role of the
integral of v (i.e., the integral component of the PI-controller). Both a positive velocity
differential and a positive integral value result in a negative acceleration and negative
values in a positive acceleration. This mode may be active for velocity differentials with
absolute value of at most 15 m/s and integral values with absolute value of at most 500.
The bounds on x have been chosen such that they will not be violated if the PI-controller
is activated with −15 m/s ≤ v ≤ 15 m/s and x = 0. This additional information is
helpful for the computation, as a simpler S-procedure representation of the invariants
and guards is possible. In general, it is advisable to always exploit the knowledge of
such bounds for Lyapunov function computation. The variable x is also reset to 0 every
time mode N is entered to model the re-initialization of the PI-controller upon every
activation.

The mode A constantly accelerates the vehicle at 1.5 m/s2, modeling a saturation
cutoff for the acceleration. A transition from mode N to mode A may take place as
soon as v reaches −14 m/s and, due to the invariant of N , it must take place when v
reaches −15 m/s. The system will then remain in A until v has again reached −6 m/s.
At this point, a switch back to N may take place, and at v = −5 m/s, it must. Such
a gap between the switching points from N to A and vice versa is called a hysteresis
and prevents chattering or Zeno behavior when switching, as the transition guards do
not overlap. Note that the auxiliary variable x, which plays no role in A and therefore

128

4.6 Cruise Control Example

v̇ = 1.5
ẋ = 0
ṫ = 0

−20 ≤ v ≤ −5

v̇ = −0.001x− 0.052v
ẋ = v
ṫ = 0

−15 ≤ v ≤ 15
−500 ≤ x ≤ 500

v̇ = −t− 1.2
ẋ = 0
ṫ = 0.5

5 ≤ v ≤ 20
0 ≤ t ≤ 1.3

v̇ = −2.5
ẋ = 0
ṫ = 0

5 ≤ v ≤ 20
t = 1.3

v̇ = −t− 2.5
ẋ = 0
ṫ = 1

15 ≤ v ≤ 40
0 ≤ t ≤ 2.5

v̇ = −5
ẋ = 0
ṫ = 0

15 ≤ v ≤ 40
t = 2.5

A

N

B1
1 B2

1

B2
2B1

2

−6 ≤ v ≤ −5∧
−500 ≤ x ≤ 500∧

x+ = 0

−15 ≤ v ≤ −14∧
−500 ≤ x ≤ 500

13 ≤ v ≤ 15∧
−500 ≤ x ≤ 500∧

t+ = 0

5 ≤ v ≤ 11∧
0 ≤ t ≤ 1.3∧

x+ = 0

t = 1.3∧
5 ≤ v ≤ 20

5 ≤ v ≤ 11∧
t = 1.3∧
x+ = 0

18 ≤ v ≤ 20∧
0 ≤ t ≤ 1.3∧

t+ = 0

15 ≤ v ≤ 16∧
0 ≤ t ≤ 2.5∧

t+ = 0

t = 2.5∧
15 ≤ v ≤ 40

15 ≤ v ≤ 16∧
t = 2.5∧
t+ = 0

18 ≤ v ≤ 20∧
t = 1.3∧
t+ = 0

Figure 4.27: Cruise Control Automaton

129

4 Decompositional Stability Analysis

remains constant, is reset to 0 upon the return to N .

The cruise controller is equipped with two levels of brakes, which can be considered
service and emergency brakes. In addition, the mode N can of course also decelerate the
system, modeling the braking behavior of the engine itself. The first level of brakes is
defined through the modes B1

1 and B2
1 . We assume that the brakes do not immediately

start to brake at full effect upon activation. Instead, there is a “warmup” phase, modelled
by B1

1 , which takes a set amount of time, in this case 2.6 seconds. Initially, the brake
will decelerate the vehicle at −1.2 m/s2. As long as B1

1 is active, the deceleration will
increase linearly up to −2.5 m/s2 after 2.6 seconds. The auxiliary variable t is used
to model a timer increasing at the rate of 0.5 per second. When t reaches 1.3 after
2.6 seconds, the transition to B2

1 is taken. This mode keeps the deceleration constant
at −2.5 m/s2. The activation and deactivation of the brake are again governed by a
hysteresis. The first level brake may be activated already at v = 13 m/s and must be
activated once v exceeds 15 m/s2, leaving a range of possible switching points. A proof
of GAS for this system will mean that any choice of switching point within this interval
leads to the desired stable behavior. Likewise, a transition from both B1

1 and B2
1 back to

N takes place on the interval 5 m/s ≤ v ≤ 11 m/s, again with a reset of the integrator
variable to 0.

The second level of brakes, modeled by modes B1
2 and B2

2 works in the same fashion,
but with a higher peak deceleration of −4 m/s2. This brake can be triggered if we detect
a very high velocity differential in either mode B1

1 or mode B2
1 .

The constraint graph for this automaton is given in Figure 4.28. The constraints on
the nodes and edges are defined as in Definition 4.10.

CA

CN

CB1
1

CB2
1

CB1
2

CB2
2

CA,N CN,A

CN,B1
1

CB1
1
,N

CB1
1
,B2

1

CB2
1
,N

CB1
1
,B1

2
CB1

2
,B1

1

CB1
2
,B2

2

CB2
2
,B1

1

CB2
1
,B1

2

C1

Figure 4.28: Constraint Graph of the Cruise Control Automaton

Now, we start the reduction and splitting procedure for this hybrid automaton. We

130

4.6 Cruise Control Example

can see that there is exactly one cycle with just one border node: the cycle C1 consisting
of the modes A and N and the two transitions between them. Therefore, we can reduce
this cycle in the graph if we succeed in computing a predicate on the LLF of mode N as
required by Theorem 4.3. As discussed in Section 4.5.1, this can be achieved by repeated
solution of the LMI for cycle C1 with different optimization directions: the predicate is
then represented as the conic hull of the LLFs for N that have been computed in this
manner. We therefore formulate the LMI problem for cycle C1 as per Theorem 3.10.
The LLF for N , V (·, N) = x̃PN x̃ cannot have a constant or a linear part, since the
mode invariant contains the equilibrium. Also, both V (·, N) and V (·, A) cannot depend
on t, since this variable does not change in the mode dynamics. Therefore, we can set
the corresponding entries in the matrices to zero in beforehand, resulting in only three
unknowns for PN and six unknowns for PA. We also add an additional constraint to the
LMI, bounding β from above by 100. This is done to bound the solution space, guaran-
teeing the existence of a solution in all optimization directions. Without this addition,
the conic, unbounded solution space would mean that we could only optimize in some
directions. The resulting LMI problem looks as follows:

131

4 Decompositional Stability Analysis

Find PA, PN ∈ R
3×3 and α, β, µA, µN , νA, νN , ηA, ηN , ϑA,N , ϑN,A ∈ R,

such that

α− ǫ � 0

β − ǫ � 0

100− β � 0

µA, µN , νA, νN , ηA, ηN � 0

ϑA,N , ϑN,A � 0

PA − µAQA − J � 0

PN − µNQN − Ĩ � 0

PA + νAQA − βJ � 0

PN + νNQN − βĨ � 0
[

(AA)T 0
(bA)T 0

]

PA + PA

[

AA bA

0 0

]

+ ηAQA + αJ � 0

[

(AN)T 0
(bN)T 0

]

PN + PN

[

AN bN

0 0

]

+ ηNQN + αĨ � 0

PA −
[

(AA,N)T 0
(bA,N)T 1

]

PN

[

AA,N bA,N

0 1

]

− ϑA,NRA,N � 0

PN −
[

(AN,A)T 0
(bN,A)T 1

]

PA

[

AN,A bN,A

0 1

]

− ϑN,ARN,A � 0

with

Ĩ =









1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0









, J =









1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0









,

AA =





0 0 0
0 0 0
0 0 0



 , bA =





1.5
0
0



 ,

AN =





−0.001 −0.052 0
1 0 0
0 0 0



 , bN =





0
0
0



 ,

PN =









pN1,1 pN1,2 0 0

pN1,2 pN2,2 0 0

0 0 0 0
0 0 0 0









, pN1,1, p
N
1,2, p

N
2,2 ∈ R,

132

4.6 Cruise Control Example

PA =









pA1,1 pA1,2 0 pA1,4
pA1,2 pA2,2 0 pA2,4
0 0 0 0

pA1,4 pA2,4 0 pA4,4









, pA1,1, p
A
1,2, p

A
1,4, p

A
2,2, p

A
2,4, p

A
4,4 ∈ R,

QA =









−0.0089 0 0 −0.1111
0 0 0 0
0 0 0 0

−0.1111 0 0 −0.3889









, QN =









−0.0022 0 0 0
0 −0.000002 0 0
0 0 0 0
0 0 0 1









,

AA,N =





1 0 0
0 0 0
0 0 0



 , bA,N =





0
0
0



 , AN,A =





1 0 0
0 1 0
0 0 0



 , bN,A =





0
0
0



 ,

RA,N =









−2 0 0 −11
0 −0.000002 0 0
0 0 0 0

−11 0 0 −59.5









,

RN,A =









−2 0 0 −29
0 −0.000002 0 0
0 0 0 0

−29 0 0 −419.5









.

The S-procedure matrices QA, QN , RA,N , and RN,A were obtained through the ellip-
soid based procedure described in [Pettersson, 1999, p. 105]. As optimization directions,
we simply minimize or maximize each single free variable of matrix PN , resulting in a
total of six optimization directions. For each of the six solutions returned by the SDP
solver (in this case CSDP), we need to keep track of the computed LLFs for mode N .
They are:

V 1
N (v, x, t) = 93.1487v2 + 6.3888vx + 0.4043x2

V 2
N (v, x, t) = 10.0034v2 + 0.01vx + 0.01x2

V 3
N (v, x, t) = 79.5725v2 + 7.7816vx + 0.3439x2

V 4
N (v, x, t) = 56.6641v2 + 0.01vx + 0.0569x2

V 5
N (v, x, t) = 100v2 + 0.01vx + 0.1005x2

V 6
N (v, x, t) = 3.0618v2 + 0.1618vx + 0.0121x2

The parameter values of these quadratic LLFs are rounded to four significant digits.
The actual computed values, which are re-used in the next steps are double precision
numbers computed up to machine precision.

Since the GLF computation was successful for cycle C1, we can now reduce the cycle
in the constraint graph. Figure 4.29 shows the constraint graph after this reduction step.
The predicate RN , which can be defined as

RN :⇐⇒ V (·, N) ∈ cone({V 1
N (·), . . . , V 6

N (·)})

has been attached to the node N . This means that, for the next LMI computation

133

4 Decompositional Stability Analysis

containing node N , the conic combination of the computed LLFs has to be used as the
new parametrization for node N .

RN

CB1
1

CB2
1

CB1
2

CB2
2

CN,B1
1

CB1
1
,N

CB1
1
,B2

1

CB2
1
,N

CB1
1
,B1

2
CB1

2
,B1

1

CB1
2
,B2

2

CB2
2
,B1

1

CB2
1
,B1

2

Figure 4.29: Constraint Graph after Reduction of Cycle C1

Now we can continue with the reduction, but the constraint graph in Figure 4.29 does
not contain any cycles with only a single border node. Therefore, we have to apply
the node splitting procedure. As pointed out before, a reasonable heuristic is to start
splitting the node with the smallest product of indegree and outdegree, which will lead
to the smallest number of new nodes. Both nodes B2

1 and N can be split into two nodes,
and therefore splitting any of these two is reasonable. Figure 4.30 shows the constraint
graph after the splitting of B2

1 . As we can see, there is still no cycle with a single border
node, so we proceed by also splitting N .

RN

CB1
1

CB2
1

CB2
1

CB1
2

CB2
2

CN,B1
1

CB1
1
,N

CB1
1
,B2

1

CB1
1
,B2

1

CB2
1
,N

CB1
1
,B1

2
CB1

2
,B1

1

CB1
2
,B2

2

CB2
2
,B1

1

CB2
1
,B1

2

Figure 4.30: Constraint Graph after Splitting of Node B2
1

The resulting constraint graph is depicted in Figure 4.31. Note that the predicate RN

remains attached to both of the newly added nodes. Now there are two cycles with just
one border node, the cycle C2 consisting of N and B1

1 , and the cycle C3 consisting of N ,

134

4.6 Cruise Control Example

B1
1 , and B2

1 . We can therefore now conduct Lyapunov function computations to reduce
these two cycles.

RN RN

CB1
1

CB2
1

CB2
1

CB1
2

CB2
2

CN,B1
1

CN,B1
1

CB1
1
,N

CB1
1
,B2

1

CB1
1
,B2

1

CB2
1
,N

CB1
1
,B1

2
CB1

2
,B1

1

CB1
2
,B2

2

CB2
2
,B1

1

CB2
1
,B1

2

C2

C3

Figure 4.31: Constraint Graph after Splitting of Node N

Next, we reduce cycle C2 in the lower left, containingN andB1
1 . The LMI computation

works as usual, with the difference that the LLF parametrization for node N is given
by
∑6

i=1 λiV
i
N (·). These multipliers λi must be non-negative and one of them strictly

positive. However, it is simpler to encode in the LMI and not considerably conservative
if we require all of them to be strictly positive. To bound the solution space in all
directions, we also require that each multiplier λi is less than 100.

Since the LLFs for mode B1
1 , the border node of the cycle, do not need to refer to

the variable x (which plays no role in the mode), we decide to maximize and minimize
the free parameters corresponding to v2, vt, and t2, again resulting in six optimization
directions. The six extremal LLFs are the following:

V 1

B1

1

(v, x, t) = 460.9169v2 + 3666.3589tv − 7818.4308v + 14938.2327t2 − 49420.3989t + 54170.5562

V 2

B1

1

(v, x, t) = 79.3041v2 + 6.359tv + 2493.9413v − 4365.2903t2 + 5603.0088t − 6811.669

V 3

B1

1

(v, x, t) = 837.1111v2 + 5279.9837tv − 18227.0739v + 8988.1138t2 − 6934897t + 126287.5833

V 4

B1

1

(v, x, t) = −158.9733v2 − 1456.1625tv + 6035.4231v − 483.4607t2 + 17906.6609t − 18743.4165

V 5

B1

1

(v, x, t) = 860.0469v2 + 5189.2642tv − 18617.1601v + 7077.4376t2 − 66864.1442t + 128990.3238

V 6

B1

1

(v, x, t) = −195.2294v2 − 1165.7724tv + 6622.0794v − 2418.8871t2 + 15993.5875t − 18865.6355

Again, these LLFs are subsumed into a conic predicate RB1
1
which is attached to node

B1
1 , resulting in the constraint graph given in Figure 4.32. Next, the cycle C3 can be

reduced in the same manner. Note that there are two reduced nodes on this cycle, so
that two LLFs receive a parametrization corresponding to a conic predicate, namely the
LLFs for nodes N and B1

1 . The same six optimization directions can be used, resulting
in the following LLFs for B1

1 .

135

4 Decompositional Stability Analysis

RN

RB1
1

CB2
1

CB2
1

CB1
2

CB2
2

CN,B1
1

CB1
1
,B2

1

CB1
1
,B2

1

CB2
1
,N

CB1
1
,B1

2
CB1

2
,B1

1

CB1
2
,B2

2

CB2
2
,B1

1

CB2
1
,B1

2

C3

Figure 4.32: Constraint Graph after Reduction of Cycle C2

V 7

B1

1

(v, x, t) = 934.5849v2 + 6653.9553tv − 18131.8823v + 20023.9711t2 − 88656.645t + 125628.6472

V 8

B1

1

(v, x, t) = 102.7078v2 + 235.5093tv + 1203.1979v − 3238.0142t2 + 1591.5665t + 182.2822

V 9

B1

1

(v, x, t) = 1184.2884v2 + 7629.1137tv − 25121.9157v + 15047.3507t2 − 100237.1764t + 174059.5928

V 10

B1

1

(v, x, t) = −83.8847v2 − 929.5328tv + 5085.5704v + 818.1647t2 + 11628.5909t − 11992.3360

V 11

B1

1

(v, x, t) = V 9

B1

1

(v, x, t)

V 12

B1

1

(v, x, t) = −97.251v2 − 394.4151tv + 4891.9132v + 675.6803t2 + 5590.4664t − 7434.0458

The LLFs V 11
B1

1

and V 9
B1

1

are equal because two optimization directions resulted in the

same extremal point in the solution space. Note that the conic hull of these six functions
forms a sub-set of the conic hull of the functions computed for node B1

1 in the previous
step: the result is a set of LLFs that is both compatible with cycles C2 and C3.

The resulting constraint graph is given in Figure 4.33. Again, we require node split-
tings in order to obtain reducible cycles. We can either choose to split node B1

1 or node
B1

2 , since these are the only nodes with degree larger than two. We choose to split node
B1

2 , resulting in four new nodes.

RB1
1

CB2
1

CB1
2

CB2
2

CB1
1
,B2

1

CB1
1
,B1

2
CB1

2
,B1

1

CB1
2
,B2

2

CB2
2
,B1

1

CB2
1
,B1

2

Figure 4.33: Constraint Graph after Reduction of Cycle C3

Figure 4.34 gives the result. We can observe that there now is another reducible cycle,

136

4.6 Cruise Control Example

C4, consisting of the nodes B1
1 and B1

2 on the bottom left. Again, the six optimization
directions result in six LLFs for B1

1 .

V 13

B1

1

(v, x, t) = 3122.0271v2 + 20588.2371tv − 58398.218v + 51612.4851t2 − 271911.9246t + 454321.4531

V 14

B1

1

(v, x, t) = 102.7391v2 + 235.7153tv + 1202.6139v − 3237.4980t2 + 1588.8474t + 186.8254

V 15

B1

1

(v, x, t) = 3405.8678v2 + 22147.6787tv − 67172.416v + 46880.6732t2 − 287539.2591t + 473929.9210

V 16

B1

1

(v, x, t) = −181.1016v2 − 1323.7263tv + 9976.8119v + 1494.3138t2 + 17216.1819t − 19421.6426

V 17

B1

1

(v, x, t) = V 15

B1

1

(v, x, t)

V 18

B1

1

(v, x, t) = V 16

B1

1

(v, x, t)

RB1
1

CB2
1

CB1
2

CB1
2

CB1
2

CB1
2

CB2
2

CB1
1
,B2

1

CB1
1
,B1

2

CB1
1
,B1

2

CB1
2
,B1

1

CB1
2
,B1

1

CB1
2
,B2

2

CB1
2
,B2

2
CB2

2
,B1

1

CB2
1
,B1

2

CB2
1
,B1

2
C4

Figure 4.34: Constraint Graph after Splitting of Node B1
2

Therefore, we can reduce cycle C4, resulting in the constraint graph given in Figure
4.35. To continue the reduction, we require another splitting, this time either of mode
B2

1 in the center right or of mode B2
2 at the top right.

We choose to split B2
1 , resulting in the constraint graph depicted in Figure 4.36.

Therefore, we can now reduce the cycle in the lower part of the graph, containing the
nodes B1

1 , B
2
1 , and B2

2 , again with B1
1 as the border node. We call this cycle C5. For this

cycle, we only require one single Lyapunov function, for reasons that will be explained
in the following. One possible LLF within C5 for B1

1 is given next.

V 19

B1

1

(m, v, x, t) = 8687.5308v2 + 56245.0238tv − 156163.583v + 130845.202t2 − 731410.246t + 1227213.693

Figure 4.37 shows the constraint graph after this reduction.
Without the help of reachability checks, we would have to continue the reduction

process from this point, but analysis of the remaining cycles will show that they cannot

137

4 Decompositional Stability Analysis

RB1
1

CB2
1

CB1
2

CB1
2

CB1
2

CB2
2

CB1
1
,B2

1

CB1
1
,B1

2

CB1
2
,B1

1

CB1
2
,B2

2

CB1
2
,B2

2
CB2

2
,B1

1

CB2
1
,B1

2

CB2
1
,B1

2

Figure 4.35: Constraint Graph after Reduction of Cycle C4

RB1
1

CB2
1

CB2
1

CB1
2

CB1
2

CB1
2

CB2
2

CB1
1
,B2

1

CB1
1
,B2

1

CB1
1
,B1

2

CB1
2
,B1

1

CB1
2
,B2

2

CB1
2
,B2

2CB2
2
,B1

1

CB2
1
,B1

2

CB2
1
,B1

2

C5

Figure 4.36: Constraint Graph after Splitting of Node B2
1

138

4.6 Cruise Control Example

RB1
1

CB2
1

CB1
2

CB1
2

CB2
2

CB1
1
,B2

1

CB1
1
,B1

2

CB1
2
,B2

2

CB1
2
,B2

2
CB2

2
,B1

1

CB2
1
,B1

2

Figure 4.37: Constraint Graph after Reduction of Cycle C5

be fully traversed by runs of the hybrid automaton. Figure 4.38 depicts the hybrid
automaton corresponding to the constraint graph. With the help of LLFs for mode B1

2

as barrier certificates (as described in Section 3.4), we can conclude that both transitions
from the duplicates of B1

2 (top left corner and second on the right hand side) to B2
2 (top

right corner) cannot be taken. For instance, consider the function VB1
2
(v, x, t) = v2+45t2,

which is a LLF for B1
2 . When entering either of the duplicates of B1

2 , we set t+ = 0 and
v lies in the range from 18 to 20. Therefore, the maximum value of VB1

2
when entering

each of these modes is 400. When leaving either of the modes, t is 2.5 and v is at least
15. Therefore, the minimum value of VB1

2
when taking a transition to the top right mode

is 152+45∗2.52 = 506.25. Since VB1
2
is non-increasing within mode B1

2 , we can conclude
that both of the transitions leading to the top right mode are unreachable. This means
that these edges can be left out.

Figure 4.39 shows the resulting decomposed hybrid automaton without the unreach-
able edges. Since all edges have sub-linear updates, and since each node in this au-
tomaton is actually an SCC of its own, this means that we only need to compute LLFs
for each of the remaining nodes. However, for the modes B1

1 , B
2
1 , and B1

2 , we already
computed some LLFs, as these modes were part of previously reduced cycles. This is
not the case for mode B2

2 . Therefore, we only need to find a LLF for B2
2 to finish the

proof of GAS for the entire automaton, for instance by using VB2
2
(v, x, t) = v2. This

decompositional proof now implies GAS for H.

The reduction procedure for this example was immediately successful, because all conic
predicates for the border nodes were sufficiently tight under-approximations. Next, we
discuss how to deal with situations where this is not the case. The solution we propose
is refinement of the border node predicates.

139

4 Decompositional Stability Analysis

v̇ = −t− 1.2
ẋ = 0
ṫ = 0.5

5 ≤ v ≤ 20
0 ≤ t ≤ 1.3

v̇ = −2.5
ẋ = 0
ṫ = 0

5 ≤ v ≤ 20
t = 1.3

v̇ = −t− 2.5
ẋ = 0
ṫ = 1

15 ≤ v ≤ 40
0 ≤ t ≤ 2.5

v̇ = −t− 2.5
ẋ = 0
ṫ = 1

15 ≤ v ≤ 40
0 ≤ t ≤ 2.5

v̇ = −5
ẋ = 0
ṫ = 0

15 ≤ v ≤ 40
t = 2.5

t = 1.3∧
5 ≤ v ≤ 20

18 ≤ v ≤ 20∧
0 ≤ t ≤ 1.3∧

t+ = 0

t = 2.5∧
15 ≤ v ≤ 40

t = 2.5∧
15 ≤ v ≤ 4015 ≤ v ≤ 16∧

t = 2.5∧
t+ = 0

18 ≤ v ≤ 20∧
t = 1.3∧
t+ = 0

Figure 4.38: Hybrid Automaton after the Reductions and Splittings

v̇ = −t− 1.2
ẋ = 0
ṫ = 0.5

5 ≤ v ≤ 20
0 ≤ t ≤ 1.3

v̇ = −2.5
ẋ = 0
ṫ = 0

5 ≤ v ≤ 20
t = 1.3

v̇ = −t− 2.5
ẋ = 0
ṫ = 1

15 ≤ v ≤ 40
0 ≤ t ≤ 2.5

v̇ = −t− 2.5
ẋ = 0
ṫ = 1

15 ≤ v ≤ 40
0 ≤ t ≤ 2.5

v̇ = −5
ẋ = 0
ṫ = 0

15 ≤ v ≤ 40
t = 2.5

t = 1.3∧
5 ≤ v ≤ 20

18 ≤ v ≤ 20∧
0 ≤ t ≤ 1.3∧

t+ = 0

15 ≤ v ≤ 16∧
t = 2.5∧
t+ = 0

18 ≤ v ≤ 20∧
t = 1.3∧
t+ = 0

Figure 4.39: Hybrid Automaton after Reachability Analysis

140

4.7 Refining the Border Node Predicates

4.7 Refining the Border Node Predicates

Since the under-approximations of the Lyapunov function sets by predicates Rb as com-
puted in Section 4.5.1 are usually conservative in the sense that some valid Lyapunov
functions are excluded, it is sometimes necessary to refine the predicates in order to
provide a stability proof. This refinement takes place by adding new extremal points
spanning the conic set defined by the predicate. In the following, for the ease of writing,
we informally identify a predicate Rb with the set of parameters satisfying it.

In particular, situations where the under-approximations are not tight enough occur
when two overlapping cycles show significantly different behavior, resulting in a small
intersection between the two LLF sets stemming from the two cycles for the border
node. See Figure 4.40(a) for an illustration of two overlapping ellipsoid sets for which
the under-approximations consisting of the extremal points in the cardinal directions
do not overlap. When reducing the first cycle and computing the predicate Rb, by
default we optimize in a number of fixed directions, for example the cardinal directions.
However, the intersection of the two solution sets might lie in a diagonal direction, or
this under-approximation might be otherwise disadvantageous. For example, see Figure
4.40(b) for a set that is poorly approximated by only the extremal points in the cardinal
directions (the solid polytope). Note that, in this case, the poor under-approximation
is a result of the choice of optimization directions, as diagonal directions would have
given a far better result (the dashed polytope). Refinement can simply be conducted
by adding new corner points to the inner polytope, such that the gap between actual
solution set and under-approximation is narrowed sufficiently. This section deals with
these refinement strategies.

(a) two marginally inter-
secting solution sets

(b) poorly under-approximated solution set

Figure 4.40: Conservative Under-Approximations of Lyapunov Function Sets

First, we will focus on such a refinement between two overlapping cycles of a hybrid
automaton. Note that we can obtain and use some information on where intersections
between the two cycles are likely to lie. This can be achieved by conducting GLF
computations for the second cycle without taking into account the first cycle. If we now
examine the sets of admissible LLFs for the border node within this second cycle, this can
help us determine advantageous optimization directions for the border node predicate

141

4 Decompositional Stability Analysis

Rb for the first cycle. It generally advisable to prefer directions which generally “point
toward the solution set of the second cycle.” However, depending on the shape of the
solution sets to be approximated, it is also possible that we can only find an intersection
in another direction, especially if the dimension of the solution space is high. To ensure
that an existing intersection is eventually detected, it is therefore necessary to also cover
these seemingly less promising optimization directions.

First, we will give an algorithm that will eventually find an existing intersection if its
interior is non-empty. It is in general not possible to give an upper bound on the number
of refinement steps needed, since the actual solution set can lie arbitrarily close to the
border of the two sets. For instance, Figure 4.40(a) shows a small intersection, which will
only be detected once either an extremal point lying directly inside the intersection has
been found, or two extremal points lie sufficiently close to it such that their connecting
line crosses the intersection. Therefore, the efficiency of this refinement procedure heavily
depends on the robustness of the stability property, much like the computation time
for convex optimization depends on the size, shape, and position of the solution set.
To complement this analysis, we also employ over-approximations of the solution set,
which come at a low extra cost, so that also the infeasibility of the entire problem can
eventually be detected. While the under-approximation is known through the extremal
points spanning the convex set, this over-approximation is represented as a number
of linear constraints, each forming a tangential plane to one extremal point. This is
important for the refinement algorithm, since conversions between these two polytope
formats are costly and therefore should be avoided. Such an exhaustive approach can
also be combined with heuristics providing priorities to different directions. As long as
these heuristics are fair in the sense that refinement directions do not ignore parts of
the state space, all intersections with non-empty interior will still be detected, while
improving termination times.

As a more efficient alternative to the exhaustive algorithm, we also propose a greedy
approach for detecting the intersection between the two LLF sets. Here, the optimiza-
tion direction can determined heuristically by various measures. One example is the
minimization of the “violation” of the polytopic constraints of the under-approximation
for the set we want to intersect with. Basically, optimization directions are selected such
that some easy-to-compute approximation of the “distance” to the second cycle’s LLF
set is minimized. These heuristics are not guaranteed to detect all intersections, but if
they do, then termination will be much faster than for the exhaustive case. The exhaus-
tive and the greedy approach can also be combined. A straightforward approach is to
try the greedy approach first. If stagnation is detected there, then other optimization
directions can be added based on the exhaustive approach, in order to get the greedy
approach “unstuck.” This type of alternation can guarantee fast results in case the
greedy approach works and still guarantee successful termination if the interior of the
solution set is non-empty.

Secondly, we will focus on how to implement these refinement strategies in the presence
of multiple intersecting cycles. If a refinement between two cycles terminates unsuccess-
fully (either because infeasibility has been detected or a threshold in the number of
corner points has been reached), then a backtracking algorithm for refining the compu-

142

4.7 Refining the Border Node Predicates

tations for the previously collapsed cycles is given, resulting in a complete refinement
procedure for a hybrid automaton. However, we begin with the two-cycle case.

4.7.1 Approximation Refinement for Two Intersecting Cycles

We will first give a general outline of a refinement algorithm which does not specify
the actual selection of new optimization directions to be added. This algorithm outline
can then be cast into several actual algorithms, including a version enumerating all
possible optimization directions and greedy methods which are not guaranteed to detect
all intersections but can find most intersections faster.

The refinement algorithm outline is given in Algorithm 2. Assume that we have two
cycles, C1 and C2, intersecting in exactly one mode b, with cycle C1 being reduced first.
Cycle C1 is collapsed into a conic, polytopic predicate Rb(C1) based on a number of
fixed optimization directions (line 1). Since we must be careful to match the predicates
Rb to the constraint systems that were used to compute them, we add the cycle they
are based on in parentheses. Also, define constr b(Ci) as the projection of constr (Ci)
onto the free parameters of Vb, existentially quantifying over all other parameters of
constr (Ci). Therefore, constr b(Ci) represents the exact set of parameter values for Vb,
which allow for a GLF for cycle Ci. Now, as required by Theorem 4.3, the predicate
Rb(C1) is conjoined with the constraint system constr (C2) for the second cycle, and if
there is a solution, then the two-cycle system is GAS (lines 2 and 3). If we find no
solution, then it might be the case that the approximation by Rb(C1) is too coarse, or a
GLF of the chosen parametrization might not exist at all. In this case, we first check the
constraint system constr (C2) for solutions — if it does not have any, then there cannot
be any solutions and refinement of Rb(C1) is of no use (line 9). If we find a solution,
then we compute another conic, polytopic predicate Rb, but this time stemming from
the constraint system constr (C2), and denote it Rb(C2) (line 6). Our goal is to refine
Rb(C1) such that constr (C2) ∧Rb(C1) finally has a solution. The predicate Rb(C2) can
be used to guide this refinement, since it gives us some information of the position of
constr b(C2) in the parameter space, and we should therefore try to choose optimization
directions for the refinement of Rb(C1) that lead us towards the set of states satisfying
Rb(C2).

At this point, the main refinement loop starts. We also compute over-approximation
predicates Ub(C1) and Ub(C2) as duals to the under-approximation predicates (line 12).
The reasoning is as follows. We can argue that the following constraint holds for all
parameter vectors p for Vb whose corresponding LLF fulfills constr b(Ci), i ∈ {1, 2}:

∧

pj
b
(Ci)

〈

(p − pjb(Ci))
T
∣

∣

∣
djb(Ci)

〉

≤ 0,

where djb(Ci) is the optimization direction vector belonging to the extremal parameter

vector pjb(Ci) spanning Rb(Ci). Since p
j
b(Ci) is the extremal point in the djb(Ci)-direction,

no p can lie beyond the tangential line at pjb(Ci), and therefore the scalar product of

the difference of p to pjb(Ci) and the normal vector given by the optimization direction

143

4 Decompositional Stability Analysis

1 calculate Rb(C1) based on a fixed set of directions;
2 if constr(C2) ∧Rb(C1) has a solution then

3 return true;
4 end

5 if constr(C2) has a solution then

6 calculate Rb(C2) based on a fixed set of directions;
7 end

8 else

9 return false;
10 end

11 repeat

12 compute over-approximations Ub(C1) and Ub(C2) from Rb(C1) and Rb(C2);
13 if Ub(C1) ∧ Ub(C2) has no solution then

14 return false ;
15 end

16 choose an optimization direction d;
17 add extremal point of constr b(C1) in direction d to list of extremal points

for Rb(C1);
18 add extremal point of constr b(C2) in direction (−d) to list of extremal

points for Rb(C2);
19 until constr(C2) ∧Rb(C1) has a solution;
20 return true;

Algorithm 2: Refinement Algorithm Outline

must be negative. See Figure 4.41 for an illustration. The solid line running from top
left to bottom right is the tangential line at pjb(Ci), with the angle between p − pjb(Ci))

and djb(Ci) being larger than 90 degrees.

p pj
b
(Ci)

dj
b
(Ci)

≥ 90◦

Figure 4.41: Over-Approximation Constraints

If the djb(Ci) are the cardinal directions, then the resulting overapproximation is simply
a box, otherwise it is a convex polytope. (see Figure 4.42).

If the two over-approximations Ub(C1) and Ub(C2) of constr b(C1) and constr b(C2) do
not overlap, then constr b(C1) ∧ constr b(C2) = false and we terminate unsuccessfully,

144

4.7 Refining the Border Node Predicates

(a) Square Over-Approximation (b) Polytopic Over-Approximation

Figure 4.42: Over-Approximation (dashed) of Solution Sets (solid) for a Given Under-
Approximation (dotted)

knowing that there is no GLF of the chosen parametrization. If we cannot disprove the
existence of a GLF at this point, the actual refinement takes place. First, an optimization
direction for adding a new extremal point to Rb(C1) is determined (line 16). This choice
of optimization direction can be based on the relative positions of the extremal points
of Rb(C1) and Rb(C2). Then, the corresponding LMI problem is solved to obtain a
new extremal point of constr b(C1) (line 17). Finally, we also refine Rb(C2), adding
the extremal point of constr b(C1) in the opposite direction (line 18). Since Rb(C1)
now contains an extra vertex, we can now retry to solve constr (C2) ∧ Rb(C1) with this
new information. If this is still unsuccessful, then we repeat the refinement process.
Note that each refinement of the under-approximation also leads to a refinement of
the corresponding over-approximation, as can be seen in Figure 4.42. Therefore, a
refinement step might also help us detect that constr b(C1) and constr b(C2) do not have
an intersection, and then the same holds for constr (C1) ∧ constr (C2) leading to an
unsuccessful stability proof with this particular LLF parametrization.

In the presence of numerical errors, it is important to note that for the under-
approximation we need to round inward (i.e., toward the interior of constr b(Ci)) and
for the over-approximation we need to round outward. In other words, the pjb(Ci) used
for the over-approximation should ideally slightly violate constr b(Ci) in order to be on
the safe side. On the other hand, the extremal points used for the under-approximation
should fulfill constr b(Ci) by some safe margin.

The key point in Algorithm 2 is the choice of refinement directions. While it is in
general possible to exclude some optimization directions for constr b(C1) altogether, as
they cannot lead to an intersection with constr b(C2), this is computationally costly.
Especially in high dimensions, it is difficult to exclude even those directions pointing
away from the under-approximation Rb(C2), since an unfortunate initial approximation
might still lead to an intersection in this direction.

The brute force approach is to enumerate optimization directions in an evenly spaced
manner, regardless of the relative positions of the two under- and over-approximations.
This enumeration needs to be done such that eventually every facet of the under-
approximation is refined, in order to ensure that constr b(C1) is eventually approximated
arbitrarily close. Heuristics can still be used to order these optimization directions in a
favorable manner.

145

4 Decompositional Stability Analysis

If the number of extremal points truly becomes to large to handle, disregarding individ-
ual points for a solution attempt of constr (C2)∧Rb(C1) can however be a good idea. This
is not harmful if the disregarded points are chosen carefully. Since merely one extremal
point e will have been added since the last attempt at solving constr (C2) ∧Rb(C1), any
other extremal points which cannot form a new facet with e are technically not needed
for the check.

One basic strategy for the selection of directions is as follows. We divide the enumer-
ation into different steps, starting with the (positive and negative) cardinal directions in
step 1. The step i+1 then consists of the sums of all directions of the i-th step with the
cardinal directions. If a coordinate of such a direction is positive or negative, we do not
need to add the cardinal direction pointing in the other direction (e.g., direction [1, 0]T

does not need to be combined with [−1, 0]T , since this would result in the zero vector).
In other words, the i-th step consists of all direction vectors with a 1-norm of i.

For instance, assume that we start with the three cardinal vectors [1, 0, 0]T , [0, 1, 0]T

and [0, 0, 1]T and their three negatives [−1, 0, 0]T , [0,−1, 0]T and [0, 0,−1]T in three di-
mensions. The next step would then result in a total of 18 directions. For instance,
[1, 0, 0]T would be combined with five cardinal vectors, resulting in five new directions
[2, 0, 0]T , [1, 1, 0]T , [1,−1, 0]T , [1, 0, 1]T and [1, 0,−1]T . Intuitively, we simply enumer-
ate all possible integer direction vectors, which eventually leads to an arbitrarily close
coverage of all possible optimization angles. The duplicate angles that occur in this enu-
meration (for instance [1, 0, 0]T and [2, 0, 0]T , or [1, 1, 0]T and [2, 2, 0]T) can be detected
by filtering out all vectors for which the greatest common divisor of the norms of the
non-zero coordinates, denoted as gcd(·), is greater than one. The full algorithm for this
case is given in Algorithm 3.

Since we conduct a full enumeration of all rational optimization directions, and since
the constraints of constr (C1) and constr (C2) are always conjuncts of polynomial con-
straints if they can be formulated as LMIs, this procedure leads to the following result.

Remark 4.5. If constr (C1) and constr (C2) can be formulated as LMIs and the inter-
section between the interiors of constr b(C1) and constr b(C2) is non-empty, then Algo-
rithm 3 will eventually terminate with true. If the intersection between the closures of
constr b(C1) and constr b(C2) is empty, then Algorithm 3 will eventually terminate with
false. This is a simple consequence of the fact that both Rb(C1) and Ub(C1) will converge
toward constr b(C1) due to the even spacing of the optimization directions. Therefore,
every point in the interior of constr b(C1) will eventually lie in Rb(C1), and every point
in the complement of the closure of constr b(C1) will eventually lie outside Ub(C1). The
same applies to constr b(C2), Rb(C2) and Ub(C2).

This exhaustive enumeration can be inefficient, since the number of optimization direc-
tions grows exponentially with the number of steps needed. Therefore, as an alternative,
heuristics for determining a promising optimization direction can be used.

One approach is to simply use the difference between the center points of Rb(C1) and
Rb(C2) as the optimization direction. This heuristic has the advantage of not requiring
any advanced computations. However, in general, there is the possibility that an existing
intersection is not found using this method. In particular, this occurs if the two center

146

4.7 Refining the Border Node Predicates

1 D := list of cardinal directions in the parameter space;
2 calculate Rb(C1) based on D;
3 D1 := D;
4 D2 := {(d1 + d2) | d1 ∈ D ∧ d2 ∈ D ∧ d1 6= −d2};
5 if constr(C2) ∧Rb(C1) has a solution then

6 return true;
7 end

8 if constr(C2) has a solution then

9 calculate Rb(C2) based on D;
10 end

11 else

12 return false ;
13 end

14 repeat

15 compute over-approximations Ub(C1) and Ub(C2) from Rb(C1) and Rb(C2);
16 if Ub(C1) ∧ Ub(C2) has no solution then

17 return false;
18 end

19 if D2 = ∅ then

20 D2 :=
{

(d+ d1)
∣

∣ d ∈ D ∧ d1 ∈ D1 ∧ dT d1 ≥ 0
}

;
21 D1 := ∅;
22 end

23 select a d ∈ D2;
24 D2 := D2 − {d};
25 D1 := D1 ∪ {d};
26 if gcd(d) = 1 then

27 add extremal point of constr b(C1) in direction d to list of extremal
points for Rb(C1);

28 add extremal point of constr b(C2) in direction (−d) to list of extremal
points for Rb(C2);

29 end

30 until constr(C2) ∧Rb(C1) has a solution;
31 return true;

Algorithm 3: Exhaustive Refinement Algorithm

147

4 Decompositional Stability Analysis

points of Rb(C1) and Rb(C2) are not close enough to the center points of constr b(C1)
and constr b(C2). This center point heuristic can however be combined with the full
enumeration given in Algorithm 3. The sets of directions D2 computed in each algorithm
step can be sorted by angle to the difference of the two center points. This requires a
scalar product computation for each possible (normed) optimization direction. The
direction with the smallest angle can be assumed to be more likely to lead to a success
and should therefore be selected first. After generating a new set D2 in line 20, it can
simply be sorted by this angle. The advantage of this approach lies in the fact that the
result from Remark 4.5 is preserved.

A second heuristic uses extra variables in the LMI which have to be minimized. The
general idea is – instead of picking a fixed optimization direction – to add the extremal
point of constr b(C1) that lies closest to Rb(C2). See Figure 4.43 for an illustration of this
idea. This approach requires some changes to the LMI for a cycle, with the introduction
of a slack variable serving as the distance measure. This auxiliary variable is required
to be positive and then minimized. Assume that the extremal local Lyapunov functions
of under-approximation Rb(C2) are given as V1(·, b), . . . , Vn(·, b) for border node b.

(a) before refinement (b) after refinement

Figure 4.43: Greedy Refinement Step

Then, the procedure is as follows. We solve the LMI problem for the sub-graph C1,
but with a modified LLF parametrization for the border node. This parametrization
is
∑

i λiVi, but we do not require the λi to be non-negative. Instead, we enforce the
constraint that λi ≥ −δ, with δ ≥ 0. The optimization direction for the LMI is then set
such that δ is minimized. If we obtain a solution with δ = 0, then this implies that the
newly discovered extremal point of constr b(C1) intersects with Rb(C2). Therefore the
newly updated Rb(C1) will do the same. If we obtain a solution with δ > 0, then we
add the solution to Rb(C1) anyway, as it represents the closest solution to Rb(C2) with
respect to the distance metric defined by this slack variable. The process can then be
repeated in an alternating manner for the two cycles, adding extremal points to both
underapproximation until we obtain δ = 0.

Note that this procedure is not complete, as progress is not necessarily guaranteed. In
particular, the newly obtained extremal point might already be in Rb(C1), even though
there is an intersection between constr b(C1) and constr b(C2). This can occur whenever
the initial under-approximations are “bad” in the sense that they leave large parts of the
solutions space uncovered, in an asymmetric manner. See Figure 4.44 for an illustration

148

4.7 Refining the Border Node Predicates

of such a situation, where the under-approximations Rb(C1) and Rb(C2) (both dashed)
do not approximate constr b(C1) and constr b(C2) (both solid) well. The corner point of
Rb(C1) is the closest point (wrt. the ∞-norm) to Rb(C2) in constr b(C1) and vice versa.

Rb(C2)

constr(C2)

Rb(C1)

constr(C1)

Figure 4.44: Deadlock Situation for Greedy Refinement

However, in many cases, this heuristic leads to fast termination. Unlike with the
full enumeration approach, only extremal points in directions which seem promising are
added. In case this heuristic shows no progress, the exhaustive enumeration approach
can still be used as a fallback solution. It can also be useful to run the facet enumeration
for a limited time, and then restart the distance heuristic approach with this additional
information, in the hope that the tighter under-approximations will now result in con-
vergence.

Instead of an ∞-norm based distance measure, other measures can also be used.
The center point heuristic is one example, and also the 1-norm can be expressed as a
optimization direction for an LMI. In the exhaustive method as an immediate fallback
solution, switching to another distance measure first can also help enforcing progress in
the refinement.

We now given an example for the two-cycle refinement procedure.

Example 4.9 (Refinement). This example demonstrates the three different refinement
approaches for two intersecting cycles. Consider the hybrid system given in Figure 4.45,
which consists of two cycles with a total of three modes. Since all transition guards
are true, per Theorem 4.7, each cycle requires a common Lyapunov function for its two
modes.

For the left-hand cycle C1 consisting of modes m1 and m2, we use a quadratic Lya-
punov function template without linear or constant part of the form

Vm1
= Vm2

= [x, y]P

[

x
y

]

, P =

[

p1,1 p1,2
p1,2 p2,2

]

.

149

4 Decompositional Stability Analysis

ẋ = −2x+ 5y
ẏ = −5x− 2y

ẋ = −2x+ 3.5y
ẏ = −7x− 2y

ẋ = −2x+ 8y
ẏ = −3.5x− 2y

m1 m2 m3
true

true

true

true

true true true

Figure 4.45: Two-Loop System

We start by formulating the LMI problem for this cycle and optimizing in the cardi-
nal directions for the three free parameters, resulting in six Lyapunov functions (after
normalization)

V 1
m2,C1

= x2 + 0.7388y2

V 2
m2,C1

= 0.9618x2 + y2

V 3
m2,C1

= 0.8514x2 + 0.4834xy + 0.6070y2

V 4
m2,C1

= 0.8514x2 − 0.4834xy + 0.6070y2

V 5
m2,C1

= 0.9691x2 + y2

V 6
m2,C1

= x2 + 0.5894y2

with their conic hull forming the predicate Rm2
(C1). If we now attempt to compute

a GLF for the second cycle C2, using a parametrization
∑

i λiV
i
m2

for the LLF of m2,
we find that the computation is not successful. Since, for the center point and minimal
distance heuristics, we also require a predicate Rm2

(C2), we now formulate the LMI for
the second cycle (without taking predicate Rm2

(C1) into account), again optimizing in
the same directions and arrive at the following six Lyapunov functions:

V 1
m2,C2

= 0.9161x2 + y2

V 2
m2,C2

= 0.9129x2 + y2

V 3
m2,C2

= 0.9026x2 + 0.0662xy + 0.9887y2

V 4
m2,C2

= 0.9026x2 − 0.0662xy + 0.9887y2

V 5
m2,C2

= 0.9129x2 + y2

V 6
m2,C2

= 0.9159x2 + y2

For the center point heuristic, we obtain an optimization direction given by the
function 0.0285p1,1 − 0.2392p2,2 which is to be minimized. The extremal function of
constr b(C1) in this direction is

150

4.7 Refining the Border Node Predicates

V 7
m2,C1

= 0.9099x2 + y2.

If we add the extremal point V 7
m2,C1

to Rm2
(C1), we find that the Lyapunov function

computation of cycle C2 is now successful, completing the stability proof. Using the
minimal distance heuristic, we obtain a slightly different extremal function, namely

V 7
m2,C1

= 0.9141x2 + y2,

which again leads to a successful computation for C2. The full enumeration approach
succeeds as soon as the diagonal optimization direction minimizing p1,1 − p2,2 is added,
resulting in the same extremal function as for the center point approach.

4.7.2 Approximation Refinement for Strongly Connected Components

In the previous section, approximation refinement for two intersecting cycles has been
discussed. We now need to extend these methods to approximation refinement across
entire SCCs. Fortunately, this is rather straightforward. As the reduction graph as given
in Definition 4.12 already gives us a tree structure to work with, we can use it to do
backtracking, if the immediate refinement of two intersecting cycles does not lead to a
positive result. This is the case if the two over-approximations in Algorithms 2 or 3 do
not overlap or if we reach a previously defined upper bound on the number of refinement
steps. In this case, we have to go back to another previously reduced cycle, refining
its predicate Rb. It is desirable to do this backtracking on a breadth-first basis, since
refinement of cycles which overlap directly is less costly.

Nevertheless, for the sake of completeness, we also give an approach to do refinement
across several depths in the refinement graph, for instance refining a cycle on depth
3 to produce a solution for the root cycle. Just as in the previous section with two
neighboring cycles, the refinement is based on a pair of cycles: the top-level cycle Cn

for which we want to find a solution and the bottom-level cycle C1, whose predicate
Rb is to be refined. The cycles C2, . . . , Cn−1 complete the path in the refinement graph
connecting C1 and Cn. See Figure 4.46 for an example with n = 4.

Again, we employ guided refinement. To achieve this, we have to propagate some
information “down the tree.” This is done with the help of predicates Rd

b (C), which are
again under-approximation predicates. In contrast to this, the Ru

b (C) predicates (which
are equal to the original predicates Rb(C) that were used for the reduction), propagate
information up in the tree. Define the constraint systems

S(Cj) := constr (Cj)∧
∧ {RbC (C) |C is a child of Cj connected by edge bC ∧ C 6= Cj−1}

151

4 Decompositional Stability Analysis

C1

C2

C3

C4

b3

b2

b1

Figure 4.46: Reduction Graph with Connecting Path between Top-Level Cycle C4 and
Cycle to be Refined C1

for the cycles C2 to Cn, and

S(C1) := constr (C1) ∧ ∧ {RbC (C) |C is a child of C1 connected by edge bC}

for the cycle C1 whose predicate Rb1(C1) is to be refined. We assume that, at the time
of refinement, we still know the under-approximation predicates RbC (C) computed for
each reduced cycle C, denoted as Ru

bC
(C).

A refinement algorithm is then given in Algorithm 4. This algorithm is supposed to
be executed if Algorithm 2 returns false or the loop in lines 11− 20 of Algorithm 2 has
reached a fixed number of iterations, which is interpreted as a timeout. In this case,
Algorithm 2 can be run to refine the predicate RbC1

(C1) of another previously reduced
cycle C1.

There are some differences to the two-cycle case. Most notably, one cycle can now
intersect with several other cycles instead of just one. Also, if we want to guide the
refinement of predicate Ru

bn−1
(Cn), we somehow have to propagate information “down

the tree.” The idea here is similar to the two-cycle case. First, an under-approximation
predicate Rd

bn−1
(Cn) is computed in line 1. In contrast to the two-cycle case, we also need

to take into account all the RbC (C)-predicates of other child cycles of Cn (apart from
Cn−1), which is reflected in the definition of constraint system S(C1). This R

d
bn−1

(Cn) is

then used to compute a Rd
bn−2

(Cn−1) for Cn−1. Here, we need to take into account the

RbC (C)-predicates from other children of Cn−1, as well as the Rd
bn−1

(Cn). In this man-

ner, recursively, we compute Rd
b1
(C2), which can then be used to guide the refinement

of Ru
b1
(C1) in the same manner as for the two-cycle case. This propagation happens in

lines 3-6. The loop in lines 7-15 then essentially conducts the same refinement as for just
two intersecting cycles. If the refinement terminates with true, this means that Ru

b1
(C1)

152

4.7 Refining the Border Node Predicates

1 calculate Rd
bn−1

(Cn) as an under-approximation predicate of S(Cn) for the LLF
of bn−1 based on a fixed set of directions;

2 j := n− 1;
3 while j ≥ 2 do

4 calculate Rd
bj−1

(Cj) as an under-approximation predicate of

S(Cj) ∧Rd
bj
(Cj+1) for the LLF of bj−1, based on a fixed set of directions;

5 j:=j − 1;

6 end

7 repeat

8 compute over-approximations Ud
b1
(C2) and Uu

b1
(C1) from Rd

b1
(C2) and

Ru
b1
(C1);

9 if Ud
b1
(C2) ∧ Uu

b1
(C1) has no solution then

10 return false;
11 end

12 choose an optimization direction d;
13 add extremal point of S(C1) in direction d to list of extremal points for

Ru
b1
(C1);

14 add extremal point of S(C2) ∧Rd
b2
(C3) in direction (−d) to list of extremal

points for Rd
b1
(C2);

15 until S(C1) ∧Rd
b1
(C2) has a solution;

16 return true;

Algorithm 4: Refinement Algorithm Outline

is now shaped such that the existence of a solution for the top cycle is guaranteed. How-
ever, it is now still necessary to re-compute Ru

b2
(C2), then Ru

b3
(C3), et cetera, until we

can compute a conic predicate for Cn and continue with the decomposition. Since, for
instance, the predicate Ru

b2
(C2) could theoretically again be too coarse, further refine-

ment loops may be needed. The selection of cycles to which the refinement is applied
should ideally be done by breadth-first search, since cycles with direct intersection points
are much more likely to result improvement. Therefore, one should first try to refine
the cycles at depth 2 of the tree, then at depth 3 and so on. This has the additional
advantage that some computation results in Algorithm 4 can be cached and re-used. In
particular, this applies to the computation of the predicates Rd

bj−1
(Cj) which are used to

guide the refinement. If a cycle is chosen for refinement, all of the Rd
bj−1

(Cj)-predicates
for all cycles on the path to the root cycle have already been computed in previous steps,
since refinement has been attempted unsuccessfully on these cycles before. This reduces
the loop in lines 3-6 to a single computation: the last iteration only.

As soon as refinement across several cycles is necessary, this will of course greatly
increase the computation time. This primarily occurs if solution sets from neighboring
cycles overlap only marginally. Usually, just refinement of direct neighbors is sufficient,
and often no refinement at all is needed (as, for instance, in Example 4.9). The need for
multilevel refinement can also be alleviated by a suitable choice of initial optimization
directions in the first place. Algorithm 4 is provided here for the sake of completeness,

153

4 Decompositional Stability Analysis

but it is usually preferable to prevent situations where this is required to begin with by
choosing a larger set of initial optimization directions if necessary.

4.8 Summary

In this chapter, one of the main contributions of this thesis, a decompositional framework
for Lyapunov-function-based stability analysis for hybrid systems, was presented. The
first level of decomposition consisted of the identification of a hybrid automaton’s SCCs,
which can be treated completely independently, as far as Lyapunov function computation
is concerned. If each SCC is globally attractive, then so is the entire system. Moreover, if
each strongly connected component is globally stable and all bridge transitions are sub-
linear, then the entire hybrid automaton will also be globally stable. Since Lyapunov
functions that prove attractivity also always prove stability, this decomposition allows
attractivity proofs also for some systems for which a monolithic Lyapunov-Function-
based proof is impossible. In particular, this occurs when two GAS SCCs are connected
via a not sub-linear transition into an automaton which is attractive, but not stable.
Furthermore, this decomposition is lossless as far as the existence of Lyapunov functions
is concerned. Therefore, whenever we can find a Lyapunov function proving GAS for
the entire hybrid automaton, we can also do so individually for all SCCs. The result of
this decompositional computation is a family of independent GLFs, one for each SCC.
However, if so desired, these SCC-local GLFs can be combined into a true GLF for
the entire system, whenever all bridge transitions are sub-linear. This computation is
straightforward and based on the sub-linearity factors of the bridges.

The second level of decomposition involves the identification of cycle covers within
an SCC. This is possible since each mode and transition within an SCC must lie on at
least one simple cycle. We gave a reduction procedure that identifies simple cycles in the
graph that have only one single intersection node with the rest of the automaton. For
such a cycle, a series of GLF computations is conducted, yielding a number of Lyapunov
functions proving the stability of the cycle itself. From these GLF computations, we
deduced a conic, polytopic predicate on the free parameters of the single border node.
The cycle is then removed from the graph and replaced by this predicate, which gives
a sufficient condition on the free parameters of the border node for the existence of a
Lyapunov function for the reduced cycle. If, by repeated application of this step, all
cycles of the SCC have been removed, then it is GAS, and a GLF certifying this can be
computed. If we have cycles intersecting with the rest of the automaton in more than one
node, we used an equivalent transformation of the automaton to reduce the number of
border nodes. This procedure takes nodes of degree larger than two and splits them into
a number of nodes corresponding to the product of its indegree and outdegree. We also
gave an algorithm conducting this splitting and the reduction in a manner such that
termination is guaranteed. We then described how these conic, polytopic predicates
can be computed using LMI methods and how to treat special cases of cycles which
require common or continuous Lyapunov functions. Furthermore, we discussed how
LLFs within a cycle can be employed to provide barrier certificates, proving that the

154

4.8 Summary

cycle is not traversable and can therefore be ignored for the analysis.
The reduction procedure was then demonstrated on a cruise control application with

six modes of operation, modeling maximum acceleration, standard acceleration and de-
celeration and two levels of brakes, each represented by a pair of modes. For this example,
reduction, splitting and removal of non-traversable cycles were employed to arrive at a
decompositional stability proof.

For the case that the conic, polytopic underapproximation of the LLF sets for the bor-
der nodes are too coarse, we also provided several algorithms for the refinement of these
predicates. Two heuristics for directed refinement were given, choosing new optimization
directions for the extremal point of the polytopic set based on the relative position of the
solution sets for two intersecting cycles. Furthermore, we gave a refinement procedure
which enumerated optimization angles in an evenly spaced manner, guaranteeing that
solution set intersections which lie in the interior of the two solution sets are eventually
detected. The refinement procedure can not only be used for neighboring cycles but also
for pairs of cycles that do not intersect in the graph, if so desired.

In summary, a complete decompositional proof of GAS could be conducted as follows:

1. optionally, conduct reachability analysis, tightening the guards and invariants and
removing superfluous transitions,

2. decompose the system into SCCs as in Section 4.3,

3. check whether all bridges have sub-linear updates: if yes, we show GAS, otherwise
we show GA,

4. optionally, within each SCC, identify subgraphs that should receive a common or
continuous GLF, as per Sections 4.5.2 and 4.5.3, and merge them into a single
constraint graph node with all constraints conjoined,

5. apply the reduction and splitting procedure from Section 4.4 to every SCC, and
for each cycle:

a) check whether it is traversable, as described in Section 4.5.4,

b) if it is, determine whether to use a common or continuous Lyapunov function
as discussed in Sections 4.5.2 and 4.5.3,

c) solve the corresponding LMI problem as per Section 4.5.1, and if no solu-
tion can be found, apply the reduction procedure described in Section 4.7 as
needed, and

6. optionally, compute a GLF for the entire systems as per Remarks 4.3 and 4.4.

The following chapter will now carry these results into the domain of probabilistic
hybrid automata: hybrid automata with probabilistic transitions. For this class of sys-
tems, probability-1-stability can also be shown by a variant of a GLF, which can again
be computed decompositionally.

155

5 Stability Analysis of Stochastic Hybrid
Systems

In this chapter, the general stability results of Section 3.3 and the decomposition ap-
proach of Chapter 4 are transferred to the domain of probabilistic hybrid automata.
Probabilistic hybrid automata are a combination of hybrid automata and discrete-time
Markov processes. In contrast to standard hybrid automata, where transitions lead to
a single target mode, probabilistic hybrid automata allow for a Markovian probability
distribution over several possible successor modes. Such a transition is still triggered by
a guard set, but can now cause a mode change that is governed by a probability distri-
bution, leading to different successor modes with different probabilities. Each successor
mode can also have its own update function for the continuous variables. With this
formalism, one can, for instance, model probabilistic plant behavior, with effects like the
decay of system components or randomly varying environmental conditions. To discuss
the stability of such systems, we define global stability in probability and almost sure
global attractivity . Both of these properties are defined in a stochastic manner, allowing
us, for instance, to reason about the probability of convergence. As it turns out, the
application of Lyapunov functions to this class of systems is surprisingly straightforward:
we only have to require that a Lyapunov function is always expected to decrease at any
state and at any point in time. If we can prove the existence of such a relaxed Lyapunov
function, then the system will always converge toward the equilibrium with probabil-
ity 1. For probabilistic hybrid automata, we can again cast the problem of identifying
such a Lyapunov function into an LMI problem. These parallels to non-probabilistic
systems open up the possibilities of applying the very same decomposition techniques as
presented in Chapter 4. In addition, some even stronger decomposition results can be
obtained for probabilistic systems. These results are obtained by abstracting the system
into the underlying Markov decision process and examining its steady state distributions.

First, in Section 5.1, we introduce probabilistic hybrid automata. We then move on
to the definition of the relevant stability properties for this class of systems. The core
Lyapunov theorem is then given in Section 5.2, together with a discussion of the corre-
sponding LMI problems. Finally, in Section 5.3, we discuss the various decomposition
techniques that can be applied to this class of systems.

5.1 Probabilistic Hybrid Automata and Stochastic Stability

First we define probabilistic hybrid automata, which form the base model for the analysis
in this chapter. For the most part, the syntactic definition remains unchanged from the
hybrid automata as defined in Section 3.2.2. The one exception are the transitions,

157

5 Stability Analysis of Stochastic Hybrid Systems

which now take a probability distribution of possible successor modes instead of a single
mode.

Definition 5.1 (Probabilistic Hybrid Automaton). A probabilistic hybrid automaton H
is a tuple

(M,S,V,T ,Flow , Inv , Init),

where

• M is a finite set of modes,

• S = R
|V| is the continuous state space,

• V is the set of continuous variables, with each variable corresponding to a coefficient
of x ∈ S, in some fixed order,

• T is a set of transitions given as tuples (m,T,G,U), where

– m1 ∈ M is the source mode,

– T : M → [0, 1] with
∑

m∈M T (m) ≤ 1 is the target mode distribution,

– G ⊆ S is the closed guard set ,

– U : M → [S → S] is the update function map for the continuous state
variables,

• Flow : M → [S → P(S)] is the flow function, mapping each mode onto a set-
valued function which in turn maps each x ∈ S onto a closed sub-set of S, which
is taken as the right-hand side of a differential inclusion ẋ ∈ Flow (m)(x),

• Inv : M → P(S) is the invariant function, mapping each mode onto a closed
sub-set of the continuous state space, and

• Init ⊆ M× S is the closed set of combinations of initial discrete and continuous
states.

The function T inside each transition models the probabilities with which a target
mode is selected. We do not require these probabilities to sum up to one. The remaining
probability mass is interpreted as the chance to “end with a finite trajectory.” We
allow this behavior, since it is helpful for the decomposition of probabilistic hybrid
automata. Some target modes of a transition in a sub-automaton might lie in a different
sub-automaton. This definition ensures that sub-automata are indeed valid automata,
by interpreting the probability of entering such a mode as the probability of a non-
extendable finite trajectory.

Probabilistic hybrid automata are visually represented as hypergraphs, much in the
same manner as standard hybrid automata are represented as graphs (see Remark 3.3).
Each hyperedge connects the source mode to all modes m with T (m) > 0. The outgoing
part of the hyperedge is labeled with the guard set, and the several incoming parts
are labeled with the transition probabilities given by function T and the updates given
by function U (see Figure 5.1 for an example). An example of a probabilistic hybrid
automaton is given next.

158

5.1 Probabilistic Hybrid Automata and Stochastic Stability

ẋ ∈ F1(x)
I1

m1
G

ẋ ∈ F2(x)
I2

m2

ẋ ∈ F3(x)
I3

m3

T (m2), U(m2)

T (m3), U(m3)

Figure 5.1: Graphical Representation of a Probabilistic Transition (m1, T,G,U) with
Two Target Modes

Example 5.1 (Probabilistic Cruise Controller). An example automaton is given in
Figure 5.2. The system is a probabilistic variant of the cruise controller from Section 4.6.
The modes A and N remain unchanged, modeling maximal acceleration and behavior
near the set point, respectively. In this example, there is only one level of brakes, which
is modeled by the two modes B1 and B2, which decelerate the vehicle at a constant rate.
However, upon activation of the brakes, there is a probabilistic transition, leading to each
braking mode with a probability of 0.499. With the remaining probability of 0.002, the
service brakes fail altogether, resulting in a transition to mode F , which models a backup
emergency brake. In addition, mode E can be entered at any time from modes A,N,B1,
and B2, modeling an external signal to stop the vehicle (for instance, effectuated by a
human operator once the destination is about to be reached).

Probabilistic hybrid automata require a modified solution concept, since it no longer
is useful to quantify over all individual trajectories. We are interested in stability prob-
abilities for this class of systems. Therefore, we must be able to capture the probability
mass corresponding to sets of trajectories. We will deal with trajectory bundles, which
are represented as continuous-time stochastic processes. Recall that a trajectory of a
standard hybrid automaton is essentially a resolution of its non-determinism. One of
all the possible initial states is chosen, one possible solution of a differential inclusion
is chosen, one of multiple possible successor modes is chosen and so on. If we do the
same for probabilistic hybrid automata (resolving the non-determinism only and not the
probabilism), we obtain a tree of trajectories where each branch carries a probability
mass. This bundle of trajectories can therefore be viewed as a stochastic process, de-
scribing a “tree” of trajectories with associated probabilities. In contrast to trajectories
of non-probabilistic systems, the distinction between a finite and an infinite time hori-
zon, which was required for the definition of the stability property (see Definition 3.15),
cannot be made on entire bundles of trajectories, since some branches may be finite and
others infinite. Therefore, we encode the termination of a trajectory by the additional
symbol “⊥”. If the total probability mass of a target distribution T (m) is less than one,
then the remaining probability mass is also interpreted as leading to termination of the
trajectory, encoded by “⊥.”

159

5 Stability Analysis of Stochastic Hybrid Systems

v̇ = 1.5
ẋ = 0

−20 ≤ v ≤ 5
A

v̇ = −0.001x− 0.052v
ẋ = v

−15 ≤ v ≤ 15
−500 ≤ x ≤ 500

N

v̇ = −2
ẋ = 0

5 ≤ v ≤ 40
B1

v̇ = −2.5
ẋ = 0

5 ≤ v ≤ 40
B2

v̇ = −5
ẋ = 0

−20 ≤ v ≤ 40
F

v̇ = −2.5
ẋ = 0

−20 ≤ v ≤ 40
E

−6 ≤ v ≤ −5∧
−500 ≤ x ≤ 500∧

x+ = 0

−5 ≤ v ≤ −14∧
−500 ≤ x ≤ 500

5 ≤ v ≤ 11∧
x+ = 0

13 ≤ v ≤ 15∧
−500 ≤ x ≤ 500

0.499

5 ≤ v ≤ 11∧
x+ = 0

0.499

0.002

true

true

true

true

Figure 5.2: Example of a Probabilistic Hybrid Automaton

Definition 5.2 (Trajectory Bundle). A trajectory bundle of a probabilistic hybrid au-
tomaton H is an absolutely continuous stochastic process X(t) on SH ∪ {⊥} obtained
by resolving the non-determinism of H in any manner, by choosing any strategy,

• selecting a fixed initial state x0,

• choosing a trajectory segment for every differential inclusion in every mode, every
time the mode can be reached,

• deciding whether to switch or not if guards and invariants overlap, and

• selecting an outgoing transition if several guards overlap.

Furthermore,

• prob{X(t) = x} is the probability that a trajectory is in state x at time t, and

• prob{X(t) = ⊥} is the probability that a trajectory has terminated at time t.

160

5.1 Probabilistic Hybrid Automata and Stochastic Stability

DefineR(H) as the set of all such stochastic processes obtained by all possible resolutions
of non-determinism. Also, with each trajectory bundle X(t) associate the stochastic
process M(t) describing the probability distribution of the discrete mode over time.
Note that the stochastic processes X(t) and M(t) are not independent.

The distributions X(0) and M(0) are Dirac distributions, that is, X(0) and M(0)
have a probability of 1 for one single initial state and mode, respectively. This is because
resolution of non-determinism includes the selection of a unique initial state. Therefore,
we will sometimes use X(0) and M(0) to denote the initial state and mode instead of
the Dirac distributions.

In contrast to GAS as defined in Section 3.3.1, stochastic stability properties do not
necessarily guarantee a desired behavior under all circumstances, but only with a certain
probability. First, we will define global stability in probability and almost sure global
attractivity.

Definition 5.3 (Global Stability in Probability and Almost Sure Global Attractivity).
A probabilistic hybrid automaton H is globally stable in probability (GS-P) if

∀p ∈ [0, 1) : ∀ǫ > 0 : ∃δ > 0 : ∀X ∈ R(H) : ||X(0)|| < δ =⇒
prob {∀t : (X(t) 6= ⊥ =⇒ ||X(t)|| < ǫ)} > p

and almost surely globally attractive (AS-GA) if for all trajectory bundles X ∈ R(H)

prob
{

(∀t : X(t) 6= ⊥) =⇒ lim
t→∞

X(t) = 0
}

= 1.

A GS-P system guarantees that, for each bound ǫ on the distance to the equilibrium
and for each probability p < 1, there exists a bound δ on the initial state, such that
all trajectories starting in the δ-ball will remain in the ǫ-ball forever with probability
p. This is a straightforward modification of the standard global stability property as
defined in Definition 3.15 on page 39. Note that we do not require the existence of a
δ-ball for p = 1, and therefore allow the probability of eventually leaving any ǫ-ball to
be larger than zero in all cases. For global stability, we considered all finite and infinite
trajectories and required the states x(t) to be within the ǫ-ball for all times for which
x(t) was defined. We made no assertions after the termination of a finite non-extendable
trajectory. For GS-P, we handle this similarly: Trajectories are counted as if they are
inside the ǫ-ball once they have terminated. Clearly, every globally stable system is also
GS-P.

The definition of AS-GA is similarly straightforward. We require that the trajectories
of the system converge to the equilibrium with probability 1. In line with the defini-
tion of global attractivity, where we only considered infinite trajectories, we count every
finite trajectory (reaching “⊥” at some point in time) as convergent. The difference
in treatment of GS-P and AS-GA is rooted in the fact that for stability, we consider
all trajecories until their termination, whereas for attractivity it only makes sense to
consider non-terminating trajectories. Note that AS-GA is weaker than standard global

161

5 Stability Analysis of Stochastic Hybrid Systems

attractivity. Probabilistic hybrid automata usually permit infinitely many possible sys-
tem trajectories. Therefore, for an AS-GA system, it may still be possible that a sub-set
of trajectories does not converge, as long as this sub-set has probability mass 0.

Next, we outline how GS-P and AS-GA can be shown via relaxed Lyapunov functions
and how such functions can be computed numerically.

5.2 Lyapunov Functions for Probabilistic Systems

The Lyapunov functions for GS-P and AS-GA defined next are similar to Lyapunov
functions for GAS, in the sense that we again allow a LLF of a given parametrization
for each mode. As in the non-probabilistic case, these LLF are interrelated by a non-
increasingness condition such that a GLF for the entire system results. In contrast to
the non-probabilistic case, we can however relax the constraints somewhat. Instead
of requiring a decrease of the function value at all times, it is sufficient to require a
decreasing expected value. In case of probabilistic hybrid automata, this entails weakened
non-increasingness conditions that only require the expected value after a switch to be
smaller than the value prior to the switch. Therefore, we explicitly allow case where
an increase in Lyapunov function value takes place, as long as this is not the expected
behavior. In the long run, this “counterproductive” behavior will be compensated by
the expected, convergent behavior.

For the proof, we first need to define supermartingales. Supermartingales are stochas-
tic processes which capture exactly this behavior: expected non-increasingness. More-
over, powerful existing theorems on the convergence of supermartingales will allow us to
conduct a proof of GS-P and AS-GA.

Definition 5.4 (Supermartingale [Shiryaev, 1996, p. 474]). A (continuous-time) su-
permartingale is a continuous-time stochastic process X(t) such that for all s ≥ 0 and
t ≥ s:

E(X(t) | {X(τ), τ ≤ s}) ≤ X(s)

X

ts

Figure 5.3: Sketch of the Behavior of a Martingale: Observed Values of X up to Time s
(solid) and Expected Future Values (dashed)

162

5.2 Lyapunov Functions for Probabilistic Systems

Here, E(X(t) | {X(τ), τ ≤ s}) denotes the conditional expected value of random
variable X at time t, under the assumption that the behavior up to time s is given as
the X(τ), τ ≤ s. Informally, a supermartingale is a stochastic process where, for any
evolution up to time s, the expected value of X(t) for all future times t is lower than
the value at time s. One might picture this as a stochastic process whose value is never
expected to increase under any circumstances. See Figure 5.3 for an illustration. The
graph shows the evolution of a stochastic process which is a supermartingale. Up to
time s, the process behaved according to the solid line. Even though the process was
never expected to increase, this does of course not mean that an increase is impossible.
However, it is improbable in the long run. Nevertheless, the process in Figure 5.3 shows
a temporary increase for some time. Now, the dashed line shows the expected values for
times t > s. Since the process is a supermartingale, none of these values can be higher
than X(s). The expected values could stay constant at X(s), however.

Doob’s theorem, as given next, is a fundamental result on supermartingales. It can
be seen as the stochastic equivalent to the monotone convergence theorem from classical
calculus, which states that a monotonic, bounded function on Rmust always converge. In
contrast, Doob’s theorem talks about supermartingales, which can be seen as a stochastic
equivalent of a monotonic function, and states that supermartingales with bounded
expectation converge almost surely.

Theorem 5.1 (Doob’s Theorem [Shiryaev, 1996, p. 505]). Let X(t) be a supermartin-
gale with suptE(|X(t)|) < ∞. Then, with probability 1, the limit limt→∞X(t) exists,
and E(limt→∞X(t)) < ∞.

Doob’s theorem can be exploited to prove a Lyapunov function theorem for the prop-
erties GS-P and AS-GA of probabilistic hybrid automata. The basic idea is to require
only the expected value of the Lyapunov function to decrease. Now, for the hybrid
automaton, look at any trajectory bundle X(t) with associated mode sequence bundle
M(t). Clearly, the evolution of the Lyapunov function value over time for X(t) and M(t)
results in a stochastic process. Moreover, since the Lyapunov function values are always
expected to decrease, the stochastic process describing them is a supermartingale. The
application of Doob’s theorem then gives the desired property. This Lyapunov theorem
for probabilistic hybrid automata is given next. Its proof is based on a proof sketch
by Loparo & Feng [1996] for stochastic differential equations, which in turn is inspired
by ideas of Kushner [1967]. In contrast, the following theorem focuses on probabilistic
hybrid automata.

Theorem 5.2 (Discontinuous Lyapunov Functions for Probabilistic Hybrid Systems).
LetH be a probabilistic hybrid automaton. If for eachm ∈ M there exists a continuously
differentiable function Vm : S → R such that

(1) for each m ∈ M there exist class K∞ functions f1 and f2 such that for all x ∈
Inv(m): f1(||x||) ≤ Vm(x) ≤ f2(||x||),

(2) for each m ∈ M there exists a class K∞ function f3 such that for all x ∈ Inv(m):
V̇m(x) ≤ −f3(||x||), where V̇m(x) := sup

{〈

dV
dx

∣

∣ y
〉∣

∣y ∈ Flow (m)(x)
}

,

163

5 Stability Analysis of Stochastic Hybrid Systems

(3) for each mode transition (m1, T,G,U) ∈ T : x ∈ G =⇒
∑

m∈M (T (m) · Vm(U(m)(x))) ≤ Vm1
(x) ·∑m∈M T (m),

then H is GS-P and AS-GA. The family of LLFs Vm,m ∈ M forms a function V (x,m) :
R
n ×M → R, where V (x,m) = Vm(x). This function V (x,m) is called the probabilistic

global Lyapunov function (P-GLF) of H.

Proof. Attractivity: Let X(t) ∈ R(H) be a trajectory bundle of H and let M(t) be
the associated stochastic process describing the evolution of the discrete mode over
time. Define X̄(t) as the stochastic process over S obtained from X(t) by removing all
occurrences of ⊥, that is for all t,

prob{X̄(t) = x} := prob{X(t) = x | X(t) 6= ⊥}

and define M̄ (t) analogously:

prob{M̄ (t) = m} := prob{M(t) = m | M(t) 6= ⊥}.

Define the stochastic process W (t) with

W (t) = V (X̄(t), M̄ (t))

giving the probability distribution of the global Lyapunov function value at time t. Also
define Ẇ (t) with

Ẇ (t) = V̇ (X̄(t), M̄ (t))

describing the distribution of the time derivative of the Lyapunov function value over
time, if W is differentiable at t.

Define I as the set of all time intervals (tLI , t
U
I) such that for no trajectory of the

bundle X̄(t) a transition in the hybrid automaton is taken within the interval. Define
D as the set of mode switch events (including loop transitions) along any trajectory of
X̄(t). For a D ∈ D, define ∆D as the difference of Lyapunov function values before and
after the switch and pD as the probability mass of the switch event within the trajectory
bundle. By continuous differentiability of V , W (t) is absolutely continuous on each
interval [tLI , t

U
I]. Therefore, there exist sub-sets I ′ ∈ I and D′ ∈ D such that

E(W (t)) = W (0) + E

(

∑

I∈I′

∫ tU
I

tL
I

Ẇ (τ)dτ

)

+ E

(

∑

D∈D′

pD∆D

)

.

Per Condition (2), V̇ is non-positive, and therefore also E(Ẇ (τ)) for all τ . This means
that the second summand is non-positive. Per Condition (3), E(∆D) is non-positive and
therefore also the third summand. We obtain

E(W (t)) ≤ W (0),

and since W (t) is time-invariant,

E (W (t) | {W (τ), τ ≤ s}) ≤ W (s).

164

5.2 Lyapunov Functions for Probabilistic Systems

Therefore, W (t) is a supermartingale. Furthermore,

0 ≤ E(W (t)) ≤ W (0) = V (X̄(0), M̄ (0)) < ∞.

Therefore, E(|W (t)|) = E(W (t)) < ∞ for all t ≥ 0 and Doob’s theorem can be applied,
giving us

prob
{

∃x0 : lim
t→∞

W (t) = x0

}

= 1.

Condition (2) implies that x0 = 0, since there must be at least one m ∈ M with
V̇ (x0,m) = 0. Therefore

prob
{

lim
t→∞

W (t) = 0
}

= 1,

and per the definition of W (t) and condition (1),

prob
{

lim
t→∞

X̄(t) = 0
}

= 1.

This directly implies

prob
{

(∀t : X(t) 6= ⊥) =⇒ lim
t→∞

X(t) = 0
}

= 1.

Stability: Since W (t) is a supermartingale, the following inequality [Shiryaev, 1996, p.
493] holds for all ǫ̃ > 0:

prob {∃t : W (t) ≥ ǫ̃} ≤ W (0)/ǫ̃.

Let f be a class K∞ function which is pointwise smaller than all class K∞ functions f1
for all modes M in Condition (1). Let ǫ > 0, 0 ≤ p < 1, and pick some ǫ̃ < f(ǫ). Then,

prob{∃t : W (t) > f(ǫ)} ≤ prob{∃t : W (t) ≥ ǫ̃} ≤ W (0)

ǫ̃(1− p)
(1− p).

Set

δ := inf{||x|| |∃m ∈ MH : Vm(x) ≥ ǫ̃(1− p)} > 0,

then ||X(0)|| < δ implies that

prob {∃t : W (t) > f(ǫ)} < 1− p,

and per the definition of W (t) and condition (1),

prob
{

∃t : ||X̄(t)|| > ǫ
}

< 1− p,

and

prob {∀t : (X(t) 6= ⊥ =⇒ ||X(t)|| < ǫ)} ≥ prob
{

∀t : ||X̄(t)|| < ǫ
}

> p.

165

5 Stability Analysis of Stochastic Hybrid Systems

Note that the Constraints (1)-(3) in Theorem 5.2 are very similar to those in Theorem
3.5. The only difference lies in Constraint (3): Instead of requiring non-increasingness
of the GLF value upon switching, we average the LLF values of different possible target
modes, weighting them by their transition probabilities. The result is that we just re-
quire the GLF to decrease on average. However, this averaging constraint can again be
expressed as an LMI constraint in the very same manner as before. Since all other con-
straints remained unchanged altogether, the search for a P-GLF can again be conducted
with the help of LMI solvers.

If the mode dynamics are given by Itō-type stochastic differential equations [Øksendal,
2003] of the form

dx = fm(x)dt+ gm(x)dB,

where B is a standard Wiener process, then a P-GLF V proving GS-P and AS-GA can
be defined in a similar manner. By Itō’s stochastic calculus, we would obtain on each
interval I ∈ I ′

dW (t) =

(〈

dV

dx
(x)

∣

∣

∣

∣

fm(x)

〉

+
1

2
gm(x)T

d2V

dx2
(x)gm(x)

)

dt

+

(〈

dV

dx
(x)

∣

∣

∣

∣

gm(x)

〉)

dB,

for each mode m that can be active on I. Therefore, Condition (2) can be replaced by

(2) for each m ∈ M there exists a class K∞ function f3 such that for all x ∈ Inv(m):

V̇m(x) ≤ −f3(||x||), where V̇m(x) :=
〈

dV
dx (x)

∣

∣fm(x)
〉

+ 1
2gm(x)T d2V

dx2 (x)gm(x)

in this case, implying that E(Ẇ (t)) is still non-positive for all t. This still lets us conclude
that W (t) is a supermartingale, with the rest of the proof remaining unchanged.

Due to the similarity to the non-stochastic case, such P-GLFs can be computed via
LMI solvers in an analogous manner. This is true both for probabilistic hybrid automata
with standard differential inclusions and also for stochastic differential equations.

Theorem 5.3 (LMI for GS-P and AS-GA of Probabilistic Hybrid Automata with Con-
vex, Affine Differential Inclusions). Let ǫ > 0 and let H be a probabilistic hybrid au-
tomaton. Let the Qm

j ∈ R
n+1 × R

n+1 be matrices, such that for every mode m ∈ M

x ∈ Inv(m) =⇒ [x, 1]Qm
j

[

x
1

]

≥ 0,

and let the Re
j ∈ R

(n+1)×(n+1) be matrices, such that for every transition e ∈ T with
guard set G

x ∈ G =⇒ [x, 1]Re
j

[

x
1

]

≥ 0.

Assume that Flow (m) is a convex, affine differential inclusion for each m, given by a
set of functions fm

i (x) = Am
i x + bmi . Furthermore, assume that, for each transition e

166

5.2 Lyapunov Functions for Probabilistic Systems

and each target mode m with T (m) > 0, the associated update function is affine, i.e.,
U(m)(x) = Ae

mx+ bem. Define

Ĩ =

[

I 0
0 0

]

,

where I is the n× n identity matrix. If the LMI problem

Find Pm ∈ R
n+1 ×R

n+1 and α, µm
j , νmj , ηmj , ϑe

j ∈ R, such that

α− ǫ � 0 (5.1)

β − ǫ � 0 (5.2)

for all m, j : µm
j , νmj , ηmj � 0 (5.3)

for all e, j : ϑe
j � 0 (5.4)

for all m : Pm −
∑

j

µm
j Qm

j − Ĩ � 0 (5.5)

for all m : Pm +
∑

j

νmj Qm
j − βĨ � 0 (5.6)

for all m, i :

[

(Am
i)T 0

(bmi)T 0

]

Pm + Pm

[

Am
i bmi
0 0

]

+
∑

j

ηmj Qm
j + αI � 0 (5.7)

for all e = (m1, T,G,U) :
∑

m∈M

T (m)Pm1
−

∑

m∈M

(

T (m)

[

(Ae
m)T 0

(bem)T 1

]

Pm

[

Ae
m bem
0 1

])

−
∑

j

ϑe
jR

e
j � 0 (5.8)

has a solution, then H is GS-P and AS-GA.
In case of stochastic differential equations, with

dx = (Amx+ bm)dt+ (Cmx+ dm)dB,

Constraint (5.7) needs to be replaced by (see [Korenevskii, 1987]):

for all m :

[

(Am)T 0
(bm)T 0

]

Pm + Pm

[

Am bm

0 0

]

+

[

(Cm)T 0
(dm)T 0

]

Pm

[

Cm dm

0 0

]

+
∑

j

ηmj Qm
j + αI � 0

In the differential inclusion case, the only difference to the LMI system of Theorem
3.10 lies in Constraint (5.8), which has been changed to match Constraint (3) of Theorem
5.2. The weighted sum of matrices represents the expected Lyapunov function value after
the probabilistic switch and update.

167

5 Stability Analysis of Stochastic Hybrid Systems

Now we have established means for stability verification for probabilistic hybrid sys-
tems and systems with stochastic differential equations. Due to the similarity to the
non-probabilistic case, all the arguments for decomposition, as given in Section 4.1,
also apply here. In the following, we will examine the applicability of decomposition
techniques to the stochastic case in detail.

5.3 Decomposition Techniques

In order to conduct decomposition, we need to formulate an equivalent to the constraint
graph formalism of Chapter 4. Since probabilistic hybrid automata allow for several
target modes of a transition, we will now define constraint hypergraphs which are simply
hypergraphs with Lyapunov constraints. The nodes are labeled in the same manner as
for constraint graphs. The edges also are labeled with transitions constraints, but with
one constraint for each target vertex. In addition to this constraint hypergraph, we also
need to keep track of the target distributions Te for each edge e. The hypergraphs are
defined as follows.

Definition 5.5 (Hypergraph). A (directed) hypergraph G is a tuple (VG, EG, L
V
G, L

E
G),

where V is a set of nodes and EG ⊆ P(VG ×P(VG)) is a multiset of hyperedges, and LV
G

and LE
G are labeling functions defined on VG and EG × VG, respectively, and mapping

to some label set. Here, LE
G(e, v

′), e = (v, V) is a partial function that is defined if and
only if v′ ∈ V .

Paths in hypergraphs can be defined analogously to graphs, and therefore also SCCs
and cycles. Note that simple cycles of hypergraphs are actually graphs, since each edge
inside a simple cycle can only have one single successor node. The underlying hyper-
graph G(H) of a probabilistic hybrid automaton H can then also be defined analogously,
dropping the information on transition probabilities (i.e., the node and edge labels are
the flows, invariants, guards and updates only, but target modes with T (m) = 0 can be
dropped). We can then define constraint hypergraphs as follows.

Definition 5.6 (Constraint Hypergraph). The constraint hypergraph

C(H) = (VC , EC , L
V
C , L

E
C)

of a probabilistic hybrid automaton H with underlying hypergraph

G(H) = (VG, EG, L
V
G, L

E
G)

is a graph with:

1. VC = VG

2. EC = EG

168

5.3 Decomposition Techniques

3. LV
C(m) is the conjunction of the constraints (1) and (2) from Theorem 5.2 for the

mode m, that is,

LV
C (m) :⇐⇒





∃f1, f2 in class K∞ :
x ∈ Inv(m) =⇒ f1(||x|Vm

||) ≤ Vm(x) ≤ f2(||x|Vm
||)

∧ ∃f3 in class K∞ : x ∈ Inv(m) =⇒ V̇m(x) ≤ −f3(||x|Vm
||)





4. LE
C((m1,M),m2),m2 ∈ M is Constraint (3) from Theorem 3.7 for all transitions

(m1, T,G,U), that is,

LE
C((m1,M),m2) :⇐⇒ x ∈ G =⇒ (Vm2

(U(m2)(x)) ≤ Vm1
(x))

For all e ∈ EC , let Te(e)(·) be the target distribution of the associated transition
(m1, T,G,U) ∈ TH . Define constr (H) as:

constr (H) :=
∧

m∈VC

LV
C (m) ∧

∧

(m1,M)∈EC
(

x ∈ G =⇒
∑

m∈M

T(m1,M)(m)Vm(U(m)(x)) ≤
∑

m∈M

T(m1,M)(m)Vm1
(x)

)

Here, each node is labeled with a constraint in the same manner as for constraint
graphs for non-probabilistic hybrid automata. Each edge has one label per target node:
the non-decreasingness condition for the unique source mode and the particular target.
The global constraint constr (H) then averages all constraints belonging to a transition
according to the transition probabilities, yielding the overall GLF constraint.

The constraint hypergraph itself contains the non-increasingness constraints for a nor-
mal GLF and not the Constraints (3) from Theorem 5.2. This is because, during the
decomposition, individual target modes of transitions might be removed, leaving us to
re-compute the weighted sum in that constraint. Therefore, this linear combination ac-
cording to the transition probabilities is done in constr (H) instead of in the constraint
hypergraph itself. In order to obtain constr (H), we therefore require the distributions
T (e) in addition to the constraint graph.

Note that, for constraint hypergraphs, we cannot contract loops into nodes as we did
for constraint graphs. The reason for this is that each loop transition has an associated
transition probability which we must keep track of.

One key observation is that probabilistic hybrid automata can be seen as a special case
of discrete-time Markov decision processes (MDPs), enriched with continuous behavior
which is attributed to the nodes and transitions of the MDP. The MDP belonging to
a probabilistic hybrid automaton is obtained by taking its hypergraph and labeling the
transitions with the transition probabilities. Markov decision processes are, in our case,
defined as follows.

Definition 5.7 (Markov Decision Process). A (discrete-time) Markov decision process
(MDP) is a tuple (V,E), where V is a set of nodes and E is a set of transitions. Each

169

5 Stability Analysis of Stochastic Hybrid Systems

transition e ∈ E is given as a tuple of the form (v, T), where v ∈ V is the source node
and T : V → R with

∑

i Ti ≤ 1, gives the transition probability from v to any other
node. Also define trans(M) ⊆ V as the set of transient states of M , that is, the set of
all states with supremal steady-state probability of 0 (i.e., all states with steady-state
probability of zero regardless of resolution of non-determinism).

Essentially, a MDP is a Markov chain enhanced by possible non-determinism. In
contrast to Markov chains, a state of an MDP can have several outgoing transitions, each
with its own probability distribution. One of these outgoing transitions can be chosen
non-deterministically. Hence, steady-state distributions must either be associated with
one particular resolution of this non-determinism, or given by upper and lower bounds
over all such resolutions.

This definition of MDPs is simplified, as we do not attach actions or rewards to the
transitions, as it is sometimes done in the literature [Puterman, 1994]. In general, these
actions and rewards can be used to formulate strategies to resolve the non-determinism
inside an MDP. We assume that each transition corresponds to an unique action, which
we do not need to refer to directly, as we will always quantify over all possible resolution
strategies. Therefore, it is not necessary to explicitly include actions in the model. Also,
we do not need to associate with transitions, since the Lyapunov functions essentially
take this role. Furthermore, we allow that the transition probabilities of a transition do
not sum up to 1, but to a smaller number. We interpret the remaining probability mass
as resulting in a transition to an implicit “sink state.” This “sink state” is used to model
probabilistic termination of a trajectory.

A probabilistic hybrid automaton can simply be abstracted into an MDP by disre-
garding all invariants, flows, guards, updates, and initial states.

Definition 5.8 (MDP Corresponding to a Probabilistic Hybrid Automaton). The MDP
(V,E) corresponding to a probabilistic hybrid automaton

H = (M,S,V,T ,Flow , Inv , Init)

is given by

1. V = M,

2. E = {(m1, T) | (m1, T, ·, ·) ∈ T }.
Denote the MDP corresponding to probabilistic hybrid automaton H as M(H).

In the following, three kinds of decomposition for probabilistic hybrid automata are
discussed. First, in Section 5.3.1, we will discuss SCC-based decomposition, which also
allows for quantitative analysis of probabilistic stabilization. Then, in Section 5.3.2,
a cycle-based decomposition approach is outlined. In contrast to standard hybrid au-
tomata, the probabilistic case does not necessarily require a GLF for each cycle. Instead,
deficiencies in one cycle can potentially be compensated by the stability of adjacent cy-
cles. Finally, in Section 5.3.3, we describe a third type of decomposition, which maintains
AS-GA only. However, this decomposition is again lossless with respect to Lyapunov
functions, and it can be applied inside SCCs. The method is based on analyzing the
steady-state behavior of underlying MDPs.

170

5.3 Decomposition Techniques

5.3.1 Decomposition of Probabilistic Hybrid Automata into Strongly
Connected Components

The first type of decomposition is simply a straightforward application of the results for
non-probabilistic systems given in Section 4.3. Quite simply, the results from Theorem
4.1 apply also for this case, replacing global stability by global stability in probability
and global attractivity by almost sure global stability. Therefore, if we can decompose
a probabilistic hybrid automaton H into several SCCs Ci, and if all the Ci are AS-GA,
then so is H. Furthermore, if all bridge transitions are sub-linear and each SCC Ci is
GS-P, then so is H. This is formalized in the following theorem.

Theorem 5.4 (Decomposition of Probabilistic Hybrid Automata into Strongly Con-
nected Components). Let H be a probabilistic hybrid automaton. If all sub-automata
pertaining to the SCCs of H are AS-GA then H is AS-GA. If all Ci are GS-P and all
transitions (m1,m2, G, U) corresponding to bridges of M(H) are sub-linear, then H is
GS-P.

The proof of Theorem 4.1 can be adapted in a straightforward manner. To prove
GS-P, include the stochastic relaxation in the chain of implications, that is:

∃ δpi > 0 : ||Xi(ti)|| < δpi =⇒ prob
{

∀t ∈ [ti, ti+1] : ||Xi(t)|| < δpi+1/ci
}

> s
√
q.

Here, 0 ≤ q < 1 is some probability and s is the total number of SCCs. Then, with the
same arguments as in the proof of Theorem 4.1, this implies that for each ǫ there exists
a δ(ǫ) with

∀ǫ > 0 : ||X(0)|| < δ(ǫ) =⇒ prob {∀t ≥ 0 : ||X(t)|| < ǫ} > q,

by multiplying the probabilities. The followup results and discussions to Theorem 4.1
are also readily adapted to the probabilistic case.

Example 5.2. The example system from Figure 5.2 can be broken down into three
separate SCCs which can be treated separately, as shown in Figure 5.4. The bridges
connecting the SCCs have been removed from the hybrid automaton, yielding three
separate SCCs.

However, we can take these results one step further. Suppose that we are unable to
prove GAS for one SCC Ci. This could be because SCC Ci is in fact unstable or because
our Lyapunov function computation fails for other reasons. In the non-probabilistic case,
we would not be able to deduce anything about the stability of the system, as we would
have to assume the worst-case: instability of the system. However, in the probabilistic
case, we can possibly still derive a lower bound on the probability of convergence for
any given trajectory. This is because it might be possible to quantify the probability pi
that Ci is actually entered. Clearly, all trajectories not entering Ci will converge with
probability 1. Therefore, even assuming a convergence probability of 0 within Ci (which
might be too pessimistic), we can guarantee an overall convergence probability of pi.
Define global attractivity for probabilities below 1 as follows.

171

5 Stability Analysis of Stochastic Hybrid Systems

v̇ = 1.5
ẋ = 0

−20 ≤ v ≤ 5
A

v̇ = −0.001x− 0.052v
ẋ = v

−15 ≤ v ≤ 15
−500 ≤ x ≤ 500

N

v̇ = −2
ẋ = 0

5 ≤ v ≤ 40
B1

v̇ = −2.5
ẋ = 0

5 ≤ v ≤ 40
B2

v̇ = −5
ẋ = 0

−20 ≤ v ≤ 40
F

v̇ = −2.5
ẋ = 0

−20 ≤ v ≤ 40
E

−6 ≤ v ≤ −5∧
−500 ≤ x ≤ 500∧

x+ = 0

−5 ≤ v ≤ −14∧
−500 ≤ x ≤ 500

5 ≤ v ≤ 11∧
x+ = 0

13 ≤ v ≤ 15∧
−500 ≤ x ≤ 500

0.499

5 ≤ v ≤ 11∧
x+ = 0

0.499

Figure 5.4: SCC Decomposition of Example Automaton

Definition 5.9 (Global Attractivity with Probability p ≤ 1). A probabilistic hybrid
automaton H is globally attractive with probability p (GA(p)), if for all trajectory bundles
X ∈ R(H)

prob
{

(∀t : X(t) 6= ⊥) =⇒ lim
t→∞

X(t) = 0
}

≥ p.

Figure 5.5 shows a schematic view of a system consisting of several SCCs which are
GA(p) with different probabilities. Of course even every unstable system will always be
GA(0), therefore the individual SCCs could also be unstable. The probabilities qi are
lower bounds on transition probabilities from one SCC to another, over all trajectory
bundles. Now the probability of convergence for the entire system can easily be derived
easily as follows.

Theorem 5.5 (Quantitative Analysis). Let H be a probabilistic hybrid automaton,
consisting of an SCC C which is GA(p) and a number of SCC C1, . . . , Cm that are
successors of C. Assume that Init only contains hybrid states with nodes of C as their
discrete state. Define qi := inf{X ∈ R(H) |prob{M(t) enters Ci}} and qi := sup{X ∈
R(H) |prob{M(t) enters Ci}}. If each Ci is known to be GA(pi) for some 0 ≤ pi ≤ 1,

172

5.3 Decomposition Techniques

C
GA(p)

C1

GA(p1)
C2

GA(p2)
C3

GA(p3)

q1 q2 q3

Figure 5.5: Schematic View of System with GA(p) SCCs

then H is GA(p̄) with

p̄ =
∑

i

qipi + p

(

1−min

(

∑

i

qi, 0

))

.

Proof. Let X(t) be a trajectory bundle of H with discrete state distribution M(t). If
M(t) enters Ci, then prob {(∀t : X(t) 6= ⊥) =⇒ limt→∞X(t) = 0} ≥ pi. If M(t) does
not enter any Ci, then prob {(∀t : X(t) 6= ⊥) =⇒ limt→∞X(t) = 0} ≥ p. Since a lower
bound on probability that no Ci is entered is given as 1 − min(

∑

i qi, 0), we directly
obtain the equation for p̄ as the weighted sum of the individual pi and p.

The computation of the lower and upper bounds on the transition probabilities be-
tween the SCC is essentially a probabilistic reachability problem. Therefore, tools from
that domain can be used to compute such bounds, see, for example, the results in [Zhang
et al., 2010; Abate, 2007].

However, to obtain tight bounds on the stability probability, it is necessary to have an
automaton model of the system where all “branching points” are visible as transitions
between SCC in the graph structure. At this point, methods for reachable set compu-
tation of hybrid systems can be employed to discover semantically equivalent automata
(with respect to the continuous behavior) that have a “finer” SCC structure. Here, the
goal is to re-formulate and split only the SCCs for which stability could not be shown
(i.e., where pi = 0). If such an SCC C can be replaced by two SCC C1 and C2, and if sta-
bility can be shown for C1, this leads to an increase in the overall chance of convergence,
as long as C1 is entered with a positive probability.

5.3.2 Decomposition of Probabilistic Hybrid Automata into Simple Cycles

Since the decomposition results given in Theorem 4.3 are only formulated on constraint
graphs for Lyapunov function computation, the results can also be applied to P-GLFs.

A cycle inside a probabilistic hybrid automaton cannot have multiple target nodes
for one transition, and also not more than one outgoing transition per node. Therefore,
when formulating constr (C) for a cycle C, we can disregard the transition probabilities.
A cycle inside a probabilistic hybrid automaton is in fact not probabilistic any more:

173

5 Stability Analysis of Stochastic Hybrid Systems

any transitions inside a cycle can only have one target mode, as outgoing transitions of
the cycle are not part of the actual cycle.

Consider a system consisting of two overlapping cycles, as given in Figure 5.6. Here,
the cycles overlap in a single node, but share a probabilistic transition. When the system
is in mode m1 and the transition is triggered, there is a probability of p1 for traversing
cycle C1 and a probability of p2 of traversing cycle C2. Now, one could simply ignore
the probability information and treat the hyperedge as two separate non-probabilistic
transitions, leaving us with the same type of decomposition as in Section 4.4. This would
lead to a proof of GAS, which is stronger than GS-P and AS-GA. However, this might
of course not always be possible. As opposed to the non-probabilistic case, individual
cycles of the automaton might actually be unstable, and yet the overall system is GS-P
and AS-GA. Therefore, we need to cater for cases where this occurs.

m1

p1 p2
C1 C2

Figure 5.6: Two Cycles Sharing a Probabilistic Transition

Look at an automaton that is equal to C1, with the only difference that the transition
into cycle C2 is eliminated. Now, assume that this system is unstable. In this case, we
cannot find a GLF for C1. Nevertheless, the entire system consisting of both C1 and C2

might be stable. This can occur if the “non-stability margin” of C1 is outweighed by
the “stability margin” of C2. In other words, C2 needs to be a) “stable enough” and b)
entered with high enough probability, such that the behavior of C1 is compensated.

To prove GS-P and AS-GA of these systems with unstable cycles, we need to be able
to measure these “stability/non-stability margins” of individual cycles and weight them
by the probabilities with which they are entered. If the average difference between the
Lyapunov function values before and after the transitions is negative, then, per Condition
(3) in Theorem 5.2, this does still imply GS-P and AS-GA.

Assume that C1 has only a single border node b. Then, this can be achieved by
relaxing the Condition (3) for the sub-automaton given by cycle C1 as follows:

(3’) for b’s single outgoing transition (b,m2, G, U) ∈ T inside cycle C1 : x ∈ G =⇒
Vm2

(U(m2)(x)) ≤ Vm1
(x) + αb||x||2

for some αb ∈ R. The αb can be minimized in the LMI problem. If αb ≤ 0, then cycle C1

is GAS, and the value of αb acts as a stability margin on the transition. If αb > 0, then

174

5.3 Decomposition Techniques

cycle C1 has not been shown to be GAS, and this behavior needs to be compensated by
cycle C2. In any case, we also need to modify Constraint (3) for cycle C2. Replace it by

(3’) for each mode transition (r,m2, G, U) ∈ T originating in any reduced node r:
x ∈ G =⇒ Vm2

(U(m2)(x)) ≤ Vm1
(x)− αrp1

p2
||x||2,

where p1 and p2 are the transition probabilities into cycles C1 and C2, respectively.
Here, the variable αb is used to measure the “degree of satisfaction or violation” of

the non-increasingness condition for the outgoing edge of b. This is the only edge inside
cycle C1 which can be part of a hyperedge with more than one possible target in H.
This is caused by the fact that b is the only border node of cycle C1.

In place of αb||x||2, also any other suitable class-K∞ function on ||x|| could be used,
which may depend on the special structure of the Lyapunov functions. For instance, for
polynomial LLFs of degree 4, one might use a quartic instead of a quadratic function.

This approach allows for cycle-based decomposition of SCCs, much the same as for
the non-probabilistic case. For the computation of the border predicates Rb, one can
again compute extremal points of the solution set. If the cycle still contains probabilistic
edges at the time of reduction, then we need to keep track of the value of variable αb

for each computed GLF of the cycle to be reduced. Note that the splitting procedure of
Section 4.4 can be used to reduce the number of border nodes per cycle to one. This also
implies that there can only be one such edge in the cycle, and it must originate in the
border node. After reducing a cycle, we again obtain a border predicate Rb that can be
used to define the LLF parametrization for the reduced node for the subsequent cycle.
In addition, we obtain a family of values αb, which can be linearly combined in the same
manner as the individual corner LLFs of the conic polytopic predicate Rb. Therefore,
the very same decomposition framework presented in Section 4.4 can be applied to
probabilistic systems.

5.3.3 MDP-based Decomposition of Probabilistic Hybrid Automata within
Strongly Connected Components

We described how automaton decomposition methods for non-probabilistic system can
be lifted to the probabilistic case. In addition to these decomposition techniques, proba-
bilistic hybrid automata also offer additional possibilities of decomposition. To see this,
remember that LLFs for an individual mode can act as a termination function for that
mode. To be exact, the existence of an LLF proves that for all trajectories entering the
mode:

• either the system stays in this mode forever, in which case convergence of any
trajectory to the equilibrium is shown,

• or the system eventually leaves the mode again.

In the first case, the trajectory is convergent. This holds even if the hybrid automaton
contains probabilistic transitions. This case is the simple one: If this was true for all
trajectories of the system, then the existence of LLFs for each mode would be enough

175

5 Stability Analysis of Stochastic Hybrid Systems

to prove AS-GA. We could conduct an ideal decomposition by just looking at all modes
individually. Of course, in general, this is not possible. We can, however, treat modes
separately which are transient in the MDP. Now asume that the trajectory’s mode
sequence does not stay in a single mode forever. Then, the probability of being in any
transient mode converges to 0 as time approaches infinity.

To identify nodes with steady state probability of 0, graph-based reasoning can also
be employed. If all cycles a node lies on can only be traversed finitely often, then the
node must be transient. We can, for instance deduce that a cycle has this property if
a transition within the cycle has, with positive probability, another possible successor
mode which lies in another SCC. In this case, this transition to another SCC is eventually
taken with probability 1, rendering the cycle unreachable from that point on (see Figure
5.7).

Flow (m1)
Inv(m1)

m1

Flow (m2)
Inv(m2)

m2

G1 ∧ U1

G2 ∧ U2

Flow (m3)
Inv(m3)

T2(m3) > 0
m3

Figure 5.7: Transient Cycle Consisting of m1 and m2

We now give a theorem which allows for this separate treatment of transient modes.

Theorem 5.6 (MDP-based Decomposition). Let H be an SCC of a probabilistic hy-
brid automaton. Let H ′ be the sub-automaton obtained by removing the modes of
trans(M(H)) from H, together with their outgoing transitions and their probability
mass in target distributions T (m) in all other transitions. If the following two condi-
tions both hold, then H is AS-GA:

1. for each m ∈ trans(M(H)) there exists a LLF Vm, and

2. there exists a P-GLF for H ′

Proof. All trajectories with finite mode sequences are convergent, as there exists a LLF
for the final mode of the sequence, either per Condition 1 or as part of a P-GLF per
Condition 2. Therefore, it is sufficient to examine only trajectories with infinite mode
sequences. Let X(t) be a trajectory bundle of H, and define X̄(t) by removing all finite
mode sequences:

prob{X̄(t) = x} := prob {X(t) = x|M(·) changes infinitely often} .

176

5.4 Summary

Note that this also removes all terminating trajectories, for which eventually M(t) = ⊥
holds. With the argument above, it is sufficient to show that X̄(t) converges to 0 almost
surely. We know that

prob{∃t′ > 0 : ∀t > t′ : M(t) /∈ trans(M(H))} = 1,

since all nodes in trans(M(H)) have a steady-state probability of 0 and therefore the
probability of visiting them infinitely often is zero. Since, per Condition 2, there exists
a P-GLF for the sub-automaton consisting of the nodes in H ′, we obtain that X̄(t) → 0
with probability 1.

Example 5.3. Consider again the example system from Figure 5.2, with its decompo-
sition into SCCs given in Figure 5.4 The cycles formed by N and B1 and N and B2 are
only traversed infinitely often with probability 0, and the modes B1 and B2 are transient
in the MDP. This can easily be seen in Figure 5.2, since there is a positive probability
of entering mode F every time a transition from N with B1 or B2 as possible target is
triggered. Therefore, we can analyze B1 and B2 completely separately from the rest of
the SCC.

This leads to the decomposition shown in Figure 5.8, with only one non-probabilistic
cycle remaining. In order to show that this system is AS-GA, we would need to find a
GLF for this cycle (e.g., via an LMI problem) and a LLF each for the modes E, F , B1,
and B2.

5.4 Summary

In this section, the results for Lyapunov-based stability analysis from Chapter 3 and the
decomposition results from Chapter 4 have been transferred to the stochastic domain.
As our main model we used probabilistic hybrid automata, but we also discussed how
stochastic differential inclusions can be analyzed in the modes. Instead of guaranteed
convergence, we then obtain convergence with probability 1, implying that a only set of
probability mass zero containing non-convergent trajectories might exist. The decompo-
sition into SCCs as well as the cyclic decomposition can be conducted on probabilistic
hybrid automata as well. The SCC-based analysis can also be employed for quantitative
stability analysis, together with probabilistic reachability analysis. The cyclic decompo-
sition can now tolerate unstable cycles, if their “degree of instability” is compensated
by other cycles, as measured by a Lyapunov function. In addition, a further level of
decomposition is possible by interpreting the hybrid automaton as a Markov decision
process. If this Markov decision process contains discrete states with steady-state prob-
abilities of zero, this implies that the probability of returning to the corresponding mode
of the hybrid automaton infinitely often is also zero. This allows us to completely split
the analysis of such modes from the rest of the automaton, since they are only relevant
when they are the final mode in a mode sequence.

We now move on to the composition of stable hybrid systems, employing the decom-
position results established so far in this thesis.

177

5 Stability Analysis of Stochastic Hybrid Systems

v̇ = 1.5
ẋ = 0

−20 ≤ v ≤ 5
A

v̇ = −0.001x− 0.052v
ẋ = v

−15 ≤ v ≤ 15
−500 ≤ x ≤ 500

N

v̇ = −2
ẋ = 0

5 ≤ v ≤ 40
B1

v̇ = −2.5
ẋ = 0

5 ≤ v ≤ 40
B2

v̇ = −5
ẋ = 0

−20 ≤ v ≤ 40
F

v̇ = −2.5
ẋ = 0

−20 ≤ v ≤ 40
E

−6 ≤ v ≤ −5∧
−500 ≤ x ≤ 500∧

x+ = 0

−5 ≤ v ≤ −14∧
−500 ≤ x ≤ 500

Figure 5.8: MDP-based Decomposition of Example Automaton

178

6 Structured Design of Stable Systems

The previous three chapters dealt with the problem of proving the stability and attrac-
tivity of a given hybrid automaton. However, it is not necessarily clear how to arrive at
a GAS hybrid automaton, since the verification procedure is still used only a posteriori.
Clearly, the results on decompositional verification can also be applied in reverse: for
incremental design of stable hybrid automata. By exploiting the decomposition results,
it is possible to exploit verification information to build a stable hybrid system model by
subsequently adding new modes of operation in an admissible manner. This information
can, for example, come in the form of Lyapunov functions or the SCC structure of the
automaton. Another point of interest is the generalization of a stable hybrid automa-
ton. The Lyapunov function information and the S-procedure terms can be exploited to
“robustify” a hybrid automaton by widening its differential inclusions, invariants, and
guards. This information can be used to prove that a hybrid system is GAS even if
perturbed by bounded modeling inaccuracies or permanent external disturbances.

This chapter is divided into two parts. First, rules for the composition and transfor-
mation of hybrid automata are presented, such that stability properties are preserved.
The goal is to provide a rule set for the construction of stable hybrid automata, such
that the stability property can easily be verified or is already guaranteed by construc-
tion. For instance, if a new mode of operation covering some emergency situation is to
be added to a hybrid automaton, it is useful to know under what circumstances this
addition does not destroy the stability of the system. Ideally, one wants to obtain this
information without having to re-prove stability of the entire system. Section 6.1 deals
with this issue on the basis of hybrid automata and provides such a rule set.

Then, in Section 6.2, a truly component-based design approach is presented. Here, the
premise is that a component, which is associated with a hybrid automaton, is viewed as a
“grey box.” Neither the system dynamics nor the discrete switching inside a component
are allowed to be visible at its interface. Also, some continuous variables of the hybrid
automaton may be hidden from view. This information is replaced by Lyapunov function
information on the remaining visible continuous variables which the component promises
to control. The emphasis is to make only the minimum level of information visible that is
necessary for a proof of stability, in order to achieve maximal information hiding within
a component.

6.1 Stability-preserving Transformations of Hybrid Automata

This section builds on the results of Chapters 4 and 5 and gives a set of transformation
rules for hybrid automata guaranteeing the preservation of GAS, GS-P, or AS-GA. These
rules can be divided into four main groups.

179

6 Structured Design of Stable Systems

• Transformation rules that do not add new trajectories to the system: This group is
the most straightforward. If a system is GAS and we apply a transformation which
is either equivalent in terms of trajectories, or which removes some trajectories
from the system, then the stability property is trivially preserved. This group
includes the splitting operation from Theorem 4.4, any removal of modes and
edges, concretization of differential inclusions, and some other basic operations.

• Transformation rules that add new trajectories but always maintain stability: This
group contains transformations which, while potentially adding new trajectories
of the system, still maintain stability, regardless of the methods that were used
for the proof on the original system. This includes equilibrium shifts, re-scaling
of differential equations, compositions of stable automata as separate SCCs, and
convex hull operations. For these transformations, no new verification conditions
arise in the process.

• Transformation rules which require Lyapunov-function-based reasoning: In this
group, additional verification conditions need to be satisfied in order to conduct the
transformations. One example is the cyclic composition in the fashion of Section
4.4. Other transformations include changing a differential inclusion of a mode into
another “wider” or non-intersecting differential inclusion, or S-procedure-based
changes to invariants and guards. As soon as edges between SCC are added which
close a cycle in the automaton, Lyapunov arguments are also needed.

• Transformation rules for stability in probability: This group contains transforma-
tions that turn a GAS hybrid automaton into a GS-P and AS-GA probabilistic
hybrid automaton, as well as transformation rules between probabilistic hybrid au-
tomata. This category also includes stochastic differential equations, probabilistic
transitions, and transformations that decrease the probability of convergence but
still maintain AS-GA with a certain probability.

In the following we give a collection of transformation rules, starting with the simple
ones not requiring additional Lyapunov arguments.

Tightening of Sets, and Removal of Edges and Nodes. Clearly, any removal of tran-
sitions or modes from the original hybrid automaton without changes to the rest of the
system can only remove possible trajectories. The same applies to the tightening of any
initial, invariant, or guard sets or the right hand sides of any differential inclusions.

Note that, due to the S-procedure over-approximations of invariant and guard sets,
tighter invariants or guards can turn a system for which no Lyapunov function can
be found into one for which stability can be shown. Therefore, it is of paramount
importance to keep invariant and guard sets as small as possible, without impacting the
set of possible trajectories of the system. This is achieved by making sure that as few
unreachable states as possible are covered by these sets. For instance, it is generally
unnecessary to include states in a guard set that are not also part of the invariant set
of the transition’s source mode. In this case, these enlarged guard sets can only add

180

6.1 Stability-preserving Transformations of Hybrid Automata

extra instantaneous transitions (i.e., transitions which fire immediately upon entering
the mode). However, since we are only interested in the evolution of the continuous
states, such transitions can be replaced by transitions bypassing the mode in question
altogether.

If the guard in question can represented by a hyperplane, then sometimes even simpler
reasoning is possible. It is sufficient to examine the vector field on this hyperplane, and
if it points in the direction opposite to the guard set, then the transition is not possible.

Invariants can be tightened without removing any trajectories from the system by
reachable set computation. This entails a computation (usually an over-approximation)
of the set of states in the invariant which are actually reachable in the hybrid automa-
ton. Since we apply Lyapunov-based methods, each Lyapunov function can simply also
function as a barrier certificate, giving us such an over-approximation, as discussed in
Section 3.4. The process of obtaining tight invariants is important, as the invariant is
the set on which the corresponding Lyapunov function is defined and must adhere to the
Lyapunov conditions. If this set is unnecessarily large, Lyapunov function computation
may become impossible even for a stable system.

Splitting Modes. The splitting of modes as discussed in Section 4.4 is another transfor-
mation that preserves the trajectories of a hybrid automaton, as long as only continuous
trajectories are considered.

There are also other uses for mode splitting besides enabling a cyclic decomposition.
For instance, a mode m with invariant Inv(m) can be split into two new modes m1 and
m2 with invariants such that Inv(m1)∪Inv(m2) = Inv(m), and the same flow as modem.
Additionally, two transitions need to be added, one from m1 to m2 and one in the reverse
direction. Each of these transitions is labeled with the guard set Inv(m2)∩ Inv(m2) and
no discrete update. Both modes m1 and m2 also inherit all incoming and outgoing edges
to/from mode m.

Clearly, this transformation does not impact the set of possible trajectories of the
automaton. However, when piecewise continuous Lyapunov functions with one LLF per
mode are used, then this transformation allows the use of a different LLF for m1 and m2,
resulting in extra degrees of freedom. See [Pettersson & Lennartson, 1996] for a detailed
example of a system where this type of mode splitting enables stability verification that
would otherwise be impossible. Moreover, if the partitioning of Inv(m) is chosen in a
smart manner, some of the edges might be superfluous. For instance, if the guard of the
transition connecting m1 and m2 can be described by a hyperplane, then simple vector
field analysis on this plane might indicate that transitions from m1 to m2 are indeed
impossible. This is also a potential method to uncover new SCCs, and therefore reduce
the complexity of the overall problem. However, identifying such smart refinements is
in general a hard problem, requiring the use of heuristic algorithms [Oehlerking et al.,
2007].

Shifting the Equilibrium. One simple point that is widely exploited in stability analysis
is translation invariance. In other words, shifting the coordinate axes for the continuous

181

6 Structured Design of Stable Systems

states does not impact stability. It is this property that allow us to assume, without loss
of generality, that the equilibrium we are interested in is the origin of the continuous
state space. This also works the other way: If we apply a constant shift to the entire
automaton, then stability is maintained with respect to an equilibrium that is shifted in
the same manner.

Moreover, if the system consists of several strongly connected components, then we can
shift them separately. Shifting an equilibrium of only one SCC does not preserve global
stability, but still guarantees global attractivity with respect to the set of different local
(i.e., per SCC) equilibria in the system. Therefore, SCC can be treated independently
if one is satisfied with the weakened property of convergence to a set of states instead of
global asymptotic stability.

Re-scaling Differential Inclusions. Going one step further, global asymptotic stability
is also invariant to re-scalings/multiplications in the state space. The important obser-
vation here is that this re-scaling need not be global, but each mode can receive its own
scaling factor. Here, re-scaling is taken to mean the multiplication of the right hand side
of the differential inclusion of a mode by a positive scalar. While it is easy to see that
this works for one global scaling factor, the fact that scaling factors can be different for
each mode needs some explanation.

Consider a two differential equations ẋ = f(x) and ẋ = 2f(x). They differ in the
sense that the continuous variables of the latter change twice as fast as for the former.
However, the phase plots with respect to the same initial state will look identical. The
second system merely traverses it twice as fast. Since GAS in its basic form does not talk
about convergence time, these two systems can be considered identical from a purely
GAS standpoint. Naturally, the latter system will converge twice as fast, which will be
mirrored by the class K∞ function multipliers.

Another way to see this is through Lyapunov functions. We know that the set of
Lyapunov functions form a conic set, and we also know that a single Lyapunov function
for a number of dynamics always also is a Lyapunov function for their conic hull. The
possible Lyapunov functions for f(x) and 2f(x) with respect to any parameterization
will always lie in exactly the same cones, so any Lyapunov-function-based stability proof
for the former will also work for the latter and vice versa.

Composing Stable SCCs. As shown in Section 4.3, multiple hybrid automata can
be composed into one new automaton if the connecting edges are such that each sub-
automaton becomes a separate SCC. If the update functions are sub-linear, then the
resulting system will be GAS, otherwise it will be globally attractive. Note that, except
for the sub-linearity constraint, the guards and updates on the connecting edges can be
arbitrary. In case only global attractivity is of interest, the guard can simply be set to
true and the update to any function.

Note that this does not include connection structures that result in any newly in-
troduced cycles. Alternatively, existing guards and updates on bridges of the system
can also be modified, maintaining stability/attractivity, with the only constraint that

182

6.1 Stability-preserving Transformations of Hybrid Automata

sub-linearity must be guaranteed if global asymptotic stability is to be preserved.

Adding/Closing Cycles. As soon as new cycles are created inside a hybrid automaton,
stability properties are no longer automatically preserved. Lyapunov functions can be
used to derive conditions under which this is still the case. Most notably, such transfor-
mations result in new local conditions on parts of the hybrid automaton that need to be
satisfiable in conjunction with the constraints implied by the “rest of the automaton.”
Suppose that we already have a family of GLFs Vi for the hybrid automaton (not includ-
ing the new edge) and that a new edge (m1,m2, G, U) is to be added to the automaton.
Then, we need to find a family of multipliers λi fulfilling the constraints

x ∈ G =⇒
∑

i

λiVi(U(x),m2) ≤
∑

i

λiVi(x,m1),

which is a very simple LMI problem. Each family of λi satisfying this constraint then
gives a possible GLF for the hybrid automaton including the new edge, given as

∑

i λiVi.
This approach is also used for the component-based design methodology described in
the following Section 6.2.

Widening Guards and Invariants. In addition to changes to guards and invariants, a
complete Lyapunov-function-based proof of GAS for a system allows for relaxations that
widen the set of trajectories, but still maintain GAS. One source of relaxations is the
S-procedure. When solving an LMI problem (be it monolithically or cycle-by-cycle), one
also obtains values for the S-procedure multipliers µm

j , νmj , ηmj , and ϑe
j of Theorem 3.10.

With the help of these multipliers, the actual S-procedure-approximation of the guard
and invariant in question can be deduced, as a set of the form

S =







x

∣

∣

∣

∣

∣

∣

xT





∑

j

µmQm
j



x ≥ 0







(and analogously for νmj , ηmj , and ϑe
j). The proof of GAS is then valid also if we widen

the invariant to this set S.
After identifying a LLF for a mode, one can – as a second step – also identify S-

procedure terms for which the Lyapunov conditions hold. This is again an LMI, but this
time the dynamics and Lyapunov function are considered constant, and the additive
S-procedure term is the unknown. Most notably, if the S-procedure term can also
be a positive semidefinite matrix, then the Lyapunov conditions hold globally for this
Lyapunov function, meaning that the invariant can even cover the entire state space.

Modifying Differential Inclusions. In a similar manner, it is also possible to generalize
the differential inclusions of the individual modes. For a given quadratic LLF, we can
compute an under-approximation of the set of all affine dynamics for which this function
exhibits the Lyapunov properties. This can again be achieved by an LMI problem, by
simply exchanging the roles of the P and the A matrices. The known LLF is assigned to

183

6 Structured Design of Stable Systems

P , which turns into a constant expression, and the matrix A is turned into an unknown,
whose matrix entries can again be optimized in various directions with the normal-
boundary intersection approach. In this manner, a more general differential inclusion
for the very same LLF can be computed. Attaching this differential inclusion to the
mode will preserve GAS.

There are also ways of generalizing a system by merging modes. Assume that, within
an SCC, there exists a sub-graph for which a common Lyapunov function has been
identified and within which no discrete updates occur. Then, a transformation which
adds new trajectories to the system can be applied, still maintaining stability. Since the
set of dynamics for which a function has the Lyapunov property always forms a convex
set it is possible to merge all the nodes in this sub-graph into one node (inheriting all
incoming and outgoing edges). Suppose the modes in the set M̃ = {m1, . . . ,mn} have
a common Lyapunov function. Then the new mode m will have the invariant

Inv(m) =
⋃

i

Inv(mi)

and the flow

Flow (m)(x) = convex





⋃

m̃∈M̃ with x∈Inv(m̃)

Flow (m̃)(x)



 .

Informally speaking, the flow of the new “aggregate mode” will allow any behavior
covered by the flow of the constituent modes mi, as long as the corresponding invariant
is true. This means that we have a) collapsed the modes mi into one node, effectively
allowing switching between them at any time, and b), exploited the convex properties
of Lyapunov functions by allowing also any behaviors lying in the convex hull of the
behaviors of all mi that could theoretically be active. The result is a system that, while
allowing considerably more dynamics, still is guaranteed to be GAS. This is due to the
fact that the common Lyapunov function for the modes mi will also fulfill the Lyapunov
properties for mode m, which is easily verified.

Example 6.1. The hybrid system given in Figure 6.1(a) is GAS, which can be shown
by a single Lyapunov function. For example, V (x1, x2) = x21+x22 acts as a LLF for both
modes m1 and m2.

Because this is the case, the guards on the transitions are inconsequential. For any
arbitrary switching strategy between the modes m1 and m2, the resulting system will be
GAS. This is the case because the non-increasingness condition on each of the transitions
will be true for any guard G, as

x ∈ G =⇒ V (x1, x2) ≤ V (x1, x2)

trivially holds.
Observe that V is a LLF for both modes not only when the corresponding invariant

holds, but for any state (x1, x2). This means, as discussed above, that both invariant

184

6.1 Stability-preserving Transformations of Hybrid Automata

sets can be widened to R
2, still maintaining GAS with the same GLF (see Figure 6.1(b)).

Also, V is a LLF for all modes whose dynamics are a convex combination of the dynamics
of modes m1 and m2. This implies that we can subsume both modes into a new mode m
with invariant set R2 and a differential inclusion that allows a non-deterministic choice
of the time derivative for both variables (see Figure 6.1(c)). At each point in time, the
time derivative (if existent) may lie in the convex hull of the corresponding values for the
original modes. Despite allowing for more trajectories than the two individual modes
m1 and m2, the resulting single mode system is GAS.

ẋ1 = −x1 − 0.1x2
ẋ2 = −0.1x1 − x2
x1 ≥ 0

ẋ1 = −2x1 + 0.2x2
ẋ2 = 0.2x1 − 2x2
x1 ≤ 0

m1 m2

x1 ≤ 0

x1 ≥ 0

x1 ≥ 0

x1 ≤ 0

(a) original system

ẋ1 = −x1 − 0.1x2
ẋ2 = −0.1x1 − x2

ẋ1 = −2x1 + 0.2x2
ẋ2 = 0.2x1 − 2x2

m1 m2

x1 ≤ 0

x1 ≥ 0

x1 ≥ 0

x1 ≤ 0

(b) after widening invariants

[

ẋ1
ẋ2

]

∈ convex

({[

−x1 − 0.1x2
−0.1x1 − x2

]

,

[

−2x1 + 0.2x2
0.2x1 − 2x2

]})

m

(c) after joining modes

Figure 6.1: Joining Modes

Stochastic Systems. In general, the same transformation rules as for standard hybrid
automata can also be applied to probabilistic hybrid automata. This includes the addi-
tion of stable SCCs, changes to the invariants and guards, and widening of the differential
inclusions, as well as mode splitting. When adding a new hyperedge, the compatibility
of this edge with the LLFs of the adjacent modes must be checked, in the same manner
as outlined above. In addition, also unstable SCCs can be added to an automaton, if
the transition probability can be bounded from above, turning a AS-GA system into one
that is only GA-(p) for some p < 1.

Another possibility is the replacement of an ordinary differential equation ẋ = f(x)
on a mode m by a stochastic differential equation dx = f(x)dt + g(x)dB [Korenevskii,
1987]. For simplicity, suppose that Inv(m) = R

n. In this case, the standard Lyapunov

185

6 Structured Design of Stable Systems

constraint

(2) there exists a class K∞ function f3 such that for all x: V̇ (x) ≤ −f3||x||, where
V̇ (x) :=

〈

dV
dx (x)

∣

∣f(x)
〉

must be replaced by

(2’) there exists a class K∞ function f3 such that for all x: V̇ (x) ≤ −f3||x||, where
V̇ (x) :=

〈

dV
dx (x)

∣

∣f(x)
〉

+ 1
2g(x)

T d2V
dx2 (x)g(x).

Now suppose that g(x) = δx for some δ > 0. This means that the influence of the
Wiener process on the derivative of x depends linearly on x. In this case,

V̇ (x) =

〈

dV

dx
(x)

∣

∣

∣

∣

f(x)

〉

+
1

2
δ2

d2V

dx2
(x).

Assume that f(x) = Ax is linear and that V (x) = xTPx is quadratic, and that P is a
Lyapunov function for the ordinary differential equation, solving

ATP + PA+ αI � 0.

Then
d2V

dx2
(x) = 2P,

and therefore, for the stochastic differential equation, we obtain an LMI constraint of
the form

ATP + PA+ δ2P + αI � 0.

Since we also have
P − βI � 0,

this gives us

ATP + PA+ δ2P +
α

β
P � 0,

a constraint which may or may not be satisfied due to the additional term. However, if
δ2 < α

β , then

ATP + PA+ δ2P +

(

α

β
− δ2

)

P � 0

is solved by the very same matrix P as for the ordinary differential equation, and the
stochastic differential equation is GS-P and AS-GA with the same LLF. Therefore, such
a linearly weighted Wiener process can be added as a disturbance to any differential
equation as long as δ2 < α

β , still maintaining GS-P and AS-GA. In this case, the same
LLF remains valid for this node in the constraint graph, and therefore also all edge con-
straints of incoming and outgoing transitions remain satisfied. Therefore, this addition
of a Wiener process disturbance can be conducted on a per-mode basis (with possibly
different magnitudes given by different values of δ), and the newly obtained system will
be GS-P and AS-GA without necessitating the computation of a new GLF.

Next, we extend the composition approach to a setting that a) separates plant and
controller and b) allows for hierarchical composition of sub-automata, which are repre-
sented as components of the controller.

186

6.2 Component Based Design of Stable Hybrid Automata

6.2 Component Based Design of Stable Hybrid Automata

The transformation rules presented in Section 6.1 can be used to incrementally construct
stable hybrid automata. However, this construction procedure is not of hierarchical
nature. Instead, we assumed that the entire hybrid automaton is visible at any time, with
all modes and their associated invariants, dynamics, and transitions. In order to arrive at
a truly compositional design procedure, it is however highly desirable to organize a hybrid
automaton in a hierarchical manner. For a given plant model (which can be a differential
inclusion, therefore actually representing an entire class of physical plants), this enables
the use of re-usable components in order to satisfy safety and stability requirements.
From this standpoint, a hybrid controller (i.e., a controller modeled as a hybrid system)
consists of various such components, which can either be hybrid automata or again
transition compositions of components, similar to hierarchical structures in model based
design tools.

Ideally, we want to have an abstract outside view of a component’s characteristics,
without a full description of the component semantics. Instead, only the component’s
interface to the outside should be visible, together with enough information to conduct
a composition such that the desired system property is verifiable. Of particular interest
for hybrid systems are safety and stability. The focus of this section is a composition
framework which is sufficient to prove GAS of such a system consisting of interconnected
components.

This section summarizes the author’s contributions to [Damm et al., 2010], which in
addition also deals with

• safety properties,

• an alarm system with alarms that are only picked up with a time delay,

• delayed mode switches,

• a detailed communication protocol between components, and

• a formal definition of the component semantics.

In the following we will only concentrate on the stability aspect, by utilizing the decom-
positional results presented in this thesis and exploiting them for composition.

The method introduced here is based on interconnected components which set off
alarm signals whenever they detect that a situation they are not designed to deal with
is imminent. When a sub-component Ci of another component C raises an alarm, there
are two possible outcomes. The first case is that the alarm is picked up by another sub-
component Cj on the same hierarchy level, which then takes over the task of controlling
the plant after some time needed to execute the switch. This means that an alarm
emitted by a sub-component Ci can be resolved within C itself, without necessitating
calls for external help. The other case occurs when such an alarm cannot be resolved
internally. The alarm from a sub-component Ci is then relayed to the outside of C.
Another component on the higher hierarchical level will then take over control from C,
resulting in C being deactivated as a whole.

187

6 Structured Design of Stable Systems

Since the stability proof will again be based on Lyapunov functions, the outside view
of a component is characterized by sets of permissible Lyapunov functions. The results
from Chapter 4 are extended to cope with entire components in the place of single modes,
such that stable hybrid systems can be constructed hierarchically. As we show, even in
this case, the resulting constraint system can be rendered as an LMI problem, and the
decomposition results apply.

6.2.1 Plants and Components

We assume that there is a single given plant, modeling the continuous-time process to
be controlled. This plant model is represented by a single hybrid automaton P . Since
P can contain general differential inclusions, we can use this formalism to model an
entire class of plants by this single P , as long as all entities within the class adhere to
the constraints on the dynamics formulated by P . Furthermore, we assume that some
variables of P act as input variables. Usually, these variables will appear on some right
hand sides of differential inclusions or on some guards, but remain unrestricted by the
differential inclusions. In other words, an input variable xi will be associated with the
most general differential inclusion xi ∈ R, and therefore not be influenced by the plant
in any way. On the other hand, some variables of P will also work as output variables.
Output variables are influenced by P , and can be read by the controller and used to
formulate an adequate control strategy.

For the following discussion, we assume that the plant P only consists of a single
discrete mode mp. This is not a principal limitation of the approach, but purely to avoid
some technicalities with parallel compositions of hybrid automata. We also assume that
each variable of P is either an input or output variable. The result of this assumption
is that all variables of the plant are known to the controller, since they act as controller
inputs or outputs. Of course, the controller is not required to make use of all these
variables, so this is not a true limitation. Furthermore, we assume that the plant does
not restrict the initial state of its variables.

Definition 6.1 (Plant). A plant P is a hybrid automaton

P = ({mP },SP ,VP ,TP ,FlowP , InvP , InitP)

with a sub-set of input variables VI
P ⊆ VP and a set of output variables VO

P ⊆ VP , such
that

• VI
P ∪ VO

P = VP and VI
P ∩ VO

P = ∅,

• InitP = {mp} × SP ,

• FlowP does not restrict variables in VI
P , and

• updates belonging to any transitions in TP do not change variables in VI
P .

A basic component represents a possible controller for the plant P and is again given
as a hybrid automaton C. Among the variables of C must be all the output and input

188

6.2 Component Based Design of Stable Hybrid Automata

variables (and therefore all variables) of P . The output variables of P act as inputs to
C and must therefore remain unrestricted within the differential inclusions of C. On the
other hand, for all the input variables of P , C defines the control strategy.

In order to be able to define the transition composition of basic components, we need
to associate with each component C sets of outgoing ports O(C). Each of these ports
can be interpreted as a channel that can be used to broadcast an alarm signal. This
happens whenever the system trajectory is in danger of leaving the sub-set of the state
space for which a component can guarantee the desired behavior, in our case GAS. For
instance, a braking component should activate an alarm before the velocity of a vehicle
is about to sink below the desired set point, as braking is then no longer adequate. This
outport is connected to other components, one of which will then take over from the
brake component. In this case, this will usually be a component which is capable of
gradually reducing the braking effort in order to steer the system toward the set point
without a great overshoot.

Definition 6.2 (Basic Component). A basic component C for a plant P is a hybrid
automaton (MC ,SC ,VC ,TC ,FlowC , InvC , InitC) where

• VP ⊆ VC ,

• SC = R
|VC |,

• InitC does not restrict variables in VO
P ∪ VI

P ,

• FlowC does not restrict variables in VO
P , and

• updates belonging to any transitions in TC do not change variables in VO
P .

Let O(C) be the set of outports of C and associate with each o ∈ O(C) a set Alarm(o) ⊆
SC .

The set Alarm(o) specifies the condition under which an alarm is sent on port o. As
soon as the current system state lies inside Alarm(o), an alarm signal is sent, resulting
in a transfer of control to another component which is connected to this port, if such
a component exists. An alarm on an unconnected outport cannot be taken, and if
the invariants of the currently active basic components are violated and there is no
connected outport with triggered alarm which can be used to transfer control, then the
system run will terminate. This can be interpreted as a failure of the component, which
either a) did not set off an alarm on time or b) whose alarm was not picked up. The
set Alarm(o) should be picked such that it must always be passed before a trajectory
terminates inside component C, in order to avert a). The second problem b) is prevented
as soon as all outports are connected to other components. Convergence can of course
only be guaranteed for infinite runs, while stability, per definition, also applies to finite
trajectories (see Definition 3.15).

The set InitC is used to re-initialize only the local variables of the component C every
time it takes over control of the plant. Therefore, InitC cannot talk about any variables

189

6 Structured Design of Stable Systems

which are used to communicate with the plant. Resets on these variables can be modeled
as part of a transition composition of several sub-components.

The closed loop C||P consisting of a controller C and a plant P is essentially their
parallel composition, which in this case can be defined as follows.

Definition 6.3 (Closed Loop). The closed loop C||P of plant P and basic component
C is the hybrid automaton (MH ,SH ,VH ,TH ,FlowH , InvH , InitH) with

• MH = MC ,

• SH = SC ,

• VH = VC ,

• TH = TC ,

• FlowH(m)(x) =
{

y ∈ SC

∣

∣ y ∈ FlowC(m)(x) ∧ y|P ∈ FlowP (mP)(x)
}

, where y|P
is the projection of y onto SP ,

• InvH(m) =
{

y ∈ SC

∣

∣y ∈ InvC(m) ∧ y|P ∈ InvP (mP)
}

, and

• InitH = InitC .

If we allow hybrid plants P with more than one mode, then the closed loop is the
parallel composition of the two hybrid automata. The following method also works for
this case. Plants were intentionally kept single-mode for the discussion, in order to keep
the formalism simple.

By taking the parallel composition H = P ||C, we thereby define the closed loop
behavior obtained by letting component C interact with plant P . The question whether
this automaton H is GAS can be answered with the help of Lyapunov functions, and
these Lyapunov functions can be computed decompostionally, as described in Chapter
4. Apart from basic components, we also want to have a transition composition of
components. Such a transition composition again results in a possible controller for P
and is defined through a set of transitions connecting these ports to target components.

Definition 6.4 (Transition Composition). A non-basic component C with respect to a
plant P with a set of outports O(C) is a tuple ({C1, . . . , Cn}, I,K), where

• the Ci are (basic or non-basic) sub-components,

• I ∈ {C1, . . . , Cn} is an initial component , and

• the port connection K consists of tuples of the form

k = (s, {(t1, G1, U1), . . . , (trk , Grk , Urk}),

where

1. s ∈ ⋃iO(Ci),

190

6.2 Component Based Design of Stable Hybrid Automata

2. for each outport o ∈ O(Ci) for any component Ci, there is exactly one (o, ·) ∈
K,

3. for each outport o ∈ O(C), there is exactly one (s, T) ∈ K, with exactly one
tuple (o, ·, ·) ∈ T ,

4. for all j: tj ∈ O(C) ∪ {C1, . . . , Cn},
5.
⋃

j Gj = SC ,

6. for all j: Uj : SP → SP , and

7. if tj ∈ O(C), then Uj is the identity function.

Condition 2 stipulates that each outport inside a transition composition must be con-
nected. Conditions 3 and 8 require that each outport of the newly composed component
C must be fed by exactly one port connection with the identity function as the update.
Furthermore, for each transition, the guards must cover the entire state space, so that
always a transition to some new component can be taken.

A component C resulting from a transition composition has the following semantics:
Whenever component C is active, at any point in time, exactly one sub-component Ci

is deemed active. If this Ci is a basic component, then it is simply represented by a
hybrid automaton, which is used to control the plant P . If component Ci is again the
result of a transition composition, then again one of its sub-components is active and
so on, until we arrive at a basic component. Therefore, exactly one hybrid automaton
corresponding to such a basic component is used to drive the plant at any time. This
basic component has a number of outports o, each of which is associated with an alarm
set Alarm(o). As soon as the system state enters this alarm set, a transition to another
component takes place. To decide which component must take over, the guards Gk

j of
the unique transition

k = (s, {(t1, G1, U1), . . . , (trk , Grk , Urk)}),

are evaluated. Whenever the current state lies in Gj , a transition to tj may take place.

Assume that a basic component C is active and such an alarm occurs. Then, there
are three possible cases:

• C ′ = tj is a basic component on the same hierarchy level as basic component C
(see Figure 6.2(a)): In this case, control is passed to component C ′, all variables
which are in VP (and therefore visible globally) are updated according to Uj , and all
variables which are not in VP (and therefore local to C ′) are re-initialized according
to InitC′ .

• C ′ = tj is a non-basic component on the same hierarchy level as basic compo-
nent C (see Figure 6.2(b)): component C ′ is activated and basic component C
deactivated, the update Uj is applied, and component C ′ then activates its initial
sub-component I. This is recursively repeated until control has been passed to a
basic component as above.

191

6 Structured Design of Stable Systems

• o = tj is an outport of the component C ′ on the next highest hierarchy level (see
Figure 6.2(c)): In this case, component C ′ relays the alarm signal to the outside
via its outport o. If component C ′ is already the top-level component then this
indicates a failure of C ′. Otherwise, outport o must be connected to another
component via a transition in the next highest hierarchy level. Again, the guards
of this transition are evaluated to identify a component to which control is passed.
For the component identified in this manner, the procedure above is applied to
activate a basic component and re-initialize variables. A single transition between
to basic components can pass through an arbitrary number of hierarchy levels in
this manner, both up and down in the hierarchy.

C

s

t1 = C ′ t2

G1 ∧ U1 G2 ∧ U2

(a) to a basic component

C

s

t1

t2 = C ′

I

G1 ∧ U1 G2 ∧ U2

(b) to a non-basic component

t1 = o

C t2

s

G1 G2 ∧ U2

C ′

(c) to an outport

Figure 6.2: Transfer of Control between Components

We need to re-initialize the internal component variables (i.e., all variables which do
not appear in the plant as inputs or outputs) whenever we pass over control to a new
basic component, since each basic component might define different internal variables.
Furthermore, at composition level, we would like to hide these internal variables from
sight, with only the interface to the plant being visible, on which update functions can
be applied. A complete formal definition of trajectories of such composed systems is
given in [Damm et al., 2010].

This component-based model can also be flattened into a standard hybrid automaton
by taking the hybrid automata of all basic components and connecting them appropri-
ately according to the port connections. Such a flattened automaton would be defined
over variable and mode sets which are the union of the variable and mode sets of all
constituent basic components. For any mode, variables which do not occur in its basic

192

6.2 Component Based Design of Stable Hybrid Automata

component can simply be left unrestricted, since the stability property we are interested
in only relates to the variables of the plant. By definition, the variables of the plant are
common to all basic components.

6.2.2 Stability Proofs via Lyapunov Function Projections

Adhering to the principle of hierarchical controller design, we want to conclude GAS
without explicitly looking into the individual components that have been composed.
Instead, we associate with each component (be it basic or not) only the necessary infor-
mation to conduct a proof of GAS for such compositions, and hide all other information
inside the component. This information can be seen as an external component interface.
As long as the component itself corresponds to an interface (taking the role of an im-
plementation of the interface), the internal logic and the control strategies implemented
within the component can be chosen freely, since only the interface information is re-
quired to prove GAS. We assume that each individual component within a transition
composition has already been shown to be GAS and that it provides this interface. The
interface needs to consist of the following:

• for each outport o ∈ O(C), an exit set Exit(o) ⊆ SP , describing all plant states
that are possible when a transition takes place through the outport o.

• a family of Lyapunov function projections V i
C : SP → R such that there exists a

GLF V i for component C which is pointwise lower for all initial states of C upon
activation, and

• in the same manner, a family of Lyapunov function projections V i
o : SP → R for

each outport o ∈ O(C) such that the same GLF V i as above is pointwise higher
for all possible states upon exit of C through o.

The Lyapunov function projections are needed because a GLF for a component C may
(and in many cases must) also talk about internal variables within components C which
are not plant variables. Since these variables are assumed hidden to other components,
they cannot appear in the interface. For the same reason, we cannot in general use the
Alarm(o) sets of a basic component as the Exit(o) sets. Alarms might be triggered by
internal variables, which may not appear in the exit set.

First, assume that C is a basic component. For any x ∈ SH , let xP ∈ SP the sub-
vector containing only the values of variables in VP . In this case, Exit(o) can simply be
any set satisfying

x ∈ Alarm(o) =⇒ xP ∈ Exit(o),

for instance by dropping all restrictions on internal variables from Alarm(o). If states
within Alarm(o) are known to be unreachable (for instance, shown through reachability
analysis within C), Exit(o) can also be tightened, not including these unreachable states.
The Lyapunov function projections are formally defined as follows.

193

6 Structured Design of Stable Systems

Definition 6.5 (Lyapunov Function Projections of Basic Components). Let C be a
basic component, let

P = (MP ,SP ,VP ,TP ,FlowP , InvP , InitP)

be the plant and let the closed loop C||P be given by the hybrid automaton

H = (MH ,SH ,VH ,TH ,FlowH , InvH , InitH).

For some n > 0, and each 1 ≤ i ≤ n, let V i be a GLF for H, and define the Lyapunov
function projections for basic component C as:

• for each o ∈ O(C), a function V i
o : SP → R, and

• a function V i
C : SP → R,

such that:

1) for each o ∈ O(C), all m ∈ MH and all x ∈ Alarm(C) : V i
O(xP) ≤ V i(m,x), and

2) for all (m,x) ∈ InitH : V i
C(xP) ≥ V i(m,x).

These projections are simply under- and over-approximations of V i, dropping all in-
ternal variables. Since the existence of such projections implies the existence of a GLF
for H, this means that C||P is GAS. In other words, as long as no outgoing alarm of C is
triggered, we have guaranteed convergence to the equilibrium for the closed loop. Even
though the internal variables have to be dropped for the projections, they can of course
occur in the “internal” GLFs V i, capturing their influence on the dynamics within the
component.

For a component obtained through transition composition, the GAS proof is slightly
more complicated. Again, as during the cyclic decomposition in Section 4.4, we utilize
conic hulls of Lyapunov functions. However, the GLFs for a component are no longer
given explicitly, since we do not know anything about the modes inside a basic component
or the inner structure of the sub-components. Instead, we exploit that each family of
Lyapunov function projections for a given index i, consisting of V i

C and the V i
o for

each outport, implies the existence of a corresponding GLF for the sub-component. The
same applies for each conic combination of the functions V i

C and V i
o . Therefore, if we find

conic multipliers for each sub-component such that the Lyapunov function projections
are non-increasing along every transition, then this implies the existence of a GLF for
the flattened hybrid automaton corresponding to C. This implies GAS.

The set Exit(o) for an outport of a component obtained through transition composition
is simply Exit(s)∩G where (s, T) with (o,G,U) ∈ T is the unique transition connecting
to outport o. The update U has already been required to be the identity function in
this case (see Definition 6.4). The Lyapunov function projections for the transition
composition can be formalized as follows.

194

6.2 Component Based Design of Stable Hybrid Automata

Definition 6.6 (Lyapunov Function Projections for Transition Compositions). Let C =
({C1, . . . , Cn}, I,K) be a transition composition of (basic or non-basic) components Ci.
For an outport o, let C(o) be the component it belongs to (i.e., the unique component C
such that o ∈ O(C)). Assume that for each Ci there also exist mCi

Lyapunov function
projections V q

Ci
, 1 ≤ q ≤ mCi

and for each o ∈ O(Ci) there exist mCi
Lyapunov function

projections V q
o . For some nC > 0, and each 1 ≤ p ≤ nC , define the Lyapunov function

projections for component C as:

• for each o ∈ O(C), a function V p
o : SP → R, and

• a function V p
C : SP → R,

such that for each Ci and each 1 ≤ q ≤ mCi
there exists a positive scalar λp

Ci,q
with:

1) for each k = (s, {(t1, G1, U1), . . . , (trk , Grk , Urk)}) ∈ K,
for each 1 ≤ j ≤ rk with tj ∈ {C1, . . . , Cn}, and
for all xP ∈ Gj ∩ Exit(s) :

∑

q

λp
C(s),qV

q
s (xP) ≥

∑

q

λp
tj ,q

V q
tj
(Uj(xP)),

2) for each k = (s, {(t1, G1, U1), . . . , (trk , Grk , Urk)}) ∈ K,
for each 1 ≤ j ≤ rk with tj ∈ O(C), and
for all xP ∈ Gj ∩ Exit(s) :

∑

q

λp
C(s),qV

q
s (xP) ≥ V p

tj
(xP),

3) for all xP ∈ SP :

V p
C(xP) ≥

∑

q

λp
I,qV

q
I (xP).

The existence of multipliers λp
Ci,q

implies the existence of a GLF for the flattened hy-
brid automaton corresponding to C. Therefore, this computation of Lyapunov function
projections again yields a GAS component which can be successively re-combined in
another transition composition. Furthermore, Conditions 1) to 3) of Definition 6.6 are
again in a form that allows the use of LMI methods for the computation of the λp

Ci,q
.

In order to produce multiple families of Lyapunov function projections, we can only
repeatedly solve it with different optimization directions, using the normal-boundary
intersection approach.

In order to be able to derive convergence rates for such transition compositions, some
additional information needs to be stored in addition to the Lyapunov function projec-
tions. In particular, we need to associate a convergence rate with the Lyapunov function
projections V p

o and V p
C . For basic components, this is simply the convergence rate α′ for

the GLF V p, that is α/β, as discussed in Section 3.5.4. However, we need to keep track
of the α-values and the β-values separately, as αCi,p and βCi,p, respectively,

195

6 Structured Design of Stable Systems

Now, assume that C is the result of a transition composition of the components Ci and
that the conditions in Definition 6.6 hold. Furthermore assume that we have such values
αCi,q and βCi,q for each sub-component Ci. In particular, we know the multipliers λp

Ci,q
,

which, for each i, result in the existence of a Lyapunov function for Ci. This guarantees
a convergence rate of

∑

q λ
p
Ci,q

αq
Ci

∑

q λ
p
Ci,q

βq
Ci

for Ci. We are now interested in a lower bound on the convergence rate for C. A simple
way of obtaining this information is by taking the slowest convergence rate among the
sub-components, that is

min
i

(
∑

q λ
p
Ci,q

αq
Ci

∑

q λ
p
Ci,q

βq
Ci

)

for any p. For component C, furthermore define

αp
C := min

i

(

∑

q

λp
Ci,q

αq
Ci

)

and

βp
C := max

i

(

∑

q

λp
Ci,q

βq
Ci

)

.

These values can then be used to estimate the convergence rate, should C again be used
in a composition. A detailed discussion on the computation of convergence rates and
convergence times to target sets in the compositional setting, including proofs, can be
found in [Damm et al., 2010].

As far as decomposition is concerned, a port connection can again be treated in the
same manner as a hybrid automaton. A port connection can simply be viewed as a
graph with components as its nodes and component transitions as its edges. This means
that the decomposition results of Chapter 4 can be transferred also to this level for
the computation of the per-component GLFs. If a port connection results in several
SCCs, they can be treated independently for the constraint system in Definition 6.6,
as long as the bridges are sub-linear and an actual GLF is computed according to the
procedure described in Remark 4.3 of Section 4.3. It is important that an actual GLF
is needed for each component and not just one GLF per SCC, as transitions outside the
component could close a cycle that collapses SCCs inside the component. The cyclic
decomposition results can also directly be applied inside a component. However, this only
makes sense for individual components which are the result of very complex transition
compositions, since the composition process in itself already works as a mechanism to
keep the individual constraint systems relatively simple.

So far, we assumed that transitions between components are instantaneous. However,
it is also possible to model different types of time delays. For instance, if the determina-
tion of a successor component takes some time (e.g., because a potential successor must
first confirm its willingness to take over through some protocol), then a component will

196

6.3 Summary

remain active for some time after triggering an alarm. Therefore, its bottom-level basic
components should guarantee their invariants for this amount of time (guaranteeing a
decrease of the GLF value while waiting for a response), and the exit sets should be
enlarged, containing all states which are reachable from the original exit sets within the
delay. If the transitions themselves take time, then this can also be achieved by adding
a reach set computation to the constraint generated by the transition. However, in this
case, the source component needs to communicate some over-approximation of its be-
havior to the outside, which can then be used to compute the time-bounded reach set
from the component’s exit set on the next higher level. A formal treatment of delayed
switches can also be found in [Damm et al., 2010].

6.3 Summary

In this section, we exploited the decomposition results of Chapter 4 to provide a number
of composition rules which can be used for the incremental construction of a stable hybrid
system. First, we focused on hybrid automata themselves, presenting transformation
which can be applied while still maintaining GAS of the automaton. We then described
a more realistic component-based approach which

• separates the controller and the plant model,

• includes information hiding, only supplying the necessary information for compos-
ability,

• relies on conic hulls of Lyapunov function projections, building on the decomposi-
tion results of Chapter 4.4, and

• still supports verification via LMI solvers.

These results can potentially be exploited for a hybrid controller design tool consisting
of a library of re-usable components with pre-verified interfaces. For a composition to
be GAS, only properties based on the interfaces need to be verified, avoiding complexity
blowup. Of course, the other side of the coin is the conservativeness of the approach,
as the conic under-approximations of Lyapunov function sets are usually conservative.
Nevertheless, the compositional design method is promising for bridging the gap between
system design methodologies and system verification, providing a structured design pro-
cess yielding system models for which stability is verifiable by design.

197

7 Conclusion and Future Work

This chapter concludes the thesis with a review of the main results and an outlook on
future work.

7.1 Conclusion

This thesis addressed the problem of decomposing global asymptotic stability (GAS)
proofs for hybrid systems modeled as hybrid automata. GAS subsumes 1) attractivity,
guaranteeing convergence to some equilibrium and 2) stability, guaranteeing a bound-
edness condition on the distance to the equilibrium for all trajectories. In contrast to
safety properties, stability does not allow for straightforward decomposition into local
arguments guaranteeing an automaton-global stability property. In order to maintain
safety, it is sufficient that all discrete modes or all sub-automata forming a partitioning
guarantee safety by themselves, and that all transitions between these modes an sub-
automata always lead from safe states to safe states. However, stability is a property
which can only guaranteed by the interplay if the discrete modes, which must work
together in order to ensure convergence to an equilibrium state. Whether the interac-
tion between the discrete modes is suitable for maintaining stability must therefore be
checked when conducting decompositional verification.

As a vehicle for such proof we used a standard concept from control theory: Lyapunov
functions, that is, functions measuring an abstract “energy level” of the system. This
energy level must monotonically decrease towards a single global minimum at the equi-
librium. As has been known in the control theory domain for some time, such functions
can be automatically computed in parametrized form via convex optimization. To be
exact, the Lyapunov function constraints can be expressed as linear matrix inequalities
(LMIs), that is, linear inequalities with matrix values together with an inequality opera-
tor which checks for positive semidefiniteness of a matrix. Since positive semidefiniteness
corresponds to global non-negativity of the quadratic function represented by the matrix,
Lyapunov constraints for affine differential inclusions and quadratic Lyapunov functions
can be expressed naturally in this format. Also, it has been known that more complex
cases can be handled by a substitution technique called sums-of-squares decomposition.
In the scope of hybrid systems, separate local Lyapunov functions (LLFs) can be com-
puted for a system’s discrete modes, together forming a global Lyapunov function (GLF).
We provided an in-depth discussion of these computations techniques in Chapter 3.

When applying these methods from the literature, LLFs are not computed indepen-
dently, but rather as parts of a large LMI system. In order to ensure a suitable interplay
between the modes, constraints for all transitions are also included. These constraints

199

7 Conclusion and Future Work

ensure that there is no “energy increase” as a transition is taken. However, these con-
straint systems can grow large and intractable in practice for the numerical solvers.
Moreover, using these methods, it is difficult to design hybrid controllers with many
discrete modes, since the interplay between the differential inclusions for the modes and
the transitions between them is difficult to interpret even for the experienced engineer.
Therefore, compositional design of hybrid systems is very desirable.

These drawbacks served as the motivation for the contributions of this thesis. Our
decompositional approach, as presented in Chapter 4, uses a discrete structure of the
hybrid automaton as a basis of decomposition, interpreting it as a labeled graph. Af-
ter giving a general motivation for decomposition and some basic graph definitions in
Sections 4.1 and 4.2, we introduced two levels of decomposition: 1) decomposition into
strongly connected components (SCCs) and 2) decomposition within SCCs.

On the first level, the decomposition into SCCs as described in Section 4.3, we ex-
ploited the fact that no cycles between SCCs of a graph exist. This means that the
interplay between discrete modes in two different SCCs is unidirectional, since a return
is impossible after leaving a component. This fact can be exploited for a decomposition
where SCCs can be analyzed independently of one another. One Lyapunov function per
component (without any constraints relating the functions) already implies convergence
to the equilibrium. The second requirement for a GAS system, stability, is fulfilled if
the bridges connecting the components fulfill a sub-linearity condition. In that case,
a GLF for the entire system can also be computed easily. An interesting observation
on this decomposition is that it can actually be used to prove attractivity for systems
which are not stable, which would be impossible without decomposition, since no GLF
for the entire automaton can exist for non-stable systems. The decomposition into SCCs
also allows for the extension of the convergence proof to multiple equilibria, since each
component may have an equilibrium of its own.

Since there is no guarantee that a given hybrid automaton consists of more than one
SCC and since SCCs can be large, we employed a second level of decomposition based
on simple cycles. This level of decomposition was presented in Section 4.4. Since every
node within a SCC lies on at least one simple cycle, simple cycles are a good basis for
further reasoning, representing bidirectional dependencies between nodes. In this case,
the compatibility of the Lyapunov functions for sub-automata needs to be explicitly
checked, as stability of two cycles does have no direct implication with respect to the
system consisting of their union. For the system to be stable, the individually computed
Lyapunov functions for the cycles need to be compatible in the sense that they can be
used to form a global Lyapunov function for the entire SCC. As an auxiliary structure, we
introduced constraint graphs, which translate the Lyapunov constraint system for a given
hybrid automaton into graph notion, making the locality of the constraints explicitly
visible. The decomposition takes place on these constraint graphs. The property we
exploited for this compatibility check is the conic shape of Lyapunov function sets. For
any two sub-automata intersecting in just one node, we gave a theorem which allows
decomposition based on conic, polytopic under-approximations of the LLF set for the
intersection node. Such an infinite set of Lyapunov functions can be represented by
finitely many functions: namely those ones forming the corner points of the polytope.

200

7.1 Conclusion

The computation of such a conic, polytopic set can again be conducted through LMIs,
by optimizing in various parameter directions. The core result is however independent
of the actual Lyapunov function computation method that is employed.

This decomposition result forms the basis of a reduction procedure on the constraint
graph, considering one cycle of the SCC after the other. If a cycle intersects with the
rest of the graph in only one node, then we can conduct the computation of such a
set, remove the cycle from the graph except the border node, and attach a constraint
corresponding to the newly computed under-approximation set to this border node.
This constraint only refers to Lyapunov functions for the border node, subsuming the
relevant characteristics of all other unknowns from the reduced cycles. Therefore, the
complexity of the computations for the individual cycles does not grow with the number
of cycles already reduced or their size. If no cycle with only one border node exists, then
a splitting procedure is triggered. Essentially, we split a mode of the hybrid automaton,
with all new nodes inheriting the same continuous behavior. However, each new node will
have only one incoming and one outgoing transition, so that repeated application of the
reduction will always result in reducible cycles. We also gave an algorithm interweaving
reduction and splitting in a manner such that termination is guaranteed for all graphs,
even in the presence of “cycles of cycles.”

During this second type of decomposition, a GLF for the SCC is not explicitly com-
puted, but guaranteed to exist. In order to actually compute this function, another
step is required. To this end, a reduction graph which takes note of the reductions and
splittings is built and then traversed top-down to compute a Lyapunov function. This
Lyapunov function is, however, not for the original hybrid automaton, but for the equiv-
alent automaton obtained after applying all the splittings. In this automaton, some
modes of the original system might appear multiple times with different LLFs. Looking
again at the original system, this is equivalent to having context dependent Lyapunov
functions for the modes that were split. Such a mode has not only one LLF (or conic set
thereof), but several functions which are chosen based on the discrete behavior directly
before and after the mode is entered. In other words, depending on the discrete mode
sequence associated with a trajectory, a different Lyapunov function may be used, but a
suitable function guaranteeing stability is always known to exist. This is in contrast to
existing approaches for multiple Lyapunov functions per mode in the literature, which
use purely state-based reasoning without a temporal component.

Section 4.5 then gave a detailed description of the necessary per-cycle computations
and some special cases where these computations can be simplified.

To demonstrate the decomposition, we gave a large case study modeling a velocity
controller with several levels of brakes, which required numerous reductions of cycles, as
well as the numerous splittings of nodes, to arrive at a decompositional stability proof.
This example was presented in Section 4.6.

For the cycle-based decomposition procedure we also provided an algorithm outline
for guided refinement of the conic under-approximation predicates in Section 4.7. This
algorithm outline was then instantiated into several algorithm variants. One algorithm
guarantees that all “robust” Lyapunov functions which do not lie on the boundary of the
solution set are eventually found, using an evenly spaced enumeration of new optimiza-

201

7 Conclusion and Future Work

tion directions for the LMI of a cycle. Two other variants choose new optimization direc-
tions heuristically, exploiting knowledge about the other cycles the under-approximation
is required to intersect with. One approach simply takes the center points of the two
under-approximations while the other uses a distance measure which can be encoded as
an LMI. While these “greedy” approaches are not guaranteed to find all existing inter-
sections, they will in most cases provide a suitably refined predicate faster than the full
enumeration method. We also outlined how refinement can take place across more than
two cycles, using backtracking on reduction graphs.

The decomposition results based on graph theory and Lyapunov function computation
were also transferred to the stochastic domain in Chapter 5. For stochastic systems, sta-
bility in probability and almost sure attractivity can be shown with very similar means
as for standard hybrid automata. The difference here lies in the fact that Lyapunov func-
tions only need to be expected to decrease, with the evolution of their value over time
forming a supermartingale process. For probabilistic hybrid automata, the decreasing-
ness of the expected value yields constraints on the Lyapunov function parameters which
are very similar to the non-stochastic case. These constraints can again be encoded as
an LMI problem and solved via convex optimization. The decomposition results based
on SCCs can be directly transferred to probabilistic hybrid automata. Additionally, it
is now possible to have SCCs which are by themselves unstable, if the probability of
entering them can be bounded from above. This enables quantitative stability analysis
with convergence probabilities below 1. The cycle-based decomposition is also applica-
ble to this class of systems. Individual cycles are now also allowed to be unstable, if
their instability is “compensated” by a stable cycle which is entered with high enough
probability. Since a probabilistic hybrid automaton can be abstracted into a Markov
decision process, we can moreover exploit steady state information of the discrete model
to conduct even further decomposition. As it turns out, modes with steady state prob-
ability of zero in the Markov decision process (i.e., modes that are entered infinitely
often with probability zero) can be considered completely separately for the attractivity
analysis, much like SCCs. Moreover, the proof methods can be extended to systems
with stochastic differential equations, as the expected decreasingness of the Lyapunov
function can be rendered as an LMI problem even in this case.

We also tackled the problem of designing stable hybrid automata. This problem is
difficult, since global asymptotic stability is generally not preserved under transition
composition of hybrid automata. To this end, we provided a number of transformation
rules for stable hybrid automata in Section 6.1. By following these rules, it is possible to
devise provably stable hybrid automata by successively adding new modes or transitions
or by modifying existing one. After an individual modification, it is then not necessary
to re-prove stability for the entire automaton, but only for some parts of it. Most of
these rules are a direct consequence of the decomposition results and allow for local
transformations which either do not impact the Lyapunov function set at all or enlarge
it. The rules include node splitting, node merging, widening of differential inclusions,
guards, and invariants, as well as the addition of new subgraphs or edges. Again, conic
hulls of Lyapunov functions can be used to determine whether a newly added transition
within an SCC is compatible with the system in the sense that stability is maintained.

202

7.1 Conclusion

Moreover, Wiener process disturbances can be added to modes locally under certain
circumstances, still maintaining stability in probability and almost sure attractivity.

Taking composition one step further, in Section 6.2, we then introduced a component
based design framework for hybrid controllers for a given plant model. This framework
allows the encapsulation of hybrid automata in so-called components, which hide all
information of the automaton that is not needed for the stability proof. Such stable
components can then be connected via transition compositions, still maintaining sta-
bility. The plant model may be defined in terms of differential inclusions and therefore
represent a whole class of physical plants. This approach paves the way for library-based
controller design, with re-usable components, whose properties in the context of a class
of plants have already been shown in beforehand and do not have to be re-proved when
such a component is used in a composition. Basic components are hybrid automata,
together with a number of outgoing ports with associated alarms. These ports can then
be connected to other components (be they basic or not), allowing the incremental con-
struction of large controllers. Each component is also associated with an exit predicate
and both incoming and outgoing Lyapunov function projections. Since a component’s
internal structure as well as its internal continuous variables are deemed hidden from
the outside world, the exit predicates and Lyapunov function projections can only refer
to variables visible on the component’s external interface. The Lyapunov function pro-
jections are structured such that they guarantee the existence of a Lyapunov function
for the (hidden) interior of the component. Moreover, if we compose several controllers,
non-increasingness of the Lyapunov function projections along every port connection
(=transition) implies the existence of a GLF for the entire system, including the hidden
parts. For these projections, we again employ convex cones of Lyapunov functions. We
attach several possible projections to each component and each outgoing port which can
be conically combined to identify a suitable function. If we manage to identify pro-
jections in the convex cones of all connected components such that non-increasingness
always holds, then we can guarantee GAS of the new component. Essentially, we know
that a GLF corresponding to the “flattened” hybrid automaton exists without explicitly
computing it. This enables us to compute another set of Lyapunov function projections,
should this component in turn be used in another composition. The entire analysis can
again be done based on LMIs, with relatively small constraint systems per component,
since verification is done component by component. This compositional approach can
also be combined with safety proofs via barrier certificates and with delayed switching
between components. It is also possible to successively derive the convergence rates
associated with each component.

Altogether, this thesis advanced the state of the art by systematically exploiting the
discrete structures of a hybrid automaton for stability verification. The results can be
used to:

• alleviate problems of complexity and numerical instability during stability proofs,
by splitting large constraint systems into smaller, more manageable systems,

• allow for re-design suggestions when a proof fails,

203

7 Conclusion and Future Work

• help the engineer’s understanding of a stable hybrid automaton by viewing stability
proofs as constraint graphs,

• develop software tools that allow for verification during the design, supporting a
structured design process, and

• devise a library-based controller design approach which directly ties in with sta-
bility verification.

In the following, we give some possible enhancements and future extensions of the
decomposition approach and its associated algorithms.

7.2 Future Work

Possible future work based on the results of this thesis extends in various directions.
Some points are discussed in the following.

Tool development. Based on the decomposition results, it is now possible to provide
tools which can support a structured design process for stable hybrid automata. An
automaton can be designed incrementally without having to be completely re-verified
once new modes or transitions are added. If the newly added parts are verified at regu-
lar intervals during the design process, then this means that the user can now pinpoint
which changed caused the loss of GAS, in case he/she makes a mistake. This informa-
tion allows for guided re-design, as the software could also suggest valid alternatives.
Such a tool could also support probabilistic hybrid systems, stochastic differential equa-
tions, separation of plant and controller, and component based design with information
hiding. At the time of writing, the verification tool Stabhyli, based on decompositional
reasoning with Lyapunov functions, is being developed in the AVACS Transregional Re-
search Center. Within a tool prototype, the two levels of decomposition (i.e., based on
SCCs and cycles) have been implemented and validated, yielding a number of successful
and fully automatic stability proofs. Also, the tool supports the hierarchical component-
based design of stable hybrid controllers by automatically computing Lyapunov function
projections, validating the concept of the compositional design framework.

System Generalization. For a given GLF of a hybrid automaton, it is possible to derive
the set of dynamics, guards and invariants for which it will also be the function retains
its GLF property, proving GAS. Since this problem can again be expressed as an LMI,
with reversed roles of dynamics and Lyapunov functions, it is possible to automatically
generalize a stable hybrid system model. This generalization could come in the form of
widened differential inclusions or widened guards of invariants. Such a generalization
can then be used to measure the robustness of the model with respect to external distur-
bances or modeling errors. Informally speaking, the “size” of the generalization along a
particular dimension (for instance a differential inclusion parameter or the strictness of
a guard constraint) indicates additional system behaviors which are also tolerable and

204

7.2 Future Work

therefore acts as an indicator of system robustness. With decompositional reasoning, it
is possible to automatically conduct such a generalization locally on modes of the hybrid
automaton.

Alternative Hybrid Automaton Models for a Hybrid System. The decompositional
analysis uses the graph structure of a hybrid automaton, but, of course, the very same
system can be represented by different automata with different graph structures. One
such case is the splitting operation, which results in such a different but equivalent model
which is easier to analyze. However, also for the discovery of SCCs, it is very useful to
have an optimal representation (i.e., a representation resulting in the maximum number
of SCCs). Therefore, potential future work could include the analysis of different models
for the same system. With the help of reachability analysis, it might be possible to
discover hidden “bifurcation points” of trajectories where small perturbations within
a single mode lead to permanently different behavior. If such bifurcation points can
be discovered, they can be made explicit in the discrete structure and exploited for
decompositional analysis. In particular, this is interesting for quantitative analysis of
stability in probability. If an SCC cannot be shown AS-GA, it might still be possible
to identify hidden SCCs inside for which this might be the case and whose probability
mass could then be added to the probability of convergence.

Clique Discovery. The decomposition procedure works well with sparse graphs, but is
not very useful for dense graphs which are almost fully connected. Since hybrid systems
with such a graph structure do not lend themselves to discrete decomposition at all, it is
desirable to detect such sub-automata and mark them as exempt from the decomposition.
Furthermore, such sub-graphs should use common or continuous Lyapunov functions in
many cases, due to the strong interrelations between their LLFs. While we gave some
criteria for identifying such sub-automata, there is also the need for an algorithm that
discovers these cases (possibly heuristically) and treats them accordingly in the reduction
procedure. Such fully or almost fully connected sub-graphs could be merged into a single
“super-node” for the purpose of decomposition after their detection, to prevent their
decomposition.

Heuristics for Lyapunov Function Computation, Reduction, Splitting and Refine-
ment. As of now, the choice of a suitable LLF parametrization is still left to the user.
Heuristic identification of suitable Lyapunov function templates is therefore also useful
for a fully automated verification process. This analysis could be conducted by analyzing
the differential inclusion in question and by successively using “more advanced” tem-
plates (e.g., templates containing higher maximum degree polynomials). A related idea
is the use of discontinuous LLF templates, which can be modeled by artificially splitting
a mode in two. Determining such splittings is a hard problem but it can in principle be
conducted heuristically [Oehlerking et al., 2007]. Also, the use of different verification
methods for different parts of the automaton is possible in principle. For instance, for
some modes, it might be more suitable to search for (piecewise) linear LLFs using linear

205

7 Conclusion and Future Work

programming methods. In this case, a decision procedure picking the most suitable tool
for each sub-automaton is required. Also, the initial choice of optimization directions
could be picked based on an a priori analysis of the mode dynamics. The result obtained
from the reduction/refinement procedure also depends on the order in which nodes are
split and cycles reduced. If there are various reducible cycles, then it may make sense
to first reduce the cycle expected to result in less conservativeness. There may also be
several nodes available for splitting at any one time. While the heuristic of looking at
their in- and outdegrees is reasonable, it is not guaranteed to be optimal. Therefore, it is
beneficial to look at optimality conditions for the splitting procedure. However, this is a
difficult problem since it is already hard to define should be considered “optimal” here.
The number of reduction plays a role, as well as the size of the individual cycles (and
therefore the resulting LMI problems) and the conservativeness of each single reduction.
The solution provided in this thesis is guaranteed to work, but does not make optimality
assertions, which could be a potential area of future work.

As has been demonstrated by their inclusion in the prototype tool Stabhyli, the re-
sults presented in this thesis are already very useful for stability verification of hybrid
automata with complex structure, Large systems do not result in intractably large con-
straint systems, and the stepwise reduction of graphs gives useful feedback in case veri-
fication fails. Furthermore, this thesis can be seen as a step of bridging the gap between
the design of realistic complex systems and the design of systems for which stability is ac-
tually verifiable. By following a structured design procedure based on the decomposition
and composition results in this thesis, it is possible to design complex hybrid automata
for which stability can be guaranteed. The improvements above can still increase the
usefulness of such a tool by improving its efficiency, broadening the class of systems for
which verification is successful and by providing additional feedback to the user.

206

Bibliography

Abate, Alessandro. 2007. Probabilistic Reachability for Stochastic Hybrid Systems:
Theory, Computations, and Applications. Ph.D. thesis, Univerity of California, Berke-
ley, USA.

Ahmadi, Amir Ali, & Parrilo, Pablo. 2008. Non-monotonic Lyapunov Functions
for Stability of Discrete Time Nonlinear and Switched systems. Pages 614–621 of:
Proceedings of the 47th IEEE Conference on Decision and Control (CDC’08). IEEE.

Alur, Rajeev, Courcoubetis, Costas, Henzinger, Thomas, & Ho, Pei-Hsin.
1993. Hybrid Automata: An Algorithmic Approach to the Specification and Veri-
fication of Hybrid Systems. Pages 209–229 of: Hybrid Systems. Lecture Notes in
Computer Science, vol. 736. Springer.

Bayen, Alexandre, Raffard, Robin, & Tomlin, Claire. 2004. Network Con-
gestion Alleviation Using Adjoint Hybrid Control: Application to Highways. Pages
95–110 of: Proceedings of the 7th International Workshop on Hybrid Systems: Com-
putation and Control (HSCC’04). Lecture Notes in Computer Science, vol. 2993.
Springer.

Bemporad, Alberto, Borrelli, Francesco, & Morari, Manfred. 2002. On the
Optimal Control Law for Linear Discrete Time Hybrid Systems. Pages 105–119 of:
Proceedings of the 5th International Workshop on Hybrid Systems: Computation and
Control (HSCC’02). Lecture Notes in Computer Science, vol. 2289. Springer.

Benson, Steven, Ye, Yinyu, & Zhang, Xiong. 2000. Solving Large-Scale Sparse
Semidefinite Programs for Combinatorial Optimization. SIAM Journal on Optimiza-
tion, 10(2), 443–461.

Bhatia, Rajendra. 2007. Positive Definite Matrices. Princeton Series in Applied
Mathematics. Princeton University Press, ISBN: 978-1400827787.

Blondel, Vincent, & Tsitsiklis, John. 1999. Complexity of Stability and Control-
lability of Elementary Hybrid Systems. Automatica, 35(3), 479–489.

Blondel, Vincent, & Tsitsiklis, John. 2000. The Boundedness of all Products of
a Pair of Matrices is Undecidable. Systems and Control Letters, 41(2), 135–140.

Blondel, Vincent, Bournez, Olivier, Koiran, Pascal, Papadimitriou, Chris-

tos, & Tsitsiklis, John. 2001a. Deciding Stability and Mortality of Piecewise Affine
Dynamical Systems. Theoretical Computer Science, 255(1-2), 687–696.

207

Bibliography

Blondel, Vincent, Bournez, Olivier, Koiran, Pascal, & Tsitsiklis, John.
2001b. The Stability of Saturated Linear Dynamical Systems is Undecidable. Journal
of Computer and System Sciences, 62, 442–462.

Borchers, Brian. 1999. CSDP, a C Library for Semidefinite Programming. Optimiza-
tion Methods and Software, 10(1), 613–623.

Boyd, Stephen, & Vandenberghe, Lieven. 2004. Convex Optimization. Cambridge
University Press, ISBN: 978-0521833783.

Boyd, Stephen, El Ghaoui, Laurent, Feron, Eric, & Balakrishnan,

Venkataramanan. 1994. Linear Matrix Inequalities in System and Control The-
ory. Society for Industrial and Applied Mathematics, ISBN 0-89871-334-X.

Branicky, Michael. 1994. Stability of Switched and Hybrid Systems. In: Proceedings
of the 33rd Conference on Decision and Control (CDC’94). IEEE.

Branicky, Michael. 1998. Multiple Lyapunov Functions and other Analysis Tools
for Switched and Hybrid Systems. IEEE Transactions on Automatic Control, 43(4),
475–482.

Cai, Chaohong, & Teel, Andrew R. 2005. Results on Input-to-state Stability for
Hybrid Systems. Pages 5403–5408 of: Proceedings of the 44th IEEE Conference on
Decision and Control (CDC’05). IEEE.

Cai, Chaohong, Teel, Andrew, & Goebel, Rafal. 2007. Smooth Lyapunov Func-
tions for Hybrid Systems – Part I: Existence is Equivalent to Robustness. IEEE
Transactions on Automatic Control, 52(7), 1264–1277.

Cai, Chaohong, Teel, Andrew, & Goebel, Rafal. 2008. Smooth Lyapunov Func-
tions for Hybrid Systems – Part II: (Pre)Asymptotically Stable Compact Sets. IEEE
Transactions on Automatic Control, 53(3), 734–748.

Casagrande, Alberto, Corvaja, Pietro, Piazza, Carla, & Mishra, Bud. 2008.
Decidable Compositions of o-minimal Automata. Pages 274–288 of: Proceedings of the
6th International Symposium on Automated Technology for Verification and Analysis
(ATVA’08). Lecture Notes in Computer Science, vol. 5311. Springer.

Cassandras, Christos, & Lygeros, John. 2007. Stochastic Hybrid Systems. Control
Engineering Series. Taylor and Francis, ISBN: 978-0849390838.

Chatterjee, Debasish, & Liberzon, Daniel. 2006. Stability Analysis of Deter-
ministic and Stochastic Switched Systems via a Comparison Principle and multiple
Lyapunov functions. SIAM Journal on Control and Optimization, 45(1), 174–206.

Chatterjee, Debasish, & Liberzon, Daniel. 2007. On Stability of Randomly
Switched Nonlinear Systems. IEEE Transactions on Automatic Cotnrol, 52(12), 2390–
2394.

208

Bibliography

Chesi, Graziano. 2004. On the Estimation of the Domain of Attraction for Uncer-
tain Polynomial Systems via LMIs. In: Proceedings of the 43rd IEEE Conference on
Decision and Control (CDC’04). IEEE.

Cortés, Jorge. 2008. Discontinuous Dynamical Systems. IEEE Control Systems Mag-
azine, 28(3), 36–73.

Daafouz, Jamal, Riedinger, Pierre, & Iung, Claude. 2002. Stability Analysis
and Control Synthesis for Switched Systems: A Switched Lyapunov Function Ap-
proach. IEEE Transactions on Automatic Control, 47(11), 1883–1887.

Damm, Werner, Mikschl, Alfred, Oehlerking, Jens, Olderog, Ernst-

Rüdiger, Pang, Jun, Platzer, André, Segelken, Marc, & Wirtz, Boris.
2007. Automating Verification of Cooperation, Control, and Design in Traffic Appli-
cations. Pages 115–169 of: Jones, Cliff, Liu, Zhiming, & Woodcock, Jim (eds),
Formal Methods and Hybrid Real-Time Systems. Lecture Notes in Computer Science,
vol. 4700. Springer.

Damm, Werner, Dierks, Henning, Oehlerking, Jens, & Pnueli, Amir. 2010.
Towards Component Based Design of Hybrid Systems: Safety and Stability. Pages
96–143 of: Manna, Zohar, & Peled, Doron (eds), Time for Verification - Essays
in Memory of Amir Pnueli. Lecture Notes in Computer Science, vol. 6200. Springer.

Das, Indraneel, & Dennis, John. 1998. Normal-Boundary Intersection: a New
Method for Generating the Pareto Surface in Multicriteria Optimization Problems.
SIAM Journal on Optimization, 8, 631–657.

Dashkovskiy, Sergey, Rüffer, Björn, & Wirth, Fabian. 2008. Stability of In-
terconnections of ISS Systems. In: Proceedings of the 8th SICE Annual Conference
on Control Systems (electronic).

Dimarogonas, Dimos, & Kyriakopoulos, Kostas. 2004. Lyapunov-like Stability of
Switched Stochastic Systems. Pages 1868–1872 of: Proceedings of the 2004 American
Control Conference (ACC’04).

Donkers, Tijs, Hetel, Laurentiu, & Heemels, Maurice. 2009. Stability Analysis
of Networked Control Systems Using a Switched Linear System Approach. Pages
150–164 of: Proceedings of the 12th International Conference on Hybrid Systems:
Computation and Control (HSCC’09). Lecture Notes in Computer Science, vol. 5469.

Feng, Gang. 2002. Stability Analysis of Piecewise Discrete-Time Linear Systems. IEEE
Transactions on Automatic Control, 47(7), 1108–1112.

Ferrari-Trecate, Giancarlo, Cuzzola, Francesco Alessandro, Mignone,

Domenico, & Morari, Manfred. 2002. Analysis of Discrete-time Piecewise Affine
and Hybrid systems. Automatica, 38(12), 2139–2146.

209

Bibliography

Frankowska, Hélène, & Aubin, Jean-Pierre. 2009. Set-Valued Analysis.
Birkhäuser, ISBN: 978-0817648473.

Fränzle, Martin, Herde, Christian, Teige, Tino, Ratschan, Stefan, & Schu-

bert, Tobias. 2007. Efficient Solving of Large Non-linear Arithmetic Constraint Sys-
tems with Complex Boolean Structure. Journal on Satisfiability, Boolean Modeling
and Computation, 1, 209–236.

Frehse, Goran. 2008. PHAVer: Algorithmic Verification of Hybrid Systems past
HyTech. International Journal on Software Tools for Technology Transfer, 10(3),
263–279.

Frehse, Goran, Han, Zhi, & Krogh, Bruce. 2004. Assume-Guarantee Reasoning
for Hybrid I/O-Automata by Over-Approximation of Continuous Interaction. Pages
479 – 484 of: Proceedings of the 43rd IEEE Conference on Decision and Control
(CDC’04). IEEE.

Girard, Antoine. 2003. Computation and Stability Analysis of Limit Cycles in Piece-
wise Linear Hybrid Systems. In: Proceedings of the 2003 IFAC Conference on Analysis
and Design of Hybrid Systems (ADHS’03). Elsevier.

Gonçalves, Jorge. 2005. Regions of Stability for Limit Cycle Oscillations in Piecewise
Linear Systems. IEEE Transactions on Automatic Control, 50(11), 1877–1882.

Grosu, Radu, & Stauner, Thomas. 2002. Modular and Visual Specification of
Hybrid Systems: An Introduction to HyCharts. Formal Methods in System Design,
21, 5–38.

Gulwani, Sumit, & Tiwari, Ashish. 2008. Constraint-based Approach for Analysis of
Hybrid Systems. Pages 190 – 203 of: Proceedings of the 20th International Conference
on Computer Aided Verification (CAV’08). Lecture Notes in Computer Science, vol.
5123. Springer.

Habets, Luc, Collins, Pieter, & van Schuppen, Jan H. 2006. Reachability and
Control Synthesis for Piecewise-affine Hybrid Systems on Simplices. IEEE Transac-
tions on Automatic Control, 51(6), 938–948.

Hafstein, Sigurdur Freyr. 2004. A Constructive Converse Lyapunov Theorem on
Exponential Stability. Discrete and Continuous Dynamical Systems, 10(3), 667–678.

Heemels, Maurice, & Weiland, Siep. 2008. Input-to-state Stability and Intercon-
nections of Discontinuous Dynamical Systems. Automatica, 44(12), 3079–3086.

Heemels, Maurice, Weiland, Siep, & Juloski, Aleksandar. 2007. Input-to-
State Stability of Discontinuous Dynamical Systems with an Observer-Based Control
Application. Pages 259–272 of: Proceedings of the 10th International Workshop on
Hybrid Systems: Computation and Control (HSCC’07). Lecture Notes in Computer
Science, vol. 4416. Springer.

210

Bibliography

Henzinger, Thomas, & Rusu, Vlad. 1998. Reachability Verification for Hybrid
Automata. Pages 190–204 of: Proceedings of the 1st International Workshop on
Hybrid Systems: Computation and Control (HSCC’98). Lecture Notes in Computer
Science, vol. 1386.

Hespanha, João, Liberzon, Daniel, & Teel, Andrew. 2008. Lyapunov Conditions
for Input-to-state Stability for Impulsive Systems. Automatica, 44(11), 2735–2744.

Hiskens, Ian. 2001. Stability of Limit Cycles in Hybrid Systems. In: Proceedings of the
34th Hawaii International Conference on System Sciences (HICSS’01), vol. 2. IEEE.

Jansson, Christian. 2006. VSDP: A MATLAB Software Package for Verified Semidef-
inite Programming. Pages 327–330 of: Proceedings of the 2006 International Sympo-
sium on Nonlinear Theory and its Applications (NOLTA’06). IEICE.

Johansson, Mikael, & Rantzer, Anders. 1998. Computation of Piecewise
Quadratic Lyapunov Functions for Hybrid Systems. IEEE Transactions on Automatic
Control, 43(4), 555–559.

Kalman, Rudolf, & Bertram, John. 1960. Control System Analysis and Design
via the “Second Method” of Lyapunov. Transactions of the ASME, Journal of Basic
Engineering, 82, 371–400.

Khalil, Hassan. 1996. Nonlinear Systems. 2nd edn. Prentice-Hall, ISBN: 978-
0130673893.

Korenevskii, D. G. 1987. Stability with Probability 1 of Solutions of Systems of Lin-
ear Ito Stochastic Differential-Difference Equations. Ukrainian Mathematical Journal,
39(1), 26–30.

Kočvara, Michal, & Stingl, Michael. 2003. PENNON - A Generalized Augmented
Lagrangian Method for Semidefinite Programming. Pages 297–315 of: High Perfor-
mance Algorithms and Software for Nonlinear Optimization. Kluwer.

Kozin, F. 1972. Stability of the Linear Stochastic System. Pages 186–229 of: Lecture
Notes in Mathematics, vol. 294. Springer.

Kushner, Harold. 1967. Stochastic Stability and Control. Mathetatics in Science and
Engineering, vol. 33. Academic Press, ISBN: 978-0124301504.

Laila, Dina Shona, & Nešić, Dragan. 2003. Discrete-Time Lyapunov-Based Small-
Gain Theorem for Parameterized Interconnected ISS Systems. IEEE Transactions on
Automatic Control, 48(10), 1783–1788.

Langerak, Rom, & Poldermans, Jan Willem. 2005. Tools for Stability of Switch-
ing Linear Systems: Gain Automata and Delay Compensation. Pages 4867–4872
of: Proceedings of the 44th IEEE Conference on Decision and Control and European
Control Conference (CDC-ECC’05).

211

Bibliography

Langerak, Rom, Polderman, Jan Willem, & Krilavičius, Tomas. 2003. Sta-
bility Analysis for Hybrid Automata Using Conservative Gains. Pages 377–382 of:
Proceedings of the 2003 IFAC Conference on Analysis and Design of Hybrid Systems
(ADHS’03).

Lazar, Mircea, & Jokić, Andrej. 2010. On Infinity Norms as Lyapunov Func-
tions for Piecewise Affine Systems. Pages 131–140 of: Proceedings of the 13th ACM
International Conference on Hybrid Systems: Computation and Control (HSCC’10).
ACM.

Liberzon, Daniel. 2003. Switching in Systems and Control. Birkhäuser, ISBN:
9780817642976.

Liberzon, Daniel, & Nešić, Dragan. 2006. Stability Analysis of Hybrid Systems
Via Small-Gain Theorems. Pages 421–435 of: Proceedings of the 9th International
Workshop on Hybrid Systems: Computation and Control (HSCC’06). Lecture Notes
in Computer Science, vol. 3927. Springer.

Löfberg, Johan. 2004. YALMIP: A Toolbox for Modeling and Optimization in MAT-
LAB. Pages 284–289 of: 2004 IEEE International Symposium on Computer Aided
Control System Design (CACSD’04). IEEE.

Loparo, Kenneth, & Feng, Xiangho. 1996. Stability of Stochastic Systems. Pages
1105–1126 of: The Control Handbook. CRC Press, ISBN: 978-0849385704.

Lyapunov, Aleksandr. 1907. Problème général de la stabilité du movement. Ann.
Fac. Sci. Toulouse, 9, 203–474. (Translation of a paper published in Comm. Soc.
math. Kharkow, 1893, reprinted in Ann. math. Studies No. 17, Princeton University
Press, 1949).

Lynch, Nancy, Segala, Roberto, & Vaandrager, Frits. 2003. Hybrid I/O Au-
tomata. Information and Computation, 185(1), 105–157.

Manwell, James, & McGowan, Jon. 1993. Lead Acid Battery Storage Model for
Hybrid Energy Systems. Solar Energy, 50(5), 399–405.

Mitchell, Ian, & Susuki, Yoshihiko. 2008. Level Set Methods for Computing
Reachable Sets of Hybrid Systems with Differential Algebraic Equation Dynamics.
Pages 630–633 of: 11th International Workshop on Hybrid Systems: Computation
and Control (HSCC’08). Lecture Notes in Computer Science, vol. 4981. Springer.

Nesterov, Yurii, & Nemirovskii, Arkadii. 1994. Interior Point Polynomial Al-
gorithms in Convex Programming. Society for Industrial and Applied Mathematics,
ISBN: 9780898715156.

Nešić, Dragan, & Liberzon, Daniel. 2005. A Small-Gain Approach to Stability
Analysis of Hybrid Systems. Pages 5409–5414 of: 44th IEEE Conference on Decision
and Control and European Control Conference 2005 (CDC-ECC’05). IEEE.

212

Bibliography

Oehlerking, Jens, & Theel, Oliver. 2009a. Decompositional Construction of Lya-
punov Functions for Hybrid Systems. Pages 276–290 of: Proceedings of the 12th
International Conference on Hybrid Systems: Computation and Control (HSCC’09).
Leture Notes in Computer Science, vol. 5469. Springer.

Oehlerking, Jens, & Theel, Oliver. 2009b. A Decompositional Proof Scheme for
Automated Convergence Proofs of Stochastic Hybrid Systems. Pages 151–165 of:
7th International Symposium on Automated Technology for Verification and Analysis
(ATVA’09). Leture Notes in Computer Science, vol. 5799. Springer.

Oehlerking, Jens, Burchardt, Henning, & Theel, Oliver. 2007. Fully Auto-
mated Stability Verification for Piecewise Affine Systems. Pages 741–745 of: Pro-
ceedings of the 10th International Workshop on Hybrid Systems: Computation and
Control (HSCC’07). Leture Notes in Computer Science, vol. 4416. Springer.

Øksendal, Bernt. 2003. Stochastic Differential Equations: An Introduction with Ap-
plications. Springer, ISBN: 9783540047582.

Papachristodoulou, Antonis. 2004. Analysis of Nonlinear Time-Delay Systems Us-
ing the Sum of Squares Decomposition. Pages 4153–4158 of: Proceedings of the 2004
American Control Conference (ACC’04). IEEE.

Papachristodoulou, Antonis, & Prajna, Stephen. 2002. On the Construction of
Lyapunov Functions using the Sums of Squares Decomposition. Pages 3482 – 3487 of:
Proceedings of the 41st IEEE Conference on Decision and Control (CDC’02). IEEE.

Papachristodoulou, Antonis, & Prajna, Stephen. 2005. Analysis of Non-
polynomial Systems using the Sums of Squares Decomposition. Pages 23–43 of: Pos-
itive Polynomials in Control. Lecture Notes in Control and Information Sciences, vol.
312. Springer.

Parrilo, Pablo. 2003. Semidefinite Programming Relaxations for Semialgebraic Prob-
lems. Mathematical Programming Ser. B, 96, 293–320.

Parrilo, Pablo, & Jadbabaie, Ali. 2007. Approximations of the Joint Spectral
Radius of a Set of Matrices Using Sums of Squares. Pages 444–458 of: Proceedings
of the 10th International Workshop on Hybrid Systems: Computation and Control
(HSCC’07). Leture Notes in Computer Science, vol. 4416. Springer.

Parrilo, Pablo, & Lall, Sanjay. 2003. Semidefinite Programming Relaxations and
Algebraic Optimization in Control. European Journal of Control, 9(2-3), 307–321.

Peet, Matthew, Papachristodoulou, Antonis, & Lall, Sanjay. 2006. Positive
Forms and Stability of Linear Time-Delay Systems. SIAM Journal on Control and
Optimization, 47(6), 3237–3258.

Pettersson, Stefan. 1999. Analysis and Design of Hybrid Systems. Ph.D. thesis,
Chalmers University of Technology, Gothenburg, Sweden.

213

Bibliography

Pettersson, Stefan, & Lennartson, Bengt. 1996. Stability and Robustness for
Hybrid Systems. Pages 1202 – 1207 of: 35th IEEE Conference on Decision and
Control (CDC’96). IEEE.

Pettersson, Stefan, & Lennartson, Bengt. 1997. A Converse Theorem for Expo-
nential Stability using Piecewise Quadratic Lyapunov Functions. Tech. rept. Control
Engineering Lab, Chalmers University of Technology, Gothenburg.

Platzer, André, & Clarke, Edmund. 2008. Computing Differential Invariants of
Hybrid Systems as Fixedpoints. Pages 176–189 of: 20th International Conference
on Computer Aided Verification (CAV’08). Lecture Notes in Computer Science, vol.
5123. Springer.

Platzer, André, & Quesel, Jan-David. 2008. KeYmaera: A Hybrid Theorem
Prover for Hybrid Systems. Pages 171–178 of: International Joint Conference Auto-
mated Reasoning (IJCAR’08). Lecture Notes in Computer Science, vol. 5195. Springer.

Podelski, Andreas, & Wagner, Silke. 2006. Model Checking of Hybrid Systems:
From Reachability towards Stability. Pages 507–521 of: Proceedings of the 9th Inter-
national Workshop on Hybrid Systems: Computation and Control (HSCC’06). Lecture
Notes in Computer Science, vol. 3927. Springer.

Prajna, Stephen, & Jadbabaie, Ali. 2004. Safety Verification of Hybrid Systems Us-
ing Barrier Certificates. Pages 477–492 of: Proceedings of the 7th International Work-
shop on Hybrid Systems: Computation and Control (HSCC’04), vol. 2993. Springer.

Prajna, Stephen, & Papachristodoulou, Antonis. 2003. Analysis of Switched
and Hybrid Systems – Beyond Piecewise Quadratic Models. Pages 2799–2784 of:
Proceedings of the 2003 American Control Conference (ACC’03). IEEE.

Prajna, Stephen, & Rantzer, Anders. 2005. On the Necessity of Barrier Certifi-
cates. In: Proceedings of the 16th IFAC World Congress. IFAC.

Puterman, Martin. 1994. Markov Decision Processes. Wiley, ISBN: 0-471-72782-2.

Ratschan, Stefan, & She, Zhikun. 2010. Providing a Basin of Attraction to a
Target Region of Polynomial Systems by Computation of Lyapunov-like Functions.
SIAM Journal on Control and Optimization, 48(7), 4377–4394.

Reznick, Bruce. 2000. Some Concrete Aspects of Hilbert’s 17th Problem. Contempo-
rary Mathematics, 253, 251–272.

Romanko, Oleksandr, Pólik, Imre, & Sturm, Jos F. 1999. Using SeDuMi 1.02,
a MATLAB Toolbox for Optimization over Symmetric Cones. Manual. Published at
http://sedumi.ie.lehigh.edu.

Rubensson, Marcus, & Lennartsson, Bengt. 2000. Stability of Limit Cycles in
Hybrid Systems using Discrete-time Lyapunov Techniques. Pages 1397–1402 of: Pro-
ceedings of the 39th IEEE Conference on Decision and Control (CDC’00). IEEE.

214

http://sedumi.ie.lehigh.edu

Bibliography

Shiryaev, Albert. 1996. Probability. Second edn. Springer, ISBN: 978-0387945491.

Simić, Slobodan. 2002. Hybrid Limit Cycles and Hybrid Poincaré-Bendixson. Pages
22–26 of: Proceedings of the 2002 IFAC World Congress. IFAC.

Sontag, Eduardo. 1998. Mathematical Control Theory: Deterministic Finite Dimen-
sional Systems. Second edn. Textbooks in Applied Mathematics, no. 6. Springer,
ISBN: 9780387984896.

Sproston, Jeremy. 2000. Decidable Model Checking of Probabilistic Hybrid Au-
tomata. Pages 501–514 of: Proceedings of the 6th International Symposium on Formal
Techniques in Real-Time and Fault-Tolerant Systems (FTRTFT’00). Lecture Notes
in Computer Science, vol. 1926. Springer.

Tan, Weehong, & Packard, Andrew. 2008. Stability Region Analysis Using Poly-
nomial Lyapunov Functions and Sums-of-Squares Programming. IEEE Transactions
on Automatic Control, 53(2), 565–570.

Tarjan, Robert. 1972. Depth-first Search and Linear Graph Algorithms. SIAM Jour-
nal on Computing, 1(2), 146–160.

Thomassen, Carsten. 1997. On the Complexity of Finding a Minimum Cycle Cover
of a Graph. SIAM Journal on Computing, 26(3), 675–677.

Toh, Kim-Chuan, Todd, Michael, & Tütüncü, Reha. 1999. SDPT3 – a Matlab
Software Package for Semidefinite Programming. Optimization Methods and Software,
11, 545–581.

Vu, Linh, & Liberzon, Daniel. 2005. Common Lyapunov Functions for Families of
Commuting Linear Systems. Systems and Control Letters, 54, 405–416.

Witsenhausen, Hans. 1966. A Class of Hybrid-State Continuous Dynamical Systems.
IEEE Transactions on Automatic Control, 11(2), 161–167.

Yakubovich, Vladimir. 1977. S-procedure in Nonlinear Control Theory. Vestnik
Leningrad Univ., 4(1), 73–93.

Yamashita, Makoto, Fujisawa, Katsuki, & Kojima, Masakazu. 2003. Imple-
mentation and Evaluation of SDPA 6.0 (SemiDefinite Programming Algorithm 6.0).
Optimization Methods and Software, 18, 491–505.

Ye, Hui, Michel, Anthony, & Hou, Ling. 1998. Stability Theory for Hybrid Dy-
namical Systems. IEEE Transactions on Automatic Control, 43(4), 461–474.

Zhai, Guisheng, Lin, Hai, & Antsaklis, Panos. 2003. Quadratic Stabilizability
of Switched Linear Systems with Polytopic Uncertainties. International Journal of
Control, 76(7), 747–753.

215

Bibliography

Zhang, Lijun, She, Zhikun, Ratschan, Stefan, Hermanns, Holger, & Hahn,

Ernst Moritz. 2010. Safety Verification for Probabilistic Hybrid Systems. Pages
196–211 of: Proceedings of the 22nd International Conference on Computer Aided
Verification (CAV’10). Lecture Notes in Computer Science, vol. 6174. Springer.

Zolezzi, Tullio. 2002. Differential Inclusions and Sliding Mode Control. Chap. 2,
pages 29–52 of: Perruquetti, Wilfrid, & Barbot, Jean Pierre (eds), Sliding
Mode Control in Engineering. CRC Press, ISBN: 978-0824706715.

216

List of Figures

1.1 Classic Control Setup . 1
1.2 Trajectories of Stable and Unstable Systems 2

1.3 Example Trajectories for the Proportional-integral Temperature Controller
3

1.4 Hybrid Temperature Control Loop . 5
1.5 Quadratic Lyapunov Function and Convergent Trajectory 6

1.6 Decomposition of a Hybrid Automaton into Strongly Connected Compo-
nents . 9

1.7 Cyclic Decomposition of a Hybrid Automaton 10

2.1 Illustration of a Switched System Model 14

2.2 Stability Notions . 17
2.3 Piecewise Lyapunov Functions over Time 21

3.1 Simulation Runs for Example 3.1 . 32
3.2 Hybrid Kinetic Battery Model . 36
3.3 Phase Plot of Battery Model . 37

3.4 Kinetic Battery Model with Zeno Behavior 38
3.5 Kinetic Battery Model with Non-extendable Finite Trajectories 38

3.6 Global Asymptotic Stability . 40
3.7 Globally Asymptotically Stable Two-mode System 41
3.8 Example Trajectory for the System Given in Figure 3.7 42

3.9 Quadratic Lyapunov Function and Convergent Trajectory 43
3.10 Piecewise Continuous Lyapunov Function over Time 45

3.11 Cruise Controller Setup . 49
3.12 Cruise Control Automaton . 49
3.13 Cruise Control System: Example Trajectory and Lyapunov Functions . . 51

3.14 Barrier Certificate Separating Initial and Unsafe States 52
3.15 Admissible Behavior of a Barrier Certificate Function V over Time . . . 53

3.16 Quadratic S-procedure: Possible Conic Sections in Three Dimensions . . 58
3.17 Multiple Quadratic S-procedure Functions for a Single Set 59
3.18 Representing Initial and Target Sets by Lyapunov Function Contour Lines 64

3.19 SDP Tools and Websites . 65

4.1 Stable System with Two Unstable Differential Equations 79

4.2 Example Trajectories for The System From Example 4.1 80
4.3 Unstable System with Two Stable Differential Equations 80

217

List of Figures

4.4 Example Trajectories for The System From Example 4.2 80
4.5 Decomposition of a Graph into SCCs . 84
4.6 Cycles and Cycle Covers . 84
4.7 Cruise Controller with Wear and Tear . 87
4.8 Constraint Graph for the Cruise Controller 88
4.9 Velocity Controller with Wear and Tear Decomposed into three SCCs . . 92
4.10 Attractive, Unstable System . 93
4.11 Example Trajectories for the System Given in Figure 4.10 93
4.12 Hybrid Automaton with Hidden SCCs . 94
4.13 Lyapunov Function Vm as Termination Function for Set I 95
4.14 Constraint Graphs before and after Cycle Reduction 101
4.15 List and Tree of Cycles . 105
4.16 Cycles with Two Border Nodes . 106
4.17 Splitting a Node . 107
4.18 Eliminating Border Nodes through Node Splitting 107
4.19 Repeated Splitting Resulting in Disjoint Paths, m1 6= m2 112
4.20 Repeated Splitting Resulting in Simple Cycles Overlapping in m1 = m2 . 112
4.21 Example Reduction Procedure (nodes in N denoted with thick lines) . . 114
4.22 Reduction Graph Construction for the Example from Figure 4.21 116
4.23 Graph Structure of a Hybrid Automaton Equivalent to Figure 4.21(a),

Corresponding to Reduction Graph 4.22(d) 117
4.24 Normal-Boundary Intersection of a Two-dimensional Set with Two Vari-

ables p1 and p2 . 120
4.25 Regular Grid with 4 · 3 Modes . 124
4.26 Reachability Analysis within a Cycle . 127
4.27 Cruise Control Automaton . 129
4.28 Constraint Graph of the Cruise Control Automaton 130
4.29 Constraint Graph after Reduction of Cycle C1 134
4.30 Constraint Graph after Splitting of Node B2

1 134
4.31 Constraint Graph after Splitting of Node N 135
4.32 Constraint Graph after Reduction of Cycle C2 136
4.33 Constraint Graph after Reduction of Cycle C3 136
4.34 Constraint Graph after Splitting of Node B1

2 137
4.35 Constraint Graph after Reduction of Cycle C4 138
4.36 Constraint Graph after Splitting of Node B2

1 138
4.37 Constraint Graph after Reduction of Cycle C5 139
4.38 Hybrid Automaton after the Reductions and Splittings 140
4.39 Hybrid Automaton after Reachability Analysis 140
4.40 Conservative Under-Approximations of Lyapunov Function Sets 141
4.41 Over-Approximation Constraints . 144
4.42 Over-Approximation of Solution Sets for a Given Under-Approximation . 145
4.43 Greedy Refinement Step . 148
4.44 Deadlock Situation for Greedy Refinement 149
4.45 Two-Loop System . 150

218

List of Figures

4.46 Reduction Graph with Connecting Path between Top-Level Cycle C4 and
Cycle to be Refined C1 . 152

5.1 Graphical Representation of a Probabilistic Transition (m1, T,G,U) with
Two Target Modes . 159

5.2 Example of a Probabilistic Hybrid Automaton 160
5.3 Sketch of the Behavior of a Martingale 162
5.4 SCC Decomposition of Example Automaton 172
5.5 Schematic View of System with GA(p) SCCs 173
5.6 Two Cycles Sharing a Probabilistic Transition 174
5.7 Transient Cycle Consisting of m1 and m2 176
5.8 MDP-based Decomposition of Example Automaton 178

6.1 Joining Modes . 185
6.2 Transfer of Control between Components 192

219

	Introduction
	Stability Verification of Hybrid Systems
	Contribution of this Thesis
	Thesis Outline

	Stability Verification of Hybrid Systems – The State of the Art
	Hybrid System Models
	Stability Properties
	Lyapunov Stability Properties
	Generalized Stability Properties
	Stochastic Stability Properties

	Lyapunov Functions
	Lyapunov Theorems
	Automatic Computation of Lyapunov Functions
	Identification of Stabilizing Controllers
	Lyapunov Functions as Barrier Certificates

	Other Methods for Stability Proofs
	Decompositional Verification and Compositional Design

	Lyapunov Function Computation for Hybrid Systems
	Notation
	Modeling Hybrid Systems
	Solutions to Differential Inclusions
	Hybrid Automata

	Global Asymptotic Stability and Lyapunov Functions
	Global Asymptotic Stability
	Lyapunov Functions

	Lyapunov Functions as Barrier Certificates
	Computing Lyapunov Functions
	Linear Matrix Inequalities
	LMIs for Stability Proofs
	The Sums-of-squares Decomposition
	Estimating Convergence Times

	Numerical Solution of LMI Problems
	Available Software
	Brief Outline of Semidefinite Programming Algorithms
	Numerical Issues
	Checking SDP Results

	Example
	Summary

	Decompositional Stability Analysis
	Decomposing Hybrid Automata
	Graph Structures
	Decomposition of Stability Proofs into Strongly Connected Components
	Decomposition within Strongly Connected Components
	Lyapunov Functions for Single Cycles
	Local Constraint Systems as LMIs
	Continuous versus Discontinuous Lyapunov Functions
	Common versus Piecewise Lyapunov Functions
	Reachability Analysis within Cycles

	Cruise Control Example
	Refining the Border Node Predicates
	Approximation Refinement for Two Intersecting Cycles
	Approximation Refinement for Strongly Connected Components

	Summary

	Stability Analysis of Stochastic Hybrid Systems
	Probabilistic Hybrid Automata and Stochastic Stability
	Lyapunov Functions for Probabilistic Systems
	Decomposition Techniques
	Decomposition of Probabilistic Hybrid Automata into Strongly Connected Components
	Decomposition of Probabilistic Hybrid Automata into Simple Cycles
	MDP-based Decomposition of Probabilistic Hybrid Automata within Strongly Connected Components

	Summary

	Structured Design of Stable Systems
	Stability-preserving Transformations of Hybrid Automata
	Component Based Design of Stable Hybrid Automata
	Plants and Components
	Stability Proofs via Lyapunov Function Projections

	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

