
Fakultät II – Informatik, Wirtschafts- und Rechtswissenschaften

Department für Informatik

An Automated Semantic-Based
Approach for Creating Task Structures

Dissertation zur Erlangung des Grades eines

Doktors der Ingenieurwissenschaften

vorgelegt von

Dipl.-Inform. Matthias Büker

Gutachter:

Prof. Dr. Werner Damm
Prof. Dr. Martin Fränzle

Tag der Disputation: 04. Februar 2013

c© 2013 by Matthias Büker

Author’s address: Matthias Büker
OFFIS
Escherweg 2
D-26111 Oldenburg
Germany

E-Mail: matthias.bueker@offis.de
matthias.bueker@gmx.net

ii

Danksagung

Zunächst möchte ich meinem Doktorvater Prof. Dr. Werner Damm sowohl für die
fachliche Betreuung meiner Arbeit, die vielen wertvollen Anregungen und die Stellung
anspruchsvoller Herausforderungen als auch für die persönlichen Gespräche danken.

Zudem danke ich der Prüfungskommission bestehend aus dem Vorsitzenden Prof.
Dr. Ernst-Rüdiger Olderog, den Gutachtern Prof. Dr. Werner Damm und Prof.
Dr. Martin Fränzle sowie Dr. Sibylle Fröschle für ihre Bereitschaft meine Arbeit zu
begutachten. Insbesondere danke ich Prof. Dr. Martin Fränzle, dass er trotz der
unglücklichen Umstände bereit war an meiner Disputation teilzunehmen.

Des Weiteren geht ein ganz großer Dank an meinen “Sparringpartner” Dr. Ingo
Stierand, der immer für Fragen und Diskussionen zur Verfügung stand und bereit war
große Teile meiner Arbeit Probe zu Lesen. Weiterer Dank gebührt Tayfun Gezgin,
der insbesondere bei den formalen Teilen der Arbeit als weiterer Probeleser eine große
Hilfe war sowie Günter Ehmen und Matthias Stasch, die mich beim Vorbereiten meiner
Evaluation unterstützt haben. Ebenso danke ich Jan-Patrick Osterloh für die Betra-
chtung meiner Arbeit aus einem anderen Forschungsblickwinkel, um insbesondere die
einleitenden Passagen verständlicher zu gestalten.

Ein besonderer Dank gilt auch meinem Gruppenleiter der Forschungsgruppe EEA
am OFFIS, Dr. Stefan Henkler, der mir vor allem in der “heißen” Phase immer
den Rücken frei gehalten hat um meine Arbeit fertig stellen zu können. Ich danke
auch allen weiteren aktuellen und ehemaligen Mitgliedern der Gruppe EEA, die mir
ein angenehmes und diskussionsfreudiges Arbeitsumfeld geboten haben bestehend aus
Raphael Weber, Philipp Reinkemeier, Eike Thaden, Sunil Malipatlolla, Maike Rosinger,
Stefanie Schlegl, Alexander Stühring und Guilherme Baumgarten. Ich danke auch allen
Kollegen aus den benachbarten Gruppen HDM, SAV-RSM, SAV-DAT und HCD vom
OFFIS sowie den Bereichen “Sicherheitskritische Eingebettete Systeme”, “Hybride
Systeme” und “Eingebettete Hardware/Software Systeme” der Universität Oldenburg
für spannende Seminare, Klausurtagungen, Vorträge und Diskussionen. Ein großer
Dank geht auch an alle, die an meinem tollen Doktorhut mitgearbeitet haben!

Einen weiteren Dank möchte ich aussprechen an meinen ehemaligen Gruppenleiter
Prof. Dr. Alexander Metzner, der mich besonders in der Anfangsphase der Arbeit bei
der Themenfindung und Entwicklung der Grundideen unterstützt hat.

Nicht zuletzt möchte ich meinen Eltern und ganz besonders meiner wundervollen
Frau Mirja für ihre mentale und emotionale Unterstützung insbesondere in der nerven-
beanspruchenden Endphase der Arbeit danken. Ohne Dich hätte ich das vermutlich
nicht durchgestanden. Danke!

iii

Zusammenfassung

Bei der Entwicklung von sicherheitskritischen eingebetteten Systemen müssen ver-
schiedenste Aspekte berücksichtigt werden, um die Korrektheit des Systems nachzu-
weisen. Neben der rein funktionalen Korrektheit müssen solche Systeme auch Realzeit-
eigenschaften erfüllen, die typischerweise in so genannten End-to-End Deadlines aus-
gedrückt werden. Eine End-to-End Deadline fordert, dass bestimmte Ereignisse die im
System beobachtet werden können innerhalb eines definierten Zeitintervalls auftreten.
Dazu müssen alle Berechnungs- und Kommunikationsprozesse die für das Auftreten
dieser Ereignisse notwendig sind innerhalb dieser Zeitspanne ausgeführt werden. Um
solche Zeitanforderungen zu verifizieren sind verschiedene Techniken verfügbar beste-
hend aus formalen analytischen Methoden wie beispielsweise der Scheduling-Analyse
oder Berechnungsmethoden wie Model-Checking. Um diese Methoden anwenden zu
können, werden die Softwareanteile des Systems typischerweise als Tasknetzwerk dar-
gestellt. Ein Tasknetzwerk ist ein gerichteter Graph bestehend aus Knoten die An-
wendungsprozesse (Tasks) repräsentieren und Kanten die Abhängigkeiten zwischen
Prozessen beschreiben.

In der industriellen Praxis gibt es eine Lücke zwischen der Spezifikation von Modellen
durch einen Entwickler mittels eines Modellierungswerkzeugs wie MATLAB Simulink
und der Darstellung als Tasknetzwerk, wie es für die Analyse von Zeiteigenschaften
benötigt wird. Einerseits muss der Entwickler manuell entscheiden welche Teile des
Modells zu einem Task zusammengefasst werden sollen und auf der anderen Seite muss
die Semantik des Spezifikationsmodells bei der Erstellung des Tasknetzwerks erhalten
bleiben. Andernfalls ist nicht sichergestellt, dass eine Analyse von Zeiteigenschaften
tatsächlich das spezifizierte System überprüft. Hinzu kommt, dass in Werkzeugen
wie Simulink keine Hardware modelliert und daher auch keine Allokation einzelner
Softwareelemente auf Ausführungsressourcen wie Prozessoren betrachtet wird.

Der in dieser Dissertation vorgestellte Ansatz zur Erzeugung von Task-Strukturen
(Task Creation) bildet den ersten Teil eines Prozessframeworks zur Untersuchung des
Entwurfsraums eingebetteter sicherheitskritischer Systeme. Dieses Framework um-
fasst den gesamten Entwicklungsablauf, angefangen bei der Spezifikation von neuen
Funktionen eines Fahrzeugs in Form von Simulinkmodellen, bis hin zu deren verteil-
ter Ausführung auf hierarchischen elektronischen Hardwarearchitekturen. Bei der
Task Creation wird in einem ersten Schritt aus einem gegebenen Simulinkmodell
automatisch ein Tasknetzwerk abgeleitet, welches die partielle Ordnung von Block-
ausführungen erhält. Um diese Klasse von Modellen repräsentieren zu können, wird
der Formalismus der Tasknetzwerke zu so genannten Funktionsnetzwerken erweitert.

Da ein aus Simulink gewonnenes Funktionsnetzwerk jedoch unausgewogen ist hin-
sichtlich seiner Knotengewichte im Sinne von Rechenintensität, werden in einem zwei-
ten Schritt Knoten zu Tasks verschmolzen mit dem Ziel die so genannte Kohäsion

v

zu minimieren. Dieses Optimierungsmaß definiert, dass sich Knoten mit einer ho-
hen Kommunikationsintensität anziehen und Knoten mit hohen Knotengewichten ab-
stoßen. Das Ziel ist es Tasks mit sehr kleinen Gewichten zu vermeiden, um die Zahl
der Taskwechsel zu reduzieren und die Kommunikation zwischen Tasks zu minimieren
was die Busse der Hardwarearchitektur potentiell entlastet. Um die Korrektheit der
Taskstruktur zu gewährleisten werden formale Kompositionsoperationen zum Ver-
schmelzen von Knoten in einem Funktionsnetzwerk definiert. Für jede Operation
wird nachgewiesen, dass diese die Semantik des Spezifikationsmodells im Sinne der
Kausalität von Block- beziehungsweise Knotenausführungen erhält.

vi

Abstract

For the design of safety-critical embedded systems, many different aspects have to be
considered to guarantee the correctness of the system. Besides functional correctness,
these systems also have to meet real-time constraints expressed in terms of end-to-end
deadlines. End-to-end deadlines claim that certain system events must occur within
a given time interval. This means that all involved computation and communication
processes have to be finished within this time bound. To verify such time bounds,
different techniques may be used, such as scheduling-analysis as an analytical method,
and model-checking as a computational method. For this step, the software parts of the
model are typically represented as a task network. A task network is a directed graph
of task nodes representing application processes, and edges indicating dependencies
between processes.

In practice, there is a gap between the specification model a designer creates in high
level modeling tools like MATLAB Simulink, and the task network representation used
for timing analysis. On the one hand, the designer has to decide manually which parts
of the model should form a task, and, on the other hand, semantics of the specification
model has to be preserved when creating the task network. Otherwise, it cannot be
assured that the timing analysis really verifies the specified system. Additionally, tools
such as Simulink abstract from any concrete target hardware architecture and how the
different software parts are mapped to hardware resources for execution.

The approach proposed in this PHD-thesis is called task creation and forms the first
part of a design space exploration framework for safety-critical embedded systems.
This framework addresses the complete design flow from specification models of new
automotive features captured in Simulink to their distributed execution on hierarchical
bus-based electronic architectures. During task creation, in a first step, a task network
is derived automatically from a given Simulink model by preserving the partial order
of block executions. To be able to represent Simulink models, the formalism of task
networks is extended to so-called function networks offering more expressiveness.

As the obtained network is typically unbalanced in the sense of computational node
weights, in a second step, nodes are merged to form application tasks following an op-
timization metric called cohesion. This metric is defined such that nodes are attracted
by high communication density and repelled by high node weights. The goal is to
reduce task switching times by avoiding too lightweight tasks and to relieve the bus
by keeping inter-task communication low. To obtain tasks correctly, we define formal
composition operations for merging nodes in a function network. For each operation,
we prove that it preserves specification semantics in terms of causality of block and
node executions, respectively.

vii

Contents

1 Introduction 1
1.1 Overview and Goals . 2
1.2 Concept and Approach . 5
1.3 Outline . 7

2 Basics 9
2.1 General Definitions and Notations . 9
2.2 Timed Languages and Timed Automata 10
2.3 Event Streams and Event Models . 13

2.3.1 Event Models . 14
2.3.2 AND- and OR-Operations on Event Models 15

2.4 Task Networks . 17
2.5 MATLAB Simulink . 18

3 Function Networks 21
3.1 Event Patterns . 26

3.1.1 Definition of Event Patterns . 27
3.1.2 Properties and Operations . 30

3.2 Function Network Definition and Properties 36
3.2.1 Basic Function Networks . 36
3.2.2 Extended Function Networks . 39
3.2.3 Properties of Function Networks 47

3.3 Semantics of Function Networks . 49
3.3.1 Causality and Timing Patterns 49
3.3.2 Basic Function Network Components 56
3.3.3 Extended Function Network Components 80

3.4 Boundedness and Event Pattern Propagation 82
3.4.1 Event Pattern Propagation . 83
3.4.2 Boundedness . 87

3.5 Summary and Related Work . 98

4 Translating Simulink Models to Function Networks 103
4.1 Formal Semantics for Simulink Models 107

4.1.1 Timed Synchronous Block Diagrams 108

ix

Contents

4.1.2 Execution Semantics for Simulink Models 110
4.2 Translating Simulink . 117
4.3 Preserving Semantics . 124
4.4 Summary and Related Work . 135

5 Task Creation 141
5.1 Cohesion and Weights . 145
5.2 Formal Composition Operations and Semantics Preservation 147

5.2.1 Merging nodes . 149
5.2.2 Elimination of Local Data Nodes 153
5.2.3 Elimination of Self-Activations 159

5.3 Task Creation Algorithm . 168
5.4 Case Study and Evaluation . 173
5.5 Summary and Related Work . 178

6 Design Space Exploration 185
6.1 Overview of Design Space Exploration Process 187

6.1.1 Global Analysis . 187
6.1.2 Local Analysis and Backtracking 189

6.2 On the Role of Task Creation . 190
6.3 Case Study and Evaluation . 193
6.4 Summary . 195

7 Conclusion 197

A Proofs for Function Networks 201
A.1 Proofs for Event Patterns . 201
A.2 Proofs for Function Network Semantics 210
A.3 Proofs for Boundedness and Event Pattern Propagation 214

B Proofs for Simulink Translation and Preserving Semantics 217
B.1 Proofs for Translation . 217
B.2 Proofs for Preserving Semantics . 219

C Proofs for Task Creation 231
C.1 Proofs for Formal Composition Operations 231

Index 235

List of Figures 237

List of Tables 239

Bibliography 241

x

1. Introduction

This work is settled in the area of the design and analysis of safety-critical embedded
systems with the focus on real-time properties. Embedded systems are computer
systems that are part of other larger systems or devices with a certain purpose, and
are found in multiple domains, such as aviation, automotive or automation engineering.
Typical tasks of embedded systems are to control and monitor such systems, which
may include also mechanical parts.

Because embedded systems often control safety-critical tasks - in particular in the
aviation and automotive domain - the verification of certain properties concerning
safety, functionality and timing is key to make them available for the productive use.
Functional and timing properties are usually strongly related because the correct func-
tionality is only assured if timing constraints are met. Typical timing constraints
are end-to-end deadlines between specific system events. For example, the actuator
triggering the airbags of a car has to be activated within a time bound of 15 to 30
milliseconds after a collision has been detected by a crash sensor to guarantee that the
airbags inflate in time to protect the passengers. To verify timing constraints, there
exist different approaches, which can be divided into analytical methods as scheduling
analysis [66], and computational methods as model-checking [19]. To be able to apply
those analysis techniques, the software parts of the system are modeled as a process or
task network [24]. In general, a task network is a graph where nodes represent appli-
cation tasks implemented as executable program code. Tasks are connected by edges
modeling dependencies between tasks. For modeling communication, task networks
may also contain signals, which transmit data between tasks. The occurrence of events
in task networks is typically described by event streams and event models [73, 40].

The design of safety-critical embedded systems involves several phases, like definition
of requirements, system specification, and implementation of the system on a hardware
platform. This work is part of a framework [10, 11] that aims at automating significant
parts of the design flow in a typical scenario for embedded application development
in the automotive domain. It was developed within the Transregional Collaborative
Research Center “Automatic Verification and Analysis of Complex Systems” (SFB/TR
14 AVACS). In this framework, a common hierarchical bus-based target architecture
from the automotive domain is considered, where electronic control units (ECUs) are
clustered in subsystems. Subsystems are connected by a backbone TDMA (Time
Division Multiple Access) bus. In Figure 1.1 an example of such an architecture is
depicted with three subsystems connected by a FlexRay backbone bus, where each
subsystem contains a set of ECUs, which communicate via a local CAN bus.

Motivated by the iterative design process in industrial practice, we assume that
this architecture is already pre-deployed with the functionality of an existing set of
applications in terms of software tasks. This is sketched in Figure 1.1, where a part

1

1. Introduction

FlexRay
(1-2MBit/s)

CAN (FlexRay) CAN CAN

ARM7
(50-80MHz)

PPC

(ARM7)

Subsystem 1 Subsystem 2 Subsystem 3

Figure 1.1.: Distributed Hardware Architecture

of the pre-deployed task network is shown on the left. The dotted arrows indicate the
allocation of tasks to processors and signals to buses. The utilization of the existing
processors, induced by pre-deployed tasks, is indicated by partially filled boxes. For
example, in Subsystem 1, the ECU at the top left is filled with around 70% utilization.

For the next generation of the system, a new customer feature should be imple-
mented. This might be, for example, a new driver assistance system. For the feature
specification of embedded systems in the industrial practice, there exist a number of
high-level modeling tools for the individual domains. For this work, we will focus on
the automotive domain, where Simulink is a standard tool for system modeling.

To offer sufficient computational capacity for the new feature, the hardware archi-
tecture may be modified by adding new ECUs, or by replacing existing ones by more
powerful ECU types. In Figure 1.1, allowed modifications are shown in parenthesis.
For example, the left ECU of Subsystem 2 is an ARM7 processor that may be clocked
with 50 to 80 MHz. The empty box on the top right of the same subsystem indicates
the possible addition of another ARM7 ECU. Each modification induces costs depend-
ing on the added or replaced ECU type. The overall goal of the framework is to find
a conservative cost-optimized extension of the existing architecture to implement the
new feature while meeting all timing constraints.

1.1. Overview and Goals

The approach presented in this work forms the front-end of the design space exploration
framework shown in Figure 1.2, where the scope of this work is indicated by a dashed
rectangular box. In this first part, a task structure is automatically derived from
a Simulink specification model of a new feature. In the succeeding Design Space
Exploration (DSE), this task structure should be deployed to an existing system in
terms of software tasks allocated to a distributed hardware architecture.

The first goal of this work is to define a Translation (1) of the structure of a Simulink
model and its timing properties into a task network. To be able to represent the
semantics of Simulink models, the task network formalism is extended to a so-called
function network. For each block of the Simulink model, worst case execution times

2

1.1. Overview and Goals

Structure/
Timing

Translation (1)

Task Creation (2)

Task Structure

Behaviour

Result System

Function Network

WCET Calculation

Set of System
Architectures

Design Space
Exploration

Initial System Modification
Rules

Scope of this Work

Simulink Model

Figure 1.2.: Overview of Design Space Exploration Framework

(WCETs) are estimated based on generated code. These WCETs are used to estimate
computational weights for the obtained function network nodes. Please note, that
WCET calculation itself is not part of this work.

One scientific challenge for this part is to assure the correctness of the translation
from a synchronous language like Simulink to an asynchronous task network formalism
meaning that same input values lead to same output values. This is done by showing
that the execution semantics of Simulink in terms of the partial order of block execu-
tions is preserved such that signals are computed in a valid order. The correct behavior
of single blocks is ensured by generating code using existing code generators. Another
challenge is to define an extension of the task network formalism that enables to repre-
sent the execution semantics of Simulink models and to prove the relevant properties
needed to show the correctness of the translation. Because we aim at an implementable
system, also the question of boundedness is highly relevant meaning that the software
system is implementable with a finite set of (memory) resources. Thus, a class of
function networks is defined where boundedness is decidable and which is sufficient to
represent Simulink models.

Because the network obtained from a Simulink translation typically consists of a
large number of nodes with unbalanced computational weights and a high amount of
communication, the second goal of this work is to derive a reasonable task structure
from the translated function network. To realize this, in the so-called Task Creation
(2) step, nodes are iteratively merged into tasks by formal composition operations
on function networks. The scientific challenges in this part can be divided into two

3

1. Introduction

categories: First, a methodology and optimization metric for merging nodes needs to
be developed with the aim to derive a task structure that is suitable to be mapped
to a pre-deployed distributed hardware architecture as it is considered in the design
space exploration. Second, it needs to be assured that the execution semantics of
the specification model is preserved by the formal composition operations to merge
function nodes. This is done by showing that the partial order of Simulink block
executions is not violated by any merging operation.

The resulting task structure serves as input to the design space exploration process,
which has the goal to find a feasible task allocation on the distributed architecture with
minimum costs. The set of available system architectures is comprised of the initial
system and a set of allowed modification rules. However design space exploration is
no conceptional part of this work, it is used to evaluate the proposed approach in the
overall context of the framework.

Overview of Related Work A lot of work has been done concerning the translation of
Simulink into other synchronous or asynchronous languages. In [81], Simulink models
are translated to Lustre to partition the generated code into modules that are executed
on different processors communicating via a time-triggered bus. Here, the focus lies on
efficiently generating modular code and separating it into different modules respecting
a global partial order. In our approach, we use existing code generators to generate
code for Simulink blocks and thus the question of optimal code generation is not in
the scope of this work but can be considered as supplementary.

A further work was presented in [80], where a synchronous model is implemented
on a loosely time-triggered architecture. The authors only consider single-rate models
while for our approach the semantic preservation for multi-rate models is one major
part. Furthermore, they cannot always guarantee that no data is lost because they
allow Simulation steps of Simulink to overlap. Similar problems occur in [71], where
tasks are identified manually from a Simulink model and scheduled in a fixed-priority
preemptive scheduling. In our translation, we follow the Simulink simulation semantics
and forbid overlapping executions by defining respective end-to-end deadlines to assure
data consistency.

In [6] and [7], an overview is given on the basic idea of synchrony and the most
important synchronous languages and it is discussed how to translate a synchronous
language to an asynchronous one in general. In contrast to these approaches, we do
not aim at representing the complete functional behavior of a synchronous model in
our translation to an extended task network model. Instead, we assure the correctness
of our translation by preserving the partial order of signal updates induced by block
executions. The functional correctness of the computations of single blocks is assured
by applying existing code generators to generate code for those blocks.

An approach comparable to the idea of task creation was proposed in [23], where
an optimization of the multi-task implementation of Simulink models with real-time
constraints is considered. The optimization goal is to reduce the use of rate transition
blocks between different synchronous sets to minimize buffering and latencies. The
tasks for the scheduling analysis are either determined by the synchronous sets or

4

1.2. Concept and Approach

are also part of the optimization problem. Beside the optimization goal, the main
difference to our work is the target hardware in terms of a single processor, while we
consider a distributed bus-based architecture.

Another work from Kugele et al. [46] is also based on synchronous languages and
presents a way to deploy clusters in terms of tasks on a multi-processor platform. This
allocation process is completed by a scheduling analysis. The authors also raise the
question of how to generate clusters of nodes to form tasks but assume that this is a
decision that is taken manually by the user.

A more detailed discussion of related work can be found in the summary of each
main chapter of this work.

1.2. Concept and Approach

In Simulink, the functionality of a system is modeled in terms of synchronous block
diagrams, where each block fulfills a specific function. Blocks are connected by signals
delivering values from one block to another. A block may first be executed if all its
input signals have been updated by the execution of preceding blocks. Sample times are
used to determine at which points in time a block is executed, and consist of a period
and an initial phase offset. Synchronous sets are defined as a set of connected blocks
with the same sample time. Blocks of different synchronous sets may also be connected
by rate transition blocks if their periods are integer multiples. Those blocks ensure that
the respective signal values are available if the succeeding block is executed and that
the partial order is guaranteed if both connected blocks are executed in one simulation
step. To structure the model, subsystems may be used, which are hierarchical blocks
containing other blocks and signals. In Figure 1.3, an example of a Simulink block
diagram is shown consisting of three synchronous sets with sample times ST1, ST2,
and ST3. A rate transition block named RTB connects the synchronous sets with
sample times ST1 and ST2.

+
+

X

5 7

+
+

1/z

ST1

ST3

ST2

1/z

RTB

k

Figure 1.3.: Example of a Simulink Block Diagram

In Simulink, it is possible to model discrete systems in terms of the actual embedded
controller as well as continuous systems, which may be used to model the environment.
Simulink models can be simulated to evaluate the functionality of the system. During
simulation, block execution in Simulink does not consume time. Instead, simulation
is performed in discrete steps for discrete controller models. Thus, it is implicitly
assumed that in each step all needed blocks can be executed to deliver results at their

5

1. Introduction

output ports. Obviously, the assumption of instant block execution cannot hold for
any implementation because task execution on an ECU always consumes time.

This leads to a gap between specification models, as they are designed in Simulink,
and task networks, which are the basis for timing analysis. To close this gap, it
first needs to be assured that a Simulink model can be correctly translated into a
task network. Because we aim at analyzing timing properties, we abstract from the
concrete functional behavior of blocks. Instead, we define a translation to be correct if
it preserves the partial order of Simulink block executions and satisfies the assumption
that all blocks are executed within one simulation step.

To be able to represent the semantics of a Simulink model in terms of synchroniza-
tion of multiple input signals and consistent behavior of blocks with different sample
times, we define an extended task network called function network, which allows more
expressiveness. In a function network, tasks are denoted as function nodes and edges
as channels. As a first extension, we introduce AND-activation (synchronization) of
incoming channels of function nodes to translate blocks with multiple input signals.
To model rate transition blocks that convert from a slower to a faster period, we fur-
ther define OR-activation (superposition) to model the additional activations. A rate
transition from a faster to a slower block must only write each n′th signal update,
where n is the integer multiple of the respective sample times. To realize this, we
define an internal state transition system for function nodes, which allows to produce
different output events depending on the state and received input events.

As a further block type, in Simulink data store memory blocks are used to model
data exchange between blocks without inducing a partial order relation. To allow the
modeling of such data dependencies, we define special communication nodes called
data nodes. Data nodes may be of different types as shared memory and FIFO buffers.
To be able to show preservation of certain semantic properties during translation and
task creation, semantics of function networks needs to be defined formally. This is
done by defining atomic components in terms of timed automata that are composed
to function network elements like function nodes and channels.

Based on the function network formalism, we define a translation from Simulink
specification models, where blocks are translated to function nodes and signals to
channels. Because the hierarchy of the model in terms of subsystems does not influence
the semantics but is only used to structure the model, we translate the flattened block
diagram. To show that the partial order of block executions is preserved in the function
network translation, we relate Simulink signal updates to function network events.
Furthermore, it has to hold that all block executions of a simulation step are finished
before the next simulation step starts.

After the translation, the process continues with the decision which parts of the
specification model should form a task. The code generator of Simulink offers a multi-
task implementation, where all blocks with the same sample time are realized as one
task. However, this is not necessarily the best choice if tasks should be allocated to
a distributed hardware architecture with pre-deployed tasks. In this scenario, ECUs
usually have a high utilization by the existing tasks in order to use hardware resources
efficiently. Thus, tasks that need a high amount of computational capacity might
not be deployable to any existing ECU. Hence, we need to find a partitioning of the

6

1.3. Outline

specification functionality into a set of tasks with “reasonable” computational needs.
To describe the computational capacity a task needs for its execution, we introduce
node weights. Thus, one goal for task creation is to avoid tasks with too large weights.
On the other hand, task weights should also not be too small. If we would, for example,
assume each atomic block of a Simulink model to be represented as one task, this would
lead to a very high number of tasks with comparatively small weights. If such tasks
were deployed to an ECU, this would lead to frequent task switching, also denoted as
thrashing. In summary, task weights should be balanced to avoid both too heavy and
too lightweight tasks.

Another important aspect is that usually many blocks of a Simulink model are
connected by signals leading to a high amount of communication. If such a fine-
granular task network would be spread over a distributed hardware architecture, this
would lead to a high bus utilization. But buses are often the bottleneck of distributed
systems and can hardly be upgraded, or only with very high costs. Thus, a further
goal for task creation is to find a task set with a minimum inter-task communication
to relieve the buses. To cover all these issues, we define an optimization metric for
task creation called cohesion. It defines that nodes are attracted by edges with a high
communication density and repelled by high node weights. This leads to minimizing
inter-task communication and balancing task weights as well.

To perform task creation, an algorithm is defined that partitions function nodes into
task sets while minimizing cohesion. This is done in two steps, where first an initial
solution is created that is improved in a second step by a variant of the Kernighan-
Lin heuristic [43]. The result of the algorithm is a set of node partitions, where each
partition represents a task. To finish task creation, all function nodes within the same
partition are merged to one node in the function network. For this, we define a set
of formal composition operations. A merging of two nodes means that they will be
considered as one task and thus will be executed on one computation resource. This
leads to less task activations, and thus also to less task switches. As for the translation
from Simulink, we also show for the task creation operations to preserve the original
execution semantics of the specification model.

1.3. Outline

First, we introduce in Chapter 2 the fundamentals that are needed for this work in
terms of formalisms like timed automata, task networks, and tools like Simulink. In
Chapter 3, we define function networks as an extension of task networks. To be able to
show semantics preservation of the Simulink translation and task creation process, we
define causality and timing properties of function networks that should be preserved.
Furthermore, we show for a class of function networks that boundedness is decidable
by propagation event models through the network.

In Chapter 4, we define a translation of Simulink block diagrams into function net-
works and show that this translation preserves the partial order semantics of Simulink.
In Chapter 5, we present the task creation approach starting with defining the opti-
mization metric cohesion and weights of function nodes and channels. For merging

7

1. Introduction

nodes, we define formal composition operations and show that they preserve the spec-
ification semantics in terms of causality. Furthermore, an algorithm is proposed to
perform node partitioning and the approach is evaluated with a case study.

In Chapter 6, we shortly present the design space exploration process of the frame-
work and discuss the role of task creation. Furthermore, we evaluate the task creation
approach by applying the design space exploration with different task networks of the
same specification model. Finally, in Chapter 7, we conclude this work by summarizing
and discussing the results with respect to the defined goals.

8

2. Basics

In the context of this work, we make use of some formalisms and tools, which are intro-
duced in this chapter. We start with general definitions and notations in Section 2.1.
In Section 2.2, we define timed languages and timed automata, which build the base
to define semantics of function networks.

To describe the occurrence of events in a function network, event streams and event
models are used, which are presented in Section 2.3. In Section 2.4, task networks are
introduced which can be considered as predecessor of function networks. Finally, in
Section 2.5, we introduce the high level modeling tool suite MATLAB Simulink, which
we assume as starting point for our design process.

2.1. General Definitions and Notations

First, we define the following notations for sets of numbers:

• N0: Set of natural numbers including zero.

• N+: Set of natural numbers except zero.

• R: Set of real numbers.

• R+
0 : Set of positive real numbers including zero.

• R+: Set of positive real numbers except zero.

• Q+
0 : Set of positive rational numbers including zero.

• Q+: Set of positive rational numbers except zero.

Because execution times of tasks and function nodes, respectively, will be defined as
intervals of natural numbers, we define the following operations on intervals.

Definition 2.1.1 (Interval Arithmetic) Let [a, b] and [c, d] be intervals with a, b, c,
d ∈ N0. We define addition, minimum and maximum of intervals as follows:

• Addition: [a, b] + [c, d] := [a+ c, b+ d]

• Minimum: min([a, b], [c, d]) = [min(a, c),min(b, d)]

• Maximum: max([a, b], [c, d]) = [max(a, c),max(b, d)]

�

9

2. Basics

A basic concept to show semantics preservation of the Simulink translation is the
partial order relation. Based on [82], we define a partial order as follows:

Definition 2.1.2 (Partial Order) A (strict) partial order PO(Σ) is a binary rela-
tion < over a set Σ that is irreflexive, antisymmetric, and transitive, i.e. ∀a, b, c ∈ Σ:

(1) ¬(a < a) (irreflexive)

(2) a < b ∧ b < a =⇒ a = b (antisymmetric)

(3) a < b ∧ b < c =⇒ a < c (transitive)

We write (a, b) ∈ PO(Σ), if a < b where a is called predecessor of b, and b is called
successor of a. �

2.2. Timed Languages and Timed Automata

Timed automata are an extension of finite state machines with time and were defined
by Alur and Dill [3]. Timed automata offer a set of special variables named clocks,
which increase uniformly when time passes. Based on values of clocks, guards of
transitions allow to define constraints when a transition may be taken. Clocks may
also be reset to zero by transitions.

Furthermore, invariants allow to constrain how long an automaton is allowed to stay
in a specific state. States are often referred to as locations because the actual state of
a timed automaton is determined by the location and the value of all clocks.

The language of timed automata is defined in terms of timed words forming a timed
language. Based on [3] and [85], we define timed words and timed languages as follows:

Definition 2.2.1 (Timed Word and Timed Language) Let Σ be a set of events,
and let T = R+

0 be a time domain. An infinite sequence ω = (σi, ti)i∈N+ where σi ∈ Σ,
ti ∈ T is a timed word if and only if:

1. ∀i < j : ti ≤ tj (Monotonicity)

2. ∀c ∈ T ∃i : c ≤ ti (Progress)

Let Ω(Σ,T) be the set of timed words over Σ. Then L ⊆ Ω(Σ,T) is a timed language
over Σ. For a timed word ω = (σi, ti)i∈N+ , we also write (σ1, t1)(σ2, t2)...(σi, ti)... .
For each element of a word ω we write (σi, ti) ∈ ω. �

For system modeling, network of timed automata are defined, which are used in tools
like UPPAAL [5, 49]. In such a network, a set of timed automata communicate via
synchronization channels, where a sender channel is denoted as c! and its respective
receiver channel as c?. Furthermore, urgent synchronization channels are defined,
where delays must not occur if a synchronization transition on an urgent channel is
enabled. Edges using urgent channels for synchronization cannot have clock guards.
Also locations may be urgent, meaning that time is not allowed to pass when the
system is in such a location. In committed locations it additionally has to hold that

10

2.2. Timed Languages and Timed Automata

they are left with the next transition. If more than one automaton is in a committed
location, this has to hold for at least one of the committed locations.

We define clock constraints and clock valuations as done in [33] as follows:

Definition 2.2.2 (Clock Constraint [33]) Let C be a set of clocks. A clock con-
straint is defined by the syntax

ϕ ::= c1 ∼ t | c1 − c2 ∼ t | ϕ ∧ ϕ,

where c1, c2 ∈ C, t ∈ Q+
0 and ∼∈ {≤, <,=, >,≥}. The set of all clock constraints over

the set of clocks C is denoted by Φ(C). �

Definition 2.2.3 (Clock Valuation [33]) Let C be a set of clocks. Clock valuation
is a function

ν : C → R+
0

assigning each clock in C a non-negative real number.
We denote ν |= ϕ the fact that a clock constraint ϕ evaluates to true under the clock

valuation ν. We use 0C to denote the clock valuation {c 7→ 0 | c ∈ C}, abbreviate
the time shift by ν + d := ν(c) + d for all c ∈ C, and clock resets by ν[% 7→ 0] with
ν[% 7→ 0](c) = 0 if c ∈ %, and ν[% 7→ 0] = ν(c) else, where % ⊆ C. �

For the definition of timed automata, we rely on the definition of [85], while we
additionally allow the set of locations to be infinite.

Definition 2.2.4 (Timed Automaton)
A Timed Automaton (TA) is a tuple A = (L,Lc, l0,Σ,Σu, C, Inv,R) where

• L is a non-empty set of locations, Lc ⊆ L is the set of committed locations and
l0 ∈ L is an initial location,

• Σ is a finite alphabet of channels, inducing the action set Σ?! = {a? | a ∈
Σ} ∪ {a! | a ∈ Σ} ∪ {τ}, where τ denotes internal actions,

• Σu ⊆ Σ is the set of urgent channels,

• C is a finite set of clocks.

• Inv : L→ Φ(C) is a mapping which assigns an invariant to each location,

• R ⊆ L × Σ?! × Φ(C) × 2C × L is a set of transitions. A tuple t = (l, σ, ϕ, %, l′)
represents a transition from location l to location l′ annotated with the action σ,
the constraint ϕ and a set of clocks % which have to be reset.

For t we also write l
σ,ϕ,%−−−→ l′. �

As introduced in [85], we define a mapping chan “such that each element of the
action set is mapped to the corresponding channel, e.g., chan(σ!) = chan(σ?) = σ. If
chan(σ) ∈ Σu, then ϕ = true i.e. no guards are allowed on transitions synchronizing
on urgent channels” [85].

11

2. Basics

Following [85], we can model a system by a network of timed automata with pairwise
disjoint clock sets as follows: “A network of n timed automata is denoted by A1||...||An
and modeled by a timed transition system. During computation, each automaton is
in a specific location. The locations of all automata are collected in a control vector
denoted by l = (l1, . . . , ln). A change from location li to l′i of the ith automaton of
a given network is denoted by l[li/l

′
i] ”[85]. A timed transition system modeling a

network of timed automata is defined in [85] as follows:

Definition 2.2.5 (Timed Transition System [85]) Let Ai be a network of timed
automata with Ai = (Li, L

c
i , l

0
i ,Σi,Σ

u
i , Ci, Invi, Ri), i ∈ {1, ..., n} and pairwise disjoint

sets of clock variables. The semantics of such a network is defined in terms of a timed
transition system denoted as

T (A1||...||An) = (Σout,Conf ,Conf 0, C,→)

where

• Σout =
⋃n
i=1(Σu(Ai)\

⋃n
j=1,j 6=i Σu(Aj)) the so-called open synchronization chan-

nels of the network, inducing the action set Σ?!,out = {a? | a ∈ Σout} ∪ {a! | a ∈
Σout}

• Conf = {(l, ν) | li ∈ Li ∧ ν |=
∧n
j=1 Invj(lj)} is the set of configurations,

• Conf0 = (l0, 0C), where l0 = (l01, ..., l
0
n) is the initial location vector and 0C is

the initial clock valuation, i.e. {c 7→ 0 | c ∈ C},

• C =
⋃n
j=1 Ci is the set of clock variables,

• →⊆ Conf×(
⋃n
j=1 Σ?!,j ∪̇R+

0 ∪{τ})×Conf is the transition relation. A transition
((l, ν), λ, (l′, ν′)), also denoted by (l, ν)

λ−→(l′, ν′), has one of the following types.

– Delay transitions (l, ν)
t−→(l, ν + t) with t ∈ R+

0 can occur, if ν + t |=∧n
j=1 Invj(lj).Moreover, neither an urgent channel is active nor an automa-

ton is in a committed state, i.e.

(i) there exist no i, j ∈ {1, ..., n} and σ ∈ Σu with (li, σ!, ϕi, %i, l
′
i) ∈ Ri

and (lj , σ?, ϕj , %j , l
′
j) ∈ Rj

(ii) there exist no i ∈ {1, ..., n} with li ∈ Lci .
– Local transitions (l, ν)

λ−→(l′, ν′) with λ ∈ Σ?!,out∪{τ} can occur, if for some
i ∈ {1, ..., n} it holds that (l, λ, ϕ, %, l′) ∈ Ri, such that ν |= ϕ, l′ = l[li/l

′
i],

ν′ = ν[%i 7→ 0] and ν′ |= Invi(l
′
i). Furthermore it holds that if lk ∈ Lck for

some k ∈ {1, ..., n} then li ∈ Lci .
– Internal transitions (l, ν)

τ−→(l′, ν′) can occur, if for some i, j ∈ {1, ..., n}
with i 6= j and σ ∈ Σi ∩ Σj there are transitions (li, σ!, ϕi, %i, l

′
i) ∈ Ri and

(lj , σ?, ϕj , %j , l
′
j) ∈ Rj such that ν |= ϕi ∧ϕj, l′ = l[li/l

′
i][lj/l

′
j], ν

′ = ν[%i 7→
0, %j 7→ 0] and ν′ |= Invi(l

′
i) ∧ Invj(l′j).

Furthermore it holds that if lk ∈ Lck for some k ∈ {1, ..., n} then li ∈ Lci or
lj ∈ Lcj .

12

2.3. Event Streams and Event Models

�

Following [85] “given a configuration (l, ν) of a network of n timed automata M , we
say M can move to configuration (l′, ν′) by synchronizing on σ ∈ Σ?!,out after delay
d ∈ R+

0 , denoted by (l, ν)
σ−→
d

(l′, ν′), if and only if there exists a sequence

(l, ν)
ρ1−→(l1, ν1)

ρ2−→ . . .
ρn−→(ln, νn)

σ−→(l′, ν′), n ∈ N0,

with ρi ∈ R+
0 ∪ {τ}, 1 ≤ i ≤ n, such that

∑n
i=1 ρi = d ”[85] where τ + d = d.

For the definition of the language of a timed transition system, we slightly differ
from [85] and define the language also on internal symbols and not only on open
synchronization channels as follows:

Definition 2.2.6 (Language of TTS) Let M = (Σout,Conf ,Conf 0, C,→) be a net-
work of n timed automata. A finite sequence γ̄ = ((li, νi), λi)0≤i<n of pairs of config-
urations of M and actions λi ∈ Σ?!,out ∪̇ R+

0 ∪ {τ} for all 0 ≤ i < n is called partial
computation of M of length n if and only if ((l0, ν0), λ0) = ((l0, 0C), τ) and if adjacent

pairs are consecutive, i.e. (li, νi)
λi+1

−−−→(li+1, νi+1) for 0 ≤ i < n. An infinite sequence
γ of pairs of configurations of M and actions is called computation of M if each prefix
of γ is a partial computation.

We say a partial computation γ̄ computes the (finite) timed word ω = ((σi)0≤i<n,
(ti)0≤i<n), denoted by M

ω\n
� (l′, ν′), if and only if there exists a configuration (l′, ν′)

of M such that (l0, 0C)
σ′0−−−−→

t0−t−1

. . .
σ′n−1−−−−−−−→

tn−1−tn−2

(l′, ν′) with σi = chan(σ′i) for all

i ∈ {0, ..., n− 1}. We set t−1 = 0 to uniformly cover the case i = 0.
The TTS M computes the timed word ω if and only if it computes each prefix of ω.

The language L(M) of M is the set of timed words computed by M .
�

We apply two further extensions introduced for UPPAAL timed automata in [5, 49].
First, guards may be also defined over bounded integer variables, which are considered
as part of the state space. Second, we allow broadcast channels where one sender c!
synchronizes with an arbitrary number of receivers c?.

2.3. Event Streams and Event Models

Event streams are used in real-time theory and in particular in scheduling analysis to
describe the occurrence of task activations in terms of events within a specific time
interval. They are defined by four characteristic functions: The η− and η+ functions
give for a specific time interval the minimum and maximum number of events that
may occur i.e., η−(∆) = n means that within a time interval of ∆ at least n events
may be observed. The δ− and δ+ functions give for a specific number of events the
minimum and maximum time distance where this number of events may occur. Hence,
δ+(n) = ∆ means that the maximum time distance between n events is bounded by
∆. According to [73], both the pair of η and δ functions are each sufficient to represent
the characteristics of an event stream because they can be derived from each other.

13

2. Basics

2.3.1. Event Models

Based on event streams, event models were defined to represent a certain class of event
streams. In [40, 66], Jersak and Richter describe an approach to perform compositional
scheduling analysis using standard event models. The most common models are the
strictly periodic event model and the periodic with jitter event model where activations
may be delayed by a jitter. Jitter may also lead to overlapping invocations of events
if it becomes greater than the period, which is known as burst.

The periodic event model with jitter was defined by Jersak in [40] as follows while
we use slightly different notations to avoid ambiguities:

Definition 2.3.1 (Periodic with Jitter Event Model) Let Period ∈ R+ be a pe-
riod and Jitter ∈ R+

0 be a jitter. Periodic event streams with jitter are defined as

η+(t)P+J =

⌈
t+ Jitter

Period

⌉
η−(t)P+J = max

(
0,

⌊
t− Jitter
Period

⌋)
�

An extension of this model was proposed in [24], where for the η− and η+ functions
different periods P+ and P− are defined. Thus, the period may vary between these
bounds. This additionally allows to model sporadic streams where a minimum inter-
arrival time d− between events is defined. This is realized by choosing P+ = ∞ and
P− = d−.

The periodic/sporadic event model with jitter was defined in [24] as follows:

Definition 2.3.2 (Periodic/sporadic Event Model with Jitter) The periodic/
sporadic event model with jitter is a function EM : (Σ× T3) → 2Ω(Σ), where EM(e,
P−, P+, J) characterizes the set of timed traces with occurrences of events e with lower
and upper periods bounds P− ∈ R+, P+ ∈ R+ ∪ {∞} and jitter J ∈ R+

0 is defined for
0 ≤ J < P− ≤ P+ as

η+(∆) =

⌈
∆ + J

P−

⌉
,

η−(∆) = max

(
0,

⌊
∆− J
P+

⌋)
�

In Figure 2.1, the η functions for the periodic and sporadic event model are depicted
on the left and the δ functions on the right.

Another event model has been introduced by Thiele et al. in [78, 47], where a
performance analysis technique is proposed that is based on a formalism named Real-
Time Calculus (RTC). Here, so-called arrival curves are used to model the computation
that is requested by a process. In the following we give the definition of arrival curves

14

2.3. Event Streams and Event Models

∆

n

P−-J

P++J

δ+(n) δ−(n)

∆

η−(∆)η+(∆)n

P++JP−-J

Figure 2.1.: Periodic/Sporadic event stream model (Source: [24])

from [78, 47] while we differ from the original notation by denoting the minimum and
maximum distance (period) between event occurrences as P− and P+ instead of δu

and δl (where P− = δu, P+ = δl).

Definition 2.3.3 (Real Time Calculus (RTC) Arrival Curves) In RTC an ar-
rival curve is defined as upper and lower staircase function as follows:

αu(∆) := Nu +

⌊
∆

P−

⌋
αl(∆) := N l +

⌊
∆

P+

⌋
describing traces which contain at least αl(∆) and at most αu(∆) event signals for any
interval of length ∆ ∈ R+

0 . The parameter Nu can be understood as burst capacity,
which describes the number of events producible in zero time according to curve αu.
The parameters P− and P+ specify the minimum/maximum distance of two successive
events. The absolute values of parameter N l of the lower curve can be understood as
the fictitious numbers of periods (P+) before event emission has to be enforced every
P+ time unit. �

This model has some differences to the previous models because it does not define a
jitter. But it also allows different periods P− and P+ for the upper and lower curves
and additionally defines initial values N l and Nu for both curves. The initial value
for the upper curve may be modeled by the model of Jersak as well by choosing a
jitter greater than the period. Another difference is the definition of the η+ and αu

function. If we assume Jitter = 0 and Nu = 1 (which is implicitly the case in the
model of Jersak), the value of η+(k · Period) is k in the model of Jersak and Richter,
while in the RTC model αu(k · P−) is defined to be k + 1. Thus, analysis results may
differ depending on the utilized model.

2.3.2. AND- and OR-Operations on Event Models

Jersak defined in [40] operations for the synchronization (AND) and superposition
(OR) of event models where we focus again on the periodic event model with jitter.

15

2. Basics

AND-activation of event streams occurs if a task needs multiple inputs to be acti-
vated leading to the need to synchronize all input streams and to buffer events until all
synchronization partners have arrived. To ensure that an AND-activated task is ever
activated these input buffers need to be bounded, which is assured for periodic event
models with jitter if the period of all input models is the same. We will later prove
in Section 3.1 that this is a sufficient and necessary condition to decide boundedness
of buffers for periodic event models with jitter and an additional offset. According to
Jersak [40], AND-activation of periodic event models with jitter is defined as follows:

Definition 2.3.4 (AND-Activation - Periodic with Jitter) AND-activation of
n input event models described by the parameters (Periodi, Jitteri) with Periodi =
Periodj for all i, j ∈ {1, ..., n} is defined as the event model

(PeriodAND, JitterAND),

where PeriodAND = Periodi and JitterAND = max
i
{Jitteri}. �

OR-activation of event streams describes that a task is activated if on any of its
input streams an event occurs. This leads to a superposition of all input event models.
According to Jersak [40], OR-activation of such event models is defined as follows:

Definition 2.3.5 (OR-Activation - Periodic with Jitter) OR-activation of n in-
put event models described by the parameters (Periodi, Jitteri) with i ∈ {1, ..., n} is
defined as the event model

(PeriodOR, JitterOR), where

• PeriodOR = 1∑n
i=1

1
Periodi

• JitterOR is the minimum jitter which fulfills the following equations:⌈
t+ JitterOR
PeriodOR

⌉
≥

n∑
i=1

⌈
t+ Jitteri
Periodi

⌉

max

(
0,

⌊
t− JitterOR
PeriodOR

⌋)
≤

n∑
i=1

max

(
0,

⌊
t− Jitteri
Periodi

⌋)

�

In [40] it is shown that the minimum jitter values for the lower and upper curve are
always identical. Furthermore, an approach is proposed to calculate such a minimum
jitter by considering all constant segments of the upper curve for one macro period.
The overall minimum jitter can then be determined as the smallest value which satisfies
the equation for all constant segments.

16

2.4. Task Networks

2.4. Task Networks

A task network is a common formalism to model the software parts of a system in
performance and scheduling analysis of real-time systems. It is a graph formalism
consisting of nodes that are referred to as tasks or processes, and edges between tasks.
Edges typically model control-flow dependencies and thus also precedences between
tasks. Task activations are usually modeled using event streams, which have been
introduced in Section 2.3.

While there exist different variants of task networks, we rely on task networks as
they have been defined in [24]. There, a task network is defined as a graph consisting
of trigger nodes where events are produced, sinks where events are consumed, task
nodes representing processes, and edges between tasks representing control-flow de-
pendencies. Edges are sometimes also referred to as signals. Furthermore, tasks are
annotated with response times and execution times, respectively. They are defined
as an interval of a minimum and maximum time bound. Please note, that for this
definition, the event model from Def. 2.3.2 is used.

Definition 2.4.1 (Task Network [24]) A task network T N is a tuple (Σ, C,E)
where Σ is a set of event labels, C = Q ∪ T ∪ S, Q is a set of triggers, T is a set
of tasks, S is a set of sinks, and E ⊆ C × Σ × C is a set of edges. The components
are defined as follows:

• A trigger q ∈ Q is a tuple (e, P−, P+, J, πoute) where e ∈ Σ, and P−, P+, J ∈ T.
πoute is an event model, defined as EM(e, P−, P+, J).

• A task τ ∈ T is a tuple (e, f, P−, P+, J, R−, R+, πine , π
out
f) where e, f ∈ Σ, and

P−, P+, J, R−, R+ ∈ T. The event model πine is defined as EM(e, P−, P+, J)
and πoutf is defined as EM(f, P−, P+, J +R+ −R−).

• A sink s ∈ S is a tuple (e, P−, P+, J, πine) where e ∈ Σ, and P−, P+, J ∈ T. The
event model πine is defined as EM(e, P−, P+, J).

T N has to satisfy the following constraints:

• (C,E) must be an acyclic graph.

• For each q = (e, P−, P+, J, πoute) ∈ Q there is at least one edge (q, f, c) ∈ E with
c ∈ T .

• For each τ = (e, f, P−, P+, J, R−, R+, πine , π
out
f) ∈ T there is a unique edge

(c, e, τ) with c ∈ Q ∪ T and at least one edge (τ, g, d) ∈ E with d ∈ T ∪ S.

• For each s = (e, P−, P+, J, πine) ∈ S there is a unique edge (c, e, s) ∈ E with
c ∈ T .

• Components connected by an edge (c, e, d) ∈ E must be compatible, i.e., for
πoutc = EM(e′, P−c , P

+
c , Jc), and πind = EM(e, P−d , P

+
d , Jd), it must hold that

[P−c , P
+
c] ⊆ [P−d , P

+
d], and Jc ≤ Jd. �

17

2. Basics

T3

Bus CPU B

T4T1 T2

CPU A
stream
Event

Figure 2.2.: Example for a Task Network (Source: [24])

For this work, we will always refer to worst case execution times (WCETs) when
reasoning about task runtimes instead of response times. This is due to the fact that
we derive task networks from specifications in Simulink, where no hardware resources
are available and thus no interaction of tasks on a shared resource is considered.

In Figure 2.2, a task network is shown, where tasks have already been deployed to a
processor (CPU) or a bus. Tasks are depicted as white-filled circles with a label such
as T1 and edges between them are drawn as directed arcs. The gray-shaped circles
model the interface to the environment in terms of triggers and sinks. Trigger model
inputs, where events are produced with a specific event model and sinks represent
outputs, where events are consumed.

2.5. MATLAB Simulink

Simulink is a high level system modeling tool, which allows the modeling and sim-
ulation of dynamic systems from a multitude of domains including continuous and
discrete systems. It is based on MATLAB, which is a numerical computing environ-
ment. Simulink also offers a framework for code generation named Embedded Coder.
MATLAB, Simulink and Embedded Coder are distributed by MathWorks 1. Another
code generator for Simulink is TargetLink distributed by dSpace 2.

In Simulink, systems are modeled in terms of block diagrams, where blocks represent
specific functions and signals are used to connect output ports of one block with input
ports of another block. Simulink offers a rich library of standard modeling blocks
but also the possibility to create user-defined blocks such as so-called S-Functions.
Block diagrams may be simulated to observe the system behavior. For simulation a
solver needs to be chosen where different discrete and continuous solvers are available
depending on the characteristics of the system. Timing characteristics of blocks are
defined by sample times, which are defined by the user or by Simulink. Sample times
can be also classified as either being discrete or continuous. Discrete sample times
consist of a period per and an initial phase offset init. Thus, a block is executed in the
simulation steps init, init + per, init + 2 · per, For simulation, continuous sample
times are transformed into discrete sample times depending on the simulation step
size, which is determined by the chosen Simulink solver.

Discrete systems are, for example, used to model a controller that should be im-
plemented on a hardware platform whereas continuous systems are typically used to

1www.mathworks.com
2www.dspace.com

18

2.5. MATLAB Simulink

+
+

X

Step1

Step2

Mon1

Mon2

5 7

+
+

1/z

ST1 = [6,0]

ST3 = [5,2]

ST2 = [2,0]
1/z

RTB

k

Add1
Add2

Figure 2.3.: Example for a Simulink Block Diagram

model the environment of the discrete system. For this work, we only consider discrete
systems. For discrete systems and a discrete solver with a fixed step-size, code may
be produced by using code generators such as Embedded Coder or TargetLink.

In Figure 2.3, an example of a Simulink block diagram is shown. This model con-
tains three different sample times that are denoted as ST1, ST2, and ST3. For example,
sample time ST3 = [5, 2] means that those blocks are executed first in simulation step
2 and afterwards periodically with a period of 5 leading to the steps 2,7,12,17,... .
A set of connected blocks with the same sample time is referred to as a synchronous
set. Assuming a fixed-step solver, blocks of different synchronous sets may only be
connected by a signal if a rate transition block is inserted in between. This block guar-
antees a deterministic data transfer by holding the last value of a preceding producer
block and offering it to a succeeding consumer block if needed. The concrete behavior
depends on whether the producer or the consumer block has the larger period. If the
consumer block runs with a smaller period (meaning a higher rate), it is executed in
more steps than the producer block. Thus, the signal value of the producer block
must be available also when this block is not executed. In the other case, where the
producer block is executed more often, it is not necessary to store the value, but it
must be guaranteed that the order of block executions is preserved when both blocks
are executed in a simulation step.

Simulink also allows to model loops. For this work, we only allow models with so-
called non-algebraic loops meaning that each loop contains a delay block as e.g. a Unit
Delay block. In Figure 2.3, the part with sample time ST3 contains a non-algebraic
loop with a unit delay block denoted as 1/z. We also allow that the behavior of a block
may be modeled by finite state machines by using Stateflow. Stateflow is integrated
in Simulink and offers an environment to model so-called state charts.

19

3. Function Networks

As formal base for the Simulink translation and task creation, an extended task net-
work formalism called function network is introduced. To be able to show semantics
preservation, formal semantics of function networks is defined and properties about
causality and timing are derived that should be preserved when translating a Simulink
model and performing merging operations. As a necessary condition to implement
a system, also boundedness of function networks is discussed and a class of function
networks is defined where boundedness is decidable.

A function network is a graph that consists of nodes called function nodes, edges
called channels and trigger nodes called event sources, and is an extension of the task
network formalism presented in Section 2.4. In a task network, nodes represent tasks
that are pieces of software in terms of executable code, which should be executed on
a hardware processor. Tasks may have several properties, where from the real-time
point of view the most interesting are the worst case execution time (WCET), the
activation pattern describing when the task is triggered for an execution, and the
(hard) deadline when this task has to finish its execution. Furthermore, there may
exist end-to-end deadlines giving timing constraints over task chains. Deadlines and
activation patterns are properties that originate from the system specification, which
is given as a Simulink model for this work. Contrastingly, the worst case execution
time depends on the software code of the task and the target processor where the task
is executed. In the scenario we consider here, there exists a set of target processors and
thus the WCET can be determined for each target processor, for example, by using
aiT [30]. Thus, we get one WCET for each task and each target processor.

The need to extend the model of task networks has several reasons leading to differ-
ent kind of extensions. First, it is often not sufficient to assume that a task is triggered
by a single channel or trigger. In practice, we may have, for example, synchronous
activations, which means that a task is only activated if on all its incoming edges a
trigger event has occurred. This is typically the case in synchronous languages, such
as synchronous block diagrams used in Simulink. Please note, that for synchroniza-
tion, we always need a buffer to store events until all synchronization partners have
arrived. Furthermore, there may be also overlapping activations, denoted as superposi-
tion meaning that a task may either be activated by a trigger event a or a trigger event
b. We will need this kind of activation also when translating Simulink block diagrams
to model rate-transitions between blocks with different sample times. A further need
to represent superposition of task activations is the more general case, where a task is
part of different task chains that are executed independently from each other.

In function networks, we introduce input ports, which represent activation points of
function nodes and may have several incoming channels. To activate an input port on
each channel an event is needed realizing a synchronization of these events. Super-

21

3. Function Networks

{f}{e}

Synchronization

{g}

T2

{f}{e}

Superposition

{e,f}

T2

Figure 3.1.: Task Activation by Synchronization (AND) and Superposition (OR)

position may be modeled by a function node with multiple input ports, where each
input port activation leads to an activation of the node. This kind of activations can
already be found in existing task models as e.g. in [68]. To describe event occurrences
at ports in a function network, we introduce event patterns, which are an extension of
classic periodic event models [40].

In Figure 3.1 on the left, an example for a synchronization is depicted. Task T1
receives events from two incoming channels that lead to the same input port (depicted
as small circle). T1 is activated whenever an event e was received on the left channel
and an event f was received on the right channel leading to an event g at the output
port. On the right of Figure 3.1, an example for a superposition is shown. Task T2
is activated if an event e on the left channel or an event f at the right channel is
received. The received event is forwarded to the output port.

Another important reason to extend task networks is the fact that the WCET of a
task may depend on the input data it processes and on the internal state of the task,
which may change due to previous executions. In classic task networks, the WCET
of a task is a safe upper bound for all possible kinds of input data and internal state
configurations. This often leads to over-approximations in timing analysis and thus
possibly to a negative result in terms of a deadline violation although the assumed
WCET will never be reached under specific input and state conditions. There already
exist analysis approaches to cover these issues such as state-based scheduling [56].

As an example, we could think of a simple adaptive cruise control (ACC) system
equipped with speed sensors φ1 and φ2 and a distance sensor φ3, which measures the
distance to preceding cars as depicted in Figure 3.2. The sensor values are aggregated
by the tasks fv (speed sensors) and fd (distance sensor). The resulting values are
forwarded to a controller task fc, which decides whether it is necessary to initiate a
braking action to avoid a collision. As long as the distance is not critical, denoted by
the event ok, the task forwards the values to nodes of the car periphery via task fe.
This only needs a comparatively small execution time. If the distance to the vehicle
ahead becomes critical, denoted by the event crit, a braking measure is initiated by an
event b triggering task fb. This deceleration process must be controlled leading to a
mode change of the controller task involving a larger execution time. We will consider
this example in more detail in Section 3.2.

If we were able to represent this kind of information in a task network model, this
may reduce over-approximations in timing analysis and thus improve the quality of

22

d

fv fd

fc

fe fb

Figure 3.2.: Simple Example of an Adaptive Cruise Control (ACC) System

the results. Thus, in design space exploration, task allocations may become feasible
that would be rejected with classic task networks. This may lead to more possible
solutions for task allocations and hence also to lower modification costs.

Accordingly, we extend the model of a task in a function network by introducing an
internal state transition system that is sensitive to incoming data in terms of events
and the internal state of the task. Each transition is annotated with a delay, which
represents the worst case execution time for a specific input and state configuration
assumed by the considered transition. Another extension is to allow transitions that
produce events at different output ports with different delays leading to a set of delays
per transition. Furthermore, we may observe different events on the same channel
leading to different behavior of the function node. If we consider again the example
of the ACC system, there may be two different events sent on the same channel to
distinguish between sensor values below and above a certain threshold value denoting
a critical distance.

Another important reason to introduce internal state transition systems in task
nodes arises from one of the essentials of this work: the merging of nodes. If nodes are
merged to build a task, we need to deal with the question how this may be represented
in the task network formalism. In doing so, we need to assure that we do not violate
the semantics of the model in terms of causality of task executions and events. Thus, if
we want to reason about what merging of nodes semantically means, we need to have
some abstract representation of the behavior of the task. In Figure 3.3 on the left, an
extract of a task network with two sequential tasks T1 and T2 is depicted where T1

has one outgoing channel triggering T2, and T2 has no other incoming channels. For
this simple case, it would be sufficient to say that merging T1 and T2 leads to a task

23

3. Function Networks

T1

c1

c1

c2

c3

c3T2

T1+2

Figure 3.3.: Merging Example for a Simple Task Chain

T1+2 that has all incoming channels of T1 and whose WCET is the sum of the single
WCETs of T1 and T2. The result is shown in Figure 3.3 on the right. But as soon as
T1 has more than one outgoing channel, or T2 has more than one incoming channel, we
get into difficulties to represent the behavior correctly as illustrated in Figure 3.4. If
we would perform the merging in the same manner as for the previous case, the events
on outgoing channels of T1 not leading to T2 would automatically be delayed, because
the WCET of T1+2 is the sum of the single WCETs. But actually, the output of T1

would be available already after the execution of the program code that belongs to T1.
Thus, we need the possibility to annotate different WCETs for different outputs of a
task to represent delays correctly.

T1

c1

c1c3

c4

c2

c5

c2

c5

c4

T2

T1+2

Figure 3.4.: Merging Example for a Complex Task Chain

If T2 has more incoming channels than the one from T1, as c4 in Figure 3.4, these
channels would also be input channels of T1+2. This means that an execution of T1+2

can only start if on each input channel an event is available. But actually, the code
that belongs to T1 does not depend on the input channels of T2 and thus could be
executed without c4. Hence, we obviously change the activation dependencies and
delays implicitly by doing such an operation. Thus, we cannot represent and keep the

24

previous semantics after the merging operation due to missing expressiveness in the
formalism. The problem becomes even worse if we consider more complex activation
patterns with several activation ports. An internal state transition system within a
node offers the possibility to express the original semantics without doing implicit
changes to activation dependencies or delays.

The third major extension of function networks over task networks is the definition of
data nodes. In principle, the concept of data nodes is an extension of signals, which we
already know from some task network formalisms. Signals are special tasks modeling
communication between ordinary computational tasks. This means that signals do
not add semantic expressiveness but are an explicit entity to model communication.
We extend this approach because in practice there may exist further concepts beside
signals to model communication in a specification. For example, in Simulink, it is
possible to define data store memory blocks. Other Simulink blocks may access those
blocks without inducing a partial order on read or write operations. Thus, if different
blocks share a data store memory block, Simulink does not make any guarantees when
and in which order data is written into or read from a block. This is due to the
fact that in Simulink blocks do not need any time to execute, and thus it cannot be
determined if the reading or writing block is executed first. This kind of data store
blocks cannot be modeled explicitly in classic task networks. First, there is no node
type that thought to represent a data store. Second, edges always induce a partial
order between nodes, which would not meet the semantics of the Simulink model.

This leads to the introduction of a further element of function networks that is a
special channel type called read channel. Read channels allow to read from a data node
when the reader node is executed without having any activation dependencies from the
writing nodes. We define different types of data nodes: A shared data node stores an
abstract value in terms of the last event that has been written, and allows other tasks
to read this value. A value may be consumed infinitely often. This is the counterpart
to a data store memory block in Simulink. In a FIFO data node, event values are read
in the same order as they were written and each value may be only consumed once.
Another data node type is signal, whose semantics and role is identical to the signals
known from task networks i.e., they forward incoming activations from tasks to one
or more target tasks with a specific delay. We define a further data node type called
finite source, which is used to model synchronization cycles in function networks. A
finite source provides an output event at system startup, but for each further output
event it needs an input event to occur before i.e., the previous activation must have
reached the finite source before the next activation may start. Its semantics is very
similar to those of pre-allocated events in task networks with cyclic dependencies [41].

Although data nodes are only special function nodes, they are important and es-
sential for system modeling and analysis because they have a different role. While
function nodes represent computing processes in terms of software tasks that are as-
signed to hardware processors to be executed, data nodes represent communication
processes. For example, signals are mapped to a bus in a distributed system to model
the message transmission on the bus. Thus, the delay of a signal represents the time
that is needed to transfer the data from one processor to the other via a bus, and not
the execution time of a piece of code on a processor. Data nodes like shared or FIFO

25

3. Function Networks

can be regarded as dedicated processes that handle the memory access to a shared
memory located on a processor chip.

Due to the expressive power of function networks, the question arises whether or for
which kind of networks boundedness is decidable. A function network is bounded if it
is implementable with a finite amount of resources. This is in particular relevant when
a system should be executed on real hardware as it is the case for this work. Thus, we
will answer this question for a specific class of function networks, where we use event
pattern propagation to decide boundedness.

Outline We start with defining event patterns in Section 3.1 as an event model to
describe event occurrences in function networks. We define operations on event pat-
terns to realize superposition and synchronization, and define essential properties to
be able to decide boundedness.

In Section 3.2, syntax of function networks is defined. First, we define a basic
function network consisting of function nodes, event sources and channels. In a second
step, extended function networks are defined containing data nodes and read channels
and a translation into basic function networks is given.

Semantics of basic function networks is defined in Section 3.3 in terms of a compo-
sition of timed automata for each basic function network component. In particular,
buffers are defined as a part of a function node to store activation events. Furthermore,
we define properties to describe the behavior of each component in terms of causal-
ity and timing delays. These properties are used to show semantics preservation for
the translation from Simulink and merging of nodes during task creation. Semantics
of extended function networks is defined implicitly by the previously given transla-
tion. Causal dependencies including timing delays are derived and shown for basic
and extended function network components as well.

Based on the defined semantics, we prove the decidability of boundedness for a
specific class of function networks in Section 3.4. To be able to do this, we show how
event patterns can be propagated to determine sufficient and finite sizes for buffers
in a function network. Finally, we summarize this chapter in Section 3.5 and discuss
related work for function networks.

3.1. Event Patterns

Event patterns are an extension of periodic event models as introduced in Section 2.3.
An event model defines a class of event streams, which describe the occurrence of events
at particular observation points in a model. For function networks these observation
points are input and output ports. Event models are described by four characteristic
functions that are the η−, η+, δ− and δ+ functions. For this work, we will mainly
consider the η− and η+ functions, which are sufficient to describe event streams because
the respective δ− and δ+ functions can be derived from them [73].

As already stated in Section 2.3, there exist some variants of event models in the
literature as periodic streams with jitter, streams with a minimum and a maximum
period and initial start values for the η− and η+ functions. But there is currently no

26

3.1. Event Patterns

T

.

.

.

.

.

.

d1 d2

Period=P Period=P

Figure 3.5.: Motivation for Offset in Event Models

event model available that considers all these aspects and thus we define event patterns
to be able to cover the common event models.

3.1.1. Definition of Event Patterns

We define an event pattern as an event model having as parameters a lower and upper
period bound P−, P+ ∈ R+, a jitter J ∈ R+

0 , and an initial offset O ∈ R+
0 . We do not

consider sporadic streams for this work where P+ would be allowed to be set to ∞.

Period and jitter are well established and known in particular from the periodic
event model of Richter and Jersak [66, 40]. The introduction of a lower and upper
period bound has been done in [24] and also in [47]. In the latter, also initial values
for the η− and η+ functions are defined where the initial value for the η+ function
determines the maximum number of events that may occur simultaneously, which is
known as burst. The initial value for the η− function is smaller or equal to zero and
thus allows that the occurrence of an event may be delayed more than the sum of
period and jitter, which moves the η− curve to the right.

In our event pattern model, the initial burst value of the η+ function is modeled in
the same way as done by Richter and Jersak by increasing the jitter. The initial value
for of the η− function is represented by an offset O. This offset is able to represent a
phase shift, which means that the occurrence of an event may be delayed more than
the period and jitter allow. Such a phase shift occurs, for example, in Simulink models
where an offset, denoted as initial phase, is part of the sample time of a block. Another
case where an offset is useful and also necessary is the propagation of event models
between connected nodes of a task network.

This is shown in Figure 3.5, where a task T is depicted with one input port and two
incoming channels from two different task chains. T has to wait with its execution
until it has received both an event from the left and the right task chain. The delays of
these task chains are denoted as d1 and d2 and are determined by the execution times
of their respective tasks. Both task chains are activated with the same period P and

27

3. Function Networks

no jitter. For simplicity, we assume fixed execution times and thus the jitter stays zero
for all succeeding tasks of each chain. Hence, in an event model without offset, the
delays d1 and d2 are not considered at all to determine the event stream at the input
port of task T . But if d1 and d2 differ, events of the one chain arrive at task T earlier
than events of the other chain. If this difference becomes greater than the minimum
inter-arrival time of events on any input stream, we would need an additional place in
the input buffer of T . Thus, an offset is needed to determine a safe capacity for the
activation buffer of a task to avoid buffer overrun. We define event patterns as follows:

Definition 3.1.1 (Event Pattern) An event pattern is a tuple EP = (ΣEP , P−,
P+, J,O) with a set of event symbols ΣEP , a minimum and maximum period P−, P+ ∈
R+ with P+ ≥ P−, an initial offset O ∈ R+

0 and a jitter J ∈ R+
0 defining two

monotonic increasing functions called Eta-functions η+/− : R+
0 → N0 as follows:

η+(t) = 1 +

⌊
t+ J

P−

⌋
,

η−(t) = max

(
0,

⌊
t−O − J

P+

⌋)
η+(t) and η−(t) are called upper and lower Eta-function respectively. The timed

language L(EP) of an event pattern EP is defined as follows:

L(EP) = { (σ1, t1)....(σi, ti)...(σi+m, ti+m)...

| σi ∈ ΣEP ,

η−(ti) ≤ i ≤ η+(ti),

∀m : η−(ti+m − ti) ≤ m+ 1 ≤ η+(ti+m − ti)
}

where i,m ∈ N+.

�

The respective η− and η+ functions are depicted in Figure 3.6 where η+/−(t) = n
means that within a time interval of t, n events from the set ΣEP can be observed. We
write EP (ΣEP) for the event pattern over the event set ΣEP . If for an event pattern
EP = (ΣEP , P−, P+, J,O) holds that P+ = P−, then it is called periodic.

The characteristic functions of event patterns can be represented in an equivalent
form, which will be used for proofs that reason about the language of event patterns.

Lemma 3.1.1 (Equivalent Representation of Event Patterns) Let EP be an
event pattern with EP = (ΣEP , P−, P+, J,O). An equivalent representation of this
event pattern is the following:

η+(t) =


⌊
J
P−

⌋
+ 1 , if t ∈ [0, P− − (J mod P−))

n+ 1 , if t ∈ [n · P− − J, (n+ 1) · P− − J), n >
⌊
J
P−

⌋

28

3.1. Event Patterns

n

1
P-J

P+J

P

P

𝜂+

+

+

𝜂-

-

-

O

t

Figure 3.6.: η+ and η− Functions of Event Patterns

η−(t) =

{
0 , if t ∈ [0, O + P+ + J)

n , if t ∈ [O + n · P+ + J, O + (n+ 1) · P+ + J), n > 0.

Proof: see Lemma A.1.1 in the appendix on page 201. �

As already mentioned before, the η− and η+ functions are only two of the four
characteristic functions to define event streams. Based on [73] delta functions for
event patterns are defined as follows:

Definition 3.1.2 (Delta Functions for Event Patterns) Let EP be an event pat-
tern with EP = (ΣEP , P−, P+, J,O). The δ+ and δ− functions are defined as follows:

δ−(n) = max(0, (n− 1) · P− − J)

δ+(n) = O + (n− 1) · P+ + J

�

To be able to show that the language of a specific function network component may
be correctly abstracted by an event pattern, we show the timed language of event
patterns based on the previous alternative event stream representation.

Lemma 3.1.2 (Event Pattern Language) Let EP = (ΣEP , P−, P+, J,O) be an
event pattern. Then the language is defined as follows:

L(EP) = { (σ1, t1)....(σi, ti)...(σi+m, ti+m)... | σi ∈ ΣEP ,

(1) ti ∈ [max(0, (i− 1) · P− − J), O + (i+ 1) · P+ + J)

(2) ∀m : ti+m − ti ∈ [max(0,m · P− − J), O + (m+ 2) · P+ + J)

} where i,m ∈ N+

Proof: see Lemma A.1.2 in the appendix on page 203. �

29

3. Function Networks

As a next step, we define a translation from event patterns to the periodic event
model with jitter of Jersak and show that the result is a correct abstraction. This
enables us to use all operations of their work, such as synchronization and superpo-
sition, even if the abstraction leads to a loss of precision. This may lead to over-
approximations when determining sufficient buffer sizes.

Please note, that in the following translation, we always have to add a small value
greater zero to the jitter to get a correct representation in the event model of Jersak.
This is due to the fact that we defined the η+ function similar to the one of Thiele
et al. [47], which slightly differs from the model of Jersak. This concerns the time
instance where the η+ function reaches its next step. In our definition a time instance
of t = (n− 1) · P − J leads to η+ = n while in the definition of Jersak this first holds
for t = (n − 1) · P − J + ε where ε > 0 is a small number greater than zero. This is
needed to consider the fact that in the Jersak model the η+ is defined using the ceiling
function instead of the floor function.

Definition 3.1.3 (Translation to Jersak Model) Let EP = (ΣEP , P−, P+, J,O)
be a periodic event pattern i.e. P− = P+ and let ε > 0. It is translated to the periodic
event model with jitter from Def. 2.3.1 as follows:

• Period = P− = P+

• Jitter = J +O + ε

�

In Lemma 3.1.3 we show that the translation into the periodic event model of Jersak
is valid because the resulting η-curves are a valid abstraction of the original ones.

Lemma 3.1.3 (Valid Translation to Jersak Model) Let EP = (ΣEP , P−, P+, J,
O) be a periodic event pattern with P− = P+ and its Eta-curves η+ and η−. The trans-
lation from Def. 3.1.3 is a valid abstraction i.e., the resulting η-curves η−(t)P+J and
η+(t)P+J contain all streams that the event pattern contains i.e.

η+(t)P+J ≥ η+(t) ∧ η−(t)P+J ≤ η−(t)

Proof: see Lemma A.1.3 in the appendix on page 204. �

3.1.2. Properties and Operations

We will define and prove some properties and operations on event patterns that we will
need later for event pattern propagation and to show decidability of boundedness. We
will use event patterns to determine sufficient buffer sizes for a specific class of function
networks and thus need to be able to reason about maximum distances between Eta-
curves of different input streams.

We start by defining a simple relation between Eta-functions that holds if the value
of the one function is always less or equal to the values of the other function.

30

3.1. Event Patterns

Definition 3.1.4 (Relation on Functions) Let η1, η2 be two Eta-functions

η1 ≤ η2 ⇔ ∀t ∈ R+
0 : η1(t) ≤ η2(t).

�

An important property for streams to show boundedness is that their periods are
equal, which is defined as follows:

Definition 3.1.5 (Period Equivalence) Let EP1 = (ΣEP
1 , P−1 , P

+
1 , J1, O1) and

EP2 = (ΣEP
2 , P−2 , P

+
2 , J2, O2) be two event patterns. EP1 and EP2 are called period-

equivalent with a period of P written as EP1
P
= EP2 if the upper and lower period

bounds are equal i.e.

EP1
P
= EP2 ⇐⇒ P = P−1 = P+

1 = P−2 = P+
2

�

To be able to show boundedness, it is essential to have upper bounds for the max-
imum time distance between events described by two Eta-functions. Thus, we define
the maximum time distance as follows:

Definition 3.1.6 (Maximum Time Distance) Let η1 and η2 be two Eta-functions.
The maximum time distance δt of events of η1 and η2 is given by the following:

δt(η1, η2) = sup
t1,t2∈R+

0

({|t2 − t1| | η1(t1) = η2(t2)})

�

Please note that this function is very similar to the delay function from Jersak [40].
The next lemma shows that the maximum time distance between an upper Eta-curve

of an event pattern EP1 and the lower Eta-curve of a period-equivalent event pattern
EP2 is always bounded by a value determined by the event pattern parameters.

Lemma 3.1.4 (Time Distance is Bounded) Let η+
1 , η

−
2 be Eta-functions of two

period-equivalent event patterns EP1 = (ΣEP
1 , P−1 , P

+
1 , J1, O1) and EP2 = (ΣEP

2 , P−2 ,

P+
2 , J2, O2) where EP1

P
= EP2. Then the following holds:

δt(η
+
1 , η

−
2) ≤ O2 + 2 · P + J2 + J1

Proof: see Lemma A.1.4 in the appendix on page 205. �

The notion of time distance can be extended to event patterns by considering the
maximum of both combinations of lower and upper Eta-curves of the two patterns.

Definition 3.1.7 (Maximum Event Pattern Distance) Let EP1 and EP2 be two

period-equivalent event patterns i.e. EP1
P
= EP2. Their maximum time distance is

defined as follows:

δt(EP1,EP2) = sup(δt(η
+
1 , η

−
2), δt(η

+
2 , η

−
1))

�

31

3. Function Networks

Now we can show that the time distance between period-equivalent event patterns
is determined by the offset, period and jitter of both streams in the following manner.

Lemma 3.1.5 (Event Pattern Distance is Bounded) Let EP1 and EP2 be two
period-equivalent event patterns with EP1 = (ΣEP

1 , P−1 , P
+
1 , J1, O1) and EP2 = (ΣEP

2 ,

P−2 , P
+
2 , J2, O2) where EP1

P
= EP2. Then the following holds.

δt(EP1,EP2) ≤ max(O1, O2) + 2 · P + J1 + J2

Proof:

δt(EP1,EP2)
Def. 3.1.7

= sup(δt(η
+
1 , η

−
2), δt(η

+
2 , η

−
1))

Lemma 3.1.4
≤ sup(O2 + 2 · P + J2 + J1, O1 + 2 · P + J1 + J2)

= max(O1, O2) + 2 · P + J1 + J2

because O1, O2, P, J1, J2 <∞. �

Thus, the time distance between events of two period-equivalent streams is always
bounded. We will now prove that in case of two periodic streams that are not period-
equivalent, there does not exist an upper bound for the time distance as it always
grows with increasing time.

Lemma 3.1.6 (Infinite Distance) Let η+
1 , η

−
2 be Eta-functions of two periodic

event patterns EP1 = (ΣEP
1 , P1, P1, J1, O1) and EP2 = (ΣEP

2 , P2, P2, J2, O2) that are
not period-equivalent i.e., P1 = q

r · P2 where q, r ∈ R+ and q 6= r. The time distance
until the same number of events is produced grows with every periodic step and is thus
not bounded i.e. δt(η

+
1 , η

−
2) =∞ leading with Def. 3.1.6 to

lim
t1,t2→∞

(
sup

t1,t2∈R+
0

(|t2 − t1| | η+
1 (t1) = η−2 (t2))

)
=∞

Proof: see Lemma A.1.5 in the appendix on page 206. �

As a next step, we will define some typical operations on event patterns, which have
already been defined in [40] for periodic streams with jitter but without an offset. As
we have already shown before, we can translate our model to the model of Jersak at
the price of losing precision. To avoid such over-approximations, we show how these
definitions may be easily extended to also handle event patterns with offsets. The
precision gain lays here in the fact that we do not add the offset to the jitter as we
do when translating to the model of Jersak. If we increase the jitter, this influences
also the η+ function (by moving it to the left) while the offset only affects the η−

function. Thus, the η+ function of our extended synchronization definition is more
precise than the translation to the model of Jersak. Furthermore, the definition of

32

3.1. Event Patterns

these operations for event patterns enables us to propagate event pattern through
a function network without leaving the formalism of event patterns. Otherwise, we
always had to switch between different event models and with each translation step
we might loose information and precision.

The first operation we define, is event pattern synchronization. Here, on the syn-
chronized stream we first see an event if we have seen an event on each of the streams
to be synchronized. This occurs in function networks at input ports with more than
one incoming channel. A sufficient condition for event patterns to be synchronized is
that they are period-equivalent. We define the synchronization of n period-equivalent
event patterns as follows:

Definition 3.1.8 (Event Pattern Synchronization) Let EP1...EPn be n period-
equivalent event patterns with EP i = (ΣEP

i , P−i , P
+
i , Ji, Oi) where ∀i, j ∈ {1, ..., n} :

EP i
P
= EP j. The event pattern resulting from their synchronization is defined as

follows:

sync(EP1, ...,EPn) = ((ΣEP
1 × ...× ΣEP

n), P, P, Jmax, Omax)

where Jmax = max(J1, ..., Jn),

Omax = max(O1, ..., On)

�

In Lemma 3.1.7, we show that the synchronization operation leads to a correct
abstraction i.e., all input languages of synchronized event streams are contained in the
resulting synchronization language.

Lemma 3.1.7 (Synchronization is Correct Abstraction) Let EP1...EPn be n
period-equivalent event patterns with EP i = (ΣEP

i , P−i , P
+
i , Ji, Oi) and the respective

eta curves η
−/+
i where ∀i, j ∈ {1, ..., n} : EP i

P
= EP j. Let EPs = sync(EP1, ...,EPn)

be the synchronization of these event patterns with the eta curves η
−/+
s . Then the

following holds:

∀i ∈ {1, ..., n}, t ∈ R+
0 : η−s (t) ≤ η−i (t) ∧ η+

s (t) ≥ η+
i (t)

Proof: see Lemma A.1.6 in the appendix on page 207. �

Another relevant operation is the superposition of event streams, which also has
been defined for streams with period and jitter by Jersak. Superposition occurs in
the function network when a function node is activated by more than one input port.
Superposition of Eta-curves is defined as the sum of the single Eta-curves. To find a
valid abstraction of this sum in terms of a single event pattern, we make use of the
definition of Jersak and define how this definition is extended for event patterns.

First, the period bounds can be each determined in the same way as for pure periodic
streams. The same holds for the jitter. The offset only affects the η− curve and moves
it to the right and thus allows an event to occur more delayed than just by period and
jitter. From the work of Jersak we know how superposition of two streams without

33

3. Function Networks

offset is defined. If we now add an offset to all streams that are to be superposed, we
move the η− function of the superposition by the maximum offset to the right. This
leads to the following definition of superposition for event patterns.

Definition 3.1.9 (Event Pattern Superposition) Let EP1...EPn be n event pat-
terns with EP i = (ΣEP

i , P−i , P
+
i , Ji, Oi). The event pattern resulting from their super-

position is defined as follows:

super(EP1, ...,EPn) = (ΣEP
1 ∪ ... ∪ ΣEP

n , P−s , P
+
s , Js, Os)

where

• P−s = 1∑n
i=1

1

P
−
i

, P+
s = 1∑n

i=1
1

P
+
i

• Js is determined as defined in Def. 2.3.5.

• Os =
n

max
i=1

(Oi) �

In Lemma 3.1.8, we show that the previous superposition definition with offset is a
valid abstraction of the sum of the single Eta-curves. We assume for this lemma only
two streams to be superposed while the result can be easily generalized to n streams
because the sum and also the maximum operation are commutative. Furthermore,
we ignore the jitter here by setting the jitter of all streams to zero. How a valid
abstraction for the superposition jitter can be determined has already been shown by
Jersak [40]. The results still hold for η− curves with an offset because both parameters
independently move the η− curve to the right. The η+ curves are not affected by the
offset at all. Thus, we only need to show that the abstraction is valid for the η− curves.

Lemma 3.1.8 (Superposition is Valid Abstraction) Let EP1,EP2 be two event
patterns with EP1 = (ΣEP

1 , P−1 , P
+
1 , J1, O1) and EP2 = (ΣEP

2 , P−2 , P
+
2 , J2, O2) where

J1 = J2 = 0 and the respective lower Eta-curves η−1 and η−2 . Let further be EPs =
super(EP1,EP2) be the superposition of both event patterns with the lower Eta-curve
η−s . Then the superposition offset is a valid abstraction because the following holds:

∀t ∈ R+
0 : η−s (t) ≤ η−1 (t) + η−2 (t)

Proof: see Lemma A.1.7 in the appendix on page 207. �

For event pattern propagation, we further need a function that transforms an input
event pattern of a function node into an output event pattern by considering the
delay interval of the function node execution. Thus, we define an event pattern delay
function where the minimum execution time (transition delay) is added to the offset
because the first event is at least delayed by this value. The jitter is increased by the
difference between the maximum and minimum execution time as it is also defined in
the model of Jersak [40].

34

3.1. Event Patterns

Definition 3.1.10 (Event Pattern Delay) Let EP = (ΣEP , P−, P+, J,O) be an
event pattern and [min,max] a delay interval with min,max ∈ N0 and max ≥ min.
The delay function for event pattern is defined as follows:

delay(EP , [min,max]) = (E,P−, P+, J ′, O′)

where J ′ = J +max−min,
O′ = O +min

�

Now it remains to show that the language of an event set ΣEP where each event is
delayed by a specific time interval [min,max] can be correctly abstracted by applying
the delay function on the respective event pattern EP (E).

Lemma 3.1.9 (Correct Event Pattern for Delayed Language) Let ΣEP be a
set of events with an event pattern EP (ΣEP) = (ΣEP , P−, P+, J,O). If each event
e ∈ ΣEP is delayed by a time interval of [min,max] with min,max ∈ N0 × N0 and
min ≤ max, then the resulting language L(ΣEP)′ can be abstracted by applying the
delay function. Following Def. 3.1.1, the delayed language L(ΣEP)′ is defined as

L(ΣEP)′ = { (σ1, t1 + [min,max])....(σi, ti + [min,max])...

(σi+m, ti+m + [min,max])... | σi ∈ ΣEP ,

(1) ti ∈ [max(0, (i− 1) · P− − J), O + (i+ 1) · P+ + J)

(2) ∀m : ti+m − ti ∈ [max(0,m · P− − J), O + (m+ 2) · P+ + J)

} where i,m ∈ N+

Then it holds

L(ΣEP)′ ⊆ L(delay(EP (ΣEP), [min,max]))

Proof: See Lemma A.1.8 in the appendix on page 208. �

When propagating an event pattern from one port to another also the events that
are described by this event pattern may change and thus we need a renaming function,
which is defined as follows:

Definition 3.1.11 (Event Pattern Renaming) Let EP = (ΣEP , P−, P+, J,O) be
an event pattern and ΣEP

new a set of event symbols. The renaming function for event
patterns is defined as follows:

ren(EP ,ΣEP
new) = (ΣEP

new, P
−, P+, J,O)

�

35

3. Function Networks

3.2. Function Network Definition and Properties

The formalism of function networks was published first in [16] while the syntactic
definition evolved since that time to mainly improve readability. Nevertheless, the
basic structure remained the same while it turned out to be useful to define a basic
function network to show certain properties such as boundedness as already done
in [13]. This basic function network contains the minimum set of elements that is
needed to model the intended semantics, which simplifies many proofs. Afterwards,
the definition of an extended function network follows and a translation from extended
to basic function networks is given.

3.2.1. Basic Function Networks

A basic function network is defined as a directed graph where function nodes repre-
sent processing elements, or tasks, and edges represent (basic) channels transmitting
events between nodes. In Figure 3.7 an example for a basic function network is depicted
modeling a simple adaptive cruise control system where the velocity v of a car and the
distance d to a preceding car is measured and used to make different controller deci-
sions. Function nodes are depicted as circles and channels as directed arcs. A channel
may transport different events where, for example, channel c3 in Figure 3.7 transmits
events from the set {d1, ..., dn}. Additionally, event sources allow to model events sent
by the environment to the network. They are depicted as rectangles with filled circles
where in Figure 3.7 φ3 represents a distance sensor delivering values d1, ..., dn and φ1

and φ2 are both speed sensors. The production of events is defined in terms of event
patterns defined as a tuple (ΣEP , P−, P+, J,O) where ΣEP is the set of event symbols
the source node produces.

The connection between nodes and channels is realized by ports representing the
observation points in the system. Ports describe which events flow into and out of the
corresponding nodes. Activation of nodes is captured by their input ports depicted
as small white circles. An input port activates a node whenever at least one event is
available at each of its incoming channels. Each event can only release one activation
i.e., events are consumed by an activation. For example, node fv in Figure 3.7 is
activated when both an event v1 on channel c1 and v2 on channel c2 occurs meaning
that values are available from both speed sensors. We call this kind of activation AND-
activation or synchronization. A function node having multiple input ports is activated
whenever any of its input ports is activated. Node fc, for example, is activated for
each event on channel c4 and for each event on channel c5. We refer to this kind of
activation as OR-activation or superposition. The combination of multiple input ports
and input channels allows the modeling of complex node activations.

Function nodes are sensitive to incoming events. To this end, nodes employ internal
state-transition systems. Depending on the current state and the received events, out-
put events are emitted at output ports depicted as small black circles. Each activation
causes a delay for processing, depending on the input event, the current state, and the
particular output port. Delays are taken from intervals with best-case and worst-case
bounds. Thus, a transition t = (p,E, s → Ψ, s′) with a set of so-called output speci-

36

3.2. Function Network Definition and Properties

d

fv fd

fc

fe fb

Figure 3.7.: Simple Function Network Model of an Adaptive Cruise Control System

fications ψ = (p′i, e
′
i, [δ
−
i , δ

+
i]) ∈ Ψ means, that if a set of events E = {σ1, ..., σn} has

occurred at input port p and the function node is in state s, an event e′ is produced
at output port p′i with a delay of δi = [δ−i , δ

+
i] time units and the function node state

is changed to s′.

For example, if node fc in Figure 3.7 receives an incoming event v in state s0, it
forwards this event to its output port p7 with a delay between 2 and 3 time units and
stays in state s0. If it receives an event crit in state s0, meaning that the distance
sensor has identified a critical distance to the preceding car, this event is forwarded
to port p7 with a delay between 2 and 4 time units and the state is changed to s1.
When in state s1 a speed value v is received, it is still sent at port p7 but additionally
a brake event b is produced at port p8 after a delay between 5 and 8 time units to
initiate a braking action. It is also allowed that output ports are not connected to any
channel. We refer to those ports as sink ports and indicate them by the ⊥ symbol. As
an example, we consider again node fc, which sends an event ok to port p⊥ if an event
ok was received at input port p5 resulting in an execution delay between 1 and 2 time
units. An event produced at a sink port will not be received by any function node.

With this knowledge, we will now describe and motivate the whole functionality of
the example system in Figure 3.7. The source nodes φ1 and φ2 periodically deliver
values of two redundant speed sensors denoted as v1 and v2, which are aggregated
by the function node fv to a single speed value v. To assure that the time distance
between two values v1 and v2 that are needed to determine the next aggregated value
v is bounded, both sensors deliver their values with the same period. The source node
φ3 emits events from the event set {d1, ..., dn}, which represent the different values a
distance sensor may measure. Depending on this value, the function node fd decides

37

3. Function Networks

whether this distance is critical resulting in the events ok and crit. Here, the values
d1 to d3 represent critical distances and all distances greater than d3 are interpreted
as noncritical. The function node fc is a controller node that receives the speed value
v and the distance events ok and crit and decides if a braking action needs to be
initiated. The states are used to store if the latest distance value was crit (s1) or ok
(s0). If it was crit, a braking is necessary and an additional brake event b is sent to
the actuator node fb. This induces a longer execution time between 5 and 8 time units
because the intensity of the braking action needs to be computed. The speed value
v is forwarded regularly to a function node fe, which represents the environment e.g.
an interface to the driver. Additionally, an event crit is sent to fe if it was received to
make the critical situation also available to other systems and the driver.

In the following, a basic function network is defined where we call channels basic
channels. The set of events that may activate a function node at a specific input port
p is called activation set and denoted as Σact(p).

Definition 3.2.1 (Basic Function Network) A basic function network is a tuple
(Σ,P, C,Φ,F) where:

• Σ is a finite set of events.

• P = PI] PO is a finite set of input and output ports. We define Σ(p) ⊆ Σ as
the set of events that can be observed at port p ∈ P, and Σ(P) =

⋃
p∈P Σ(p) for

P ⊆ P.

• C ⊆ PO×PI is a set of basic channels such that each input port is connected to
at least one channel, and each output port is connected to at most one channel:

∀pi ∈ PI : ∃(po, pi) ∈ C,
∀(po, pi), (p′o, p′i) ∈ C : po = p′o =⇒ pi = p′i

Furthermore, the output ports of any two channels connected to the same input
port have disjoint event sets:

∀(po, pi), (p′o, pi) ∈ C : po 6= p′o =⇒ Σ(po) ∩ Σ(p′o) = ∅,

and it holds Σ(pi) =
⋃

(po,pi)∈C Σ(po).

• Φ is a finite set of event sources φ = (EP ,Pout) where EP = (ΣEP , P−, P+,
J, O) is an event pattern with J < P−, Pout ⊆ PO is a set of output ports,
Pout 6= ∅, and all ports share the same event set:

∀po ∈ Pout : Σ(po) = ΣEP

We define Pout(φ) := Pout.

• F is a finite set of function nodes f = (Pin,A,Pout) where Pin ⊆ PI is a set
of input ports, Pin 6= ∅, and Pout ⊆ PO is a set of output ports. We define the
activation set of each input port pi ∈ Pin as follows:

Σact(pi) = {{σ1, ..., σn} | ∃po ∈ Pout : (po, pi) ∈ C ∧ σj ∈ Σ(po)}

38

3.2. Function Network Definition and Properties

A = (S, s0 , T) is a timed transition system where S 6= ∅ is a finite set of states,
s0 ∈ S is the initial state, and T is a transition function

T =
⋃

pi∈Pin

Tpi , Tpi := pi × Σact(pi)× S → Ψ× S

and Ψ =
⋃
∅6=P⊆Pout

{ψ : P → (Σ× N+ × N+) |

ψ(po) = (σ, δ−, δ+) =⇒ σ ∈ Σ(po), δ
− ≤ δ+}

where each transition in T maps an input port, an activation event and a state
to an output specification and a successor state. An output specification ψ ∈ Ψ
maps output ports to output events and delay intervals. We define Pin(f) := Pin
and Pout(f) := Pout.

It must further hold that each the sets of input and output ports of nodes and sources
are disjoint i.e.

∀φ1, φ2 ∈ Φ, f1, f2 ∈ F : Pin(f1) ∩ Pin(f2) = ∅,
Pout(f1) ∩ Pout(f2) = ∅
Pout(φ1) ∩ Pout(φ2) = ∅
Pout(φ1) ∩ Pout(f1) = ∅

�

Please note, that a set Ψ of output specifications for a function node f denotes all
non-empty subsets of output ports of f in combination with output events and delay
intervals [δ−, δ+]. Hence, the transition function of a function node allows to send
events to any combination of output ports, depending on the current state and input
event. Also the delays can be chosen freely for each such output event. In the following
we write functions ψ as sets {(p′1, e′1, [δ−1 , δ

+
1]), ..., (p′n, e

′
n, [δ

−
n , δ

+
n])} or even shorter as

{(p′1, e′1, δ1), ..., (p′n, e
′
n, δn)} where δi = [δ−i , δ

+
i]. For sets with one element we write

abbreviatory (p′i, e
′
i, [δ
−
i , δ

+
i]) instead of {(p′i, e′i, [δ

−
i , δ

+
i])}.

3.2.2. Extended Function Networks

Specification languages such as Simulink often allow the explicit modeling of data
objects and data access to capture not only control flow but also data flow. In order to
be able to represent such models of specifications in function networks, the possibility
to model data flow is an important feature. Function networks capture internal task
states and complex execution patterns based on event values, which can be employed
to model also data access. We can define for example function nodes modeling storage
of variables, and also FIFO buffers.

To simplify modeling of data flow, we however want to be able to model explicit
data storage. Furthermore, we would like to explicitly distinguish between compu-
tation and communication nodes. To this end, the function network formalism is

39

3. Function Networks

d1 dn

f

p

f'

fd1 fdnfp

...

...

...
a1 am

r1 rn

a1 am

r1 rn

r'1 r'nama1

Figure 3.8.: Left: Read channels from Data Nodes d1 to dn
Right: Translation of Read Channels into Basic Function Network

extended by data nodes, that are special function nodes modeling specific data objects
for communication between tasks. We define different types of data nodes as persistent
ones like shared variables and FIFO buffers, and volatile ones like signals.

A further enrichment is the introduction of delay channels allowing to model com-
munication between tasks in a more abstract way. In a later refinement step, when a
function network becomes deployed and analyzed, these communication delays may be
replaced by those without delays, and additional signals may be inserted that capture
the respective delays. We define two types of delay channels namely activation and
read channels. While activation channels model control flow and cause an activation
at their target function node, read channels model data dependencies, that is a reading
access by a function node to a data node. Read channels are depicted as dotted arcs
and can be represented using the basic function network definition as shown in Fig-
ure 3.8. On the left, a function node f reads data from n data nodes d1 and dn at its
activation. The coordination of the read process is hidden in the complex input port
p, which is defined as a special function node fp as shown on the right of Figure 3.8.
This function node is activated before f is activated and triggers the data nodes d1 to
dn whose translation to function nodes is described later. If all data nodes have been
executed and have sent an event to the input port of the actual function node f ′, this
node is activated.

Four common kinds of data nodes have been identified. A shared data node, as
depicted in Figure 3.9 at the upper left, stores incoming events from its input ports
and returns the currently stored event when it is requested via an output port. In
this example, there are two incoming events a and b that may be stored. The internal
transition system, shown at the bottom of Figure 3.9, contains one state per input
event that may be stored resulting in the states sa and sb in this example. As soon
as a new event a or b is written, the state is updated accordingly to sa or sb. When a
read request r occurs, the respective event is returned depending on the current state.

A FIFO data node (see Figure 3.10, upper left) stores a bounded queue of events
and returns them in FIFO order if requested. In contrast to the shared data node,
here an event may only be read once. Hence, the transition system contains one state

40

3.2. Function Network Definition and Properties

{a,b}
r

{a,b} {a,b}

{a,b}
d fd

sa

a/-

sb

b/-

a/-
r/a

b/-

r/b

Figure 3.9.: Translation of Shared Data Node

{a,b} {a,b,z} {a,b}

{a,b,z}

r

empty

r/z sbb/-

r/b

sa

a/-

r/a

sbb

saa

sba

sab

b/-

a/-

.

.

.

.

.

.

.

.

b/-.
.
.
.
.
.
.
.

Figure 3.10.: Translation of FIFO Data Node

for each possible order and number of events in the event queue. At the bottom of
Figure 3.10, an example transition system for a FIFO with 2 places is depicted. If
any input event a or b occurs, it is stored and the state is changed to represent the
current queue state. A read event r returns the ’oldest’ event and changes the state
accordingly. In principle, different ways exist to deal with queue under- and overflow,
for example by introducing an error state in case of an overflow. In the context of
this work, a buffer sends a special event z when a read request occurs and the buffer
is empty. In the case that the buffer is full and another event should be written, this
event is ignored.

In Figure 3.11, a signal data node is shown that does not store any events perma-
nently but immediately forwards them to all output ports. This results in a transition
system with a single state and one transition for each incoming event (not depicted in
Figure 3.11). In this example, the data node has two input ports where on each port
two events may arrive. If an event is received, it is forwarded to both output ports.

41

3. Function Networks

.

.

.

.

.

.

.

.

.

.

.

.

a

b

{a,b}

{a,b}

d
a

b

{a,b}

{a,b}

fd

Figure 3.11.: Translation of Signal Data Node

{a1,...,am} e

e

e{a1,...,am}

d
fd

ready wait

e/b

e/-
a1 ∨...∨ am /-

a1 ∨...∨ am /-

Figure 3.12.: Translation of Finite Source Data Node

Another data node type is a finite source. It produces an initial event at its output
port at system startup while emitting the next event not before it has received an
event at its input port. This node type is used to model cycles in function networks
and is depicted in Figure 3.12 on the left. Its translation into basic function networks
is shown on the right. At the first activation by an event e from an event source, an
initial event is sent by the function node. Then, an event b is first emitted at each
output port if an event ai was received on the input port. This is realized by the
internal transition system, which is shown at the bottom of Figure 3.12. It starts in
the ’ready’ state where an event e from the source node leads to an event b at the
output port and a change to the state ’wait’. Whenever an input event ai arrives, the
state is changed back to ’ready’. During the ’wait’ state an event from the source does
not lead to an output event b i.e., it has to be assured that an event ai arrives in time
to not loose any source events.

These extensions lead to the following definition of an extended function network.

Definition 3.2.2 (Extended Function Network) An extended function network
is a tuple (Σ,P, C,Φ,F,D) where Σ, P and Φ are defined as for the basic function
network and

• C = CA] CR ⊆ (PO ×N0 ×N0 ×PI) is a set of delay channels c = (pout, δ, pin)
where δ = [δ−, δ+] is a delay interval with (δ+ > 0) =⇒ (δ− > 0), CA is a set of
activation channels and CR is a set of read channels.

42

3.2. Function Network Definition and Properties

• D = Dsignal] Dfifo] Dshared] Dfsource is a set of data nodes, where

– dsig = (Pin, δ,Pout) ∈ Dsignal is a signal data node, where Pin ⊆ PI is
a set of input ports with Pin 6= ∅, δ ∈ (N+ × N+) is a delay interval and
Pout ⊆ PO is a set of output ports with Pout 6= ∅.

– dfifo = (Pin, δ, c,Pout) ∈ Dfifo is a FIFO data node, where Pin ⊆ PI
is a set of input ports with Pin 6= ∅, δ ∈ (N+ × N+) is a delay interval,
Pout ⊆ PO is a set of output ports with Pout 6= ∅ and c ∈ N+ is a capacity.

– dshared = (Pin, δ, σ0,Pout) ∈ Dshared is a shared data node, where Pin ⊆ PI
is a set of input ports with Pin 6= ∅, δ ∈ (N+ × N+) is a delay interval,
Pout ⊆ PO is a set of output ports with Pout 6= ∅ and σ0 ∈

⋃
pin∈Pin

Σ(pin)

is the event that is stored initially.

– dfsrc = ({pin}, δ,EP , {pout}) ∈ Dfsource is a finite source data node, where
Pin ⊆ PI is a set of input ports, δ ∈ (N+ × N+) is a delay interval,
Pout ⊆ PO is a set of output ports and EP is an event pattern.

For a data node d ∈ D, we define Pin(d) = Pin and Pout(d) = Pout.

The input ports of data nodes and function nodes are each disjoint. The same holds
for output ports.

∀n1, n2 ∈ F ∪ D : Pin(n1) ∩ Pin(n2) = ∅,
Pout(n1) ∩ Pout(n2) = ∅

Each input port of a function node has at least one incoming activation channel

∀p ∈ Pin(f), f ∈ F : ∃ (p′, p) ∈ CA

Each input port of a data node has exactly one incoming activation channel

∀p ∈ Pin(d), d ∈ D : ∃! (p′, p) ∈ CA

Read channels lead exclusively from FIFO or shared data nodes to function nodes.

∀(p, p′) ∈ CR : ∃! d ∈ Dfifo ∪ Dshared | p ∈ Pout(d) ∧
∃! f ∈ F | p′ ∈ Pin(f)

�

As mentioned before, any extended function network can be uniquely translated
into a basic function network. Thus, we will define semantics only for basic function
networks and implicitly define the semantics of extended function networks by the
respective translation. For simplicity, we assume that each FIFO and each shared data
node has exactly one input port and one output port. Nevertheless, the translation
can be generalized to an arbitrary numbers of ports.

43

3. Function Networks

Definition 3.2.3 (Extended Function Network Translation) Given an extended
function network fn = (Σ,P, C,Φ,F,D) where, ∀d ∈ Dfifo ∪Dshared holds |Pin(d)| =
|Pout(d)| = 1. The translation of fn into a basic function network bfn is defined as

bfn = (Σb,Pb, Cb,Φb,Fb)

1. We first define the translation of data nodes as follows:

a) Each signal data node d = (Pin, δ,Pout) ∈ Dsignal with Pout = {pout1 , ...,
poutm } is translated to a function node fd = (Pin, (S, s0 , T),Pout) ∈ Fb with

• S = {s0}
• T = {(pin, e, s0 → {(pout1 , e, δ), ..., (poutm , e, δ)}, s0) |
pin ∈ Pin, e ∈ Σ(pin)}

b) Each FIFO data node d = ({pin}, δ, c, {pout}) ∈ Dfifo is translated into a
function node fd = ({pin, prd}, (S, s0 , T), {pout, p⊥d }) ∈ Fb where

• S = {empty} ∪ {sσ1,...,σk
| σi ∈ Σ(pin), i ∈ {1, ..., k}, k ∈ {1, ..., c}}

• s0 = empty

• for each state sσ1,...,σk
and each input symbol σ ∈ Σ(pin), we define a

transition t = (pin, σ, sσ1,...,σk
→ (p⊥d , σ, δ), s

′) ∈ T where

s′ =

{
sσ1,...,σk,σ , if k < c

sσ1,...,σk
, else

• for each symbol σ ∈ Σ(pin), we define a transition t = (pin, σ, empty→
(p⊥d , σ, δ), sσ) ∈ T

• for each state sσ1,σ2,...,σk
and each read event r ∈ Σ(prd), we define a

transition t = (prd, r, sσ1,σ2,...,σk
→ (pout, σ1, δ), sσ2,...,σk

) ∈ T
• for the empty state, we define a transition that returns the z symbol to

denote that the buffer is empty i.e.
∀r ∈ Σ(prd) : ∃t = (prd, r, empty→ (pout, z, δ), empty) ∈ T

c) Each shared data node d = ({pin}, δ, σ0, {pout}) ∈ Dshared is translated into
a function node fd = ({pin, prd}, (S, s0 , T), {pout, p⊥d }) ∈ Fb where

• S = {sσ | σ ∈ Σ(pin)}
• s0 = sσ0

• for each σ ∈ Σ(pin) and each s ∈ S there exists a transition t =
(pin, σ, s→ (p⊥d , σ, δ), sσ)

• for each state sσ ∈ S and each read event r ∈ Σ(prd) exists a transition
t = (prd, r, sσ → (pout, σ, δ), sσ)

d) Each finite source data node d = ({pin}, δ,EP , {pout}) ∈ Dfsource is trans-
lated into a function node fd = ({pin, ptrd }, (S, s0 , T), {pout, p⊥d }) ∈ Fb where

• S = {ready,wait}

44

3.2. Function Network Definition and Properties

• s0 = ready

• T =

{ (pin, a, ready→ (p⊥d , a, δ), ready),

(pin, a,wait→ (p⊥d , a, δ), ready) | a ∈ Σ(pin) }
∪ { (ptrd , e, ready→ (pout, e, δ),wait)

(ptrd , e,wait→ (p⊥d , e, δ),wait) | e ∈ Σ(pintr) }

and a source node φd = (EP , {poutφd
}) with a channel c = (poutφd

, ptrd) ∈ Cb

2. Each activation channel c = (pout, [δ−, δ+], pin) ∈ CA is translated as follows:

a) If δ−, δ+ > 0, c is translated into a function node fc = ({pc}, ({s0}, s0, T),
{p′c}) ∈ Fb where T = {(pc, e, s0 → (p′c, e, [δ

−, δ+]), s0) | e ∈ Σ(p)} and two
basic channels (pout, pc) ∈ Cb and (p′c, p

in) ∈ Cb.
b) If δ− = δ+ = 0, c is translated into a basic channel cb = (pout, pin) ∈ Cb.

3. Function nodes with read channels are translated as follows:

Let f ∈ F be a function node. Then f ∈ Fb and each input port p ∈ Pin(f)
with a non-empty set of incoming read channels CRp = {cr1 , ..., crn} ∈ CR and

activation channels CAp = {ca1 , ..., cam} ∈ CA is translated to a function node
fp = ({p′}, ({s0}, s0, T), {poutr1 , ..., p

out
rn , p

out
a1 , ..., p

out
am }), which initiates the reading

of all events from the connected data nodes where

a) each activation channel caj = (p∗, p) ∈ CAp is changed to caj = (p∗, p′) and
translated as described under 2.

b) for each E = {r1, ..., rn, a1, ..., am} ∈ Σ(p′), we define a transition

(p′, E, s0 → Ψ, s0) ∈ T with

Ψ = {(poutr1 , r1, [ε, ε]), ..., (p
out
rn , rn, [ε, ε]), (p

out
a1 , a1, [ε, ε]), ..., (p

out
am , am, [ε, ε])}

where ε > 0 denotes a negligible small execution time.

c) for each read channel cri = (poutd , δri , p) ∈ CRp from a data node d ∈ Dfifo ∪
Dshared that is translated following (1b) and (1c) to a function node fd ∈ fb
with Pin(fd) = {pind , p

ri
d } and Pout(fd) = {poutd }

i. an activation channel (poutri , δri , p
ri
d) is created and translated as de-

scribed under 2.

ii. a basic channel (poutd , p) ∈ Cb is created leading from the output port of
d to the input port p of f .

d) for each activation channel caj ∈ CA, a basic channel (poutaj , p) ∈ Cb is
created forwarding events to f to be synchronized with read events.

4. Each source φ ∈ Φ is also contained in Φb. �

45

3. Function Networks

a

b

cc

Figure 3.13.: Example of a Synchronization (AND) Loop

Please note, that the output port p⊥ of the translation of FIFO, shared and finite
source data nodes is skipped for brevity in the respective figure. For the rest of the
document, we will shortly write function network for an extended function network.
Otherwise, we explicitly refer to a basic function network.

Modeling Loops Loops are an essential part of system modeling and often used in
practice to specify for example a controller unit. Thus, it is important to allow the
modeling of such control loops also in function networks. We give an understanding
how loops may be modeled using function networks with the help of some simple
examples. There mainly exists two ways for modeling loops that are synchronization
(AND) and superposition (OR) loops.

In Figure 3.13, a simple synchronization loop is depicted, which means that a control
flow starts and ends in a synchronization at an input port of a function node. This
kind of loop has to contain a finite source data node because otherwise we would need
a buffer of unbounded size due to a missing initial event from the loop. The function
node in this example has one input port p1 and is activated if both an event a and b
is received. The transition of the function node is indicated by a split dotted arrow
meaning that with each activation an event c is emitted at both output ports. The first
event b is guaranteed to be available at system start-up by the finite source data node.
As soon as also an a event is present, the function node is executed emitting an event
c at both its output ports p2 and p5 after specific delays. The next activation cannot
occur before the event c emitted at port p2 has reached the finite source data node,
which then emits the next instance of the event b. This way, a minimum distance
between succeeding b events is guaranteed, which equals the minimum delay of the
complete loop. In general, such a loop may be more complex involving other function
and data nodes.

The second type of loop is a superposition loop, which is shown in Figure 3.14.
Actually, this is not a real control loop because the function node is activated at
different ports and thus no port is involved more than once in the cycle. This is also
the reason why we do not need a finite source data node here. The function node
is activated first when an event a occurs at its input port p1, and then executes and
produces an event b at its output port p2 after a specific delay. This immediately leads
to another activation at input port p3 and an output event b at output port p4.

46

3.2. Function Network Definition and Properties

a

b

b

Figure 3.14.: Example of a Superposition (OR) Loop

To decide if such a loop is bounded may become harder as in this example as soon
as a function node has different states leading to different output events. A class of
function networks where boundedness is decidable is presented in Section 3.4. The
most important property for this class is called state-independence and is introduced
in the next section.

3.2.3. Properties of Function Networks

We will define some basic properties of function networks that are needed for this
work. We start with the definition of a path between ports to describe how events
may flow through a function network. We do this for basic function networks only
while the paths for extended function networks can be derived from the translation
given in Def. 3.2.3.

Definition 3.2.4 (Path) Let bfn = (Σ,P, C,Φ,F) be a basic function network. There
exists a path between two ports p, p′ ∈ P written as path(p, p′) if and only if one of the
following conditions holds

1. there exists a function node with a transition t from p to p′ i.e.

∃f = (Pin, (S, s0, T),Pout) ∈ F : ∃t = (p,E, s→ Ψ, s′) ∈ T ∧ ∃(p′, e′0, δ) ∈ Ψ

2. there exists a channel from p to p′ i.e.

∃c = (p, p′) ∈ C

3. there exists a shortest sequence of paths from p to p′ i.e.

path(p, p1) ∧ path(p1, p2) ∧ ... ∧ path(pn, p
′)

such that @(path(p, p1′) ∧ path(p1′ , p2′) ∧ ... ∧ path(pm, p
′)) with m < n. �

Based on the definition of paths, we can argue about reachability of ports in a
function network. A port is called reachable if there exists a path from a source node
to that port. A function network is called reachable if each of its ports is reachable.

47

3. Function Networks

Definition 3.2.5 (Reachability) Let bfn = (Σ,P, C,Φ,F) be a basic function net-
work. A port p ∈ P is called reachable if there exists a path from a source node to p
or p belongs to an event source i.e.

p is reachable ⇐⇒ ∃φ = (EP ,Pout) ∈ Φ ∧ ∃psrc ∈ Pout ∧ path(psrc, p) ∨
∃φ = (EP ,Pout) ∈ Φ ∧ p ∈ Pout

bfn is called reachable if each of its ports p ∈ P is reachable. �

A usual property of graph formalisms are cycles. We define cycles on ports of
function networks based on the definitions of paths.

Definition 3.2.6 (Cycles) Let bfn = (Σ,P, C,Φ,F) be a basic function network.
There exists a cycle starting from port p ∈ P written as cycle(p) if there exists a path
that starts and ends at p i.e.

cycle(p)⇐⇒ path(p, p)

bfn is called cyclic if there exists at least one cycle in bfn and acyclic otherwise. �

Please note, that a cycle does not necessarily mean that there also exists a cyclic
causal dependency in a function network. This is due to the fact, that the definition
of cycles is static and it cannot be determined if a path is ever taken. For example,
there may exist paths that will never be taken because the necessary combination of
input events and states does never occur.

An important property that we will need to define a class of function networks where
boundedness is decidable is called state-independence. A function node is called state-
independent if its output behavior in terms of events that occur at its output port
does not depend on its internal state while the transition delays may still vary. This
means that, independently from the state, an activation of a function node by any set
of input events leads to events at the same output ports.

Definition 3.2.7 (State-Independence) Let f = (Pin,A,Pout) be a function node
with A = (S, s0 , T) and pout ∈ Pout be an output port. pout is state-independent if for
each input port p ∈ Pin with a transition producing an event b ∈ Σ(pout) also each
other transition triggered by an event from Σact(p) produces an event from Σ(pout) i.e.

∀p ∈Pin | ∃ (p,E, s→ {...(pout, b, δ)...}, s′) ∈ T with b ∈ Σ(pout) :

∀sj ∈ S,E′ ∈ Σact(p) : ∃(p,E′, sj → {...(pout, bj , δj)...}, s′j) ∈ T with bj ∈ Σ(pout)

A function node is state-independent if all its output ports are state-independent. �

Timing Constraints We shortly introduce the type of timing constraints we consider
for this work that are end-to-end deadlines. End-to-end deadlines define upper bounds
for executions of function node chains. A function node chain is the set of function
nodes on all paths from an input port of a start node to the output port of an end
node. In Figure 3.15, an example for an end-to-end deadline of 120 milliseconds is

48

3.3. Semantics of Function Networks

120ms

Figure 3.15.: End-to-end Deadline

depicted. Here, two paths exist from the start node to the end node of the deadline
emphasized by the red shaped area.

We restrict to end-to-end deadlines for simple linear node chains. More complex
chains where, for example, the control flow is split and joined again, are divided into
sets of linear chains, which is always possible. The corresponding deadline reasons
about the time span between the activation of the first node and finishing the execution
of the last node of the chain, which coincides with sending the respective output event.

A deadline D ∈ T defines a maximum delay between two events e1, e2 like activations
or completions of function nodes. If we take an arbitrary execution of a function
network, let ti(e1) be the time of the ith occurrence of its input event e1, and ti(e2)
for its output event e2, respectively. We say the deadline is satisfied if and only if
|ti(e2)− ti(e1)| ≤ D for all i ∈ N+, and all such executions.

3.3. Semantics of Function Networks

There are mainly two reasons to define semantics of function networks formally. First,
we need a formal semantic representation to be able to analyze a function network,
for example to show timing properties in terms of end-to-end deadlines.

Second, we aim at showing semantic preservation when we translate Simulink models
into function networks. Thus, we need formal semantics for both formalisms. Addi-
tionally, we need to specify which properties we want to preserve. Here, we are mainly
interested in causality and time delays between events and introduce a set of patterns
to capture those properties. The same properties should be preserved when merging
nodes to create tasks. Thus, we start with defining such patterns before defining the
actual semantics of function networks.

3.3.1. Causality and Timing Patterns

In order to be able to reason about semantic properties, we want to preserve, we define
three types of patterns to capture causal and timing properties of function networks.
First, causality patterns describe a conditional causal dependency with a time delay
between two single events or sets of events. Second, condition patterns are used to
show that a condition or property holds during a specific time interval that is defined
by two event occurrences. Finally, we define the waiting time pattern, which states
how long we have to wait after the occurrence of one event to see another.

49

3. Function Networks

Causality Pattern

For Simulink models, a partial order [48, 82] on input and output signals of a block
is sufficient to express valid orderings of block executions under the assumption that
the internal behavior of blocks is not considered. This is due to the fact that all
input signals of a block are synchronized because a block must first be executed if
all its inputs are available. Thus, there are no alternative ways to activate a block
in terms of an OR-activation. In function networks, the internal transition system
of a function node is able to model more complex causal dependencies between its
input and output events which may not be covered by a partial order. Beside the non-
determinism induced by an OR-activation, also different states may lead to different
output behavior.

This is exemplified in Figure 3.16, where a function node is depicted on the left.
It has two input ports where input events are received to activate the node and two
output ports where events are produced. On the right, the internal transition system
of this function node is shown. It has two states s1 and s2 where s1 is the initial state.
If an event a is received, the node is activated, stays in state s1 and produces two
events b and c on different output ports. For simplicity, we omit the concrete delays
here and assume that the output events may be produced in an arbitrary order. If
an event x is received in state s1, the state is changed to s2 and an output event b is
produced. In state s2 an event a leads to an output event b as well and an event x
leads back to state s1 and produces an output event c.

If we try to describe this behavior by a partial order, we recognize that this cannot
be done without losing information or getting conflicts. In this example, we would get
the following partial order relations:

a < b, a < c, x < b, x < c

This would induce that a and x need to occur before b may occur, which is not
correct. Furthermore, we cannot derive from this partial order whether the output
events b and c may occur concurrently or not because this depends on the state of the
function node. This is because a partial order is not able to express non-determinism in
terms of a superposition. A formalism where this may be covered are event structures
[61], which offer an additional relation to the partial order called conflict relation. Two
events in a conflict relation must not occur concurrently.

However, we want to capture the non-determinism induced by states of the internal
transitions systems more explicit and decided to rely on a pattern from the require-
ment specification language (RSL) [65]. The idea of the RSL is to define patterns
that are typically used to describe requirements a designer defines for a system under
development. Beside an intuitive natural language description it was the main goal
to also define a formal representation in terms of timed automata to enable formal
analysis methods such as model-checking.

We use a functional pattern from the RSL to reason about causal dependencies in
function networks. The so-called ’F1’ pattern exists in different variants while we rely
on the one with the following natural language representation: ’whenever e occurs,
f occurs during [min,max]’ where e and f are events and min,max ∈ N0 describe

50

3.3. Semantics of Function Networks

f1

a

b c

s1 s2

x/b

x/c

x

a/ba/b,c

Figure 3.16.: Example for Causal Dependencies in Function Nodes

Figure 3.17.: Observer Automaton for RSL ’F1’ Pattern [65]

a time interval with min ≤ max. Its semantics is defined as a timed automaton as
depicted in Figure 3.17 [65].

It starts in the ’init’ state and waits for an event e to occur. As soon as an e occurs,
clock c is reset and state ’wait’ is entered. Here, the transition back to state ’init’
is taken if an event f arrives within a time interval of [min,max]. If an event f is
received and c < min, the automaton remains in state ’wait’. As soon as the clock
value is greater than max, state ’fail’ is entered due to the invariant c ≤ max of state
’wait’. The property is violated if the state ’fail’ is reached and satisfied otherwise. The
automaton is receptive meaning that it is always able to consume any input event e or
f . This is needed to avoid that overlapping invocations of events lead to a deadlock.
In case of a deadlock, the ’fail’ state may never be reached although the property is not
satisfied. Thus, there are respective self-transitions for each state that are sensitive to
each input event. In particular, if an event f is received before clock c has reached
the value min, the automaton remains in state ’wait’ and the property is not violated.
Also in state ’fail’ the automaton remains receptive but will never leave this state.

To represent also conditional causality, we use the possibility of RSL to express
conditions in terms of boolean expressions resulting in the following natural lan-
guage representation: ’whenever e occurs under cond1, f occurs under cond2 during
[min,max]’. We restrict to disjunctions and conjunctions of boolean expressions such

51

3. Function Networks

Figure 3.18.: Causality Pattern Automaton

as ′var1 = val1 ∨ var2 = val2′ where var1, var2 are variables and val1, val2 are
values. As a further enrichment that also exists for the RSL, we allow to reason about
sets of events while the order of their occurrence is arbitrary i.e., each order is allowed
resulting in the following definition.

Definition 3.3.1 (Causality Pattern) The causality pattern states the following:
’Whenever {e1, ..., en} occurs under cond1, f occurs under cond2 during [min,max]’
written as

{e1, ..., en}[cond1]
[min,max]−−−−−−−→ f [cond2]

where Σin = {e1..., en} are input events, f is an output event with f /∈ Σin, cond1 and
cond2 are boolean expressions and min,max ∈ R+

0 are delays with min ≤ max. �

Semantics of the causality pattern is defined as the timed automaton depicted in
Figure 3.18. The automaton is again defined to be receptive i.e., for each state s and

each event σ ∈ Σin ∪ {f} there additionally exists a transition s
σ?,true,{}−−−−−−−→ s if there

does not already exist a transition s
σ?,true,{}−−−−−−−→ s′. For readability these transitions are

not shown in the figure. The automaton waits for an arbitrary sequence of input events
from {e1, ..., en} and resets the clock c as soon as the last input event was received
and the condition cond1 holds leading to state ’wait’. If the condition cond1 does not
hold when the last input event occurs, the automaton returns to state ’init’. In state
’wait’, it waits for an event f to occur within a time interval of [min,max]. If during
this time interval no event f is observed, the automaton reaches the ’fail’ state and the
pattern is violated. Otherwise, the automaton returns to its initial state. This means
that if an event f occurs before min time units, this does not influence the satisfaction
of this property.

52

3.3. Semantics of Function Networks

The intuitive meaning of causality is that the occurrence of all events from the
set {e1, ..., en} is sufficient for the occurrence of event f within a time interval of
[min,max]. However, this is not inevitably a necessary condition for f to occur because
there may exist another set of input events that also leads to f . In a function node this
may happen for example by an OR-activation on different input ports of a function
node each leading to the same output event at the same output port.

We introduce the following abbreviations for the causality pattern:

• Empty Condition:

{e1, ..., en}
[min,max]−−−−−−−→ f ⇐⇒ {e1, ..., en}[true]

[min,max]−−−−−−−→ f [true]

• Input sets with one event:

e [cond1]
[min,max]−−−−−−−→ f [cond2] ⇐⇒ {e}[cond1]

[min,max]−−−−−−−→ f [cond2]

• Set of output events:

{e1, ..., en}[cond1]
[min,max]−−−−−−−→ {f1, ..., fm}[cond2]

⇐⇒ {e1, ..., en}[cond1]
[min,max]−−−−−−−→ f1[cond2] ∧ ...∧

{e1, ..., en}[cond1]
[min,max]−−−−−−−→ fm[cond2]

Condition Pattern

Another functional pattern, we borrow from the RSL, is the ’F2’ pattern, which we
call condition pattern. It describes that a condition holds for a specific time interval
while the bounds are defined by the occurrence of events. It is defined as follows:

Definition 3.3.2 (Condition Pattern) The condition pattern states the following:
’Whenever e occurs, cond holds during [e, f]’ written as

[cond] holds during [e, f]

where e,f are events and cond is a boolean expression. �

The semantics of this pattern is defined in Figure 3.19 in terms of a timed automaton
[65]. As for the causality pattern, this automaton is also receptive to the events e and
f in each state by adding the respective self-transitions. The automaton looks quite
similar to the one in Figure 3.17 but needs no clock because the interval is defined by
the occurrence of the events e and f . Thus, the automaton changes the state from
’init’ to ’check’ if an event e is received. As soon as an event f is received and the
condition cond holds, it returns to the state ’init’. Whenever the condition cond does
not hold between the occurrence of e and f , the automaton reaches the state ’fail’ and
the pattern is violated.

53

3. Function Networks

Figure 3.19.: Condition Pattern Automaton (RSL pattern ’F2’ [65])

Waiting Time Pattern

In some cases it is desirable to make statements about event occurrences and the delay
between them without assuming a causal dependency, which we refer to as waiting time.
For function networks, this is in particular the case for input ports of function nodes
where a number of input streams is synchronized. This means, we have to wait for
the ith occurrence of an event on each stream until we can observe a synchronization
event. If we now focus on the ith occurrence of an event on a single stream, the waiting
time pattern may be used to capture the time we have to wait until we also see the
ith event on any other stream. The waiting time pattern is defined as follows:

Definition 3.3.3 (Waiting Time Pattern) Let L(A) be a timed language over an
alphabet A and L(B) be a timed language over an alphabet B. We define the lower and
upper waiting time for two words ωa = (ai, ti)i∈N+ ∈ L(A), ωb = (bi, si)i∈N+ ∈ L(B)
as follows:

∆−(ωa, ωb) = max(0, inf
i
{ti − si})

∆+(ωa, ωb) = sup(0, sup
i
{ti − si}))

The lower and upper waiting time of two languages L(A) and L(B) are defined as
follows:

∆−(L(A), L(B)) = inf(∆−(ωa, ωb)|ωa ∈ L(A), ωb ∈ L(B))

∆+(L(A), L(B)) = sup(∆+(ωa, ωb)|ωa ∈ L(A), ωb ∈ L(B))

∆(L(A), L(B)) = [∆−(L(A), L(B)),∆+(L(A), L(B))]

54

3.3. Semantics of Function Networks

We further define the waiting time between the ith event of a word ωa ∈ L(A) and
its kth successor event with k > 0 as follows:

∆−k (ωa) = inf
i
{ti+k − ti}

∆+
k (ωa) = sup

i
{ti+k − ti}

∆k(ωa) = [∆−k (ωa),∆+
k (ωa)]

The waiting time for a language L(A) is defined as follows:

∆−k (L(A)) = inf(∆−k (ωa)|ωa ∈ L(A))

∆+
k (L(A)) = sup(∆+

k (ωa)|ωa ∈ L(A))

∆k(L(A)) = [∆−k (L(A)),∆+
k (L(A))]

For k = 1 we write short

∆−(L(A)) = ∆−1 (L(A))

∆−(L(A)) = ∆−1 (L(A))

∆(L(A)) = ∆1(L(A))

�

Pattern Properties and Operations

We show properties and operations for the previously defined patterns that we need for
several proofs about semantic preservation. As a first property, we consider transitivity
which is important to reason about different components of function networks that
communicate via shared events.

Lemma 3.3.1 (Transitivity of Causality)

(1) {e1, ..., en}[cond1]
[min1,max1]−−−−−−−−→ {f1, ..., fm}[cond2] ∧

(2) {f1, ..., fm}[cond2]
[min2,max2]−−−−−−−−→ {g1, ..., gr}[cond3]

=⇒ (3) {e1, ..., en}[cond1]
[min1+min2,max1+max2]−−−−−−−−−−−−−−−−−→ {g1, ..., gr}[cond3]

Proof: see Lemma Lemma A.2.1 in the appendix on page 210. �

In some situations transitivity cannot be applied directly because the intermediate
condition cond2 cannot be immediately derived from the first causality pattern. But
if we know that the condition holds, expressed in terms of a condition pattern, we can
nevertheless apply transitivity by considering this external condition.

55

3. Function Networks

Lemma 3.3.2 (Transitivity of Causality with External Conditions)

(1) {e1, ..., en}[cond1]
[min1,max1]−−−−−−−−→ {f1, ..., fm} ∧

(2) {f1, ..., fm}[cond2]
[min2,max2]−−−−−−−−→ {g1, ..., gr} ∧

(3) ∀i ∈ {1, ..., n}, j ∈ {1, ...,m} : [cond2] holds during [ei, fj]

=⇒ (4) {e1, ..., en}[cond1]
[min1+min2,max1+max2]−−−−−−−−−−−−−−−−−→ {g1, ..., gr}

Proof: see Lemma A.2.2 in the appendix on page 211. �

If we have the situation that a causal dependency holds for different conditions, this
can be expressed in a single causality pattern where the condition is the disjunction of
all single conditions. For example, this is the case if a function node shows the same
causal behavior in different states.

Lemma 3.3.3 (Combination of Conditions in Causality Patterns)

(1) {e1, ..., en}[cond1]
[min1,max1]−−−−−−−−→ {f1, ..., fm} ∧ ... ∧

{e1, ..., en}[condk]
[maxk,mink]−−−−−−−−→ {f1, ..., fm}

=⇒ (2) {e1, ..., en}[cond1 ∨ ... ∨ condk]
[min′,max′]−−−−−−−−→ {f1, ..., fm}

where min′ = min(min1, ...,mink), max′ = max(max1, ...,maxk)

Proof: see Lemma A.2.3 in the appendix on page 211. �

This concludes the preparation for the semantics definition of function networks. We
have now defined all patterns that we need to show the properties of function network
components to be able to reason about semantics preservation and boundedness.

3.3.2. Basic Function Network Components

We define semantics of basic function networks in terms of timed automata. Timed au-
tomata are a well-established formalism to describe real-time systems and there exist
sophisticated analysis tools such as UPPAAL [5] to show certain properties for these
systems. How these tools may be applied to function networks has already been shown
in [16]. For each element of a basic function network, we will define a timed automa-
ton representation that synchronizes with the automata of the other components via
synchronization events using the e? and e! notation. Furthermore, we show semantic
properties for each component by using the previously defined patterns and establish
the basis to reason about boundedness of function networks. To achieve this, we will
first derive causal dependencies for each single timed automaton component and then
use the property of transitivity to connect them. The overall goal is to express the
causal dependencies between input and output events of channels and function nodes
including delays and state dependencies.

56

3.3. Semantics of Function Networks

Let bfn = (Σ,P, C,Φ,F) be a basic function network. The semantics of bfn is
defined as a composition of timed automata resulting from its source nodes, function
nodes and channels. Ports are defined implicitly because each port is assigned to
exactly one of the previously listed components. Each input port of a function node
contains a synchronization buffer to store incoming events. Each buffer has a capacity
that determines how many events may be stored at a time. Whether this capacity
is sufficient to avoid a buffer overflow depends on the incoming event streams, which
depends on the composition of function nodes with each other via channels. If there
exists a finite capacity that is sufficient for each buffer, the function network is bounded.
Otherwise the capacity must be infinite to avoid a buffer overflow and the function
network is unbounded. To cover infinite capacities, we define N∞ as the set of positive
natural numbers N+ extended by an additional symbol ∞ that is greater than any
element from N+ i.e., N∞ = N+ ∪{∞} such that m <∞ for all m ∈ N+. Hence, for a
finite capacity it holds that c ∈ N+, and for an infinite capacity we set c to the special
symbol ∞.

We define semantics of a function network as a network of timed automata with a
buffer capacity c for each buffer of the network. We will later show for a specific class
of function networks how boundedness can be decided and how a finite and sufficient
buffer capacity can be determined for bounded buffers.

T (bfn, c) = T (TA(C) ‖ TA(Φ) ‖ TA(F , c))

where TA(C) =
∏
c∈C

TA(c), TA(Φ) =
∏
φ∈Φ

TA(φ), TA(F , c) =
∏
f∈F

TA(f, c).

Please note, that the set of events that is used in the automata definitions is not
equivalent to the function network event set Σ. This has two reasons: First, function
network events may occur at different ports e.g. a function node may receive an event
e and may also send an event e. Thus, events become first unique if we also consider
the ports. Accordingly, the events that occur in the timed automata definitions are
comprised of an event σ ∈ Σ and a port p ∈ P with σ ∈ Σ(p) denoted as p.σ. Second,
sometimes intermediate events are needed to synchronize with other timed automata,
which further extends the set of events used in the semantics definitions.

As an abbreviation for a certain sequence of transitions where events are received
and sent, we will use a similar notion as it known for finite state machines, which we call
complex transition. The abbreviation is defined in Figure 3.20. On the left, a complex
transition is shown. It is split by a ’/’ symbol, where the left part is a usual transition
with a receiver event e?, a guard ϕ and a set of clock resets % leading from state s
to s′. The right part of the complex transition defines a set of urgent sender events
f1!, .., fn! produced by this transition. The meaning of this abbreviation is defined on
the right of Figure 3.20 in terms of a a set of usual transitions and some intermediate

states between s and s′. We denote such a complex transition as s
e?,ϕ,%/f1!,..,fn!−−−−−−−−−−→ s′.

Please note that we assume that the receivers of the urgent events f1, ..., fn do not
impose a (different) sequence on the same urgent events.

In the following, we define semantics of basic function network components and show
their properties starting with the event source.

57

3. Function Networks

Figure 3.20.: Complex Transitions for Timed Automata

.

.

.

Figure 3.21.: Event Source Automaton TA(φ)

Event Source

An event source φ = (EP ,Pout) ∈ Φ is defined as a tuple of an event pattern EP =
(ΣEP , P−, P+, J,O) and a set of output ports Pout. Its semantics is defined similar
to the input interface automaton defined for task networks in [24] and is depicted in
Figure 3.21. A difference to the referred interface automaton is that an event source
may produce several output events simultaneously at different output ports while on
each output port always the same event ei is sent. This output event is chosen non-
deterministically from the set ΣEP . This is motivated by the fact that an event source
models a part of the interface to the environment. Thus, such events may for example
be sensor values of a distance sensor and are identical for each output port.

The automaton starts in the state ’init’ and after a time interval of [O,O + P+]
it takes a transition to the state ’clock reset’ and resets the clock. After a further
time interval of [0, J], the next transition to the state ’wait’ is taken, which fires an
event ei ∈ ΣEP at each output port poutj ∈ Pout. Such an event is denoted as poutj .ei.
The next transition from state ’wait’ to state ’clock reset’ is taken in between P−

and P+ time units after the previous clock reset. Thus, the time of the clock reset
does not depend on the time where the event ei has been emitted. When taking this
transition, the clock is reset again. From here the automaton shows repetitive behavior
by emitting the next event again within a time interval of [0, J]. The semantics of an
event source is defined as follows:

58

3.3. Semantics of Function Networks

Definition 3.3.4 (Event Source) Let φ = (EP ,Pout) ∈ Φ be an an event source
where EP = (ΣEP , P−, P+, J,O) is the output event pattern with ΣEP = {e1, ..., en}
and J < P− and Pout = {pout1 , ..., poutm } is a set of m output ports. The semantics of φ
is defined as the timed automaton TA(φ) depicted in Figure 3.21. Based on [24] this
leads to the following language definition for each port poutj :

∀poutj ∈ Pout : L(poutj) = { (σ1, t1 + δ1)(σ2, t2 + δ2)(σ3, t3 + δ3) . . .

| σi ∈ {poutj .e1, ..., p
out
j .en}, O ≤ t1 ≤ O + P+,

∀i > 1 : ti + P− ≤ ti+1 ≤ ti + P+, 0 ≤ δi ≤ J }

Furthermore, it holds that:

∀j, k ∈ {1, ...,m}, wj ∈ L(poutj), wk ∈ L(poutk) : (poutj .eq, t) ∈ wj =⇒ (poutk .eq, t) ∈ wk.

�

To be able to reason about input languages of channels and function nodes, we
show that the language of the event source component is correctly abstracted by the
language of the event pattern with the respective parameters. Please note, that in
[24] this has already been done for an event model without offset. The start-up phase
where the offset plays a role was excluded from the notion of equivalence referred to
as steady state equivalence. Due to the possibility to also express an offset in event
patterns, we can omit this restriction and also cover the start-up phase. This proof
will also build the base for event pattern propagation which starts at the source nodes
as we will discuss later.

Lemma 3.3.4 (Event Pattern of Event Source) Let φ = (EP ,Pout) ∈ Φ be an
event source where EP = (ΣEP , P−, P+, J,O). Then the event pattern of each output
port poutj ∈ Pout is a valid abstraction of the respective language i.e.

∀poutj ∈ Pout : L(poutj) ⊆ L(ren(EP , {poutj .σ | σ ∈ Σ(poutj)}))

Proof: see Lemma A.2.4 in the appendix on page 212. �

Basic Channel

A basic channel connects an output port of a function node or an event source with
an input port of another (or the same) function node. Events are transmitted between
the respective ports with a zero delay. Accordingly, semantics of a basic channel is
defined as follows:

Definition 3.3.5 (Basic Channel) A basic channel c = (p1, p2) ∈ C transmitting
the event set Σ(p1)={e1, ..., en} is defined as the timed automaton TA(c) depicted in
Figure 3.22. �

A basic channel forwards its input events to its output port with a zero delay. Thus,
the events that may be observed at the output port are determined by the input port.
This is expressed in the following causality pattern.

59

3. Function Networks

.

.

.

Figure 3.22.: Basic Channel Automaton TA(c)

Theorem 3.3.1 (Causality of Basic Channels) Let c = (p1, p2) be a basic chan-
nel with Σ(p1)={e1, ..., en}. Then the following holds:

∀i ∈ {1, ..., n} : p1.ei
[0,0]−−−→ p2.ei

Proof: This follows immediately from the complex transition init
p1.ei/p2.ei−−−−−−−→ init, which

exists for each i ∈ {1, ..., n}. �

Function Node

The third and most complex element of a basic function network is a function node.
The semantics of a function node f is given by a composition of timed automata and
is divided into several subcomponents as shown in Figure 3.23.

A function node has a set of n input ports where each may have several incoming
channels (but at least one). A function node is activated as soon as on each channel
leading to the same input port an event has occurred that was not consumed by an
activation yet. This means that for the ith activation of an input port, we need the ith

occurrence of any event on each input channel. Due to this, we need a buffer in each
input port that is able to store the already received events until all synchronization
partners have arrived. The size of this synchronization buffer depends on the maximum
waiting time between synchronizing events of an input port and may be determined
by using event patterns as we will show later. Such a synchronization buffer exists for
each input port and is denoted as synci for an input port pini .

As soon as all needed events for a synchronization have been observed, a synchro-
nization event is produced by each synchronization buffer. The synchronization events
of each input port are joined to activate the function node to a stream denoted as Ip.
We define the execution semantics of function nodes such that there may be at most
one function node execution at a time. This means that each function node is assumed
to be executed on a single computation resource, which does not allow concurrent ex-
ecutions. Thus, transitions are always executed sequentially in the order of the arrival

60

3.3. Semantics of Function Networks

...

startf

...

L

act

syncn

synci

sync1

trans

loop

... ...

finf

Ip

Iact

O

I
in
1 I

in
n

Figure 3.23.: Function Node Semantics - Overview

of their activation events. Hence, there may occur a synchronization event before the
previous execution of the function node has finished and we need another buffer to
store the activations denoted as activation buffer act. This buffer synchronizes activa-
tion events with so-called startf events. Those startf events are produced by another
component named loop. A loop component initially produces a startf event at system
start up. Each further startf event is produced first after the previous execution of
the function node has been terminated denoted by an event finf .

Whenever a startf event and an input event are synchronized in the activation
buffer (denoted as stream Iact), the actual function node execution starts, which is
modeled by a transition system component trans. Depending on the current state
and the input event, the transition system of the function node defines a set of output
events that are produced at the output ports. For each output event an individual time
delay is defined. Only if all output events of the currently executed transition have

61

3. Function Networks

.

.

.

.

.

.
. . .

q1 qn

1

c

I1 In

O

Figure 3.24.: Synchronization Buffer

occurred, the execution of the function node is terminated and a finf event is sent
to the loop component. In the following, we will define all components of a function
node and finally define how a function node is composed. We start with the definition
and description of the synchronization buffer component.

Synchronization Buffer A synchronization buffer realizes an AND-activation and
synchronizes a set of n input event streams. This means, that it waits on each input
stream for the ith occurrence of an event and then produces the ith synchronization
event. Each synchronization buffer has a capacity c determining how many events
may be received on each stream before a synchronization event has to occur to avoid
a buffer overflow. The capacity may also be infinite.

Thus, we can imagine a synchronization buffer as a set of n FIFO-Queues with c
places as depicted in Figure 3.24. Each queue qi receives and stores the events of the
input stream Ii by attaching them at the end of the queue. A synchronization event
is produced immediately when each queue contains at least one event. If this is the
case, the first event ini of each queue qi is consumed and the synchronization event is
produced. This assures that synchronization events are produced in the same order as
their input events have been received leading to FIFO semantics. A synchronization
event is denoted as the tuple of events that were consumed e.g. (in1, ..., inn).

We will use this characterization to model the state space of the timed automaton
that realizes the synchronization buffer. Each state is defined as a tuple (q1, ..., qn)
containing n FIFO queues. Each queue is again a tuple of events it currently stores.
An empty queue is denoted as qi =<>. In the initial state each queue is empty leading
to l0 = (<> ... <>). If the automaton receives an input event ini on stream Ii, this
event is added to the queue qi if there is any place left i.e., if the length of qi is smaller
than the capacity c. If a queue qi is full, we have a buffer overflow and the automaton

62

3.3. Semantics of Function Networks

Figure 3.25.: Synchronization Buffer Automaton with capacity c = 2

reaches the state ’fail’, which it cannot leave anymore. In the state ’fail’, the automaton
is still receptive to all input events to avoid deadlocks. As soon as there is at least
one event contained in each queue, a synchronization event is produced immediately
and the first event on each queue is consumed. Because this happens in zero time the
automaton is always receptive for any input event.

In Figure 3.25, an example for a synchronization buffer automaton is depicted for
the function node fv from the cruise control example from Figure 3.7. The node fv
has two incoming channels transporting the events v1 and v2, which represent sensor
values of redundant speed sensors. These events are synchronized at the input port
p1 to aggregate the single sensor values. This leads to the observable events p1.v1

and p1.v2. They are stored in two FIFO queues, one for each input channel. In the
initial state, both queues are empty denoted as (<><>). We chose here an exemplary
buffer capacity of two. This means that the automaton is able to receive up to two
events per channel before a synchronization event (p1.v1, p1.v2) must occur to avoid
a buffer overflow, which is indicated by reaching the state ’fail’. We assume for this
example that this capacity is sufficient and thus no buffer overflow occurs. Hence, also
the waiting time for a synchronization partner is always finite. This is however only
assured because the two speed sensors deliver their values with the same period. How
we can decide boundedness and determine sufficient and finite buffer sizes for bounded
buffers is discussed in Section 3.4 in detail.

The synchronization buffer component is defined as follows:

Definition 3.3.6 (Synchronization Buffer) Let I = I1 ∪ ... ∪ In be n sets of in-
put events and c ∈ N∞ a capacity. The set of output events is defined as O =
{(in1, ..., inn) | in1 ∈ I1, ..., inn ∈ In}. The synchronization buffer component is
defined as the timed automaton Sync(I1, ..., In, c) := (L,Lc, l0,Σ,Σu, C, Inv,R) where

63

3. Function Networks

• L = {fail} ∪
{

(q1, ..., qn) |

∀i ∈ {1, ..., n} : qi = < σ1, ..., σk >| σr ∈ Ii ∀r ∈ {1, ..., k},

k ∈

{
{1, ..., c} , if c ∈ N+

N+ , if c =∞

∨ qi = <> denoting an empty queue.
}
,

• Lc = ∅, l0 = (<>, ..., <>),

• Σ = I ∪O, Σu = O, C = ∅,

• Inv = {l→ true | l ∈ L},

• R = Rrec ∪Rsync ∪Rfail ∪Rfail2 where

– Rrec is the set of transitions that receive an input event on an input stream
and the respective FIFO queue is not full and there is no synchronization
event to be produced

Rrec = { ((q1, ..., qn), ini?, true, ∅, (q1, ..., q
′
i, ..., qn)) |

∃j : qj = <>, ini ∈ Ii,
qi = < σ1, ..., σk >, 0 ≤ k < c,

q′i = < σ1, ..., σk, ini > },

– Rsync is the set of transitions that produce a synchronization event as soon
as on each input stream an event has occurred i.e. no FIFO queue is empty

Rsync = { ((q1, ..., qn), (in1, ..., inn)!, true, ∅, (q′1, ..., q′n)) |
@j : qj = <>,

∀i ∈ {1, ..., n} : qi = < σi1 = ini, ..., σ
i
k >, q

′
i = < σi2, ..., σ

i
k >},

– Rfail is the set of transitions that receive an input event on an input stream
and the respective FIFO queue is full leading to the ’fail’ state

Rfail = { ((q1, ..., qn), ini?, true, ∅, fail) |
ini ∈ Ii, qi = < σ1, ..., σk >, k = c },

– Rfail2 is the set of self-transitions of the ’fail’ state accepting each input
symbol in ∈ I i.e.

Rfail2 = { (fail, in?, true, ∅, fail) | in ∈ I}.

We denote the set of output events as O(Sync(I1, ..., In, c)) := O. �

64

3.3. Semantics of Function Networks

To be able to reason about causal properties between input events and synchroniza-
tion events, we assume that the synchronization buffer has a finite capacity c ∈ N+ and
does not overflow i.e., it does not reach the ’fail’ state. As soon as this happens, the
automaton still receives input events but will never produce a synchronization event.
Under which conditions a synchronization buffer does not overflow will be discussed
in the part about boundedness of function networks in Section 3.4.

As a first causal property of a synchronization buffer, we will show that after an
input event ini has occurred on each input stream Ii, the respective synchronization
event (in1, ..., inn) can be immediately observed within a zero time delay.

Lemma 3.3.5 (Synchronization Buffer Causality) Let us assume a synchroniza-
tion buffer Sync(I1, ..., In, c) with a finite capacity c ∈ N+ that never reaches the ’fail’
state. Then the following holds:

{in1, ..., inn}
[0,0]−−−→(in1, ..., inn)

where ∀i ∈ {1, ..., n} : ini ∈ Ii

Proof: The state where the synchronization buffer has received an event ini on each
input stream Ii is characterized by the state (q1, ..., qn) where

∀i ∈ {1, ..., n} : qi = (σ1 = ini, ..., σk), k > 0.

For each such state there exists a transition ((q1, ..., qn)
(in1,...,inn)!,true,∅−−−−−−−−−−−−→ (q′1, ..., q

′
n))

∈ Rsync, which produces the synchronization event (in1, ..., inn) within a time interval
of zero time units. �

In the next lemma, we focus on a single event inj observed on a stream Ij and show
how long it takes until there occur input events on each remaining input stream leading
to a synchronization event that contains inj . With wait−in and wait+in we denote the
minimum and maximum delay we have to wait for an input event ini on any stream
Ii with i ∈ {1, ..., n}. This delay is always bounded if the buffer has a finite capacity
and never reaches the ’fail’ state.

Lemma 3.3.6 (Synchronization Buffer Causality - Single Events) Let us as-
sume a synchronization buffer Sync(I1, ..., In, c) with a finite capacity c ∈ N+ that
never reaches the ’fail’ state, L(I1), ..., L(In) be timed languages over the input event
sets I1, ..., In, and inj ∈ Ij be an event where ∃wj ∈ L(Ij) : (inj , tk) ∈ wj , j ∈
{1, ..., n}, k ∈ N+. Then the following holds:

inj
[wait−in,wait

+
in]

−−−−−−−−−−→(in1, ..., inj , ..., inn),

where wait−in = max
i 6=j
{∆−(L(Ij), L(Ii))},

wait+in = max
i 6=j
{∆+(L(Ij), L(Ii))}

65

3. Function Networks

Proof: The minimum and maximum time we have to wait after the occurrence of
(inj , tk) until on each other input stream i with i ∈ {1, ..., n}, i 6= j an event ini ∈ Ii
with (ini, sk) ∈ wi, wi ∈ L(Ii) has occurred is determined by

wait−in = max
i 6=j
{∆−(L(Ij), L(Ii))}, wait+in = max

i6=j
{∆+(L(Ij), L(Ii))}.

From Lemma 3.3.5 we know that the synchronization event (in1, ..., inj , ..., , inn) occurs
immediately after we have seen such an event on each input stream which leads to the
statement to prove. �

Loop Component The loop component is part of a function node and is needed to
assure that there will not be an activation of a function node before the previous
execution has been finished. Semantics of the loop component is defined in terms of a
timed automaton depicted in Figure 3.26. It initially produces an output event o and
afterwards reacts on each received input event i by producing another output event o.

Definition 3.3.7 (Loop Component) The loop component is defined as

Loop(i, o)

where i is an input event and o is an output event. Its semantics is defined by the
timed automaton on the right of Figure 3.26. �

Figure 3.26.: Loop Automaton

The loop automaton accepts any arbitrary sequence of input symbols and is thus
receptive. In the following lemma, we show that the loop component produces an
output event o whenever it receives an input event i within a zero time delay.

Lemma 3.3.7 Let Loop(i, o) be a loop component. Then the following holds:

i
[0,0]−−−→ o

Proof: This immediately follows from the complex transition loop
i?/o!−−−→ loop.

66

3.3. Semantics of Function Networks

Figure 3.27.: Transition System Components

Transition System The transition system of a function node is modeled as a compo-
nent that is called Trans. Its semantics is defined as a composition of timed automata
as depicted in Figure 3.27. It consists of three different parts, which is the activation
automaton called TAActivate and for each function node transition tk ∈ T an output
automata composition named TAtkOut and a finish automaton named TAtkFinish.

The first part in terms of the activation automaton TAActivate is depicted in Fig-
ure 3.28. It represents the execution states of a function node and thus either waits
for an activation (’wait’) or is executed (’exe’). The states of the transition system are
represented by a state variable statef that initially holds the value s0 for the initial
state. For each function node transition tk = (pk, Ek, sk → Ψk, s

′
k) ∈ T , there exists a

transition in the activation automaton leading from the ’wait’ state to the ’exe’ state.

Due to the previous synchronization of input events at the input ports and a further
synchronization with a startf event, the input events of the automaton are not equal
to the events of the transitions in the transition system of the function node. Thus,
there exists a mapping function Min that maps the input port pk and the input event
set Ek of a transition tk to the respective synchronization event in the timed automata
representation. This mapping function is part of the interface of this component and
is determined when composing a transition system with other components to build
a function node. Accordingly, a transition in the automaton is taken if the mapped
trigger event Min(p.Ek) of the corresponding function node transition occurs and the
state variable statef has the needed value. At the same time, the statef variable is
updated to the value s′k. Additionally, an intermediate event etk is produced that
is received by the respective output automata composition TAtkOut. The activation
automaton returns to the initial state as soon as a finf event occurs. Furthermore,
the automaton has a state ’fail’, which is entered either if an input event is received
in state ’exe’ or a finf event occurs in state ’wait’. We will show later under which
conditions the ’fail’ state is never reached and that these conditions are satisfied when
putting all components together to a function node.

67

3. Function Networks

.

.

.

Figure 3.28.: Activation Automaton TAActivate

...

Figure 3.29.: Output Automata Composition TAtkOut for Transition tk

68

3.3. Semantics of Function Networks

...

...

.

.

.

.

.

.

Figure 3.30.: Finish Automaton TAtkFinish for Transition tk

The second part of the transition system is the output automata composition TAtkOut
which is created for each transition tk = (pk, Ek, sk → Ψk, s

′
k) ∈ T . Each TAtkOut

consists of a set of m parallel automata as depicted in Figure 3.29. The parameter m
is determined by the number of output specifications in Ψk. Each single automaton
initially waits for the synchronization event etk produced by the activation automaton
and meaning that transition tk has been activated. The clock clkf is reset as soon
as this transition is taken. It is sufficient to have one clock for all function node
transitions because at a time only one function node transition can be active. Each
automaton produces an output event p′j .e

′
j after a delay of [δ−j , δ

+
j]. With the same

automaton transition another event is produced named finjtk , which is consumed by

the respective finish automaton TAtkFinish. All output automata have again a state
’fail’, which is shown to be never reached later.

The third part is the finish automaton TAtkFinish, which is again created for each
transition tk = (pk, Ek, sk → Ψk, s

′
k) ∈ T . Such a finish automaton is shown in

Figure 3.30. It waits for all events finjtk produced by the output automata of the
respective function node transition, which may occur in any order. Then it produces
the event finf and returns to its initial state. The finf event is used to lead the
activation automaton back to its initial state such that the whole execution process
of a function node transition is completed and the system is ready to receive its next
activation. This automaton also has a state ’fail’, which is not depicted in Figure 3.30
for clarity. It is reached whenever an event finjtk occurs twice before a finf event
was produced. This is again excluded by the function node composition as we will
show later. A transition system component is defined as a composition of these three
automata types as follows:

69

3. Function Networks

Definition 3.3.8 (Transition System Component) Let f = (Pin,A,Pout) be a
function node with a transition system A = (S, s0 , T) where T = {t1, ..., tn} is a set
of transitions, I a set of input events and Min :

⋃
p∈Pin

(p× Σact(p)→ I) a function

mapping input ports and events of the transition system to the respective input events
in I. Let O denote the set of output events defined as O = {p′.e′ | ∃t = (p,E, s → Ψ,
s′) ∈ T : (p′, e′, δ) ∈ Ψ}. The semantics of a transition system component is defined
by the following composition of timed automata:

Trans(I, f,Min) = TAactivate ‖
∏
tk∈T

(TAtkOut ‖ TA
tk
Finish)

where

1. TAActivate is the Activation Automaton as defined in Figure 3.28.

2. for each tk = (pk, Ek, sk → Ψk, s
′
k) ∈ T with Ψ = {(p′1, e′1, δ1), ..., (p′m, e

′
m, δm)}

a) there is a composition of Output Automata TAtkOut as defined in Figure 3.29,

b) there is one Finish Automaton TAtkFinish as defined in Figure 3.30. Ad-
ditionally, there exists a state ’fail’ and for each state l without a tran-
sition receiving an event σ ∈ {fin1

tk
, ..., finmtk}, there exists a transition

(l, σ, true, ∅, fail) including the state ’fail’ itself.

�

As for the synchronization buffer, we also need to show for the transition system
that it never reaches a ’fail’ state. This is satisfied if no automaton of the transition
system component ever reaches its ’fail’ state. We will first show that this is true under
the assumption that input events only occur when TAActivate is in the ’wait’ state.
Afterwards, we will prove that this assumption is always satisfied when the transition
system is used to construct a function node.

Lemma 3.3.8 (Transition System never reaches Fail State) A transition sys-
tem component Trans(I, f,Min) never reaches a ’fail’ state if input events Min(pk.Ek)
only occur when TAactivate is in the ’wait’ state.

Proof: To show this property, we have to show that each automaton of the transition
system never reaches its ’fail’ state under the given assumption.

1. The activation automaton TAactivate from Figure 3.28 gets into the ’fail’ state if
either an input event Min(pk.Ek) occurs when it is in state ’exe’ or a finf event
occurs in state ’wait’. The first case is excluded by the assumption. Concerning
the second case, a finf event is only produced by one of the TAtkFinish automata
(k ∈ {1, ..., n}) after all events fin1

tk
, ..., finmtk of a function node transition have

occurred. From TAtkOut we know that this can only happen after an event etk
has occurred before. This event again needs an input event Min(pk.Ek) to occur,
which implies that TAactivate is in the ’exe’ state. Thus, a finf event can only
occur in the state ’exe’ and not in the state ’wait’.

70

3.3. Semantics of Function Networks

2. Each single output automaton from TAtkOut (see Figure 3.29) gets into its ’fail’
state if an event etk occurs when it is not in its initial state. From TAactivate we
know that an event etk can only occur together with an input event Min(pk.Ek).
From the assumption we know that this only happens if TAactivate is in the
state ’wait’. To get into this state, a finf event has to occur. From the finish
automaton TAtkFinish we know that this only happens if all events fin1

tk
, ..., finmtk

have occurred, which implies that each output automaton has returned into its
initial state. Thus, each output automaton never reaches its ’fail’ state.

3. A finish automaton TAtkFinish (see Figure 3.30) gets into its ’fail’ state if an
event from fin1

tk
, ..., finmtk occurs twice before a finf event has been produced,

which leads back to the initial state where it cannot get into the ’fail’ state.
We can exclude this again from the assumption: It always needs an input event
Min(pk.Ek) to produce the events fin1

tk
, ..., finmtk and Min(pk.Ek) only occurs

after the previous finf event has occurred. Thus, no event fin1
tk
, ..., finmtk can

occur twice before a finf event has occurred and the finish automaton cannot
reach its ’fail’ state.

�

Under the assumption that a transition system component never reaches its ’fail’
state, we will show now the causal dependencies induced by the different automata
components. It starts with proving for each single automaton which causality pat-
terns can be derived from their transitions. Afterwards, these causality patterns are
transitively combined to make statements from input events to output events of the
transition system. The activation automaton produces immediately a synchronization
event etk whenever the transition tk was triggered by an input event Min(pk.Ek) and
the state variable is set to sk leading to the following causal dependency.

Lemma 3.3.9 (Activation Automaton Causality) Let TAActivate be an activa-
tion automaton of a transition system Trans(I, f,Min) with f = (Pin,A,Pout),
A = (S, s0 , T) and tk = (pk, Ek, sk → Ψk, s

′
k) ∈ T . Under the assumption that

TAActivate never reaches its ’fail’ state it holds

Min(pk.Ek)[statef = sk]
[0,0]−−−→ etk [statef = s′k]

Proof: This causal dependency results immediately from the complex transition

wait
Min(pk.Ek),[statef=sk],statef :=s′k/etk−−−−−−−−−−−−−−−−−−−−−−−−−−→ exe

which implies that etk is produced with a zero time delay.
�

The finish automaton waits for all events from the set {fin1
tk
, ..., finmtk} for a tran-

sition transk to occur and then produces a finf event in a zero time interval.

71

3. Function Networks

Lemma 3.3.10 (Finish Automaton Causality) Let TAtkFinish be a finish automa-
ton of a transition system Trans(I, f,Min) with f = (Pin,A,Pout), A = (S, s0 , T) and
tk = (pk, Ek, sk → Ψk, s

′
k) ∈ T with Ψk = {(p′1, e′1, [δ−1 , δ

+
1]), ..., (p′m, e

′
m, [δ

−
m, δ

+
m])}.

Under the assumption that TAtkFinish never reaches its ’fail’ state it holds

{fin1
tk
, ..., finmtk}

[0,0]−−−→ finf

Proof: The finish automaton from Figure 3.30 is defined almost similar to the observer
automaton of this pattern. It first receives all events {fin1

tk
, ..., finmtk} in any order and

immediately returns to the initial state with the reception of the last event by producing
the event finf in a zero time delay. �

For the output automata of a transition tk holds that it produces output events p′i.e
′
i

with a delay δi after the synchronization event etk has occurred. Together with each
output event another synchronization event finitk is produced, which is needed for the
finish automaton of that transition. Both is shown in the next lemma.

Lemma 3.3.11 (Output Automata Causality) Let TAtkOut be a set of output au-
tomata of a transition system Trans(I, f,Min) with f = (Pin,A,Pout), A = (S, s0 ,
T) and tk ∈ T . Under the assumption that TAtkOut never reaches its ’fail’ state for each
(p′i, e

′
i, δi) ∈ Ψ with δi = [δ−i , δ

+
i] all the following holds:

1.
etk

δi−→ p′i.e
′
i

Proof: The causality pattern states that after the event etk has been observed,
the output event p′i.e

′
i must occur between δ−i and δ+

i time units. This is assured
by the ith automaton of the output automata (see Figure 3.29) by the succeeding

transitions waiti
etk?,{clkf}−−−−−−−→ exei and exei

[δ−i ≤clkf≤δ
+
i]/p′i.e

′
i!,fin

i
tk−−−−−−−−−−−−−−−−−→ waiti.

2.

p′i.e
′
i

[0,0]−−−→ finitk

Proof: Follows immediately from the complex transition

exei
[δ−i ≤c≤δ

+
i]/p′i.e

′
i!,fin

i
tk

!
−−−−−−−−−−−−−−−−→ waiti

in the ith output automaton of Figure 3.29. �

Please note, that we know from the automata definitions that there exists no other
causal dependency leading to an output event p′i.e

′
i other than the one shown in Lemma

3.3.11. In the next lemma, we transitively combine the causal dependencies of the
single automata to capture the causal behavior of a complete transition system. The
lemma has two parts. The first part shows that each input event that occurs in a
specific state leads to a set of output events according to the respective transition.
The second part abstracts from concrete output events but refers to finf events,
which are produced after the delay resulting from the minimum and maximum delay
of all output delays of a transition.

72

3.3. Semantics of Function Networks

Lemma 3.3.12 (Transition System Causality) Let Trans(I, f,Min) be a transi-
tion system with f = (Pin,A,Pout), A = (S, s0 , T) and tk = (pk, Ek, sk → Ψk, s

′
k) ∈ T

with Ψk = {(p′1, e′1, [δ−1 , δ
+
1]), ..., (p′m, e

′
m, [δ

−
m, δ

+
m])}. Under the assumption that no au-

tomaton of the transition system reaches its ’fail’ state all the following holds:

1.

∀(p′i, e′i, [δ−i , δ
+
i]) ∈ Ψ : Min(pk.Ek) [statef = sk]

[δ−i ,δ
+
i]

−−−−−→ p′i.e
′
i[statef = s′k]

Proof:

a) From Lemma 3.3.9 and Lemma 3.3.11 we know that

Min(pk.Ek)[statef = sk]
[0,0]−−−→ etk [statef = s′k] ∧ etk

δi−→ p′i.e
′
i.

b) From the activation automaton we know that [statef = sk] holds during
[etk , finf] because the state may only change when receiving an input event.

With p′i.e
′
i

[0,0]−−−→ finitk (Lemma 3.3.11) and {fin1
tk
, ..., finmtk}

[0,0]−−−→ finf
(Lemma 3.3.10) we can conclude

[statef = sk] holds during [etk , p
′
i.e
′
i].

From a) and b) the statement to prove follows by transitivity with external con-
ditions (Lemma 3.3.2).

2.

Min(pk.Ek) [statef = sk]
[δmin

k ,δmax
k]−−−−−−−−→ finf

where δmink = max(δ−1 , ..., δ
−
m), δmaxk = max(δ+

1 , ..., δ
+
m)

Proof: In Lemma 3.3.10 it has been shown that {fin1
tk
, ..., finmtk}

[0,0]−−−→ finf and

from Lemma 3.3.11 we know that ∀i ∈ {1, ...,m} : p′i.e
′
i

[0,0]−−−→ finitk holds leading

to {p′1.e′1, ..., p′1.e′1}
[0,0]−−−→ finf . This means that finf occurs together with the

last output event. The last output event of the transition tk occurs at the latest
at δmaxk = max(δ+

1 , ..., δ
+
m) and not before δmink = max(δ−1 , ..., δ

−
m) leading to the

statement to prove.

�

Based on the second part of the previous lemma, we will show now that a transition
system produces a finf event after each occurrence of any input event independently
from the state. Thus, we consider here the complete set of transitions and use the
property of function nodes that there must exist a transition for each combination of
input events and state. We denote the minimum and maximum delays that occur in
any output specification of any transition as δmin and δmax.

73

3. Function Networks

Lemma 3.3.13 (Transition System Delay Bounds) Let Trans(I, f,Min) be a
transition system with f = (Pin,A,Pout), A = (S, s0 , T), T = {t1, ..., tn} and ∀k ∈
{1, ..., n} : tk = (pk, Ek, sk → Ψk, s

′
k) with minimum and maximum output delays δmink

and δmaxk . Under the assumption that no automaton of the transition system ever
reaches its ’fail’ state the following holds:

∀k ∈ {1, ..., n} : Min(pk.Ek)
[δmin,δmax]−−−−−−−−→ finf

where δmin = min(δmin1 , ..., δminn), δmax = max(δmaxk , ..., δmaxn)

Proof: From Lemma 3.3.12 we know that it holds

∀k ∈ {1, ..., n} : Min(pk.Ek) [statef = sk]
[δmin

k ,δmax
k]−−−−−−−−→ finf .

From the basic function network definition in Def. 3.2.1 we know that there exists a
transition for each combination of input events and states. Thus, for each input symbol
a finf event is produced after certain delay. This delay is determined by the minimum
and maximum delay of any transition of the transition system leading to

∀k ∈ {1, ..., n} : Min(pk.Ek)
[δmin,δmax]−−−−−−−−→ finf

where δmin = min(δmin1 , ..., δminn), δmax = max(δmaxk , ..., δmaxn)

�

Function Node Composition A function node is defined as a composition of the
previously defined components as shown in Figure 3.23. Each input port contains a
synchronization buffer component to synchronize the events of all incoming channels
leading to a further synchronization buffer component called activation buffer. Here,
the input events are synchronized with startf events, which are produced by a loop
component. The output events of the activation buffer are received by the transition
system component, which produces events at output ports and a finishedf event. The
mapping function Min is defined such that each set of activation events of a transition
is mapped to the respective synchronization event that is produced by the activation
buffer. This is determined by considering the causal dependencies induced by the
activation buffer leading to the following definition.

Definition 3.3.9 (Function Node Component) Let c ∈ N∞ be a capacity. A
function node f = (Pin,A,Pout) with n input ports Pin = pin1 , ..., p

in
n is defined as

a composition of timed automata components

TA(f, c) =

n∏
i=1

syncini ‖ act ‖ trans ‖ loop, where

1. for each input port pini ∈ Pin with k incoming channels {c1, ..., ck} with cj =
(p∗j , p

in
i) and the corresponding sets of input events I1, ..., Ik with Ij = {pini .e | e ∈

Σ(cj)} a synchronization buffer component syncini is defined as

syncini := Sync(I1, ..., Ik, c)

74

3.3. Semantics of Function Networks

2. an activation buffer for the function node f is defined as

act := Sync(Ip, {startf}, c)

where Ip = O(syncin1) ∪ ... ∪O(syncinn).

3. a transition system component

trans := Trans(O(act), f,Min)

is defined to model the transition system A of f , where Min is the input mapping
function Min, which is defined as follows:

∀pin ∈ Pin,{e1, ..., en} ∈ Σact(pin) | {pin.e1, ..., p
in.en}

δ−→ (i, startf) :

Min(pin, {e1, ..., en}) := (i, startf), where i ∈ O(act)

4. a loop component loop is defined as

loop := Loop(finf , startf)

�

Before we are able show the causal dependencies resulting from the function node
definition, we need to show under which conditions no automaton of the function node
composition ever reaches a ’fail’ state. For the transition system component we have
shown that this only holds under a specific assumption. With the definition how a
function node is composed, we can now resolve this assumption by showing that it
always holds for function nodes. Thus, a function node never reaches a ’fail’ state if all
of its synchronization buffers (including the activation buffer) never reach their ’fail’
state as shown in the following theorem.

Theorem 3.3.2 (Function Node never reaches Fail State) Let f be a function
node. Then the following holds:

f never reaches ’fail’ state ⇐⇒ ∀i : syncini never reaches fail state ∧
act never reaches ’fail’ state

Proof: Because the loop component cannot get into a ’fail’ state by definition, it remains
to show that the transition system component Trans(I, f,Min) never reaches a ’fail’
state. Following Lemma 3.3.8, this is assured if an input event Min(pk.Ek) only occurs
when TAActivate is in the state ’wait’. We will prove that this assumption always holds
by induction over the occurrences of startf events at points in time ti.

• Base Case i=1: The first startf event is determined by the loop component to
occur at time t1 = 0. From the activation buffer we know from Lemma 3.3.6 that

75

3. Function Networks

an input event for the transition system can only occur if both a startf event
and a synchronized input event has occurred after a delay of waitin i.e.,

startf
waitin−−−−→ (in, startf)

with (in, startf) ∈ I and ∃pk.Ek : Min(pk.Ek) = (in, startf). Because TAActivate
cannot leave its initial state ’wait’ without receiving an input event, it is always
in the state ’wait’ for the initial input event.

• Inductive Step: We assume that the statement holds for the ith startf event at ti
and we show that it will also hold for the succeeding startf event at ti+1. Thus,
TAActivate is in the ’wait’ state when receiving the ith input event and we can
apply the causal dependency from Lemma 3.3.13 i.e.,

∀k ∈ {1, ..., n} : Min(pk.Ek)
[δmin,δmax]−−−−−−−−→ finf .

From the loop component we know from Lemma 3.3.7 that

finf
[0,0]−−−→ startf .

Because the loop component is the only component that produces startf events
and only the initial startf event is produced without any causal dependency,
it follows that the next startf event at ti+1 can first occur after the previous
finf event has occurred. When receiving a finf event in state ’exe’, TAActivate
returns to the state ’wait’ and remains there until the i+ 1th input event occurs,
which concludes the proof. �

With the help of all the previous definitions and proofs, we are now able to show the
causal dependencies that hold for function nodes. For all the following considerations
on causality, we assume a function node where each buffer has a sufficient finite capacity
and never gets into a ’fail’ state. In Section 3.4 about boundedness, we will show
how we can assure this for a specific class of function networks by propagating event
patterns through the function network beginning at the sources. This enables us to
iteratively determine sufficient buffer sizes for each function node.

We start with showing the causal dependencies of input events for function nodes i.e.,
which input events lead to an activation of a function node and which delays may occur
before an activation starts. To denote synchronization events at input ports we in-
troduce the following abbreviations: Let p be an input port and let E = {in1, ..., ink} ∈
Σact(p). Then we define p.(in1, ..., ink) := (p.in1, ..., p.ink) and p.(E) := p.(in1, ..., ink).
Furthermore, we denote the delays where we wait for a startf event as ’waitstart’. For
clarity, we omit the index of startf as long as it is clear from the context which function
node we refer to.

76

3.3. Semantics of Function Networks

Theorem 3.3.3 (Function Node Input Causality) Let f = (Pin,A,Pout) be a
function node. For each input port p ∈ Pin with k incoming channels c1, ..., ck where
∀j ∈ {1, ..., k} : ∃cj = (p′j , p) ∈ C the following holds:

∀j ∈ {1, ..., k}, inj ∈ Σ(p′j) :

(1) p.inj
[wait−in,wait

+
in]

−−−−−−−−−−→ p.(in1, ..., inj ..., ink),

(2) p.(in1, ..., inj ..., ink)
[wait−start,wait

+
start]−−−−−−−−−−−−−→ (p.(in1, ..., inj ..., ink), startf)

(3) p.inj
[wait−in+wait−start,wait

+
in+wait+start]−−−−−−−−−−−−−−−−−−−−−−−−→ (p.(in1, ..., inj ..., ink), startf)

(4) p′j .inj
[wait−in+wait−start,wait

+
in+wait+start]−−−−−−−−−−−−−−−−−−−−−−−−→ (p.(in1, ..., inj ..., ink), startf)

(5) {p.in1, ..., p.ink}
0−→ p.(in1, ..., ink)

Proof:

1. (1) follows directly from the synchronization buffer of input port p and Lemma
3.3.6 and the abbreviation p.(in1, ..., ink) = (p.in1, ..., p.ink).

2. (2) follows directly from the activation buffer act and Lemma 3.3.6.

3. (3) follows directly from (1) and (2) by transitivity.

4. From input channels we know by Theorem 3.3.1:

∀j ∈ {1, ..., k} : p′j .inj
[0,0]−−−→ p.inj .

Together with (3), (4) follows by transitivity.

5. (5) follows from Lemma 3.3.5 and the abbreviation

p.(in1, ..., ink) = (p.in1, ..., p.ink).

�

The next theorem shows how the output behavior of a function node causally de-
pends on the input and startf events and the state of the internal transition system.
The loop component produces a startf event at system start-up to enable the first
execution of a function node. When the execution is terminated, a finf event is sent
and the loop component produces another startf event to release the next activation
as soon as a synchronized input event has arrived. The startf event has an important
role for the causality of a function node because it is needed to determine the state
of a function node when an execution starts, which influences the output behavior.
If startf events are not considered in a causality pattern, we cannot determine the
output behavior in the general case. Nonetheless, there are special cases where this is
possible, as we will see later when considering state-independent function nodes.

77

3. Function Networks

Theorem 3.3.4 (Function Node Output Causality) Let f = (Pin,A,Pout) be a
function node. For each input port p ∈ Pin and each transition tk = (pk, Ek, sk → Ψk,
s′k) ∈ T with (p′j , e

′
j , [δ

−
j , δ

+
j]) ∈ Ψ the following holds:

(1) (pk.(Ek), startf)[statef = sk]
[δ−j ,δ

+
j]

−−−−−→ p′j .e
′
j [statef = s′k]

(2) (pk.(Ek), startf)[statef = sk]
[δmin

k ,δmax
k]−−−−−−−−→ finf

Proof:

1. From the transition system we know from Lemma 3.3.12:

Min(p.E) [statef = s]
[δ−j ,δ

+
j]

−−−−−→ p′j .e
′
j [statef = s′].

From the definition of Min in Def. 3.3.9 with Min(p.E) = (pk.(Ek), startf)) we
can conclude that statement (1) holds.

2. From Lemma 3.3.13 we know that

Min(pk.Ek)
[δmin

k ,δmax
k]−−−−−−−−→ finf .

From the definition of Min in Def. 3.3.9 with Min(p.E) = (pk.(Ek), startf)) we
can conclude that statement (2) holds.

�

As the last part of causal dependencies for general function nodes, we consider the
dependency of finf events from startf events and the time delay that may pass be-
tween them. This becomes important in the later sections when we show boundedness
and it is of interest how long we may have to wait for the next start event to occur.
This is essential to determine the needed capacity of the activation buffer. The time
we have to wait for an input event from any input port to arrive at the activation
buffer is denoted as waitIp , where Ip denotes the input stream of the activation buffer
(according to Def. 3.3.9 and Figure 3.23).

Theorem 3.3.5 (Function Node Finish Causality) Let f = (Pin,A,Pout) be a
function node with A = (S, s0 , T) with T = {t1, ..., tn} and Ip the set of input events
for the activation buffer act as defined in Def. 3.3.9. Then it holds:

startf
[wait−Ip+δmin,wait+Ip+δmax]

−−−−−−−−−−−−−−−−−−→ finf

Proof: For the activation buffer act we know from Lemma 3.3.6 that it holds

startf
[wait−Ip ,wait

+
Ip

]

−−−−−−−−−−→ (i, startf).

78

3.3. Semantics of Function Networks

where [wait−Ip , wait
+
Ip

] denotes the delay interval we have to wait for an input event on

Ip. From Lemma 3.3.13 we know that for any Min(pk.Ek) it holds

Min(pk.Ek)
[δmin,δmax]−−−−−−−−→ finf .

From Def. 3.3.9 we know that there exists a pk.Ek with Min(pk.Ek) = (i, startf)
leading with transitivity to

startf
[wait−Ip+δmin,wait+Ip+δmax]

−−−−−−−−−−−−−−−−−−→ finf .

�

From the statements about causality for general function nodes, we will now derive
causal dependencies for function nodes with only one state. Here, we can omit the
state dependency and thus also make statements without considering startf events.

Corollary 3.3.1 (Function Node Causality with One State) Let f = (Pin, (S,
s0 , T),Pout) be a function node where the set of states contains exactly one element
S = {s}. For each transition t = (p,E, s → Ψ, s′) ∈ T with s = s′ and for each (p′, e′,
δ) ∈ Ψ with δ = [δ−, δ+] the following holds:

(1) (p.(E), startf)
[δ−,δ+]−−−−−→ p′.e′ ∧

(2) p.(E)
[wait−start+δ

−,wait+start+δ
+]−−−−−−−−−−−−−−−−−−−→ p′.e′

Proof: From S = {sk} follows that [statef = sk] holds during [p.(E), p′.e′].

Theorem 3.3.4
=⇒ (p.(E), startf)[statef = sk]

[δ−,δ+]−−−−−→ p′.e′[statef = sk]

S={sk}
=⇒ (1) (p.(E), startf)

[δ−,δ+]−−−−−→ p′.e′

Theorem 3.3.3
=⇒ (2) p.(E)

[wait−start+δ
−,wait+start+δ

+]−−−−−−−−−−−−−−−−−−−→ p′.e′

�

The next theorem shows the causal dependencies for state-independent function
nodes, which is essential to be able to apply event pattern propagation for this class of
function nodes. Their causal behavior is similar to function nodes with only one state
except that the delay between input and output events may vary.

Theorem 3.3.6 (Output Causality of State-Independent Nodes) Let f be a
function node with f = (Pin,A,Pout), where S = {s1, ..., sm}, pout ∈ Pout. Then
the following holds:

∀sj ∈ S :∃tj = (pin, E, sj → Ψj , s
′
j)

where ∃ψj = (pout, e′, [δ−j , δ
+
j]) ∈ Ψj

=⇒ (pin.(E), startf)
[min(δ−1 ,...,δ

−
m),max(δ+1 ,...,δ

+
m)]

−−−−−−−−−−−−−−−−−−−−→ pout.e′

79

3. Function Networks

Proof:

∀sj ∈ S : ∃tj = (pin, E, sj → Ψj , s
′
j)

where ∃ψj = (pout, e′, [δ−j , δ
+
j]) ∈ Ψj

Theorem 3.3.4
=⇒ ∀sj ∈ S : (pin.(E), startf)[statef = sj]

[δ−j ,δ
+
j]

−−−−−→ pout.e′

⇐⇒ (pin.(E), startf)[statef = s1]
[δ−1 ,δ

+
1]

−−−−−→ pout.e′ ∧ ...∧

(pin.(E), startf)[statef = sm]
[δ−m,δ

+
m]−−−−−→ pout.e′

Lemma 3.3.3
=⇒ (pin.(E), startf)[statef = s1 ∨ ... ∨ statef = sm]

[min(δ−1 ,...,δ
−
m),max(δ+1 ,...,δ

+
m)]

−−−−−−−−−−−−−−−−−−−−→ pout.e′

From S = {s1, ..., sm} follows (statef = s1 ∨ ... ∨ statef = sm) = true and thus

(pin.(E), startf)
[min(δ−1 ,...,δ

−
m),max(δ+1 ,...,δ

+
m)]

−−−−−−−−−−−−−−−−−−−−→ pout.e′

�

This concludes the definition of semantics of basic function network components and
the causal dependencies they induce.

3.3.3. Extended Function Network Components

Based on the causal dependencies for components of basic function networks, we will
now apply this knowledge to extended function network components. This is needed
because task creation is defined for extended function networks and thus for showing
semantics preservation, we also need to consider causality of these components. The
causal dependencies can be derived from the translation of extended function networks
to basic function networks as defined in Def. 3.2.3.

A signal data node is modeled as a simple function node with one state and one
transition for each input event that may occur. We restrict to show the behavior when
an input event and a startf event is available. The delays induced by waiting for a
startf event can be determined in the same way as for general function nodes.

Corollary 3.3.2 (Causality of Signal Data Node) For a signal data node d =
(Pin, δ,Pout) ∈ Dsignal the following causal dependency holds:

∀pin ∈ Pin, e ∈ Σ(pin) : (pin.e, startfd)
δ−→ pout.e

Proof: Follows immediately from Def. 3.2.3 and Corollary 3.3.1. �

Accordingly, we can show the causality that holds for a shared data node, which is
also modeled as a function node. We are mainly interested in the causal dependencies

80

3.3. Semantics of Function Networks

that arise when reading from the data node. Here, we will also consider the delay
waitstart that is needed to wait for a startf event to point out that also a reading
process may be temporary blocked by a previous write or read access.

Corollary 3.3.3 (Causality of Shared Data Node) According to Def. 3.2.3, a
shared data node d = ({pin}, δ, σ0, {pout}) ∈ Dshared is translated into a function node
fd = ({pin, prd}, (S, s0 , T), {pout, p⊥d }) ∈ Fb leading to the following causal dependency:

∀r ∈ Σ(prd) : prd.r
δ+waitstart−−−−−−−−→ pout.σ, σ ∈ Σ(pin),

where waitstart = [wait−start, wait
+
start]

Proof: From Def. 3.2.3 and Theorem 3.3.4 follows that

∀sσ ∈ S : (prd.r, startfd)[statefd = sσ]
δ−→ pout.σ[statefd = sσ]

Together with Theorem 3.3.3 this leads to the statement to prove. �

For the FIFO data node the situation is quite similar as for the shared data node.
The overall time we have to wait for reading an event from the FIFO is determined by
the execution delay δ of the data node and the waiting time for a startf event, which
is denoted as waitstart.

Corollary 3.3.4 (Causality of FIFO Data Node) According to Def. 3.2.3 a FIFO
data node d = ({pin}, δ, c, {pout}) ∈ Dfifo is translated into a function node fd =
({pin, prd}, (S, s0 , T), {pout, p⊥d }) ∈ Fb leading to the following causal dependency:

∀r ∈ Σ(prd) : prd.r
δ+waitstart−−−−−−−−→ pout.σ, σ ∈ Σ(pout),

where waitstart = [wait−start, wait
+
start]

Proof: From Def. 3.2.3 and Theorem 3.3.4 the following holds:

(1) ∀sσ1,σ2,...,σk
6= empty ∈ S :

(prd.r, startfd)[sfd = stateσ1,σ2,...,σk
]
δ−→ pout.σ1[statefd = sσ2,...,σk

],

(2) (prd.r, startfd)[statefd = empty]
δ−→ pout.z[statefd = empty]

Thus, for each state an event σ is produced, if a read event occurs, which leads together
with Theorem 3.3.3 to the statement to prove. �

The last data node is the finite source data node, where we show that the intended
causal behavior can only be assured under a specific condition stating that the input
events arrive within a maximum time bound of P− − J time units.

Corollary 3.3.5 (Causality of Finite Source Data Node) According to the ex-
tended function network definition from Def. 3.2.3, a finite source data node d =
({pin}, δ,EP , {pout}) ∈ Dfsource with EP = (ΣEP , P−, P+, J,O) is translated into a
function node fd = ({pin, ptrd }, (S, s0 , T), {pout, p⊥d }). This leads to the following causal

81

3. Function Networks

dependency if the assumption holds that the delay between an output and input event
is bounded by P− − J:

∆(L(ΣEP), L(Σ(pin))) ≤ P− − J

=⇒ ∀e ∈ ΣEP : ptrd .e
δ−→ pout.e

Proof: see Corollary A.2.1 in the appendix on page 213. �

A further element of extended function networks are activation channels that are
either translated to simple function nodes or to basic channels, which leads to the
following causal dependencies.

Corollary 3.3.6 (Causality of Activation Channels) An activation channel c =
(pout, δ, pin) ∈ CA with δ = [δ−, δ+] is either translated to a function node fc or a basic
channel leading to the following causal dependency:

∀e ∈ Σ(pout) :

{
pout.e

[0,0]−−−→ pin.e , if δ− = δ+ = 0

pout.e
waitstart+δ−−−−−−−−→ pin.e , else

Proof: As defined in Def. 3.2.3, if δ− = δ+ = 0, c is translated into a basic channel
cb = (pout, pin) ∈ Cb leading with Theorem 3.3.1 to the statement of the first case.
Otherwise c is translated into a function node fc = ({p}, ({s0}, s0, T), {p′}) ∈ Fb and
two basic channels cout = (pout, p) ∈ Cb and cin = (p′, pin) ∈ Cb leading with Corollary
3.3.1 and Theorem 3.3.1 to the statement of the second case. �

This concludes the section about semantics of basic and extended function networks
and provides us with all properties that are relevant to reason about the question of
boundedness of function networks in the next section.

3.4. Boundedness and Event Pattern Propagation

First, the question arises why we need to deal with boundedness and its decidability
at all. For this work, the reason can be found in the fact that we aim at implementing
a function network on a hardware architecture. This always means that we have a
limited set of resources e.g. in terms of memory. Thus, it has to be ensured that the
network can be modeled with a finite set of states in order to be implementable. For
function networks this means that there must exist a sufficient and finite capacity for
each synchronization buffer.

In Section 3.3, we have defined function network semantics depending on a capacity
c for all synchronization buffers where the question remains how to choose a proper
capacity. First, an infinite capacity c =∞ would always assure that the ’fail’ state is
never reached for each buffer. But, such a function network might be unbounded and
thus not implementable. To decide boundedness, we need to determine whether there
also exists a finite capacity c ∈ N+ that is sufficient for each buffer to never reach its
’fail’ state.

82

3.4. Boundedness and Event Pattern Propagation

In the following, we will show that boundedness is decidable for a specific class of
function networks, which we call periodic state-independent function networks. This
class of function networks is based on two assumptions. First, we assume that each
source node produces events with a periodic event pattern i.e., P− = P+. This is
sufficient for the context of this work, because the specification models of Simulink
only allow periodic activations. The second assumption is that all function nodes are
state-independent. This property means that the causal output behavior of a function
node does not depend on the state but only on the input events of the node. This
property is also satisfied for function networks that arise from the translation of a
Simulink specification model because the internal behavior of Stateflow blocks is not
modeled explicitly. Furthermore, there is an exception in terms of a special function
node called period multiplier, which is necessary to realize a valid translation from
Simulink models but not state-independent. For this kind of node, we will show in
Chapter 4 how output event patterns can be derived and how boundedness can be
decided for those networks as well. Furthermore, we will show in Chapter 5 about
task creation that the property of state-independence is preserved by the operations
to merge function nodes.

Based on the proposed assumptions, we will define an algorithm that decides bound-
edness for periodic state-independent function networks. This algorithm is based on
propagating event patterns through the network starting at the sources whose output
event patterns are known initially. We will show how event patterns are propagated for
basic function network components in terms of channels and state-independent func-
tion nodes. The translation of extended function networks to basic function networks
enables us to apply these results also for extended function networks if the compo-
nents are state-independent. Thus, we show in a second step under which condition
the additional elements are state-independent and thus are part of the considered class
of function networks.

3.4.1. Event Pattern Propagation

Event pattern propagation is based on the causal dependencies of function nodes and
channels that have been shown in Section 3.3. Let us first assume a function node
as depicted in Figure 3.31 with an output port pout. For this output port we want
to determine the event pattern of all events that may occur. We further assume that
there exists a set of n input ports with causal dependencies to pout and that all these
causal dependencies are unconditional i.e., each occurrence of input events leads to an
output event of a common event set. These assumptions hold for the class of state-
independent function nodes as we will see later. We further assume that each input
port pini has m incoming channels leading to a set of event sets Ai1, ..., A

i
m that are

synchronized at that port. The following lemma shows that the event patterns of all
events that may occur at pout (which we refer to as the set B) can be derived by
considering all the event patterns of input ports with causal dependencies to pout.

83

3. Function Networks

Figure 3.31.: Event Pattern Propagation using Causality Pattern

Lemma 3.4.1 (Event Pattern Propagation with Causality Pattern) Let f be
a function node with f = (Pin,A,Pout) where pout ∈ Pout is an output port with a set
of output events B := Σ(pout). Let further

• {pin1 , ..., pinn } ⊆ Pin be the set of all input ports that have a causal dependency to
events of the output port pout,

• for each input port pini (i ∈ {1, ..., n}) with m incoming channels and a set of
events arriving on these channels Ai1, ..., A

i
m hold

∀ai1 ∈ Ai1, ..., aim ∈ Aim : {pini .ai1, ..., pini .aim}
[mini,maxi]−−−−−−−→ pout.b where b ∈ B,

• there exist period-equivalent event patterns for all these channels and their sets

of input events i.e., EP (Ai1)
P
= ...

P
= EP (Aim),

Then the event pattern EP (B) for the output port pout is determined as follows:

EP (B) = super(EP1(B), ...,EPn(B))

where EP i(B) = ren(delay(sync(EP (Ai1), ...,EP (Aim)), [mini,maxi]), B)

with i ∈ {1, ..., n}

Proof: We know the event pattern for each incoming channel of each input port pini ,

which are period-equivalent i.e., EP (Ai1)
P
= ...

P
= EP (Aim). A valid abstraction for the

84

3.4. Boundedness and Event Pattern Propagation

occurrence of an event from each incoming channel {pini .ai1, ..., pini .aim} is the synchro-
nization of all the event patterns as shown in Lemma 3.1.7 leading to

EP ({pini .ai1, ..., pini .aim}) = sync(EP (Ai1), ...,EP (Aim)).

From {pini .ai1, ..., pini .aim}
[mini,maxi]−−−−−−−→ pout.b we know that as soon as on each input

channel an event has occurred, there occurs an event b ∈ B within a time interval of
[mini,maxi]. From Lemma 3.1.9 we know that this language can be abstracted by the
delay function for event patterns, which leads with the renaming function to

EP i(B) = ren(delay(sync(EP (Ai1), ...,EP (Aim)), [mini,maxi]), B).

The occurrence of an event b ∈ B can be abstracted by the superposition function as
shown in Lemma 3.1.8 leading to the statement to prove i.e.,

EP (B) = super(EP1(B), ...,EPn(B)).

�

For function nodes where the events of an output port pout exclusively depend
on a single input port pin ∈ Pin with a set of events A1, ..., Am, the event pattern
propagation can be simplified to a pure synchronization. This means, that we can
omit the superposition of event patterns, which leads to

EP (B) = ren(delay(sync(EP (A1), ...,EP (Am)), [min,max]), B).

It becomes even more simpler if there exist only causal dependencies from a single
input port pin ∈ Pin with one incoming channel with a set of events A. In this case,
also the synchronization can be omitted leading to

EP (B) = ren(delay(EP (A), [min,max]), B).

To be able to apply event pattern propagation to state-independent function nodes,
it remains to show that a function node with a state-independent output port exactly
leads to the assumptions of Lemma 3.4.1. Thus, event pattern propagation can be ap-
plied for all function node output ports that satisfy the property of state-independence.

Lemma 3.4.2 (State-Independent Event Pattern Propagation) Let f = (Pin,
A,Pout) be a function node with A = (S, s0 , T) with an output port pout ∈ Pout with
B = Σ(pout) that is state-independent. Let us furthermore assume that all event pat-
terns of channels to the same input port of f are period-equivalent. Then we can apply
Lemma 3.4.1 to determine the output event pattern EP (B).

Proof: According to the definition of state-independence in Def. 3.2.7, for each input
port pini ∈ Pin with a transition to pout each combination of input events leads to an
output event b at output port pout i.e.

∀sj ∈ S, ∀ai1 ∈ Ai1, ..., aim ∈ Aim :

∃t = (pini , (a
i
1, ..., a

i
m), sj → {...(pout, b, δj)...}, s′j) ∈ T with b ∈ B

85

3. Function Networks

From Theorem 3.3.6 follows that this leads to the following causal dependency:

∀ai1 ∈ Ai1, ..., aim ∈ Aim : {pin.ai1, ..., pin.aim}
[min′,max′]−−−−−−−→ b.

Together with the knowledge that all input event patterns are period-equivalent, we have
satisfied all assumptions of Lemma 3.4.1 and can use it to determine EP (Σ(B)). �

As basic channels are also part of a basic function network, we show now how
event propagation is performed for these channels by considering again the causal
dependencies we have shown previously for basic channels.

Lemma 3.4.3 (Event Pattern Propagation for Basic Channels) Let c be a ba-
sic channel with c = (p1, p2), Σ1 = Σ(p1) = {p1.e1, ..., p1.en} and Σ2 = Σ(p2) =
{p2.e1, ..., p2.en}. Then the following holds:

EP (Σ2)) = ren(EP (Σ1),Σ2).

Proof: This proof follows from the event pattern propagation in Lemma 3.4.1 with

∀p1.e ∈ Σ1 : p2.e ∈ Σ2 : p1.e
[0,0]−−−→ p2.e

=⇒ EP (Σ2) = ren(delay(EP (Σ1), [0, 0]),Σ2)

= ren(EP (Σ1),Σ2)

�

This concludes our journey into event pattern propagation and gives us all the
statements we need to propagate event patterns in periodic state-independent function
networks. Nevertheless, we want to point out how we are able to derive output event
patterns also for function nodes that are not state-independent.

Deriving General Output Event Patterns

To derive output event patterns for arbitrary function nodes, we make use of the timed
automaton representation that underlies the function network formalism. Under the
assumption that the event patterns of all input ports of a function node are known, we
are able to construct a function node as a composition of timed automata as we have
defined in Section 3.3. By taking this composition, we can apply the approach of Thiele
et al. [47] to determine event patterns for all output ports. In that approach, observer
automata are constructed that count events and measure the distance between events
of an arbitrary timed automaton. In an iterative algorithm upper and lower curves
are determined represented as Real-Time Calculus (RTC) arrival curves with a period
interval and initial start values for both curves.

The RTC arrival curves defined in Def. 2.3.3 can be translated into event patterns
as a valid abstraction, which is shown in the following corollary.

86

3.4. Boundedness and Event Pattern Propagation

Corollary 3.4.1 (Translating from RTC to Event Pattern) A RTC function

αu(∆) := Nu +

⌊
∆

P−

⌋
αl(∆) := N l +

⌊
∆

P+

⌋
can be represented by an event pattern EP = (ΣEP , P−, P+, J,O) where

• J = (Nu − 1) · P−

• O = −N l · P+

Proof: See Corollary A.3.1 in the appendix on page 214. �

3.4.2. Boundedness

We will show how boundedness can be decided for periodic state-independent function
networks, where all source event patterns are periodic with P− = P+ and all function
nodes are state-independent.

In function networks, we define buffers as synchronization buffers, which are used in
input ports of function nodes to synchronize incoming event streams, and as activation
buffers for function nodes to assure that there is only one process execution active at
a time. Because both buffers are realized by the same basic component, we start with
defining boundedness for synchronization buffers as follows:

Definition 3.4.1 (Boundedness of Synchronization Buffers) A synchronization
buffer sync = Sync(I1, ..., In, c) is bounded iff there exists a finite capacity c ∈ N+ such
that the synchronization buffer automaton never reaches its ’fail’ state i.e.

sync is bounded ⇐⇒ ∃c ∈ N+ | sync never reaches the ’fail’ state

�

The definition of boundedness for a basic function network immediately follows from
the previous definition by claiming that all buffers of a function network are bounded.

Definition 3.4.2 (Boundedness of Basic Function Networks) Let bfn be a ba-
sic function network and SY NC bet the set of all synchronization buffer components
in bfn. bfn is bounded if each synchronization buffer is bounded

bfn is bounded ⇐⇒ ∀sync ∈ SY NC : sync is bounded

�

87

3. Function Networks

Deciding Boundedness by Event Pattern Propagation Based on event pattern prop-
agation, we will show in the following how boundedness can be decided for basic func-
tion networks only by using the definition of function networks and without applying
any other techniques such as model-checking. Thus, we call this approach static de-
cidability of buffer boundedness.

To characterize the conditions under which a finite buffer is bounded, meaning that
it will not reach its ’fail’ state, we need to reason about the maximum time we have
to wait to see an input event on each stream. This is captured by the maximum
time distance where on any two input streams Ii and Ij the same number of events
has occurred. For event patterns this maximum can be approximated by using the δt
function from Def. 3.1.7 leading to

max := sup
i,j∈{1,...,n},i6=j

(δt(EP (Ii),EP (Ij))).

This is also the maximum time it takes to see a synchronization event. max may also
be infinite if there is no upper bound for this waiting time which may lead to the need
for an infinite buffer capacity.

If max <∞ holds, this is a sufficient condition for a buffer to be bounded because
the maximum waiting time is bounded and hence the number of events that need to
be stored is bounded as well. But it is not a necessary condition for event patterns in
general because max =∞ must not always lead to an unbounded buffer. The reason
for this may be correlations between the synchronized streams that are abstracted
by the η functions and thus also the δt function leading a finite distance although
max = ∞. However, this can only happen if streams have different lower and upper
period bounds i.e. P− 6= P+. In this case, there may be some streams where the
distance is finite and some where it is not finite. And if stream correlations prevent
any two streams with an infinite distance to occur simultaneously, there exists a finite
buffer capacity although max =∞.

However, if we restrict to the subclass of periodic event patterns (i.e. P− = P+), as
we do for deciding boundedness, max < ∞ is also a necessary condition for a buffer
to be bounded. This is because all streams described by a periodic event pattern of a
specific port have the same period and thus the time distance for two periodic event
patterns will either be bounded for all streams or unbounded for all streams. Hence,
correlations between streams can never lead to a finite distance between two streams
if max =∞ because the periods are fixed for all streams.

Thus, we can show for periodic event patterns that a buffer never reaches its ’fail’
state if max <∞ holds, and that this is only the case if all input event patterns have
the same period. If this is given we can always find a finite capacity that is sufficient
to avoid a buffer overflow. This is illustrated in Figure 3.32 where in Figure 3.32a
the Eta-functions of two periodic event patterns EP1 and EP2 with the same period
i.e. P1 = P2 are depicted. The maximum time distance is shown for a number of
succeeding steps of the Eta-functions and denoted as ∆. It is obvious that there exists
a maximum bound for ∆ because the Eta-functions of EP1 and EP2 rise with the
same period leading to the same slope. In Figure 3.32b the situation is shown for two
periodic event patterns EP1 and EP2 with different periods i.e. P1 6= P2. Here, the

88

3.4. Boundedness and Event Pattern Propagation

t

n

(a) Periodic event patterns with equal periods
lead to finite distance bound

n

t
(b) Periodic event patterns with different peri-

ods lead to infinite distance bound

Figure 3.32.: Deciding boundedness for periodic event patterns

distance ∆ grows with every periodic step as it is shown for a number of succeeding
steps. Hence, there is no finite bound for ∆ leading to max =∞.

We will show decidability of buffer boundedness in two steps: First, we show in
Lemma 3.4.4 that a buffer overflow occurs for periodic streams if and only if max <∞
holds. Based on this statement we show in a second step in Lemma 3.4.5 that the
question whether a synchronization buffer is bounded is decidable if all its input event
patterns are periodic.

Lemma 3.4.4 (Synchronization Buffer Overflow) Let sync be a synchronization
buffer with sync = Sync(I1, ..., In, c) with the input streams I1, ..., In where the event
pattern EP (Ii) of each input stream is periodic i.e. P−i = P+

i . Then the following
holds:

∃c ∈ N+ | sync never reaches the ’fail’ state

⇐⇒ max := sup
i,j∈{1,...,n},i6=j

(δt(EP (Ii),EP (Ij))) <∞

Proof: The synchronization buffer automaton only reaches the ’fail’ state if there occur
c+ 1 input events on the same input stream Ii before an event was consumed from the
queue by a synchronization. A lower bound for the minimum distance between c + 1
events on stream Ii can be determined by δ−EP (II)(c + 1) (Def. 3.1.2). For periodic

streams the maximum time until we see a synchronization event can be determined by
considering the maximum time until we have seen an event on each two streams Ii and
Ij approximated by max := sup

i,j∈{1,...,n},i6=j
(δt(EP (Ii),EP (Ij))).

1. =⇒: If we assume that there exists a finite capacity c ∈ N+ such that sync never
reaches the ’fail’ state, it must hold that there always occurs a synchronization
event before c+ 1 events have been observed on a single input stream i.e.

∀i ∈ {1, ..., n} : δ−EP (II)(c+ 1) ≥ max.

This is only possible if max <∞ holds leading to the statement to prove.

89

3. Function Networks

2. ⇐=: If we assume that max < ∞ holds, there always exists a finite capacity
c ∈ N+ such that there never occur c+ 1 events on a single input stream before a
synchronization event occurs. This is because periods of event patterns are always
greater than zero and hence for a finite max we can always find a capacity c such
that ∀i ∈ {1, ..., n} : δ−EP (II)(c+ 1) ≥ max. It follows that sync never reaches the

’fail state’ for this c, which concludes the proof.

�

Lemma 3.4.5 (Static Decidability of Buffer Boundedness) Let sync be a syn-
chronization buffer with sync = Sync(I1, ..., In, c) with the input streams I1, ..., In
where the event pattern EP (Ii) of each input stream is periodic i.e. P−i = P+

i . Then
boundedness of sync can be decided as follows:

sync is bounded ⇐⇒ ∀i, j ∈ {1, ..., n} : EP (Ii)
P
= EP (Ij)

Proof: We can apply Def. 3.4.1 and Lemma 3.4.4 and get the following statement to
prove:

max := sup
i,j∈{1,...,n},i6=j

(δt(EP (Ii),EP (Ij))) <∞

⇐⇒ ∀i, j ∈ {1, ..., n} : EP (Ii)
P
= EP (Ij)

1. =⇒ (Proof by contraposition): If for any i,j the event streams of Ii and Ij are

not period-equivalent i.e. EP (Ii) 6
P
= EP (Ij), then we know from Lemma 3.1.6

that
δt(EP (Ii),EP (Ij)) = sup(δt(η

+
i , η

−
j), δt(η

+
i , η

−
j)) =∞

because δt(η
+
i , η

−
j) =∞ and δt(η

+
i , η

−
j) =∞ leading to max =∞.

2. ⇐= : Assuming that EP (Ii)
P
= EP (Ij) holds for all i ∈ {1, ..., n}, we can deter-

mine an upper bound for max with the help of Lemma 3.1.5:

max = sup
i,j∈{1,...,n},i6=j

(δt(EP (Ii),EP (Ij)))

≤ max
i,j∈{1,...,n},i6=j

max(Oi, Oj) + 2 · P + Ji + Jj)

≤ max
i,j∈{1,...,n},i6=j

(Oi) + 2 · P + 2 ·max
i

(Ji) <∞

With Def. 3.1.2, we can determine a sufficient capacity ci for each i as follows:

(δ−EP (II)(ci + 1) ≥ max

⇐⇒ (ci + 1− 1) · P − Ji ≥ max
i

(Oi) + 2 · P + 2 ·max
i

(Ji)

⇐⇒ ci ≥
max
i

(Oi) + 2 ·max
i

(Ji) + Ji

P
+

2 · P
P

=⇒ ci =

⌈
max
i

(Oi) + 2 ·max
i

(Ji) + Ji

P

⌉
+ 2

90

3.4. Boundedness and Event Pattern Propagation

The capacity c is then determined by taking the maximum of all ci:

c = max
i

(ci) =

⌈
max
i

(Oi) + 3 ·max
i

(Ji)

P

⌉
+ 2

Thus, the buffer is bounded by c.

�

It is trivial to see that a buffer with a single periodic input stream is always bounded
because each periodic event stream is period-equivalent to itself.

Up to now, we have covered the general case of synchronization buffers as they are
used in input ports. A special case of synchronization buffers is their use as activation
buffers of function nodes. Here, we do not have an arbitrary number of streams that
are synchronized but exactly two input streams. The first one contains the output
events of the synchronization buffers of all input ports of the function node denoted
as Ip. The second stream contains only startf events, which are needed to activate a
function node. The first startf event is produced by the loop component at system
start-up. Afterwards, another startf event occurs first after the previous execution
of the respective function node has terminated indicated by a finf event. Thus, the
language of startf events depends not only on the language over all input events Ip.
Furthermore, it is determined by the execution delays of transitions of the function
node which determines when a finf event is produced. In particular, it depends on
the maximum transition delay, which we denote as δmax. This is the maximum time
a finf event may be delayed after the function node execution has started.

Thus, we first show how the language of startf events is determined before showing
how to decide boundedness for activation buffers.

Lemma 3.4.6 (Language of Start Events) Let the output language of the activa-
tion buffer L(EP (Ip)) be defined as follows:

L(EP (Ip)) = { (σ1, t1)....(σi, ti)...(σi+m, ti+m)... | σi ∈ Ip,
(1) ti ∈ [max(0, (i− 1) · P− − J), O + (i+ 1) · P+ + J)

(2) ∀m : ti+m − ti ∈ [max(0,m · P− − J), O + (m+ 2) · P+ + J)

} where i,m ∈ N+

Then the language of start events is determined as follows:

L(startf) = { (startf , u1)...(startf , ui)...(startf , ui+n)...}
| u1 = 0,

ui+1 = max(ui, ti) + [δmin, δmax]

where δmin, δmax are defined as in Def. 3.3.13.

Proof: From the definition of the loop component in Def. 3.3.7 we know that u1 = 0.
From Lemma 3.3.13, we know that for the transition system it holds

(σi, startf)
[δmin,δmax]−−−−−−−−→ finf

91

3. Function Networks

with σi ∈ Ip. From the loop component we know that finf
[0,0]−−−→ startf holds. All

together this leads to
ui+1 = max(ui, ti) + [δmin, δmax].

�

Based on this language, we will now show that an activation buffer is bounded if
each cycle of length k of the transition system has a length smaller than k ·P where P is
the period of input events. Otherwise, the period of finf events would become greater
than P leading to unboundedness. If the length of a cycle is smaller, the period of
finf events is still P because it needs still an input event to see another startf event.

Lemma 3.4.7 (Deciding Boundedness of Activation Buffers) Let f = (Pin,A,
Pout) be a function node with A = (S, s0 , T). Let further be

• R be the set of all partial runs of A where r = (s1
t1−→ s2...

tk−→ sk+1) ∈ R is a
partial run of the transition system of length k with si ∈ S, ti = (pi, Ei, si →
Ψi, si+1) ∈ T ,

• δmax(r) =
k∑
i=1

(δmaxi) denote the maximum delay of a run r where δmaxi denotes

the maximum delay of a transition ti as introduced in Lemma 3.3.12,

• act = Sync(Ip, {startf}, c) be the activation buffer of f ,

• EP (Ip) = (ΣEP , P, P, J,O) be the periodic event pattern over Ip.

Then it holds that act is bounded if each cyclic partial run of length k has a length
smaller than k · P i.e.:

act is bounded ⇐⇒ ∀r = (s1
t1−→ s2...

tk−→ s1) ∈ R : δ(r) ≤ k · P

Proof: see Lemma A.3.1 in the appendix on page 215. �

When deciding boundedness, cycles play a significant role because they may lead
to unbounded systems. But a cycle is not a sufficient condition for unboundedness
because their definition is based on paths without respecting any state-dependencies.
To decide boundedness, we need a stronger notion of a cycle taking into account the
internal states of a function node, which we will denote as cyclic causal dependency.
Such a dependency exists if there is a cycle that cannot be left under all circumstances.
Thus, we claim that there must exist mutual causal dependencies between two events
leading to the following definition.

Definition 3.4.3 (Cyclic Causal Dependency) We define a cyclic causal depen-
dency between two ports p1 and p2 as a mutual causal dependency between events of
these ports i.e., there exists a cyclic causal dependency if

∃e1 ∈ Σ(p1), e2 ∈ Σ(p2) : p1.e1
[min,max]−−−−−−−→ p2.e2 ∧ p2.e2

[min′,max′]−−−−−−−−→ p1.e1

�

92

3.4. Boundedness and Event Pattern Propagation

Figure 3.33.: Examples for Cyclic Causal Dependencies

The next lemma deals with the question how event patterns evolve when we apply
event pattern propagation on ports with cyclic causal dependencies. In this case, event
pattern propagation will never converge to a stable event pattern because the cycle
cannot be left. With each propagation pass, an event pattern is superposed with itself,
which halves the period and thus the period becomes infinitely small.

Lemma 3.4.8 (Self-Superposition halves Period) Let EP1 = (ΣEP
1 , P−1 , P

+
1 , J1,

O1) EP2 = (ΣEP
2 , P−2 , P

+
2 , J2, O2) be two period-equivalent event patterns i.e. EP1

P
=

EP2 and EPs = (ΣEP
s , P−s , P

+
s , Js, Os) = super(EP1,EP2) be their superposition.

Then it holds that

P+
s =

1

2
· P+ ∧ P−s =

1

2
· P−

Proof:

P+
s =

1
1
P+ + 1

P+

=
1
2
P+

=
1

2
· P+

P−s =
1

1
P− + 1

P−

=
1
2
P−

=
1

2
· P−

�

A cyclic causal dependency always leads to unboundedness because it can never be
left. We differentiate between two different kinds of cyclic dependencies depending on
whether the loop is an AND or an OR loop.

An example of an AND loop with a cyclic causal dependency is shown on the left
of Figure 3.33, where a function node is depicted with an input port pin with two
incoming channels and an output port pout. It has one transition, indicated as dotted
arrow, which produces an event at pout whenever there occurs an event on each input
channel of pin. But due to the fact that the left channel of pin originates from pout,
there exists a cyclic causal dependency between these ports and there will never occur
an event on this channel. Thus, it is not possible to determine an event pattern for pin

93

3. Function Networks

and thus also not for pout. Hence, the synchronization buffer of pin would have to store
all the events from the right channel without ever receiving a synchronization partner
from the other channel. For a finite synchronization buffer this will lead to an overflow
and its fail state will be reached because there will never occur a synchronization event.

On the right, an example of an OR loop is depicted, where a function node has a
cyclic causal dependency from its output port pout to its input port pin1 . The transitions
of the function node are again indicated as dotted arrows in the node. Assuming that
the event pattern of the input port pin2 is known, still the event pattern of pout cannot
be determined because it also depends on pin. If we nevertheless take this incomplete
event pattern of pout and propagate it to pin, we would get into an infinite propagation
loop because the event pattern for the output port becomes never stable.

We will show in the next lemma for both types of cyclic dependencies that they
always lead to unboundedness for state-independent function networks.

Lemma 3.4.9 (Cyclic Causal Dependency leads to Unboundedness) Let bfn
be a reachable function network with bfn = (Σ,P, C,Φ,F) and f = (Pin,A,Pout) ∈ F
be a state-independent function node with an input port pin ∈ Pin and a output port
pout ∈ Pout and a cyclic causal dependency between pin and pout. Let further be sync
the synchronization buffer of pin and act the activation buffer of f . Then it holds that
at least sync is unbounded or act is unbounded i.e.

∃ein ∈ Σ(pin), eout ∈ Σ(pout) :

pin.ein
[min,max]−−−−−−−→ pout.eout ∧ pout.eout

[min′,max′]−−−−−−−−→ pin.ein

=⇒ act is unbounded ∨ sync is unbounded

Proof: see Lemma A.3.2 in the appendix on page 216. �

Now we put everything together and define an algorithm to decide boundedness
for periodic state-independent function networks. The algorithm is based on event
pattern propagation and collects all event patterns in a set denoted as EP. It starts
with adding all event patterns from all source nodes to EP because they are known
by the definition of function networks. Then it checks iteratively for each input port
of a function node whether for each incoming channel an event pattern is available.
Initially, this is given for all channels that start at a source node. If an event pattern
for an input port can be determined, it is added to EP. In the next step, it is checked
for each output port of a function node if EP contains an event pattern for each input
port with a transition (and thus also a causal dependency) to that output port. If this
is the case, also the event pattern of the output port can be derived and added to EP.
This process is repeated until either a synchronization or an activation buffer becomes
unbounded or no further event patterns can be derived. In the latter case, boundedness
can be decided as follows: If there exists an event pattern for each function node in
EP, the function network is bounded. Otherwise, there must exist a cyclic causal
dependency leading to an unbounded function network.

94

3.4. Boundedness and Event Pattern Propagation

Definition 3.4.4 (Algorithm to decide Boundedness) Let bfn = (Σ,P, C,Φ,F)
be a periodic state-independent basic function network and EP be a set of event pat-
terns, which is initially empty i.e., EP = ∅. The algorithm to decide boundedness is
defined as follows:

1. For each output port of a source node we know the event pattern by definition
and add it to EP i.e. ∀φ = (EP ,Pout) ∈ Φ, ∀pout ∈ Pout : EP (pout) ∈ EP

2. For each function node f = (Pin,A,Pout) ∈ F :

a) For each input port pin ∈ Pin, where for each input channel ci = (pi, p
in)

(i ∈ {1, ..., n}) exists an event pattern EP (pi) ∈ EP:

i. If ∀i, j ∈ {1, ..., n} : EP (pi),EP (pj) ∈ EP ∧ EP (pi)
P
= EP (pj), then

determine EP (pin) ∈ EP as shown in Lemma 3.4.1.

ii. If otherwise ∃i, j ∈ {1, ..., n} : EP (pi),EP (pj) ∈ EP ∧ EP (pi) 6
P
=

EP (pj), then the synchronization buffer of this port is unbounded and
thus bfn is unbounded.

b) If there does not already exists an EP (f) ∈ EP and for each input port pini
(with i ∈ {1, ..., n}) exists an event pattern EP (pini), then decide bounded-
ness of the activation buffer as shown in Lemma 3.4.7. If the activation
buffer is unbounded, also bfn is unbounded.

Otherwise, add the event pattern of f to EP, which is determined as

EP (f) = super(EP (pin1), ...,EP (pinn)) ∈ EP.

c) For each output port pout ∈ Pout, where @EP (pout) ∈ EP: If there exists an
event pattern EP (pin) ∈ EP for each input port pinI with i ∈ {1, ..., n} with
a transition to pout, then determine EP (pout) with Lemma 3.4.2 as follows:

EP (B) = super(EP1(B), ...,EPn(B)) ∈ EP

where B = Σ(pout).

3. Repeat the steps 2(a), 2(b) and 2(c) until either

a) for each function node f ∈ F exists an event pattern EP (f) ∈ EP, and thus
bfn is bounded, or

b) the size of EP does not increase anymore. Then bfn is unbounded.

�

As the final theorem, we show that boundedness is statically decidable if all source
nodes deliver periodic event patterns, each function node is state-independent and the
function network is reachable. This statement is proved with the help of the previously
defined algorithm by showing its correctness.

95

3. Function Networks

Theorem 3.4.1 (Deciding Function Network Boundedness) Boundedness for
a basic function network bfn is decidable if the following assumptions hold:

• Assumption A1: For each source node the output event pattern EP is periodic
i.e., ∀φ = ((ΣEP , P−, P+, J,O),Pout) ∈ Φ : P− = P+.

• Assumption A2: Each function node is state-independent.

• Assumption A3: bfn is reachable.

Proof: We prove this lemma with the help of the algorithm defined in Def. 3.4.4 by
showing that it decides boundedness for periodic state-independent function networks.
A function network is bounded if all its synchronization buffers are bounded and un-
bounded as soon as at least one buffer is unbounded (see Def. 3.4.2). Synchronization
buffers can be found at two places in a function network: 1. as synchronization buffers
in input ports and 2. as activation buffers of function nodes. A special case is the
presence of causality loops leading to unboundedness, which is covered in 3.

1. Boundedness of synchronization buffers in input ports is checked in step 2 (a) of
the algorithm. As soon as the event patterns of all incoming streams are known,
it can be decided if this buffer is bounded (Lemma 3.4.5). If the buffer is bounded,
the event pattern of the input port can be determined as done in step 2(a) i. If
any synchronization buffer is unbounded, also the function network is unbounded
as stated in step 2(a) ii. of the algorithm.

2. Boundedness of activation buffers can only be decided if all event patterns of all
input ports are available meaning that their synchronization buffers are bounded.
This question was covered by 1. of this proof. Assuming the availability of the
event patterns for all input ports, their superposition is also periodic by Def.
3.1.9. Then, boundedness of the activation buffer can be decided as shown in
Lemma 3.4.7. This is done in step 2(b) of the algorithm.

Thus, if boundedness of all input port synchronization buffers could be shown,
boundedness of each activation buffer can be decided. And only if the activation
buffer of a function node is bounded, an event pattern for the function node is
determined and added to EP. This means, that if for each function node an event
pattern could be determined, each activation buffer and each synchronization
buffer must be bounded and thus the whole function network is bounded. This is
covered by step 3 (a) of the algorithm.

3. A third case is that an event pattern of an incoming stream of an input port
is not known. One reason for this may be that the event pattern propagation
has not reached the previous function node yet. This is covered by step 3 of the
algorithm where the steps 2(a),2(b) and 2(c) are repeated as long as new event
patterns can be derived.

If we cannot derive any new event patterns but there are still event patterns of
function nodes missing, the only reason for this can be cyclic causal dependencies.
This is because without cyclic causal dependencies, we would always be able to

96

3.4. Boundedness and Event Pattern Propagation

derive new event patterns or decide that the function network is unbounded. This
is assured by the assumptions A2 and A3 stating that bfn is state-independent
and each port of bfn is reachable. In the case of a cyclic causal dependency, we
cannot determine the event pattern of an output port pout because it depends on
a port pin whose event pattern we cannot determine as well. Lemma 3.4.9 shows
that such a cyclic dependency always leads to unboundedness. In this case, the
algorithm would decide that bfn is unbounded in step 3b) because the set of event
patterns EP is incomplete while its size does not grow anymore. �

This concludes the proof that boundedness is decidable for reachable basic function
networks if they are periodic and state-independent. Because the Simulink translation
and the task creation process are based on extended function networks, it is further-
more interesting if boundedness is also decidable for extended function networks.

Deciding boundedness for extended function networks

To extend the notion of state-independence to extended function networks, we prove
under which conditions this property holds also for its additional elements by consid-
ering their translation to function nodes. We start with showing that FIFO, shared
and signal data nodes are state-independent by definition.

Corollary 3.4.2 (State-Independence of FIFO, Shared and Signal) The data
nodes FIFO, shared and signal are state-independent.

Proof:

1. FIFO: As defined in Def. 3.2.3, a FIFO data node is state-independent because
for its only output port pout it holds that all transitions to pout are triggered by
the event r and there exists no other transition from another port leading to pout.

2. Shared: The proof works similar as for FIFO data nodes.

3. Signal: As defined in Def. 3.2.3, a signal data node has only one state. �

For a finite source data node, the property of state-independence is only given un-
der the condition that the minimum distance between input events is less than the
minimum distance between events of its triggering source node, which is P− − J.

Corollary 3.4.3 (State-Independence of Finite Source) Let EP = (ΣEP , P−,
P+, J,O) be the event pattern of a data node dfsrc = ({pin}, δ,EP , {pout}). dfsrc is
state-independent if the following holds:

∆(Σ(pout),Σ(pin)) ≤ P− − J

Proof: A finite source data node behaves only state-independent if it is assured that
each time an event e ∈ ΣEP from its event source arrives, it is in the ’ready’ state
such that an event e ∈ Σ(pout) is produced at pout. We know from Corollary 3.3.5

that under this assumption, the causal dependency pouttr .e
δ−→ pout.b holds leading to

state-independence. �

97

3. Function Networks

Another additional element of extended function networks are read channels. Due
to Def. 3.2.3, an input port p with read channels of a function node f is translated to
a function node fp. fp is state-independent because it has only one state. Thus, also
read channels are part of the class of periodic state-independent function networks.
This enables us to decide boundedness also for extended function networks as long
as the mentioned assumptions for finite source data nodes are satisfied and all input
event patterns are periodic.

3.5. Summary and Related Work

We introduced the formalism of function networks as an extension of classic task
networks. We started with a motivation why this is useful and needed within the
context of this work and also beyond. When defining function networks, we distinguish
between a basic function network offering a minimum set of elements for semantics
definition and proofs, and an extended function network. The latter is intended to
give different roles to function nodes as for example the role of a signal to model
time-consuming communication in a distributed system. To describe the occurrence
of events at observation points in the network, we defined event patterns that are
an extension of common event stream models. Semantics of function networks were
defined by a set of atomic components that are each defined as networks of timed
automata. These components are composed to build the elements of a basic function
network while semantics of an extended function network is implicitly defined by a
formal translation into a basic function network.

We defined a set of patterns to capture certain causal and timing properties of
function networks components. This enables us to describe which properties we need
to preserve when translating Simulink models and creating tasks. For each basic
function network component we showed causal dependencies from input to output
events by using these patterns. The respective properties of extended function network
components were derived with the help of the translation from basic function networks.

Another important property for a task model that should be implemented is the
question of boundedness. We proved for a specific class of function networks, how
boundedness can be decided by propagating event patterns through the network start-
ing at the sources. For a bounded function network we can determine sufficient finite
buffer sizes for all synchronization buffers and thus are able to implement a bounded
function network as a composition of timed automata with a finite set of states. The
assumptions we did for this part of the thesis are sufficient but not necessary conditions
to decide boundedness. This means, that there may exist further classes of function
networks where boundedness is decidable.

In summary, with function networks we defined a modeling formalism that allows the
application of analysis techniques on different abstraction levels. On the one hand, the
classic entities for scheduling analysis such as tasks and signals can be identified build-
ing a bridge to real-time scheduling theory. On the other hand, semantics is given in
terms of timed automata allowing the application of the manifold analysis techniques
that are available for this formalism. In [16], we showed how we can combine testing

98

3.5. Summary and Related Work

and model-checking for function networks while using the model-checker UPPAAL as
back-end. In [14, 15], we showed how we can apply these analysis techniques also
to a System-C based modeling language named OSSS by giving a formal translation
into function networks. Thus, function networks serve as intermediate language be-
tween high level specification languages and those formalisms used for analysis and
verification such as timed automata.

Related Work As motivated in the introduction of this chapter, the background
of this work is mainly real-time scheduling theory meaning in particular design and
analysis of real-time software tasks allocated on a distributed heterogeneous multi-
processor hardware architecture. The formalism that is naturally considered within
this field are task networks. Theory about task networks has largely evolved over
decades and has started with simple independent tasks with periodic behavior [51].
Later, communication was introduced by defining task networks of periodic tasks that
exchange messages at the end of their execution, as for example in [79]. Nowadays, we
are dealing with complex task activation models regarding OR and AND activations
of tasks, which can be found e.g. in [36] and [69]. In [68] a notion of hierarchical event
streams is introduced which give a more exact representation of multiple AND or OR-
connected input streams than the more conservative AND and OR-operations from
the work of Jersak [40]. To be able to analyze such complex models, new methods
and techniques were developed. A popular approach is the compositional performance
analysis [40], which is based on event models as well but extends the classic task
model by considering multiple inputs and outputs for tasks. For this, AND and OR
operations on multiple input streams are defined while focusing on periodic streams
with jitter. Additionally, data rates are considered, which state how many tokens are
consumed or produced. Another approach is the modular performance analysis (MPA)
[83, 78, 47] which is also based on a formalism with many similarities to event streams
named Real-Time Calculus. Here, so-called arrival functions are used to model the
computation that is requested by a process, and service functions are used to model
the amount of computation that can be delivered by a resource. In [84] the model of
real-time calculus is extended to support different types of events on the same stream
that each lead to a different workload and thus to more exact analysis results. Also
in [37] arrival functions are used that are quite similar to Real-Time Calculus. They
describe periodic streams with an initial burst value and a minimum period.

Nonetheless, task network models are typically not able to model functional behav-
ior, which is often inevitable in dependable system design. Thus, much work has been
done to combine them with other formalisms and techniques. For example, in [47], the
MPA approach has been combined with timed automata while offering methods that
allow to transform the model of one formalism to another. This means that timed
automata and arrival curves may be derived from each other.

Another work [39] extended the MPA approach to be able to regard, on the one hand,
correlations of streams that are first split and later joined to one stream again and, on
the other hand, the blocking read semantics of Kahn Process Networks. The approach
of [73] extended the compositional performance analysis to also consider path forking

99

3. Function Networks

and merging as well as functional cycles in a task network by bounding the maximum
number of tokens in a cycle. Another example is [31] where timed automata are used
to model activation patterns for tasks that are more complex than the periodic model
with jitter or the sporadic event model allow. Furthermore, resource constraints are
considered as an access to a shared variable using semaphores.

Beside task networks, there are also other stream-oriented formalisms that are suit-
able to capture control and signal processing applications like Kahn Process Networks
(KPN) [42], Synchronous Data Flow Graphs (SDFG) [34], and Petri Nets [29] and its
timed extensions as e.g. Time Petri Nets or Timed Arc Petri nets [75].

We will now compare function networks exemplary with some of these formalisms
starting with Petri nets and synchronous data flow graphs, which are a subclass of
Petri nets and known as weighted marked graphs in Petri net theory [34]. The major
difference to function networks is a missing notion of time and that processes are lazy.
This means that they are not necessarily executed as soon as they are ready to execute.
In Petri nets, this is modeled by tokens that are placed initially at places and then
travel through the network. As soon as the needed number of tokens is available, a
process may be executed but it does not have to. Thus, movement of tokens cannot be
related to concrete time instances as it is the case for function networks, where we use
event patterns to describe the occurrences of events. Additionally, function networks
allow to model internal states of processes, that influence their behavior, which is not
possible in Petri nets. Some timing aspects of function networks may be covered by
using for example timed Petri nets, which consider execution delays of processes.

A model with some similarities to Petri nets are Kahn Process Networks [62], which
are untimed as well. Processes are also lazy and defined in terms of a program with
’put’ and ’get’ operations on incoming and outgoing FIFO streams. A process is always
either executing or waiting for a single input token on one stream. The execution delay
of processes is not determined explicitly in KPNs. Instead, it is defined that a process
produces its output after an unknown but finite amount of time.

Another very common and established formalism to model real-time systems are
timed automata (TA) [3]. Timed automata are often used for modeling real-time sys-
tems because there exist a lot of verification tools, such as UPPAAL [5]. Furthermore,
its syntax and semantics is quite intuitive and easy to understand and TAs are able to
model also systems of industrial size. But TAs are not very well suited for the system
design itself due to the lack of high level building blocks and a more abstract or concise
representation of e.g. tasks or processes [75]. This is the reason why we do not use
TAs for system modeling itself but based semantics of function networks on TAs to
benefit from the manifold available tools and methodologies.

For modeling real-time systems, there also exist algebraic approaches like CCS and
CSP [67], timed CSP [38] and combination of data, process and time in CSP-OZ-DC
(COD) [38]. These languages originate from the area of formal verification and are
thus not intended to model task networks and to perform a scheduling analysis. They
are typically more expressive than classic task networks and allow a more detailed
modeling of functional behavior in combination with timing properties.

Concerning high level system modeling, there exist a number of frameworks for het-
erogeneous modeling such as Metropolis [21] and Ptolemy [9]. Metropolis [21] is a

100

3.5. Summary and Related Work

platform-based design methodology with formal modeling techniques and abstraction
levels. It allows to model functional (software) parts in terms of processes and so-
called media used for inter-process communication as well as service (hardware) parts
in terms of quantity managers (e.g. arbiter). Both parts are organized in netlists,
where the software part is called scheduled netlist and the hardware part scheduling
netlist. It was later enhanced to METRO II to allow heterogeneous IP import, separa-
tion of performance and behavior properties, and design space exploration. METRO
II is based on events, offers building blocks such as components, ports and connec-
tions and also declarative specifications in terms of constraints and assertions. With
adapters different models of computation (MOCs) can be hierarchically combined.
The modeling framework Ptolemy II [9], which was developed in the Ptolemy project,
also supports a number of different MOCs as e.g. discrete time, continuous time, syn-
chronous data flow or process networks and allows to experiment with them. MOCs
may be combined hierarchically for system modeling.

In contrast to these frameworks, the formalism of function networks is intended as
intermediate language for real-time analysis and not as a high-level modeling language
to compose a system. Thus, it is typically derived from a specification - as we will
show for Simulink in the next chapter - to use it as formal model for further design and
analysis steps. Nevertheless, function networks offer an abstraction level where relevant
entities for analyzing timing properties of systems as tasks, shared variables, and FIFO
buffers can still be identified. This allows, for example, to represent intermediate
results of the design space exploration in terms of function networks.

101

4. Translating Simulink Models to
Function Networks

As sketched in the introduction in Chapter 1, our approach addresses a scenario where a
new feature given as a Simulink specification model should be allocated to an existing
system model of a car. The goal is to find a cost-minimal extension of the target
hardware to allocate the new feature while meeting all timing constraints. To be able
to do this, we need an allocation of the tasks that model the new feature to hardware
resources. The first step to reach this goal is to translate the specification model into
a function network, which enables the application of timing analysis techniques.

In this translation step, it is essential to preserve the semantics of the original
model to get correct results. Execution semantics of Simulink models is defined in
terms of a partial order of block executions. To separate the translation from the task
creation step and to keep the translation as simple as possible, we want to preserve
the flattened block structure of the Simulink model as well. Hierarchy in terms of
subsystems will not be translated because it does not add semantic expressiveness i.e.,
each hierarchical Simulink model may be represented by a flat model with the same
semantics [52]. Nevertheless, hierarchy may be considered in task creation in terms of
partitioning constraints as we will explain in Chapter 5.

For the translation, we need to find reasonable representations for blocks and signals
in the function network formalism. A block can be considered as a process that realizes
a specific function and is, in the end, represented as a piece of program code. Thus,
its intuitive representation in a function network is a function node. Accordingly, a
signal between two blocks is modeled as a channel in the function network to maintain
the connectivity of blocks. While the translation of the structure is quite intuitive, the
correct representation of timing semantics of the Simulink model needs some deeper
investigations. First, for this work, we are not aiming at representing the complete
functional behavior of a Simulink model in function networks. This means in particular
that we do not want to model the concrete numerical values of signals. What we are
interested in, is the timing behavior of the model in terms of the order in which blocks
are executed, and the time a complete simulation step needs to be finished. While
for the simulation of a model in Simulink a total order on blocks named Block Sorted
Order is created, we will refer to the partial order induced by the connectivity of blocks
and signals that underlies this total order. This is sufficient because the partial order
of blocks guarantees that each total order that satisfies the partial order leads to the
same functional simulation results [22, 52].

This leads to the main challenge of this step: the translation of a synchronous
specification into a task model, where activations of tasks are triggered by events. An
execution of a Simulink model can be described as a sequence of updates on signals

103

4. Translating Simulink Models to Function Networks

that occur due to block executions. This means that at each execution a block reads
the current values from its input signals and updates its output signals. Whether
a block is executed in a specific simulation step depends on the block sample time
given by a period and an initial phase offset. A set of connected blocks with the
same sample times is called a synchronous set [22]. Blocks of different synchronous
sets may be connected by rate transition blocks, which guarantee a deterministic data-
transfer and compliance with the partial order when the blocks of both synchronous
sets are executed in the same simulation step. It is possible to connect blocks of
different synchronous sets only if one period is an integral multiple of the other. In
contrast to Simulink block diagrams, function networks combine process executions
and the reading of input values by the concept of events. A function node is executed
whenever on each channel of an input port of the node an event was received. Events
may also serve as an abstract representation of values.

In Figure 4.1a, an example of a Simulink block diagram is depicted consisting of
three different synchronous sets with sample times ST1, ST2 and ST3. Sample times
are given by a period per and an initial phase offset init written as STi = [peri, initi].
The initial phase offset determines the first execution of a block. Thus, a sample time
of [5, 2] with per = 5 and init = 2 leads to block executions in the simulation steps
2,7,12,17... . The synchronous sets with sample times ST1 = [6, 0] and ST2 = [2, 0] are
connected by a rate transition block RTB. Here, the source block of the rate transition
runs with a slower rate (greater period) than the target block. Thus, the blocks with
sample time ST2 are executed more often but always need the value from the output
signal of the last block with ST1, which is the block Add1. In this case, the rate
transition block stores the latest value of this signal and provides it to the succeeding
block. Whenever both synchronous sets are executed within the same simulation step,
blocks with ST1 are executed first due to the partial order and the rate transition
block stores the value for later execution instances.

In Figure 4.1b, the corresponding function network representation is depicted. It
starts on the left with a source node φbr producing events with the base period (bp)
of the Simulink model. The base period is the greatest common divisor of all periods
that occur in the model and is here determined to bp = 1. Function nodes that have
incoming channels from φbp are special function nodes to convert the base period into
the sample time of each existing synchronous set. Because the period of each sample
time is a multiple of the base period, we call these nodes period multiplier nodes. For
a period per = k · bp the respective period multiplier node has a transition system that
produces for each kth input event an output event. Furthermore, output events may
be delayed by the initial phase offset init of the sample time.

In order to be able to reason about semantics preservation of the specification model,
we first define formal semantics for the execution of Simulink models based on updates
of signals due to block executions. In a second step, we relate those signal updates
to events in the function network translation. This means that each time a signal
is updated by a block in Simulink, there must occur a corresponding event in the
function network representation. For function nodes that originate from blocks within
the same synchronous set, a synchronization of all input channels at one input port of

104

+
+

X

Step1

Step2

Mon1

Mon2

5 7

+
+

1/z

ST1 = [6,0]

ST3 = [5,2]

ST2 = [2,0]
1/z

RTB

k

Add1
Add2

(a) Simple Example of a Simulink Block Diagram

Step1

5

Add1 RTB

7

Add2

Store

Mon1ST1

[6,2]

[6,4]

Step1
1/zx

ST3

ST2

 deadline = base period

k
Mon2

(b) Translation of Block Diagram to Function Network

Figure 4.1.: Example for a Simulink Translation

each node leads to the intended behavior. This means that the execution only starts
if all needed input signals have been updated.

For connected blocks of different synchronous sets, the concept of rate transitions is
transfered to function networks by creating a dedicated function node that translates
from the sample time of the source block to the sample time of the target block. If
the target sample time is faster in terms of a smaller period, we need to produce
the missing output events in those simulation steps, where only the target block is
executed. This is done by adding activation channels from further period multiplier
nodes, which create the needed events. For the other case, where the period of the
target block is higher, the rate transition is modeled by a period multiplier node. Thus,
if we translate from a period per to a period k · per, only each kth input event leads
to an output event and an activation of of the successor node.

In Figure 4.1, the rate transition block RTB connects blocks with ST1 and ST2

where per1 = 6 > per2 = 2. This rate transition block is represented by a function

105

4. Translating Simulink Models to Function Networks

node RTB with three input ports in the function network translation. One input port
receives all output events from the direct predecessor block Add1 with sample time ST1.
These events are forwarded to the direct successor block Add2 of the synchronous set
with sample time ST2. Thus, each time when both synchronous sets run together, the
partial order is obtained because the blocks with sample time ST1 are executed first.
For those steps where only the blocks with ST2 run, two additional period multiplier
nodes are created to produce all missing events to model ST2. This is done by taking
the period of ST1 and any initial phase offset that is a multiple of the period of ST2,
except the one of ST1. In this example, this leads to a period of 6 and offsets of 2 and
4 because the offset 0 is already covered by ST1. We denote such a set of sample times
as ST1 \ ST2 = {[6, 2], [6, 4]}.

All remaining ’ordinary’ Simulink blocks are translated to function nodes with one
input port where all signals of preceding nodes are synchronized. An example is block
Add1, which waits for executions of its predecessor nodes Step1 and 5. Sink blocks
are represented as function nodes without outgoing channels because they do not
produce any output signals. In our example, there are two sink blocks Mon1 and
Mon2 representing monitor blocks in Simulink to observe output values of the model.

For signals that close a non-algebraic loop, which is a loop containing a delay block,
a shared data node is created. This shared data node stores the value of the previous
simulation step to provide it in the succeeding step. Thus, the respective start node
of the loop has a read channel to read from the shared data node when activated. In
our example, we have a loop starting at the block X and ending at the unit delay
block 1/z. In the function network translation, we have a shared data node Store,
which stores the latest value produced by the node 1/z and the node X has a read
channel to read from Store. Here, it is important to note that we need to assure that
in each simulation step each sequence of blocks is executed before the next simulation
step starts. Otherwise, the value in the shared data node Store might not have been
updated by 1/z and the next execution of X would read the old value leading to
wrong results. This leads to the need for defining respective end-to-end deadlines
when considering implementations of Simulink models.

To enable the implementation of the model on a target hardware architecture, we
employ existing code generators, such as TargetLink and Embedded Coder, to generate
code for each single block. Worst case execution times (WCETs) are calculated for the
resulting code for each block by using tools like aiT [30] and used to assign weights to
the respective function nodes in the task creation step. Here, we take the minimum
WCET of all available processors and hence assume each block to run on its optimal
processor. This has two reasons: First, we can safely state that certain deadlines are
violated if already an optimal deployment would exceed the deadline, and second also
the design space exploration is based on this assumption which enables to guarantee
lower bounds for hardware costs. Please note, that the WCET for standard blocks
from the Simulink library only needs to be calculated once for each processor type
and then can be used for each model that should be translated. Accordingly, for this
work, we consider executable Simulink specification models that can be used for code
generation and meet the TargetLink modeling guidelines [26, 54].

106

4.1. Formal Semantics for Simulink Models

This leads to the second important issue when reasoning about semantic preserva-
tion: the compliance of timing constraints. Simulink models are inherently untimed
where block execution and communication is instantaneous. Obviously, this does not
hold for any implementation of a Simulink model that runs on real hardware. Thus,
Simulink implicitly assumes that the execution of all connected blocks is finished be-
fore the next simulation step starts. Accordingly, as the final step to capture Simulink
semantics correctly, we have to ensure that the execution of all blocks that may be
executed in the same simulation step is finished before the next simulation step be-
gins. Otherwise, we might get overlapping simulation steps and signals that Simulink
assumes to be updated may not be updated in time in the function network transla-
tion. In the example from Figure 4.1, this is the case for the non-algebraic loop from
block X to block 1/z. To capture such constraints, we employ the concept of end-to-
end deadlines as introduced in Section 3.2.3. In order to preserve the semantics of a
Simulink model, we thus define end-to-end deadlines for each maximal chain of par-
tially ordered nodes that may be executed in the same simulation step. The length of
the deadline is determined by the base period bp of the Simulink model. Accordingly,
in the example of Figure 4.1, we define a deadline from the source node to each sink
node of the function network with a length of bp = 1 time units.

Please note that it is important for the task creation process to retain the different
synchronous sets because otherwise no valid deadlines could be defined. Accordingly,
task creation will be constrained in Chapter 5 such that the merging of any two function
nodes of different synchronous sets into the same task is forbidden.

Chapter Outline In Section 4.1, we define a formal execution semantics for Simulink
models based on the formalism of Timed Synchronous Block Diagrams. With the
help of this semantics, we define in Section 4.2 a translation scheme from Simulink
to function networks and prove in Section 4.3 that semantics is preserved in terms of
partial order and timing. Section 4.4 summarizes this chapter, discusses related work
and gives an outlook to possible extensions of the the presented approach.

4.1. Formal Semantics for Simulink Models

Due to a missing ’official’ formal semantics, we rely on the most common approach
found in literature, where discrete Simulink models are defined as Synchronous Block
Diagrams (SBDs) and Timed Synchronous Block Diagrams (TBDs), respectively [53,
52, 60]. A synchronous block diagram is a directed graph where nodes are blocks
that are connected by edges called signals. Timed synchronous block diagrams are an
extension where special triggers are introduced to model different sample times.

To be able to implement the specification model on target processors, we generate
code for each Simulink block using TargetLink. Thus, we assume a discrete Simulink
model that meets the TargetLink modeling guidelines [26, 54]. This means, among
other things, that only a subset of block types is available. For example, no blocks
from the continuous library are allowed and only a few blocks from the source library
may be used. Furthermore, block priorities are ignored and algebraic loops must not

107

4. Translating Simulink Models to Function Networks

be used. The latter assumption is also necessary to be able to represent a Simulink
model as synchronous block diagram. The simulation parameters must be chosen such
that a fixed-step solver with a single-task model is used. This also means that different
synchronous sets may be only connected by rate transition blocks.

4.1.1. Timed Synchronous Block Diagrams

According to [53, 52], a Synchronous Block Diagram (SBD) consists of a set of blocks
having input and output ports. Blocks are either atomic or composite blocks, where
the latter ones contain sub-blocks. Atomic blocks are classified as either combinational
blocks, which are state-less, or sequential blocks, which contain internal states. Se-
quential blocks are called Moore-sequential if their output “only depends on the state,
but not on the inputs” [52]. A block diagram is created by connecting output ports
with input ports of blocks via signals. Output ports can be connected to more than
one input port while input ports can only be connected to one output port. If a block
has a boolean input signal working as trigger, it only computes new output values if
the value of this trigger signal is true. For each output of a triggered block, the user
has to specify initial values that are valid for the starting phase before the trigger was
true for the first time. An SBD is called flat “if it only contains atomic blocks” [52].

Semantics of synchronous block diagrams is defined in [53] by defining semantics of
signals by determining at which points in time a signal is updated by a block. In this
definition, a signal gets assigned a value for each simulation step. This means that
there is a value available for each signal at each time ti. The decision if and how a
value is changed depends on the block that produces the signal, and its trigger. In the
following, we define signal semantics based on [53] while we explicitly represent the
input signals of a block producing a signal.

Definition 4.1.1 (Signal Semantics) A signal s is a total function s : N+ → V
where V is a non-finite set of values and s(ti) denotes the value of s at time ti. Let b
be the block that produces s with the input signals in1, ..., inn, and vs the initial value
of s. Let further denote b({in1, ..., inn}, s, ti) the result of the execution of b for signal
s at time ti. If b is triggered by a signal tr, s(ti) is determined as follows:

s(ti) =


vs , if tr(ti) = false ∧ ti = 0

s(ti−1) , if tr(ti) = false ∧ ti > 0

b({in1, ..., inn}, s, ti) , if tr(ti) = true

If bs has no trigger, s is determined as if the trigger was always true. �

A Timed Synchronous Block Diagram (TBD) is an SBD where each non-triggered
block has a special trigger called firing time specification (FTS) [52]. The semantics
are equivalent to SBDs, because firing time specifications are a special case of triggers.
In Simulink, an FTS is called sample time. Based on [52], we define a firing time
specification as follows:

108

4.1. Formal Semantics for Simulink Models

Definition 4.1.2 (Firing Time Specification) A Firing Time Specification (FTS)
is a pair fts = (per, init) where per is the period and init is the initial phase offset
with init ∈ N0, per ∈ N+ and init < per. �

As a next step, we formalize the definition of a timed block diagram to a graph
that consists of blocks, signals and edges connecting blocks via signals. Because the
hierarchy of a TBD in terms of composite blocks - which are subsystems in Simulink -
does not add expressiveness but is only intended to structure the model, we restrict to
flat TBDs. A procedure to flatten a TBD is described in the work of Lublinerman [52].
Furthermore, as in [52], we assume TBDs to be acyclic in terms of algebraic loops.
This means that all cycles must contain at least one Moore-sequential block such as
a Unit Delay block in Simulink. This assures a valid and cycle-free partial order of
block executions, which guarantees that values of signals are updated correctly. We
define a timed synchronous block diagram as follows:

Definition 4.1.3 (TBD) A timed synchronous block diagram (TBD) is a graph de-
fined as a tuple tbd = (B, type, S,E,FT S , tr) where

• B is a set of blocks where each block b ∈ B has a type,

type(b) ∈ {’combinational’, ’sequential’, ’Moore-sequential’, ’rate transition’,

’data store memory’, ’data store write’, ’data store read’},

• S is a set of signals,

• E ⊆ B × S × B is a set of edges where each edge e = (b, s, b′) ∈ E leads from
block b to b′ via signal s and there is exactly one producer block bs for each signal
s i.e. ∀s ∈ S : ∃! bs ∈ B | (bs, s, b′) ∈ E,

• FT S is a a set of firing time specifications,

• tr : B → FT S is a surjective function that assigns a block to a firing time
specification i.e. each block has a firing time specification and blocks may share
the same firing time specifications while for each firing time specification there
exists at least one block. �

Due to the target link modeling guidelines we assume the use of a fixed-step solver
in Simulink. Thus, each model has a base period, which determines the time distance
between two simulation steps. The base period is determined as the greatest common
divisor of all firing time specifications of a TBD while we allow a global offset shifting
represented as a constant x. Please note, that sample times in Simulink are relative
values that have no specified time unit. Thus, we assume that the ’real’ execution
period of the model is determined by the base period and some factor set by the user.
This factor then leads to the time unit in terms of e.g. milliseconds or microseconds,
which is also assumed as time unit for the worst case execution times of blocks. We
abstract from this factor by assuming that it is chosen sufficiently large to be able to
represent all execution times of blocks. For some blocks, we assume an execution time
of ε time units, which is assumed as a negligible small value greater than zero.

109

4. Translating Simulink Models to Function Networks

Definition 4.1.4 (Base Period) Let tbd = (B, type, S,E,FT S , tr) be a timed block
diagram with a set of sample times FT S = {fts1, ..., ftsn} where ∀i ∈ {1, ..., n} :
ftsi = (peri, initi). Then its base period is defined as

bp = max(k | ∀i ∈ {1, ..., n} ∃x ∈ N0 : (peri mod k = 0) ∧ ((initi − x) mod k = 0)

�

4.1.2. Execution Semantics for Simulink Models

We introduce execution semantics for Simulink models based on timed synchronous
block diagrams by defining a transition system for each simulation step. This semantics
is based on updates of signals which occur due to the execution of blocks.

In general, a signal update does not necessarily mean that its value is changed but
that a new value was written and is available for other blocks. Thus, we could claim
that a signal update occurs at each simulation step for each signal. However, this
would lead to a number of signal updates where we actually know that the value
cannot change. This is the case for those time steps where a block is never executed
due to its sample time. For signal semantics, this means that the trigger in terms of
a firing time specification is not true, and thus the new value is identical to the value
of the previous time step. This would lead to a number of block executions and thus
signal updates where in fact nothing is computed.

The same holds for other kind of triggers in terms of signals from other blocks,
which are determined dynamically at runtime. Those dynamic triggers cannot be
regarded a-priori when defining signal updates. To achieve this, one would need a
complete functional model of each block that produces a trigger signal to determine
if this signal is true, which is not in the scope of this work. For this work, we regard
dynamic triggers as ordinary signals that are evaluated by the block itself during its
execution. Depending on the trigger value either new output values are computed or
the old values are written again while both cases result in a signal update. Thus, the
trigger signals, which are referenced in Def. 4.1.1, are always firing time specifications
and no dynamic triggers.

However, this work could be extended to explicitly regard the internal behavior of
blocks (e.g. Stateflow blocks), which would also allow to support dynamic triggers. To
achieve this, one would need to perform a kind of abstract interpretation to identify
the conditions where dynamic triggers are true. This would allow to avoid the overap-
proximations on signal updates that result from the assumptions we do for this work.
How such an approach may work for Stateflow blocks is discussed in the summary of
this chapter in Section 4.4.

To determine the static points in time where a block is ready to execute, we need to
consider the period and initial phase offset given by its firing time specification. This
leads to the following definition.

110

4.1. Formal Semantics for Simulink Models

...

b1 b2

bj
b2 b1

bi

bn bm

ti

...

b1 b2

bl
b2 b1

bk

bx by

ti+1

...

simulation
time

hyper
period

*

bp
Figure 4.2.: Simulink Execution Semantics

Definition 4.1.5 (Block Ready) Let b be a block with tr(b) = (per, init). b is ready
at simulation step t if its firing time specification states that this block should be exe-
cuted at t i.e.

rdy(b, t) =

{
true, if ∃k ∈ N0 : init+ k ∗ per = t

false, otherwise

�

Based on this definition, we are able to define a partial order on block executions
that is determined by signals between blocks and their firing time specifications. Two
blocks are partially ordered at a simulation step t if there exists a signal connecting
them and both blocks are ready in simulation step t. Furthermore, the source block of
the signal must not be a Moore-sequential block because these blocks are delay blocks
that store the value for the next simulation step.

Definition 4.1.6 (Partial Order on Block Executions) Let tbd = (B, type, S,E,
FT S , tr) be a TBD. The partial order on block executions POB(tbd, t) for simulation
step t is defined as follows:

(b, b′) ∈ POB(tbd, t) ⇐⇒ b, b′ ∈ B ∧ (b, s, b′) ∈ E ∧ rdy(b, t) ∧ rdy(b′, t) ∧
type(b) 6= ’Moore-sequential’

∨ ∃b1, ..., bn ∈ B,n ∈ N+ : (b, b1), ..., (bn, b
′) ∈ POB(tbd, t)

We write b1 <t b2, if (b1, b2) ∈ POB(tbd, t). �

To describe execution semantics of a TBD at a specific simulation step, we define a
transition system where transitions represent block executions and states are abstract

111

4. Translating Simulink Models to Function Networks

representations of the current signal values. This means, that a state indicates which
signals have already been updated in the current time step.

In Figure 4.2, a time line is depicted representing the simulation time steps of
Simulink. For each time ti, we define a transition system with one initial state. This
initial state is determined for the first point in time i = 0 as a tuple of the initial values
of all signals. For i > 0, the state is determined as the end state of the transition
system of the previous time step ti−1. This is indicated by a dotted arrow connecting
the respective states of both transition systems. Each transition system covers all
valid orderings of block executions with respect to the partial order of the considered
time step. Due to the fact that states are characterized by means of signal values and
each execution order that respects the partial order leads to the same signal updates,
each transition system has exactly one end state as we will show later. And because
each block is executed periodically, there always exists a hyper period hp where the
execution behavior is repeated. This means that the transition system of time step
ti+hp is the same as the one of time step ti because the same set of blocks is executed.
The distance between simulation steps is equivalent to the base period bp of the model.

We will now give a general definition of a TBD transition system and define after-
wards how such a transition system is derived from a given TBD. A TBD transition
system is defined as follows:

Definition 4.1.7 (TBD Transition System) Let V be a non-finite set of signal
values and B be a finite set of blocks. A TBD transition system is defined as a tuple
(Q, q0,Γ), where

• Q ⊆ 2V is a set of states where each state is a tuple of signal values

• q0 ∈ Q is an initial state

• Γ : Q×B → Q is a set of transitions which lead from a source state to a target
state and represent a block execution

We further denote Qe ⊆ Q as the set of end states Qe = {qe | @γ = (qe, b, q
′
e) ∈ Γ}.

�

A run of a TBD transition system is defined as follows:

Definition 4.1.8 (Run of TBD Transition System) Let Trans = (Q, q0,Γ) be a
TBD transition system. A run of Trans is a sequence of transitions starting in q0 and
ending in an end state qn ∈ Qe written as

run =< γ1, ..., γn >

where γ1 = (q0, b1, q1) and ∀i ∈ {1, ..., n − 1} : γi = (qi, bi+1, qi+1) with qn ∈ Qe
and qi+1 = Γ(qi, bi+1). The set of all runs of Trans is denoted as Runs(Trans).
Furthermore, we write γi ∈ run if run =< ..., γi, ... >.

�

We further define the position of a transition in a run as follows:

112

4.1. Formal Semantics for Simulink Models

Definition 4.1.9 (Position in Run) Let run = < γ1, ..., γn > be a run. The posi-
tion of a transition γi in run is defined as:

pos(γ, run) =

{
i , if ∃ i ∈ {1, ..., n} : γ = γi

0 , else

�

Based on these general definitions, we now define how we can derive a concrete
TBD transition system for a given TBD and a simulation step ti. The initial state
of the transition system is determined by the initial values of each signal if i = 0, or
by the end state of the previous simulation step ti−1. We define a set of transitions
for each block b that is contained in the partial order of ti except for sink blocks.
This is because sink blocks do not update any signals and their execution has no
semantic relevance. Due to the block partial order, a block b may only execute if each
preceding block bin <ti b was executed. Thus, for each block with outgoing signals,
we define a transition executing b in each state q where all input signals have been
computed. According to Def. 4.1.1, an update of a signal s produced by a block b with
the input signals Sbin is denoted as b(Sbin, s, ti). For preceding blocks that are not in
the partial order of ti, the value is not updated because this block will not execute
in the considered time step. This is the case for rate transition blocks having inputs
from blocks with a greater period. In those situations, rate transition blocks store the
values of input signals and thus do not need an update on these signals.

Furthermore, a block is never executed twice within the same simulation step. Thus,
we only define a transition for those states where all output signals of the block have
not been updated in the current simulation step. Hence, the source state of a tran-
sition must satisfy the condition that for each output signal b the value has not been
updated in the currently considered time step. The target state q′ of a transition is
determined by adopting the signal values of the source state q for all signals that are
no output signals of block b. For each output signal sout of b, the value is determined
to b(Sbin, sout, ti) where Sbin represents the set of input signals of b. The set of states
of the transition system is determined recursively as the set of all target states of a
transition and the initial state. This leads to the following definition of a transition
system for a given TBD.

Definition 4.1.10 (Transition System for TBD) Let tbd = (B, type, S,E,FT S ,
tr) be a TBD with S = {s1, ..., sn} and ti be a simulation step with i ∈ N0. Let vsj be
the initial value of signal sj with j ∈ {1, ..., n}. The transition system Trans(tbd, ti) =
(Q, q0,Γ) is defined as follows where q(j) denotes the value of the jth place of a state
q ∈ Q:

• the initial state is inductively defined as being either the end state of the previ-
ous point in time ti−1 or the state containing the initial values if ti = t0, i.e.
q0 = (s1(ti), ..., sn(ti)) where

sj(ti) = initsj :=

{
vsj , if ti = t0

sj(ti−1) , else

113

4. Translating Simulink Models to Function Networks

• we define a transition (q, b, q′) if b is in the partial order of time step ti, all
signals needed for the execution of b have already been updated in q, all signals
that are produced by b have not been updated in q, and there is at least one signal
that is updated by b at all (i.e. b is no sink block). q′ is determined by updating
all signals produced by b i.e.

Γ = { (q, b, q′) |
∃ (b, s, bout) ∈ E, b <ti bout,
∀(bin, sk, b) ∈ E with k ∈ {1, ..., n}, bin <ti b : q(k) 6= initsk ,

∀(b, sl, bout) ∈ E with l ∈ {1, ..., n} : q(l) = initsl ,

∀j ∈ {1, ..., n} :

q′(j) =


b(Sbin, sj , ti) , if (b, sj , bout) ∈ E

where Sbin = {s ∈ S | ∃(bin, s, b) ∈ E}
q(j) , else

}

• the set of states is recursively defined as Q = {q′ | ∃ (q, b→ q′) ∈ Γ} ∪ {q0} �

To show that the TBD transition system is a valid representation of the execution
semantics of a TBD, we need to prove that each transition system respects the partial
order of blocks induced by the TBD and that its end state is unique.

For the compliance to the partial order, we need to show two statements. First, we
need to show that for each block b1 with b1 <t b2, there exists exactly one transition
γb1 = (q1, b1, q

′
1) in each run. This assures that each block within the partial order

that updates any signals is executed in each run exactly one time. Second, we need
to show that for the case where b2 is not a sink block (which means at the same
time that there exists a transition γb2 = (q2, b2, q

′
2) ∈ Γ), b1 is always executed before

b2. This means that its position in a run must respect the partial order leading to
pos(γb1 , run) < pos(γb2 , run).

Theorem 4.1.1 (Preserving Partial Order) Let Trans(tbd, t) = (Q, q0,Γ) be a
transition system for a tbd = (B, type, S,E,FT S , tr) and a simulation step t. Then
all the following holds:

∀ b1 <t b2,∀ run ∈ Runs(Trans(tbd, t)) :

1.
∃! γb1 = (q1, b1, q

′
1) ∈ run

Proof: According to Def. 4.1.10, for each block b1 with b1 <t b2 a transition
(q1, b1, q

′
1) ∈ Γ is created for each state q1 where all input signals but no output

signal of b1 have been updated. Any run must start in q0 and end in an end state
qe ∈ Qe. An end state is a state without any outgoing transitions i.e., there is

114

4.1. Formal Semantics for Simulink Models

no block anymore that can be executed. This may be either the case because each
block of the partial order was already executed (and thus also b1), or the needed
input signals have not been updated. If b1 is a source block i.e., @b : b <t b1,
then it has no restrictions on input signal updates and must have been executed
before reaching an end state. Inductively it follows that if all blocks b with b <t b1
have been executed γb1 can be taken. Whenever a transition that executes block
b1 was taken, no other transition executing the same block can be taken, because
its output signals have been updated. It follows

∃! γb1 = (q1, b1, q
′
1) ∈ run.

�

2.
γb2 = (q2, b2, q

′
2) ∈ run =⇒ pos(γb1 , run) < pos(γb2 , run)

Proof: If there exists such a γb2 , then this transition can only start in a state
where all output signals of b1 have been updated because b1 <t b2. Thus, transition
γb1 must have been executed before and hence its position in the run must precede
that of γb2 .

�

From Theorem 4.1.1 follows that a TBD transition system is cycle-free because an
irreflexive partial order has no cycles by definition. This also means that each run of
a TBD transition system is finite and thus has a well-defined end state.

As a second condition for a transition system to be valid, we show that the end
states of all runs are identical leading to a unique end state. Because states in a
TBD transition system are characterized by the values of signals, two states are only
identical if all their signal values are identical. Thus, if the end state is unique this
means that independently from the total order how blocks are executed the resulting
signal values are identical because all signals were updated in the correct partial order.

Theorem 4.1.2 (Unique End State) Let Trans(tbd, t) = (Q, q0,Γ) be a transition
system for a tbd = (B, type, S,E,FT S , tr) with S = {s1, ..., sk} at simulation step t.
Then for any two runs

• run1 ∈ Runs(Trans(tbd, t)) with the end state qe1 = (v1
1 , ..., v

k
1),

• run2 ∈ Runs(Trans(tbd, t)) with the end state qe2 = (v1
2 , ..., v

k
2)

holds that their end states are identical i.e.

qe1 = qe2

Proof: For the end states to be identical it must hold that all values are identical i.e.

∀i ∈ {1, ..., k} : vi1 = vi2.

We distinguish the following cases where we denote the block that produces si as bsi :

115

4. Translating Simulink Models to Function Networks

1. bsi is not executed in time step t:

In this case it holds that @(bsi , b
′) ∈ POB(tbd, t) and @(b, bsi) ∈ POB(tbd, t).

Thus, bsi is never executed neither in run1 nor in run2 and the value of si
remains the initial value of this time step for both runs leading to identical values

vi1 = vi2 = initsi .

2. bsi is executed in time step t but has no incoming signals:

In this case it holds that ∃(bsi , b′) ∈ POB(tbd, t) but @(b, bsi) ∈ POB(tbd, t).
Together with Theorem 4.1.1 follows that there is exactly one transition executing
bsi in each run i.e. ∃(q1, bsi , q

′
1) ∈ run1 and ∃(q2, bsi , q

′
2) ∈ run2. In this case

the signal value must be the same for both runs because it does not depend on
any input values leading to

vi1 = vi2 = bsi(∅, si, t).

3. bsi is executed in time step t and has incoming signals in1, ..., inx (x > 0):

In this case the value of signal si is determined for the two considered runs to

vi1 = bsi({v
in1
1 , ..., vinx

1 }, si, t),
vi2 = bsi({v

in1
2 , ..., vinx

2 }, si, t).

Hence, vi1 = vi2 holds if and only if v
inj

1 = v
inj

2 holds for all j ∈ {1, ..., x}.
In the case considered here it holds that ∃(bsi , b′) ∈ POB(tbd, t), and together with
Theorem 4.1.1 follows that there is exactly one transition executing bsi in each
run i.e. ∃(q1, bsi , q

′
1) ∈ run1 and ∃(q2, bsi , q

′
2) ∈ run2. According to Theorem

4.1.1 the TBD transition system respects the partial order and hence transitions
may only start at states where all needed input signals have been updated and that
signals are never updated twice. Because each input signal inj (j ∈ {1, ..., x})
has again a single producer block, denoted as binj

, the value of each inj is either
determined to

a) v
inj

1 = v
inj

2 = initinj
, if binj

is not executed in time step t (case 1.),

b) v
inj

1 = v
inj

2 = binj
(∅, si, t), if binj

has no incoming signals (case 2.), or

c) v
inj

1 = binj
({vin

j
1

1 , ..., v
inj

y

1 }, si, t) and v
inj

2 = binj
({vin

j
1

2 , ..., v
inj

y

2 }, si, t), if

binj
has incoming signals inj1, ..., in

j
y (case 3.).

In this case we recursively apply case 3. until case 1. or case 2. holds,
leading to identical signal values. We know that we will finally reach case 1.
or case 2. because the partial order is cycle-free and thus we will finally find
either a block without any incoming signals or a block that is not executed
in time step t.

�

116

4.2. Translating Simulink

This theorem provides us with the important property that the end state is unique
for each simulation step resulting in identical signal values for each run of a TBD
transition system. Hence, concatenation of TBD transition systems is well-defined,
resulting in also well-defined execution semantics for consecutive simulation steps.

4.2. Translating Simulink

Based on the formalization of a Simulink model as a timed synchronous block diagram
and its semantics as a TBD transition system, we will now define the translation
of such a model into a function network. Beside the translation of the structure in
terms of blocks and signals, we also need to consider the timing properties of the
original model that are given in terms of firing time specifications. Thus, the question
arises how and when events shall be produced in the function network translation to
correctly represent the Simulink timing behavior. For blocks with incoming signals,
the respective function nodes are activated as soon as all events of preceding nodes
have arrived. Please note that this also covers trigger signals, which are modeled as
incoming signals as well. Function nodes of blocks without any incoming signals need
to be activated by an external trigger event with the period and offset of the blocks
firing time specification. In function networks, events sources are used for producing
events with a certain event pattern. Thus, a first step is to define how a firing time
specification is translated into an event pattern.

Definition 4.2.1 (FTS Translation) Let fts = (per, init) be a firing time specifi-
cation and e be a function network event. The respective event pattern for e is defined
as EP (fts, e) = ({e}, per, per, 0, init).

�

An event source with an event pattern EP = (ΣEP , P−, P+, J,O) produces the first
output event non-deterministically between 0 and O+P+ +J time units. If we create
an event source for each firing time specification of the model, these event sources
would not be synchronized. If we assume for example two firing time specifications
fts1 = (2, 0) and fts2 = (4, 0), which are both active at time t = 0, the first event
of the event source implementing fts1 may occur at t = 0 and for fts2 at t = 4.
Obviously, this is not consistent with Simulink semantics where a synchronization is
implicitly assumed and each block execution is assumed to be finished within bp time
units. To solve this, we define for the function network translation a single event
source φbp, which is running with the base period bp as period. To model the different
firing time specifications, special function nodes called period multiplier are defined,
which are triggered by events from φbp and convert the base period to the period of
the respective firing time specification. This assures the synchronization of the initial
events of all synchronous sets. A period multiplier is defined as a function node with
one input port pinfts and m output ports. An additional output port p⊥ is used to
represent executions where no output event for other nodes is produced. This port is
not part of the interface to other nodes and will not be connected to any channel in
the translation. Its transition system is defined such that it multiplies the period P at

117

4. Translating Simulink Models to Function Networks

sk-off

sk

s1

...

...

Figure 4.3.: Period Multiplier Transition System

its input port with a factor k while adding an offset off . This offset determines the
number of periods until the first event is emitted. Additionally, a delay δ = [δ−, δ+] is
defined for the execution of transitions.

Definition 4.2.2 (Period Multiplier) Let k ∈ N+ be a factor with k > 1, off ∈ N0

an offset with off < k, δ = [δ−, δ+] ∈ N+×N+ a delay and {o1, ..., om} a set of output
events with m > 0. A period multiplier function node is defined as

fMult(k, off, {o1, ..., om}, δ) := ({pinfts},A, {po1 , ..., pom , p⊥})

where A = (S, s0 , T) with S = {s1, ..., sk}, s0 = sk−off and

T ={ (pinfts, E, sk → {(po1 , o1, δ), ..., (pom , om, δ)}, s1) | E ∈ Σact(pinfts) } ∪
{ (pinfts, E, si → (p⊥,⊥, δ), si+1) ∈ T | E ∈ Σact(pinfts), 1 ≤ i < k }

�

In Figure 4.3, the transition system of the period multiplier node is depicted, where
we restrict for clarity to denote transitions only by their events and omit ports and
delays. From the initial state sk−off it needs off input events E until the state sk is
reached while no output event oi is emitted. Thus, the transitions consume an input
event and proceed to the next state while producing a ⊥ event, which will not be
consumed by any other node. Output events oi are only produced by the transition
from sk to s1. Thus, the first output event is produced after off input events have
occurred. Afterwards, each kth input event produces an output event leading to a
period of k · P and an offset of off · P for all output events o1, ..., om.

Accordingly, we show in the next lemma how the output language of the output
ports of a period multiplier node is derived by referring to the language of input
events determined by the input event pattern.

118

4.2. Translating Simulink

Lemma 4.2.1 (Period Multiplier - Output Port Language) Let fMult(k, off,
{o1, ..., om}, [δ−, δ+]) = ({pin},A, {pout1 , ..., poutm , p⊥}) be a period multiplier function
node and EP (Σ(pin)) = (Σ(pin), P, P, J,O) be the event pattern of the input port lead-
ing with Lemma 3.1.2 to the timed language

L(EP (Σ(pin))) = { (pin.σ1, t1)...(pin.σi, ti)...(p
in.σi+m, ti+m)... | σi ∈ Σ(pin),

(1) ti ∈ [max(0, (i− 1) · P − J), O + (i+ 1) · P + J)

(2) ∀m : ti+m − ti ∈ [max(0,m · P − J), O + (m+ 2) · P + J)

} where i,m ∈ N+

Then the language for each output port poutj with j ∈ {1, ...,m} is defined as follows:

L(poj) = {(poj .oj , r1 + [δ−, δ+])...(poj .oj , ri + [δ−, δ+])...}
where ri = t1+off+(i−1)·k

Proof: see Lemma B.1.1 in the appendix on page 217. �

Based on the output language, we are able to show that the period multiplier node
really produces the event pattern it is supposed to. This means that its output language
can be abstracted by an event pattern with a period k · P and an offset of off · P .

Lemma 4.2.2 (Period Multiplier - Output Event Pattern) Let fMult(k, off,
{o1, ..., om}, [δ−, δ+]) = ({pin},A, {po1 , ..., pom , p⊥}) be a period multiplier function
node and EP = (ΣEP , P, P, J,O) be the event pattern of the input port. Then the
following holds:

∀j ∈ {1, ...,m} : L(poj) ⊆ L(delay(({poj .oj}, P · k, P · k, J,O + off · P), [δ−, δ+]))

Proof: see Lemma B.1.2 in the appendix on page 217. �

Period multiplier nodes will also be used to model rate transition blocks that lead
from a block with a smaller period to a block with a higher period. For rate transition
blocks from a higher period to a smaller period, we need external triggers to activate
the node when the successor node is not executed. These external triggers are modeled
again in terms of period multiplier nodes. To determine the correct event patterns for
these additional triggers, we define some operations on firing time specifications. First,
we need something we call FTS Extension where an fts is extended to a given period.
This means, that we represent the same fts as a set of fts’s with a different period
comparable to expanding a fraction in mathematics.

Definition 4.2.3 (FTS Extension) Let fts = (per, init) be a firing time specifica-
tion and perex = n∗per (n ∈ N+) be the period it should be extended to. FTS extension
is defined as the following set of firing time specifications:

ex(fts, perex) = {(perex, (init+ i · per) mod perex) | 0 ≤ i ≤ n}

�

119

4. Translating Simulink Models to Function Networks

Second, we define the difference between two fts’s and the element-relation between
fts’s as follows:

Definition 4.2.4 (FTS Difference) Let ftsa = (pera, inita) and ftsb = (perb, initb)
be firing time specifications.

ftsa \ ftsb ⇐⇒ ex(ftsa, perb) \ {ftsb}

�

Definition 4.2.5 (FTS Element) Let ftsa = (pera, inita) and ftsb = (perb, initb)
be firing time specifications with pera = n ∗ perb (n ∈ N+).

ftsa ∈ ftsb ⇐⇒ ftsa ∈ ex(ftsb, pera)

�

For the Simulink translation, we denote a function node that results from the trans-
lation of a block b as fb. The translation of blocks within the same synchronous set
is quite straight forward. Each combinational, sequential or Moore-sequential block is
translated to a function node fb with one input port, and all incoming signals of a
block are translated to channels that are synchronized at this input port. Thus, the
function node can be first executed if the data of all input signals is available i.e., on
each input channel an event has been received. The transition function consists of a
single state and one transition that is fired as soon as all input events have arrived.
This transition fires all output events while the delay is the worst case execution time
of this block. For signals that are produced by Moore-sequential blocks, shared data
nodes are created to avoid cyclic causal dependencies.

Each rate transition block rt with an input signal in from block a and an output
signal out to block b is translated to a function node frt that converts the firing time
specification ftsa = tr(a) = (pera, inita) of block a to the firing time specification
ftsb = tr(b) = (perb, initb) of block b. We assume that pera and perb are integer
multiples i.e., either pera = k∗perb or perb = k∗pera (k ∈ N+) and inita = initb. This
is assured by selecting the Simulink check box “Ensure deterministic data transfer” of
the rate transition block.

If pera > perb, block b requires its input data more often than it is produced by
block a. Thus, the rate transition block stores the latest value of the output signal
of block a and offers it to block b whenever it is needed. In the function network,
this is realized by adding a set of period multiplier nodes triggering frt whenever it
is not triggered by the preceding function node fa but an activation is required by
the successor fb due to its firing time specification. The set of period multiplier nodes
produces events with an event pattern implementing ftsa \ ftsb, which results in the
set of firing time specifications that is needed to compensate the mismatch between
ftsa and ftsb. This means, that for each firing time specification fts ∈ ftsa \ ftsb a
period multiplier node is created. Coming back to the example from the introduction
in Figure 4.1, the block RTB represents a rate transition that leads from sample time
ST1 = [6, 0] to sample time ST2 = [2, 0]. In the function network representation, this

120

4.2. Translating Simulink

is realized by the function node RTB with input channels from two period multiplier
nodes, one for each sample time in the set ST2 \ ST1 = {[6, 2], [6, 4]}.

If otherwise pera < perb, b must only be activated every kth time where k = perb
pera

.
This is realized in the function network by creating a period multiplier node transform-
ing perioda to periodb by applying the factor k. Please note, that for the translation,
we assume that rate transition blocks always have exactly one input and one output
signal, and that data store memory blocks have each only one data store write block.

Furthermore, we assume that for each block b ∈ B an execution time is given by a
function wcet : B → N+. For a block b that is a data store memory, data store read or
data store write block, we assume wcet(b) = ε because those blocks represent a local
memory where read and write delays are already included in the WCETs of the blocks
accessing the memory. Furthermore, we define a function M : S → P × Σ mapping
signals of tbd to combinations of function network ports and events.

Definition 4.2.6 (Translate TBD to Function Network) Let tbd = (B, type, S,
E,FT S , tr) be a timed block diagram and wcet : B → N+ be a function delivering
the worst case execution time for each block b ∈ B. Furthermore, we define a function
M : S → P×Σ mapping signals to combinations of function network ports and events.
tbd is translated into a function network fntbd = (Σ,P, C,Φ,F,D) as follows:

1. Translating firing time specifications: Let bp be the base period with ftsbp =
(bp, 0) and FT S = {fts1, ..., ftsn} be the set of all firing time specifications of
tbd. We define a source node

φbp = (EP (ftsbp, tr), {p
φbp

fts1
, ..., p

φbp

ftsn
}) ∈ Φ.

The set of global trigger events produced by φbp is defined as

TRbp = {pφbp

fts1
.tr, ..., p

φbp

ftsn
.tr}.

For each firing time specification fts ∈ FT S, a period multiplier node ffts is
defined that creates the respective firing time specification. Let b1, ..., bm be all
blocks without any input signals (except from Moore-sequential blocks) that have
the firing time specification fts i.e.

∀j ∈ {1, ...,m} : tr(bj) = fts ∧
@(b′, s, bj) ∈ E | type(b′) 6= ’Moore-sequential’

Then ffts is defined as follows:

∀fts = (per, init) ∈ FT S :

ffts = fMult

(
per

bp
,
init

bp
, {trb1 , ..., trbm}, [ε, ε]

)
∈ F .

Each period multiplier node ffts is connected by a channel (p
φbp

fts , p
in
fts) ∈ CA from

an output port of φbp to the input port of ffts. Furthermore, we define a channel
to each triggered block i.e., ∀j ∈ {1, ...,m} : (ptrbj , p

in
bj

) ∈ CA.

121

4. Translating Simulink Models to Function Networks

2. Translating blocks:

a) For each block b with type(b) ∈ {’combinational’,’sequential’,’moore-
sequential’} with m > 0 output signals out1, ..., outm a function node fb
is defined with

fb = ({pinb }, ({s0}, s0, T), {pout1 , ..., poutm}) ∈ F where

T = {(pinb , E, s0 → {(pout1 , out1, δ), ..., (poutm , outm, δ)}, s0) | E ∈ Σact(pinb)}

The mapping function for all output signals is defined as follows:

∀j ∈ {1, ...,m} : M(outj) := poutj .outj .

Please note, that Σact(pinb) = {E} has exactly one element, because each
channel transports exactly one event.

b) Let rt ∈ B be a block with type(b) = ’rate-transition’, an input edge (a, in, rt)
∈ E from block a via signal in with ftsa = tr(a) = (pera, inita) and an
output edge (rt, out, b) ∈ E via signal out to block b with ftsb = tr(b) =
(perb, initb). Let furthermore pera = n ∗ perb or perb = n ∗ pera (n ∈ N+)
and inita = initb. Then rt is translated to a function node frt ∈ F as
follows:

i. If pera > perb, for each ftsi = (peri, initi) ∈ ftsa \ ftsb = {fts1,
..., ftsn} frt has an input port pinrti that is triggered by an activation
channel from a period multiplier

fMult
i = fMult

(
peri
bp

,
initi
bp

, {trrt}, [ε, ε]
)
∈ F

where bp is the base period. Each fMult
i has an incoming activation

channel from φbp. The transition system contains a transition leading
from each pinrti to poutrt and from pinrt to poutrt i.e.

frt = ({pinrt , pinrt1 , ..., p
in
rtn}, ({s0}, s0, T), {poutrt })

where

T = { (pinrt1 , trrt1 , s0 → {(poutrt , out, δ)}, s0), ...

(pinrtn , trrtn , s0 → {(poutrt , out, δ)}, s0) } ∪
{ (pinrt , E, s0 → {(poutrt , out, δ)}, s0) | E ∈ Σact(pinrt)}

with δ = [wcet(rt),wcet(rt)]. We define M(out) := poutrt .out.

ii. If pera < perb, frt is defined as a period multiplier

frt := fMult(k, off, {out}, [wcet(rt),wcet(rt)])

with k = perb
pera

and off = 0. We define M(out) := pout.out.

122

4.2. Translating Simulink

c) For each block b ∈ B with type(b) = ’data store memory’, a shared data
node db = (Pin, δ, σ0,Pout) ∈ Dshared is defined where σ0 is the initial
value of b and δ = [ε, ε]. For each block bw writing to b with type(bw) =
’data store write’ and an edge (b′, sw, bw) ∈ E, we define an input port
pinw ∈ Pin with an incoming channel (pw, [0, 0], pinw) ∈ CA. For each block br
reading from b with type(br) = ’data store read’ and an edge (br, sr, b

′′) ∈ E,
we define an output port poutr ∈ Pout with a read channel (poutr , [0, 0], pr) ∈
CR.

d) For each sink block b, which is a block with n > 0 inputs and m = 0 outputs,
a function node fb is defined as

fb = ({pinb }, ({s0}, s0, T), {p⊥b }) ∈ F where

T = {(pinb , E, s0 → {(p⊥b ,⊥, [wcet(b),wcet(b)])}, s0) | E ∈ Σact(pinb)}

3. Translating edges and signals: Let e = (b1, s, b2) ∈ E be an edge with M(s) = ps.s
and fb1 = (Pinb1 ,Ab1 ,P

out
b1

), fb2 = (Pinb2 ,Ab2 ,P
out
b2

) be the function nodes the

blocks b1 and b2 are translated to with ps ∈ Poutb1
and pinb2 ∈ P

in
b2

.

a) If b1 is a Moore-sequential block, e is translated to a shared data node
d = ({pind }, [ε, ε], dshared , {poutd }) with an incoming activation channel ca =
(ps, [0, 0], pind) ∈ CA from fb1 and an outgoing read channel cr = (poutd , [0, 0],
pinb2) ∈ CR to fb2 .

b) Otherwise, e is translated to an activation channel c = (ps, [0, 0], pinb2) leading
from fb1 to fb2 .

�

For function networks that result from the proposed translation of Simulink models,
boundedness can always be decided. First, all sources are periodic and each function
node is state-independent because it has only one state, except for period multiplier
nodes. In the algorithm to decide boundedness from Def. 3.4.4 of Section 3.4, we
need the property of state-independence only for cyclic causal dependencies. Function
networks derived from block diagrams are always cycle-free by definition because al-
gebraic loops are not allowed. Thus, to decide boundedness, it is sufficient to be able
to propagate event patterns also for period multiplier nodes. This has been shown
in Lemma 4.2.2. Please note that the state-independence of function nodes is only
given because we abstract from the internal functionality of single blocks in the trans-
lation. For a translation that considers the internal behavior of blocks and also the
dynamic triggering of blocks the concept of event pattern propagation would need to
be extended to cover also those systems.

Furthermore, we know for function networks translated from Simulink models that
synchronization buffers of input ports are bounded by definition. This is because
within a synchronous set, all blocks have the same sample time and thus the periods
of connected blocks are equal leading to bounded buffers (see Lemma 3.4.5). For
communication between different synchronous sets via rate transitions, only single

123

4. Translating Simulink Models to Function Networks

signals are allowed leading to bounded buffers as well. To guarantee boundedness for
activation buffers, it needs to be assured that any WCET of a block is smaller than
its period (see Lemma 3.4.7). In the next section, we will define feasible timed block
diagrams, where this property is given.

4.3. Preserving Semantics

To preserve semantics, the translated function network has to respect the partial order
of block executions of the respective TBD and all block executions of a simulation step
have to be finished before the next simulation step starts. The basic idea to show the
first part is to relate signal updates, which occur due to block executions, to events in
the function network translation.

In Simulink, a signal is updated whenever its producing block is executed. Thus,
we define the set of signals a block updates as all output signals it produces.

Definition 4.3.1 (Signal Update) Let tbd = (B, type, S,E,FT S , tr) be a TBD.
The update function returns the set of signals that is updated by a block b i.e.

upd(b) = {s |(b, s, b′) ∈ E}

�

The simulation steps where signal updates occur are determined by the partial
order of blocks i.e., a signal is updated whenever its producing block is executed.
Accordingly, we define a partial order on signals - meaning signal updates - for a
specific simulation step t by considering the partial order of blocks and the previous
definition of a signal update.

Definition 4.3.2 (Partial Order on Signals) Let tbd = (B, type, S,E,FT S , tr)
be a TBD. The partial order on signals POS(tbd, t) for simulation step t is defined
as follows:

(s1, s2) ∈ POS(tbd, t)⇐⇒ ∃s1 ∈ upd(b1), s2 ∈ upd(b2) : (b1, b2) ∈ POB(tbd, t)

We write s <t s
′, if (s, s′) ∈ POS(tbd, t). �

To be able to relate events in the function network to signals updates, we need to
assign events to simulation steps. To avoid overlapping simulation steps and thus a
deadline violation, an event of a function network can only be part of the partial order
of a simulation step t, if it occurs before the next simulation step starts. The length
of a simulation step is determined as the base period bp i.e., each event of a simulation
step t must occur within a time interval of [t, t + bp). This means that all timing
constraints are met if the partial order is preserved. As soon as an event occurs later
than its deadline of bp time units, it is not part of the partial order of that simulation
step and thus semantics would not be preserved.

This is illustrated in Figure 4.4a, where the execution semantics of a Simulink model
is depicted in terms of a transition system for each simulation step. In Figure 4.4b, the

124

4.3. Preserving Semantics

...

b1 b2

bj
b2 b1

bi

bn bm

ti

...

b1 b2

bl
b2 b1

bk

bx by

ti+1

...

simulation
time

hyper
period

*

bp
(a) Simulink Semantics

ti ti+1

...

real
time

hyper
period

*

bp

fm

f2 fi fn

f1 fj

...

... fx

f2 fy

f1

...

...

(b) Function Network Semantics

Figure 4.4.: Preserving Semantics from Simulink to Function Networks

execution of the function network translation is sketched. For each simulation step ti,
a set of function nodes needs to be executed with respect to the partial order of block
executions. In contrast to Simulink block executions, in the function network each
node execution takes time. Thus, we need to assure that at the end of a simulation
step all function nodes that need to be executed have finished their execution. This
leads to an end-to-end deadline with a length of bp time units for each path starting
at source events and ending at events received by sink nodes.

To reason about the occurrences of events in a function network, we use event
patterns. Comparable to the property rdy(b, t) for a Simulink block b, we define when
an event pattern is active with respect to a simulation step t. In contrast to Simulink,
we additionally need to consider the execution delays of function nodes. This leads to
an increase of the offset and possibly the jitter with each event pattern propagation

125

4. Translating Simulink Models to Function Networks

step from one node to its successor node. Thus, the sum of offset and jitter must not
become greater than the deadline bp, where we subtract (t mod P), which is equal to
the initial phase shift init. For Simulink translations we know that J = 0 because
lower and upper delay bounds are always identical. This means that an offset that
was initially determined to O = init may only be increased by a value smaller than bp
to be active in time step t. Furthermore, in the language of event patterns, the offset
may occur at any time while we know from the definition of source nodes that the
offset always occurs initially at system startup. This is also the case for sample times
in Simulink. Thus, we must assure that the offset occurs initially.

We define this property also for superposition of event patterns. A superposition is
active as soon as at least one of the superposed event patterns is active.

Definition 4.3.3 (Active Event Pattern) Let bp be the base period and ΣEP a set
of events with L(ΣEP) = (e1, r1)(e2, r2)... were ei ∈ ΣEP . A periodic event pattern
EP = (ΣEP , P, P, J,O) is active in a simulation step t if

active(EP , t) ⇐⇒ 0 ≤ O + J − (t mod P) < bp ∧
r1 ≥ O

We define superposition of event patterns to be active if the following holds:

active(super(EP1, ...,EPn), t) ⇐⇒ ∃i ∈ {1, ..., n} : active(EP i, t)

�

Now we are able to define a partial order on function network events, which we
will use to show semantics preservation of the translation. To be part of the partial
order, two events e and f have to satisfy three properties: There must exist a causal
dependency from e to f , the event pattern of f must be active at time t, and the
distance of f to an initial trigger event trbp ∈ TRbp from the event source of the
network must be smaller than bp. The last property assures that the next time step
does not start before each node execution of the previous time step has finished.

We need to claim this additionally for the active property because the event pattern
abstracts from the common event source. Thus, we need to explicitly show that all
blocks have a causal dependency to an event of this source with a maximum delay of
bp time units. This causal dependency may have a condition meaning that f does not
occur each time a trigger event has occurred. This is the fact for all events that do not
occur with the base period. The correctness of this condition and hence the correct
period and offset of an event is assured if the respective event pattern is active.

The partial order on function network events is defined as follows:

Definition 4.3.4 (Partial Order on Events) Let tbd be a TBD, t be a Simulink
simulation step and bp be the base period of tbd. Let fn = (Σ,P, C,Φ,F,D) be the
function network translation of tbd, e, f ∈ Σ be events and EP (e) the event pattern
of e where it holds active(EP (e), t). Let furthermore trbp ∈ TRbp be an initial trigger

126

4.3. Preserving Semantics

event from the event source φbp producing events with the base period. Then the partial
order POΣ(fn, t) is defined as follows:

(e, f) ∈ POΣ(fn, t) ⇐⇒ (1) e[conde]
[min,max]−−−−−−−→ f ∧

(2) active(EP (f), t) ∧

(3) ∃trbp ∈ TRbp : trbp[condbp]
[min,max]−−−−−−−→ f ,max < bp

We write e <t f , if (e, f) ∈ POΣ(fn, t). �

As a necessary condition for the function network to be able to preserve the timing
constraints of the Simulink model, we define feasibility for TBDs. A TBD is feasible
at a simulation step t if all blocks that need to be executed successively (due to the
partial order on block executions) in step t have finished their execution before the
next simulation steps starts. This corresponds to a set of end-to-end deadlines over
maximal block chains leading from each start block b1 (a block without any predecessor
in the partial order) to each end block bn (a block without any successor in the partial
order) whose execution depends on b1 i.e. b1 <t ... <t bn. Thus, the sum of WCETs
of each such maximal chain of partially ordered blocks must be smaller than the base
period bp. For this definition, we assume that WCETs are given for each block and
that each two blocks that are not partially ordered may be executed concurrently.
A TBD is (completely) feasible if it is feasible at all simulation steps t meaning all
simulation steps until reaching the hyper period where the execution behavior repeats.
If a TBD is not feasible, also its function network translation cannot preserve the
timing constraints assumed by Simulink.

Definition 4.3.5 (TBD Feasibility) Let tbd = (B, type, S,E,FT S , tr) and wcet :
B → N+ be a total function that determines for each block its execution time and let
bp be the base period of tbd. Feasibility of a tbd is defined as follows:

tbd is feasible at time t

⇐⇒ ∀(b1, b2), ..., (bn−1, bn) ∈ POB(tbd, t) | @(b, b1), (bn, b
′) ∈ POB(tbd, t) :

(wcet(b1) + ...+ wcet(bn)) < bp

tbd is (completely) feasible if and only if tbd is feasible at all time steps t. �

To be able to guarantee that a feasible TBD leads to a function network that satisfies
the timing constraints, we need to show that no additional delays are induced by the
function network translation. The worst case execution times of blocks are translated
to transition delays of function nodes and thus there are no additional delays in the
transition system. Also channels between function nodes always have a zero delay.
Hence, the only place where additional delays may be induced are synchronization
buffers of function nodes. For synchronization buffers of input ports it holds that we
always have to wait until all signals of preceding nodes have been produced. This effect
is already considered in the definition of feasibility by taking the sum of delays of each
maximal chain of block executions, which also includes the longest of those chains.

127

4. Translating Simulink Models to Function Networks

Read channels from shared data nodes can be omitted for this consideration, because
delays of read channels are zero and the delays of shared data nodes are assumed to
be negligibly small denoted by epsilon. Thus, if the TBD is feasible, we will not
get additional delays in synchronization buffers of input ports. What is left, is the
activation buffer of a function node. To show feasibility, we need to assure that no
input event arriving at the activation buffer has to wait for a startf event and thus a
preceding execution to be finished.

To prepare this proof, we show that, under a specific condition, the wait delay for
start events is always zero and can thus be omitted in the causality pattern. This
condition states that the minimum inter-arrival time between any two input events is
greater than the maximum delay of any transition of the transition system. In this
case, the execution of the function node is always terminated before the next input
event arrives and thus a startf event is always available. Hence, we never have to wait
for it leading to a wait delay of zero.

Lemma 4.3.1 (No Wait Delay for Start Event) Let f = (Pin,A,Pout) be a
function node and let the output language of the activation buffer L(EP (Ip)) be defined
as

L(EP (Ip)) = { (σ1, t1)....(σi, ti)...(σi+m, ti+m)... | σi ∈ Ip,
(1) ti ∈ [max(0, (i− 1) · P− − J), O + (i+ 1) · P+ + J)

(2) ∀m : ti+m − ti ∈ [max(0,m · P− − J), O + (m+ 2) · P+ + J)

} where i,m ∈ N+

According to Lemma 3.4.6 the language of start events is determined as

L(startf) = { (startf , u1)...(startf , ui)...(startf , ui+n)...}
| u1 = 0,

ui+1 = max(ui, ti) + [δmin, δmax]

Let further be δmax be the maximum delay of any transition t ∈ T . Then it holds:

∆−(L(Ip)) > δmax =⇒ ∀i ∈ N+ : ui ≤ ti ∧
waitstart = ∆(L(Ip), L(startf)) = 0

Proof: see Lemma B.2.1 in the appendix on page 219. �

Now it remains to show that the condition that leads to a waiting time of zero for
the start event is always satisfied for function networks that arise from a Simulink
translation. This is the case, because we claim that all blocks that are executed in
a simulation step have finished their execution before the next simulation step starts
leading to a deadline equal to the base period bp. Thus, we have no overlapping
executions of the same node and a startf event is always available.

128

4.3. Preserving Semantics

Lemma 4.3.2 (No Wait Delay for TBD Function Nodes) Let tbd be a feasible
TBD with tbd = (B, type, S,E,FT S , tr) and a block b ∈ B with n input signals. Let
fn = (Σ,P, C,Φ,F,D) be the function network translation of tbd with a respective
function node fb ∈ F with one input port with n > 1 incoming activation channels, a
maximum transition delay δmax = wcet(b), and the following causal dependencies on
input events in1, ..., inn and inj with j ∈ {1, ..., n} and trigger events trbp ∈ TRbp:

(1) {pin1
.in1, ..., pinn

.inn}
[wait−start,wait

+
start]−−−−−−−−−−−−−→ ((pin1

.in1, ..., pinn
.inn), startf) ∧

(2) pinj .inj
[wait−in+wait−start,wait

+
in+wait+start]−−−−−−−−−−−−−−−−−−−−−−−−→ ((..., pinj .inj , ...), startf)

(3) ∀j ∈ {1, ..., n}, ∀trbp | trbp[condbp]
[δj ,δj]−−−−→ pinj

.inj : δj < bp

Then it holds:

wait+start = 0, wait−start = 0, wait+inj
< bp− δmax

Proof: see Lemma B.2.2 in the appendix on page 220. �

We show semantics preservation inductively over a maximal chain of partially or-
dered signals s1 <t ... <t sn of any simulation step t. What we need to show is that
the respective events in the function network are partially ordered as well. An update
on a signal s is represented in the function network as an event M(s), where M is the
mapping function defined in the translation. Furthermore, we need to consider the
source event trbp ∈ TRbp, which triggers the period multiplier node representing the
firing time specification of the first signal s1. Additionally, an event ptrb1 .trb1 must
occur triggering the producer block of s1, which is b1. Thus, for a maximal chain of
partially ordered signals s1 <t ... <t sn we need to show that there exists a respective
chain in POΣ(fn, t) i.e.

trbp <t ptrb1 .trb1 <t M(s1) <t <t M(sn).

In Figure 4.5, the previous example of a Simulink translation into a function network
is annotated with signals and events. As an example, we consider the maximal chain

a <t c <t d <t f

of partially ordered signals in the Simulink model of Figure 4.5a. In the function
network translation of Figure 4.5b, we need to show that also the respective events are
partially ordered and that the needed trigger events occur i.e.

tr <t trStep1 <t M(a) <t M(c) <t M(d) <t M(f).

Because the proof works inductively, we first show that the partial order is preserved
for each translation of a specific block type, and afterwards show the correctness for
any maximal chain in the partial order. To be able to put the single proofs together,
we will make some assumptions about the partial ordering of previous signals and

129

4. Translating Simulink Models to Function Networks

+
+

X

Step1

Step2

Mon1

Mon2

5 7

+
+

1/z

ST1 = [6,0]

ST3 = [5,2]

ST2 = [2,0]
1/z

RTB

k

Add1
Add2a

b

c d

e
f

g
h i

j

k

(a) Signals in a Simulink Block Diagram

Step1

5

Add1 RTB

7

Add2

Store

Mon1ST1

[6,2]

[6,4]

Step2
1/zx

ST3

ST2

k
Mon2

M(a)

M(b)
M(c)

M(d)

M(e)

M(f)

M(g) M(h)
M(i)

M(j)

M(k)

tr

tr

tr

tr

tr

tr7

tr5

trStep1

trRTB

trRTB

trStep2

(b) Function Network Events representing Signal Updates

Figure 4.5.: Preserving partial order in function network translation

events, which will be satisfied later in the inductive proof. There are three types of
blocks that are translated differently to function nodes: rate-transition blocks, source
blocks and all remaining blocks, which we summarize as ordinary blocks. Furthermore,
we use period multiplier function nodes to model the needed firing time specifications
leading to four different function node types to be considered. Furthermore, there are
data store memory blocks, which do not induce a partial order on blocks. Thus, they
are not relevant for semantics preservation and will not be considered in the following
considerations and proofs.

We start with period multiplier nodes, which are connected by a channel to the
source node φbp of the function network and convert the base period bp to a specific
firing time specification used in the model. An example for a period multiplier node
is the node labeled with ST1 in Figure 4.5b. What we need to show here is that the
execution of each source block b1 is initiated correctly in the function network. Thus,
there must exist a partial order from a trigger event trbp ∈ TRbp of the event source

130

4.3. Preserving Semantics

φbp to the event ptrb1 .trb1 , which starts the execution of the function node representing
block b1. By applying the partial order definition for function network events from
Def. 4.3.4, this leads to two statements to prove: First, it must hold that the event
pattern of (ptrb1 .trb1) is active at the considered simulation step t. This assures that
there occurs an event starting the execution within this simulation step. To show
this, we need to consider the definition of the period multiplier function node and the
resulting event pattern at its output. By having chosen the appropriate parameters
in the translation, we get the same period and offset as the firing time specification
of b1 claims. Thus, we can prove that the event pattern is active at each point in
time t where rdy(b1, t) holds. Second, there must exist a causal dependency from
trbp to ptrb1 .trb1 with a delay smaller than the base period bp. This can be shown
by considering the transition system of the period multiplier node. The worst case
execution time of period multiplier nodes that are no rate transition blocks is always
ε. Thus, we assume that the delay for converting firing time specifications is negligible
small and thus does not influence the feasibility. The third condition, we need to show
for the partial order, is already covered by the previous causal dependency.

Lemma 4.3.3 (Preserve Partial Order - Period Multiplier Nodes) Let tbd be
a feasible TBD with tbd = (B, type, S,E,FT S , tr), fn = (Σ,P, C,Φ,F,D) its func-
tion network translation and t be simulation step. Let s1, s2 ∈ S be signals with
(b1, s1, b2) ∈ E, (b2, s2, b

′
2) ∈ E, (s1, s2) ∈ POS(tbd, t) and @(s, s1) ∈ POS(tbd, t).

Let furthermore fts = tr(b1) = (per, init) be the firing time specification of block
b1, and trb1 be a trigger event of b1 produced by the period multiplier block ffts =
fMult(perbp ,

init
bp , {..., trb1 , ...}) at port ptrb1 . Then the following holds:

∃trbp ∈ TRbp : (trbp, ptrb1 .trb1) ∈ POΣ(fn, t)

Proof: see Lemma B.2.3 in the appendix on page 221. �

The first block type that may occur in a maximal chain of partial ordered blocks is
a source block. There are two block types which may act as source blocks. First, it
may be a block without any input signals except from Moore-sequential blocks. The
respective function node has no activation channels from any other nodes and is thus
directly connected to the period multiplier node that creates the respective firing time
specification of the block. An example is block Step1 from Figure 4.5a. Second, a
source block may also be a rate transition block if the preceding block is not executed
in the considered simulation step t.

In this case, again a period multiplier node triggers the function node representing
this rate transition block. An example is block RTB from Figure 4.5a. For both
cases, we show in the following lemma that a function node modeling a source block
b1 induces a partial order on its input and output events. The input event is a trigger
event ptrb1 .trb1 from the period multiplier node creating the firing time specification
of b1. The output event is the event corresponding to the signal s1 produced by b1,
which is determined by the mapping function to M(s1).

131

4. Translating Simulink Models to Function Networks

Lemma 4.3.4 (Preserve Partial Order - Source Blocks) Let tbd be a feasible
TBD with tbd=(B, type, S,E,FT S , tr), fn = (Σ,P, C,Φ,F,D) its function network
translation and t be a simulation step. Let s1 ∈ S be a signal with (b1, s1, b

′) ∈ E and
@(s, s1) ∈ POS(tbd, t). Then it holds:

(1) ∃trbp ∈ TRbp : (trbp, ptrb1 .trb1) ∈ POΣ(fn, t)

=⇒ (2) (ptrb1 .trb1 ,M(s1)) ∈ POΣ(fn, t)

Proof: see Lemma B.2.5 in the appendix on page 223.

�

Another special block is the rate transition block which converts a firing time speci-
fication ftsa of a block a to a firing time specification ftsb of a block b. An example for
a rate transition block is block RTB from Figure 4.5a. Depending on the respective
periods pera and perb, a rate transition block is either translated to a period multiplier
node or a function node with additional input channels from a set of period multiplier
nodes. For both cases, we show that the partial order of two signals s and s′ also holds
for the respective function network events M(s) and M(s′).

In the following statements and proofs, we denote by wcets the sum of WCETs of
block executions that occur between a trigger event of the event source and an event
M(s). For feasible TBDs, wcets is smaller than the base period bp by definition.
The delay needed until we see an event M(s′), which represents the update of the
successor signal, is denoted as wcets′. It is determined by the execution time wcet(b)
of the block b that produces s′ and the waiting time waitin for synchronization. This
delay is smaller than bp as well because it is again the sum of WCETs of a chain of
partially ordered blocks.

Additionally, there occurs an ε delay in the causal dependencies from the trigger
event to a signal update event, which results from the period multiplier node that
was executed before. Please note, that for rate transition blocks, waitin is always
zero because those blocks are assumed to have exactly one input channel and thus no
synchronization is needed.

Lemma 4.3.5 (Preserve Partial Order - Rate Transition Blocks) Let tbd be a
feasible TBD with tbd = (B, type, S,E,FT S , tr), fn = (Σ,P, C,Φ,F,D) its function
network translation and t be a simulation step. Let (s, s′) ∈ POS(tbd, t) and b be a block
with s′ ∈ upd(b) and type(b) = ’rate-transition’ connecting the blocks a and b with the
firing time specifications ftsa = tr(a) = (pera, inita) and ftsb = tr(b) = (perb, initb).
Let further the following hold:

active(EP (M(s), t) ∧

trbp[condbp]
[ε+wcets,ε+wcets]−−−−−−−−−−−−→M(s), wcets < bp

132

4.3. Preserving Semantics

Then it holds:

(1) M(s)[condM(s)]
[wcet(b),wcet(b)]−−−−−−−−−−→M(s′) ∧

(2) active(EP (s′), t) ∧

(3) trbp[cond
′
bp]

[ε+wcets′,ε+wcets′]−−−−−−−−−−−−−→M(s′), wcets′ < bp

Proof: see Lemma B.2.6 in the appendix on page 225. �

All remaining block types are summarized as ordinary blocks in the translation.
Ordinary blocks are sequential, Moore-sequential or combinational blocks with at least
one input and output signal. An example for an ordinary block is block Add1 from
Figure 4.5a. In the case of multiple input signals, the respective channels in the
function network translation need to be synchronized, which may lead to a waiting
time waitin greater than zero. The waiting time is determined as the maximum sum
of preceding block execution times. In the following lemma, we show for an ordinary
block b inducing a partial order on two signals s and s′ that this partial order is
preserved for the respective function network events M(s) and M(s′).

Lemma 4.3.6 (Preserve Partial Order - Ordinary Blocks) Let tbd be a feasible
TBD with tbd = (B, type, S,E,FT S , tr), fn = (Σ,P, C,Φ,F,D) its function network
translation and t be a simulation step. Let (s, s′) ∈ POS(tbd, t) and b be a block with
s′ ∈ upd(b), n input signals in1, ..., inn, where ∃j : inj = s and type(b) ∈ {’sequential’,
’Moore-sequential’, ’combinational’}.

Let fb = ({pinb }, ({s0}, s0, {t}), {pout1 , ..., poutm}) ∈ F be the translation of b and
M(s) = ps.s as defined in Def. 4.2.6. Let further the following hold:

(A) active(EP (M(s), t)) ∧

(B) ∃trbp ∈ TRbp : trbp[condbp]
[ε+wcets,ε+wcets]−−−−−−−−−−−−→M(s), 0 ≤ wcets < bp

Then it holds:

(1) M(s)
[waitin+wcet(b),waitin+wcet(b)]−−−−−−−−−−−−−−−−−−−−−→M(s′) ∧

(2) active(EP (M(s′)), t) ∧

(3) ∃trbp ∈ TRbp : trbp[cond
′
bp]

[ε+wcets′,ε+wcets′]−−−−−−−−−−−−−→M(s′), wcets′ < bp

Proof: see Lemma B.2.7 in the appendix on page 227. �

Now we can put everything together and show that the function network translation
preserves the semantics of the TBD with respect to the partial order of signals and
events. We start by showing that function nodes translated from source nodes are
correctly triggered by events from the event source. Then, we show by induction
over a maximal chain of partially ordered signals that the respective function network
events are partially ordered as well.

133

4. Translating Simulink Models to Function Networks

Theorem 4.3.1 (Translation preserves Partial Order of Signals) Let tbd be a
feasible TBD with tbd = (B, type, S,E,FT S , tr), fn = (Σ,P, C,Φ,F,D) its function
network translation and t be a simulation step. Let fts(s) denote the firing time
specification of the block that produces the signal s. Then it holds:

(1) (s1, s2), ..., (sn−1, sn) ∈ POS(tbd, t)) ∧
@(s, s1) ∈ POS(tbd, t) ∧ @(sn, s) ∈ POS(tbd, t)

=⇒ (2) (a) ∀i ∈ {1, ..., n− 1} : (M(si),M(si+1)) ∈ POΣ(fn, t) ∧
(b) ∃trbp ∈ TRbp : (trbp, ptrb1 .trb1) ∈ POΣ(fn, t) ∧
(c) (ptrb1 .trb1 ,M(s1)) ∈ POΣ(fn, t) ∧
(d) @(e, trbp) ∈ POΣ(fn, t) ∧
(e) @(M(sn), e) ∈ POΣ(fn, t)

Proof: (b) was proven in Lemma 4.3.3, (c) was proven in Lemma 4.3.4. (d) follows
directly by the fact that any trbp is produced by source node φbp. (e) follows from the fact
that block bn, which produces sn, is a block without any outputs and thus is translated
to a function node without any output channels. Thus, there is no causal dependency
starting at M(sn). Now it remains to prove (a) which we will do by induction over i:

1. Base Case (i=1):

(M(s1),M(s2)) ∈ POΣ(fn, t)

With Def. 4.3.4, we need to show all the following:

active(EP (s2), t) ∧

M(s1)[condM(s1)]
[delay,delay]−−−−−−−−→M(s2) ∧

∃trbp ∈ TRbp : trbp[condbp]
[ε+wcets′,ε+wcets′]−−−−−−−−−−−−−→M(s2), wcets′ < bp

We can conclude from (b), (c) and Def. 4.3.4 that the following holds:

active(EP (s1), t) ∧ trbp[cond]
[ε+wcets,ε+wcets]−−−−−−−−−−−−→M(s1), wcets < bp

If b2 is a sequential, Moore-sequential or combinational block, we can apply
Lemma 4.3.6. If b2 is a rate transition block, we can apply Lemma 4.3.5 to
show the base case. b2 cannot be a block without any outputs and no data store
write block because then there would not exist any signal s2. It can also not be a
block without any inputs or a data store read block because then there would not
exist an s1.

2. Inductive Step: We assume that the statement holds for i and show that it also
holds for i+ 1 with i ∈ {1, ..., n− 2} i.e.:

(M(si),M(si+1)) ∈ POΣ(fn, t) =⇒ (M(si+1),M(si+2)) ∈ POΣ(fn, t)

134

4.4. Summary and Related Work

With Def. 4.3.4, we need to show the following:

active(EP (si+1), t) ∧

M(si)[condM(si)]
[delay,delay]−−−−−−−−→M(si+1) ∧

trbp[condbp]
[ε+wcets,ε+wcets]−−−−−−−−−−−−→M(si+1), wcets < bp

=⇒
active(EP (si+2), t) ∧

M(si+1)[condM(si+1)]
[δ′−,δ′+]−−−−−→M(si+2) ∧

trbp[condbp]
[ε+wcets′,ε+wcets′]−−−−−−−−−−−−−→M(si+2), wcets′ < bp

If bi+2 is a sequential, Moore-sequential or combinational block, we can apply
Lemma 4.3.6. If bi+2 is a rate transition block, we can apply Lemma 4.3.5 to
show the inductive step. bi+2 cannot be a block of any other type for the same
reasons as in the base case.

�

With this theorem, we have shown that for a feasible TBD the partial order of signal
updates is preserved by the function network translation. Furthermore, each function
node corresponding to a block of this partial order is executed before the next time
step starts i.e., in less than bp time units. This could only be shown because the
function network translation does not add any additional delays to the sum of block
execution times on a path. Thus, any feasible TBD leads to a valid function network
translation in terms of partial order and timing constraints.

4.4. Summary and Related Work

We first gave a formal definition of Simulink block diagrams based on timed syn-
chronous block diagrams. Due to the background of this work, the focus lays on the
timing behavior of Simulink models in terms of execution orders of blocks. Thus,
we abstract from functional details in terms of concrete values of signals and restrict
ourselves to updates of signals and the time instances where they occur. With the
help of a transition system, the execution behavior of a Simulink model in a specific
simulation step was defined based on the partial order of block executions.

As a next step, the translation of a Simulink model into a function network was de-
fined, where blocks are translated to function nodes and signals to channels connecting
them. The initial input events are produced by a single event source to assure the syn-
chronous behavior of the original model. The period of the event source is chosen as
the base period bp of the model. The most challenging part of the translation was
to represent the behavior of rate transition blocks between different synchronous sets
correctly in function networks. To achieve this, a special function node type named
period multiplier was defined, which is able to transform an event pattern with a pe-
riod P into an event pattern with a period k · P and an initial offset. This kind of

135

4. Translating Simulink Models to Function Networks

function node was not only used to model rate transitions but also to create all needed
sample times in the model.

The correctness of the translation was proven by relating signal updates to events in
the function network and showing that the partial order of signal updates is preserved
by the partial order of events in the function network translation. Additionally, we
had to assure that each signal update of a simulation step occurs before the next
simulation step starts. This leads to an end-to-end deadline of bp time units for each
maximal chain of partially ordered blocks executed in a simulation step. As a next
step, we defined a partial order of function network events for a simulation step t. To
capture also the timing constraints, an event belongs to the partial order only if it
occurs within bp time units after simulation step t starts. Then, we proved for each
maximal chain of partially ordered signals that the respective events in the function
network translation are also partially ordered. Assuming a feasible Simulink block
diagram, this also assures a correct timing behavior with respect to the implicitly
defined deadlines.

An Extension to Translate Stateflow

We will give a short outlook to a possible extension of this work that would allow
to model Stateflow charts by transition systems of function networks. Even if this is
not necessary to represent the timing behavior of a Simulink model correctly, it may
improve the results of timing analyses. As an example, the worst case execution time
of a Stateflow block may depend on its state. These dependencies may be modeled in
terms of a transition system of a function node, which reduces over-approximations.
Furthermore, this would be a first step to support dynamic triggers where an output
signal of one block determines at runtime whether the target block of this signal is
executed or not.

Due to a missing ’official’ semantics of Stateflow, we had to rely on scientific ap-
proaches to define semantics such as [35] and [72]. In the latter one, a safe subset
for Stateflow is defined that precludes unbounded behavior by avoiding loops in any
graph of junctions and transitions and permits the use of the backtracking mechanism
of flow transitions. A translation would be restricted to Stateflow models that satisfy
this safe subset and the TargetLink modeling guidelines [54].

Stateflow blocks could be translated to transitions systems of function nodes by
building the flattened parallel composition of all its Statecharts. Single Stateflow
transitions could be translated to function network transitions quite straight-forward
if they do not involve junctions and its conditions and actions are only defined on
input and output signals. The main challenge for such a translation would be the ab-
stract interpretation of conditions that trigger Stateflow transitions. These conditions
had to be represented by events in function networks while the presence of an event
denotes that the respective condition is true. Furthermore, we had to do this abstract
interpretation for any block and signal of the whole Simulink model. This is because
the conditional events needed for a Stateflow block have to be produced somewhere
i.e., the nodes that write the corresponding signal have to produce the correct events.

136

4.4. Summary and Related Work

The behavior of a Simulink block can in general be derived from the generated code.
Thus, we had to perform a code analysis to derive an abstract semantics in terms of a
transition system based on events that are sufficient to cover all paths of the Stateflow
blocks. There already exist methods that tackle related problems as in the area of
model-checking [20, 19], timing validation [86] and data flow analysis [74]. A further
interesting approach has been proposed in [8], where an abstract domain is efficiently
obtained from c-code generated from models similar to synchronous block diagrams.

Related Work

The question which semantic properties need to be preserved when translating syn-
chronous languages like Simulink has been posed by many publications. A very general
approach has been pursued in [81], where a translation from Simulink to Lustre is de-
fined, which are both synchronous languages. To preserve semantics, the authors claim
that the Simulink model and the translated Lustre program should have an identical
output behavior when given the same inputs. Because the output behavior in Simulink
is guaranteed to be the same if the partial order of block executions is maintained,
this is a refinement of our notion of semantics preservation.

A work with a quite similar approach to ours is [55], where also causality and partial
order of Simulink blocks is considered to define semantic equivalence. Furthermore, the
relative execution rates between Simulink blocks and the sequence of read and write
accesses on delay blocks should be maintained. This is also covered by our partial
order on function network events by including the timing constraints into the partial
order definition.

A further work with similar objectives to our approach was presented in [80], where
a synchronous model is implemented on a loosely time-triggered architecture. The
authors assume, as we do, that single processes compute their values correctly and do
not model the functional behavior explicitly. This results in a synchronous language
definition that is quite similar to synchronous block diagrams of Simulink. For de-
synchronization, they use an intermediate model with similarities to Kahn process
networks and translate their synchronous model into that formalism. They define
semantic preservation in terms of a partial order of process executions as we do. They
prove this by showing that any execution of the intermediate model is also a valid
execution of the synchronous model because it respects the partial order. In the rest
of the paper, they focus on the details of how the intermediate model is implemented
on the target architecture and how throughput and memory size may be influenced.

Compared to our work, they did some simplifications. First, they assume, as we do,
that all feedback loops are split by a unit delay block. The main simplification is that
they only consider single-rate models while for our approach the semantic preservation
for multi-rate models is one major part. Furthermore, they cannot always guarantee
that no data is lost. On the one hand, this can happen in a feedback loop with a unit-
delay because the data is read before it was written by the process of the previous step.
This violates simulation semantics but not the partial order, which is split at unit delay
blocks. This is the reason why we explicitly claim that the timing constraints assumed

137

4. Translating Simulink Models to Function Networks

by Simulink are satisfied. On the other hand, there may occur similar problems with
data consistency due to clock drifts on the architecture.

In [71], tasks are identified manually from a Simulink model and scheduled in a
fixed-priority preemptive scheduling. Tasks are assumed to be independent from each
other and the partial order of Simulink blocks is represented by task priorities that are
determined by task deadlines. Here, the overlapping execution of Simulink simulation
steps is considered, which leads to several problems. First, if a task is executed that
depends on values of a lower-priority task (which can only occur in case of an algebraic
loop) there must be inserted a unit delay block. Thus, algebraic loops are split, as
we assume for our work as well. A second problem arises if a higher priority block A
interrupts the execution of a lower-priority block B that depends on the outputs of
block A. Then, these outputs are changed during the interrupt and thus invalidated.
When block B resumes, it uses the wrong data and thus creates wrong results. To solve
this issue, the authors introduce a communication scheme that uses different buffers to
avoid that old values are invalidated if they are still needed. This problem does how-
ever only occur because overlapping executions are allowed and buffers were initially
assumed to be one-place buffers. In our translation, we exclude overlapping executions
by defining respective end-to-end deadlines. Furthermore, function networks contain
FIFO-buffers in terms of synchronization buffers by definition. This assures that data
is read in the correct order and is not invalidated during execution.

In [7], an overview is given on the basic idea of synchrony and the most important
synchronous languages such as Esterel, Lustre and Signal, and how they did evolve
over time. Furthermore, problems and challenges are discussed as, for example, the
question of how to map a synchronous software model to an asynchronous or only
partially synchronous hardware platform. This may either be done by modeling the
hardware in a synchronous language as well, or by defining constraints the hardware
architecture model must satisfy to assure synchrony. It is shown how to translate
a Lustre model into the asynchronous representation of Ptolemy while maintaining
the functional behavior. However, this is not always possible, which is shown at the
example of Signal. Here, the synchronous model has to be extended in a way that
its behavior is changed. In our work, we abstract from any concrete target hardware
architecture and explicitly model synchrony by the translation to function networks.
This is mainly realized by defining a single event source and period multiplier nodes
to trigger the source blocks of each synchronous set. Thus, the task model preserves
synchrony independently from the hardware architecture it will be allocated to.

In [6], it is discussed how to translate a synchronous language to an asynchronous
one in general. One focus lays on a property of many synchronous languages where
decisions of a program may be taken by the absence of an event or signal. This kind
of modeling is however not possible in Simulink models, where a signal always has a
value and no decision can be taken by the absence of a value. Another part of the
work deals with the parallel composition of processes and the question how to ensure
that all processes compute the same signal values in the same order as if they were
executed in isolation.

A material difference of our work to [6] and [7] is the fact that we do not aim at
translating the whole functionality of a synchronous language. This means, that we are

138

4.4. Summary and Related Work

not considering the concrete values a process or block computes for showing semantic
preservation. Instead, we represent all updates of signal values by a corresponding
event in the task network and show that their partial order is preserved. Correctness
of the functional behavior of single blocks is assured by code-generators for Simulink.

139

5. Task Creation

In Chapter 4, we defined a translation of a specification model in Simulink to the
formalism of function networks, which preserves the specification semantics in terms
of partial order of signal updates and timing. The translation is performed based on the
finest granularity of Simulink, which are atomic blocks connected by signals. Because
each block is translated to a function node, also the resulting function network has this
granularity. This typically leads to a function network with a large number of nodes
having high variance in computational intensity. This is due to the fact that standard
blocks from the Simulink library often represent very simple operations, as an addition
or multiplication. Other blocks such as Stateflow blocks and user-defined S-Functions
contain more complex operations, which need considerably more time to execute. To
estimate the load a node potentially produces on an ECU, we introduce node weights,
which correspond to the induced processor utilization. They are determined by the
fraction of the worst case execution time and the period of the function node.

Furthermore, a Simulink translation typically leads to huge amount of communica-
tion in particular between nodes within a synchronous set. If we treat each node of
such a function network as a single task, this would result in a large communication
overhead because many lightweight tasks were spread over the distributed hardware
resources in the pursuing design space exploration process. Accordingly, we want to
obtain a more suitable task set by merging function nodes to build tasks.

The approach taken by Simulink Embedded Coder is to put all blocks with the same
sample time into one task. These are not only blocks of the same synchronous set
but also of independent sets sharing the same sample time, which may lead to tasks
with very large weights. For simulation purposes this might be useful because all those
blocks are executed in the same simulation step, execution times are neglected, and
parallel execution is not regarded at all. But for the execution on a distributed system,
this strategy precludes any of these blocks from being executed concurrently, which
increases the risk of deadline violations. Nevertheless, nodes of the same synchronous
set are still good candidates to be executed in the same task [23]. But due to the
possibly high variety of the number and weights of nodes in synchronous sets, not all
sets would necessarily result in useful tasks. For example, we do not want to allow
arbitrary large task weights because those tasks may be either not executable on some
ECUs, or they would reduce the number of possible schedules due to large blocking
times. On the other hand, tasks should not be too lightweight, because the sum of task
switching times would increase and waste a significant amount of ECU capacity leading
to thrashing. This is an effect describing that the processor consumes more time for
task switching than for task executions. From the perspective of the design space
exploration, it is desirable to have tasks with balanced weights. This would reduce the

141

5. Task Creation

impact of computational density of tasks, and the decision where to allocate a task
would be more driven by the actual optimization criteria.

Another important issue for task creation is the communication between tasks, which
may get very expensive if tasks are mapped to different ECUs and a bus has to be
used. A bus is not only comparably slow, but also often the bottleneck of such systems
and can hardly be upgraded. Hence, another objective for task creation should be to
minimize communication between tasks to relieve the bus. In summary, to find an
appropriate task set, communication density between tasks should be minimized and
the weights of tasks should be balanced to avoid thrashing and excessively heavy tasks.

To achieve all of this, we introduce a metric called cohesion, where nodes are at-
tracted by a high communication density and repulsed by high node weights. To
describe communication density, we define also channel weights. They are determined
by the amount of data that is transfered over a channel, the period describing how
often a message is sent, and the maximum bandwidth of all available buses. Here
again, we assume an optimal allocation by considering the fastest bus with the great-
est bandwidth to calculate channel weights.

While minimizing the cohesion metric is the optimization goal for task creation,
the user has the opportunity to guide the process by setting parameters and adding
constraints. First, there are weight factors to rate the two aspects that influence the
cohesion function i.e., the balancing of node weights and the reduction of communi-
cation density between nodes. This enables the user to set the focus on one of these
aspects, or even ignore one aspect by setting the respective factor to zero. In addition,
constraints are defined for the cohesion function in terms of a maximum task weight
and a minimum number of tasks. These constraints may be used to restrict the set of
possible solutions and are guaranteed to be respected by the task creation process if
they are not already violated by the initial function network. This is because nodes are
not split and thus initial weights cannot be reduced and the initial number of nodes
may only become smaller. A further parameter, which is determined implicitly, is the
desired task weight. It is calculated from the minimum number of tasks and the sum
of initial node weights. It defines the expectation value for the weight balancing part
of the cohesion function.

Furthermore, we want to support a feature where the user has the possibility to
define partitioning constraints, which allows to force or forbid that two nodes are in
the same task partition. Constraints that forbid merging of nodes are called prohibitive
and those forcing nodes to be merged are called commanding constraints. Prohibitive
constraints are initially satisfied and can be easily respected during task creation by
avoiding the respective merging operations. Commanding constraints, on the other
hand, are constructive constraints and the start partition does not already satisfy
them. To consider those constructive constraints, we introduce an intermediate step
before starting task creation by merging all nodes that are forced to be in the same
partition due to commanding constraints.

Applications for such constraints are manifold. A typical scenario would be a set of
blocks that belong to a specific function in the specification model and the user wants
them to be in the same task. Referring to Simulink, this might be nodes originating
from blocks of the same subsystem. By this means, the user is able to specify the atomic

142

granularity of function nodes for task creation. Hence, this process is strongly user-
guided and allows to express expert knowledge in terms of parameters and constraints.
The constraints proposed in this work can be considered as an initial set of constraints
that is expandable if necessary to express further system requirements.

Based on the cohesion metric and the set of constraints, we can now tackle the
question of how the partitioning of function nodes into a set of tasks is performed.
Here, we propose a two-step heuristic approach, where the start partitioning assigns
each function node to an own partition. First, an initial algorithm iteratively merges
whole partitions of function nodes until no improvement can be found anymore. As a
second step, a combination of the Kernighan-Lin (KL) [43] and Fiduccia/Mattheyses
(FM) [32] algorithms is used. It exchanges and moves nodes between partitions to
further reduce cohesion. We investigated several algorithms and have chosen a modified
combination of KL and FM because it offers the best trade-off between runtime and
sub-optimality of results. More details on this can be found in Section 5.3.

The task creation algorithm finishes with a result that is a partitioning of function
nodes into sets where all nodes of one set should be merged to a task. This merging
is realized by defining appropriate operations for function networks that replace a
part of the function network, which we denote as component, by another one with
the same interface. The interface is defined by the ports that connect the nodes
within the component with nodes outside. Beside the actual merging of two function
nodes, we define an operation to eliminate self-activations, which arise when merging
succeeding function nodes. This operation concatenates two succeeding transitions
that are executed within a self-activation to a single transition. A third operation
eliminates local data nodes that are data nodes exclusively connected to one function
node. This may also be a consequence of merging operations.

f2

f1

c1

c1

c3

c4

c2

c5

c2

c4

c5

e1

e2

e1

e2

f1+2

1

23

23

1

Figure 5.1.: Task Creation Example for a Task Chain

For all these operations we need to prove - as for the Simulink translation - that the
semantics of the initial function network and thus the specification model is preserved.
For a Simulink model, the partial order of signal updates occurring due to block

143

5. Task Creation

executions needs to be preserved. In the translated function network, each event
corresponds to a signal update. This means for task creation that causality of all
interface events must be preserved. Thus, if an input interface event e1 of a component
leads to an output interface event e2, this causal dependency must still hold after each
task creation operation. Concerning timing, we can only show that the delay between
interface events is unaffected or becomes smaller. A complete timing analysis can first
be done after the design space exploration phase, when tasks have been mapped to
processors. Thus, we cannot validate the deadlines of Simulink in this process phase.

In Figure 5.1, we pick up the example from the introduction of Chapter 3, where
a chain of two tasks is depicted that should be merged. In contrast to the previous
consideration, we now use function networks for modeling instead of classic task net-
works. Thus, we have input and output ports and an internal transition system for
nodes. Here, internal transitions are represented as arrows within a node. On the
left, the starting situation is depicted where the rectangular box indicates the compo-
nent that should be replaced by the merging operation. Node f1 has one transition
leading to events on channels c2 and c3 if an event e1 has occurred on c1. Node f2

has two transitions, one for each input port, each leading to an event at its output
port connected to channel c5. On the right, the result after merging f1 and f2 and
removing the self-activation is depicted. First, all input and output ports are main-
tained except the ports that connected f1 and f2. This connection is now represented
as the concatenation of the respective transitions, which are here transitions 1 and 2.
Accordingly, the channel that connected f1 and f2 is removed, which is here c3. But
still the causality of interface events is maintained, where we take here the events e1

and e2 as example. On the left, an event e1 leads to an execution of transition 1 and
thus an event on c3. This activates f2 with transition 2 leading to an event e2 on
channel c5. On the right, an event e1 triggers a concatenation of the transitions 1 and
2 leading to an output event e2 on channel c5 as well. The delay of the concatenated
transition is the sum of the single transition delays of transitions 1 and 2. This kind
of complex behavior resulting from node merging could not be modeled with classic
task networks, especially when also internal states are considered.

Outline In Section 5.1, we introduce the optimization metric cohesion and define
weights for function nodes and channels. In Section 5.2, we define formal composition
operations that are used to realize merging of nodes in the function network formalism
and prove that they preserve semantics in terms of causality of interface events. The
algorithms that perform the partitioning of function nodes into task sets are presented
in Section 5.3, including the assessment of alternative algorithms.

To evaluate the whole task creation methodology, we apply the approach in Sec-
tion 5.4 to a case study of a driver assistance system model in Simulink. Additionally,
we use benchmarks that imitate typical Simulink structures to also investigate the
scalability of the approach for systems with a higher amount of nodes. In Section 5.5,
we summarize this chapter and discuss related work for the task creation approach.

144

5.1. Cohesion and Weights

5.1. Cohesion and Weights

Task creation partitions the nodes of a function network, and merges all nodes of
a single partition to get a set of tasks. We however do not want to partition only
function nodes but also data nodes, because in the following design space exploration
process also data nodes, such as shared variables and buffers, have to be allocated
on ECUs. For deployment, we can think of a data node as a particular piece of code
implementing the respective data object. Signal data nodes are typically not contained
in a software specification model because they are used to model communication in
a distributed system via a bus. Thus, also the function networks translated from a
Simulink specification do not contain signals as defined in Chapter 4. Instead, signals
will be added in the design space exploration phase to refine the communication delays
due to mapping decisions. Thus, for the partitioning process, communication between
nodes is represented solely by the channels connecting them. Please note, that for a
function network that was derived from a Simulink model, all period multiplier nodes
are excluded from the task creation process. This is because they are not part of the
functional specification but only provide the correct event patterns to the different
synchronous sets. Furthermore, they run at a different period than their successor
nodes and thus must not be involved in a merging operation.

The optimization goal of task creation depends on utilization measures for computa-
tion and communication, which we refer to as node and channel weights. The weight
w(n) of a node n depends on its execution times in terms of transition delays and
its event pattern. Execution times strongly depend on the compiler target. As for
the Simulink translation, we define the delay of a transition as the minimum WCET
among all potential processors of the target architecture. Thus, we assume that each
node will be allocated to its best fitting processor. This allows to determine lower cost
bounds in design space exploration as explained in Chapter 6.

More precisely, the weight of a node is defined as the sum of its port weights. The
weight of a port is the maximum delay of all transitions starting at this port divided
by the ports lower period bound. The period of a port can be retrieved by event
pattern propagation for the class of function networks that we defined in Section 3.4.
The same holds for function networks that were derived from a Simulink specification
model as shown in Chapter 4. In the following, we define how weights of function nodes
are determined. To also be able to obtain weights for data nodes, we consider their
representation as function nodes as it was defined in the translation from extended to
basic function networks in Section 3.2.

Definition 5.1.1 (Node Weight) Let f = (Pin,A,Pout) ∈ F be a function node.
Its weight is defined as follows:

w(f) =
∑

pi∈Pin

(
1

P−i
·maxti,j (δ+(ti,j))

)
, where

δ+(ti,j) is the upper delay bound of the jth transition starting from input port pi and
P−i is the lower period bound of pi. �

145

5. Task Creation

Communication density is defined in terms of weights of channels depending on
their data size, the communication rate, and the maximum bandwidth in bytes/s of
all buses. The data size of a channel is derived from the specification model. For
Simulink, the date size of each channel can be determined by considering the data
type of the respective Simulink signal. Channel weights are defined as follows:

Definition 5.1.2 (Channel Weight) Let c = (pout, δ, pin) be a channel. The com-
munication weight of c is defined as follows:

com(c) =
DataSize(c)

maxBandwidth
· 1

P−c
, where

DataSize(c) is the data size of channel c and P−c is the lower period bound of c and
its ports respectively. �

Formally, task creation partitions the set of function and data nodes denoted as
N = F ∪ D into a task set T = {τ1, ..., τm} where τi = {ni,1,, ni,k}, ni,j ∈ N .
The communication structure of the resulting task set is determined by the set of
channels C(T) between different partitions. The task set shall be chosen such that
communication density is minimized and node weights are balanced. Node balancing is
achieved by minimizing the standard deviation with respect to the desired task weight
leading to preferably merging nodes with low weights. Communication is minimized by
reducing the weight of the set of channels between partitions C(T). For the definition
of cohesion, we introduce weight factors α, β ≥ 0 that are adjusted by user preference
to control the process. Furthermore, we define m− to be the minimum allowed number
of tasks, which also determines the desired task weight w∗. This leads to the following
definition of cohesion.

Definition 5.1.3 (Cohesion) Let fn = (Σ,P, C,Φ,F,D) be a function network with
a set of nodes N = F∪D and T = {τ1, ..., τm} a set of tasks where τi = {ni,1,, ni,k},
ni,j ∈ N . The cohesion function is defined as follows:

cohesion(fn, T) = α · ŵ(T) + β · com(C(T)) , where

ŵ(T) = 1/m ·
√∑m

i=1
(w∗ − w(τi))2 (standard deviation)

w∗ = 1/m− ·
∑

n∈N
w(n) (desired task weight)

w(τi) =

∑
ni,j∈τi

w(ni,j) (weight of task τi)

com(C(T)) =

∑
c∈C(T)

com(c) (sum of communication weights)

�

The partitioning process is intended to allow the user to guide and control the pro-
cess to respect and satisfy his needs. Thus, beside the optimization goal of minimizing
the cohesion function, we define a set of user-controlled constraints restricting the task
creation process. First, additionally to the minimum allowed number of tasks m−,
we introduce a maximum achievable task weight w+, which describes the maximum

146

5.2. Formal Composition Operations and Semantics Preservation

utilization a single task should involve on a processor. The intention is to avoid creat-
ing tasks with too heavy weights, which might be hard to deploy on already utilized
processors. The respective opposites, which are a maximum number of tasks and a
minimum task weight, cannot be usefully considered because they might be incom-
patible with w+ and m− possibly leading to an empty set of solutions. Furthermore,
the process strives for balancing task weights anyway leading to an increase of the
minimum task weight and decrease of the number of tasks. Thus, the process needs
to be restricted to not creating too heavy and too few tasks and not the opposite.
In practice, the choice of all parameters α, β, m− and w+ will highly depend on the
respective application and the expert knowledge of the user.

As a second means to influence the task creation process, we define further con-
straints named partitioning constraints, where we distinguish between prohibitive and
commanding constraints. Prohibitive constraints forbid the merging of two nodes n1

and n2 written as proh(n1, n2). Commanding constraints demand the merging of two
nodes written as command(n1, n2). Such constraints may be either defined manually
by the user or derived from the specification model. As an example, one may ob-
tain commanding constraints from the hierarchical structure of a Simulink model by
claiming that all blocks of a specific subsystem should be merged to one task.

5.2. Formal Composition Operations and Semantics
Preservation

When performing task creation, it is not sufficient to partition function nodes into sets
that are meant to represent each a task because the semantics of the model remains
the same. What task creation actually means is that a set of function nodes should be
executed as one task. Thus, function node transitions within a single partition must
not be executed concurrently because a task is mapped to one computation resource.
Please note, that we assume single core processors for this work.

To represent this behavior also in the formal model, we merge all nodes of a task
partition into one function node. Due to semantics of function nodes, this implies
that there is only one transition of a merged node active at the same time. Hence,
task creation can be regarded as a design decision in terms of a refinement step that
reduces the concurrent execution of certain function node transitions. Thus, it changes
semantics of the function network model. Nevertheless, we have to preserve certain
semantic properties to respect the intended specification semantics. This has been
shown for the translation of a Simulink specification model into a function network by
considering the partial order of events and Simulink signal updates. While maintaining
the partial order is sufficient to represent the semantics of the Simulink model, this is
not the case for function networks in general. As already pointed out in Section 3.3,
we exploit a more expressive formalism to capture function network semantics, which
are causality patterns. Thus, we claim for task creation that semantics needs to be
preserved in terms of causality from input to output events of a component interface.
This might induce that intermediate events may not be observable anymore. But the

147

5. Task Creation

partial order of all remaining signal updates is preserved and thus the same input
values still lead to the same outputs. Timing constraints of Simulink are considered
for task creation in terms of end-to-end deadlines as they were defined in Chapter 4.
Due to a missing allocation of tasks to processors, we cannot verify deadlines in task
creation but only after design space exploration.

We define three operations for task creation starting with the actual merging of two
function nodes into one. This operation is mandatory for task creation because it
ensures that transitions are not executed concurrently anymore. The next operations
are optional in the sense that they are not needed to perform a valid task creation.
First, we define the elimination of local data nodes. This means that a data node
that is exclusively connected to a single function node may be removed under specific
conditions. A local data node is not shared by two or more processes and thus can be
considered as local memory. Hence, the time delay to read the data is already included
in the execution time of the function node. Furthermore, this operation reduces the
complexity of the model by removing a node. Second, we define an operation to
eliminate self-activations, which are self-loops from a function node output port to
one of its input ports activating the node again. This is a typical result when merging
two function nodes that were connected by an activation channel or a signal data
node. Under specific conditions, this self-loop may be removed by concatenating the
transitions that are executed sequentially during this loop to one transition. This
leads to less task activations and thus also to less task switching because the task is
not activated two times one after another. The delay of a concatenated transition
is determined as the sum of the single transitions meaning that also the respective
code segments are sequentialized. Potentially, this also leads to positive cache effects
because the data for the second transition may be still cached. But due to the fact that
we use approximate execution times in this process step anyway, the sum of delays is
still a sufficient approximation.

The operations are defined with the help of a component concept where a component
is a part of a function network with a well-defined interface of ports to the remaining
network. Each operation replaces one component by another one with the same inter-
face. For semantic correctness of an operation, we claim that the causality of interface
events has to be maintained. This means that each causal dependency from input
interface events to output interface events that is valid for the original component has
to be also valid after the operation. Additionally, we need to ensure that the result
is still a valid function network after Def. 3.2.1. In particular, this means that the
transition system must be still deterministic and complete. A further property we
would like to preserve is state-independence. As discussed in Section 3.4, this is the
main property of the class of function networks where boundedness is decidable. If we
can show that this property is preserved by task creation, we know that boundedness
remains decidable as well. The other characteristics of the class of function networks
are periodic event sources, which are not affected by task creation at all.

We will now define the different formal composition operations to perform task
creation starting with the merging of nodes.

148

5.2. Formal Composition Operations and Semantics Preservation

5.2.1. Merging nodes

When two function nodes are merged, this involves a restructuring of the function
network by replacing a component of two function nodes f1 and f2 by a component
with one function node f1+2 with the same interface. To realize this, each the sets of
input ports and output ports of f1 and f2 are unified. The transition system T1+2 of
f1+2 is obtained by building the interleaving composition ‖ of the transition systems
T1 and T2 of f1 and f2, respectively. We denote the states of the resulting transition
system as the combination of the respective states of the original transition systems
i.e. a state s1s2 of T1+2 results from the combination of the states s1 from T1 and s2

from T2. Due to the fact that two transition systems of two function nodes always have
different alphabets in terms of different input and output port events, the interleaving
composition can be simply defined as follows:

Definition 5.2.1 (Interleaving Composition of Transition Systems) Let A1 =
(S1, s01, T1) and A2 = (S2, s02, T2) be two transition systems. Their interleaving com-
position is defined as follows:

A1 ‖ A2 = (S1+2, s01s02, T
′
1 ∪ T ′2) where

• S1+2 = {s1s2 | s1 ∈ S1, s2 ∈ S2}

• T ′1 = {(pin, E, s1s2 → Ψ, s′1s2) | (pin, E, s1 → Ψ, s′1) ∈ T1, s2 ∈ S2}

• T ′2 = {(pin, E, s1s2 → Ψ, s1s
′
2) | (pin, E, s2 → Ψ, s′2) ∈ T2, s1 ∈ S1}

�

The node merging operation uses the interleaving composition to build the transition
system of the new function node. The set of interface events, for which causality needs
to be preserved, is the union of all input and output port events of both merged
function nodes. Node merging is defined as follows:

Definition 5.2.2 (Node Merging) Let fn = (Σ,P, C,Φ,F,D) be a function net-
work and f1 = (Pin1 ,A1,Pout1) ∈ F and f2 = (Pin2 ,A2,Pout2) ∈ F be two function
nodes. The merge operation is defined as follows:

merge(fn, f1, f2) = (Σ,P, (F \ {f1, f2}) ∪ {f1+2},Φ,D, C),
where f1+2 = (Pin1 ∪ Pin2 ,A1 ‖ A2,Pout1 ∪ Pout2)

The set of interface events is defined as Σmerge =
⋃

p∈Pin
1 ∪Pin

2 ∪Pout
1 ∪Pout

2

Σ(p).

�

Please note, that the merging operation is associative because both the joining
of ports and the interleaving composition of transition systems is associative. This
becomes important for the application of this operation in the task creation algorithm.

When merging two function nodes, we create a new function network and thus have
to assure that it is still valid concerning the properties we claimed in the function

149

5. Task Creation

f1 f21

2

3

4

5

6

d1

d2

f1+21

2

3

4
5

6

d1

d2

Figure 5.2.: Merging Function Nodes

network definition. The merge operation replaces one function node by another one
by combining their transition system by interleaving composition. Thus, we need to
show that this transition function is still a valid function. This means that there must
exist exactly one transition for each combination of input events and internal state,
which is shown in the following theorem.

Theorem 5.2.1 (Node Merging - Valid Transition System) Let fn = (Σ,P, C,
Φ,F,D) be a function network with two function nodes f1 = (Pin1 ,A1,Pout1) ∈ F with
A1 = (S1, s01, T1) and f2 = (Pin2 ,A2,Pout2) ∈ F with A2 = (S2, s02, T2). Let further be
fn ′ = merge(fn, f1, f2) = (Σ,P, (F\{f1, f2})∪{f1+2},Φ,D, C) be the function network
after merging where f1+2 = (Pin1+2,A1+2,Pout1+2) ∈ F ′ with A1+2 = (S1+2, s01+2, T1+2).
Then it holds that T1+2 is a function i.e., it is deterministic and complete.

Proof: For each transition t ∈ T1, a transition in T1+2 is created for each state
s2 ∈ S2. We know that in T1 a transition exists for each state and each combination
of input events at each input port. By duplicating each transition for each state s2, we
also have a transition for each state in T1+2 . The same holds for transitions t ∈ T2.

�

The semantic consequences of merging two function nodes f1 and f2 is that f1

and f2 are now executed on the same scheduling resource i.e., transitions of f1 and
f2 cannot be executed concurrently anymore. But even though we change function
network behavior by this operation, causality is still preserved for the interface events.
This is because all events, ports, channels and data nodes are maintained as well as the
transition systems of the original function nodes. Concerning timing, node merging
may enlarge the delay between the arrival of an event at an input port and the emitted
output event, because transitions that could be executed concurrently before cannot
be executed concurrently after merging. Thus, the wait delay in the activation buffer
may enlarge. Because computational weights of function nodes are the sum of their
port weights, and all ports are maintained including their transitions, the weight of
f1+2 is the sum of the single weights of f1 and f2 as claimed in the weight calculation.

In Figure 5.2 on the left, a component of a function network with two function nodes
f1 and f2 is depicted where f1 triggers f2 via a signal data node d1, and two activation

150

5.2. Formal Composition Operations and Semantics Preservation

channels. Furthermore, there are read and activation channels to a shared data node
d2. The set of interface events is the set of all events that belong to ports on the
edge of the component. The same function network part after merging f1 and f2 is
depicted on the right of Figure 5.2. The activation path is now a self-activation i.e.,
f1+2 activates itself at a different input port via the signal data node d1. The shared
data node d2 remains unaffected and the read channel moves with its target port to
the new created function node f1+2.

In the next theorem, we prove that the node merging operation preserves causality
from its input to its output interface events. Causal dependencies for function nodes
are determined in terms of transitions of the internal transition system. Thus, we
consider each transition of f1 and f2 and show that the causal dependency it induces
also holds for f1+2. However, we have to regard that the set of states has changed by
building the parallel product of both state sets. Thus, if a causal dependency starts
in a state s1 ∈ S1 of f1, this causal dependency has to hold for all states s1s2 of f1+2

where s2 ∈ S2 is any state from f2.

Theorem 5.2.2 (Node Merging - Preserving Causality) Let fn = (Σ,P, C,Φ,
F,D) be a function network with two function nodes f1 = (Pin1 ,A1,Pout1) ∈ F with
A1 = (S1, s01, T1) and f2 = (Pin2 ,A2,Pout2) ∈ F with A2 = (S2, s02, T2). Let further
fn ′ = merge(fn, f1, f2) = (Σ,P, (F\{f1, f2})∪{f1+2},Φ,D, C) be the function network
after merging where f1+2 = (Pin1+2,A1+2,Pout1+2) ∈ F ′ with A1+2 = (S1+2, s01+2, T1+2).

1. If there exists a causal dependency between input and output events of f1 in
fn due to a transition t1 = (pin, {i1, ..., in}, s1 → {...., (pout, o, δ), ...}, s′1) ∈ T1

(Theorem 3.3.4), then this causal dependency also exists in f1+2 in fn ′ with
respect to the state set of f1+2 and its start event startf1+2 i.e.

(1) (pin.(i1, ..., in), startf1)[statef1 = s1]
δ−→ pout.o[statef1 = s′1]

with i1, ..., in, o ∈ Σ, s1, s
′
1 ∈ S1

=⇒ (2) ∀s2 ∈ S2 :

(pin.(i1, ..., in), startf1+2
)[statef1+2

= s1s2]
δ−→ pout.o[statef1+2

= s′1s2]

with i1, ..., in, o ∈ Σ′, s1s2, s
′
1s2 ∈ S1+2

Proof: From (1) we know that there exists a transition t1 = (pin, (i1, ..., in), s1 →
{...., (pout, o, δ), ...}, s′1) ∈ T1. Following Def. 5.2.2, in the merging operation
the transition system of f1+2 is determined by the interleaving composition as
defined in Def. 5.2.1. Thus, for each s2 ∈ S2 there exists a transition t′1 =
(pin, (i1, ..., in), s1s2 → {...., (pout, o, δ), ...}, s′1s2) ∈ T1+2. With Theorem 3.3.4
follows immediately that (2) has to hold.

�

151

5. Task Creation

2. If there exists a causal dependency between input and output events of f2 in fn,
then this causal dependency also exists in fn ′ i.e.

(pin.(i1, ..., in), startf2)[statef2 = s2]
δ−→ pout.o[statef2 = s′2]

with i1, ..., in, o ∈ Σ, s2, s
′
2 ∈ S2

=⇒ ∀s1 ∈ S1 :

(pin.(i1, ..., in), startf1+2
)[statef1+2

= s1s2]
δ−→ pout.o[statef1+2

= s1s
′
2]

with i1, ..., in, o ∈ Σ′, s1s2, s1s
′
2 ∈ S1+2

Proof: This proof works in the same way as the first one.

�

To preserve the decidability of boundedness for periodic state-independent function
networks, it is necessary that the function network is still in this class after two nodes
have been merged. The property of state-independence is defined for output ports.
Thus, if we know that each output port stays state-independent also the function node
resulting from the merging is state-independent. We show in the next theorem that
state-independence is preserved by the operation of merging nodes.

Theorem 5.2.3 (Node Merging - State-Independence) Let fn = (Σ,P, C,Φ,F,
D) be a function network with two function nodes f1 = (Pin1 ,A1,Pout1) ∈ F with
A1 = (S1, s01, T1) and f2 = (Pin2 ,A2,Pout2) ∈ F with A2 = (S2, s02, T2). Let further
fn ′ = merge(fn, f1, f2) = (Σ,P, (F\{f1, f2})∪{f1+2},Φ,D, C) be the function network
after the merging operation where f1+2 = (Pin1+2,A1+2,Pout1+2) ∈ F ′ with A1+2 = (S1+2,
s01+2, T1+2). Let pout ∈ Pout1 ∪ Pout1 be a state-independent output port. Then it also
holds that pout ∈ Pout1+2 is state-independent.

Proof: We show the proof for f1 i.e., pout ∈ Pout1 . The proof for f2 works similar.
From the definition of state-independence (see Def. 3.2.7) we know that if there exists
a transition t = (pini , E, s → {...(pout, b, δ)...}, s′) ∈ T1 from an input port pini with
b ∈ Σ(pout), then there exists such a transition for each set of events E′ ∈ Σact(pini)
i.e.

∀sj ∈ S1, E
′ ∈ Σact(pini) : ∃t′ = (pini , E

′, sj → {...(pout, b′, δj)...}, s′j) ∈ T1

with b′ ∈ Σ(pout)

When merging f1 and f2 after Def. 5.2.2 to a function node f1+2 = (Pin1+2,A1+2,
Pout1+2) ∈ {f1, f2} with A1+2 = (S1+2, s01+2, T1+2), the transition t is represented as
a set of transitions: For each state s2 ∈ S2 there exists a transition (pini , E, s s2 →
{...(pout, b, δ)...}, s′ s2) ∈ T1+2. Now it remains to proof that there exists such a transi-
tion also for each E′ ∈ Σact(pini) and each state of f1+2. This follows again from Def.
5.2.2, because also for each transition t = (pini , E

′, sj → {...(pout, b′, δj)...}, s′j) ∈ T1 a
transition for each state s2 ∈ S2 is created as follows:

(pini , E
′, sjs2 → {...(pout, b′, δj)...}, s′js2) ∈ T1.

�

152

5.2. Formal Composition Operations and Semantics Preservation

We have shown for the merge operation that it preserves causality on its inter-
face events, creates a valid transition system and preserves the property of state-
independence. Furthermore, it should be noted that even if the transition delays
remain the same, the time an activation event spends in the activation buffer may
be enlarged. This is due to the fact that f1+2 has more input ports than each single
node f1 and f2. Thus, the needed capacity of the activation buffer may become larger
and thus also the maximum waiting delay. How a sufficient buffer capacity may be
determined has been discussed in Section 3.3.

5.2.2. Elimination of Local Data Nodes

A data node d is local if it is exclusively connected to a function node f and in the
same task partition as f . When eliminating a data node, also the corresponding read
and activation channels are removed. The transition system of f is modified such that
all events that are used to access the date node are removed from each transition. To
be able to ensure that semantics is preserved correctly by this operation, the function
node execution semantics must not depend on any event that is read from d. Thus, if
there would exist two transitions that define different output behavior only depending
on the occurrence of two different read events r and r′, we cannot remove this data node
without losing causality. Additionally, the transition system would not be deterministic
anymore because there would be two transitions for the same combination of input
events and state. The set of interface events is defined as the set of all input and
output port events, except the read and write events of the removed data node. This
leads to the following definition.

Definition 5.2.3 (Data Node Elimination) Let fn = (Σ,P, C,Φ,F,D) be a func-
tion network, f = (Pin, (S, s0, T), Pout) ∈ F a function node and d ∈ D a data
node with Pin(d) = {pd}, Pout(d) = {p′d}, an incoming activation channel cw =
(pw, δw, pd) ∈ CA with pw ∈ Pout transmitting an event set W = Σ(pw), and an out-
going read channel cr = (p′d, δr, pr) ∈ CR with pr ∈ Pin transmitting an event set
R = Σ(pr).

• Assumption A1: There exist no transitions that describe different behavior only
depending on a read event r ∈ R i.e.

@(p, {i1, ..., in, r}, s→ Ψ1, s
′
1), (p, {i1, ..., in, r′}, s→ Ψ2, s

′
2) ∈ T

with r, r′ ∈ R, r 6= r′ and Ψ1 6= Ψ2 or s′1 6= s′2.

If fn satisfies assumption A1, then data node elimination is defined as:

elimd(fn, f, d) = (Σ′,P ′,F ,Φ,D′, C′), where

• Σ′ = Σ \R, P ′ = P \ {pd, pd′},

• D′ = D \ {d}, C′ = C \ {cr, cw} and

153

5. Task Creation

• f = (Pin, (S, s0, T
′),Pout \ {pw}), T ′ contains all transitions from T where each

event r ∈ R is deleted in E if it contains r i.e.

T ′ = { (pin, E∗, s→ Ψ, s′) |
∃t = (pin, E, s→ Ψ, s′) ∈ T,

E∗ =

{
(i1, ..., in) , if E = (i1, ..., in, r) | r ∈ R
E , else

}

The set of interface events is defined as Σelimd
=

⋃
p∈Pin∪Pout

Σ(p) \ (R ∪W). �

To ensure that the function network resulting from this operation is valid, we have to
show that the transition system is still deterministic and complete. When eliminating
a data node, each transition that depends on a read event is modified such that this
read event is removed. The assumption that there exists no other transition that
is triggered by the same input events but a different read event, ensures that the
transition system is still valid as proven in the following theorem.

Theorem 5.2.4 (Data Node Elimination - Valid Transition System) Let fn=
(Σ,P, C,Φ,F,D) be a function network with a function node f = (Pin,A,Pout) ∈ F
with A = (S, s0 , T) and a data node d ∈ D as defined in Def. 5.2.3 and fn ′ =
elimd(fn, f, d) = (Σ′,P ′,F ,Φ,D′, C′) where f = (Pin, (S, s0, T

′),Pout \ {pw})) ∈ F
be the function network after d has been eliminated. Then it holds that T ′ is a func-
tion i.e., it is deterministic and complete.

Proof: Each transition that is triggered by an event set {i1, ..., in, r} with r ∈ R is
contained also in T ′ while the read event r is removed leading to {i1, ..., in}. Due to
Assumption A1, we know that there is no other transition that is triggered by an event
set {i1, ..., in, r′} containing the same events except a different read event r′ ∈ R with
r′ 6= r. This is the only case that would lead to non-determinism. Thus, we have still
exactly one transition for all combinations of states and event sets. The remaining
transitions stay unchanged. Thus, T ′ is deterministic and complete.

�

With the assumption that the behavior of the function node does not depend on the
read event of the removed data node, the data node elimination operation maintains
the causality of all interface events. All input ports of the function node are obtained
together with all activation events of that node. The transitions of the function node
are maintained as well while the read event r is removed. Thus, the causality between
input and output events of the components interface is still valid. Concerning timing,
the delay between any input and output signal that involves the reading of event r
becomes smaller because the data is now available locally and the time for reading the
event is saved. Thus, any end-to-end deadline that was valid before this operation is
still valid afterwards. In Figure 5.3 on the left, a component is shown with a function
node f and a local data node d that is eliminated on the right. The arrows in the

154

5.2. Formal Composition Operations and Semantics Preservation

f
...

1

2

3
...

d

f...
1 3

...

2

Figure 5.3.: Elimination of Local Data Nodes

function node indicate the affected transitions to show that these are maintained even
if the local data node is removed. The output port where the eliminated data node
was connected to remains but is not connected to any channel now. Thus, the event
is still observable but is not received by any other node.

The next step is to formally show that the data node elimination function preserves
the causality of all interface events as we have claimed before. First, we show this for
all transitions that involve a read event r ∈ R. Thus, all causalities must be preserved
for all events that are part of the interface, which excludes all read events r ∈ R and
write events w ∈W .

Theorem 5.2.5 (Data Node Elimination - Read Causality) Let fn = (Σ,P, C,
Φ,F,D) be a function network with a function node f = (Pin,A,Pout) ∈ F with
A = (S, s0 , T) and a data node d ∈ D as defined in Def. 5.2.3. Let further fn ′ =
elimd(fn, f, d) = (Σ′,P ′,F ,Φ,D′, C′) be the function network after d has been elimi-
nated where f = (Pin, (S′, s0, T

′),Pout \ {pw})) ∈ F .
If there exists a causal dependency between input and output events of f in fn in-

volving a read event r ∈ R caused by a transition

t = (pin, {i1, ..., in, r}, s→ {..., (pout, o, δ), ...}, s′) ∈ T,

then this causal dependency also exists in fn ′ while omitting the read and write events
from R and W i.e.

(pin.(i1, ..., in, r), startf1)[state = s]
δ−→ pout.o[state = s′]

with i1, ..., in, r, o ∈ Σ, s, s′ ∈ S

=⇒ (pin.(i1, ..., in), startf1)[state = s]
δ−→ pout.o[state = s′]

with i1, ..., in, o ∈ Σ′, s, s′ ∈ S

Proof: Following Def. 5.2.3, the transition t is contained as t′ = (pin, {i1, ..., in}, s →
{..., (pout, o, δ), ...}, s′) in T ′ because r ∈ R is a read event. With Theorem 3.3.4 this
immediately leads to the statement to prove.

�

Second, we prove for all transitions that do not contain the read event that causality
is preserved as well.

155

5. Task Creation

Theorem 5.2.6 (Data Node Elimination - Non-Read Causality) Let fn = (Σ,
P, C,Φ,F,D) be a function network with a function node f = (Pin,A,Pout) ∈ F
with A = (S, s0 , T) and a data node d ∈ D as defined in Def. 5.2.3. Let further
fn ′ = elimd(fn, f, d) = (Σ′,P ′,F ,Φ,D′, C′) be the function network after the data
node d has been eliminated where f = (Pin, (S′, s0, T

′),Pout \ {pw})) ∈ F .
If there exists a causal dependency between input and output events of f in fn without

involving a read event r ∈ R caused by a transition

t = (pin, {i1, ..., in}, s→ {..., (pout, o, δ), ...}, s′) ∈ T,

then this causal dependency also exists in fn ′ i.e.

(pin.(i1, ..., in), startf1)[state = s]
δ−→ pout.o[state = s′]

with i1, ..., in, o ∈ Σ, i1, ..., in /∈ R, s ∈ S

=⇒ (pin.(i1, ..., in), startf1)[state = s]
δ]−→ pout.o[state = s′]

with i1, ..., in, o ∈ Σ′, s ∈ S′

Proof: Following Def. 5.2.3, t is also contained in T ′ because i1, ..., in /∈ R are no read
events. With Theorem 3.3.4 this immediately leads to the statement to prove.

�

We have now shown that causality is preserved for transitions with and without read
events. What is interesting beyond the question of causality, is how the data node
elimination influences the timing delays between the affected events. In particular,
we claimed before that this operation reduces the delay until the function node is
activated. Referring to the translation of read channels into basic function networks,
there is a specific function node for each input port with read channels that requests
the data from the involved data nodes. The delay induced by a reading process is saved
and instead the function node may be activated immediately if there are no other read
dependencies and no other execution is active. In particular, we are interested in the
delay from the time where all events needed for an activation are available to the time
where the function node execution starts. Due to Def. 3.2.3, we denote events which
activate the function node as a1, ..., am and events that are read from data nodes as
r′1, ..., r

′
n. In Figure 5.4, the translation of read channels and data nodes is shown on

the left, and the induced delays are annotated on the right.
The first delay, we consider, is the delay of the activation channel caj = (p∗j , δaj , p)

leading to input port p of function node f . According to Def. 3.2.3, an activation
channel is translated to a function node if its delay δaj is greater than zero. Thus,
in addition to δaj there may also occur a wait delay at this function node, which we
denote as waitstartaj

. Accordingly, the wait delay for a function node resulting from a

read channel cri = (poutdi
, δri , p) from a data node di is denoted as waitstartri , and the

wait delay of di itself as waitdi . The wait delay of the function node fp that represents
the input port p is denoted as waitstartfp . The transition delay of fp was defined in

Def. 3.2.3 to be [ε, ε].

156

5.2. Formal Composition Operations and Semantics Preservation

f'

...

...

f'

fd1
fdnfp

...

...a1 am

r1 rn

r'1 r'nama1

Figure 5.4.: Left: Translation of Read Channels into Basic Function Network
Right: Delays of Reading Data Nodes

Theorem 5.2.7 (Delay for Reading from Data Nodes) Let p be an input port
of a function node f with a non-empty set of incoming read channels CRp = {cr1 , ..., crn}
where each cri = (poutdi

, δri , p) ∈ CRp with i ∈ {1, ..., n} reads data from a data node

di ∈ Dshared ∪ Dfifo and a set of activation channels CAp = {ca1 , ..., cam} with caj =

(p∗j , δaj , p) ∈ CAp and j ∈ {1, ...,m}. Then the following causal dependency holds:

{p∗1.a1, ...,p
∗
1.am}

delay−−−→ {p.a1, ..., p.am, p.r
′
1, ..., p.r

′
n}

where aj ∈ Σ(p∗j), r
′
i ∈ Σ(poutdi),

delay = max
j

(waitstartaj
+ δaj) + waitstartfp + [ε, ε]

+ max
i

(waitstartri + δri + waitstartdi + δdi)

Proof:

1. From Def. 3.2.3 case 3.(b), Theorem 3.3.3 and Corollary 3.3.6 it follows

{p∗1.a1, ..., p
∗
1.am}

max
j

(waitstartaj
+δaj

)

−−−−−−−−−−−−−−→ p′.(a1, ..., am)

2. From Def. 3.2.3 case 3.(c) and Corollary 3.3.1 it follows that it holds:

p′.(a1, ..., am)
waitstartfp

+[ε,ε]

−−−−−−−−−−−→ {poutr1 .r1, ..., p
out
rn .rn, p

out
a1 .a1, ..., p

out
am .am}

3. For each read channel cri leading to a data node di it holds:

a) For read channel cri we know from Def. 3.2.3 case 3.(d)i.:

∀i : poutri .ri
waitstartri

+δri−−−−−−−−−−→ prdi .ri

157

5. Task Creation

b) For data node di we know from Corollary 3.3.3 (Shared) and Corollary
3.3.4 (FIFO) that:

prdi .ri
waitstartdi

+δdi−−−−−−−−−−→ poutdi .r
′
i, r

′
i ∈ Σ(pindi)

c) For the outgoing channel from data node di we from Def. 3.2.3 case 3.(d)ii.:

poutdi .r
′
i

[0,0]−−−→ p.r′i

4. From Def. 3.2.3 case 3.(e) and Theorem 3.3.1 it follows:

∀j ∈ {1, ...,m} : poutaj .aj
[0,0]−−−→ p.aj

5. 1. to 4. lead together by transitivity to

{p∗1.a1, ..., p
∗
1.am}

delay−−−→ {p.a1, ..., p.am, p.r
′
1, ..., p.r

′
n}

where delay = max
j

(waitstartaj
+ δaj) + waitstartfp + [ε, ε]

+ max
i

(waitstartri + δri + waitstartdi + δdi)

�

If a data node di is removed but there are still other data nodes, this only reduces
the overall delay if all other read delays are smaller. This would reduce the term
max
i

(waitstartri + δri +waitstartdi + δdi). If the removed data node was the only node

where f reads from, there is no extra function node fp needed for port p and the delay
reduces to the delay of the activation channels leading to

{p∗1.a1, ...,p
∗
1.am}

delay′−−−−→ {p.a1, ..., p.am}
where aj ∈ Σ(p∗j), delay

′ = max
j

(waitstartaj
+ δaj).

Thus, the execution and waiting delay for the date node is saved as well as the delay
of the read channel and the delays of the additional function node fp.

As the last proof for the elimination of local data nodes, we show that the property
of state-independence is preserved and thus boundedness remains decidable.

Theorem 5.2.8 (Data Node Elimination - State-Independence) Let fn = (Σ,
P, C,Φ,F,D) be a function network with a function node f = (Pin,A,Pout) ∈ F
with A = (S, s0 , T) and a data node d ∈ D as defined in Def. 5.2.3. Let further
fn ′ = elimd(fn, f, d) = (Σ′,P ′,F ,Φ,D′, C′) be the function network after the data node
d has been eliminated where f = (Pin, (S, s0, T

′),Pout \ {pw})) ∈ F . If pout ∈ Pout is
state-independent before the operation, it is still state-independent afterwards.

Proof: Each transition t ∈ T that leads to pout is also contained in T ′ while the
event tuple may be changed if it contains a read event r ∈ R. This has no influence
on the property of state-independence because no transition has been deleted and the
output specifications are maintained.

�

158

5.2. Formal Composition Operations and Semantics Preservation

We have shown that the elimination of local data nodes preserves causality under the
assumption that read events do not influence the causality induced by the transition
system. This is always the case for a function network originating from a Simulink
model. In the translation defined in Section 4.2, data nodes are defined for outgo-
ing signals of Moore-sequential blocks closing non-algebraic loops, and for data store
memory blocks. In the first case, there is only one event that may be read from or
written into a local data node. Thus, the transition system behavior cannot depend
on different read events, because we abstract from the concrete signal value here. For
a data store memory block b this also holds because we assume that there is only one
data store write block bw writing to b. Hence, the elimination of local data nodes may
always be applied for those data nodes.

5.2.3. Elimination of Self-Activations

Self-activations are self-loops of a function node f either via a signal data node or a
direct activation channel. They particularly arise when two function nodes with an
activation dependency are merged. Thus, their elimination is a typical continuation
of the node merging operation. As a consequence of eliminating self-activations the
involved channels are removed including the respective ports and events. If a signal is
part of the self-loop it is removed if it is not accessed by other function nodes.

To be able to apply this operation without violating causality of events, the input
port of the self-activation loop must not have any other incoming channels from other
nodes. Otherwise, we could not remove the input port due to the synchronization
with other channels. This also holds for read channels. Thus, the elimination of local
data nodes should be applied before removing self-activations. A further necessary
condition to eliminate a self-activation containing a data node d is that d must not
have both incoming and outgoing channels to other function nodes than f . In this case,
it would not be possible to remove the self-activation without affecting activations from
or to other nodes.

Before defining the operation for eliminating self-activations, we define some help
functions. The first one adds an output delay to a given set of output specifications of
a transition. An output specification is a tuple of a port, an event and a delay interval.

Definition 5.2.4 (Output Delay Addition) Let ψ = {(p′1, e′1, δ1), ..., (p′n, e
′
n, δn)}

with δi = [δ−i , δ
+
i] be a set of output specifications, and δ = [δ−, δ+] a delay interval.

Output delay addition is defined as:

δadd(Ψ, δ) = {(p′1, e′1, δ1 + δ), ..., (p′n, e
′
n, δn + δ)},

where δi + δ = [δ−i + δ−, δ+
i + δ+]

�

Next, we define how a transition system changes when a self-activation via an output
port pw and an input port pa is eliminated. For each transition that does not contain
one of these two ports nothing changes. But all pairs of transitions that would execute

159

5. Task Creation

successively in the case of a self-activation need to be concatenated. This means,
that the left part of the first transition, consisting of the input port, input event, and
origin state, becomes also the left part for the concatenated transition. The right
part is determined by the target state of the second transition, and the unified set of
output specifications, where the delay of output specifications containing output port
pw is added to each output specification of the second transition. All other output
specifications remain unchanged.

Definition 5.2.5 (Self-Transition Concatenation) Let T be a transition system,
pa be an input port and pw an output port of a self-activation. Let further keeppa and
keeppw be boolean flags that indicate whether pa or pw are maintained or not. The
Self-Transition Concatenation operation is defined as:

concat(T, pa, pw, keeppa , keeppw) = T ′, where

1. ∀t = (p,E, s → Ψ, s′) ∈ T | (p 6= pa ∨ keeppa) ∧ @ψ = (pw, w, δ) ∈ Ψ : t ∈ T ′

2. For each pair of transitions

• t1 = (p1, E1, s1s2 → Ψ1, s
′
1s2) ∈ T where ∃ψ = (pw, w, δ1) ∈ Ψ1, and

• t2 = (pa, E2, s
′
1s2 → Ψ2, s

′
1s
′
2) ∈ T :

∃t1+2 ∈ T ′ | t1+2 =

{
(p1, E1, s1s2 → Ψ1 ∪ δadd(Ψ2, δ1), s′1s

′
2) , if keeppw

(p1, E1, s1s2 → Ψ1 \ ψw ∪ δadd(Ψ2, δ1), s′1s
′
2) , else

�

Elimination of self-activations is defined for a function node f if it activates itself
either via a signal data node d or a direct channel. Self-activation is resolved by
replacing it by a set of concatenated transitions. This means that succeeding executions
of the self-activation are merged into one using the previously defined functions. There
are two assumptions that need to be satisfied to remove self-activations. First, the
involved input port must not have any other incoming channels. Second, the state of
the erstwhile function f2 must not be changed between two concatenated transitions
by another transition starting at another input port. This is satisfied, for example, if
the original function nodes f1 and f2 each have only one input port. In this case, the
respective state can only be changed by this port, which also must be the port of the
self-activation. If we consider the Simulink translation from Section 4.2, the second
assumption always holds because each function node originating from an ordinary
block has one input port where all input channels are synchronized. The operation to
eliminate self-activations is defined as follows:

Definition 5.2.6 (Self-Activation Elimination) Let fn = (Σ,P, C,Φ,F,D) be a
function network after the merging operation of two nodes f1 and f2 to f with f = (Pin,
A,Pout) ∈ F with A = (S, s0 , T). Let there further be a self loop leading from an
output port pw ∈ Pout sending the event set W to an input port pa ∈ Pin receiving the
event set A. If f fulfills the following assumptions

160

5.2. Formal Composition Operations and Semantics Preservation

• A1: pa has exactly one incoming channel namely the channel of the self loop

• A2: There exists no transition of f that starts at another port than pa and
changes the state of the (erstwhile) function node f2 i.e.

@t = (p,E, s1s2 → Ψ, s1s
′
2) ∈ T with p 6= pa, s

′
2 6= s2

then the self-activation elimination is defined as follows:

elima(fn, f, pw, pa) = (Σ′,P ′,F ′,Φ,D′, C′)

where we distinguish the following cases:

1. If the self loop only consists of a direct channel c = (pw, δc, pa) then

• Σ′ = Σ \ (W ∪A), P ′ = P \ {pa, pw}, D′ = D, C′ = C \ {c},
• F ′ = F \ {f} ∪ {f ′} with

f ′ = (Pin \ {pa}, (S, s0, concat(T, pa, pw, false, false)),Pout \ {pw})

The set of interface events is defined as Σelima
=

⋃
p∈Pin∪Pout

Σ(p) \ (W ∪A).

2. If the self loop involves a signal data node d ∈ Dsignal that has an incoming
activation channel cw = (pw, δw, pd) ∈ CA with pd ∈ Pin(d) transmitting an
event set W and an outgoing activation channel ca = (pd′ , δa, pa) ∈ CA to f
transmitting an event set A, we get the following cases:

a) If d has no other channels than cw and ca, then

• Σ′ = Σ\(W∪A), P ′ = P\{pd, pd′ , pa, pw}, D′ = D\d, C′ = C\{cw, ca},
• F ′ = F \ {f} ∪ {f ′} with

f ′ = (Pin \ {pa}, (S, s0, concat(T, pa, pw, false, false)),Pout \ {pw})

The set of interface events is defined as Σelima =
⋃

p∈Pin∪Pout

Σ(p)\(W ∪A).

b) If d has an additional activation channel to another or the same function
node, then

• Σ′ = Σ \A, P ′ = P \ {pd′ , pa}, D′ = D, C′ = C \ ca,

• F ′ = F \ {f} ∪ {f ′} with

f ′ = (Pin \ {pa}, (S, s0, concat(T, pa, pw, false, true)),Pout)

• d = (Pind , δ,Poutd \ {pd′})
The set of interface events is defined as Σelima =

⋃
p∈Pin∪Pout

Σ(p) \A.

161

5. Task Creation

c) If d has an additional activation channel from another or the same function
node, then

• Σ′ = Σ \W , P ′ = P \ {pd, pw}, D′ = D, C′ = C \ {cw},
• F ′ = F \ {f} ∪ {f ′} with

f ′ = (Pin, (S, s0, concat(T, pa, pw, true, false)),Pout \ {pw})

• d = (Pind \ {pd}, δ,Poutd)

The set of interface events is defined as Σelima
=

⋃
p∈Pin∪Pout

Σ(p) \W . �

Also for this operation, we need to show that the transition system of the resulting
function node is deterministic and complete to guarantee a valid function network. To
show this, we consider the function of self-transition concatenation from Def. 5.2.5.

Theorem 5.2.9 (Self-Activation Elimination - Valid Transition System) Let
T be a transition system, pa be an input port and pw an output port of a self-activation
and let T ′ = concat(T, pa, pw, keeppa , keeppw) be transition system after applying the
self-transition concatenation function. Then it holds that T ′ is a function i.e., it is
deterministic and complete.

Proof: For case 1 of Def. 5.2.5 holds that if keeppa = false (meaning that the input
port pa is removed), all transitions of T that start at a port p 6= pa and do not produce
any events at pw are also contained in T ′. If keeppa = true, then also transitions
that start at pa are maintained as long as also the second condition holds. Thus, all
transitions are maintained correctly except those that write to pw. These transitions
are covered by case 2 of Def. 5.2.5. Here, we consider each transition t1 that leads to
pw and each transition t2 that starts at pa. Independently from keeppw , a transition
t1+2 is created with the same input events and source state as t1, which maintains
completeness and determinism. �

The semantic consequences of eliminating self-activations is the change of causal
event chains that include events w ∈ W and a ∈ A. All these event chains are
shortened by removing a sub-chain from w to a. This is realized by concatenating
the appendant transitions. But even if these events are removed, the causality of the
interface events of the component is still preserved.

This is exemplified in Figure 5.5, where a function node with a self-activation by
a direct activation channel is shown, which corresponds to case 1 of Def. 5.2.6. The
arrows in the function node indicate two transitions t1 and t2 that are executed suc-
cessively. On the right, the situation is shown after the ports 2 and 3 were removed
by eliminating the self-activation. Here, t1 and t2 are concatenated to one transition
denoted as t1+2. But an activation at port 1 still leads to an event at port 4 as on
the left side. What is different, is the fact that both transitions are now executed
as one transition. While on the left, it was possible that another activation occurs
between these transitions, this is not possible on the right anymore. In Figure 5.6, the
same situation is depicted for a self-activation involving a signal data node without
any further channels from or to other function nodes.

162

5.2. Formal Composition Operations and Semantics Preservation

f

...
1

3 2

4
...t1

t2

f'
...

1 4
...

t1+2

Figure 5.5.: Simple Self-Activation with Direct Channel

f

...
1

3 2

4
...t1

t2

f'
...

1 4
...

t1+2

Figure 5.6.: Simple Self-Activation with Local Data Node

Figure 5.7 shows another example, where the involved data node has a further
outgoing activation channel to another function node f2. Thus, the data node is
still existent after self-loop elimination but the channel leading back to f is removed.
Additionally, the output port 2 still exists to activate f2. So, even if t1 and t2 are
concatenated to one transition t1+2, the firing of port 2 is maintained. This keeps the
causality of the interface events leading to f2. Concerning timing, the delay between
any input and output event of the interface either stays the same (if it is not affected
by the self-activation) or is even shortened because the delay of the self-activation
is no longer existent. Furthermore, the number of task switches is reduced because
two activations are now executed as one. In Figure 5.8, a similar situation is shown
where the data node has a further incoming channel from f2. In this case, the incoming
channel to port 3 has to be maintained while the channel starting at port 2 is removed.

f1

...
1

3 2

4
...

f
2

...

t1

t2

f1'
...

1

2

4
...

f
2

...

t1+2

Figure 5.7.: Self-Activation with Data Node with Additional Outgoing Channel

To formally show that elimination of self-activations preserves causality of interface
events, we first state which causal dependencies and delays hold for a self-activation
involving a signal data node connected to an output port pw and an input port pa of

163

5. Task Creation

f1

...
1

3 2

4
...

f
2

...

t1

t2

f1

...
1

3

4
...

f
2

...

t1+2
t2

Figure 5.8.: Self-Activation with Data Node with Additional Incoming Channel

a function node f . We introduce the following notations for the different delays that
occur during a self-activation: δwrite denotes the delay for the channel leading from
the function node to the signal, which writes the data by producing an event. δsignal
denotes the delay of the execution of the signal. δact denotes the delay for the channel
leading from the signal back to the function node to activate it again. These delays
are also annotated in Figure 5.9.

Lemma 5.2.1 (Causality of Signals and Channels) Let fn = (Σ,P, C,Φ,F,D)
be a function network with a function node f = (Pin,A,Pout) ∈ F with A = (S,
s0 , T) that has a self loop from its output port pw ∈ Pout sending an event w to its
input port pa ∈ Pin receiving an event a. Let further be fn ′ = elima(fn, f, d) =
(Σ′,P ′,F ,Φ,D′, C′) be the function network after the self loop has been eliminated.

Then it holds:

∃d = (Pind , δd, dsig ,Poutd) ∈ D ∧
∃cw = (pw, δw, pd), pd ∈ Pind ∧
∃ca = (pd′ , δa, pa), pd′ ∈ Poutd

=⇒ ∀e ∈ Σ(pw) : pw.e
δwrite+δsignal+δact−−−−−−−−−−−−−→ pa.e

where δwrite = waitstartw + δw,

δsignal = waitstartd + δd,

δact = waitstarta + δa

Proof: see Lemma C.1.1 in the appendix on page 231. �

Based on the previous lemma, we will show now which causal relations hold if there
exists a transition t1 producing an event at output port pw leading into a self-loop to
input port pa. This triggers another transition t2, which produces an output event at
output port po. The delay that is induced by the loop depends on whether it contains
a signal data node or not. In Lemma 5.2.1, we have shown the delays for a self-loop
with a signal. For a self loop consisting of a direct channel, the delay can be derived
from Corollary 3.3.6 of the function network chapter. To abstract from the details of
the self loop, we denote its delay as δloop.

164

5.2. Formal Composition Operations and Semantics Preservation

f

... ...t1

t2

Figure 5.9.: Delays for Self-Activation

Additionally, there are delays induced by the involved transitions t1 and t2 and a
delay to wait for the start event before the second transition can be executed, which
is denoted as δstartf .

Lemma 5.2.2 (Causality of Self Loop) Let fn = (Σ,P, C,Φ,F,D) be a function
network with a function node f = (Pin,A,Pout) ∈ F with A = (S, s0 , T) that has a
self loop from its output port pw ∈ Pout sending an event w to its input port pa ∈ Pin
receiving an event a. Let further be fn ′ = elima(fn, f, d) = (Σ′,P ′,F ,Φ,D′, C′) the
function network after the self loop has been eliminated.

Then the following holds:

∃t1 = (p1, in, s→ Ψ1, s
′) ∈ T | ∃ψ1 = (pw, e, δ1) ∈ Ψ1 ∧

∃t2 = (pa, e, s
′ → Ψ2, s

′′) ∈ T | ∃ψ2 = (po, o, δ2) ∈ Ψ2 ∧
(

∃d = (Pind , δd, dsig ,Poutd) ∈ D ∧
∃cw = (pw, δw, pd), pd ∈ Pind ∧
∃ca = (pd′ , δa, pa), pd′ ∈ Poutd (signal self loop)

∨
∃cc = (pw, δc, pa) (channel self loop)

)

=⇒ (p1.(in), startf)[statef = s]
δ1+δloop+δstartf

+δ2
−−−−−−−−−−−−−→ po.o[statef = s′′]

Proof: see Lemma C.1.2 in the appendix on page 232. �

Until now we have shown the causal dependencies that hold for the original function
node. To show semantic preservation of the operation to eliminate self-activations,
we will prove that this causal dependency still holds after this operation has been
performed. We further show that the delay of this relation is reduced by the delay
δloop induced by the loop and the delay δstartf to wait for the start event for the second
transition. This is because both transitions are executed now as one.

165

5. Task Creation

Theorem 5.2.10 (Self Loop Elimination - Loop Causality) Let fn = (Σ,P, C,
Φ,F,D) be a function network with a function node f = (Pin,A,Pout) ∈ F with
A = (S, s0 , T) that has a self loop from its output port pw ∈ Pout sending an event w
to its input port pa ∈ Pin receiving an event a. Let further be fn ′ = elima(fn, f, d) =
(Σ′,P ′,F ,Φ,D′, C′) the function network after the self loop has been eliminated. Then
it holds:

(1) (p1.(i1, ..., in), startf)[statef = s]
δ1+δloop+δstartf

+δ2
−−−−−−−−−−−−−→ po.o[statef = s′′]

with i1, ..., in, o ∈ Σ, s, s′′ ∈ S

=⇒ (2) (p1.(i1, ..., in), startf ′)[statef ′ = s]
δ1+δ2−−−−→ po.o[statef ′ = s′′]

with i1, ..., in, o ∈ Σ′

Proof: As stated in Lemma 5.2.2, there exist two transitions t1 = (p1, in, s→ Ψ1, s
′) ∈

T with in = {i1, ..., in} and ψ1 = (pw, e, δ1) ∈ Ψ1, and t2 = (pa, e, s
′ → Ψ2, s

′′) ∈ T
with ψ2 = (po, o, δ2) ∈ Ψ2 leading to (1). These two transitions are concatenated in
fn ′ after Def. 5.2.5 to a transition

t1+2 =

{
(p1, E1, s1s2 → Ψ1 ∪ δadd(Ψ2, δ1), s′1s

′
2) , if keeppw

(p1, E1, s1s2 → Ψ1 \ ψw ∪ δadd(Ψ2, δ1), s′1s
′
2) , else

where s = s1s2, s
′ = s′1s2 and s′′ = s′1s

′
2. As defined in Def. 5.2.4 with δadd(Ψ2, δ1),

the delay interval δ1 is added to each output event specification ψ2 ∈ Ψ2 leading to an
overall delay of δ1 + δ2. Then with Theorem 3.3.4 it follows

(2) (p1.(i1, ..., in), startf ′)[statef ′ = s]
δ1+δ2−−−−→ po.o[statef ′ = s′′]

with i1, ..., in, o ∈ Σ′.

�

It remains to show that this operation also does not violate any other causalities of
the function node that were not part of the self-activation. To prove this, we need to
consider all cases that were also part of the definition of this operation.

Theorem 5.2.11 (Self Loop Elimination - Non-Loop Causality) Let fn = (Σ,
P, C,Φ,F,D) be a function network with a function node f = (Pin,A,Pout) ∈ F with
A = (S, s0 , T) that has a self loop from its output port pw ∈ Pout sending an event
w to its input port pa ∈ Pin receiving an event a. Let further fn ′ = elima(fn, f, d) =
(Σ′,P ′,F ,Φ,D′, C′) be the function network after the self loop has been eliminated. If
there exists a transition

t = (p,E, s → Ψ, s′) ∈ T | p 6= pa ∨ @ψ = (pw, e
′
w, δw) ∈ Ψ

166

5.2. Formal Composition Operations and Semantics Preservation

that is not part of the self-loop, then the causal dependency this transition involves (see
Theorem 3.3.4) also exists in the function network after self loop elimination i.e.

(1) (p.E, startf)[statef = s]
δ−→ p′.e′[statef = s′]

with (p′, e′, δ) ∈ Ψ, in, e′ ∈ Σ, s ∈ S

=⇒ (2) (p.E, startf ′)[statef ′ = s]
δ−→ p′.e′[statef ′ = s′]

with in, e′ ∈ Σ′, s ∈ S′

Proof: We have to distinguish the same cases as in Def. 5.2.6.

1. Case 1 of Def. 5.2.6 considers a self-loop that consists of a direct channel where
it holds that p 6= pa ∧ @ψ = (pw, Ew, δw) ∈ Ψ. This leads to an application
of Def. 5.2.5 where both keepa and keepw are set to false. Thus, with case 1
of Def. 5.2.5, it holds that t is also contained in the transition system of the
derived function node T ′. With Theorem 3.3.4, this immediately leads to the
causal dependency (2).

2. a) Case 2(a) of Def. 5.2.6 considers a self loop that consists of a signal data
node d with no other channels than cw and ca and it holds that p 6= pa ∧ @ψ =
(pw, Ew → δw) ∈ Ψ. This leads to an application of Def. 5.2.5 where both
keepa and keepw are set to false. Thus, with case 1 of Def. 5.2.5 it holds
that t is also contained in T ′. With Theorem 3.3.4, this immediately leads
to the causal dependency (2).

b) Case 2(b) of Def. 5.2.6 considers a self loop that consists of a signal data
node d with an additional activation channel to another or the same function
node and it holds that p 6= pa. This leads to an application of Def. 5.2.5
where keepa is set to false and keepw is set to true because pw remains at
function node f ′. If p′ 6= pw and thus e′ /∈W , it follows with case 1 of Def.
5.2.5 that t is also contained in T ′, which leads with Theorem 3.3.4 to the
causal dependency (2).

If otherwise p′ = pw and thus e′ ∈ W , then we know from case 2 of Def.
5.2.5 that in the concatenation of t = t1 and t2, the complete set of output
specifications of t1 is also contained in t1+2 because keepw = true. Thus,
also (p′, e′, δ) is contained in t1+2, which leads with Theorem 3.3.4 to the
causal dependency (2).

c) Case 2(c) of Def. 5.2.6 considers a self loop that consists of a signal data
node d with an additional activation channel from another or the same func-
tion node and it holds @ψ = (pw, Ew, δw) ∈ Ψ. This leads to an application
of Def. 5.2.5 where keepa is set to true and keepw is set to false because
pa remains at function node f ′. Thus, t is part of T ′ as defined in case
1 of Def. 5.2.5. With Theorem 3.3.4, this immediately leads to the causal
dependency (2). �

As a last step, we finally show that this operation also preserves the property of
state-independence, which is important to keep the decidability of boundedness.

167

5. Task Creation

Theorem 5.2.12 (Self Loop Elimination - State-Independence) Let fn = (Σ,
P, C,Φ,F,D) be a function network with a function node f = (Pin,A,Pout) ∈ F with
A = (S, s0 , T) that has a self loop from its output port pw ∈ Pout sending an event
w to its input port pa ∈ Pin receiving an event a. Let further fn ′ = elima(fn, f, d) =
(Σ′,P ′,F ,Φ,D′, C′) be the function network after the self loop has been eliminated.
Then it holds that each output port pout that was state-independent before is still state-
independent after this operation.

Proof: The proof immediately follows from Def. 5.2.5, where each transition that
is contained in T ′ depends on the same combination of input events and state as
a transition that was already contained in T . Because we know that the transition
system is still complete and deterministic (see Lemma 5.2.9), it follows that state-
independence is preserved for each output port that is not removed. �

We have now shown how task creation is performed formally on a function network
by applying a set of operations. The merging of nodes can always be applied and
thus we can merge any two function nodes. The result of merging is always a valid
function network and it preserves the causality of all events because no port or channel
is removed. After node merging, we may also remove local data nodes and eliminate
self-activations if the needed conditions are satisfied. For these conditions, we have
proven that the result is a valid function network and the causality of the interface
events is preserved as well. If the function network was originally translated from a
Simulink model, as defined in Chapter 4, this ensures that also the partial order on
signal updates of this Simulink model is preserved.

We further showed for the second and third operation how the delays change in
the causality pattern due to the removal of a data node or self-activation. Another
important property that is preserved by all operations is state-independence, which
assures that boundedness remains decidable after the task creation process.

5.3. Task Creation Algorithm

The objective of the task creation algorithm is to partition function and data nodes
into a set of at least m− partitions while minimizing the cohesion function and respect-
ing the user-defined constraints. As defined in Section 5.1, m− denotes the minimum
number of allowed tasks. The function nodes of each individual partition are merged
afterwards into a single task by the operations defined in Section 5.2. From the se-
mantic point of view, each two function nodes may be merged without violating any
causality of events. But at least for function networks derived from Simulink models,
we restrict to exclusively merge nodes with the same sample time and thus the same
period. This avoids that nodes of different synchronous sets are merged, which is im-
portant to assure that the end-to-end deadlines defined over chains of nodes within a
synchronous set can be verified. Otherwise, an event that is referenced by an end-to-
end deadline might not be observable anymore because the respective port where it
occurs was removed by the operation to eliminate self-activations. This may induce
that a deadline cannot be verified in the resulting model because the removed event
will never occur.

168

5.3. Task Creation Algorithm

One of our requirements for the algorithm is that it should offer a good trade-off
between its runtime and the quality of its results with respect to the optimal solution.
Furthermore, it should not depend on a complex configuration of parameters to deliver
good solutions, because the user should not be obliged to get a deep understanding of
the algorithm to be able to apply this approach.

We investigated a number of algorithms and compared them with respect to their
runtime and their optimality. Some algorithms needed to be extended to be applica-
ble to our problem. The first algorithm, we considered, is the Kernighan-Lin (KL)
algorithm [43]. Assuming a given initial partitioning, it aims at finding the minimum
cut set of a graph by minimizing the edge weights between two partitions of nodes.
The algorithm has two nested loops that are repeated until no better solution can be
found. In the inner loop, it iteratively exchanges pairs of nodes between partitions
until a sequence of exchange operations leads to a better solution with respect to
the minimum cut. It chooses the sequence of operations to be performed that offers
the highest gain in terms of reducing edge weights between partitions. The exchanged
nodes are marked and the process is repeated with the unmarked nodes until no better
solution can be found or all nodes are marked. Then, the inner loop is finished and the
currently best solution is saved. Based on this intermediate solution, the outer loop
starts the process again with all nodes unmarked and ends if no inner loop execution
leads to better results. The complexity of this algorithm is O(n2 · log(n)), where n is
the number of nodes. Additionally, in [43] some improvements for the KL algorithm
are suggested how to efficiently compute the gain of an exchange operation by only
considering the weights of those edges that are affected by the exchange operation.
Because it was not clear at the time of evaluation whether these improvements can
be applied to our scenario, which has a different optimization goal, we first imple-
mented a “pure” version of KL as a reference. Another implementation, we refer to
as KL+, makes use of these improvements and additionally combines the KL with the
FM algorithm, which is presented next.

The Fiduccia/Mattheyses (FM) algorithm [32] is a modification of KL where nodes
are not exchanged but moved from one partition to the other. The partition size
may be bounded to avoid too small or even empty partitions. The complexity of this
algorithm is O(n). Quick Cut (QC) [25] is also a modification of KL with the goal
to further improve the runtime. To this end, it maintains a neighborhood relation to
reduce the number of nodes that are considered in the inner loop and more efficient
data structures. The complexity is O(m · log(n)), where m is the number of edges.
Please note that the KL algorithm and all its extensions are usually restricted to two
partitions. For the evaluation, we extended these approaches to be able to handle n
partitions as it is needed for the problem we want to solve.

Another candidate is the Simulated Annealing (SA) algorithm [44]. It is a prob-
abilistic approach based on the idea of annealing and cooling of solids that become
more and more stable with less temperature. It allows with a certain probability also
solutions that are worse than previous ones to escape from local minima. The prob-
ability is reduced with less temperature to let the algorithm converge to a solution.
[44] also contains a review on simulated annealing and its use in practice.

169

5. Task Creation

#Tasks #Edges #Partitions KL KL+ QC FM SA
Scale Tasks

400 100 2 186 <1 <1 3 13
500 100 2 426 <1 <1 6 16
750 200 2 - 1 <1 50 50

1000 200 2 - 1 <1 93 69
5000 200 2 - 20 1 - -

10000 200 2 - 81 1 - -
50000 200 2 - - 4 - -

Scale Partitions
100 100 40 17 <1 <1 22 7
100 100 50 16 <1 <1 32 7

1000 1000 4 - 10 2 - -
1000 1000 50 - 132 19 - -

Scale Edges
100 1000 2 39 <1 <1 2 27

1000 1000 4 - 9 2 - -
1000 10000 4 - 52 28 - -

Table 5.1.: Comparing Algorithms w.r.t Runtime (in Seconds)

These algorithms have been applied to a set of benchmarks to compare them with
respect to runtime and optimality. First, Table 5.1 shows the runtimes of the different
algorithms in seconds. The first three columns show the number of tasks, edges and
partitions. Entries marked with ’-’ were aborted after a timeout of ten minutes. It
shows that both the KL+ and the QC algorithm scale well also for larger systems
where the others were terminated by the timeout. This shows that the improvements
that were used in these two KL variants lead to a significant speed-up in runtime where
the QC algorithm still performs better than the KL+.

Table 5.2 compares the quality of the results for a number of task networks. As
reference, we implemented a complete algorithm that delivers the optimal solution for
each considered task network. The task network is characterized in the first column
by its number of tasks (#T), edges (#E), and partitions (#P). The second column
shows the costs of the optimal solution for the respective system. Furthermore, for
each algorithm the concrete costs and the degree of optimality with respect to the
optimal solution is depicted in each two columns. A value of 100% is the best value
meaning that the heuristic has found the optimal solution.

The table shows, that the variation of the results is relatively high for all algorithms.
Interestingly, the quite simple KL and KL+ algorithms perform only slightly worse
than SA, although SA should be better in escaping from local minima. Overall, the
results of the SA algorithm reached the best optimality with an average value of 88.1%
(shown in the the bottom line). But due to the extensive runtime and the potential
high sensitivity to the parameter configuration, this algorithm was not chosen for
our approach. The KL+ and KL algorithm lead to exactly the same qualitative
results, which means that the FM algorithm does not improve the solutions for these
benchmarks and that the runtime improvements of the KL+ have no influence on the
quality of the results. The results of the QC algorithm slightly differ from the KL+

results and the average optimality is only 80% compared to 84,5%. This may be caused

170

5.3. Task Creation Algorithm

#T/#E/#P Opt. KL Opt. KL+ Opt. QC Opt. SA Opt.
Costs % % % %

10/20/2 75 118 63.6 118 63.6 118 63.6 237 31.6
180 180 100.0 180 100.0 180 100.0 267 67.4

15/40/2 272 273 99.6 273 99.6 353 77.1 346 78.6
301 424 71.0 424 71.0 495 60.8 478 63.0

17/40/2 265 302 87.7 302 87.7 490 54.1 297 89.2
192 331 58.0 331 58.0 331 58.0 376 51.1
214 257 83.3 257 83.3 418 51.2 309 69.3
199 209 95.2 209 95.2 209 95.2 330 60.3

20/50/2 271 314 86.3 314 86.3 372 72.8 367 73.8
279 280 99.6 280 99.6 280 99.6 374 74.6
245 311 78.8 311 78.8 567 43.2 245 100.0
218 327 66.7 327 66.7 327 66.7 356 61.2

20/100/2 721 842 85.6 842 85.6 1082 66.6 911 79.1
832 892 93.3 892 93.3 892 93.3 851 97.8
803 829 96.9 829 96.9 829 96.9 836 96.1
846 902 93.8 902 93.8 971 87.1 957 88.4

20/200/2 1751 1998 87.6 1998 87.6 2060 85.0 1914 91.5
1579 1920 82.2 1920 82.2 1920 82.2 1901 83.1
1711 1901 90.0 1901 90.0 1934 88.5 1891 90.5
1853 2077 89.2 2077 89.2 1931 96.0 1884 98.4

12/40/3 416 534 77.9 534 77.9 622 66.9 521 79.8
370 588 62.9 588 62.9 588 62.9 772 47.9
537 609 88.2 609 88.2 624 86.1 594 90.4
421 521 80.8 521 80.8 521 80.8 460 91.5

15/80/3 979 1050 93.2 1050 93.2 1192 82.1 1095 89.4
967 1155 83.7 1155 83.7 1242 77.9 1054 91.7
878 1042 84.3 1042 84.3 1008 87.1 908 96.7
890 929 95.8 929 95.8 929 95.8 936 95.1

12/100/4 1500 1607 93.3 1607 93.3 1607 93.3 1647 91.1
1625 1792 90.7 1792 90.7 1792 90.7 1654 98.2

12/10/4 85 85 100.0 85 100.0 85 100.0 85 100.0
12/40/4 473 617 76.7 617 76.7 617 76.7 473 100.0

84.5 84.5 80.0 88.1

Table 5.2.: Comparing Algorithms w.r.t Optimality (in %)

by the fact that QC uses different data structures and a different order in searching
for solutions and thus could not escape from local minima for some cases where KL
and KL+ found better solutions.

Overall, the KL+ and the QC algorithm provide the best trade-off between optimal-
ity and performance and it remains the question if or in which degree the improvements
leading to the speed-up in runtime can be applied to our approach. The answer for
the QC algorithm is that its main improvement, which is the neighborhood relation
only based on the communication between nodes, cannot be applied to our approach,
because the cohesion metric does not only consider communication but also weight
balancing. For the KL+ algorithm the situation is better because the improvements
on calculating the gain in communication can also be used for calculating the commu-
nication part of the cohesion function. For the weight balancing part we implemented
a similar idea by only re-calculating the weights for those nodes that are involved in an

171

5. Task Creation

exchange or move operation. Thus, we decided to chose the KL+ algorithm as it offers
good performance and quality and its improvements are applicable to our approach.

This decision has mainly two consequences: First, we need to replace the optimiza-
tion function of the KL+ algorithm by the cohesion metric we defined previously.
Second, the KL+ algorithm always assumes an initial partitioning to start with. This
is the reason why we define an initial algorithm, which produces such a start solution
by merging only those partitions that contain nodes that communicate with each other.
This is intended to retain the concurrency of the model by not merging nodes without
any causal dependencies. The algorithm starts with a partitioning where each node
is assigned to a single partition. Thus, the communication structure of the model is
initially maintained. Then, the algorithm iteratively merges two partitions that com-
municate via at least one channel. Thus, with each merging step communication is
reduced. The decision which pair of partitions is merged is determined by the best
cohesion gain. The gain is defined as the difference of the cohesion value before and
after a merging operation.

Definition 5.3.1 (Initial Algorithm for Task Creation) Let fn = (Σ,P, C,Φ,F,
D) be a function network with a set of nodes N = F ∪ D = {n1, ..., nm} and T =
{τ1, ..., τm} be a set of partitions and tasks with τi = {ni}, i ∈ {1, ...,m}. The initial
algorithm is defined as follows:

1. Calculate current partitioning costs co = cohesion(fn, T) and set Gmax := 0.

2. For each channel c connecting two nodes n ∈ τi and n′ ∈ τj with i 6= j

a) Build a task set T ′i,j by moving all nodes from τj to τi.

b) Calculate costs of T ′i,j as conew = cohesion(fn, T ′).
c) Check all constraints i.e., check if all the following holds:

• Maximum Task Weight: conew ≤ w+,

• Minimum number of tasks: |{τ ∈ T ′i,j | τ 6= ∅}| ≥ m−

• Prohibitive constraints: @ ni ∈ τi, nj ∈ τj : proh(ni, nj)

d) If merging of {τi, τj} is valid w.r.t to constraints, calculate gain for i,j as
G(i, j) = co− conew. If G(i, j) > Gmax, set Gmax := G(i, j).

e) Otherwise, set G(i, j) = −MAX INT where MAX INT denotes the max-
imum integer value.

3. If Gmax > 0 with Gmax = G(i, j), then set T := T ′i,j and goto step 1.

4. If Gmax = 0, return Tstart := T as solution.

�

The constructive nature of this algorithm makes it easy to guarantee that constraints
are not violated. The maximum task weight w+ and the minimum task number
m− are not violated as long as the initial partitioning does not violate them. We

172

5.4. Case Study and Evaluation

can simply check for each merging operation whether the resulting task number is
too small or the task weight becomes to large. Concerning partitioning constraints,
prohibitive constraints can be easily respected during the algorithm as well because
they are initially satisfied. Then again, for each potential merging operation it can
be checked whether this operation is allowed and the solution is rejected if not. As
already sketched before, commanding constraints can be considered already before
starting the actual task creation process. This is possible, because we always start
on the finest level of granularity by assuming initially that each node is modeled as
one task. Thus, we can merge each two function nodes f1 and f2, if there exists a
commanding constraint command(f1, f2) before starting the algorithm. For this, we
use the node merging operation from Section 5.2 and get a new function node f1+2.
This leads to a significant reduction of runtime of the algorithm, because the number
of nodes is reduced with each merging operation.

The complexity of the initial algorithm is O(|N | · |C|) because initially each partition
consists of one node n ∈ N and can be merged with any other node connected with
a channel c ∈ C leading to n. Based on the start partitioning Tstart as the result of
the initial algorithm, the KL+ algorithm is applied. Prohibitive constraints can be
checked in the KL+ algorithm for each potential node exchange or move operation in
the same way as for the initial algorithm.

The final result of both algorithms is a set of partitions of nodes where all function
nodes of the same partition are merged to create a task. The nodes may be merged in
any order, because the merge operation is associative. Empty partitions do not result
in a task. To complete the task creation process, it is checked for each local data node
and each self-activation if it can be eliminated with the respective operation. Here,
local data nodes have to be eliminated before self-activations are tackled, because
local data nodes may induce read channels that prevent a semantic-preserving self-
loop elimination. Even though both elimination operations are not necessary for task
creation, they play an important role to reduce task switches and communication times
as motivated in Section 5.2.

5.4. Case Study and Evaluation

As a representative case study to evaluate the approach presented in this thesis, we
chose a system from the automotive domain. The system is an advanced driver assis-
tance system named Virtual Driver Assistant (ViDAs) [4] and is specified in Simulink
as a single-rate model. Beside an adaptive cruise control it additionally contains a lane
change assistant and a module to spot speed-limit signs to adjust the speed. Although
in reality Simulink models might be of course also multi-rate models, this case study
is still relevant because the impact on evaluation results of the task creation approach
is relatively small. In the end, different synchronous sets only define additional parti-
tioning constraints because nodes with different rates must not be merged leading to
a restricted set of valid solutions.

In a first step, the ViDAs Simulink model was translated into a function network
consisting of 183 nodes with 342 channels interconnecting them. To be able to apply

173

5. Task Creation

Parameters Init. Values Result Values

w+ m− w∗ α β ŵ com T w ↓ w ↑ ŵ ′

ŵ
com′

com

A 0.10 2 0.10 1 1 0.10 0.23 5 0.05 0.09 44% 1%
B 0.20 1 0.20 1 1 0.20 0.23 2 0.15 0.15 26% 1%
C 0.20 7 0.04 1 1 0.04 0.23 7 0.02 0.09 46% 2%
D 0.15 7 0.04 4 1 0.04 0.23 7 0.04 0.05 7% 5%
E 0.15 7 0.04 1 4 0.04 0.23 7 <0.01 0.13 103% 1%
F 0.20 5 0.06 0 1 0.06 0.23 5 <0.01 0.19 119% 1%
G 0.20 1 0.20 0 1 0.20 0.23 3 0.04 0.19 61% <1%
H 0.15 1 0.15 0 1 0.15 0.23 2 0.15 0.15 2% 1%
I 0.15 1 0.15 1 0 0.15 0.23 3 0.07 0.13 35% 6%

Table 5.3.: Task Creation Results for ViDAs model

task creation for this model, we need worst case execution times for each block to
determine weights for function nodes. For standard blocks from the Simulink library
a WCET analysis needs to be done only once per target processor. For user-defined
blocks, such as Stateflow charts or S-functions, the WCET has to be determined for
each model again. To obtain WCETs for our case study, we used the code generation
of TargetLink and applied the timing analysis tool aiT [30] to the produced code. As
target processors, we defined different variants of the LEON3 and ARM7 processors
running at 60 MHz. The transition delays of the respective function nodes were de-
termined as the minimum WCET of all available processor variants. To also be able
to calculate channel weights, we assume a FlexRay bus with a maximum bandwidth
of 10 MBit/s. The amount of data that needs to be transfered was derived from the
data type of the respective signal in the Simulink model.

To evaluate the impact of different parameter configurations, we applied task cre-
ation repeatedly to the function network translated from the ViDAs model resulting
in a set of alternative task networks. The evaluation results are depicted in Table 5.3.
Starting at the left, the table shows a label for the task network from A to I, the
maximum allowed task weight w+, the minimum allowed number of tasks m−, the
desired task weight w∗ (determined by m−) and the weight factors α (for weight bal-
ancing) and β (for reducing communication). Then, the initial values for the standard
deviation ŵ and communication com are listed.

The node weights of the initial function network vary between 0.0002 and 0.027
leading to an initial average node weight w of 0.0016. They are not listed in the table
because the are the same for all examples. The result is characterized by the number
of tasks T , the minimum and maximum task weight denoted as w ↓ and w ↑, and the
relation of the final standard deviation ŵ ′ and communication com ′ to the respective
initial values, which we denote as ŵ ′

ŵ and com′

com . The runtime for these examples is not
shown explicitly and varies between 21 and 32 seconds.

For task network A, we chose a maximum task weight of w+ = 0.1 and a minimum
number of tasks m− = 2 leading to a task network with five tasks. The desired number
of two tasks could not be reached due to the relatively small maximum allowed task

174

5.4. Case Study and Evaluation

weight. It can be observed that the communication density could be significantly
reduced to 1% of the initial value while the standard deviation of task weights was
’only’ reduced to 44%. This has mainly two reasons: First, the initial value of com is
around three times larger than the initial value of ŵ , and thus there is a lot of more
saving potential in communication. The other reason is that the maximum task weight
forbade more task merging operations to further reduce the standard deviation. For
task network B, we increased w+ to 0.2 and reduced m− to one. This leads to the
smaller number of two tasks because larger task weights were allowed. The reduction
of com is similar to the previous task network but ŵ is reduced to 26%. This is because
we allowed larger tasks, which leads to more merging and thus also better balancing
options. In example C, we increased m− to seven resulting also in seven tasks. Here, ŵ
was again only reduced to 46% because already the initial value was significantly lesser
than for task network B. Thus, the general savings potential is lesser and a reduction
of communication is more promising to reduce the overall cohesion value.

For task network D, we changed the weight factors by increasing α to four and
thus preferring the balancing of weights, which results in a task network with seven
tasks again. We can observe here, that the adjusted weight factors led to a stronger
reduction of the standard deviation to 7%. Contrastingly, the communication was not
reduced as much as in the cases before but still significantly leading to a value of 5%.
For task network E, we switched the weight factors α and β to prefer the reduction of
communication. This is also reflected in the result, where ŵ even increased to 103% but
com was reduced to 1%. This shows, that the weight factors push the result values into
the intended direction. For task network F, we switched off node balancing completely
by choosing α = 0. In the result, we can observe that ŵ was increased to 119%, which
is reasonable because it was ignored for optimization. Instead, communication was
again reduced significantly to 1%. In example G, we decreased m− to 1 leading to
an increase of w∗ to 0.2. The result shows that also the resulting number of tasks
decreases from five to three leading also to a better value of 61% for ŵ .

For task network H, we took the same weight factors as for G but reduced w+

from 0.2 to 0.15. The result is a task network with two tasks and almost the same
communication weight com as before. In contrast to G, also ŵ was reduced significantly
to 2%, even if it was excluded from optimization because α was set to zero. A possible
reason is that the heuristic coincidentally chose a solution with a very low standard
deviation and this solution was also the best one with respect to communication. In
the last network I, we used the same parameters as in H but set α = 1 and β = 0,
which ignores the communication part of the cohesion function and should optimize
the standard deviation of weights. This leads to a task network with three tasks and
a reduction of ŵ to 35%. This value is clearly worse than in the previous example
H where balancing weights was not considered at all. A reason for this unexpected
behavior may be that the weights of the two tasks found in example H were both very
close to the maximum allowed weight of 0.15. Thus, the result is an almost perfectly
balanced task network with very few communication, which can hardly be improved.
In example I, the resulting network consists of three tasks. This means that the
heuristic probably has chosen a different order of merging operations and could not
merge two of the three remaining tasks into one without violating the maximum task

175

5. Task Creation

Result Values (Initial Algorithm) Result Values (KL+)

T w ↓ w ↑ ŵ ′

ŵ
com′

com T w ↓ w ↑ ŵ ′

ŵ
com′

com

A 5 0.04 0.09 45% 14% 5 0.05 0.09 44% 1%
B 2 0.10 0.20 37% <1% 2 0.15 0.15 26% 1%
C 7 <0.01 0.09 59% 1% 7 0.02 0.09 46% 2%
D 7 0.02 0.06 24% 3% 7 0.04 0.05 7% 5%
E 7 <0.01 0.13 103% 1% 7 <0.01 0.13 103% 1%
F 11 <0.01 0.20 114% 2% 5 <0.01 0.19 119% 1%
G 11 <0.01 0.20 92% 2% 3 0.04 0.19 61% <1%
H 2 0.15 0.15 2% 1% 2 0.15 0.15 2% 1%
I 3 0.07 0.13 39% 3% 3 0.07 0.13 35% 6%

Table 5.4.: Comparing ViDAs Results of Initial Algorithm and KL+

weight. This leads to the significantly higher difference in task weights and also to
additional signals between tasks and thus a higher communication density. A further
observation is that the value for com of 6% is the worst of the examples considered
here. However, this is reasonable because it was not considered for optimization in
example I. Nevertheless, a value of 6% is still a significant reduction.

The reason why communication is reduced even if it is excluded from optimization
lies in the approach of the initial algorithm, where only partitions are merged that
communicate with each other. Thus, with each merging step communication is always
reduced. A general observation is that the minimum task weight (w ↓) was significantly
increased for most examples from initially 0.0002 to values between 0.05 (factor of 250)
and 0.15 (factor of 750). Two exceptions are the examples E and F with minimum
task weights below 0.01. In both cases, the reason is the choice of the weight factors
α and β leading to a focus on optimizing communication. While for task network E
the minimum weight could be increased at least by a factor of 10, in example F the
minimum task weight remains the same as for the initial function network. This is
because α was set to zero and thus weight balancing was completely ignored.

In summary, we can state that the main goals of task creation, which are the reduc-
tion of communication and an increase of the minimum task weight by balancing node
weights, are satisfied by the implemented algorithm. Furthermore, we can observe
that the weight factors α and β lead the result in the intended direction as long as
both are greater than zero. If one factor is set to zero, the behavior seems to become
more random and unpredictable, which may lead to good solutions as well but leads
to missing means of control. Furthermore, it can be observed that the constraints in
terms of the maximum task weight w+ and the minimum number of tasks m− are
always satisfied.

To investigate the influences of the KL+ algorithm, in Figure 5.4, the intermediate
results of the initial algorithm (shown on the left) are compared with the final results
(shown on the right). For most examples the number of tasks is equal to the final result
because the initial algorithm already merges partitions until the minimum number of
tasks is reached or the maximum task weight is violated. Nevertheless, this may still

176

5.4. Case Study and Evaluation

System Param. Init. Values Result Values Time (s)

#N #C m− w∗ ŵ com T w ŵ ′

ŵ
com′

com IA
∑

50 73 5 0.26 0.23 0.34 6 0.21 23.5 % 8.4 % <1 <1
75 109 7 0.24 0.22 0.54 9 0.18 57.9 % 9.8 % <1 1
100 144 10 0.24 0.22 0.68 13 0.19 32.4 % 14.4 % 3 4
150 215 15 0.21 0.19 1.06 16 0.20 23.9 % 8.8 % 8 11
200 285 20 0.23 0.21 1.40 22 0.21 25.6 % 7.7 % 19 23
250 356 25 0.21 0.16 1.78 25 0.21 22.2 % 8.1 % 37 52
300 427 30 0.24 0.21 2.18 34 0.21 28.2 % 9.8 % 64 90
400 568 40 0.21 0.19 2.87 42 0.20 28.3 % 6.5 % 152 179
500 710 50 0.22 0.20 3.59 51 0.22 35.9 % 7.8 % 312 355

Table 5.5.: Task Creation Benchmark Results

happen as in the examples F and G. One reason may be that the initial algorithm
is restricted to merge only those partitions that communicate with each other. If
there are partitions that do not communicate, they may be first merged by the KL+

algorithm. Furthermore, the initial algorithm does not move single nodes between
partitions as the KL+ does. Thus, the main influence of the KL+ algorithm is to
balance the weights of the already existing partitions. This can be best observed when
looking at the minimum task weight, which is significantly increased for most created
task networks after the KL+ algorithm was applied. For example, for task network C
the minimum task weight is increased from 0.002 to 0.02 and for task network G from
0.0002 to 0.04. But also the communication is often improved by the KL+ algorithm,
as it can be observed at task network A, where the initial algorithm decreased com to
14% and the KL+ algorithm further improved the solution to 1%.

To further evaluate the approach in terms of scalability with the number of nodes,
a generator for artificial benchmarks was developed. It creates function networks that
are adapted from the typical structure of Simulink models. This means in particular,
that there may exist several synchronous sets that are connected blocks with the same
sample time. One synchronous set typically consists of parallel block chains that may
be joined at certain blocks and split again at another block. Those blocks often model
a controller in terms of a Stateflow chart, taking decisions based on input signals and
forwarding output signals to further blocks. We generated artificial function networks
consisting of between 50 and 500 function nodes with weights between 0.002 and 0.1.
The input parameters restrict w+ to 0.3 and m− to 10% of the number of nodes #N.
The weight factors for the cohesion function where chosen as α = β = 1.

The results are shown in Table 5.5. The different benchmarks are characterized by
their number of nodes #N and their number of channels #C. The parameters and
result values are shown in the same manner as known from the previous tables, while
here the average task weight w is regarded as well. On the right, the runtime in seconds
Time(s) of the initial algorithm IA and the overall runtime of both algorithms

∑
is

depicted. The results confirm the general observations we made for the ViDAs system:
The communication density com is always decreased clearly to values between 6.5%

177

5. Task Creation

and 14.4% of the original communication. The standard deviation of task weights is
also reduced but not in the same extent leading to values between 22.2% and 57.9%.
Furthermore, the average task weight w is clearly increased and is very close to the de-
sired weight w∗, which is the expected value for the standard deviation. Nevertheless,
the reduction of communication is less significant compared to the task networks we
created for the ViDAs case study. One reason is that we chose as minimum number of
tasks a value of 10 % of the initial number of nodes, which is greater than the values
we used for the ViDAs system. Furthermore, the benchmarks are only approximations
for Simulink models and thus they may offer less potential for saving communication
than real models.

The runtime scales well also for networks with up to 500 nodes, where an overall
runtime of 355 seconds (5 minutes and 55 seconds) is needed to get a result. It can
be observed that the initial algorithm consumes a larger part of the overall runtime
than the KL+ algorithm. The reason is that the initial algorithm starts with the
maximum number of partitions, which is equal to the number of nodes of the initial
function network. Contrastingly, the KL+ algorithm only has to deal with the number
of partitions that results from the initial algorithm, which is significantly less.

5.5. Summary and Related Work

The task creation approach was first published in [12]. Its starting point is a function
network modeling several software functions that should be deployed on a distributed
hardware platform. Typically, this function network is derived from a specification
model, where we assume Simulink as specification language for this work.

Task creation is necessary to get rid of the fine granular structure of the original
specification model and the respective function network translation. This structure is
usually not suitable to represent application tasks because it consists of a high number
of nodes that are often of very small computational size. Furthermore, there is a lot of
communication between nodes, which has to be allocated to a bus if the communication
partners are mapped to different processing units. The goal of task creation is to
partition the nodes of a function network into a set of tasks, where communication is
minimized and computational weights are balanced. This is realized by defining an
optimization metric called cohesion where nodes are attracted by high communication
density and repulsed by high weights. Furthermore, we defined constraints that restrict
the set of allowed task partitions. Beside the possibility to set limits for the number
and weight of tasks, also structural constraints were defined, where certain partitioning
options may be demanded or forbidden. Thus, the user may guide and restrict the
process and also define the desired granularity of structural elements to start with.

When partitioning nodes with the goal to build a task from each partition, this
also has impacts on the function network representation. Thus, it is not sufficient to
partition the nodes because this has no semantic consequences. Instead, task creation
means a merging of a set of nodes into a single node. To realize this, a set of formal
composition operations has been defined, where each operation replaces a component
of the function network by another one with the same interface. The first operation

178

5.5. Summary and Related Work

merges two nodes while maintaining all transitions and ports of the original nodes.
This is a mandatory operation and is defined for any two function nodes without any
restrictions. To complete the formal process of task creation, we defined two further
operations, which may be performed if specific conditions hold. The first operation is
the elimination of local data nodes, which is useful to get rid of data nodes that are
only used by one function node, and thus can be considered as local memory. The
second operation removes self-activations by concatenating subsequent transitions to
one transition. To preserve semantics of the original network and also the specification
model, we have shown for all operations that they preserve causality of input and
output events of the component interface. Furthermore, we proved that the property
of state-independence is preserved, which allows to decide boundedness.

With the knowledge how to formally perform task creation, we continued with defin-
ing an heuristic approach to obtain a set of tasks by partitioning the nodes of the orig-
inal function network. For this purpose, we applied an extension of the Kernighan-Lin
algorithm where its start solution is determined by an initial algorithm. The optimiza-
tion goal for both algorithms is the cohesion metric defined previously. This approach
has been applied to a case study of a driver assistance system modeled in Simulink.
The results show that in particular the amount of inter-task communication could be
significantly reduced, and task weights were balanced, as intended by the optimization
metric. Furthermore, we defined a set of artificial benchmarks in terms of function
networks that were created by emulating the typical structure of Simulink specifica-
tions. The algorithm was applied to these benchmarks as well, where the number of
nodes was varied to also evaluate the scalability of the approach. The results show an
improvement of the cohesion similar to the case study, and the runtime was accept-
able also for function networks with up to 500 nodes. Furthermore, the scalability of
the approach can be significantly improved by adjusting the granularity of the initial
function network by defining respective partitioning constraints.

Concerning future work, possible extensions of the task creation approach can be
found, for example, in the algorithmic part. Here, optimizations may be applied to
the currently used algorithms to further improve the quality of the results or reduce
complexity. Additionally, it may be useful to investigate in more detail how an engineer
would decide which nodes should be merged at concrete examples. Based on this
knowledge, it could be analyzed whether this is already covered by the current approach
or how it may be extended to also consider these issues.

Furthermore, investigations are useful concerning the behavior of worst case execu-
tion times when two node transitions are concatenated to one. Currently, we assume
approximately that the delay of the concatenated transition is the sum of the single
transition delays. Performing a WCET analysis for each potential merging is not viable
because the code must be annotated, for example, with loop bounds, and the analysis
is too time-consuming to perform it such frequently. Additionally, execution times of-
ten behave differently for different processor architectures and compilers, which makes
the effect of node merging hard to predict.

When turning to the formal part of composition operations for node merging, we
can think of an extension of the operation to eliminate self-activations to make it
completely applicable to function networks translated from Simulink. Up to now, this

179

5. Task Creation

f

...
1

3 2

4
...t1

t2

...

...

f'
...

1 4
...

t1+2

...

...

Figure 5.10.: Extension of Self-Activation Elimination to Multiple Input Channels

operation can only be applied if the input port of the self-activation has no further
incoming channels because otherwise causality could not be preserved. Although this
is correct, a relaxation of the claim for causality would also allow to consider an input
port with multiple input channels.

The basic idea is exemplified in Figure 5.10, where a self-activation loop with a signal
data node is depicted with multiple input channels at input port 3. On the right, it
is shown how we may also remove such a self-loop by redirecting all remaining input
channels of port 3 to port 1. This moves the channel synchronization to another input
port of the same function node. This had to be done for all input ports with causal
dependencies to port 2 i.e., the port where the self-activation loop starts. By doing so,
we would add new causal dependencies because the events of the redirected channels
have to be available already for the activation at port 1 instead of port 3. Thus, all
executions starting at port 1 have to wait for these events to be available. This may
delay node executions by the respective maximum wait delay of the synchronization
buffer. Nevertheless, the partial order of Simulink would still be valid because we
only refine this partial order by adding new relations. The advantage of this extension
would be that more self-activations could be eliminated, which reduces the number of
task activation points in terms of input ports.

Related Work

One of the publications with most similarities to the task creation idea has been pub-
lished by Di Natale et al. [23]. The authors propose an optimization of the multi-task
implementation of Simulink models with real-time constraints on a single processor.
Their optimization goal is to reduce the use of rate transition blocks between different
synchronous sets to minimize buffering and latencies. Tasks are either determined
by the synchronous sets, or their creation is modeled as a part of the optimization
problem. Furthermore, task priorities and execution order of functional blocks within
a task are optimized. The main difference to our work is a different hardware target
architecture, which has several implications on the remaining parts of the work. While
Di Natale et al. consider a single processor where tasks should be executed with a rate
monotonic scheduling scheme, we are aiming at a distributed hardware architecture
with a pre-deployed task network. This is of central importance for our optimization
function, which is specialized to this problem. Their optimization goal is in a way
orthogonal to ours, because it is targeted to a single processor, where communication

180

5.5. Summary and Related Work

is known to be local. Thus, buffering latencies can be minimized, which is not useful
for a distributed system before tasks are mapped to concrete processing units.

Another work from Kugele et al. [46] is also based on a synchronous language and
presents a way to deploy clusters, which are actually tasks, specified by the COLA
language on a multi-processor platform. This allocation process is completed by a
scheduling analysis involving address generation and estimation of memory require-
ments for a pre-defined middle-ware. In this process, the authors also raise the ques-
tion of how to generate clusters of nodes but assume that this is a decision that is
taken manually by the user. Thus, there is no optimization goal given comparable
to ours and no automated process as our algorithmic approach. Furthermore, their
focus lays on a scheduling analysis, which is not part of our work and there exists no
pre-deployed task network in their scenario.

In the work of Tripakis et al. [18], a Simulink model is translated into a Lustre
model to partition the generated code into modules that are executed on different
processors communicating via a time-triggered bus. Formally, Simulink models are
also defined as timed synchronous block diagrams, and semantics is preserved by con-
sidering the partial order on block executions as well. Contrary to our work, the
focus lies on separating the generated code into different modules respecting the par-
tial order, and performing a scheduling analysis for user-specified timing constraints.
Furthermore, the code partitions are assumed to be given by the user and not derived
automatically with a specific optimization goal. Producing modular sequential code
from synchronous data-flow networks is also addressed by Pouzet et al. [63]. They
decompose a given system into a minimum number of classes executed atomically
and statically scheduled without restricting possible feedback loops between input and
output. For both approaches holds that the question of efficient and modular code
generation lies beyond our approach and can be esteemed as supplementary.

Formal Composition Operations. A work that is related to our formal composition
operations is presented in [1]. There, a modeling formalism called model algebra is
defined, which may be used for model specification and refinement. It consists of
executable components, called behaviors, which may communicate either by channels
or variables. Channels have a a double-handshake synchronization semantics while
variables allow asynchronous read and store of values. Thus, variables can be compared
to data store memory blocks in Simulink and shared data nodes in function networks.
The execution semantics is defined in terms of a so-called Behavior Control Graph
(BCG), which has some similarities to Kahn Process Networks. The author defines
an equivalence relation called functional equivalence on BCGs where two BCGs are
equivalent if the value-traces of all their variables are identical. In our work, we do not
explicitly model functionality in terms of concrete values of variables. If we consider a
Simulink model, we claim that functionality is preserved if the partial order of block
executions is maintained. Data store memory blocks are explicitly excluded from this
notion of functional equivalence and the same holds for shared data nodes in function
networks. Thus, it is not specified in which order such a variable is read or written.

181

5. Task Creation

As a next step, the author defines a set of transformation laws defined as, for exam-
ple, the flattening of hierarchical behaviors, or the relaxation of control flow. Based on
these laws, functionality-preserving refinements are defined that aim at representing
design decisions in the model ending in a cycle-accurate model of hardware and soft-
ware elements. For example, one refinement is to represent the mapping of behaviors
to processing elements by creating copies of each node in each processing element.
Another refinement aims at representing a static schedule of tasks that are mapped
to the same processing element by sequentializing them accordingly. It is shown that
this operation preserves functionality if there are no data dependencies in terms of
variables between tasks. These refinements have some similarities to task creation in
their basic idea to represent design decisions. Nevertheless, they are different in de-
tail. The main difference is, that in [1] processing elements are assumed to have no
scheduling mechanism and thus a fixed static scheduling of tasks in terms of a total
order is determined. In contrast to this, we assume a scheduling scheme to be applied
on processors at runtime and do not need to determine a static schedule. Thus, we
can restrict to show that our operations do not violate the causalities derived from the
partial order of Simulink blocks.

Another related work stems from Henzinger and Matic, who describe in [37] a con-
cept of bounded-delay interfaces and operations on these interfaces. These allow a
composition of interfaces, a composition of task groups, a connection of an interface
with a task-sequence and a refinement relation between interfaces. This enables in-
cremental design and independent implementation. The composition of task groups
has, on the first glance, some similarities to the task creation idea. But the details
and, most of all, the goal is quite different. First, their goal is to find an abstract
representation in terms of an abstract resource model of a task group running on the
same resource. Second, they consider a concrete scheduling strategy and this directly
influences the resulting abstraction. This leads to the fact that their operation is not
associative. Third, their overall goal is to compose a system from different components
without the need to know their implementation but only their interface. Our goal is to
represent a merging of tasks without knowing anything about the resource that should
compute them or the applied scheduling strategy. Additionally, we do not apply our
operation on an abstract model, as event streams or arrival functions, but on the task
network itself. Our goal is to maintain the causality of input and output events even
if we are still able to derive an abstraction in terms of event patterns.

A related work from another community is the theory of latency insensitive de-
sign [17]. There, a problem is addressed that is highly relevant for system on chip
(SoC) design. Here, the length of wires may lead to the problem that the induced
communication delay becomes greater than the cycle period, which does not fit any-
more to the synchronous assumption. Thus, some components cannot be executed in
the correct clock cycle. To solve this problem, relay stations (buffers) are introduced
into the design to store intermediate data. Thus, the respective components can still
compute with correct values even if the clock cycle has already passed. The number
of needed relay stations can be computed from the delay length and the clock cycle
length. Those relay stations may be inserted without violating the functional correct-
ness of the model in terms of ordered sequence of data that is passed on channels.

182

5.5. Summary and Related Work

This equivalence property is called latency equivalence. It is further shown that this
property is compositional and therefore allows to construct e.g. a model from single
components of different vendors without violating functional correctness. In principle,
the described problem may also occur in a model derived from a Simulink specifica-
tion. Here, it does not occur due to the cable length, but due to the time needed for
execution or communication. A significant difference is that in a function network,
we always have buffers within function nodes that store incoming events such that no
data is lost. Nevertheless, in the case of non-algebraic control loops, it has still to
be guaranteed that data is available in time leading to the end-to-end deadlines we
defined for Simulink models.

Algorithms for Graph Partitioning and HW/SW Partitioning. Because hardware
software partitioning can be considered as a subclass of graph partitioning, we will also
refer to work in this area and in particular the algorithms that are used. An algorithm
that is often used, especially in the earlier times of hardware software partitioning,
is Simulated Annealing (SA). Beside the COSYMA system [28], which uses SA to
partition the components starting with all components realized in software, there is
another approach described in [27], which uses SA for partitioning.

One popular algorithm that is widely used, is the heuristic of Kernighan-Lin (KL),
which is for example applied in [45] for hardware software partitioning. Another field,
where KL is very popular and commonly used, is the area of parallel computing. In
[57], also the graph partitioning problem is addressed, where the authors propose a
new method to compute such partitions while focusing on the aspect of parallelism.
Furthermore, an overview of techniques is given that were used so far in the area of
system on chip design. They state that most of the state-of-the-art approaches use a
variant of the KL heuristic. But due to the fact that this algorithm is sequential, it
is not well suited for parallelization and alternative techniques have been developed
like Bubbble-FOS/C [58]. With the help of a diffusion scheme, it is determined how
’well connected’ two nodes are, which means that they are connected by many paths of
small length. This delivers high quality results but is comparably slow in computation
time. In this paper, the authors propose a new method that overcomes this drawback
and can compete with the state-of-the- art implementations while offering even better
results. Compared with our work, there seem to be some similarities of our cohesion
metric to the diffusion scheme described in [57], which also considers a measure on the
connectedness of nodes. Nevertheless, the question of parallelization is out of scope
for this work but may be worth to be considered in future.

A variant of the KL algorithm is the Fiduccia Mattheyses (FM) heuristic, which is
compared in [59] to a complete approach, which delivers an optimal solution. Because
FM is a heuristic, it does not necessarily create an optimal solution but has a signif-
icantly shorter runtime than the optimal methodology and is thus applicable also for
systems with a larger amount of nodes.

Vehicle Routing Problem. Similar problems as in the area of graph partitioning
also occur in other domains, where we pick the vehicle routing problem (VRP) as an

183

5. Task Creation

example from the transportation and logistics domain. The vehicle routing problem
[50] can be described as a generalized problem of the traveling salesman problem. It
is motivated from the logistical background of delivering goods from a depot to a
set of customers. It can be described as a graph where a set of n vertices represent
n− 1 customers and the depot, and the arcs represent direct connections between two
customers. The distance of customers connected by arcs is given by a distance matrix.
The problem is to find an optimal set of routes starting and ending at the depot to
deliver the goods to all customers while satisfying certain constraints. The criteria for
optimality are typically defined in terms of overall travel costs or travel time. To solve
this problem, beside well-known techniques like Tabu Search, Simulated Annealing
and genetic algorithms, also some special algorithms are applied, where the Savings
and the Sweep algorithm are the most common.

[64] presents an overview of the history and application of the Savings method. It
starts with a single route for each customer and calculates savings in terms of distance
for each pair of customers if both would be on the same route. Beginning with the pair
with the highest saving, two customers are linked to the same route until a constraint
is violated such as the maximum route length or vehicle capacity. New links can only
be added to the start or end of a route. This method has a lot of similarities to our
initial algorithm. We also start with a solution where nodes are completely separated
in partitions and iteratively merge two partitions with the best savings in terms of
communication costs and task weight imbalance.

Another heuristic often found when solving the VRP, is the Sweep algorithm [70].
It sorts all customers by the angle their location has to the location of the depot.
Then, it creates a new route starting with an arbitrary customer and adds customers
from the list to the route until any constraint is violated. The constraint is here the
maximum load of the vehicle in terms of weight and volume. This approach is hardly
applicable to the area of graph partitioning because the geographical position of a
node does not have any relevance for the solution. Nevertheless, it could be regarded
as kind of neighborhood relation, which is often used for optimizing algorithms as, for
example, in the Quick Cut algorithm [25].

184

6. Design Space Exploration

While this work deals with the creation of task structures from a Simulink specifica-
tion model, it is embedded into a design space exploration framework that covers the
complete design flow down to the implementation level. This framework addresses a
scenario where an existing system of software tasks mapped to a distributed hardware
architecture is extended by a new feature in terms of a Simulink model. The hard-
ware architecture is assumed to be hierarchical, as it can be found in the automotive
domain. Those architectures typically have a backbone bus which connects a number
of subsystems. Each subsystem consists of a set of ECUs connected by a local bus.

In Figure 6.1, an example of an architecture with three subsystems is depicted. The
backbone bus at the top is a FlexRay bus while the local buses within the subsystems
are CAN buses. The ECUs within a subsystem may already be utilized by tasks of the
existing task network depicted on the left. The dotted arrows indicate that a certain
signal is allocated to a bus slot or a task to an ECU. This induces a utilization for
each ECU. An ECU with utilization zero is currently not used and thus considered
as a potentially new ECU, which can be added to get more computation capacity.
Furthermore, ECUs that are already in use can be upgraded e.g. by increasing the
clock frequency or by switching to another processor type.

With the methods presented in Chapter 4, a Simulink model is translated into a
function network and with the approach from Chapter 5 a task network is created,
which should be allocated to the available hardware resources. The goal for the re-
maining design space exploration step is to keep the monetary costs that are needed
to modify the hardware architecture as low as possible. Costs may be induced by
either adding new ECUs or by replacing existing ECUs by other types that offer more

FlexRay
(1-2MBit/s)

CAN (FlexRay) CAN CAN

ARM7
(50-80MHz)

PPC

(ARM7)

Existing ECU
- Utilization by
 existing tasks(Modification

Rules)

Potentially
 new ECU

Bus

Task Network
 - Tasks
 - Signals

Subsystem 1 Subsystem 2 Subsystem 3

Figure 6.1.: Example of Hierarchical Target Architecture (Source:[11])

185

6. Design Space Exploration

computing capacity for the allocated task set. Furthermore, there may be defined
mapping constraints, which allow or forbid the mapping of tasks to the same resource
or to a specific ECU type.

For the design space exploration process in the context of this framework, there
currently exist three competing approaches: The first one was published in [10, 11]
and pursues a two-step approach where the problem is divided into a global and a
local analysis phase. The work of [77] is also based on a local and a global phase
but proposes alternative techniques to tackle the problem. Furthermore, based on the
work in [2], a holistic approach is investigated that aims at solving the problem as a
whole. In this work, we will rely on the first approach.

In [11], the hierarchy of the target architecture is used to split the process into
two phases: First, in the global analysis, each task of the task network is mapped
to a subsystem while a share-based metric is used to estimate the costs induced by
hardware modifications in a subsystem. Here, the minimum WCET of a task over all
processor types is considered, which enables the global analysis to guarantee a lower
bound for needed modification costs. In a second step, a local analysis is performed
where tasks that were assigned to a subsystem by the global analysis are allocated to
ECUs of that subsystem. Here, an exact scheduling analysis is performed to assure
system feasibility. Thus, we gain a response time for each task and each signal that
could be allocated successfully. For the local analysis, end-to-end deadlines are divided
into local deadlines for each subsystem they affect by the so-called deadline synthesis.
These deadlines are re-synthesized after each local analysis, where the already obtained
response times of tasks and signals are regarded. This may lead to relaxed deadlines
for remaining tasks and signals.

In a backtracking phase, those tasks that could not be mapped to a subsystem under
the globally proposed costs, are passed back to the global analysis in a so-called odd
set. Based on the knowledge gained in the local analysis, the global analysis proposes
a new distribution of all tasks of an odd set. The allocation of tasks that could already
be placed successfully by a previous local analysis remains unaffected. This process is
repeated until a feasible solution is found or all mapping options for tasks and signals
were considered as not being feasible with the given set of hardware modifications.

In this section, we will discuss the role of task creation within this design space
exploration scenario and propose some patterns how to adjust the task network based
on the previous analysis results. This may be, for example, realized by changing
the minimum and maximum task weights or adding further partitioning constraints.
Furthermore, we will evaluate the task creation approach in interaction with the design
space exploration by considering different task networks for the ViDAs case study and
observing the effects for the resulting deployment and costs.

Outline In Section 6.1, we give an overview of the design space exploration approach
as it was proposed in [10, 11]. In Section 6.2, we reason about the role of task creation
in the context of the design space exploration process and use the ViDAs case study
to evaluate the overall approach in Section 6.3. Section 6.4 concludes the chapter with
a summary and discussion of the results.

186

6.1. Overview of Design Space Exploration Process

Figure 6.2.: Examples for Modification Rules (Source:[11])

6.1. Overview of Design Space Exploration Process

The design space exploration consists of a global and a local analysis, which are iter-
atively repeated until either a solution was found or the system is not feasible under
the considered set of modifications and costs bounds. After each local analysis, the
results are used to further constrain the global analysis in a backtracking step.

The starting point is an existing hardware architecture with a pre-deployed task
network as it is depicted in Figure 6.1. Tasks are mapped to ECUs and signals between
tasks are mapped to local buses or the global bus, if the respective tasks are located
on different ECUs. This leads to a certain utilization for each ECU and a bus schedule
for the global bus. There may exist ECUs where no task is allocated to, leading
to a utilization of zero. Those ECUs are considered as unused and are not part of
the existing system. During design space exploration, a new task network should be
mapped to the existing system. Because this system is already utilized by the pre-
deployed task network, the new task network cannot necessarily be deployed without
doing any modifications. Such modifications allow to add further ECUs, which were
unused before, by mapping tasks to them or by upgrading already used ECUs. Those
upgrades may change the frequency or memory of a processor, or replace it by another
more powerful ECU type. This is exemplified in Figure 6.2, where a snapshot of the
architecture is shown. On the left, possible updates of a local bus are listed and on
the right for two ECUs different modifications are shown. The processor at the top
is currently of the type ARM7 running at 50 MHz and may be replaced either by an
ARM7 with 80 MHz or by an ARM9 processor. The processor at the bottom is not
part of the existing system and thus creates zero costs. If this processor is added as a
PowerPC (PPC) running at 90 MHz, it would induce additional costs of 15 EUR.

6.1.1. Global Analysis

In the global analysis, all tasks of the new task network should be mapped to subsys-
tems. To estimate the costs for each considered mapping option, costs functions are
defined. First, for each ECU the remaining capacity is determined by considering the
utilization by pre-deployed tasks. This is done for the currently used ECU type but
also for each allowed modification. The different capacities are related to the costs of
the respective modification resulting in a step function depicted in Figure 6.3 on the
left. The x-axis describes the offered capacity and the y-axis the needed costs. Thus,

187

6. Design Space Exploration

=

Figure 6.3.: Calculating Costs Functions (Source:[11])

each step represents a modification, which increases costs but also offers additional
capacity. In this example, we create two costs functions CI1 and CI2 for two ECUs
namely 1 and 2. Each of them offers two modifications to increase the initially offered
capacity. For the global analysis, we need the costs function for a whole subsystem
because concrete ECUs are not regarded. The costs function of a subsystem considers
all possible combinations of modifications that offer the needed capacity and returns
the minimum overall costs of all such modifications. It is depicted in Figure 6.3 on
the right. For example, to get an overall capacity of 3, we might take the modification
of ECU 1 with costs of CI1 (3) or the modification of ECU 2 with costs of CI2 (3). But
we may also allow for a combination of modifications of both ECUs leading to costs
of e.g. CI1 (2) + CI1 (1). The minimum of all such modification options determines the
costs function of a subsystem. More details on the calculation of costs functions can
be found in [10, 11].

To be able to apply the costs functions during global analysis, the needed capacity
for a certain allocation of tasks to subsystems needs to be estimated. This is done
by considering for each task that should be mapped to the respective subsystem the
minimum WCET over all processor types that are allowed for this subsystem. Taking
the minimum WCET enables us to get lower bounds for the costs that are needed to
place a set of tasks on a subsystem. Each real allocation of tasks would induce higher
or equal costs as the costs proposed by the costs function, but never less costs. If we
would take the maximum WCET or an average over all ECUs, the real costs could be
higher or lower as well, because the response times of tasks are not only determined by
WCETs but also, for example, by blocking times from other tasks on the same ECU.

This covers the estimation of the computational capacity that is needed to realize
the system. To also estimate the global communication induced by a certain task
partitioning, we need to find a valid allocation of signals that are sent between tasks
to the global bus. The global bus is assumed to be a time-triggered bus with a static
bus schedule i.e., we reduce the FlexRay bus to its static segment. This bus feasibility
analysis returns response times for each global signal if there exists a feasible schedule.
Otherwise, the currently considered task partitioning is not feasible.

Based on the costs functions and the bus feasibility analysis, the global analysis has
the goal to find an allocation of tasks to subsystems with minimum overall costs and
a valid global bus schedule. The first part is a variant of the classic graph partitioning
problem, where costs are not determined by edge costs but by allocation costs. Due to
the results of the comparison of different algorithms from Section 5.3, we implemented
again the KL+ algorithm to perform the global analysis. The bus feasibility analysis

188

6.1. Overview of Design Space Exploration Process

Figure 6.4.: Deadline Synthesis and Re-Synthesis (Source:[11])

is performed for each solution proposed by the KL+ algorithm. A solution is rejected
if there does not exist a feasible schedule.

When the global analysis step has finished with a valid task allocation, another
step is needed before the local analysis can be performed. This step is called deadline-
synthesis. Assuming a deadline of a task chain τ1, ..., τn that is distributed over different
subsystems, this deadline cannot be checked by a local analysis which only considers
one subsystem at a time. Thus, we need to determine deadlines that are local to
a subsystem, which we denote as deadline-synthesis. The basic idea is to split the
deadline into a set of deadlines for each chain of tasks that are allocated to the same
subsystem. For deadline synthesis, the response times of already deployed global
signals are considered. The length of each synthesized deadline is determined by
relating the sum of its task weights to the length of the remaining deadline.

This is exemplified in Figure 6.4. At the top, a task chain ~T is depicted where those
tasks that are surrounded by ellipses are allocated to the same subsystem. Between
succeeding tasks of different clusters, response times occur due to global bus commu-
nication, which are denoted here as R1 and R2. The deadlines D1 to D3 for the three
clusters are determined such that their sum and the global bus response times result
in the original deadline D~T. The remaining part of the figure describes the deadline
re-synthesis, which is explained in the next paragraph.

The result of one global analysis step consists of an allocation of tasks to subsystems,
the estimated costs for each subsystem, a feasible schedule for the global bus, and a
set of synthesized deadlines for each subsystem.

6.1.2. Local Analysis and Backtracking

The local analysis is performed for each subsystem, where tasks were allocated by the
previous global analysis. Its goal is to find a feasible ECU allocation for all tasks of
the subsystem and to determine response times for them. The maximum costs for
modifications is limited by the estimated costs of the global analysis. Please note that
there may exist several modification options resulting in the same costs. Due to the

189

6. Design Space Exploration

fact that the cost limit is based on a share-based estimation, there may be no feasible
solution for mapping all tasks to ECUs under this cost limit. In this case, the local
analysis determines a so-called odd set. This is a minimum set of tasks that are not
deployable while for all remaining tasks a feasible allocation exists. If the odd set is
empty for all subsystems, the allocation proposed by the global analysis is feasible
under the estimated costs and the process finishes with this allocation as final result.
If any odd set is not empty, we enter the backtracking phase.

This phase consists of different measures that may be taken to improve the results
of the global analysis by considering the knowledge gained during the local analysis.
First, synthesized deadlines are updated with the help of the response times of tasks
that were successfully deployed by the local analysis. This is depicted at the bottom of
Figure 6.4 starting with the deadlines of step i. These are the deadlines before the local
analysis has started. In the next line, the response times of those tasks are considered
that have been deployed to ECUs by the local analysis. Because the odd set is not
empty, there are still undeployed tasks without response times, which is the leftmost
task here. The goal of the deadline re-synthesis is to relax those deadlines by adding
time that is not used by already deployed tasks. This means, that the difference of
deadline and response times of all deployed tasks can be distributed on the remaining
tasks. For the example in Figure 6.4, this is indicated by a dotted line from the middle
cluster to the left cluster. The deadline of the middle cluster is greater than the sum
of all its response times and this difference is added to the deadline of the undeployed
task on the left. With these relaxed deadlines another local analysis is performed while
all deployed tasks remain deployed. Thus, the new odd set may only contain tasks of
the former odd set.

The second measure of backtracking is to modify local buses to obtain lesser response
times for communication. If this does not lead to a feasible solution, the global analysis
is started again for the tasks of all odd sets. All remaining tasks are assumed to be
deployed and their calculated response times are taken into account when determining
the costs function. This process is repeated until either a feasible solution with empty
odd sets can be found or under consideration of all possible modifications the new task
network cannot be completely deployed. In the latter case, the process is finished with
an intermediate solution still containing undeployed tasks.

6.2. On the Role of Task Creation

The role of task creation during the design space exploration phase is to determine the
granularity and number of tasks of the new task network. This affects the quality of the
results in terms of needed modification costs, the degree of freedom in terms of possible
allocation options, and also the runtime of the different analysis steps. For example,
task creation may merge only a few nodes leading to a very high number of tasks with
comparatively low weights. This allows a lot of allocation options for design space
exploration but also raises the runtime of the KL+ algorithm and the local analysis.
Furthermore, many tasks also lead to more task switches, which increases thrashing
as discussed in the task creation chapter. This may also lead to higher costs because

190

6.2. On the Role of Task Creation

ECUs cannot be used efficiently. Contrastingly, task creation may also deliver a task
network with a small number of tasks but with large task weights. This would reduce
the runtime of the KL+ algorithm but also restricts the freedom of the global and also
the local analysis to distribute the needed capacity on different computation resources.
This may lead to higher costs as well if a task is very computational intensive and may
only be executed by a powerful but expensive ECU type. And because design space
exploration cannot split a task, it has to choose this ECU to make the system feasible.

This shows that the interaction between task creation and design space exploration
is highly sensitive to the concrete application, and its structure and distribution of
node and channel weights. Thus, this step needs to be transparent and cannot be
completely automated because it requires the expert knowledge and experience of the
user. Nevertheless, we will sketch some typical scenarios that might occur during
design space exploration, describe how they could be detected, and propose proper
refinement measures. These measures describe how the task creation parameters in
terms of weight factors, maximum task weight, minimum number of tasks and parti-
tioning constraints may be adjusted to improve the overall result.

Bus Overload One typical scenario is a situation where many promising and good
solutions are rejected due to a missing feasible schedule for the global bus. Thus,
the global analysis has to choose an allocation with potentially higher costs where
the global bus is feasible. To detect such a situation, each time an allocation led
to an infeasible bus schedule, the estimated costs may be memorized. When the
global analysis has finished, the final result can be compared to the rejected results to
determine if those solutions would be better with respect to costs. If there were many
solutions rejected with less costs, this is an indicator to conduct measures to release
the global bus. This may be done, for example, by increasing the weight factor β (or
decreasing α) to prefer task networks with less inter-task communication by allowing
more imbalance of task weights. Additionally, the maximum task weight w+ may be
increased and the minimum number of tasks m− may be decreased because a less
number of tasks with higher weights may also lead to fewer communication density.

For local bus overload, this might be done similarly while it highly depends on the
chosen local analysis technique whether and how this problem might be detected.

Wasted Bus The converse scenario is a global bus that is empty or almost unused. In
this case, it might be worth to take measures to allow more inter-task communication
by decreasing the weight factor β (or increasing α). More global bus utilization does
not lead to higher costs as long as there is a feasible bus schedule. But a more balanced
task network allows more freedom in task placement because task weights will be closer
to the desired task weight. To support this process, also the maximum task weight
might be decreased to avoid heavy tasks, which need powerful and expensive ECU
types. Smaller tasks also allow to make better use of remaining capacities of already
existing ECUs without involving a modification.

191

6. Design Space Exploration

Another option would be to increase the minimum number of tasks, which decreases
the aspired task weight as well, and thus the expectation value of the standard devia-
tion. This would also lead to smaller tasks.

Strongly connected tasks Another scenario is a situation where comparatively many
tasks with small weights are allocated to a single ECU. This means, that there exists
one or more ECUs where the number of tasks is significantly higher than the average
number of tasks per ECU. This may be an indicator for a set of strongly connected
tasks with many communication channels. If this is the case, a proposed measure
would be to add commanding constraints that merge all these tasks or a subset into
one. Whether this is an appropriate measure depends on the resulting weight of the
merged tasks, which must not violate the maximum task weight w+. Additionally, we
may add a mapping constraint assuring that these tasks are mapped to a single ECU,
or to the ECU type they were mapped to before. This would help to assure that the
process converges and does not propose completely different solutions.

The effect of these measures would be a reduction of task switching times between
strongly connected tasks, and thus possibly less needed capacity. This leads to more
capacity left on the respective processor allowing that other tasks may be placed there.
Thus, the costs cannot become greater if we leave aside the fact that the global analysis
is a heuristic and may find different solutions if the set (or order) of input tasks changes.

Tasks that are hard to place Tasks that are hard to place are characterized as tasks
that are often part of an odd-set of different subsystems. This means that they could
not be placed on these subsystems under the estimated costs limit. One reason why
a task is hard to place may be a large task weight. In this case, there might exist no
ECU with sufficient capacity to place this task under the estimated costs, and it would
always be rejected. If the weight of this task is significantly higher than the weights of
the remaining tasks, a proper measure would be to reduce the maximum task weight
to force the task creation to split this task. Another reason for a refused task may be
a high communication density with other tasks, which occupies the local bus. This
may lead to a high response time and possibly a deadline violation. If a task could
not be placed on any subsystem, this is an indicator that it may have communication
channels to several tasks placed on different ECUs or subsystems.

A possible measure would be to force the task creation to split the task by forbidding
the merging of function nodes that are part of that task. The basic idea is to add
prohibitive constraints for those function nodes that have communication to different
other tasks but are not connected with each other, neither directly nor indirectly.
Thus, if there are independent clusters of nodes within the task, these clusters should
be separated if they communicate with different tasks. Such constraints would forbid
to create the same task again because at least one of the affected function nodes has
to be partitioned into another task.

192

6.3. Case Study and Evaluation

6.3. Case Study and Evaluation

To evaluate the task creation approach in the overall context of design space explo-
ration, we created a set of task structures for the ViDAs case study with a number of
tasks between one and 17. Because currently design space exploration is not able to
analyze function networks with cycles, we additionally had to transform the function
networks resulting from task creation to task networks that are accepted by the DSE
process. Thus, we resolved all cycles, which leads to the splitting of some tasks. Obvi-
ously, this may have influence on the characteristics of the network by increasing the
number of tasks and decreasing the minimum and maximum task weights. Neverthe-
less, those task networks are useful for an evaluation because our goal is to evaluate if
task networks with differing numbers of tasks, task weights and communication den-
sity also lead to different results in design space exploration. In particular, we want
to show that putting all nodes with the same sample time into one task does not lead
necessarily to cost-optimal solutions. Furthermore, we also claimed that too many
tasks may also lead to higher costs. Reasons for this may be too small task weights or
a very high communication density between tasks which may increase the bus load.

To model global communication, if needed, we insert a signal in each resulting func-
tion network for each channel between two function nodes. Furthermore, we estimate
new WCETs for each task. To enable code generation, a functional equivalent Simulink
model is created where each task is represented as a single subsystem. Thus, all blocks
of the original model are moved to the subsystem of their respective task, as described
in the bachelor thesis of Matthias Stasch [76]. Based on this transformed Simulink
model, for each subsystem, and thus each task, code can be generated and used for
WCET estimation.

The existing system for this evaluation is assumed as a distributed hardware ar-
chitecture with two subsystems Sub0 and Sub1 connected by a FlexRay Bus with 12
static slots. Each subsystem initially consists of two ECUs connected by a CAN bus.
We defined four different ECU types consisting of two different types of ARM7 and
LEON3 processors with the following costs:

• ARM7-slow: 14 EUR

• ARM7-fast: 18 EUR

• Leon3-slow: 28 EUR

• Leon3-fast: 38 EUR

Each existing ECU is of type ’ARM7-slow’ and may be replaced by each available
processor type. Furthermore, there may be added up to four additional ECUs from
any type in each subsystem. Buses cannot be updated in this scenario. The initial
hardware architecture is pre-deployed with a set of 20 tasks, which are distributed
on the four existing ECUs leading to an overall utilization of 92% for the ECUs in
subsystem Sub0 and 99% for the ECUs in subsystem Sub1. This means, that there is
around 9% overall free capacity on the existing system without any modifications.

193

6. Design Space Exploration

T S w w ↓ w ↑ ŵ com Sub0 Sub1 Costs
1 0 31.2% 31.24% 31.24% 0 0 1 0 14
5 7 5.9% 0.06% 16.76% 0.152 0.042 3 2 8
6 10 4.9% 0.06% 14.28% 0.162 0.055 5 1 8
7 10 4.2% 0.16% 6.26% 0.061 0.044 7 0 4
7 12 4.2% 0.06% 14.22% 0.123 0.056 4 3 8
8 11 3.7% 0.02% 16.36% 0.057 0.043 8 0 4
9 13 3.3% 0.06% 10.96% 0.034 0.043 9 0 4
10 15 3.0% 0.06% 6.26% 0.022 0.044 8 2 8
13 28 2.3% 0.16% 4.7% 0.026 0.051 11 2 8
17 32 1.7% 0.06% 9.84% 0.136 0.052 10 5 12∗

* incomplete solution

Table 6.1.: Design Space Exploration Results

For the evaluation, we estimated WCETs of the tasks for each task network and
each processor type by using the aiT tool suite. In Table 6.1, the results of design
space exploration are shown when applied to ten different task networks created from
the ViDAs function network. Starting on the left, the table columns show the char-
acterization of the task network in terms of number of tasks T and signals S. The
next columns contain the average task weight w , the minimum task weight w ↓, the
maximum task weight w ↑, the standard deviation ŵ , and the communication density
com. Please note, that task weights are given in percent for better readability. The
results of design space exploration are shown on the right of the table. In the columns
Sub0 and Sub1 the number of tasks that were mapped to the respective subsystem is
listed. The column Costs shows the additional costs that had to be invested to modify
the existing system to place the new task network. We do not consider the parameters
of task creation in this part because their influence on the resulting task network has
already been evaluated in Section 5.4. In this section, the goal is to evaluate the ef-
fects of the number of tasks and signals, the weights of tasks, and the communication
density on the results of design space exploration. The task networks are listed in
increasing order of the number of tasks they contain.

In general, it can be observed that, as we claimed, the resulting costs first decrease
with an increasing number of tasks, and then again increase as soon as the number
of tasks reaches higher values. Thus, the best results were gained for task networks
between seven and nine tasks leading to the cost minimum of 4 EUR. The maximum
costs are produced by the task network shown in the first line. This is the task
network as it would be proposed by the Embedded Coder implementation of Simulink
by putting all tasks with the same sample time into one task. Because the ViDAs
model has only one sample time, this results in one task with a weight of 31.24%.
Please remember, that this weight is determined by assuming the optimal processor,
and thus the weight for the initially used ECU might be much higher. Because a task
network with one task is perfectly balanced and has no communication, the respective
values are zero. The result for this task network shows that we need to invest 14 EUR

194

6.4. Summary

to be able to place this heavy-weighted task. These costs result from adding a new
ECU of type ’ARM7-slow’ to subsystem Sub0 because the capacity of existing ECUs
was not sufficient.

For the next networks with five and six tasks, we get costs of 8 EUR and the tasks are
distributed on both subsystems while in each subsystem one ECU was upgraded from
’ARM7-slow’ to ’ARM7-fast’ to offer more capacity. The best results were achieved for
the task networks with seven,eight and nine tasks, where all tasks could be allocated to
one subsystem by only upgrading one ECU from ’ARM7-slow’ to ’ARM7-fast’ leading
to costs of 4 EUR. Interestingly, another task network with seven tasks needed 8 EUR
to be successfully placed. Possible reasons for this may be, on the one hand, the higher
communication density of 5.6% compared to 4.4% resulting from two additional signals.
This potentially leads to more communication on the local bus and thus larger response
times. On the other hand, the standard deviation is comparatively high. Thus, there
are more tasks with small weights than in the other task network with seven tasks.

The task networks with 10 and 13 tasks lead again to costs of 8 EUR and need
modifications in both subsystems to allocate all tasks. Here, the higher number of
tasks and the smaller average task weight might play a role leading to more task
switches and less efficient processor use. Special attention has to be payed to the last
network with 17 tasks and 32 signals. Here, no solution was found where all tasks
could be allocated. Instead, the process returned a solution where only 15 tasks were
placed with costs of 12 EUR induced by three ECU upgrades from ’ARM7-slow’ to
’ARM7-fast’, one in subsystem Sub0 and two in subsystem Sub1. Although this is
an incomplete solution, it is still correct for all tasks that could be already mapped.
The reason why the remaining tasks could not be allocated is the global bus. Due
to the high number of tasks and signals, there was no free slot on the global bus but
the remaining tasks could not be placed without the need for global communication
between both subsystems.

The overall runtime of the design space exploration process for the different examples
varies between one and 46 seconds, except for the last task network with 17 tasks. This
example needs about 73 seconds because it had to consider all modifications that are
allowed for each subsystem. This leads to a lot of iterations of global and local analysis
steps until reaching the maximum cost limit.

6.4. Summary

We have shown how the task creation is integrated into the design space exploration
process. After presenting the basic concepts of design space exploration, we discussed
the role of task creation. First, it is the initial step that is needed to make the de-
sign space exploration applicable to a Simulink specification model. Second, it can be
considered as another backtracking step by refining task creation parameters and con-
straints with the knowledge gained in the previous design space exploration steps. For
the second aspect, we sketched some typical scenarios that might occur during design
space exploration and how parameters and constraints may be refined to improve the
result. However, this refinement highly depends on the concrete specification model

195

6. Design Space Exploration

and how the existing architecture is pre-deployed by tasks and signals. Thus, these
scenarios are thought as suggestions that might be offered to the user to help him in
the refinement step.

To show how different task networks of the same specification model behave on a
concrete architecture, we used the ViDAs case study and created a set of ten task
networks with one to 17 tasks. First, it was shown that the task network with one
heavy weighted task did not deliver the solution with the minimum costs. And also
the task network with the highest number of 17 tasks did not deliver a cost-optimal
solution due to high communication and low task weights. In this case, there was
not even any solution where all tasks could be allocated because the global bus was
fully utilized. Instead, the best results were achieved for task networks with between
seven and nine tasks where a good trade-off between task weights and communication
density was found. But there is also an example where a task network with seven tasks
needed higher costs. This shows that the design space exploration is not only sensitive
to the number of tasks but also to their weights and the communication between them.
Thus, the effort to reason about a ’good’ task network is worthwhile because it may
lead to significant costs savings in the resulting architecture. These results confirm
the basic claims we did for this work, which state that task weights should neither be
too small nor too large, and that communication plays a significant role and should
be minimized to keep bus utilization low.

Concerning future work, it might be further investigated which factors influence
the needed modification costs and how these factors could be considered during task
creation. Furthermore, the problem of resolving cycles may be explored in more detail
to minimize the number of task splittings as long as the design space exploration is not
capable of handling cycles. Additionally, it may be discussed whether and in which
situations cycles, as function networks allow, are desired in general for a task network.
It may be noted that we did some approaches to avoid cycles during task creation but
it turned out that this increases the runtime to unacceptable values. Thus, it might
be interesting to look for alternative approaches to solve this issue.

196

7. Conclusion

We presented an approach called task creation to derive a task structure from a
Simulink specification model, which should be allocated to a distributed hardware
architecture in a subsequent design space exploration. The architecture is assumed
to be pre-deployed by a task network representing the software parts of an existing
system. The overall optimization goal is to find a feasible allocation of the new task
structure with a minimum of costs that occur due to hardware modifications.

The first main goal of this work was to define a translation of a Simulink model into a
task network formalism where semantics in terms of partial order of block executions is
maintained. Furthermore, it had to be assured that each sequence of block executions
of a specific simulation step is finished before the next simulation step starts. This is
needed to guarantee that all signals are updated in time. Before reaching this goal, an
extended task network formalism had to be defined that is able to model the execution
behavior of a Simulink model. To achieve this, the function network formalism was
defined as a graph of tasks called function nodes connected by ports and channels.
Events are produced at event sources. This formalism offers complex activation of
function nodes in terms of superposition and synchronization. Furthermore, function
node behavior is described by an internal transition system where each transition
represents a node execution. Depending on the current state and the set of received
events, different output events may be produced with different execution time delays.
To also be able to model e.g. data store memory blocks of Simulink, another node
type was defined called data node. To describe the occurrence of events in a function
network we introduced event patterns covering the most common event models known
from literature.

Semantics of function networks was defined in terms of a composition of timed
automata communicating via synchronization events as known from UPPAAL. An
important component of a function node is a synchronization buffer, which is used to
store received events until all synchronization partners are available. To be able to im-
plement a function network, it is necessary that the function network is bounded. This
means that there exists a finite capacity for each buffer such that no buffer overflow oc-
curs indicated by a fail state. We showed for a specific class of function networks, which
is relevant for the context of this work, that boundedness is decidable by defining an
algorithm based on event pattern propagation. To be able to show semantics preser-
vation, we defined so-called causality patterns, which describe a conditional causal
dependency between input and output events with a minimum and maximum time
delay. This pattern enables to abstract from the concrete automaton semantics and
restrict to those properties we like to preserve. Thus, we derived causal dependencies
for function nodes and channels, which are used to show semantics preservation for
the Simulink translation and task creation operations.

197

7. Conclusion

Based on function networks, a translation of Simulink models was defined, where
blocks are translated to function nodes and signals to channels. For rate transition
blocks between different synchronous sets, special function nodes were defined trans-
lating from one sample time to another. To keep the synchronous behavior of the
Simulink model, we defined a single event source in the translated function network,
which produces events with the base period. Each sample time of the model is realized
by a special function node named period multiplier, which transforms the base period
into the respective sample time. This guarantees that blocks of different synchronous
sets are synchronized and run in those simulation steps they are supposed to.

We have shown that the specification semantics is preserved by defining a partial
order on function network events for Simulink translations. This partial order was de-
rived from the causal dependencies of function nodes and channels in terms of causality
patterns. The function network events were associated by a mapping function to sig-
nal updates that occur due to block executions in Simulink. We proved that for each
partial ordering of signal updates a partial ordering of the respective function network
events exists. To show that also the timing assumptions of Simulink are preserved,
we defined feasible block diagrams as those diagrams where in each simulation step
all needed block executions are finished in time. Then, we showed for feasible block
diagrams that also the execution of the translated function nodes is finished before
the next simulation step starts. Thus, the function network translation does not add
any delays, such as waiting times in buffers, except the negligible delays caused by the
execution of period multiplier nodes. We further showed that we can decide bounded-
ness also for the networks derived from Simulink by applying the algorithm proposed
in the function networks chapter.

In the current translation we abstract from the concrete behavior of state flow blocks
in terms of state flow charts. In general, it would be possible do represent such charts
by the internal transition systems of function nodes. However, this has also major
impacts on the translation of the remaining Simulink blocks because all conditions
that are used in a state flow chart to trigger a transition need to be represented by a
finite set of events in the function network. All these events have to be emitted by the
respective producer nodes when the respective condition holds. Thus, we would need
an abstract interpretation of all concrete signal values that influence the behavior of
state charts. This would also allow to explicitly model dynamic triggers of Simulink
blocks and thus get more precise estimations on the points in time where such blocks
are executed. Tackling these issues may be subject to future work.

The second main goal of this work was the task creation itself, where we defined
an optimization metric to iteratively merge function nodes into sets of tasks with
the goal to minimize inter-task communication and balance node weights. The latter
part was realized by minimizing the standard deviation with respect to a desired node
weight. To represent the implications of task creation also in the formal model, a set of
operations was defined to merge function nodes. Beside the merging itself we defined
operations to eliminate self-activations and local data nodes. Self-activations typically
arise when merging two subsequent nodes where the first one activates the second.
Under specific conditions such a self-activation may be removed by concatenating the
respective transitions. Local data nodes are nodes that are connected to exactly one

198

function node and can be removed if they do not influence the function node behavior.
For all operations we have shown that they preserve the specification semantics in terms
of causal dependencies on input and output events. Additionally, we showed that the
relevant properties to decide boundedness are preserved and thus boundedness remains
decidable also after task creation.

To perform the partitioning of function nodes into a set of tasks, a two-step algo-
rithm was proposed. First, a start solution is produced by an initial algorithm which
is improved by an extension of the Kernighan-Lin algorithm. This process is guided
by the cohesion metric as optimization goal and a set of user-defined constraints re-
stricting the minimum number of tasks and the maximum task weight. Furthermore,
partitioning constraints were defined to claim or forbid the merging of two function
nodes. This allows, for example, to determine the granularity of atomic nodes for
partitioning. Thus, the whole process of task creation is strongly user-guided and is
meant to support the user to find an appropriate system implementation.

We evaluated the task creation approach with the help of the ViDAs case study,
which models a driver assistance system in Simulink. After the translation into a
function network, we applied the proposed algorithms with different variations of pa-
rameters. First, it could be generally observed that the communication density was
significantly decreased for each task network, which was one major goal of task cre-
ation. Furthermore, weights were balanced and in particular the minimum task weight
was significantly increased to avoid tasks with very small weights. Due to the fact that
function networks derived from Simulink models usually have a high amount of commu-
nication, this aspect dominates the task creation process. To evaluate the scalability
of the approach, we also defined artificial benchmarks with up to 500 nodes that were
analyzed within acceptable time bounds.

As a future extension, we discussed to relax the condition to eliminate self-activations
to make this operation more general applicable. Even if this had effects on other
channels, this would still preserve the partial order of Simulink block executions. This
extension would facilitate to apply this operation also to function nodes with input
ports with more than one incoming channel as it can be often observed in Simulink
models. Another interesting point to investigate in future is how to determine the
worst case execution time when two transitions are concatenated by the operation to
eliminate self-activations. While the current approach of summing up the delays of
the single transitions is only an approximation, in practice the worst case execution
time might often differ from this sum e.g. because of cache effects and compiler
optimizations. Thus, it would be desirable to perform a WCET analysis for each
potential merging option, which is however currently not viable due to the needed
effort in time and manual configuration. Hence, for the future it would be worth to
investigate faster and more automated methods to better predict how execution times
change when code segments are concatenated.

As a last step, we presented the integration of task creation into the design space
exploration framework. After an overview of the basic concepts of the design space
exploration process, we discussed the role of task creation as the initial step to make
Simulink models available for the framework. Furthermore, task creation serves as
an additional backtracking step to refine the created task network by the knowledge

199

7. Conclusion

gained from previous results. To show the impact of different task networks on the
resulting allocations and in particular the costs needed to modify the existing system,
we evaluated different task networks created for the ViDAs case study. We observed
that the number of tasks, their weights and the amount of inter-task communication
has significant impacts on the needed modification costs. As we claimed before, neither
a very small nor a very high number of tasks leads to costs-minimal results. Instead,
intermediate solutions where tasks can be distributed to different ECUs without in-
ducing too much communication on local or global buses led to the best results. In
the task network with the highest number of tasks, the process was even not able to
allocate all tasks on the system because the global bus did not have enough capacity to
transmit all needed signals in time. This shows how sensitive the whole design process
is to the granularity and weight distribution of tasks and the communication density.
Thus, finding a reasonable task network is a major factor to get cost-minimal results
for architecture modifications.

A future extension regarding the interaction of task creation and design space ex-
ploration is the support or avoidance of cycles in function networks. Currently, cycles
need to be removed before applying design space exploration and they often occur in
terms of OR-loops when merging function nodes even if the original model was cycle-
free. Cycles are removed by splitting those tasks where a cycle starts or ends. This
increases the imbalance of task weights and the communication density between tasks
and thus counteracts the actual goal of task creation. To solve this, either cycles need
to be avoided by task creation at all, or the design space exploration needs to be ex-
tended to be able to handle them. Concerning the first option, we already investigated
an approach to check for cycles before performing a merging operation leading to an
extreme increase in runtime making it only applicable to very small function networks.
Furthermore, it may be desired in general that function networks with cycles can be
handled because they may already be existent in the original specification model and
thus cannot always be removed.

200

A. Proofs for Function Networks

A.1. Proofs for Event Patterns

The following lemma is the proof of Lemma 3.1.1 from page 28.

Lemma A.1.1 (Equivalent Representation of Event Patterns) Let EP be an
event pattern with EP = (ΣEP , P−, P+, J,O). An equivalent representation of this
event pattern is the following:

η+(t) =


⌊
J
P−

⌋
+ 1 , if t ∈ [0, P− − (J mod P−))

n+ 1 , if t ∈ [n · P− − J, (n+ 1) · P− − J), n >
⌊
J
P−

⌋

η−(t) =

{
0 , if t ∈ [0, O + P+ + J)

n , if t ∈ [O + n · P+ + J, O + (n+ 1) · P+ + J), n > 0.

Proof:

1. Proof for η+(t) = 1 +
⌊
t+J
P−

⌋
: Let J = k · P− + x with x ∈ [0, P−).

a) Let t ∈ [0, P− − (J mod P−)):

1 +

⌊
[0, P− − (J mod P−)) + J

P−

⌋
=

⌊
J

P−

⌋
+ 1

⇐⇒
⌊

[J, P− − (J mod P−) + J)

P−

⌋
=

⌊
J

P−

⌋
⇐⇒

⌊
[J, P− − ((k · P− + x) mod P−) + (k · P− + x))

P−

⌋
=

⌊
J

P−

⌋
⇐⇒

⌊
[J, P− − x+ k · P− + x)

P−

⌋
=

⌊
J

P−

⌋
⇐⇒

⌊
[k · P− + x, (k + 1) · P−)

P−

⌋
=

⌊
k · P− + x

P−

⌋
⇐⇒ k = k

201

A. Proofs for Function Networks

b) Let t ∈ [n · P− − J, (n+ 1) · P− − J), n >
⌊
J
P−

⌋
:

1 +

⌊
[n · P− − J, (n+ 1) · P− − J) + J

P−

⌋
= 1 + n

⇐⇒
⌊

[n · P−, (n+ 1) · P−)

P−

⌋
= n

⇐⇒ [n, n+ 1) = n

⇐⇒ n = n

2. Proof for η−(t) = max
(

0,
⌊
t−O−J
P+

⌋)
:

a) Let t ∈ [0, O + P+ + J):

η−(t) = max

(
0,

⌊
t−O − J

P+

⌋)
= max

(
0,

⌊
[0, O + P+ + J)−O − J

P+

⌋)
= max

(
0,

⌊
[−O − J, P+)

P+

⌋)
= max

(
0,

[⌊
−O − J
P+

⌋
, 1

))
= 0

b) Let t ∈ [O + n · P+ + J, O + (n+ 1) · P+ + J) with n > 0:

η−(t) = max

(
0,

⌊
t−O − J

P+

⌋)
= max

(
0,

⌊
[O + n · P+ + J, O + (n+ 1) · P+ + J)−O − J

P+

⌋)
= max

(
0,

⌊
[n · P+, (n+ 1) · P+)

P+

⌋)
= b[n, n+ 1)c
= n

�

202

A.1. Proofs for Event Patterns

The following lemma is the proof of Lemma 3.1.2 from page 29.

Lemma A.1.2 (Event Pattern Language) Let EP = (ΣEP , P−, P+, J,O) be an
event pattern. Then the language is defined as follows:

L(EP) = { (σ1, t1)....(σi, ti)...(σi+m, ti+m)... | σi ∈ ΣEP ,

(1) ti ∈ [max(0, (i− 1) · P− − J), O + (i+ 1) · P+ + J)

(2) ∀m : ti+m − ti ∈ [max(0,m · P− − J), O + (m+ 2) · P+ + J)

} where i,m ∈ N+

Proof: From Def. 3.1.1 we know:

L(EP) = { (σ1, t1)....(σi, ti)...(σi+n, ti+n)... | σi ∈ ΣEP ,

(1) i ≥ η−(ti),

i ≤ η+(ti),

(2) ∀m :

m+ 1 ≥ η−(ti+m − ti)
m+ 1 ≤ η+(ti+m − ti)
}

First, we proof (1). From the alternative event pattern representation of Lemma
3.1.1 follows that

ti ≤ [O + i · P+ + J,O + (i+ 1) · P+ + J) ∧

ti ≥

{
[0, P− − (J mod P−)) , if i ≤

⌊
J
P−

⌋
+ 1

[(i− 1) · P− − J, i · P− − J) , else

⇐⇒ ti < O + (i+ 1) · P+ + J ∧
ti ≥ max(0, (i− 1) · P− − J)

⇐⇒ ti ∈ [max(0, (i− 1) · P− − J), O + (i+ 1) · P+ + J)

The proof for (2) works in the same way as for (1) while i is replaced by m + 1
leading to

(2) ∀m : m+ 1 ≥ η−(ti+m − ti) ∧
m+ 1 ≤ η+(ti+m − ti)

⇐⇒ (2) ∀m : ti+m − ti ∈ [m · P− − J,O + (m+ 2) · P+ + J]

�

203

A. Proofs for Function Networks

The following lemma is the proof of Lemma 3.1.3 from page 30.

Lemma A.1.3 (Valid Translation to Jersak Model) Let EP = (ΣEP , P−, P+,
J, O) be a periodic event pattern with P− = P+ and its Eta-curves η+ and η−. The
translation from Def. 3.1.3 is a valid abstraction i.e., the resulting η-curves η−(t)P+J

and η+(t)P+J contain all streams that the event pattern contains i.e.

η+(t)P+J ≥ η+(t) ∧ η−(t)P+J ≤ η−(t)

Proof:

1. η+(t)P+J ≥ η+(t)

a) Case: t ∈ [0, P − (J mod P)) t ∈ [0, P − J)

η+(t)P+J ≥ η+(t)

⇐⇒
⌈
t+ Jitter

Period

⌉
≥
⌊
J

P

⌋
+ 1

⇐⇒
⌈

[0, (J mod P)) + ε+ J +O

P

⌉
≥
⌊
J

P

⌋
+ 1

With J = k · P + x where x ∈ [0, P)⌈
[0, ((k · P + x) mod P)) + ε+ k · P + x+O

P

⌉
≥
⌊
k · P + x

P

⌋
+ 1

⇐⇒
⌈

[0, x+ ε+ k · P + x+O

P

⌉
≥ k + 1

=⇒ k +

⌈
x+ ε+ x+O

P

⌉
≥ k + 1

=⇒
⌈
x+ ε+ x+O

P

⌉
≥ 1

b) Case: t = n · P − J + y with y ∈ [0, P)

η+(t)P+J ≥ η+(t)

⇐⇒
⌈
n · P − J + y + ε+ J +O

P

⌉
≥ n+ 1

⇐⇒
⌈
n · P + y + ε+O

P

⌉
≥ n+ 1

⇐⇒ n+

⌈
y + ε+O

P

⌉
≥ n+ 1

⇐⇒
⌈
y + ε+O

P

⌉
≥ 1

204

A.1. Proofs for Event Patterns

2. η−(t)P+J ≤ η−(t)

a) Case: t ∈ [0, O + P + J)

max

(
0,

⌊
t− Jitter
Period

⌋)
≤ 0

⇐⇒ max

(
0,

⌊
[0, O + P + J)− Jitter

P

⌋)
≤ 0

⇐= max

(
0,

⌊
O + P + J − ε− ε− J −O)

P

⌋)
≤ 0

⇐⇒ max

(
0,

⌊
P − ε− ε)

P

⌋)
≤ 0

⇐⇒ max(0, 0) ≤ 0

b) Case: t ∈ [O + n · P + J, O + (n+ 1) · P + J)
=⇒ t = O + n · P + J + y, y ∈ [0, P)

max

(
0,

⌊
O + n · P + J + y − Jitter

Period

⌋)
≤ n

⇐⇒ max

(
0,

⌊
O + n · P + J + y − ε− J −O)

P

⌋)
≤ n

⇐⇒ max

(
0,

⌊
n · P + y − ε

P

⌋)
≤ n

⇐⇒ n+

⌊
y − ε
P

⌋
≤ n

because y ≤ P − ε

�

The following lemma is the proof of Lemma 3.1.4 from page 31.

Lemma A.1.4 (Time Distance is Bounded) Let η+
1 , η

−
2 be Eta-functions of two

period-equivalent event patterns EP1 = (ΣEP
1 , P−1 , P

+
1 , J1, O1) and EP2 = (ΣEP

2 , P−2 ,

P+
2 , J2, O2) where EP1

P
= EP2. Then the following holds:

δt(η
+
1 , η

−
2) ≤ O2 + 2 · P + J2 + J1

Proof: By applying Def. 3.1.6 we need to show the following:

∀t1, t2 ∈ R+
0 | η

+
1 (t1) = η−2 (t2) : |t2 − t1| ≤ O2 + 2 · P + J2 + J1

205

A. Proofs for Function Networks

1. Case: η+
1 (t1) = η−2 (t2) =

⌊
J
P

⌋
+ 1

η+
1 (t1) =

⌊
J1

P

⌋
+ 1 ⇐⇒ t1 ∈ [0, P − (J1 mod P))

∧ η−2 (t2) =

⌊
J2

P

⌋
+ 1 ⇐⇒ t2 ∈ [O2 + P + J2, O2 + 2 · P + J2)

=⇒ sup({|t2 − t1|}) ≤ O2 + 2 · P + J2

≤ O2 + 2 · P + J2 + J1

�

2. Case: η+
1 (t1) = η−2 (t2) = 1 + n (n >

⌊
J
P

⌋
)

η+
1 (t1) = 1 + n ⇐⇒ t1 ∈ [n · P − J1, (n+ 1) · P − J1)

∧ η−2 (t2) = 1 + n ⇐⇒ t2 ∈ [O2 + (1 + n) · P + J2, O2 + (1 + n+ 1) · P + J2)

=⇒ sup({t2 − t1}) ≤ O2 + (1 + n+ 1) · P + J2 − (n · P − J1)

= O2 + 2 · P + J2 + J1

�

The following lemma is the proof of Lemma 3.1.6 from page 32.

Lemma A.1.5 (Infinite Distance) Let η+
1 , η

−
2 be Eta-functions of two periodic

event patterns EP1 = (ΣEP
1 , P1, P1, J1, O1) and EP2 = (ΣEP

2 , P2, P2, J2, O2) that are
not period-equivalent i.e., P1 = q

r · P2 where q, r ∈ R+ and q 6= r. The time distance
until the same number of events is produced grows with every periodic step and is thus
not bounded i.e. δt(η

+
1 , η

−
2) =∞ leading with Def. 3.1.6 to

lim
t1,t2→∞

(
sup

t1,t2∈R+
0

(|t2 − t1| | η+
1 (t1) = η−2 (t2))

)
=∞

Proof: From η+
1 (t1) = η−2 (t2) it follows for t1, t2 →∞:

η+
1 (t1) = η−2 (t2) = 1 + n1

=⇒ t1 ∈ [n1 · P1 − J1, (n1 + 1) · P1 − J1)

=⇒ t2 ∈ [O2 + (1 + n1) · P2 + J2, O2 + (1 + n1 + 1) · P2 + J2)

We first determine the maximum difference as follows:

sup
t1,t2∈R+

0

(|t2 − t1| | η+
1 (t1) = η−2 (t2))

= |O2 + (2 + n1) · P2 + J2 − n1 · P1 + J1|

= |O2 + J1 + J2 + (2 + n1) · P2 − n1 ·
q

r
· P2|

= |O2 + J1 + J2 + (2 + n1 · (1−
q

r
)) · P2|

206

A.1. Proofs for Event Patterns

Then regarding the limit leads to the statement we want to prove:

lim
t1,t2→∞

(
sup

t1,t2∈R+
0

(|t2 − t1| | η+
1 (t1) = η−2 (t2))

)
= lim
n1→∞

(∣∣∣O2 + J1 + J2 + (2 + n1 · (1−
q

r
)) · P2

∣∣∣) =∞

because q
r 6= 1 �

The following lemma is the proof of Lemma 3.1.7 from page 33.

Lemma A.1.6 (Synchronization is Correct Abstraction) Let EP1...EPn be n
period-equal event patterns with EP i = (ΣEP

i , P−i , P
+
i , Ji, Oi) and the respective Eta-

curves η
−/+
i where ∀i, j ∈ {1, ..., n} : EP i

P
= EP j. Let EPs = sync(EP1, ...,EPn)

be the synchronization of these event patterns with the Eta-curves η
−/+
s . Then the

following holds:

∀i ∈ {1, ..., n}, t ∈ R+
0 : η−s (t) ≤ η−i (t) ∧ η+

s (t) ≥ η+
i (t)

Proof:

1. ∀i ∈ {1, ..., n}, t ∈ R+
0 : η−s (t) ≤ η−i (t)

max

(
0,

⌊
t−Os − Js

P

⌋)
≤ max

(
0,

⌊
t−Oi − Ji

P

⌋)
⇐⇒ t−Os − Js ≤ t−Oi − Ji
⇐⇒ Oi + Ji ≤ Os + Js

⇐⇒ Oi + Ji ≤ max(O1, ..., On) + max(J1, ..., Jn)

2. ∀i ∈ {1, ..., n}, t ∈ R+
0 : η+

s (t) ≥ η+
i (t)

1 +

⌊
t+ Js
P

⌋
≥ 1 +

⌊
t+ Ji
P

⌋
⇐⇒ Js ≥ Ji

⇐⇒ max(J1, ..., Jn) ≥ Ji

�

The following lemma is the proof of Lemma 3.1.8 from page 34.

Lemma A.1.7 (Superposition is Valid Abstraction) Let EP1,EP2 be two event
patterns with EP1 = (ΣEP

1 , P−1 , P
+
1 , J1, O1) and EP2 = (ΣEP

2 , P−2 , P
+
2 , J2, O2) where

J1 = J2 = 0 and the respective lower Eta-curves η−1 and η−2 . Let further be EPs =

207

A. Proofs for Function Networks

super(EP1,EP2) be the superposition of both event patterns with the lower Eta-curve
η−s . Then the superposition offset is a valid abstraction because the following holds:

∀t ∈ R+
0 : η−s (t) ≤ η−1 (t) + η−2 (t)

Proof: Let t = Os + n · P+
s + y, y ∈ [0, P+

s], Os = O1 + x1 = O2 + x2 with x1, x2 > 0

η−s (Os + n · P+
s + y) ≤ η−1 (Os + n · P+

s + y) + η−2 (Os + n · P+
s + y)

⇐⇒ n ≤ η−1 (max(O1, O2) + n · 1
1
P+

1

+ 1
P+

2

+ y)

+ η−2 (max(O1, O2) + n · 1
1
P+

1

+ 1
P+

2

+ y)

⇐⇒ n ≤ η−1 (max(O1, O2) + n · 1
P+

1 +P+
2

P+
1 ·P

+
2

+ y)

+ η−2 (max(O1, O2) + n · 1
P+

1 +P+
2

P+
1 ·P

+
2

+ y)

⇐⇒ n ≤ η−1 (max(O1, O2) + n · P+
2

P+
1 + P+

2

· P+
1 + y)

+ η−2 (max(O1, O2) + n · P+
1

P+
1 + P+

2

· P+
2 + y)

⇐⇒ n ≤ η−1 (O1 + x1 + n · P+
2

P+
1 + P+

2

· P+
1 + y)

+ η−2 (O2 + x2 + n · P+
1

P+
1 + P+

2

· P+
2 + y)

Monotony
=⇒ n ≤ n · P+

2

P+
1 + P+

2

+ n · P+
1

P+
1 + P+

2

⇐⇒ n ≤ n · P
+
1 + P+

2

P+
1 + P+

2

⇐⇒ n ≤ n

�

The following lemma is the proof of Lemma 3.1.9 from page 35.

Lemma A.1.8 (Correct Event Pattern for Delayed Language) Let ΣEP be a
set of events with an event pattern EP (ΣEP) = (ΣEP , P−, P+, J,O). If each event
e ∈ ΣEP is delayed by a time interval of [min,max] with min,max ∈ N0 × N0 and

208

A.1. Proofs for Event Patterns

min ≤ max, then the resulting language L(ΣEP)′ can be abstracted by applying the
delay function. Following Def. 3.1.1, the delayed language L(ΣEP)′ is defined as

L(ΣEP)′ = { (σ1, t1 + [min,max])....(σi, ti + [min,max])...

(σi+m, ti+m + [min,max])... | σi ∈ ΣEP ,

(1) ti ∈ [max(0, (i− 1) · P− − J), O + (i+ 1) · P+ + J)

(2) ∀m : ti+m − ti ∈ [max(0,m · P− − J), O + (m+ 2) · P+ + J)

} where i,m ∈ N+

Then it holds

L(ΣEP)′ ⊆ L(delay(EP (ΣEP), [min,max]))

Proof: First, we can transform the language L(ΣEP)′ as follows:

L(ΣEP)′ = { (σ1, t1 + [min,max])....(σi, ti + [min,max])...

(σi+m, ti+m + [min,max])... | σi ∈ ΣEP ,

(1) ti ∈ [max(min, (i− 1) · P− − J + min), O + (i+ 1) · P+ + J + max)

(2) ∀m : ti+m − ti ∈ [max(0,m · P− − J − (max−min)),

O + (m+ 2) · P+ + J + max−min)

} where i,m ∈ N+

Now, we show language inclusion by determining the language of the event pattern
resulting from delay(EP (ΣEP)). Please remember that the delay function changes the
jitter to J ′ = J + max−min and the offset to O′ = O + min.

L(ΣEP)′ = { (σ1, t1)...(σi, ti)...(σi+m, ti+m)... | σi ∈ ΣEP ,

(1) ti ∈ [max(0, (i− 1) · P− − (J + max−min)),

O + min + (i+ 1) · P+ + J + max−min)

(2) ∀m : ti+m − ti ∈ [max(0,m · P− − (J + max−min)),

O + min + (m+ 2) · P+ + J + max−min)

} where i,m ∈ N+

⇐⇒
L(ΣEP)′ = { (σ1, t1)....(σi, ti)...(σi+m, ti+m)... | σi ∈ ΣEP ,

(1) ti ∈ [max(0, (i− 1) · P− − J − (max−min)),

O + (i+ 1) · P+ + J + max)

(2) ∀m : ti+m − ti ∈ [max(0,m · P− − J − (max−min)),

O + (m+ 2) · P+ + J + max)

} where i,m ∈ N+

This results in the following unequations to be satisfied:

209

A. Proofs for Function Networks

1.

max(min, (i− 1) · P− − J + min) ≥max(0, (i− 1) · P− − J − (max−min))

⇐⇒ min ≥ 0 ∧ min ≥− (max−min) = min−max

2.

O + i · P + J + max ≤ O + i · P + J + max

3.

max(min,m · P− − J − (max−min)) ≥ max(0,m · P− − J − (max−min))

⇐⇒ min ≥ 0

4.

O + (m+ 1) · P + J + max ≤ O + (m+ 1) · P + J + max

�

A.2. Proofs for Function Network Semantics

The following lemma is the proof of Lemma 3.3.1 from page 55.

Lemma A.2.1 (Transitivity of Causality)

(1) {e1, ..., en}[cond1]
[min1,max1]−−−−−−−−→ {f1, ..., fm}[cond2] ∧

(2) {f1, ..., fm}[cond2]
[min2,max2]−−−−−−−−→ {g1, ..., gr}[cond3]

=⇒ (3) {e1, ..., en}[cond1]
[min1+min2,max1+max2]−−−−−−−−−−−−−−−−−→ {g1, ..., gr}[cond3]

Proof: What we need to proof is that if the automata of the first two patterns (1)
and (2) never reach the ’fail’ state, also the automaton of the third pattern (3) never
reaches the ’fail’ state. (1) and (3) consume simultaneously all input events e1 to en in
an arbitrary order because both patterns have the same input events. When all input
events have been received, they both reach the state ’check’. Because the condition
cond1 is also identical, either both automata proceed to the state ’wait’ or return to
the state ’init’. Hence, the clock is also reset at the same time with the transition

(check
[cond1]/{c}−−−−−−−→ wait). Because we know that (1) holds, we know that between min1

and max1 time units all the events {f1, ..., fm} occur in an arbitrary order and the
condition cond2 holds. Then, the automaton of (1) returns to the state ’init’. As
soon as all events {f1, ..., fm} have occurred, the automaton of (2) reaches its ’check’
state, and we know from automaton (1) that cond2 holds at the time where the events
{f1, ..., fm} have occurred. Thus, the automaton of (2) proceeds to its ’wait’ state.

210

A.2. Proofs for Function Network Semantics

From (2) we know, that after an additional time delay between min2 and max2 time
units, the events {g1, ..., gr} occur and the condition cond3 holds. To summarize, the
events {g1, ..., gr} and the condition cond3 occur between min1+min2 and max1+max2

time units after {e1, ..., en} have occurred under the condition cond1, which is exactly
what (3) states. Thus, (3) never reaches its fail state. �

The following lemma is the proof of Lemma 3.3.2 from page 55.

Lemma A.2.2 (Transitivity of Causality with External Conditions)

(1) {e1, ..., en}[cond1]
[min1,max1]−−−−−−−−→ {f1, ..., fm} ∧

(2) {f1, ..., fm}[cond2]
[min2,max2]−−−−−−−−→ {g1, ..., gr} ∧

(3) ∀i ∈ {1, ..., n}, j ∈ {1, ...,m} : [cond2] holds during [ei, fj]

=⇒ (4) {e1, ..., en}[cond1]
[min1+min2,max1+max2]−−−−−−−−−−−−−−−−−→ {g1, ..., gr}

Proof: As a first step, we use (3) to extend (1) to the statement (1a) as follows:

{e1, ..., en}[cond1]
[min1,max1]−−−−−−−−→ {f1, ..., fm}[cond2] (1a).

We can do this because we know from (3) that cond2 holds as soon as an ei has occurred
and until an fj has occurred. By replacing (1) by (1a), we can omit (3) and finally
get the same statement as already proven in Lemma 3.3.1:

(1a) {e1, ..., en}[cond1]
[min1,max1]−−−−−−−−→ {f1, ..., fm}[cond2] ∧

(2) {f1, ..., fm}[cond2]
[min2,max2]−−−−−−−−→ {g1, ..., gr}

=⇒ (4) {e1, ..., en}[cond1]
[min1+min2,max1+max2]−−−−−−−−−−−−−−−−−→ {g1, ..., gr}

�

The following lemma is the proof of Lemma 3.3.3 from page 56.

Lemma A.2.3 (Combination of Conditions in Causality Pattern)

(1) {e1, ..., en}[cond1]
[min1,max1]−−−−−−−−→ {f1, ..., fm} ∧ ... ∧

{e1, ..., en}[condk]
[maxk,mink]−−−−−−−−→ {f1, ..., fm}

=⇒ (2) {e1, ..., en}[cond1 ∨ ... ∨ condk]
[min′,max′]−−−−−−−−→ {f1, ..., fm}

where min′ = min(min1, ...,mink), max′ = max(max1, ...,maxk)

Proof: All the patterns of (1) wait for the events e1, ..., en to occur. Then, for all
conditions cond1 to condk it holds that the output events f1, ..., fm occur after a delay
that may vary between min′ = min(min1, ...,mink) and max′ = max(max1, ...,maxk)
time units. This means, that it is sufficient that only one of these conditions is true to
see the events f1, ..., fm within a time interval of [min′,max′], which is exactly what
(2) states. �

211

A. Proofs for Function Networks

The following lemma is the proof of Lemma 3.3.4 from page 59.

Lemma A.2.4 (Event Pattern of Event Source) Let φ = (EP ,Pout) ∈ Φ be an
event source where EP = (ΣEP , P−, P+, J,O). Then the event pattern of each output
port poutj ∈ Pout is a valid abstraction of the respective language i.e.

∀poutj ∈ Pout : L(poutj) ⊆ L(ren(EP , {poutj .σ | σ ∈ Σ(poutj)}))

Proof: L(ren(EP , {poutj .σ | σ ∈ Σ(poutj)})) is defined as follows:

L(EP) = { (poutj .σ1, t1)....(poutj .σi, ti)...(p
out
j .σi+n, ti+n)... | σi ∈ Σ(poutj),

(1) ti ∈ [max(0, (i− 1) · P− − J), O + (i+ 1) · P+ + J)

(2) ∀m : ti+m − ti ∈ [max(0,m · P− − J), O + (m+ 2) · P+ + J)

} where i,m ∈ N+

1. We start with property (1) and the case i = 1. For L(poutj) we know

O ≤ t1 ≤ O + P+,

0 ≤ δi ≤ J
⇐⇒ t1 ∈ [O,O + P+],

δ1 ∈ [0, J]

⇐⇒ (t1 + δ1) ∈ [O,O + P+ + J]

=⇒ (1) (t1 + δ1) ∈ [max(0, (1− 1) · P− − J), O + (1 + 1) · P+ + J)

⇐⇒ (1) (t1 + δ1) ∈ [0, O + 2 · P+ + J)

2. Now, we show property (1) for i ≥ 1. For L(poutj) we know

ti + P− ≤ ti+1 ≤ ti + P+,

0 ≤ δi+1 ≤ J
=⇒ t1 + (i− 1) · P− + P− ≤ ti+1 ≤ t1 + (i− 1) · P+ + P+,

0 ≤ δi+1 ≤ J
⇐⇒ t1 + i · P− ≤ ti+1 + δi+1 ≤ t1 + i · P+ + J

⇐⇒ [O,O + P+] + i · P− ≤ ti+1 + δi+1 ≤ [O,O + P+] + i · P+ + J

⇐⇒ O + i · P− ≤ ti+1 + δi+1 ≤ O + P+ + i · P+ + J

⇐⇒ (ti+1 + δi+1) ∈ [O + i · P−, O + (i+ 1) · P+] + J]

From this statement, we can conclude property (1)

=⇒ (ti+1 + δi+1) ∈ [max(0, (i+ 1− 1) · P− − J), O + (i+ 1 + 1) · P+ + J)

⇐⇒ (ti+1 + δi+1) ∈ [i · P− − J), O + (i+ 2) · P+ + J)

212

A.2. Proofs for Function Network Semantics

3. The next step is to show that property (2) holds:
For L(poutj) we know

∀m : ti +m · P− ≤ ti+m ≤ ti +m · P+,

0 ≤ δi ≤ J
=⇒ ∀m : (ti+m − ti) ∈ [m · P−,m · P+],

0 ≤ δi ≤ J
⇐⇒ ∀m : ((ti+m + δi+m)− (ti + δi)) ∈ [m · P− − J,m · P+ + J]

From this statement, we can conclude property (2) i.e. ∀m :

=⇒ ((ti+m + δi+m)− (ti + δi)) ∈ [max(0,m · P− − J), O + (m+ 2) · P+ + J)

⇐⇒ ((ti+m + δi+m)− (ti + δi)) ∈ [m · P− − J,O + (m+ 2) · P+ + J)

�

The following lemma is the proof of Corollary 3.3.5 from page 81.

Corollary A.2.1 (Causality of Finite Source Data Node) According to the ex-
tended function network definition from Def. 3.2.3, a finite source data node d =
({pin}, δ,EP , {pout}) ∈ Dfsource with EP = (ΣEP , P−, P+, J,O) is translated into a
function node fd = ({pin, ptrd }, (S, s0 , T), {pout, p⊥d }). This leads to the following causal
dependency if the assumption holds that the delay between an output and input event
is bounded by P− − J:

∆(L(ΣEP), L(Σ(pin))) ≤ P− − J

=⇒ ∀e ∈ ΣEP : ptrd .e
δ−→ pout.e

Proof: From the definition of the output language of an event source (Def. 3.3.4) follows
that the minimum distance between two succeeding events is ∆−(L(ΣEP)) = P− − J
(while we know that for source nodes J < P− holds). The transition system of fd
starts in the ’ready’ state, where it produces an event e at pout δ time units after it has
received this event at ptrd , which is the statement to prove. Then it moves to the ’wait’
state, where it waits for an input event a ∈ Σ(pin) to arrive. From the assumption we
know that ∆(L(ΣEP), L(Σ(pin))) ≤ P−−J holds. This means, that we will always see
an input event a ∈ Σ(pin) before the next source event e ∈ ΣEP has arrived, and thus
the transition system is always in the ’wait’ state if an event e arrives. This concludes
the proof. �

213

A. Proofs for Function Networks

A.3. Proofs for Boundedness and Event Pattern
Propagation

The following lemma is the proof of Corollary 3.4.1 from page 87.

Corollary A.3.1 (Translating from RTC to Event Pattern) A RTC function

αu(∆) := Nu +

⌊
∆

P−

⌋
αl(∆) := N l +

⌊
∆

P+

⌋
can be represented by an event pattern EP = (ΣEP , P−, P+, J,O) where

• J = (Nu − 1) · P−

• O = −N l · P+

Proof:

1.

η+(∆) ≥ αu(∆)

⇐⇒ 1 +

⌊
∆ + J

P−

⌋
≥ Nu +

⌊
∆

P−

⌋
⇐⇒ 1 +

⌊
∆ + (Nu − 1) · P−

P−

⌋
≥ Nu +

⌊
∆

P−

⌋
⇐⇒ 1 +Nu − 1 +

⌊
∆

P−

⌋
≥ Nu +

⌊
∆

P−

⌋
2.

η−(∆) ≤ αl(∆) for αl(∆) ≥ 0

⇐⇒
⌊

∆−O − J
P+

⌋
≤ N l +

⌊
∆

P+

⌋
⇐⇒

⌊
∆ +N l · P+ − J

P+

⌋
≤ N l +

⌊
∆

P+

⌋
⇐⇒ N l +

⌊
∆− J
P+

⌋
≤ N l +

⌊
∆

P+

⌋
because J ≥ 0

�

214

A.3. Proofs for Boundedness and Event Pattern Propagation

The following lemma is the proof of Lemma 3.4.7 from page 92.

Lemma A.3.1 (Deciding Boundedness of Activation Buffers) Let f = (Pin,
A,Pout) be a function node with A = (S, s0 , T). Let further be

• R be the set of all partial runs of A where r = (s1
t1−→ s2...

tk−→ sk+1) ∈ R is a
partial run of the transition system of length k with si ∈ S, ti = (pi, Ei, si →
Ψi, si+1) ∈ T ,

• δmax(r) =
k∑
i=1

(δmaxi) denote the maximum delay of a run r where δmaxi denotes

the maximum delay of a transition ti as introduced in Lemma 3.3.12,

• act = Sync(Ip, {startf}, c) be the activation buffer of f ,

• EP (Ip) = (ΣEP , P, P, J,O) be the periodic event pattern over Ip.

Then it holds that act is bounded if each cyclic partial run of length k has a length
smaller than k · P i.e.:

act is bounded ⇐⇒ ∀r = (s1
t1−→ s2...

tk−→ s1) ∈ R : δ(r) ≤ k · P

Proof: For a synchronization buffer to be bounded, all input streams must have the
same period (see Lemma 3.4.5). The activation buffer has two input streams, namely
all input events of the function node that are known to arrive with the event pattern
EP (Ip) with period P , and start events whose language has been determined in Lemma
3.4.6 to be

L(startf) = { (startf , u1), ..., (startf , ui), ..., (startf , ui+m)}
| u1 = 0,

ui+1 = max(ui, ti) + δ,

δ ∈ [δmin, δmax]

Thus, for the period of start events it holds Pstart ≥ P because it always needs an input
event to see the next startf event.

1. =⇒ (Proof by contraposition):
If we assume that there exists a partial cyclic run r of length k with a delay
δ(r) > k · P , then this partial run can be concatenated to an infinite run leading
to Pstart > P . Together with Lemma 3.4.5, it follows that act is unbounded.

2. ⇐=:
If for each partial run of length k holds δ(r) ≤ k ·P , then it follows for the period
of startf events that Pstart ≤ P . Because we know that Pstart ≥ P holds, it
follows that Pstart = P and act is bounded.

�

215

A. Proofs for Function Networks

The following lemma is the proof of Lemma 3.4.9 from page 94.

Lemma A.3.2 (Cyclic Causal Dependency leads to Unboundedness) Let bfn
be a reachable function network with bfn = (Σ,P, C,Φ,F) and f = (Pin,A,Pout) ∈ F
be a state-independent function node with an input port pin ∈ Pin and a output port
pout ∈ Pout and a cyclic causal dependency between pin and pout. Let further be sync
the synchronization buffer of pin and act the activation buffer of f . Then it holds that
at least sync is unbounded or act is unbounded i.e.

∃ein ∈ Σ(pin), eout ∈ Σ(pout) :

pin.ein
[min,max]−−−−−−−→ pout.eout ∧ pout.eout

[min′,max′]−−−−−−−−→ pin.ein

=⇒ act is unbounded ∨ sync is unbounded

Proof:

1. OR loop: If pin has only one incoming channel, this must be the one which causes
the cyclic causal dependency, and it must be an OR loop because no synchroniza-
tion is needed for one incoming channel. For one input channel, the buffer sync
is always bounded. Due to the causal dependency from pin to pout, we know that
the event pattern of pout depends on pin. If we nevertheless try to determine
the event pattern of pout while ignoring pin, and propagate the event pattern to
pin, then an event pattern EP ′(pout) would be determined as superposition of
EP (pout) with itself leading with Lemma 3.4.2 to

EP ′(pout) = super(EP (pout), EP (pout)).

This event pattern would again be propagated to pin and then to pout leading to
EP ′′(pout) = super(EP ′(pout), EP ′(pout)) and so on. Thus, with each propaga-
tion pass, the period of EP (pout) is halved (see Lemma 3.4.8) leading eventually
to a violation of the boundedness condition of the activation buffer δmax ≤ P
because δmax > 0. Thus, the activation buffer act is unbounded.

2. AND loop: If there is more than one incoming channel at pin, we have a synchro-
nization loop, and there will never occur a synchronization event at pout because
this needs an event to occur at pin before. This would lead to an event pattern for
pout with an infinite upper period bound. Because such an event pattern cannot be
period-equal to any event pattern, this leads with Lemma 3.4.5 to an unbounded
synchronization buffer.

�

216

B. Proofs for Simulink Translation and
Preserving Semantics

B.1. Proofs for Translation

The following lemma is the proof of Lemma 4.2.1 from page 118.

Lemma B.1.1 (Period Multiplier - Output Port Language) Let fMult(k, off,
{o1, ..., om}, [δ−, δ+]) = ({pin},A, {pout1 , ..., poutm , p⊥}) be a period multiplier function
node and EP (Σ(pin)) = (Σ(pin), P, P, J,O) be the event pattern of the input port
leading with Lemma 3.1.2 to the timed language

L(EP (Σ(pin))) = { (pin.σ1, t1)...(pin.σi, ti)...(p
in.σi+m, ti+m)... | σi ∈ Σ(pin),

(1) ti ∈ [max(0, (i− 1) · P − J), O + (i+ 1) · P + J)

(2) ∀m : ti+m − ti ∈ [max(0,m · P − J), O + (m+ 2) · P + J)

} where i,m ∈ N+

Then the language for each output port poutj with j ∈ {1, ...,m} is defined as follows:

L(poj) = {(poj .oj , r1 + [δ−, δ+])...(poj .oj , ri + [δ−, δ+])...}
where ri = t1+off+(i−1)·k

Proof: When the first input event arrives, f is in its initial state sk−off . An output
event poj .oj is only produced in state sk i.e. it takes off input events and thus off ·P
time units from the first input event at t1 until we see the first output event at an output
port poj . Additionally, we have to consider the transition delay, which is defined to be
[δ−, δ+] leading to off ·P + [δ−, δ+]. Thus, the first event occurs at t1+off + [δ−, δ+],
which we denote as r1 +[δ−, δ+] with r1 = t1+off . After the first output event has been
emitted, we are in state s1, and thus it takes k input events, which are k ·P time units,
until the next output event is produced. Thus, the ith output event (i > 0) occurs at
time t1+off+(i−1)·k+[δ−, δ+], which we denote as ri+[δ−, δ+] with ri = t1+off+(i−1)·k.

�

The following lemma is the proof of Lemma 4.2.2 from page 119.

Lemma B.1.2 (Period Multiplier - Output Event Pattern) Let fMult(k, off,
{o1, ..., om}, [δ−, δ+]) = ({pin},A, {po1 , ..., pom , p⊥}) be a period multiplier function
node and EP = (ΣEP , P, P, J,O) be the event pattern of the input port. Then the
following holds:

∀j ∈ {1, ...,m} : L(poj) ⊆ L(delay(({poj .oj}, P · k, P · k, J,O + off · P), [δ−, δ+]))

217

B. Proofs for Simulink Translation and Preserving Semantics

Proof: Given

L(EP (Σ(pin))) = { (pin.σ1, t1)...(pin.σi, ti)...(p
in.σi+m, ti+m)... | σi ∈ Σ(pin),

(1) ti ∈ [max(0, (i− 1) · P − J), O + (i+ 1) · P + J)

(2) ∀m : ti+m − ti ∈ [max(0,m · P − J), O + (m+ 2) · P + J)

} where i,m ∈ N+

we can conclude from Lemma 4.2.1 that

L(poj) = {(poj .oj , r1 + [δ−, δ+])...(poj .oj , ri + [δ−, δ+])...}
where ri = t1+off+(i−1)·k

⇐⇒
L(poj) = { (poj .oj , r1 + [δ−, δ+])...(poj .oj , ri + [δ−, δ+])... |

(1) ri ∈ [max(0, (1 + off + (i− 1) · k − 1) · P − J),

O + (1 + off + (i− 1) · k + 1) · P + J)

(2) ∀m : ri+m − ri ∈ [max(0,m · k · P − J), O + (m · k + 2) · P + J) }

Together with Lemma 3.1.9, where the correctness of the delay function for event
pattern has been shown, the language of EP (poj) is determined as follows:

L(EP (poj)) = { (poj .oj , r1 + [δ−, δ+])....(poj .oj , ri + [δ−, δ+])... |
(1) ri ∈ [max(0, (i− 1) · (P · k)− J),

O + off · P + (i+ 1) · (P · k) + J)

(2) ∀m : ri+m − ri ∈ [max(0,m · (P · k)− J),

O + off · P + (m+ 2) · (P · k) + J) }

To show that L(poj) ⊆ L(EP (poj)), it remains to prove that all interval bounds
induced by (1) and (2) of L(EP (poj)) are valid abstractions of those from L(poj)
leading to the following cases:

1. max(0, (1 + off + (i− 1) · k − 1) · P − J ≥ max(0, (i− 1) · (P · k)− J)

=⇒ (off + (i− 1) · k) · P − J ≥ (i− 1) · (P · k)− J
⇐⇒ off + i− 1 ≥ i− 1

⇐⇒ off ≥ 0

2. O + (1 + off + (i− 1) · k + 1) · P + J ≤ O + off · P + (i+ 1) · P · k + J

⇐⇒ (1 + off + (i− 1) · k + 1) · P ≤ off · P + (i+ 1) · P · k
⇐⇒ (2 + off) · P + (i− 1) · k · P ≤ off · P + (i+ 1) · P · k

⇐⇒ (2 + off) · P ≤ off · P + 2 · P · k
⇐⇒ (2 + off) · P ≤ (2 · k + off) · P

⇐⇒ 1 ≤ k

218

B.2. Proofs for Preserving Semantics

3. max(0,m · k · P − J) ≥ max(0,m · P · k − J)

⇐⇒ 1 ≥ 1

4. O + (m · k + 2) · P + J ≤ O + off · P + (m+ 2) · P · k + J

⇐⇒ (m · k + 2) · P ≤ off · P + (m+ 2) · P · k
⇐⇒ (m · k + 2) · P ≤ (off + (m+ 2) · k) · P

⇐⇒ m · k + 2 ≤ off +m · k + 2 · k
⇐⇒ 2 ≤ off + 2 · k

because k ≥ 1, off ≥ 0

�

B.2. Proofs for Preserving Semantics

The following lemma is the proof of Lemma 4.3.1 from page 128.

Lemma B.2.1 (No Wait Delay for Start Event) Let f = (Pin,A,Pout) be a
function node and let the output language of the activation buffer L(EP (Ip)) be defined
as

L(EP (Ip)) = { (σ1, t1)....(σi, ti)...(σi+m, ti+m)... | σi ∈ Ip,
(1) ti ∈ [max(0, (i− 1) · P− − J), O + (i+ 1) · P+ + J)

(2) ∀m : ti+m − ti ∈ [max(0,m · P− − J), O + (m+ 2) · P+ + J)

} where i,m ∈ N+

According to Lemma 3.4.6 the language of start events is determined as

L(startf) = { (startf , u1)...(startf , ui)...(startf , ui+n)...}
| u1 = 0,

ui+1 = max(ui, ti) + [δmin, δmax]

Let further be δmax be the maximum delay of any transition t ∈ T . Then it holds:

∆−(L(Ip)) > δmax =⇒ ∀i ∈ N+ : ui ≤ ti ∧
waitstart = ∆(L(Ip), L(startf)) = 0

Proof: Proof by complete induction

1. Base Case (i=1):
u1 ≤ t1

From Lemma 3.3.12, we know that u1 = 0 ≤ t1. �

219

B. Proofs for Simulink Translation and Preserving Semantics

2. Induction Step:
ui ≤ ti =⇒ ui+1 ≤ ti+1

From Lemma 3.4.6, we know that for the language of the start event it holds

ui+1 = max(ui, ti) + [δmin, δmax]

ui≤ti
=⇒ ui+1 = ti + [δmin, δmax]

From ∆−(L(Ip)) > δmax, we know that

ti+1 > ti + δmax > ui+1.

From ui ≤ ti, it follows that ∀i ∈ N+ : ti − ui ≤ 0 holds, and thus it also holds that

waitstart = ∆(L(Ip), L(startf)) = 0

�

The following lemma is the proof of Lemma 4.3.2 from page 129.

Lemma B.2.2 (No Wait Delay for TBD Function Nodes) Let tbd be a feasible
TBD with tbd = (B, type, S,E,FT S , tr) and a block b ∈ B with n input signals. Let
fn = (Σ,P, C,Φ,F,D) be the function network translation of tbd with a respective
function node fb ∈ F with one input port with n > 1 incoming activation channels, a
maximum transition delay δmax = wcet(b), and the following causal dependencies on
input events in1, ..., inn and inj with j ∈ {1, ..., n} and trigger events trbp ∈ TRbp:

(1) {pin1
.in1, ..., pinn

.inn}
[wait−start,wait

+
start]−−−−−−−−−−−−−→ ((pin1

.in1, ..., pinn
.inn), startf) ∧

(2) pinj
.inj

[wait−in+wait−start,wait
+
in+wait+start]−−−−−−−−−−−−−−−−−−−−−−−−→ ((..., pinj

.inj , ...), startf)

(3) ∀j ∈ {1, ..., n}, ∀trbp | trbp[condbp]
[δj ,δj]−−−−→ pinj

.inj : δj < bp

Then it holds:

wait+start = 0, wait−start = 0, wait+inj
< bp− δmax

Proof:

1.
wait+start = 0, wait−start = 0

From the source node φbp, we know that it holds

∀trbp ∈ TRbp : ∆−(L(trbp)) = ∆+(L(trbp)) = bp

because it produces a stream with period bp with J = 0 and O = 0 leading with
Def. 3.3.4 to tri+1− tri = bp. Because TBD is feasible, we know that bp > δmax,
which leads with assumption (3) to

∀j ∈ {1, ..., n} : ∆−(L(pinj .inj)) ≥ bp ≥ δmax.

This leads with Lemma 4.3.1 to wait+start = wait−start = 0.

220

B.2. Proofs for Preserving Semantics

2.
waitinj

< bp− δmax

From (3) and because TBD is feasible, we know that it holds:

trbp[condbp]
[δj ,δj]−−−−→ pinj .inj , δj < bp− δmax.

Thus, it holds for all input events that ∀i, j ∈ {1, ..., n} : δi − δj < bp − δmax
leading immediately to

wait+inj
= max

i 6=j
(∆+(L(pinj

.inj), L(pini
.ini))) < bp− δmax.

�

The following lemma is the proof of Lemma 4.3.3 from page 131.

Lemma B.2.3 (Preserve Partial Order - Period Multiplier Nodes) Let tbd be
a feasible TBD with tbd = (B, type, S,E,FT S , tr), fn = (Σ,P, C,Φ,F,D) its func-
tion network translation and t be simulation step. Let s1, s2 ∈ S be signals with
(b1, s1, b2) ∈ E, (b2, s2, b

′
2) ∈ E, (s1, s2) ∈ POS(tbd, t) and @(s, s1) ∈ POS(tbd, t).

Let furthermore fts = tr(b1) = (per, init) be the firing time specification of block
b1, and trb1 be a trigger event of b1 produced by the period multiplier block ffts =
fMult(perbp ,

init
bp , {..., trb1 , ...}) at port ptrb1 . Then the following holds:

∃trbp ∈ TRbp : (trbp, ptrb1 .trb1) ∈ POΣ(fn, t)

Proof: Due to Def. 4.3.4 the statement holds if all the following holds:

1.

active(EP (ptrb1 .trb1), t)
Def. 4.3.3⇐⇒ 0 ≤ O + J − (t mod P) < bp ∧

r1 ≥ O

From (s1, s2) ∈ POS(tbd, t) we know that rdy(b1, t) holds i.e.

t = init+ k · per, k ∈ N0

Following Lemma 4.2.2, the event pattern of output event ptrb1 .trb1 is defined as

EP (ptrb1 .trb1) = ({ptrb1 .trb1}, P ∗
per

bp
, P ∗ per

bp
, J,O +

init

bp
· P + ε).

Because fMult
b1,fts

has an activation channel from φbp, we can determine P = bp,
O = 0 and J = 0 which leads to

EP (ptrb1 .trb1) = ({ptrb1 .trb1}, bp ∗
per

bp
, bp ∗ per

bp
, 0, 0 +

init

bp
· bp+ ε)

= ({ptrb1 .trb1}, per, per, 0, init+ ε)

221

B. Proofs for Simulink Translation and Preserving Semantics

Thus, we can show the first part of active(EP (ptrb1 .trb1), t) as follows

0 ≤ init+ ε− ((init+ k · per) mod per) < bp

⇐⇒ 0 ≤ init+ ε− init < bp

⇐⇒ 0 ≤ ε < bp

The second part r1 ≥ O = init + ε follows directly from Lemma 4.2.1, where
the output language is determined such that the first event occurs at t1+off + ε,
where here off = init

bp . Because the input language has the period bp it follows

r1 = t1+off + ε ≥ init

bp
· bp+ ε = init+ ε.

2.

∃trbp ∈ TRbp : trbp[condbp]
[ε,ε]−−→ ptrb1 .trb1 , ε < bp

From Def. 4.2.2 of the period multiplier node, it follows

pinfts.tr[state = sk]
[ε,ε]−−→ ptrb1 .trb1 .

From Def. 4.2.6, we also know that there exists an activation channel c = (ptrb1 ,

[0, 0], pinfts) from the source node φbp. Furthermore, we know that the condition

[state = sk] holds during [trbp, p
in
fts.tr] because there cannot be any preceding ac-

tivation that could change the state due to the feasibility of tbd. Thus, each pre-
vious activation must be finished before the next simulation step starts. Together
with Corollary 3.3.1 and Lemma 4.3.2 it follows:

∃trbp ∈ TRbp : trbp[state = sk]
[ε,ε]−−→ ptrb1 .trb1

and it holds ε < bp. �

Lemma B.2.4 (Active Event Pattern with Delay) Let tbd be a feasible TBD
with tbd=(B, type, S,E,FT S , tr), fn = (Σ,P, C,Φ,F,D) its function network trans-
lation and t be a simulation step. Let (s, s′) ∈ POS(tbd, t) with s′ ∈ upd(b). Then it
holds

active(EP (M(s)), t) ∧
EP (M(s′)) = ren(delay(EP (M(s)), [delay, delay]),M(s′))

where delay = waitin + wcet(b)

=⇒ active(EP (M(s′)), t)

Proof: Let EP (M(s)) = ({M(s)}, P, P, J,O). We know that J = 0 because delays only
occur in function nodes, where we only consider WCETs and no BCETs leading to
fixed delays. We further know from Lemma 4.3.3 that O = init + ε + wcets, where

222

B.2. Proofs for Preserving Semantics

wcets is the sum of WCETs of predecessor blocks on a path to b producing finally the
signal s. Independently from the concrete path, we know that wcets < bp because TBD
is feasible. This leads to

EP (M(s′)) = (M(s′), P, P, 0, O + waitin + wcet(b))

If active(EP (M(s), t) holds, we know that r1 ≥ 0 must hold because M(s′) cannot
occur earlier than M(s). It remains to show that

0 ≤ O + waitin + wcet(b) + 0− (t mod P) < bp

⇐⇒ 0 ≤ init+ ε+ wcets+ waitin + wcet(b)− (t mod P) < bp

From s <t s
′ follows that rdy(b) holds and thus t = init+ k · per leading to

0 ≤ init+ wcets+ waitin + wcet(b)− (init+ k · per mod P) < bp

⇐⇒ 0 ≤ wcets+ waitin + wcet(b) < bp

This holds because wcets+waitin+wcet(b) is a sum of WCETs of blocks in a partially
ordered sequence, which is known to be smaller than bp for feasible TBDs. �

The following lemma is the proof of Lemma 4.3.4 from page 131.

Lemma B.2.5 (Preserve Partial Order: Source Blocks) Let tbd be a feasible
TBD with tbd=(B, type, S,E,FT S , tr), fn = (Σ,P, C,Φ,F,D) its function network
translation and t be a simulation step. Let s1 ∈ S be a signal with (b1, s1, b

′) ∈ E and
@(s, s1) ∈ POS(tbd, t). Then it holds:

(1) ∃trbp ∈ TRbp : (trbp, ptrb1 .trb1) ∈ POΣ(fn, t)

=⇒ (2) (ptrb1 .trb1 ,M(s1)) ∈ POΣ(fn, t)

Proof: b1 is either a block without any input signals (except from moore-sequential
blocks) or a rate transition block from block a to block b, where pera > perb. For
pera < perb it never happens that b runs without a and thus b1 can never be the first
block to be executed. To show (2), we need to show all the following:

1.

ptrb1 .trb1 [condtrb1]
[wcet(b),wcet(b)]−−−−−−−−−−→M(s1)

a) If b1 is a block without any input signals, it is translated to a function
node with a transition triggered by pinb1 .trb1 that produces M(s1) in any state
leading with Corollary 3.3.1 and Lemma 4.3.2 to

pinb1 .trb1
[waitin+wcet(b),waitin+wcet(b)]−−−−−−−−−−−−−−−−−−−−−→M(s1).

waitin = 0 because we only have one input signal here and thus do not
have to wait for any other signal. Because there exists a channel c =
(ptrb1 , [0, 0], pinb1), we can conclude with Theorem 3.3.3 that

ptrb1 .trb1
[wcet(b),wcet(b)]−−−−−−−−−−→M(s1).

223

B. Proofs for Simulink Translation and Preserving Semantics

b) If b1 is a rate transition block with pera > perb, there exists a transition
triggered by pinb1 .trb1 that produces M(s1) when in state sk. Furthermore,

we know that [sk] holds during [pinb1 .trb1 , startfb1] because there cannot be
another activation that could change the state due to the feasibility of tbd.
Together with Corollary 3.3.1 and Lemma 4.3.2 this leads to

pinb1 .trb1 [state = sk]
[waitin+wcet(b),waitin+wcet(b)]−−−−−−−−−−−−−−−−−−−−−→M(s1),

where waitin = 0 because we have again only one input signal. Because
there exists a channel c = (ptrb1 , [0, 0], pinb1), we can conclude with Theorem
3.3.3 that

ptrb1 .trb1 [state = sk]
[wcet(b),wcet(b)]−−−−−−−−−−→M(s1)

2.

active(EP (M(s1)), t)

a) If b1 is a block without any input signals, we know from (1) that

active(EP (ptrb1 .trb1), t).

From 1.a) follows that EP (M(s1)) can be determined as follows:

EP (M(s1)) = ren(delay(EP (ptrb1 .trb1), [wcet(b1),wcet(b1)]), s1).

With Lemma B.2.4, it follows that active(EP (M(s1)), t) holds.

b) If b1 is a rate transition block with pera > perb, we know that pera = perb ·n
with n ∈ N+, n > 1, and there exists a period multiplier node for each
fts ∈ ex(ftsb, pera) \ ftsa, where

ex(ftsb, pera) = {(pera, (initb + i · perb) mod pera) | 0 ≤ i ≤ n− 1}.

From Lemma 4.3.3, we know that

EP (ptrb1 .trb1) = ({ptrb1 .trb1}, pera, pera, 0, (initb + i · perb) mod pera + ε).

With 1.(b) and Lemma 3.4.1, the event pattern of M(s1) is defined as

EP (M(s1) = super(...,EP i(M(s1)), ...), where

EP i(M(s1)) = ren(delay(EP (ptrb1 .trb1), [wcet(b),wcet(b)]),M(s1))

= ({M(s1)}, pera, pera, 0, (initb + i · perb) mod pera + ε+ wcet(b)).

From rdy(b1, t) we know that t = initb + k · perb, k ∈ N0.

To show active(EP i(M(s1)), t), with Def. 4.3.3, we need to show

224

B.2. Proofs for Preserving Semantics

i.

0 ≤ O + J − (t mod P) < bp

⇐⇒ 0 ≤(initb + i · perb) mod pera + ε+ wcet(b)

− (initb + k · perb) mod pera < bp

⇐⇒ 0 ≤(i · perb) mod pera + ε+ wcet(b)− (k · perb) mod pera < bp

⇐⇒ 0 ≤(i · perb) mod (perb · n) + ε+ wcet(b)

− (k · perb) mod (perb · n) < bp

⇐⇒ 0 ≤i mod n+ ε+ wcet(b)− k mod n < bp

Because for a superposition of event patterns to be active it is sufficient
that one of the superposed event pattern is active, we choose the fts
with i = k mod n and get the following:

⇐⇒ 0 ≤ (k mod n) mod n+ ε+ wcet(b)− k mod n < bp

⇐⇒ 0 ≤ k mod n+ ε+ wcet(b)− k mod n < bp

⇐⇒ 0 ≤ ε+ wcet(b) < bp

ii. r1 ≥ O = init + ε follows directly from Lemma 4.3.3, where r1 ≥ init
has been shown for period multiplier nodes. Because a period multiplier
(with an execution time ε) is a predecessor of a function node that
models a source block, the first event of this node may not occur earlier
leading to r1 ≥ init+ ε.

3.

∃trbp ∈ TRbp : trbp[cond
′
bp]

[ε+wcet(b),ε+wcet(b)]−−−−−−−−−−−−−−→M(s1), wcet(b) < bp

From (1) and Lemma 4.3.3, we know trbp[condbp]
[ε,ε]−−→ ptrb1 .trb1 with ε < bp.

Together with 2. and the feasibility of tbd it follows that wcet(b) < bp.

�

The following lemma is the proof of Lemma 4.3.5 from page 132.

Lemma B.2.6 (Preserve Partial Order - Rate Transition Blocks) Let tbd be
a feasible TBD with tbd = (B, type, S,E,FT S , tr), fn = (Σ,P, C,Φ,F,D) its function
network translation and t be a simulation step. Let (s, s′) ∈ POS(tbd, t) and b be a
block with s′ ∈ upd(b) and type(b) = ’rate-transition’ connecting the blocks a and b
with the sample times ftsa = tr(a) = (pera, inita) and ftsb = tr(b) = (perb, initb).
Let further the following hold:

active(EP (M(s), t) ∧

trbp[condbp]
[ε+wcets,ε+wcets]−−−−−−−−−−−−→M(s), wcets < bp

225

B. Proofs for Simulink Translation and Preserving Semantics

Then it holds:

(1) M(s)[condM(s)]
[wcet(b),wcet(b)]−−−−−−−−−−→M(s′) ∧

(2) active(EP (s′), t) ∧

(3) trbp[cond
′
bp]

[ε+wcets′,ε+wcets′]−−−−−−−−−−−−−→M(s′), wcets′ < bp

Proof:

1. M(s)[condM(s)]
[wcet(b),wcet(b)]−−−−−−−−−−→M(s′)

a) If pera > perb, there exists a transition triggered by pinb .s that produces
M(s′) in each state leading with Lemma 4.3.2 to

pinb .s
[waitin+wcet(b),waitin+wcet(b)]−−−−−−−−−−−−−−−−−−−−−→M(s′)

where waitin = 0 because there is no other input signal than s. From
Def. 4.2.6, we know that there exists a channel c = (ps, [0, 0], pinb) and that
M(s) = ps.s, which leads with Lemma 4.3.2 to

M(s)
[wcet(b),wcet(b)]−−−−−−−−−−→M(s′).

b) If pera < perb, b is translated to a period multiplier block, where there exists
a transition triggered by pinb .s that produces M(s′) in state sk leading with
Corollary 3.3.1 and Lemma 4.3.2 to

pinb .s[state = sk]
[waitin+wcet(b),waitin+wcet(b)]−−−−−−−−−−−−−−−−−−−−−→M(s′)

where waitin = 0 because we only have one input signal here. From Def.
4.2.6, we know that there exists a channel c = (ps, [0, 0], pinb) and that
M(s) = ps.s which leads to

M(s)[state = sk]
[wcet(b),wcet(b)]−−−−−−−−−−→M(s′).

2. active(EP (M(s′)), t)
Def. 4.3.3⇐⇒ 0 ≤ O + J − (t mod P) < bp ∧ r1 ≥ O

a) If pera > perb, we know from 1a) that M(s)
[wcet(b),wcet(b)]−−−−−−−−−−→ M(s′) holds.

With Lemma 3.4.1, the event pattern EP (M(s′)) is determined to

EP (M(s′)) = super(...,EP i(M(s′)), ...), where

EP i(M(s′)) = ren(delay(EP (M(s), [wcet(b),wcet(b)],M(s′)).

With Lemma B.2.4, we can conclude that active(EP i(M(s′), t) holds. Thus,
according to Def. 4.3.3, also active(EP (M(s′))) holds.

226

B.2. Proofs for Preserving Semantics

b) If pera < perb, the rate transition block is translated to a period multiplier
block fMult(k, off, {M(s′)}, [wcet(b),wcet(b)]) with k = perb

pera
and off = 0

leading to the event pattern

EP (M(s′)) = (M(s′), P ∗ k, P ∗ k, J,O + off · P + wcet(b)).

With P = pera this leads to

EP (M(s′)) =(M(s′), pera ∗
perb
pera

, pera ∗
perb
pera

, J,O + 0 · pera + wcet(b))

=(M(s′), perb, perb, J,O + wcet(b)).

From s <t s
′, we know that rdy(b′, t) holds, where s′ ∈ upd(b′) i.e. ∃k ∈

N0 : initb + k · perb = t. Thus, we get for the first part of active(EP (s′), t)

0 ≤ O + wcet(b)− ((initb + k · perb) mod perb) < bp

⇐⇒ 0 ≤ O + wcet(b)− initb < bp.

From Def. 4.2.6, we know that inita = initb and we know O = inita+wcets,
where wcets < bp is the sum of all executions delays of preceding blocks i.e.

0 ≤ inita + wcets+ wcet(b)− inita < bp

⇐⇒ 0 ≤ wcets+ wcet(b) < bp.

The second part r1 ≥ O results from the output language of the period
multiplier node described in Lemma 4.2.1, where the first event occurs at
t1+off + ε with off = 0. And from active(EP (s), t) it follows that t1 ≥ O.

3. trbp[cond
′
bp]

[ε+wcets′,ε+wcets′]−−−−−−−−−−−−−→M(s′), wcets′ < bp

We know that trbp[condbp]
[ε+wcets,ε+wcets]−−−−−−−−−−−−→ M(s) with wcets < bp holds. To-

gether with 1., it follows that trbp[condbp]
[ε+wcets′,ε+wcets′]−−−−−−−−−−−−−→ M(s′) holds, where

wcets′ = wcets + wcet(b), and wcets is the sum of all blocks that have been ex-
ecuted successively before due to the partial order. Because we know that tbd is
feasible, we also know that wcets′ < bp.

�

The following lemma is the proof of Lemma 4.3.6 from page 133.

Lemma B.2.7 (Preserve Partial Order - Ordinary Blocks) Let tbd be a feasi-
ble TBD with tbd = (B, type, S,E,FT S , tr), fn = (Σ,P, C,Φ,F,D) its function net-
work translation and t be a simulation step. Let (s, s′) ∈ POS(tbd, t) and b be a
block with s′ ∈ upd(b), n input signals in1, ..., inn, where ∃j : inj = s and type(b) ∈
{’sequential’, ’Moore-sequential’, ’combinational’}.

227

B. Proofs for Simulink Translation and Preserving Semantics

Let fb = ({pinb }, ({s0}, s0, {t}), {pout1 , ..., poutm}) ∈ F be the translation of b and
M(s) = ps.s as defined in Def. 4.2.6. Let further the following hold:

(A) active(EP (M(s), t)) ∧

(B) ∃trbp ∈ TRbp : trbp[condbp]
[ε+wcets,ε+wcets]−−−−−−−−−−−−→M(s), 0 ≤ wcets < bp

Then it holds:

(1) M(s)
[waitin+wcet(b),waitin+wcet(b)]−−−−−−−−−−−−−−−−−−−−−→M(s′) ∧

(2) active(EP (M(s′)), t) ∧

(3) ∃trbp ∈ TRbp : trbp[cond
′
bp]

[ε+wcets′,ε+wcets′]−−−−−−−−−−−−−→M(s′), wcets′ < bp

Proof:

1.

M(s)
[waitin+wcet(b),waitin+wcet(b)]−−−−−−−−−−−−−−−−−−−−−→M(s′)

After Def. 4.2.6, fb has one state and one transition

(pinb , E, s0 → {..., (ps′ , s′, δ), ...}, s0),

where E = Σact(pinb) = {in1, ..., inn} and s = inj. With Corollary 3.3.1 and
Lemma 4.3.2 this leads to

pinb .(in1, ..., inn)
[wcet(b),wcet(b)]−−−−−−−−−−→M(s′).

Furthermore, Def. 4.2.6 says that for each signal inj, there exists a channel
c = (pinj

, [0, 0], pinb). With Theorem 3.3.3 this leads to

∀j ∈ {1, ..., n} : pinj
.inj

[wait−in+wcet(b),wait+in+wcet(b)]
−−−−−−−−−−−−−−−−−−−−−→M(s′).

Because for each delay the bounds are equal, we know that waitin = wait−in =
wait+in. With assumption (B) and M(s) = M(inj) = pinj .inj, we get

M(s)
[waitin+wcet(b),waitin+wcet(b)]−−−−−−−−−−−−−−−−−−−−−→M(s′),

where waitin < bp− wcet(b).

2.

active(EP (s′), t)

Following Lemma 3.4.1, we know from the causal dependency shown at 1. and
the fact that fb has only one input port, that EP (M(s′)) can be determined as

EP (M(s′)) = ren(delay(EP (M(s)), [wcets′, wcets′]),M(s′)),

where wcets′ = waitin + wcet(b). Then it follows with Lemma B.2.4 that

active(EP (s′), t).

228

B.2. Proofs for Preserving Semantics

3.

∃trbp ∈ TRbp : trbp[cond
′
bp]

[ε+wcets′,ε+wcets′]−−−−−−−−−−−−−→M(s′), wcets′ < bp

From assumption (B) and 1. follows that

∃trbp ∈ TRbp : trbp[condbp]
[ε+wcets′,ε+wcets′]−−−−−−−−−−−−−→M(s′),

where wcets′ = wcets + waitin + wcet(b). We know that wcets + waitin is the
sum of all blocks that have been executed successively before b due to the partial
order. Because tbd is feasible, we know that wcets′ < bp.

�

229

C. Proofs for Task Creation

C.1. Proofs for Formal Composition Operations

The following lemma is the proof of Lemma 5.2.1 from page 164.

Lemma C.1.1 (Causality of Signals and Channels) Let fn = (Σ,P, C,Φ,F,D)
be a function network with a function node f = (Pin,A,Pout) ∈ F with A = (S,
s0 , T) that has a self loop from its output port pw ∈ Pout sending an event w to its
input port pa ∈ Pin receiving an event a. Let further be fn ′ = elima(fn, f, d) =
(Σ′,P ′,F ,Φ,D′, C′) be the function network after the self loop has been eliminated.
Then it holds:

∃d = (Pind , δd, dsig ,Poutd) ∈ D ∧
∃cw = (pw, δw, pd), pd ∈ Pind ∧
∃ca = (pd′ , δa, pa), pd′ ∈ Poutd

=⇒ ∀e ∈ Σ(pw) : pw.e
δwrite+δsignal+δact−−−−−−−−−−−−−→ pa.e

where δwrite = waitstartw + δw,

δsignal = waitstartd + δd,

δact = waitstarta + δa

Proof:

1. From Theorem 3.3.3 and Corollary 3.3.2 follows

∃d = (Pind , δd, dsig ,Poutd) ∈ D

=⇒ ∀pd ∈ Pind , p′d ∈ Poutd , e ∈ Σ(pd) : pd.e
waitstartd

+δd−−−−−−−−−→ p′d.e

where waitstartd = [wait−startd , wait
+
startd

]

2. From Theorem 3.3.3 and Corollary 3.3.6 follows

∃cw = (pw, δw, pd), pd ∈ Pind

=⇒ ∀e ∈ Σ(pw) : pw.e
waitstartw+δw−−−−−−−−−−→ pd.e

where waitstartw = [wait−startw , wait
+
startw]

231

C. Proofs for Task Creation

3. From Theorem 3.3.3 and Corollary 3.3.6 follows

∃ca = (p′d, [δ
−
a , δ

+
a], pa), p′d ∈ Poutd

=⇒ ∀e ∈ Σ(pd′) : pd′ .e
waitstarta+δa−−−−−−−−−→ pa.e

where waitstarta = [wait−starta , wait
+
starta]

From (a),(b) and (c) follows by transitivity the statement to prove. �

The following lemma is the proof of Lemma 5.2.2 from page 165.

Lemma C.1.2 (Causality of Self Loop) Let fn = (Σ,P, C,Φ,F,D) be a function
network with a function node f = (Pin,A,Pout) ∈ F with A = (S, s0 , T) that has a
self loop from its output port pw ∈ Pout sending an event w to its input port pa ∈ Pin
receiving an event a. Let further be fn ′ = elima(fn, f, d) = (Σ′,P ′,F ,Φ,D′, C′) the
function network after the self loop has been eliminated. Then the following holds:

∃t1 = (p1, in, s→ Ψ1, s
′) ∈ T | ∃ψ1 = (pw, e, δ1) ∈ Ψ1 ∧

∃t2 = (pa, e, s
′ → Ψ2, s

′′) ∈ T | ∃ψ2 = (po, o, δ2) ∈ Ψ2 ∧
(

∃d = (Pind , δd, dsig ,Poutd) ∈ D ∧
∃cw = (pw, δw, pd), pd ∈ Pind ∧
∃ca = (pd′ , δa, pa), pd′ ∈ Poutd (signal self loop)

∨
∃cc = (pw, δc, pa) (channel self loop)

)

=⇒ (p1.(in), startf)[statef = s]
δ1+δloop+δstartf

+δ2
−−−−−−−−−−−−−→ po.o[statef = s′′]

Proof:

1. From Theorem 3.3.4 follows that

∃t1 = (p1, in, s→ Ψ1, s
′) ∈ T | ∃ψ1 = (pw, e, δ1) ∈ Ψ1(red transition)

=⇒ (p1.(in), startf)[statef = s]
δ1−→ pw.e[statef = s′]

2. From 1. and Corollary 3.3.6 follows that

∃d = (Pind , δd, dsig ,Poutd) ∈ D ∧
∃cw = (pw, δw, pd), pd ∈ Pind ∧
∃ca = (pd′ , δa, pa), pd′ ∈ Poutd (signal self loop)

∨
∃cc = (pw, δc, pa) (channel self loop)

=⇒ ∀e ∈ Σ(pw) : pw.e
δloop−−−→ pa.e

232

C.1. Proofs for Formal Composition Operations

where δloop = δwrite + δsignal + δact, if the loop involves a signal data node (as
shown under 1.), or δloop = waitstartc + δc if it is a channel self loop (shown in
Corollary 3.3.6).

3. From Assumption A2 of Def. 5.2.6 follows that

[statef = s′] holds during [pw.e, pa.e].

4. With Theorem 3.3.4 and 3. follows that

∃t2 = (pa, e, s
′ → Ψ2, s

′′) ∈ T | ∃ψ2 = (po, o, δ2) ∈ Ψ2

=⇒ pa.e[statef = s′]
δstartf

+δ2
−−−−−−−→ po.o[statef = s′′]

5. All the previous statements lead to

(p1.(in), startf)[statef = s]
δ1−→ pw.e[statef = s′] ∧

pw.e
δloop−−−→ pa.e ∧

[statef = s′] holds during [pw.e, pa.e] ∧

pa.e[statef = s′]
δstartf

+δ2
−−−−−−−→ po.o[statef = s′′]

Lemma 3.3.2
=⇒ (p1.(in), startf)[statef = s]

δ1−→ pw.e[statef = s′] ∧

pw.e[statef = s′]
δloop−−−→ pa.e[statef = s′] ∧

pa.e[statef = s′]
δstartf

+δ2
−−−−−−−→ po.o[statef = s′′]

Lemma 3.3.1
=⇒ (p1.(in), startf)[statef = s]

δ1+δloop+δstartf
+δ2

−−−−−−−−−−−−−→ po.o[statef = s′′]

�

233

Index

Activation Buffer, 61, 74, 92
Activation Channel, 40, 82, 164
Active Event Pattern, 125

Base Period, 104, 109
Basic Channel, 38, 59
Basic Function Network, 36
Block Ready, 110
Boundedness, 82, 87, 94, 123

Causality Pattern, 52
Channel Weight, 142, 146
Cohesion, 142, 146
Commanding Constraints, 142
Condition Pattern, 53
Cycle, 48, 92
Cyclic Causal Dependency, 92

Data Node Elimination, 153
Deadline, 48, 107
Delay Channel, 40
Desired Task Weight, 142

Event Model, 14
Event Pattern, 26
Event Pattern Propagation, 83
Event Source, 36, 58
Event Stream, 13
Extended Function Network, 39, 42

Feasibility, 127
FIFO Data Node, 40, 81, 97
Finite Source Data Node, 41, 81, 97
Firing Time Specification, 108, 117
Function Node, 36, 60, 74

Initial Algorithm, 172

Loop Component, 61, 66

MATLAB Simulink, 18

Node Merging, 149
Node Weight, 141, 145

Output Specification, 36

Partitioning Constraints, 142
Path, 47
Period Multiplier, 104, 118, 131, 145
Prohibitive Constraints, 142

Rate Transition, 19, 104, 132
Reachability, 47
Read Channel, 40, 156

Sample Time, 18, 104, 108
Self-Activation Elimination, 160
Shared Data Node, 40, 81, 97
Signal Data Node, 41, 80, 97, 164
Signal Update, 104, 110, 124
State-Independence, 48, 152, 158, 167
Stateflow, 19, 136
Superposition, 34, 36, 93
Synchronization, 33, 36, 62
Synchronization Buffer, 60, 62, 90
Synchronous Set, 19, 104

Task Network, 17
Timed Automaton, 10
Timed Synchronous Block Diagram, 108
Transition System, 36, 61, 69

ViDAs, 173, 193

Waiting Time Pattern, 53

235

List of Figures

1.1 Distributed Hardware Architecture . 2
1.2 Overview of Design Space Exploration Framework 3
1.3 Example of a Simulink Block Diagram 5

2.1 Periodic/Sporadic event stream model (Source: [24]) 15
2.2 Example for a Task Network (Source: [24]) 18
2.3 Example for a Simulink Block Diagram 19

3.1 Task Activation by Synchronization (AND) and Superposition (OR) . . 22
3.2 Simple Example of an Adaptive Cruise Control (ACC) System 23
3.3 Merging Example for a Simple Task Chain 24
3.4 Merging Example for a Complex Task Chain 24
3.5 Motivation for Offset in Event Models 27
3.6 η+ and η− Functions of Event Patterns 29
3.7 Simple Function Network Model of an Adaptive Cruise Control System 37
3.8 Left: Read channels from Data Nodes d1 to dn Right: Translation of

Read Channels into Basic Function Network 40
3.9 Translation of Shared Data Node . 41
3.10 Translation of FIFO Data Node . 41
3.11 Translation of Signal Data Node . 42
3.12 Translation of Finite Source Data Node 42
3.13 Example of a Synchronization (AND) Loop 46
3.14 Example of a Superposition (OR) Loop 47
3.15 End-to-end Deadline . 49
3.16 Example for Causal Dependencies in Function Nodes 51
3.17 Observer Automaton for RSL ’F1’ Pattern [65] 51
3.18 Causality Pattern Automaton . 52
3.19 Condition Pattern Automaton (RSL pattern ’F2’ [65]) 54
3.20 Complex Transitions for Timed Automata 58
3.21 Event Source Automaton TA(φ) . 58
3.22 Basic Channel Automaton TA(c) . 60
3.23 Function Node Semantics - Overview . 61
3.24 Synchronization Buffer . 62
3.25 Synchronization Buffer Automaton with capacity c = 2 63
3.26 Loop Automaton . 66

237

List of Figures

3.27 Transition System Components . 67
3.28 Activation Automaton TAActivate . 68
3.29 Output Automata Composition TAtkOut for Transition tk 68
3.30 Finish Automaton TAtkFinish for Transition tk 69
3.31 Event Pattern Propagation using Causality Pattern 84
3.32 Deciding boundedness for periodic event patterns 89
3.33 Examples for Cyclic Causal Dependencies 93

4.1 Example for a Simulink Translation . 105
4.2 Simulink Execution Semantics . 111
4.3 Period Multiplier Transition System . 118
4.4 Preserving Semantics from Simulink to Function Networks 125
4.5 Preserving partial order in function network translation 130

5.1 Task Creation Example for a Task Chain 143
5.2 Merging Function Nodes . 150
5.3 Elimination of Local Data Nodes . 155
5.4 Left: Translation of Read Channels into Basic Function Network Right:

Delays of Reading Data Nodes . 157
5.5 Simple Self-Activation with Direct Channel 163
5.6 Simple Self-Activation with Local Data Node 163
5.7 Self-Activation with Data Node with Additional Outgoing Channel . . . 163
5.8 Self-Activation with Data Node with Additional Incoming Channel . . . 164
5.9 Delays for Self-Activation . 165
5.10 Extension of Self-Activation Elimination to Multiple Input Channels . . 180

6.1 Example of Hierarchical Target Architecture (Source:[11]) 185
6.2 Examples for Modification Rules (Source:[11]) 187
6.3 Calculating Costs Functions (Source:[11]) 188
6.4 Deadline Synthesis and Re-Synthesis (Source:[11]) 189

238

List of Tables

5.1 Comparing Algorithms w.r.t Runtime (in Seconds) 170
5.2 Comparing Algorithms w.r.t Optimality (in %) 171
5.3 Task Creation Results for ViDAs model 174
5.4 Comparing ViDAs Results of Initial Algorithm and KL+ 176
5.5 Task Creation Benchmark Results . 177

6.1 Design Space Exploration Results . 194

239

Bibliography

[1] S. Abdi. Functional verification of system level model refinements. PhD thesis,
California State University at Long Beach, Long Beach, CA, USA, 2005.

[2] E. Althaus, R. Naujoks, and E. Thaden. A column generation approach to schedul-
ing of periodic tasks. In Int’l Symposium on Experimental Algorithms (SEA),
volume 6630 of LNCS, pages 340–351. Springer, 2011.

[3] R. Alur and D. Dill. A theory of timed automata. Theor. Comput. Sci., 126:183–
235, April 1994.

[4] J. Bao, P. Battram, A. Enkelmann, A. Gabel, J. Heyen, T. Koepke, C. Läsche,
and S. Sieverding. Projektgruppe ViDAs – Endbericht. Technical report, Carl
von Ossietzky Universität Oldenburg, 2010.

[5] G. Behrmann, A. David, and K. G. Larsen. A tutorial on uppaal. In Interna-
tional School on Formal Methods for the Design of Computer, Communication
and Software Systems (SFM), pages 200–236. Springer, 2004.

[6] A. Benveniste, B. Caillaud, and P. L. Guernic. From synchrony to asynchrony. In
Int’l Conf. on Concurrency Theory (CONCUR), pages 162–177. Springer, 1999.

[7] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. L. Guernic, and R. D.
Simone. The synchronous languages twelve years later. In Proceedings of the
IEEE, pages 64–83, 2003.

[8] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monni-
aux, and X. Rival. A static analyzer for large safety-critical software. In ACM
SIGPLAN 2003 Conf. on Programming Language Design and Implementation,
PLDI ’03, pages 196–207, 2003.

[9] C. Brooks, E. Lee, X. Liu, S. Neuendorffer, Y. Zhao, and H. Zheng (eds.). Het-
erogeneous concurrent modeling and design in java (volume 1: Introduction to
ptolemy ii). Technical Report UCB/ERL M05/21, University of California, Berke-
ley, 2005.

[10] M. Büker, W. Damm, G. Ehmen, A. Metzner, I. Stierand, and E. Thaden.
Automating the design flow for distributed embedded automotive applications:
keeping your time promises, and optimizing costs, too. Reports of SFB/TR 14
AVACS 69, SFB/TR 14 AVACS, 2011. ISSN: 1860-9821, http://www.avacs.org.

241

Bibliography

[11] M. Büker, W. Damm, G. Ehmen, A. Metzner, I. Stierand, and E. Thaden.
Automating the design flow for distributed embedded automotive applications:
Keeping your time promises, and optimizing costs, too. In Proc. International
Symposium on Industrial Embedded Systems (SIES’11), pages 156–165, 2011.

[12] M. Büker, W. Damm, G. Ehmen, and I. Stierand. An automated semantic-based
approach for creating tasks from matlab simulink models. In G. Salaün and
B. Schätz, editors, Proc. of 16th International Workshop on Formal Methods for
Industrial Critical Systems (FMICS), Lecture Notes in Computer Science, pages
149–164. Springer Verlag, 2011.

[13] M. Büker, T. Gezgin, and I. Stierand. On the implementability of complex real-
time systems. Technical report, SFB/TR 14 AVACS, 2011. AVACS Technical
Report No.68.

[14] M. Büker, K. Grüttner, P. A. Hartmann, and I. Stierand. Mapping of concur-
rent object–oriented models to extended real–time task networks. In Forum on
Specification and Design Languages (FDL), 09 2010.

[15] M. Büker, K. Grüttner, P. A. Hartmann, and I. Stierand. Mapping of concurrent
object–oriented models to extended real–time task networks. In System Speci-
fication and Design Languages – Selected Contributions from FDL 2010, pages
37–54. Springer, January 2012.

[16] M. Büker, A. Metzner, and I. Stierand. Testing real-time task networks with
functional extensions using model-checking. In 14th International Conference on
Emerging Technologies and Factory Automation, pages 1 – 10, 2009.

[17] L. P. Carloni, S. Member, K. L. Mcmillan, and A. L. Sangiovanni-vincentelli.
Theory of latency-insensitive design. In IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, volume 20, pages 1059–1076, 2001.

[18] P. Caspi, A. Curic, A. Maignan, C. Sofronis, S. Tripakis, and P. Niebert. From
Simulink to SCADE/Lustre to TTA: a layered approach for distributed embedded
applications. In Proc. ACM SIGPLAN 2003, LCTES ’03, 2003.

[19] E. Clarke, O. Grumberg, and D. Long. Model checking. In Proceedings of the
NATO Advanced Study Institute on Deductive program design, pages 305–349,
1996.

[20] E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction. In
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’92, pages 343–354. Association for Computing Machinery (ACM), 1992.

[21] A. Davare, D. Densmore, T. Meyerowitz, A. Pinto, A. Sangiovanni-Vincentelli,
G. Yang, H. Zeng, and Q. Zhu. A next-generation design framework for platform-
based design. In DVCon 2007, February 2007.

242

Bibliography

[22] M. Di Natale. Optimizing the multitask implementation of multirate simulink
models. In IEEE Real-Time and Embedded Technology and Applications Sympo-
sium, pages 335–346, Washington, DC, USA, 2006. IEEE Computer Society.

[23] M. Di Natale, L. Guo, H. Zeng, and A. Sangiovanni-Vincentelli. Synthesis of mul-
titask implementations of simulink models with minimum delays. IEEE Transac-
tions on Industrial Informatics, 2010.

[24] H. Dierks, A. Metzner, and I. Stierand. Efficient model-checking for real-time task
networks. In 6th International Conference on Embedded Software and Systems,
pages 11–18, May 2009.

[25] S. Dutt. New faster kernighan-lin-type graph-partitioning algorithms. In Proc.
Intl. Conf. on Computer-aided design (ICCAD), 1993.

[26] U. Eisemann. Modeling Guidelines for Function Development and Production
Code Generation. dSPACE GmbH, 2006.

[27] P. Eles, Z. Peng, K. Kuchcinski, and A. Doboli. System level hardware/software
partitioning based on simulated annealing and tabu search. Design Automation
for Embedded Systems, 2(1), 1996.

[28] R. Ernst, J. Henkel, and T. Benner. Hardware-software cosynthesis for microcon-
trollers. IEEE Des. Test, 10(4):64–75, Oct. 1993.

[29] J. Esparza and M. Nielsen. Decibility issues for Petri nets - a survey. Journal of
Informatik Processing and Cybernetics, 30(3):143–160, 1994.

[30] C. Ferdinand. Worst-case execution time prediction by static program analysis.
In Proc. IPDPS, 2004.

[31] E. Fersman and W. Yi. A Generic Approach to Schedulability Analysis of Real
Time Tasks. Nordic Journal of Computing, 11, 2004.

[32] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving
network partitions. In Proc. DAC’82, pages 175–181, 1982.

[33] T. Gezgin, S. Henkler, A. Rettberg, and I. Stierand. Contract-based compositional
scheduling analysis for evolving systems. In Proceedings of International Embedded
Systems Symposium (IESS), 2013. to appear.

[34] A. H. Ghamarian, M. C. W. Geilen, T. Basten, B. D. Theelen, M. R. Mousavi,
and S. Stuijk. Liveness and boundedness of synchronous data flow graphs. In
Formal Methods for Computer-Aided Design (FMCAD), pages 68–75, 2006.

[35] G. Hamon. A denotational semantics for stateflow. In ACM Int’l Conf. on Em-
bedded software (EMSOFT), 2005.

243

Bibliography

[36] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst. System level
performance analysis – the SymTA/S approach. In IEEE Proceedings Computers
and Digital Techniques, 2005.

[37] T. Henzinger and S. Matic. An interface algebra for real-time components. In
Proceedings of RTAS 2006, pages 253–263, April 2006.

[38] J. Hoenicke and E.-R. Olderog. CSP-OZ-DC: A combination of specification
techniques for processes, data and time. Nordic Journal of Computing, 9(4):301–
334, 2002. appeared March 2003.

[39] K. Huang and L. Thiele. Performance analysis of multimedia applications using
correlated streams. In Conf. on Design, Automation and Test (DATE’07), pages
912–917, 2007.

[40] M. Jersak. Compositional Performance Analysis for Complex Embedded Applica-
tions. PhD thesis, Technical University of Braunschweig, Germany, 2005.

[41] M. Jersak, K. Richter, and R. Ernst. Performance Analysis for Complex Embed-
ded Applications. Int’l Journal of Embedded Systems, Special Issue on Codesign
for SoC, 2004.

[42] G. Kahn. The semantics of a simple language for parallel programming. In J. L.
Rosenfeld, editor, Information Processing ’74: Proceedings of the IFIP Congress,
pages 471–475. North-Holland, 1974.

[43] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning
graphs. The Bell system technical journal, 49(1), 1970.

[44] S. Kirkpatrick, C. D. J. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220(4598):671–680, May 1983.

[45] B. Knerr, M. Holzer, and M. Rupp. Hw/sw partitioning using high level metrics.
In Proceedings of the International Conference on Computing, Communications
and Control Technologies, Vol.7, pages 33–38, 2004.

[46] S. Kugele and W. Haberl. Mapping data-flow dependencies onto distributed em-
bedded systems. In Proc. of SERP 2008, 2008.

[47] K. Lampka, S. Perathoner, and L. Thiele. Analytic real-time analysis and timed
automata: a hybrid method for analyzing embedded real-time systems. In EM-
SOFT ’09: Proc. of the seventh ACM international conference on Embedded soft-
ware, pages 107–116, 2009.

[48] L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM, 21(7):558–565, July 1978.

[49] K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. International
Journal on Software Tools for Technology Transfer (STTT), 1:134–152, 1997.

244

Bibliography

[50] C. Y. Liong, R. I. Wan, O. Khairuddin, and Z. Mourad. Vehicle routing problem:
models and solutions. In Journal of Quality Measurement and Analysis, 2008,
pages 205–218, 2009.

[51] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a
hard-real-time environment. J. ACM, 20(1):46–61, 1973.

[52] R. Lublinerman and S. Tripakis. Modular code generation from triggered and
timed block diagrams. Real-Time and Embedded Technology and Applications
Symposium, IEEE, 0:147–158, 2008.

[53] R. Lublinerman and S. Tripakis. Translating data flow to synchronous block
diagrams. In Embedded Systems for Real-Time Multimedia, 2008.

[54] T. P. Management. Modeling Guidelines for MATLAB/Simulink/Stateflow and
TargetLink. dSPACE GmbH, 2006.

[55] N. Marian and Y. Ma. Translation of simulink models to component-based
software models. In Int’l Workshop on Research and Educationin Mechatronics
(REM), July 2007.

[56] A. Metzner. Scheduling analysis of distributed real-time systems under functional
constraints. In Proc. Emerging Technologies and Factory Automation, ETFA,
pages 591–599, Sept. 2008.

[57] H. Meyerhenke, B. Monien, and T. Sauerwald. A new diffusion-based multilevel
algorithm for computing graph partitions of very high quality. Parallel and Dis-
tributed Processing Symposium, International, 0:1–13, 2008.

[58] H. Meyerhenke, B. Monien, and S. Schamberger. Accelerating shape optimizing
load balancing for parallel fem simulations by algebraic multigrid. In Proceed-
ings of the 20th international conference on Parallel and distributed processing,
IPDPS’06, pages 57–57, Washington, DC, USA, 2006. IEEE Computer Society.

[59] A. Morton. Hardware/Software Partitioning and Scheduling of Embedded Systems.
PhD thesis, Electrical and Computer Engineering, University of Waterloo, 2005.

[60] P. Mosterman and J. Ciolfi. Using interleaved execution to resolve cyclic de-
pendencies in time-based block diagrams. In 43rd IEEE Conf. on Decision and
Control (CDC04), 2004.

[61] M. Nielsen, G. D. Plotkin, and G. Winskel. Petri nets, event structures and
domains. In Proceedings of the International Sympoisum on Semantics of Con-
current Computation, pages 266–284, London, UK, UK, 1979. Springer-Verlag.

[62] T. M. Parks. Bounded Scheduling of Process Networks. PhD thesis, University of
California at Berkeley, 1995.

[63] M. Pouzet and P. Raymond. Modular static scheduling of synchronous data-flow
networks: an efficient symbolic representation. In Proc. of EMSOFT 2009, 2009.

245

Bibliography

[64] G. K. Rand. The life and times of the savings method for vehicle routing problems.
In ORiON: The Journal of ORSSA. 2009, pages 125–145, 2009.

[65] P. Reinkemeier, I. Stierand, P. Rehkop, and S. Henkler. A pattern–based require-
ment specification language: Mapping automotive specific timing requirements.
In Software Engineering 2011 Workshopband, Lecture Notes in Informatics (LNI),
pages 99–108. Köllen Druck + Verlag GmbH, 05 2011.

[66] K. Richter. Compositional Scheduling Analysis Using Standard Event Models.
PhD thesis, Technical University of Braunschweig, Germany, 2005.

[67] A. Roscoe. On Theory and Practice of concurrency. Pearson, 2005.

[68] J. Rox and R. Ernst. Construction and Deconstruction of Hierarchical Event
Streams with Multiple Hierarchical Layers. In Proc. ECRTS, 2008.

[69] J. Rox and R. Ernst. Modeling event stream hierarchies with hierarchical event
models. In Proc. Conf. on Design, Automation and Test, 2008.

[70] P. Sasikumar, A. Haq, and P. Baskar. A hybrid algorithm for the vehicle routing
problem to third party reverse logistics provider. In 8th International Conference
on Supply Chain Management and Information Systems (SCMIS), 2010, pages
1–8, 2010.

[71] N. Scaife and P. Caspi. Integrating model-based design and preemptive scheduling
in mixed time- and event-triggered systems. In Proceedings of the 16th Euromicro
Conference on Real-Time Systems, ECRTS ’04, pages 119–126, Washington, DC,
USA, 2004. IEEE Computer Society.

[72] N. Scaife, C. Sofronis, P. Caspi, S. Tripakis, and F. Maraninchi. Defining and
translating a ”safe” subset of simulink/stateflow into lustre. In Int’l Conf. on
Embedded software (EMSOFT), 2004.

[73] S. Schliecker and R. Ernst. A recursive approach to end-to-end path latency com-
putation in heterogeneous multiprocessor systems. In Proc. Conf. on Hardware
Software Codesign and System Synthesis, 2009.

[74] D. A. Schmidt. Data flow analysis is model checking of abstract interpretations. In
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’98, pages 38–48, 1998.

[75] J. Srba. Comparing the expressiveness of timed automata and timed extensions of
petri nets. In FORMATS ’08: Proceedings of the 6th international conference on
Formal Modeling and Analysis of Timed Systems, pages 15–32, Berlin, Heidelberg,
2008. Springer-Verlag.

[76] M. Stasch. Automatisierte Partitionierung von MATLAB-Modellen mittels Se-
mantik erhaltender Modelltransformation, 2012. Bachelor thesis.

246

Bibliography

[77] E. Thaden. Semi-automatic optimization of hardware architectures in embedded
systems. PhD thesis, Carl von Ossietzky Universität Oldenburg, 2013.

[78] L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for scheduling hard
real-time systems. In The 27th Annual International Symposium on Computer
Architecture(ISCA), volume 4, pages 101 –104 vol.4, 2000.

[79] K. W. Tindell, A. Burns, and A. J. Wellings. Allocating hard real-time tasks: An
np-hard problem made easy. Real-Time Systems, 4:145–165, 1992.

[80] S. Tripakis, C. Pinello, A. Benveniste, A. Sangiovanni-Vincentelli, P. Caspi, and
M. Di Natale. Implementing synchronous models on loosely time triggered archi-
tectures. IEEE Trans. Comput., 57:1300–1314, October 2008.

[81] S. Tripakis, C. Sofronis, P. Caspi, and A. Curic. Translating discrete-time simulink
to lustre. ACM Trans. Embed. Comput. Syst., 4(4), 2005.

[82] W. Vogler. Fairness and partial order semantics. Inf. Process. Lett., 55(1):33–39,
July 1995.

[83] E. Wandeler. Modular Performance Analysis and Interface-Based Design for Em-
bedded Real-Time Systems. PhD thesis, Swiss Federal Institute of Technology
Zurich, 2006.

[84] E. Wandeler, A. Maxiaguine, and L. Thiele. Quantitative characterization of
event streams in analysis of hard real-time applications. Real-Time Systems,
29(2-3):205–225, Mar. 2005.

[85] B. Westphal, I. Stierand, T. Gezgin, and H. Dierks. The power of uppaal - a
language-based characterisation of verification complexity. Reports of SFB/TR
14 AVACS 72, SFB/TR 14 AVACS, 2011. ISSN: 1860-9821, http://www.avacs.org.

[86] R. Wilhelm and B. Wachter. Abstract interpretation with applications to timing
validation. In Computer-Aided Verification (CAV), LNCS, pages 22–36. Springer,
2008.

247

	Introduction
	Overview and Goals
	Concept and Approach
	Outline

	Basics
	General Definitions and Notations
	Timed Languages and Timed Automata
	Event Streams and Event Models
	Event Models
	AND- and OR-Operations on Event Models

	Task Networks
	MATLAB Simulink

	Function Networks
	Event Patterns
	Definition of Event Patterns
	Properties and Operations

	Function Network Definition and Properties
	Basic Function Networks
	Extended Function Networks
	Properties of Function Networks

	Semantics of Function Networks
	Causality and Timing Patterns
	Basic Function Network Components
	Extended Function Network Components

	Boundedness and Event Pattern Propagation
	Event Pattern Propagation
	Boundedness

	Summary and Related Work

	Translating Simulink Models to Function Networks
	Formal Semantics for Simulink Models
	Timed Synchronous Block Diagrams
	Execution Semantics for Simulink Models

	Translating Simulink
	Preserving Semantics
	Summary and Related Work

	Task Creation
	Cohesion and Weights
	Formal Composition Operations and Semantics Preservation
	Merging nodes
	Elimination of Local Data Nodes
	Elimination of Self-Activations

	Task Creation Algorithm
	Case Study and Evaluation
	Summary and Related Work

	Design Space Exploration
	Overview of Design Space Exploration Process
	Global Analysis
	Local Analysis and Backtracking

	On the Role of Task Creation
	Case Study and Evaluation
	Summary

	Conclusion
	Proofs for Function Networks
	Proofs for Event Patterns
	Proofs for Function Network Semantics
	Proofs for Boundedness and Event Pattern Propagation

	Proofs for Simulink Translation and Preserving Semantics
	Proofs for Translation
	Proofs for Preserving Semantics

	Proofs for Task Creation
	Proofs for Formal Composition Operations

	Index
	List of Figures
	List of Tables
	Bibliography

