
Fakultät II – Informatik, Wirtschafts- und Rechtswissenschaften
Department für Informatik

Query Processing on Spatio-Temporal
Data Streams from Moving Objects

Dissertation zur Erlangung des Grades eines
Doktors der Naturwissenschaften

vorgelegt von

Tobias Leo Brandt

Gutachter:

apl. Prof. Dr.-Ing. Jürgen Sauer
Prof. Dr. Thomas Brinkhoff

Tag der Disputation: 11. November 2019

V

Zusammenfassung

Die zunehmende Verfügbarkeit von mobilen Datenverbindungen, die Miniaturisierung
von GPS-Empfängern und der gestiegene Bedarf an dem Austausch von ortsbezogenen
Informationen lassen die Menge von Daten mit zusätzlichen spatio-temporalen Anteilen
steigen. Gleichzeitig ist für viele Anwendungen die Zeit vom Eintreffen von Informa-
tionen bis zum Nutzen dieser durch geeignete Verarbeitung entscheidend. Gerade bei
Daten von sich bewegenden Objekten, wie etwa regelmäßigen Positionsmeldungen von
Fußgängern, Autos oder Schiffen entstehen besondere Herausforderungen bei der Verar-
beitung von kontinuierlichen Datenströmen. Im maritimen Bereich ist die Verwendung
solcher Daten bereits üblich, da die meisten Schiffe verpflichtet sind, ihre Position regel-
mäßig über das Automatic Identification System (AIS) zu melden.

Typische kontinuierliche Anfragen auf diesen Datenströmen könnten die Distanz zwi-
schen sich bewegenden Objekten berechnen, um zum Beispiel eine Warnung zu erzeu-
gen wenn sich Objekte zu nah kommen oder sich in unerlaubte Gebiete begeben. Hierbei
muss berücksichtigt werden, dass nicht zu jedem Zeitpunkt die Position von jedem Ob-
jekt bekannt ist. Ein Lösungsansatz ist die Prädiktion von spatialen Informationen zu
bestimmten Zeitpunkten.

Datenstrommanagementsysteme (DSMS) stellen eine geeignete Grundlage für die
Verarbeitung von kontinuierlichen Anfragen auf Datenströmen dar. Sie bieten Lösun-
gen für typische Herausforderungen im Datenstromumfeld, wie etwa Fensteransätze zur
Begrenzung eines potentiell unendlichen Stroms, und vermindern damit notwendige und
aufwendige Neuentwicklungen im Umgang mit Datentrömen. Auch sind DSMS sehr fle-
xibel und können somit für unterschiedliche Nutzungsszenarien eingesetzt werden, was
sie von einer spezifischen Lösung für nur einen Anwendungsfall unterscheidet. Jedoch
bedürfen die speziellen Anforderungen an kontinuierliche Anfragen auf Daten von sich
bewegenden Objekten neuer Lösungsansätze. Insbesondere die zeitlich korrekte Verar-
beitung bei nicht regelmäßig zur Verfügung stehenden Ortsinformationen erfordert eine
Erweiterung von typischen Datenstromtechniken.

In dieser Arbeit wird ein Konzept zur Integration von Techniken zur Verarbeitung von
Datenströmen sich bewegender Objekte in DSMS vorgestellt. Dies baut auf den theore-
tischen Grundlagen der Moving Object Algebra [GBE+00] sowie der Datenstromverar-
beitung im Intervallansatz [KS09] auf. Durch die Verbindung der gegebenen Grundlagen
dieser Arbeiten entsteht ein klares semantisches Fundament für bitemporale Datenstro-
manfragen, also Anfragen mit zwei zeitlichen Dimensionen, mit denen Anfragen sehr
flexibel gestaltet werden können.

Diese Integration einer zweiten temporalen Dimension in den Kern eines DSMS ne-
ben das durch den Intervallansatz bereits bestehende Zeitintervall des Datenstroms ist
eines der grundlegenden Konzepte dieser Arbeit. So können Attribute in Datenstromele-
menten selbst unterschiedliche Werte zu unterschiedlichen Zeitpunkten in dieser zweiten

VI

Zeitdimension haben und damit einen Wert zu einem fast beliebig wählbaren Zeitpunkt
vorhersagen.

Die Evaluation beinhaltet eine Implementierung der entwickelten Konzepte in das
Data Stream Management System (DSMS) Framework Odysseus. Damit wird die Um-
setzbarkeit des Konzeptes gezeigt. In der Evaluation zeigt sich, dass es möglich ist, das
erstellte Konzept in ein existierendes System zu integrieren und dabei auch existieren-
de Funktionalität wiederzuverwenden, sodass bestehende Fähigkeiten des Systems nicht
neu implementiert werden müssen. Damit entsteht ein sehr flexibles System zur Um-
setzung vieler Szenarien im Umfeld von sich bewegenden Objekten als auch darüber
hinaus.

Die Leistungsfähigkeit und Funktionalität des entwickelten Systems wurden mit AIS
Daten von der US-amerikanischen Küste anhand verschiedener spatio-temporaler An-
fragen evaluiert. Die Ergebnisse zeigen, dass Anfragen, die dem ebenfalls entwickelten
Konzept für spatio-temporale Anfragen auf Datenströmen von sich bewegenden Ob-
jekten folgen, einige Parameter besitzen, die die Performanz maßgeblich beeinflussen
können. Ebenso zeigt die Evaluation, dass die Anfragen unter den evaluierten Voraus-
setzungen schneller als Echtzeit laufen und somit für diese Szenarien einsetzbar sind.
Um die Performanz zu erhöhen, wurden außerdem spatio-temporale Filter-Techniken
entwickelt, die die maßgeblichen Messwerte Latenz und Durchsatz signifikant erhöhen
können und die Qualität der Ergebnisse dabei nur geringfügig beeinflussen. Außerdem
zeigt die Evaluation, dass der entwickelte bitemporale Ansatz auch über die Szenarien
und Domäne hinaus einsetzbar ist, selbst bei Daten, die keinen Ortsbezug besitzen.

VII

Abstract

Due to the ubiquitous availability of mobile data connections, smaller and cheaper GPS
receivers and the demand to share location enriched information, the amount of spatio-
temporal data is increasing. Additionally, for many applications, a short latency be-
tween data arrival and query results is crucial to be able to work with the data imme-
diately. Especially for data from moving objects, such as continuous location updates
from pedestrians, cars or vessels, new challenges for the processing of continuous data
streams arise. Within the maritime domain, the usage of such data streams is already
common because most vessels are obligated to broadcast their location regularly via the
Automatic Identification System (AIS).

Queries on these data streams could, for example, calculate the distance between these
moving objects in a continuous manner and create warnings when objects are too close
to each other or enter forbidden areas. Doing this, it has to be taken into account that the
locations are not available for each point in time. One solution to deal with this is the
prediction of locations for certain points in time.

Data Stream Management Systems (DSMS) offer a foundation for the processing of
continuous queries on data streams. They implement solutions for typical challenges in
the data stream environment, for example window approaches to limit the potentially
infinite data stream, and therefore reduce the need for expensive development when
working with data streams. Additionally, DSMS are very flexible and can be applied
in various use cases, which is another difference to custom solutions for a specific use
case. Nevertheless, DSMS lack support for the special requirements for data streams
from moving objects. Especially the temporal-wise correct processing for data that is not
available at all times requires an extension of existing data stream processing techniques.

In this thesis, a concept for the integration of techniques into DSMS for the processing
of moving object data streams is proposed. It integrates the ideas of the Moving Object
Algebra [GBE+00] with the interval approach for data stream processing [KS09]. Due
to the connection of these two foundations a clear semantics for bitemporal queries is
created, with which queries can be designed very flexible. The bitemporal stream is a
main concept of this work. It describes the integration of a second temporal dimension
next to the stream time interval into the core of the query processing. Doing that, at-
tributes within a data stream element can have different values at different points in time
and can therefore be predicted to an (partly) arbitrary point in time.

The evaluation is done by implementing the developed concept into the DSMS frame-
work Odysseus to evaluate the feasibility of this approach. The implementation has
shown that it is possible to integrate the concept into an existing DSMS an to reuse the
existing functionality, resulting in a very flexible system without the need to reimplement
existing features.

VIII

The performance and functional capabilities were evaluated with different spatio-
temporal queries with real-world AIS data from the US coast. The results show that
a query that follows the developed concept for spatio-temporal queries on moving object
data streams has some parameters that can influence the performance significantly, but
also that, for the evaluation scenario, the queries run faster than real-time. To improve the
performance, spatio-temporal streaming filter algorithms have been developed and the
evaluation shows that those can significantly improve the important query performance
indicators latency and data rate with only a very limited amount of missed results. The
evaluation further shows that the developed approach can be applied to a wider field,
even in scenarios without spatio-temporal data.

IX

Acknowledgments

Finishing a doctoral thesis, closing the last chapter and accomplishing the disputation
as the final act of a years long journey through a topic so narrow that only few people
around you know what you are thinking about is a little like coming home after a long
trip through the world (of science). You leave something behind, you collected a lot
of inspiration and you grew with many new challenges. Now, having finished this in-
teresting part of my scientific career I want to say thank you to all of those who have
accompanied me in the recent years.

The fruitful discussions with my former colleagues in the information systems group,
sometimes late in the evening, were creative, fun and also gave inspirations for new ways
to solve problems in my research. I already miss the late talks and sketching ideas on
our whiteboards with Michael Brand and Cornelius Ludmann. Without a doubt the most
and longest discussions I had were with my supervisor Marco Grawunder, whose door
was always open for me, who had great hints to the right direction when I struggled with
tricky problems, with whom I could discuss about tiny details as well as the great picture
and who always helped me to find my way through the scientific landscape of journals
and conferences. Thank you!

Furthermore, I want to thank my reviewers Jürgen Sauer and Thomas Brinkhoff, who
helped me with advice in their respective domains and their critical questions during
the process of developing the ideas of this thesis. I also want to thank Axel Hahn for
being the chair of the thesis committee and for making the funding for this PhD project
possible with the Safe Automation of Maritime Systems (SAMS) graduate school.

My PhD journey would not have been so much fun without the breaks at the nice
places in life with my friends and family. A big “Thank you” to my closest friends who
not only gave me the opportunity to not think about data streams all day, but actively
pushed me to take breaks when needed so that I never lost the motivation and joy over
my work.

The last paragraph is reserved for those who accompanied me the longest, who sup-
ported and believed in me the most. I want to thank my family with all my heart! Your
support has been and still is infinitely valuable.

Thank you all for being on this journey with me! It has been a great time!

Tobias Brandt
Oldenburg, December 10th, 2019

X

XI

Contents

1 Introduction 1
1.1 Motivation and Goals . 1
1.2 Problem Statement . 2
1.3 Research Method . 3
1.4 Organization of the Thesis . 4

2 Background 7
2.1 Moving Object Data Streams . 7
2.2 Data Stream Management Systems . 9
2.3 Formal Definition of Data Stream Processing 14
2.4 Spatial Data Processing . 17
2.5 Moving Object Algebra . 24
2.6 Location Based Services and Vessel Traffic Services 27
2.7 Related Work . 29
2.8 Summary . 30

3 Moving Object Stream Query Processing 33
3.1 Bitemporal Data Streams . 33
3.2 Temporal Types . 37
3.3 Operations on Moving Object Streams 38
3.4 Summary . 42

4 Physical Integration 43
4.1 Physical Moving Object Data Stream 44
4.2 Temporal Attributes . 46
4.3 Prediction Time . 50
4.4 Lifted Expressions . 59
4.5 Temporal Trust Value . 61
4.6 Queries with Multiple Moving Objects 63
4.7 Non-Blocking Queries with Multiple Objects 71
4.8 Filter and Refine . 81
4.9 Conceptual Contribution and Differentiation to Related Work 90
4.10 Summary . 91

5 Architecture and Implementation 93
5.1 Odysseus . 93

XII Contents

5.2 Temporal Implementation in the DSMS Odysseus 94
5.3 Element Join . 116
5.4 Spatial Operations . 118
5.5 Spatio-Temporal Filtering . 119
5.6 Generic Moving Object Query Structure 126
5.7 Summary . 127

6 Evaluation 129
6.1 Data Description . 129
6.2 Scenario Evaluation . 130
6.3 Performance Evaluation . 149
6.4 Filter Approaches in Moving Object Queries 166
6.5 Summary . 172

7 Conclusion and Future Work 175
7.1 Summary . 175
7.2 Contribution . 179
7.3 Future Work . 180

Appendix 185
A Error of Equirectangular Distance Calculation 185

Glossary 189

Acronyms 197

List of Figures 199

List of Publications 203

Bibliography 205

Index 219

1

1 Introduction

Today it is taken for granted that the exact location on the earth can be determined with
ease. Small and mobile Global Navigation Satellite System (GNSS) receivers [SRC+16]
are cheap and broadly available. Together with mobile data connections, the locations of
objects can be communicated to central services or shared with other vehicles. Smart-
phones, cars and vessels, for example, can be seen as moving objects which locations
can be shared and analyzed. These continuous data streams of location information can
be used to monitor and optimize traffic, offer Location Based Services (LBSs) and im-
prove safety. For these applications, where location information is more important than
ever, streaming spatio-temporal data needs to be managed and processed.

1.1 Motivation and Goals

Processing spatio-temporal data streams is done for diverse use cases [BG18]. LBSs
can find crowded places [WKK+14], car navigation systems estimate the current traffic
flow on streets [THC+14] and Maritime Vessel Traffic Services (VTSs) can improve
safety and traffic efficiency on seas [PAA+17]. These use cases have some common
requirements that introduce new challenges to the spatio-temporal data processing.

All of the use cases mentioned above have in common that near real-time updates of
continuous queries are necessary. Traditional spatio-temporal data management is often
done with Data Base Management Systems (DBMS) [GAA+05, AR99, ESRa, EGSV99,
KSF+03] or, more recently, with spatio-temporal key-value-stores from the emerging
NoSQL field such as GeoMesa [FEHL13] as well as in MapReduce environments such
as ST-Hadoop [Ala17]. Nevertheless, these systems lack the support for continuous
queries with near real-time results and are therefore not optimal for use cases which
require continuous, event-driven results [Bra17]. Data Stream Management Systems
(DSMS) [CCD+03, AAB+05, ÇAA+16, KS04b, AGG+12] in contrast are designed to
process data streams and already support such queries. Therefore, they are a useful
foundation for continuous spatio-temporal data streams [BG17, Bra17].

These spatio-temporal data streams are generated by different and diverse sources—to
process them, one needs to fuse different streams to query them together. It is possible
that data streams need to be enriched with static data, e. g., if a current location of a
vessel needs to be combined with the known maximum speed of it. Queries on streams
and the data sources for these can change over time. For example, new data streams with
information about other spatial areas can be added.

When creating applications that use spatio-temporal data streams, these characteristics
need to be considered. If a completely new solution is implemented for every applica-
tion, it is difficult to reuse existing solutions for common problems in the field of data
streams and spatial processing. Additionally, the solutions would not be as flexible as

2 Introduction

necessary for the diverse data sources and changing queries. DSMS in contrast are flex-
ible platforms which already address common challenges for data stream processing,
such as query optimization, distribution, time handling and implementation of standard
operators and query languages [AGG+12]. Using it for these applications increases the
solutions flexibility and ease of maintenance compared to custom implementations for
every use case [BAG+12, Lud15, Lud17, BGA16, BBC+15].

Therefore, the goal of this work is to integrate spatio-temporal query processing into
DSMS so that spatio-temporal queries for moving objects can be developed and executed
in a flexible and efficient manner.

1.2 Problem Statement

When using a DSMS for spatio-temporal queries from moving objects, a couple of new
challenges arise.

Spatio-temporal Operations Querying data from moving objects requires spatio-tem-
poral operations on the data streams [HZEF16]. Such operations consider both spatial
as well as temporal information. In other words, when doing a spatial query, the tem-
poral information about the data needs to be considered, too. For example, the spatial
query “Which objects are close to object X?” is extended by a temporal aspect, e. g.,
“Which objects are close to object X now?”.

A challenge for these operations is that the spatial information is not available in a
temporal synchronized manner. For different sources, in this case different moving
objects, the spatial measurement, i. e., the location, is only available at different points
in time [BAG+12]. In other words: for a certain point in time, spatial information is
only available for a number of moving objects (or none), not for all moving objects.
Nevertheless, the lack of a location information for a certain moving object does not
mean that the location does not need to be taken into account. Therefore, a solution
to solve this discrepancy needs to be found, e. g., via integrating prediction into the
query processing.

Considering Efficiency Many spatio-temporal use cases demand near real-time results
and cannot afford high latencies between new data and new results (e. g., [HZEF16,
TMRDR12, CZC+13, PAA+17]). Therefore, the design of the DSMS extension needs
to take efficiency into account. This is, for example, relevant for windows. When
querying data streams, the concept of windows is often used to limit the data stream
to a certain range in the past. Some data of the stream is kept in memory for a
certain amount of time and is discarded afterwards. Operations, e. g., aggregations,
can work on the data of the window. When working with spatio-temporal data, index
structures for efficient access to the data can possibly help to improve efficiency for
the overall query. Nevertheless, such an index structure would need to consider the
characteristics of data streams, e. g., high fluctuation.

1.3 Research Method 3

Compatibility to Existing DSMS Concepts The motivation of this work is to combine
the features of a DSMS with new spatio-temporal capabilities to process moving
object data streams. The newly added parts should work seamlessly with the existing
concepts so that standard operations of a DSMS can be reused. Among these existing
concepts is the time model (how to annotate the validity time of a data element),
operators (such as select, join, etc.) and data types (e. g., by using a spatial data type
in a way that new and old operators can work with it).

Research Question

From these challenges, the following research question arises:

How can queries on spatio-temporal data streams from moving objects be expressed
flexibly and with generic semantics and processed efficiently?

The question consists of two parts: the first part is about the flexibility and semantics
of queries and the second part about the efficiency. As explained above, the advantage
of a DSMS over a custom solution for a use case is the possibility to adapt queries for
multiple use cases and new situations easily. Therefore, the extension of a DSMS to
work with spatio-temporal data streams should also be flexible and not bound to one use
case. A generic semantics, a more formal framework to define such queries, helps with
that.

When running continuous, event-driven queries and expecting near real-time results,
the efficiency is of high importance. DSMS already consider efficiency for this pur-
pose, for example, by using in-memory processing. Spatio-temporal queries propose
new challenges in this field, for example, when joining huge amounts of moving objects
to calculate close neighbors. This part of the research question asks if and how these
challenges can be tackled in a streaming environment, which is heavily different from
traditional spatial database environments.

1.3 Research Method

For the research of this dissertation, the design science research methodology from
[PTRC07] is used. It is a process for design science research in information systems.
[HMPR04] provide seven guidelines for design science research in information systems.
According to them, “the research must provide an artifact created to address a prob-
lem” [PTRC07]. The research is the search for a solution for a problem with existing
knowledge. The artifacts contain all parts of the solution, for example, a software prod-
uct. The artifacts need to be evaluated for quality and the results need to be published to
the scientific community [PTRC07].

[PTRC07] provide a process to follow these rules. It is depicted in Figure 1.1. The
iterative process has six steps and four possible entry points. The first step is the problem

4 Introduction

Figure 1.1: Process model of the Design Science Research Method by [PTRC07]

identification. It defines a problem and also shows the importance, e. g., by describing
the practical use of a solution. The problem definition is used to define the objectives
of the solution in the second step. These are later used to measure the qualitative and
quantitative characteristics of the artifact. Based on the theory, an artifact is created in
the design and development step. An artifact can be, for example, a model, a method or
an instantiation, which includes software products.

In the next step, the artifact can be used to demonstrate how to solve the defined
problem. This can be done by simulations, experiments or other appropriate activi-
ties [PTRC07]. Based on the demonstration, the artifact is evaluated against the objec-
tives from the second step. The form of evaluation depends on the objectives and can
include “system performance, such as response time or availability” [PTRC07]. If the
objectives are not met, the process can be iterated through again to change the objec-
tives or the creation of the artifact. The last step is the communication, for example,
with scientific publication. The feedback from this step can also lead to another itera-
tion [PTRC07].

The artifact in this thesis is mainly a concept on how to integrate moving object stream
processing into a DSMS and a software that implements this concept for demonstration
and evaluation purposes. The communication is done via scientific publications in the
computer science community including this thesis.

1.4 Organization of the Thesis

The thesis starts with an introduction into the technical foundations of this work in Chap-
ter 2. Especially the characteristics of data streams from moving objects and the basics of
Data Stream Management Systems and spatial query processing are explained. Related
work is also discussed in this chapter.

1.4 Organization of the Thesis 5

Chapter 3 and 4 contain the main contribution of this work. They describe the inte-
gration of spatio-temporal query processing on data streams from moving objects into
a DSMS. The design and integration is split into two parts: the logical integration and
the physical integration. This separation follows the differentiation into a logical and a
physical part, which is inspired by [Krä07] as one of the main foundations of this thesis.
Chapter 3 contains the logical integration and lays the theoretical foundations for this
work. Based on the developed definitions in this chapter, Chapter 4 describes the phys-
ical integration, which is closer to an implementation and involves solutions to more
practical problems that occur with potentially unbounded data streams and data from
moving objects. It also addresses the second part of the research question and discusses
possibilities and limitations of a more efficient query processing on this kind of data.

Even though the physical integration is closer to an implementation, the implementa-
tion itself rises some interesting questions and has some additional practical challenges
that are explained in Chapter 5. The foundation for this chapter is an existing and
extendable open-source DSMS named Odysseus. The sections describe the necessary
extensions and changes to the system and gives some first examples on how the new
possibilities can be used. Finally, Chapter 6 showcases the added capabilities with sce-
narios on real and artificial data streams and discusses limitations of the solution. Next
to the evaluation of the flexibility with showcases of queries, the performance of the
system is evaluated to review the second part of the research question and to identify the
limitations of this approach.

Finally, Chapter 7 concludes this work, summarizes the added value and capabilities
to a DSMS for moving object data streams and gives an outlook to future work that can
be done in this field.

6 Introduction

7

2 Background

This chapter provides basic knowledge about important topics of this thesis. First, the
characteristics of the data, the starting point of the data processing, is explained in Sec-
tion 2.1. In addition to the aspects of data streams, the aspects of spatial and temporal
data are important as well. These factors define the way the data can be processed and
lead to Data Stream Management Systems in Section 2.2 as a foundation to query data
streams. Section 2.3 defines logical and physical data streams and explains the special
characteristics of moving object data streams. Section 2.4 describes relevant aspects
of spatial data processing as another foundation of this work. Combining spatial and
temporal data processing, Section 2.5 explains the concept of the moving object algebra.

Vessel Traffic Services are a possible application for this work. To give the reader a
practical example of how the output of this thesis could be used, VTSs are explained in
Section 2.6. Related work is discussed in Section 2.7 and takes a look at Moving Object
Databases and other streaming approaches for moving object data.

2.1 Moving Object Data Streams

A moving object data stream is generated from moving objects which actively report
their location. It has three important attributes: (1) it is a data stream, (2) the data
elements have spatial and (3) temporal information [BG17, BG18].

Data Stream

Data streams are typically generated by active data sources, i. e., the data sources push
their data to the receivers1. This push based approach is one of the distinguishing char-
acteristics of data streams that are different when compared to other similar data sources
such as time series data [KS09, Gei13, GBKM14, Gal16].

• Active data sources The data sources push their data to the receivers. The receivers
do not need to pull it from the sources but must handle the incoming data in the
data rate that the source defines. Such a data source could be, in the context of
moving objects, a smartphone that actively sends its current location to a LBS or a
vessel that regularly sends its location information via the Automatic Identification
System (AIS).

• Unbounded A data stream is potentially unbounded. It is not known in advance if
and when the stream will end. Therefore, it is not feasible to wait for the stream to
end to query the content afterwards. Another consequence is that it is infeasible to
store the whole stream as the amount of data is potentially unbounded, too. Again,

1 It is also possible that the DSMS pulls the data from the sources if the source is not able to push the data.
In that case, the data is processed push-based after it was pulled by the DSMS.

8 Background

using the AIS data stream as an example, the stream of messages will not stop as it is
required to regularly broadcast the locations.

• No control The receiver of the data stream has no control over it, hence, it cannot
change the data rate, accuracy or other characteristics of the stream. Receiving an
AIS stream, the receiver cannot change the data rate of the location updates.

• Only once A data element in the stream is only send once and there is no possibility
to request an element again. For example, an AIS receiver cannot ask a vessel to
send its last or other previous messages again. The data elements have to be directly
handled by the receiving system.

Spatial Information

A spatio-temporal data stream from moving objects contains spatial information. In
this case it is mostly the location of the moving object as a single coordinate that refer-
ences to the earth. Coordinate systems can be separated into two common types, namely
Global Coordinate Systems (GCSs) and Projected Coordinate Systems (PCSs) [ESRb].
A very common GCS is the World Geodetic System 1984 (WGS 84) [LGMR10], a
common PCS is Universal Transverse Mercator (UTM) [ESRb]. The location is typi-
cally measured with GNSS, the most common example is the Global Positioning Sys-
tem (GPS) [LGMR10]. It is also possible to use local coordinate systems as opposed to
global coordinate systems. For example, this can be used to determine the location of
a player on a sports field with the corners of the field as the reference points [BBC+15,
GFW+11]. Nevertheless, this work focuses on data that is referenced to the earth’s sur-
face, mostly with WGS 84 as the GCS. Even though the examples are for objects on the
earth, the concepts stay generic enough to work with other references as well.

Next to the bare location, the spatial information typically contains other information
as well or is itself an additional information for other data, depending on the perspective.
Moving objects can often be simplified to a point with no shape, so-called moving point
objects [AG05]. Additionally, information such as the direction the object is facing can
be part of the spatial information (e. g., within data about vessels, typically referred to as
the Course Over Ground (COG) [PVB13]). Moving regions, i. e., moving objects with a
shape and evolving regions, i. e., moving regions which shapes can change over time, are
extensions to moving objects [MFBM14]. These data models can for example be used
for weather phenomena such as hurricanes [WNPL13, WLN14, JG10]. Nevertheless,
this work focuses on moving objects with no shape, as moving objects such as vessels
can be simplified to points for many use cases [PVB13, PAA+17, GSF11, FXX+13,
GLW08].

Temporal Information

Data streams are ordered by the time of the data stream elements [KS09, Gal16]. The
time is measured by the data source at the time of capturing the data or by the receiving

2.2 Data Stream Management Systems 9

system at the time of receiving the data [Gal16]. It can be attached to the data as a
timestamp [KS09]. In case of moving object data, the time typically defines when the
object has been at a certain location.

2.1.1 Restricted and Unrestricted Movement

Moving objects can move freely in space or can be restricted to a certain network. For
example, trains and cars are typically restricted to their railway and road networks and
cannot move freely in space. The network can be represented as a graph and locations
of objects can be defined by the location within that graph. The mapping from raw
coordinates, which by themselves do not include the location within a graph, to the
location within the graph is called map matching [RH10]. Those networks have certain
characteristics which distinguish them from unrestricted or less restricted environments.
For example, the distance between two points in the graph is not equal to the air-line
distance, wherefore proximity calculations differ in such networks [RH10].

Other objects, such as pedestrians, plains and vessels are less restricted. They often
have certain paths to follow, nevertheless, they are technically not restricted to a cer-
tain network. However, these objects can be restricted to certain areas. For example,
vessels cannot leave the water and it can be forbidden for them to enter some restricted
areas [VVBB12]. Pedestrians can be restricted by obstacles such as buildings. This in-
fluences, for example, the prediction of locations and the calculation of distances. This
work focuses on moving objects that are not strictly restricted by a network. The main
targeted moving objects are vessels, without limiting the concepts to this type of vehicle.

2.2 Data Stream Management Systems

Data streams have specific challenges and offer new opportunities for data management
and query processing. Querying live data streams in near real-time offers results while
things are happening. Managing data streams and allowing flexible and efficient query
processing is the topic of DSMS research. DSMS differ from traditional DBMS. The
difference can be seen by comparing Figure 2.1 and Figure 2.2.

A DBMS, depicted in Figure 2.1, runs one-time queries on a database. When a query
is posed, the query runs for a short time and the result is calculated. Eventually, the
result is provided and the query is removed from the system. The database is changed
by insert, update and delete statements, but for a single query, the database seems to be
not changing as long as the query is running.

A DSMS, depicted in Figure 2.2, in contrast runs continuous queries on continuous
data streams. Active data sources, such as moving objects, push their data to the DSMS.
The user poses continuous queries, i. e., long running queries that exist in the system and
produce results when new data arrives in the system. They run until they are explicitly

10 Background

DBMS

Database

Insert
Update
Delete

One-time
queries

Results on
demand

Storage
access

Figure 2.1: Schema of a DBMS. Figure based on [KS09].

Operator X

Operator YSelect

Project

Active data
sources

Other systems
(e.g., database)

O
u

tp
u

t
st

re
am

s

In
p

u
t

st
re

am
s

Install continuous
queries

DSMS

In-memory processing
with operators

User

Figure 2.2: Schema of a DSMS. Figure based on [KS09].

2.2 Data Stream Management Systems 11

removed. This push-based processing mechanism is also called “event-driven” [Luc02].
Data stream elements are denoted as events, i. e., data that is pushed into the system is
made of events and the results that are produced by the system are also events. When a
new event enters the system, the continuous query instantly processes the new data and
produces new results. There does not need to be a timer for which the query waits, for
example, if the results would be produced every five minutes or so (even though this
would also be possible).

The processing of the queries typically run in-memory. The data flows through the
operators and are eventually send to other systems that use these results. This could be a
user interface for a user or a database that stores the results.

2.2.1 Operators and Operator Graphs

To process queries on data streams, DSMS represent queries with operator graphs. An
example operator graph is depicted in Figure 2.3. Such an operator graph consists of op-
erators as nodes and connections between these operators as vertices. The graph is typ-
ically acyclic and directed [CHKS04], however, cyclic graphs can be possible [Bol11].
Operators subscribe to the output of other operators and subsequently receive the others
operators results. Hence, data stream elements flow from one operator to the next. The
operators work on the data they receive and send their results to the subsequent operators
in the graph.

At the beginning of a query graph are one or more sources where the data streams from
other systems are received. In the example in Figure 2.3, the data stream elements from
Source 1 are projected, i. e., the schema of the tuples is changed. The window operators
for Source 1 and Source 2 limit the view of the streams before the join operator joins the
two streams. The last operator uses a select predicate to filter out the tuples that do not
fulfill the predicate. At the end is a sink where the results leave the system, for example
to be written to other systems.

Typical operators that are used in the context of data streams are also known from rela-
tional DBMS. Some of the most common operators are the selection-, join-, projection-
and aggregation-operator [CHKS04]. In the context of data streams, in contrast to
databases, window operators are important as well. They allow to define windows as
described in Section 2.2.2. A DSMS could also offer other operators with more applica-
tion specific logic, e. g., for machine learning [GHN14].

Even though the operators are connected to each other in the query graph, a single
operator has no knowledge about the whole plan, i. e., an operator does not know what
(kinds of) other operators are in the plan. Still, the plan can be optimized during the
translation from the algebraic definition to the physically executed plan due to the alge-
bra used for the definition. With an algebraic optimization, the order of the operators
can be changed to improve the efficiency without changing the output of the plan.

12 Background

Source 1 Source 2

Project Window

Window

Join

Select

Figure 2.3: Example of an operator graph with the data flowing from bottom to top.

2.2.2 Windows

When querying data streams, often only the current data is of interest. For example,
when aggregating a value such as the average speed of a moving object, the data ele-
ments from years ago are irrelevant if the current situation needs to be observed. Win-
dows are a concept to limit a data stream to a certain part of it. In this case, it could be
used to calculate the average speed of a moving object during the last ten minutes. Ad-
ditionally, this concept helps to avoid memory leaks. In a potentially unbounded stream
it is infeasible to store all historic data and it is not possible to wait for all data to arrive
before starting to calculate a queries’ result.

The concept of windows is depicted in Figure 2.4. New data stream elements flow into
the system from the right. When they arrive at the window, the window is updated: old
elements may be removed and the new element is added. The results of the subsequent
operators are updated accordingly.

The definition of a window can be formulated in various ways, based on the need of
the data processing. One possibility is to hold a certain time range, e. g., the newest ten
minutes. Such a time window can hold a variable number of tuples, as the data rate can
change over time. In contrast, a window can be defined to hold a predefined number
of tuples, e. g., the 100 newest ones. Another possibility is to define a predicate which
needs to be true for the tuples within the window. It could be defined that the sum of
a specific value in the tuples needs to be lower than 100. If a tuple with a high value
arrives in the window, many old tuples could be dropped.

2.2 Data Stream Management Systems 13

Flow direction

Figure 2.4: Window on a data stream. Figure based on [Bol11].

The advance of a window can be defined in various ways. In general, the window has a
certain size s and a certain window advance or slide granularity a. For example, the size
of a window could be 100 tuples and the advance 1 tuple, hence a = 1. With this setting,
the window is sliding: it advances with the smallest possible steps [KS09]. This can,
for example, be used on a stream that contains the speed of a moving object. When an
aggregation calculates the average speed in the last hour and a new output is necessary at
every new stream element, a sliding window is applied before the aggregation operator.

If 1 < a < s, i. e., the window advances only every few tuples but more often than the
size of the window, the window is jumping. Some possible window states are left out,
but every tuple is at least in one window. Following the previous example, the average
speed of the object in the last hour needs to be known, but an update is only desired
every ten minutes.

If a = s, the window is tumbling [KS09]. With this setting, every tuple is in a window
exactly once and the windows are not overlapping. Here, the average speed for the last
hour would be calculated exactly once per hour. If a > s, some tuples are not in a window
at all, hence, there are gaps between the windows. To follow the previous examples, in
this case, the average speed would be calculated, for example, every two hours for the
last hour.

There are multiple known and tested possibilities to achieve the explained window
behavior. Common window approaches are the positive-negative approach [HAF+03]
and the interval approach [KS09, Kuk15]. With the positive-negative approach, for each
data stream element two messages are send through the query graph: at first, the stream
element is send through the query graph with a positive sign to state that the data stream
element is now valid. Later, when the data stream element is invalidated, a message with
a negative sign (and the same data stream element identifier to match the messages) is

14 Background

send through the query graph. The messages are send by a window operator, which is
placed before the operators that need the window logic in the operator graph.

The other popular approach is the interval approach. Here, a window operator attaches
an end-timestamp to each data stream element so that every stream element has two
timestamps: a start timestamp that states when the element starts being valid and an end-
timestamp that states when the element stops being valid. The time progress is defined
by the newly incoming data stream elements. The operators in the query graph use these
timestamps to decide which elements to keep and which to discard.

Other approaches define batches for every window so that data stream elements are
collected in batches. Note that for a sliding window, a data stream element can be in mul-
tiple batches. These batches can then be processed, for example they can be aggregated.
An example for a system with this approach is Apache Flink2 [CKE+15a]. Another pos-
sibility is to not have a special window operator but to have the window logic within the
operations that work with the data [BBMS05, AAB+05, BBF+10].

2.3 Formal Definition of Data Stream Processing

The characteristics of moving object data streams are described in Section 2.1. In this
section, the formal definition of the data stream is given and the implications for the pro-
cessing are explained. Data stream operators are defined on logical data streams, i. e.,
describe the set-theoretic function. The physical operator later describes how the opera-
tor is implemented with an algorithmic view over physical data streams. This approach
has some advantages: the formal definition of the operations on the data stream allow
a deterministic processing of the defined queries and with that, repeatable results. An
important characteristic for this approach is the snapshot-reducability.

2.3.1 Snapshot-Reducability

A snapshot of a logical data stream is the set of tuples that are valid at a certain time
instant. A data stream can be sliced into a series of snapshots. A data stream operator is
snapshot-reducable iff for every snapshot of a data stream the results of the operator are
equal to the non-streaming relational counterpart of the operator [KS09].

This is an important property of the data stream processing in DSMS that rely on a
formal relational algebra. It allows to define stream operators on non-temporal sets of
tuples and use these operators in a temporal data stream. Another conclusion is that the
results of operators are deterministic: on the same set of valid tuples all operators need
to produce the same output, regardless of the previous input.

2 https://ci.apache.org/projects/flink/flink-docs-master/dev/stream/operators/
windows.html

https://ci.apache.org/projects/flink/flink-docs-master/dev/stream/operators/windows.html
https://ci.apache.org/projects/flink/flink-docs-master/dev/stream/operators/windows.html

2.3 Formal Definition of Data Stream Processing 15

2.3.2 Logical Stream

To achieve snapshot-reducability and use the characteristics of this approach, this thesis
uses the same definition for logical and physical data streams as proposed by [KS09].
To use the time-interval approach, the time domain needs to be defined. “Let T = (T,≤)
be a discrete time domain with a total order ≤ [. . .]. A time instant is any value from
T .” [KS09]. The data stream consists of data stream elements. A data stream element is
of type T. ΩT is the “set of all possible tuples of type T” [KS09]. For example, the type
T could be a relational tuple. In this case, the tuple has a certain schema. As the logical
stream can possibly have multiple equal elements but is a mathematical set, the number
of equal tuples need to be denoted as well (the multiplicity). This is done with n.

Definition 2.1. (Logical Stream [KS09]): A logical stream S l of type T is a potentially
infinite multiset (bag) of elements (e, t, n), where e ∈ ΩT is a tuple of type T, t ∈ T is the
associated timestamp, and n ∈ N, n > 0, denoted the multiplicity of the tuple. Let Sl

T
be

the set of all logical streams of type T.

2.3.3 Physical Stream

For the physical processing, a more efficient representation of streams is needed. In
case that a stream element is valid for multiple points in time, the logical representation
would contain a data stream element for each point in time. The physical representation
“coalesces identical tuples with consecutive timestamps into a single tuple with a time
interval” [KS09]. This is done with the start- and end timestamps tS and tE .

Definition 2.2. (Physical Stream [KS09]): A physical stream S p of type T is a po-
tentially infinite, ordered multiset of elements (e, [tS , tE)), where e ∈ ΩT is a tuple of
type T, and [tS , tE) is a half-open time interval with tS , tE ∈ T . A physical stream is
non-decreasingly ordered by start timestamps.

2.3.4 Transformation

The operations on data streams are defined on logical streams while the physical streams
are the basis for implementation. To show that the physical representation is semantically
equal to the logical definition, a transformation from physical to logical streams needs
to be given. Here, the transformation by [KS09] can be used:

Definition 2.3. (Physical Stream To Logical Stream [KS09]): ϕp7→l(S p) := {(e, t, n) ∈
ΩT × T × N | n = |{(e, [tS , tE)) ∈ S p | t ∈ [tS , tE)}| ∧ n > 0}

The time interval in the physical stream is split into single logical stream elements.
The counter n is derived by counting all physical stream elements with the same tuple e
at the same logical timestamp t.

16 Background

point int tS

(1,1) 1 [1,2)

(3,3) 1 [3,4)

(100,100) 2 [3,5)

Physical
point int tS n

(1,1) 1 1 1

(3,3) 1 3 1

(100,100) 2 3 1

(100,100) 2 4 1

Logical

︸
︷︷

︸
Figure 2.5: Example transformation from a physical to a logical stream

Figure 2.5 depicts an example transformation: a physical stream with three stream
elements is transformed to a logical stream. The first two physical stream elements are
only valid for one chronon and therefore result in only one stream element in the logical
view. The last physical stream element is valid for two time instances. This stream
element results in two logical stream elements, one for each point in time. n is always 1
because there are no two or more equal stream elements which need to be distinguished
with this counter.

2.3.5 Chronon Stream

In a chronon stream, every data stream element is only valid the minimal possible time
interval, i. e., tS and tE are two consecutive points in time with the granularity of the used
time units [KS09].

In this thesis, typically every moving object measures its own location once in a while
and reports this location to the DSMS immediately. As the objects are continuously
moving, the location measurement is only valid the minimal possible time interval or, in
other words, one time instant. Hence, it is a chronon stream.

2.3.6 Trajectory

In the context of moving objects, the term trajectory is commonly used to describe the
path of a moving object over time [FXX+13, PAA+17]. A stream of trajectory data
typically consists of stream elements with a spatial object (e. g., a point or a region), an
identifier for the moving object and the timestamp of the measurement that states when
the object was at that location. As the locations are only known at certain points in time,
the locations in-between are often simply connected by a straight line [Gal16].

Figure 2.6 shows an example of a trajectory. The moving object, here a point, moves
through the space over time. Each measurement is depicted with a dot and its respective

2.4 Spatial Data Processing 17

tS = 2

tS = 4

tS = 7

tS = 12

Figure 2.6: Example of a trajectory

timestamp. The known locations are connected with a straight line, as the exact locations
at these times in-between the measurements are not known.

2.4 Spatial Data Processing

This section gives an overview of some basic geospatial foundations used in Geographic
Information Systems (GIS). It describes, how spatial information can be represented
and what operations can be calculated on this data. Additionally, a short introduction to
spatial indexing methods is given.

2.4.1 Spatial Data

Data created by moving objects contains spatial information. That can be the location of
the object, the direction of movement or the extend of the object. The reference system
of the moving object could be local, e. g., a football field [GFW+11], or global, i. e., the
earth. Data that is referenced to the earth can be called geospatial data [LGMR10] and
is the main focus of this work.

Today, GNSS such as GPS is often used to obtain location information, for exam-
ple, from navigation systems in vehicles. Typically, this data is given in latitude and
longitude values using WGS 84 as the datum [EPS07]. WGS 84 defines the reference
ellipsoid, hence, the exact axis lengths of the earth and the flattening of the oblate ellip-
soid. The datum is used to map from the coordinate system to the earth. Together with
the coordinate system, these build a coordinate reference system. Throughout this work,
WGS 84 is used at the geodetic datum, as AIS locations are measured using GPS.

The flattening is used because the earth is not a perfect sphere, but is instead a little
flattened due to its rotation. “The Earth is slightly flattened, such that the distance be-
tween the Poles is about 1 part in 300 less than the diameter at the Equator.” [LGMR10].
A flattened ellipsoid is depicted in Figure 2.7. The ellipsoid is rotating around the minor
axis. The distance between the poles is smaller than the diameter of the ellipsoid at the

18 Background

Minor axis

Major axis

Figure 2.7: Flattened ellipsoid, similar to [LGMR10]

major axis (i. e., at the equator). Nevertheless, the flattening of the earth is way smaller
than depicted here.

With latitude and longitude values, single points on the surface of the earth can be
referenced. Nevertheless, spatial objects can also have an extend. A common stan-
dard for spatial objects is the Open Geospatial Consortium (OGC) Simple Feature Ac-
cess (SFA) [IH11]. The description here refer to version 1.2.1 of the SFA. The class
hierarchy of the Geometry class, which is the abstract parent class of all geometries in
the SFA, is depicted in Figure 2.8. It defines a geometry object model with points, curves
and surfaces. All objects are created using points. For example, a LineString contains
multiple Point objects. The SFA does not know rounded objects, i. e., all points are al-
ways connected using straight lines. With this object model, two-and-a-half dimensional
(2.5D) objects can be represented. This means that for each (x, y) coordinate, only one
z coordinate can exist [LGMR10], i. e., each point has exactly one elevation value. Phe-
nomena such as bridges, where at the same (x, y) coordinate two elevations exist, cannot
be represented with a 2.5D model.

2.4.2 Topological Predicates

Topological relationship predicates between spatial objects in the SFA can be expressed
with the Dimensionally Extended Nine-Intersection Model (DE-9IM), which defines
nine intersections of two spatial objects. The intersections are defined for the interior,
boundary and exterior of the spatial objects, resulting in nine combinations of intersec-
tions. Figure 2.9 gives two examples. In Figure 2.9a, the interior of a polygon is inter-
sected with the interior of another polygon, resulting in a new polygon (orange dashed
area) as the result. In Figure 2.9b, the interior of the left polygon is intersected with
the boundary of the right polygon, resulting in a line, i. e., a one-dimensional result, in
contrast to the two-dimensional result of the intersection operation in Figure 2.9a.

2.4 Spatial Data Processing 19

Figure 2.8: Geometry class hierarchy of the OGC SFA object model in version 1.2.1.
Figure by [IH11].

(a) Intersection between the interiors of the
left and right polygons.

(b) Intersection between the interior of the
left and the boundary of the right polygon.

Figure 2.9: Example of the DE-9IM

20 Background

Based on the DE-9IM, “a set of named spatial relationship predicates” [IH11] is de-
fined for simpler use in spatial relationship predicates. For example, with the “within”
predicate, it can be tested if one object is within the boundaries of another object. The
SFA geometry model is for example implemented in the commonly used JTS Topology
Suite (JTS). Next to the geometry description, it also contains the definition of topolog-
ical predicates.

2.4.3 Geospatial Distance Calculations

The previous operations did not include distance calculations to know the distance be-
tween two points on the surface of the earth. As the earth is not a plane, Euclidean
distance calculations lead to wrong results, especially for longer distances. Spherical or
ellipsoid distance calculations are used instead. They are computationally more expen-
sive, but lead to more accurate results.

Examples for more accurate formulae for distances on the earth are the haversine
formula and the Vincenty’s formulae. The haversine formula simplifies the earth to a
sphere. Hence, it calculates the spherical distance, which can lead to a slight error of
a few kilometers, depending on which sphere is used to approximate the earth and the
locations of the two points for which the distance is calculated [Hub12].

Computationally more expensive but more accurate are distance calculations which
approximate the earth as an ellipsoid with a flattening (mostly of about 1/300). The
Vincenty’s formulae can be used to calculate these distances with an error up to about
0.5 mm on the ellipsoid [Vin75]. Hence, when using an ellipsoid that is an accurate
representation of the earth, these formulae lead to very accurate results.

2.4.4 Spatial Queries

In spatial database systems, such as PostGIS3, spatial queries can be defined with SQL
as the query language. The supported spatial data types and operations are often based
on the OGC SFA4 (cf. 2.4.2). An example query is given in Listing 2.1. Here, the
Maritime Mobile Service Identitys (MMSIs), i. e., the identification numbers of vessels,
which are within the borders of the country with the name “Germany”, are selected.
The spatial operation is the “ST_Contains”5 operation, which calculates if the geometry
(cf. Figure 2.8) of a vessel (e. g., a point geometry) is contained in the geometry of the
country (e. g., a polygon geometry).

3 https://postgis.net/
4 https://postgis.net/features/
5 PostGIS uses the naming convention from SQL/MM and thus starts the geometry functions with an ST
prefix (see https://postgis.net/docs/reference.html). SQL/MM is an extension to the OGC SFA
standard, wherefore the functions are mainly compatible with the SFA standard [Sto03].

https://postgis.net/
https://postgis.net/features/
https://postgis.net/docs/reference.html

2.4 Spatial Data Processing 21

1 SELECT v e s s e l . mmsi
2 FROM c o u n t r y , v e s s e l
3 WHERE ST_Conta ins (c o u n t r y . geom , v e s s e l . geom)
4 AND c o u n t r y . name = ’ Germany ’ ;

Listing 2.1: A spatial query in PostGIS

This is a quite simple spatial query. It is obviously not processing spatio-temporal
data, i. e., it does not use any temporal data of the relations. Additionally, this query is a
traditional one-time query: it is started, processes its results, returns these and is then no
longer active. Hence, the results are not updated when new data is added. Nevertheless,
when starting such a query, the results have to be processed quickly, even if the amount
of data in the database is very high. For this purposes, spatial indexes are used.

2.4.5 Spatial Indexes

To reduce the costs of a query, expensive spatial calculations need to be avoided as far
as possible. To achieve this goal, the question arises how to decide which elements
are within the query result with as few spatial calculations as possible (because spatial
calculations are costly [BKS93]). A common approach is to split the calculation of the
results into one or more filter steps and a refinement step [BKS93, Gü94, Bri07]. The
goal of a filter step is to reduce the potentially huge number of possible candidates to
only those which are in the final result of the query [Bri07]. Doing this, the costs of the
filter steps need to stay below the costs of the actual calculations. This is achieved by
approximation techniques, mainly with the support of spatial indexes [Bri07].

The resulting candidates which went through the filters (and are thereby potentially in
the result set of the query) are then refined in the refinement step. Here, the exact calcula-
tion is done on the potentially way smaller set of data. The general approach is depicted
in Figure 2.10 from [Bri07]. At the beginning, before any filter step, there is a large
set of candidates (c0). Each filter step reduces the number of candidates (c1, c2, . . .).
Doing this, some elements can be safely put in the set of result elements (r1, r2, . . .)
and some can be filtered out (e1, e2, . . .). Elements that are filtered out late in the filter
process (e. g., in the refinement step) are false hits and are aimed to be as few as possi-
ble [BKS93]. The computationally cost of the operations are typically increasing during
the process. For example, in a setup with one filter step and one refinement step, the
filter process should be (way) cheaper than the refinement step.

Spatial index structures in databases are, for example, space-filling curves [RSV02],
grids [RSV02], quadtrees [FB74], and R-trees [Gut84]. One-dimensional index struc-
tures such as the B-tree [BM72] perform poorly on multi-dimensional, and with that,
spatial data [LGMR10]. A spatial index needs to be build and maintained when the un-

22 Background

input
set c0

AC

filter step 1

r1

c1

e1

AC

filter step 2

r2

c2

e2

. . . cn−1 AC

filter step n

refinement step

rn

en

Figure 2.10: Steps in the filter and refine process. Figure reproduced based on [Bri07]

3-3

3-23-1

3-4

3-1 3-2 3-3 3-4

Empty cell

>= sub-cells are filled

Filled cell

Figure 2.11: A spatial area covered by a quadtree. Figure reproduced based on [BG18]

derlying data changes. In the following, a quadtree is used as an example for a spatial
index.

The basic approach of a quadtree is shown in Figure 2.11. On the left, a region
(depicted is a coast line and locations as points from moving objects) is covered by a
quadtree. This quadtree splits the quadratic regions into four new regions based on a
certain rule, for example, if the number of stored spatial objects in a region reaches a
certain limit. In this example, this has been the case for the left cells, where all stored
points (the black dots) occur. The very dense area (1-4) was split again because of the
high number of objects.

On the right, the resulting tree is shown. The leaves point to where the spatial objects
in this particular region are stored. Hence, if a query needs to know the objects in a
certain region, it is not necessary to go through all stored objects. The numbers in the
region part 3 are shown to depict which regions belong to which leaves.

2.4 Spatial Data Processing 23

In this simple example, the cells are always split in four equally sized quadratic cells.
This does not need to be the case. The nodes in the tree can instead store the split point.
From there, the rectangular region is split into four new rectangles. This can lead to a
better balance of the data in the index, i. e., less spatial objects being stored in the same
leaf in densely populated areas while others stay nearly empty [Oos99, LGMR10].

2.4.6 Spatio-Temporal Queries

Spatio-temporal queries take an additional temporal dimension into account when pro-
cessing spatial queries. The spatial data has an additional temporal attribute to state the
time at which the spatial object is valid. For example, a trajectory from a moving object
is made up of a list of points at different, increasing, points in time (as one moving object
typically cannot be at different locations at the same point in time). In Listing 2.2, an
example of a spatio-temporal query in a database is presented to give the reader an idea
on how such a query can be formulated and how the data and results can look like.

For this example, the temporal support of PostGIS is used, more specifically the ST_-
ClosestPointOfApproach function. This function takes two trajectories as the input.
A trajectory is a linestring with a start and end time. The values, i. e., the locations in-
between the given points of the linestring are linearly interpolated6. The linestrings are
created from Line 3 till Line 18 and use the WGS 84 reference ellipsoid.

While creating the linestrings, the measurement field m is exploited to store the time
at which the moving object is at certain locations on its path. The m field is a generic
field for spatial data objects to store “measurements”. Hence, this field can be used for
many different use cases, for example, to store temperatures for certain locations. In this
case it is used for the timestamp, i. e., the temporal dimension. This is done with the
ST_AddMeasure function. It adds a value m to a linestring. The value in m, a timestamp,
is interpolated between the start and end value given in the arguments of the function.
This way, each point on the linestring has a certain timestamp in the m field.

In Line 20 the Closest Point of Approach (CPA) is calculated using the aforementioned
function. Lines 22 and 23 get the actual points (pa and pb) from the original linestrings a
and bwith help of the function ST_LocateAlong and the previous result m (m only points
to the correct point by the time dimension). Finally, in Line 28, the distance between
the two CPA locations is calculated. The result of this query, a tuple with timestamp and
distance, is shown in the following table:

t distance
2018-07-25 11:31:46.158252+02 10797.8010620825

The distance is given in meters. Hence, at about 11:31 o’clock, the two moving objects
reach the CPA with a distance of about 10.8 km. Note that this is a result of a database
6 https://postgis.net/docs/ST_AddMeasure.html

https://postgis.net/docs/ST_AddMeasure.html

24 Background

on static data, i. e., there are no input data streams nor do the results update in an event-
driven manner.

1 −− C a l c u l a t e t h e t ime and d i s t a n c e where two moving o b j e c t s a r e
c l o s e s t t o each o t h e r

2 WITH i n p AS (SELECT
3 ST_AddMeasure (
4 −− geomet ry from wes t t o e a s t (long , l a t)
5 ST_GeomFromEWKT(’ SRID=4326;LINESTRING (6 . 9 3 1 2 3 6 53 .775987 ,

8 .787664 5 3 . 9 9 0 9 7 9) ’) : : geometry ,
6 −− measure s t a r t
7 e x t r a c t (epoch from ’2018−07−25 1 0 : 0 0 ’ : : t i m e s t a m p t z) ,
8 −− measure end
9 e x t r a c t (epoch from ’2018−07−25 1 2 : 3 0 ’ : : t i m e s t a m p t z)

10) a ,
11 ST_AddMeasure (
12 −− geomet ry from s o u t h t o n o r t h (long , l a t)
13 ST_GeomFromEWKT(’ SRID=4326;LINESTRING (8 . 1 6 6 6 5 3 53 .584027 ,

7 .886626 5 4 . 1 7 6 5 8 3) ’) : : geometry ,
14 −− measure s t a r t
15 e x t r a c t (epoch from ’2018−07−25 1 0 : 0 0 ’ : : t i m e s t a m p t z) ,
16 −− measure end
17 e x t r a c t (epoch from ’2018−07−25 1 4 : 0 0 ’ : : t i m e s t a m p t z)
18) b
19) , cpa AS (
20 SELECT S T _ C l o s e s t P o i n t O f A p p r o a c h (a , b) m FROM i n p
21) , p o i n t s AS (
22 SELECT ST_Force2D (ST_GeometryN (ST_LocateAlong (a ,m) , 1)) pa ,
23 ST_Force2D (ST_GeometryN (ST_LocateAlong (b ,m) , 1)) pb
24 FROM inp , cpa
25)
26

27 SELECT t o _ t i m e s t a m p (m) t ,
28 S T _ D i s t a n c e S p h e r o i d (pa , pb , ’ SPHEROID ["WGS

8 4 " , 6 3 7 8 1 3 7 , 2 9 8 . 2 5 7 2 2 3 5 6 3] ’) d i s t a n c e
29 FROM p o i n t s , cpa ;

Listing 2.2: A spatio-temporal closest point of approach query in PostGIS based on
the example query in the PostGIS documentation: https://postgis.net/docs/
ST_ClosestPointOfApproach.html

2.5 Moving Object Algebra

Queries on moving objects have been researched before, mostly for DBMS [GAA+05]
but also for DSMS [GMKB12]. An important foundation for querying moving ob-
jects is the moving object algebra by Güting et al. [GBE+00] on which other works
are build [GMKB12].

https://postgis.net/docs/ST_ClosestPointOfApproach.html
https://postgis.net/docs/ST_ClosestPointOfApproach.html

2.5 Moving Object Algebra 25

Figure 2.12: The spatial data types [GBE+00]

The moving object algebra uses the concept of the second-order signature by [Gü93].
Every signature consists of sorts and operations. The first signature defines the type
system of the algebra with collections of types (sorts) and the constructors (opera-
tions). “The second signature defines the operations over the types of the first signa-
ture.” [GAA+05].

The first signature defines a number of spatial and non-spatial types. The spatial
types are two-dimensional points (both singular and plural, i. e., point and points), lines
and regions (depicted in Figure 2.12), but standard data types such as real, integer and
boolean are also part of the type system. Note that a line as well as a region can be seen
as an infinite amount of points, i. e., a point set.

Based on these types with their respective constructors, non-temporal unary and bi-
nary operations can be defined. Examples for binary operations are the topological in_-
interior and the metric distance operations [AGB06]:

point × region→ bool [in_interior]
point × point → real [distance]

The notation shows the second-order signature of the operations. It describes two
input types and the output type of the operation. The name of the operation is on the
right. The algebra defines the behavior of the non-temporal operations for a number
of different classes of operations, e. g. the topological in_interior, the numeric area
(which returns the size of a region), the distance (e. g., between two points) and direction
operation [GBE+00].

Up until now, the types and operations are only static, i. e., non-temporal. Never-
theless, points, lines and regions can move and typically do this in a continuous man-
ner [GBE+00]. For this purpose, the algebra contains temporal types. These are derived
from the non-temporal types with the moving type constructor. This constructor takes a
type and creates a temporal version of it. For example, the point type becomes an mpoint
type. The mpoint is basically a function that is valid within a defined period of time. For
a given time instant (which is also a type), it returns a point. This is true for other types
as well: there exist temporal versions of regions, integers, booleans, etc. [GBE+00].

The operations of the algebra are defined on the non-temporal types. This is the so-
called kernel algebra. With an approach called lifting, the non-temporal operations are
lifted to the temporal counterparts. Basically the operations are lifted so that if any

26 Background

x

y

t

Figure 2.13: Sliced data from a moving point in time, similar to [AGB06]

argument of an operation is temporal, the result of that operation will be temporal, too.
Any combination of temporal and non-temporal arguments is possible [GBE+00]. For
the example above, the lifted versions of the operations are as follows [AGB06]:

mpoint × region→ mbool [in_interior]
point × mregion→ mbool [in_interior]
mpoint × mregion→ mbool [in_interior]

mpoint × point → mreal [distance]
point × mpoint → mreal [distance]
mpoint × mpoint → mreal [distance]

Considering the first example, the in_interior operation is used on a moving point and
a non-moving region. A point can be inside or outside of a region and when moving,
this state can change. The point can move from inside the region to outside the region,
wherefore the result of the operation will change over time. Therefore, the result of that
operation is not a bool, but an mbool, i. e., the temporal version of the bool.

As described in Section 2.3.5, the location of a moving object changes continuously
but is only known at certain points in time to the DSMS or DBMS. In [AGB06], this is
called a sliced representation. The location in-between the slices needs to be calculated.
In the moving object algebra, this is done by the temporal function. This function can
calculate the location of the objects (e. g., an mpoint) in-between the slices. For example,
a linear function can be used [AGB06]. Figure 2.13 depicts the sliced representation.
There are four slices over time (which are not necessarily in the same distance from
each other). In every slice, the location of the moving point is marked with a dot in
the two-dimensional space (x and y). The location of the moving point in-between the
slices can be calculated with the temporal function. In this case, it is a linear function to
connect the sliced points with a straight line.

2.6 Location Based Services and Vessel Traffic Services 27

As seen above, when querying with this algebra, temporal types can be the result.
For example, when querying “From when to when was the airplane X (mpoint) above
Germany (region)?”, the result of the in_interior would be an mbool. Such a temporal
type consists of temporal functions, or, as another logical representation, of “infinite sets
of pairs (instant, value)” [GBE+00]. The time in which the function is valid is limited:
there is a starting and an end point of the validity of the function. To answer the query
above, these temporal points are needed. They can be derived with the initial and final
operations which take a temporal type and return an (instant, value)-pair, from which
the time (instant) can be derived. This approach is similar to the time-interval approach
by [KS09] where each tuple contains the time interval in which it is valid.

The atinstant operation uses a temporal type, e. g., an mpoint, and an instant of time
to get the non-temporal type at that instant of time. With that operation, the temporal
function is used to calculate the value of the temporal type at the given instant of time.
These instants can be the areas in-between the slices in Figure 2.13.

The mapping of the types and operations to a DSMS needs to consider some of the
characteristics that differ between DSMS and DBMS, which is an important part of the
concept in the next chapter. To give a better understanding of moving objects in general,
a real world use case is introduced in the next section.

2.6 Location Based Services and Vessel Traffic Services

Location Based Services (LBSs) is a general term for services that use the location of the
services’ user, e. g., through the GNSS sensor of a mobile phone. Finding nearby points
of interest, nearby friends or playing location-aware mobile games are typical examples
for LBSs. Additionally, more critical services such as air traffic control, locating a phone
call in an emergency situation or finding stolen cars also fall under the general term of
LBSs [SV04].

To implement these services, spatio-temporal queries have to be executed, sometimes
with data from multiple moving objects. The queries have to update their results when
the user or the queried objects move and the results should be up-to-date to be aware
of the current context of the user. Hence, LBSs are in general a category of application
where spatio-temporal data streams from moving objects have to be processed. Vessel
Traffic Services are a part of LBSs in the maritime domain.

2.6.1 Vessel Traffic Services

The research described in this thesis aims to be generic and applicable for moving objects
in general. Nevertheless, to have a more specific application example, the traffic at sea
is the use case referred to in this work. Next to the vessels themselves, cost guards,
shipping companies and Vessel Traffic Services (VTSs) are working with data about

28 Background

Figure 2.14: Traffic at the North Sea and the English Channel. Screenshot from https:
//marinetraffic.com/ with map background data by Google.

the locations of vessels [SM07, EEB+07]. VTSs are onshore systems which manage
traffic in extensively used or otherwise difficult waterways. They provide information to
vessels, such as warnings about harsh weather conditions and positions of other vessels.

To ensure a safe and efficient traffic flow, VTSs rely on multiple data sources and
communication infrastructure with the vessels. Typical data sources are radar sensors
and AIS [LH06]. The data is used to keep an overview of the current situation at sea,
avoid collisions and search for missing vessels. Depending on the area, the number of
vessels can be very high. For example, the traffic on the North Sea and especially in the
English Channel is very dense, as can be seen on the screenshot in Figure 2.14.

The high traffic density and with that the huge amount of data in this example let the
question arise how automatic data processing can be applied on this data, especially on
AIS data. Automatic processing can help to get a better overview of this data to increase
the situation awareness, what is especially useful for VTS applications. Additionally,
storing and analyzing the data can help to make decisions about port development and
waterway policies [Tso16].

For a VTS, the current situation at the waterways is very important. This has to be
considered for solutions that automatically process the data from the vessels and poten-
tially other data sources, such as weather sensors. This live processing of the moving
object data is the motivation of this work.

https://marinetraffic.com/
https://marinetraffic.com/

2.7 Related Work 29

2.7 Related Work

Moving object data is a popular spatio-temporal data type and solutions for different
challenges with this specific kind of data have been researched. Historically, the moving
object data was available in databases as static trajectories, i. e., sets of historic moving
object data. SECONDO [AGB06] is a popular example for a moving object database.
It allows to do operations on the data that are specific for moving objects. For example,
with the system it is possible to query all occurrences when trains (i. e., moving objects)
passed a certain area [AGB06]. The spatio-temporal operations are integrated through
algebras. In this case, a spatial and a temporal algebra are integrated into the base system.
In contrast to this work, SECONDO does not aim at data streams. The queries performed
on the system are one-time queries and do not run continuously.

Newer approaches allow to run continuous queries on data streams from moving ob-
jects. They develop their own streaming system or use an existing streaming system and
extend it by spatio-temporal functionality.

Continuous queries on data streams from moving objects can be processed with the
open-source project “Tile38”7. It is designed as a database with a spatial index but
supports some kinds of continuous queries to get alerted when a moving object is within
a certain area or close to another moving object. In contrast to this work, “Tile38” does
not build on a DSMS with a clear streaming approach and an operator-based querying
language. Hence, it is not as flexible, for example, to fuse different data streams from
different sources.

Galić [Gal16] describes the two streaming systems OCEANUS and MobyDick8 for
moving object data streams. OCEANUS [GMKB12] uses “TelegraphCQ” [CCD+03]
as the underlying DSMS and extends it with PostGIS9 for spatial operations. They
use an extension of SQL for the definition of continuous queries. MobyDick extends
Apache Flink10 for distributed stream processing of moving object data streams. Moby-
Dick adds, for example, a data type for temporal points, i. e., a point on a trajectory
of a moving object to Apache Flink. Both works differ from this thesis. They do not
describe queries between multiple moving objects, e. g., objects that are close to each
other. Instead, they can report all objects within a static region (e. g., a certain city dis-
trict [GMKB12]), close to a point of interest or that travelled a certain distance within a
period of time. The proximity queries (close to a point and within a certain area) differ
from queries between moving objects in a way that one part of the query is static, i. e.,
the area does not move and the exact location of it is always known. Additionally, both
works do not discuss performance improvements with spatio-temporal filter and refine
algorithms. Despite these differences, they have similarities. For example, MobyDick

7 http://tile38.com/ and https://github.com/tidwall/tile38
8 https://bitbucket.org/DarioOsm/mobydick
9 http://postgis.net/
10 https://flink.apache.org/

http://tile38.com/
https://github.com/tidwall/tile38
https://bitbucket.org/DarioOsm/mobydick
http://postgis.net/
https://flink.apache.org/

30 Background

has the functionality to predict a moving objects location at a certain point in time (with
a linear inter- or extrapolation algorithm11).

Other works concentrate on parts of the processing of continuous queries on mov-
ing object data streams. [MA08] present a framework for range- and k-nearest neigh-
bors (kNN) queries within windows on data streams. They focus on an efficient al-
gorithm that calculates the incremental results. Some temporal considerations that are
taken into account in this thesis as well as the focus on the integration into the archi-
tecture of a DSMS are not in the scope of [MA08]. [LCY07] also present an efficient
algorithm for continuous queries (e. g., a range query) on moving object data streams.
They estimate which data is potentially part of future query results and only keep that
data in memory while discarding the other data. To do this, future locations of moving
objects are predicted with linear extrapolation. Old data is not kept, which is a difference
to a DSMS where windows are supported.

Eom et al. [ESL15] propose a query language based on GeoSPARQL for semantic
spatio-temporal data streams from Internet of Things (IoT) devices. They use a stream-
ing approach with windows and a special data structure for the spatial data. They com-
bine in-memory storage and database storage for large windows. The system is general
purpose and arbitrary queries can be formulated with the given query language. Never-
theless, no queries are described where the locations of multiple moving are compared
to each other (e. g., the distance from a moving object to other moving objects). Ad-
ditionally, it is not described how they would deal with unknown locations for certain
points in time. Thirdly, the temporal semantics is given, but seems to be more limited in
contrast to this work: the temporal information of a calculated result is not used in the
following operations. In contrast, these topics are discussed in this thesis.

Bakli et al. [BSS18] use Hadoop to process data from moving objects. They also
use the moving object algebra and integrate support for it into Hadoop. Using Hadoop,
the motivation is to process huge amounts of moving object data, similar to this work.
Nevertheless, the target scenarios are different. While Hadoop is designed for bulk pro-
cessing, the focus of this work are near real-time results on live data streams.

[BG18]12 gives an overview of the topic of streaming spatio-temporal data, so-called
GeoStreams. Different applications, approaches and techniques are described and an
overview of future research challenges in this emerging field is given.

2.8 Summary

This chapter provides background knowledge about the main topics which lay the foun-
dations of this thesis. The characteristics of the data streams that are created by moving

11 https://bitbucket.org/DarioOsm/mobydick/src/
1b1ceb743ce02206c29679f1265d8018126d39a1/src/main/scala/mobydick/PointUnit.scala

12 The author of this thesis also authored this paper.

https://bitbucket.org/DarioOsm/mobydick/src/1b1ceb743ce02206c29679f1265d8018126d39a1/src/main/scala/mobydick/PointUnit.scala
https://bitbucket.org/DarioOsm/mobydick/src/1b1ceb743ce02206c29679f1265d8018126d39a1/src/main/scala/mobydick/PointUnit.scala

2.8 Summary 31

objects have been explained, as they shape the requirements for the capabilities of DSMS
that query these data streams. This thesis aims to extend DSMS, therefore, the basic
functionality and technical backgrounds of DSMS have been described here. The oper-
ator based, in-memory stream processing and the window logic are the main takeaways
from that part (cf. Section 2.2). Based on the general understanding of data streams
and stream processing, formal definitions of data streams and important concepts of the
processing, such as the snapshot-reducability, are given in Section 2.3.

Spatial data processing is another crucial foundation for this work and has been cov-
ered in Section 2.4 with aspects such as spatial data description, spatial operations and
spatio-temporal queries. Combining spatial and temporal processing, the moving object
algebra is introduced in Section 2.5. This algebra lays an important foundation for this
work. It is used for the spatio-temporal operations on moving object data streams. The
concept of the sliced representation and the mapping into the streaming environment are
explained.

This section is followed by a short introduction about Vessel Traffic Services as a pos-
sible application field for this work and to give the reader more practical examples in the
remainder of this thesis. Finally, related work is discussed in this chapter in Section 2.7
with SECONDO as a promising system in the field on moving object databases and other
works such as OCEANUS in the field of data stream processing and moving objects.

32 Background

33

3 Moving Object Stream Query Processing

As motivated in Chapter 1, the goal of this work is to query moving object data streams
in a DSMS. The moving object algebra is well-known and precisely defined for the
purpose of querying moving objects in databases. It has been used in special-purpose
DBMS such as SECONDO [AGB06] as the theoretical foundation. There are also
works that use the moving object algebra for spatio-temporal data streams, for exam-
ple, OCEANUS [GMKB12] (cf. 2.7).

To query moving object data streams, this work combines the time-interval approach
by Krämer et al. [KS09] with the moving object algebra by Güting et al. [GBE+00]. The
interval approach allows, with its concept of snapshot-reducability [JDB+98], the reduc-
tion of streams to snapshot relations, which can be queried using well-known relational
algebra. This approach fits well to the approach of the moving object algebra which also
uses time-intervals to represent valid-times [JDB+98] of results. Therefore, the interval
approach is used in this thesis.

In other words, the connective element of the two approaches is that the concept of
snapshots in the time-interval approach can be mapped to the concept of sliced repre-
sentation of moving objects. The location of a moving object is only known at discrete
points in time while in reality, it is moving continuously. The location in-between the
measurements is unknown. In the moving object algebra, this is called a sliced repre-
sentation, in the time-interval approach every measurement would be a snapshot. To
query the moving objects, it is necessary to know or at least to approximate the locations
in-between the measurements. The moving object algebra solves this with a temporal
function. Adding this capability to a DSMS is an important part of this thesis, as there
are important differences between a solution within a DBMS and a DSMS.

How the two theories can be connected is explained in this chapter. Due to the char-
acteristics of data streams, the definition of logical and physical streams needs to be
extended to work with moving objects. The so-called bitemporal data stream is defined
in Section 3.1. Sections 3.2 and 3.3 go deeper into the moving object algebra within
DSMS and explain the type system and the operations on these types for the usage on
moving object streams. Parts of this chapter have been described in [BG19].

3.1 Bitemporal Data Streams

Queries in a streaming scenario and in a database scenario have fundamental differences.
In a streaming scenario, the data is not known in advance. The stream changes over time
while the query is static. In a DBMS, the data is static (at least during the processing
of a query). When running a query, it returns a result that is valid at the point in time
when the query was executed. To allow a semantically correct and reliable calculation of

34 Moving Object Stream Query Processing

results, [KS09] introduced the snapshot-reducability (cf. 2.3.1) which is connected to the
requirement that data streams are temporally ordered by their start timestamp (cf. 2.3.3).

The temporal types of the moving object algebra (cf. 2.5) introduce temporal func-
tions which calculate the values of types in-between slices. As the data is not known in
advance, in a DSMS it can also be relevant to calculate the location of a moving object
in the future, not only between slices. In contrast to the moving object algebra, the end-
timestamp of a temporal function may not be defined. Additionally, new data arrives
during the processing of the query, which leads to another time domain: real data from
the moving objects and predicted data from the temporal functions, while in a DBMS
with the moving object algebra, both times can be handled together as one temporal
dimension (as the arrival time of the data is not relevant because the data is static).

To handle this difference, the definition of the moving object stream needs to be ex-
tended. The possibility to include predicted versions of tuples requires the integration of
a new timestamp to state the prediction time. The extended definition of the logical and
physical data streams can be done following the approach from Bolles [Bol11]. [Bol11]
adds new timestamps to the streams to stay compatible with the stream order required
for data stream processing. In contrast to the moving object algebra which uses tem-
poral types, [Bol11] uses a prediction function similar (but not equal) to the temporal
function to calculate the values in-between the slices or, in the words of the time-interval
approach from [KS09], in-between the snapshots.

To illustrate the problem, let us consider the following situation. A continuous query
on a moving object data stream contains the temporal type mpoint for a moving object.
A query wants to know the distance from that point to a point at a certain time in the
future, e. g., five minutes from the last slice.

mpoint × point → mreal [distance]

The distance operation has a temporal real as its result. With an atinstant operation
on that mreal at the temporal instance five minutes into the future, the result would have
a future timestamp, ahead of the current stream. That by itself is not a problem, since
the stream would still be ordered. The problem occurs when now a new stream element,
a real element, arrives that is only one minute ahead of the last real measurement but
four minutes behind the predicted element. Now, the temporal order of the stream is
disrupted, which is not allowed by the definition of physical streams (cf. Definition 2.2).

This is depicted in Figure 3.1. Based on the tuple at time 4, the value is predicted
to time 9. Nevertheless, the next arriving (non-predicted) tuple arrives at time 6. The
order of the stream is disrupted, because after a tuple with timestamp t = 9 a tuple with
a timestamp t < 9 arrives.

To prevent this unwanted effect with predicted tuples, [Bol11] introduces the concept
of a bitemporal stream with a second timestamp for each tuple. The order of the stream
is based on the stream-timestamp tS while predictions only change the prediction-time

3.1 Bitemporal Data Streams 35

0 1 2 3 4 5 6 7 8 9 10 11 12
Discrete time

Tuples with discrete time
interval

Predicted tuple

Figure 3.1: Unordered stream due to prediction

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

11

tS

t P

Figure 3.2: Stream ordered by tS with a predicted tuple

tP. Predictions use the stream-timestamp tS from when they were predicted. This way,
the order of the stream for tS is met.

This is illustrated in Figure 3.2. Here, the same stream elements as in Figure 3.1
are drawn, but in a two-dimensional temporal representation. The x-axis represents the
stream time tS and the y-axis the prediction time tP. The predicted tuple, which was
the reason for the unordered stream in Figure 3.1, is now in the correct temporal order
according to tS . The gray diagonal line indicates the placement of the non-predicted
tuples: a tuple that is not predicted will be on this line, but not at every point on the line
will be a tuple. In this example, two non-predicted tuples are on the line, marked with a
dot. When tS = tP, the tuple is not predicted. When they differ, the tuple is predicted,
which is the case with one tuple, marked with a gray dot above the diagonal line.

36 Moving Object Stream Query Processing

The extended versions of the stream definitions are called bitemporal, because they
have two different temporal dimensions. Definition 3.1 defines the bitemporal version of
the logical stream:

Definition 3.1. (Logical bitemporal stream [Bol11]): A logical bitemporal stream S l

of type T is a potentially infinite multiset (bag) of elements (e, tS , tP, n), where e ∈ ΩT

is a tuple of type T, tS ∈ T is the associated timestamp in stream-time, tP ∈ T is the
associated timestamp in prediction-time and n ∈ N, n > 0, denoted the multiplicity of the
tuple. Let Sl

T
be the set of all logical streams of type T.

The physical bitemporal stream also adds the second time interval for the predicted
time:

Definition 3.2. (Physical bitemporal stream): A physical stream S p of type T is a
potentially infinite, ordered multiset of elements (e, [tS , tS E),Set<[tP, tPE)>), where e ∈
ΩT is a tuple of type T, and [tS , tS E) is the half-open time interval for the stream time
with tS , tS E ∈ T . [tP, tPE) is a half-open interval for the predicted time with tP, tPE ∈ T .
One stream element can have multiple, non-overlapping prediction time intervals. A
physical stream is non-decreasingly ordered by start timestamps of the stream time tS .

At this point, a slight difference to the approach from [Bol11] can be seen. While
Bolles includes the prediction function into the physical stream, here the physical at-
tributes are extended to temporal types. These temporal types are the prediction func-
tions and deliver non-temporal attribute values for every bitemporal time instance. The
difference is due to the moving object algebra, which already defines temporal types and
their behavior. This concept is used in this thesis.

Identical to the definition in [Bol11], one stream element can have multiple prediction
time intervals. It is possible that, due to the temporal function, a stream element with a
temporal type fulfills a predicate at a certain time interval, then, for a few time instances
does not fulfill the predicate, and then again fulfills it. Take a moving object as an
example, as depicted in Figure 3.3. The object is inside of a certain region between
12:00 and 13:00 o’clock (red line), moves out and then enters the region again (second
red line between 14:00 and 15:00 o’clock). A predicate which checks if the moving
object is inside that region would have two distinct time intervals as a result.

A solution to deal with such a behavior would be to create multiple stream elements
with the same content and the same stream time, but with different prediction time inter-
vals (the times where the moving object is inside the region). Nevertheless, this would
introduce a few problems to the stream processing. On the one hand, cost models for
query analysis would need to consider that a selection (i. e., filter) operation could create
more stream elements than it consumes. On the other hand, element windows would
change their behavior. The same element would exist multiple times with different pre-
diction times and therefore could remove parts from itself from an element window.
Imagine an element window of size one and a stream element that exists twice with

3.2 Temporal Types 37

12:00

13:00

14:0015:00

Figure 3.3: A moving vessel being in the queried region twice

different prediction times. The element window would only hold one of the two ele-
ments, so the stream element would remove a part from itself from the window, which
is typically an unwanted behavior.

3.2 Temporal Types

Güting et al. [GBE+00] define a type system for non-temporal and temporal types, which
is the basis for the approach in this thesis. This section describes the logical integration
of the type system into a DSMS with the extended time-interval approach explained in
Section 3.1.

3.2.1 Naming Scheme

Güting et al. [GBE+00] define and describe non-temporal and temporal types. In the
following, we use the naming scheme from Galić et al. [GMKB12] which also adapt the
moving object algebra. The temporal versions of a type is written as temporal([type])
(e. g., temporal(point)) or in short as tpoint. This maps to the naming scheme from
Güting et al. [GBE+00] where it is written as moving([type]) or in short as m[type]
with [type] as the respective type. Here, temporal is used to underline the fact that the
approach does not only apply to spatially moving objects but to simple types such as
integer as well (as is does in [GBE+00], too). For example, when an integer value is
lifted, it becomes a temporal type called temporal(integer) or in short tinteger.

3.2.2 Temporal Function

A temporal type consists of a temporal function of type α which returns for a given time
instance t ∈ T a value of the type of the non-temporal counterpart:

Definition 3.3. (Temporal Function): A temporal function fα is a function fα : T → α

that for a given time instance t ∈ T returns a value of the type α.

38 Moving Object Stream Query Processing

The temporal function of a temporal type calculates a value of the respective non-
temporal version of the type for a given time instance. On the logical level, no temporal
types exists: for each single tP a value of the non-temporal type is available (calculated
by the temporal function). Therefore, the operations can be defined on the non-temporal
types [GBE+00].

3.3 Operations on Moving Object Streams

The moving object algebra defines operations on the defined spatial and non-spatial types
(cf. 2.5). All operations are defined on the non-temporal versions of the types and are
then, by a process called lifting, transferred to the temporal types. This section describes
how to integrate these operations into a DSMS with an interval approach.

3.3.1 General Approach

The moving object algebra [GBE+00] defines many operations such as the set opera-
tions “touches” or “in_interior” on non-temporal types and then uses the approach called
“lifting” to apply these operations on temporal types or combinations of temporal and
non-temporal types (cf. 2.5). This approach can be translated to the bitemporal interval
approach in a DSMS.

On the logical view of a data stream, all operations and types are non-temporal. The
operations can be performed without temporal considerations as the values of the types
are static at the single bitemporal time instance. The lifting happens when applying the
operations to physical streams: here, temporal types exist. When applying the operations
on temporal types, the results are also stream elements with temporal types with a certain
time interval in the prediction time dimension tP.

In the physical stream, the prediction time interval [tP, tPE) represents the periods
value in the moving object algebra, i. e., the sets of intervals or points in time when the
temporal function is defined, which also states the periods at which the result is valid,
or, in other words, exists. Hence, the collective result for one stream timestamp tS is
exactly the result of the operation in the moving object algebra. This is a fundamental
part of the integration of the moving object algebra into the bitemporal time-interval
approach: as the stream timestamp tS does not exist in the moving object algebra, it is not
affected by any operations from it. The temporal operations, i. e., the lifted operations are
represented only by the prediction timestamp tP. Doing so, the stream algebra by [KS09]
is minimal affected, just as defined in [Bol11].

To integrate the operations from the moving object algebra, the operators in the DSMS
need to be slightly changed to work with the bitemporal approach. For example, the
select and the map operator are extended. The affected operators are explained in the
following sections.

3.3 Operations on Moving Object Streams 39

Additionally, the moving object algebra defines operations that work directly on tem-
poral types, without a lifting approach. These cannot work on non-temporal types. For
example, the operations class “Rate of change” includes “speed” and “turn”. These op-
erations work directly on temporal types and cannot be applied to non-temporal types.

An example for such an operation that works, for example, on a temporal integer or
temporal real value is the “atMin” operation. It reduces a temporal attribute to those
values which are minimal with respect to a given order. For this function to work, the
whole temporal attribute is needed, the function works on the temporal type directly and
does not need to be lifted to the temporal dimension.

3.3.2 Predicates

Predicates are operations that evaluate to a Boolean value. An example for such an op-
eration is the binary in_interor operation. The signature and semantics of this operation
are as follows [GBE+00]:

Name: in_interior
Signature: π × σ→ bool
Semantics: u ∈ Uo

The in_interor operation takes a point (π) and a point set (σ) (e. g., points, line or
region) and results in a bool value. The semantics is that the predicate checks if the
given point u is within in the interior of a region which is the point set Uo.

Predicates are, for example, used in a selection operator [Krä07]. When using such a
predicate in a bitemporal data stream, the result is the set of tuples at which the predicate
returns true. The definition of the bitemporal select operator shows how the predicate
is used to select the stream elements:

Definition 3.4. (Bitemporal Selection [Bol11]): Let S L be a logical bitemporal data
stream and p a predicate over the tuple e. Then, for the selection operator σ, the follow-
ing holds:

σ(S L, p) = {(e, tS , tP, n)|(e, tS , tP, n) = r ∈ S L ∧ p(r)}

The bitemporal join operator also works with predicates. Its definition can be found
in [Bol11].

Lifting

Note that for each stream timestamp tS an infinite amount of prediction timestamps
tP can exist (resulting in a potentially infinite amount of stream elements for one tS).
Hence, the result of the selection operation “does not state if, but when—in the sense of
the prediction time—the predicate is fulfilled” [Bol11]. This result, the times when the
predicate is fulfilled, is the equivalent to the periods value in the moving object algebra.

40 Moving Object Stream Query Processing

3.3.3 Other Operations

Other operations from the categories “set operations”, “aggregation”, “numeric”, “dis-
tance and direction” and “base type specific” from [GBE+00] can be used within the
map operator [Krä07]. Here, the same logic as for the predicates apply. The operations
are done on the single stream elements in the bitemporal space. Hence, the operations
are done in a non-temporal manner and the temporal behavior of the temporal attributes
is represented by the second temporal dimension, the prediction time tP. The mapping
operator again can be defined as in [Bol11]:

Definition 3.5. (Bitemporal Mapping [Bol11]): Let fm be a non-temporal mapping
function which can be applied to each stream element separately. Then the mapping
operator is defined as follows:

υ(S L, fm) = {(ê, tS , tP, n)|∃(e, tS , tP, n) = r ∈ S L ∧ fm(r) = (ê, tS , tP, n)}

3.3.4 Aggregations

Aggregations on data streams aggregate stream elements which are valid at the same time
instances. Hence, an aggregation typically reduces the number of data stream elements
in a stream. For example, an aggregation could calculate the sum of an attribute of
all valid stream elements. The bitemporal aggregation can be defined similar to the
aggregation in the interval approach from [Krä07]. The aggregate is calculated using
an aggregation function fagg which uses a set of valid stream elements as input. The
elements are valid both in the stream time as well as in the prediction time dimension.
The aggregation operator can be defined similar to [Krä07]:

Definition 3.6. Bitemporal Scalar Aggregation (following [Krä07]) Let fagg be a non-
temporal aggregation function. Then the aggregation operator is defined as follows:

α(S L, fagg) = {(agg, tS , tP, 1)|∃X ⊆ S L.X , ∅ ∧ X = {(e, n)|(e, tS , tP, n) ∈ S L} ∧ agg =

fagg(X)}

3.3.5 Example

To illustrate how moving types and operations connect to the bitemporal time model,
Figure 3.4 depicts an example. On each subfigure, two spatial objects are shown: one
tpoint called m and one region called r. Subfigure 3.4a shows the situation at an earlier
point in time than Subfigure 3.4b. Let us assume that the first situation is shown at
tS = 20 and the second at tS = 30. In the physical representation, the moving object is
a temporal point while in the logical representation, it consists of an infinite amount of
non-temporal points in the prediction time domain tP.

The dashed line in both figures shows the development of the temporal type m on
the second temporal dimension tP, the prediction time. The region does not have a

3.3 Operations on Moving Object Streams 41

tS=tP=20

r

m

(a) Situation at an early tS

tS=tP=30

r

m

(b) Situation at a later tS

Figure 3.4: Example of an in_interior operation of a tpoint “m” and a region “r”

development because it is not a temporal type. At one point, marked with a dot, the
stream time is equal to the prediction time (tS = tP). The prediction can, dependent on
the prediction function, vary between two different stream elements (in stream time), i. e.
the dashed line can look different for two different stream timestamps tS . This can be
seen in the figure where the second prediction for the future varies from the prediction
in the left figure. The time interval of the prediction time can be from 0 to ∞ if it is not
limited. In the figure, the time interval is only drawn partly.

These two spatial types can now be used for a spatial operation, for example, the in_-
interior operation (see 3.3.2). The non-temporal operation can be applied to every single
stream element independently. Hence, for each tS there is a set of stream elements with
different tP that fulfill the predicate.

In this example, a temporal point and a non-temporal region is given, wherefore the
following lifted operation is used:

tpoint × region→ tbool [in_interor]

Let us assume that the trajectory of m is drawn from left to right (i. e., tP increases
to the right). Let us further assume that on the left subfigure m enters r at tP = 10 and
leaves the region at tP = 30. Then, the result of the in_interior operation at tS = 20
is that the operations returns false for 0 ≤ tP ≤ 10 (≤ instead of < because exactly
at the border the point is not inside the region), true for 10 < tP < 30 and false for
30 ≤ tP ≤ ∞. If this predicate would be used for a select operation, the stream elements
for which the predicate is false would be filtered out so that only the elements within
the region would remain in the result set.

In the logical representation, the result would contain a set of 19 stream elements,
all at tS = 20 and with 19 different tP, each containing a point (not a tpoint). In the
physical (lifted) representation, the result would contain one stream element with the
interval [20, 21) for the stream time and [11, 30) for the prediction time and a tpoint for
the location of the moving object.

42 Moving Object Stream Query Processing

At tS = 30, the situation has changed. The temporal function for the temporal point
is not the same, the moving object has been slower than expected at tS = 20. Now, the
entry time is still at tP = 10 but the exit time is at tP = 35. The results of the operation
for the stream elements with tS = 30 change accordingly.

3.4 Summary

This chapter has shown that the moving object algebra with its temporal types and lifted
operations can be integrated into the logical processing model of a DSMS using a bitem-
poral time model.

To integrate the concepts of the moving object algebra into an interval-based DSMS,
the time model needs to be extended, which is done in Section 3.1. The bitemporal
time model introduces a prediction timestamp tP to the data streams with which multi-
ple stream elements can exist at the same stream timestamp tS without interrupting the
necessary order of elements.

The basic concepts of the moving object algebra are the topic of Section 3.2 and 3.3.
Temporal types (cf. 3.2) are functions which can calculate a value of a certain type for
a given point in time. This way, the prediction of moving objects to points in time
where the exact location is not known can be done. On these types, a number of op-
erations (cf. 3.3) are defined in the moving object algebra. The section describes how
the temporal behavior of the operations can be mapped into the streaming model of an
interval-based DSMS.

This chapter describes the logical integration. The next chapter will describe the phys-
ical integration, which will take bitemporal time-intervals and performance considera-
tions into account.

43

4 Physical Integration

The logical integration of the moving object algebra with its temporal attributes and
lifted operations into a DSMS has been explained in Chapter 3. The physical integration
is the topic of this chapter. The logical definitions leave out some practical limitations
which need to be considered when integrating the concepts into a real DSMS to process
data streams from moving objects.

First, the connection between logical and physical data streams is defined in Sec-
tion 4.1. This is necessary to apply the definitions from Chapter 3 to physical data
streams. The next step in Section 4.2 is the creation of temporal attributes, for example
via a transformation from non-temporal attributes such as a point to temporal attributes
such as a tpoint. When having temporal types, the second temporal dimension, the pre-
diction time, comes into consideration. Details on the prediction time are explained in
Section 4.3. This includes, among others, the manipulation of the prediction time, for
example by the aggregation operation (see Section 4.3.5), and its granularity.

The standard operations on data steams such as aggregations and expressions need
to be extended to work in the prediction time dimension with temporal attributes. Ex-
pressions that contain temporal attributes are “lifted” to work with the prediction time
dimension, which is explained in Section 4.4.

Predictions always come with an uncertainty, which can reduce the trustworthiness of
a value in a temporal attribute. How this trust value can be represented is described in
Section 4.5.

When querying moving object data streams, more than one moving object is part
of a stream. Rather, a number of objects frequently report their location or even stop
reporting their location. To query such a data stream, for example with a radius query
(i. e., distance query), the locations of the objects need to be combined. Doing this, the
temporal dimension of the data makes the combination of data from different moving
objects a difficult task. The challenges and possible solutions for this goal are described
in Section 4.6.

The filter and refine approach is a typical efficiency improvement step for spatial
queries. It filters out elements which are not part of the query result with computationally
cheaper calculations than the “real” spatial predicate. The integration of this approach
into the query processing on moving object data streams is the topic of Section 4.8.

With these topics covered, this chapter lays the foundation for the implementation of
the concept into a DSMS, which is the topic of the next chapter.

44 Physical Integration

4.1 Physical Moving Object Data Stream

A physical moving object data stream is used for the implementation and uses the tem-
poral types (cf. 3.2) to represent moving objects. This representation is used to handle
continuous movement with a potentially infinite number of locations with limited re-
sources (e. g., memory).

4.1.1 Transformation

The physical implementation of the concept needs to be semantically equivalent to the
logical definition, i. e., the results of the query plans need to be equivalent [KS09]. This
can be shown by a transformation from a physical bitemporal stream to a logical bitem-
poral stream, similar to the transformation defined in Section 2.3.4. The bitemporal
transformation is similar to the definition from [Bol11].

Definition 4.1. (Physical Stream To Logical Stream): Let αt be an attribute of a tem-
poral type which has a temporal function fα (cf. 3.2). Further, let ttemporal be the set of all
temporal types. Then, the following function transforms a physical bitemporal stream
with temporal attributes to a logical bitemporal stream without temporal attributes.

ϕp7→l(S p) := {(ê, t̂S , t̂P, n) ∈ ΩT × T × T × N | (4.1)

∃(e, [tS , tS E),Set<[tP, tPE)>) ∈ S P : (4.2)

t̂S ∈ [tS , tS E)∧ (4.3)

∃[tP, tPE) ∈ Set<[tP, tPE)> : t̂P ∈ [tP, tPE)∧ (4.4)

∀αt ∈ e : αt ∈ ttemporal ∧ fα(t̂P) ∈ ê} (4.5)

Let us take a closer look at this formula. In Line 4.1, the logical stream element
is described, which contains a set of attributes (ê), a timestamp in stream time (t̂S), a
timestamp in prediction time (t̂P) and a counter to distinguish between equal elements
(n). For this logical element a physical element needs to exist in the physical stream
(Line 4.2). A stream element in the physical stream also contains a set of attributes (e),
an interval for the stream time ([tS , tS E), the “E” in tS E stands for “end”) and a set of
intervals for the prediction time (Set<[tP, tPE)>). Note that in the examples, instead of a
set of prediction time intervals, often only one interval is used for simplification.

The parts of the logical stream element are defined by the existence within the physical
stream: the stream timestamp t̂S needs to be within the interval of the stream time in the
physical stream (Line 4.3) and the prediction timestamp t̂P needs to be within one of
the prediction time intervals in the Set<[tP, tPE)> (Line 4.4). Additionally, the results
of all temporal attributes in the physical stream element for the selected prediction time
t̂P need to be in the attributes of the logical stream element (Line 4.5). In other words,

4.1 Physical Moving Object Data Stream 45

the temporal functions are solved for the timestamp t̂P and written to the logical stream
element so that no temporal attributes exist in the logical stream.

4.1.2 Example Transformation from Physical to Logical

The definition shows that the conversion from physical to logical contains the stream
time, the prediction time and the temporal attributes. While the physical stream contains
time intervals and temporal attributes, the logical stream only has points in time and
non-temporal attributes.

To illustrate the transformation from a physical to a logical bitemporal data stream
with temporal types, Figure 4.1 depicts a physical stream on the left and its logical
counterpart on the right. The depicted stream is a moving object stream with the typical
attributes: the location of the moving object as a point and the identifier for this object
as an integer (int). The location is given as a tpoint: the function can predict the location
of the object to an arbitrary point in time and does this for the given interval of the
prediction time interval tP (which, for the sake of simplicity, is a single interval in this
example, i. e., a set with only one element). The transformation from the physical to the
logical stream in this example is done using the transformation function in Definition 4.1.

tpoint int tS tP

f1 1 [1,2) [0,4)

f2 1 [3,4) [3,5)

f3 2 [3,4) [0,2)

Physical

point int tS tP n

(1,1) 1 1 0 1

(1,2) 1 1 1 1

(1,3) 1 1 2 1

(2,3) 1 1 3 1

(3,3) 1 3 3 1

(5,2) 1 3 4 1

(100,100) 2 3 0 1

(101,100) 2 3 1 1

Logical

︸
︷︷

︸
︸

︷︷
︸︸

︷︷
︸

Figure 4.1: Example of a physical data stream and its logical counterpart

Each stream element of the physical stream on the left can translate to multiple ele-
ments in the logical stream. With this transformation, it can be shown that the physical
implementation is equivalent to the logical semantics. In this example, the first physical
tuple is translated to four logical stream elements because the time-interval in the predic-
tion time tP spans from 0 to 4 (excluded). The temporal function of the temporal point
tpoint then calculates the location of the moving object with the id = 1 for each time in-
stance in the prediction time interval. The id stays the same because it is a non-temporal
type. The same procedure is done for the other two stream elements in the physical

46 Physical Integration

stream. Note that the predictions for the same point in time can differ for different tS .
This is useful because the knowledge of the prediction function can change over time
what in turn can lead to different predictions than before. For example, when a moving
object changes its direction in a way that was not predicted before, the predictions will
change, too.

The value of the tpoint attribute is different for each stream element. Hence, it can
calculate different values for the same tP. This is the case with the prediction for tP = 3.
The temporal function (i. e., the tpoint) at tS = 1 predicts the location (2, 3) for this time
instance, the temporal function at tS = 3 predicts (3, 3). The third tuple in the physical
stream has an earlier tP. Nevertheless, this is allowed, as the stream is still ordered by
the stream timestamp tS . n is always 1 since there are no equal stream elements in the
logical stream in this example. If there would be equal stream elements, n would be used
to distinguish them by counting up.

Duration of a Location Update

Moving objects typically move continuously through space, wherefore each location
information on a trip of an object is only correct for one point in time. A chronon
later, the object will be at a different location. This can be represented with the stream
time interval in a data stream, which can be manipulated with window operators. The
stream time interval in this case is only one time instance long, i. e., one chronon. Other
ways to represent the validity of a location update are possible, for example, to use an
element window in which each location update is valid until the next location is available.
Nevertheless, to illustrate the gaps between the location updates where the location of
the object is not known, a representation with only one chronon validity for each update
is chosen here.

This is illustrated in Figure 4.2. A vessel sends its current location three times (at the
signal symbols). When received by a DSMS, the location measurement is translated to a
tuple. The tuple is only valid one time instant (a chronon) as the location of the moving
object is only known at one point in time in the continuous representation (the original
measurement). The filled dot depicts the start timestamp tS and the non-filled dot the
end timestamp tS E of the stream time of a stream element. The location of the moving
object in-between these measurements is not known.

4.2 Temporal Attributes

To recap the previous example, temporal attributes can be part of physical data stream
elements and are translated to non-temporal attributes in the logical stream. This section
is about how to get a temporal attribute into a stream element.

Data sources typically do not know about temporal attributes and deliver non-temporal
values. For example, a temperature sensor delivers double values and a data source of

4.2 Temporal Attributes 47

a moving object typically delivers locations, i. e., points. AIS messages, as a source for
moving object data, contain the current location in longitude and latitude values, but
not a prediction function for the future (or past) trajectory of the vessel. The temporal
function from a temporal attribute, which is used to predict the value of that attribute,
typically needs to be created by the DSMS itself. There are multiple ways to create a
temporal attribute. In general, a function uses a stream element from a physical stream
and adds a temporal attribute to the stream elements of that stream:

Definition 4.2. (Temporalization Function): Let β be a temporal attribute, then the
following function adds that attribute to a data stream element e.

temporalizeβ(e) = {ê | e ⊆ ê ∧ β ∈ ê}

Here, the new temporal attribute is called β and is part of the result stream element ê
after the function temporalizeβ has been applied to e. This definition is very general, as
there are multiple ways to insert a temporal attribute to a stream element. One possibility
is to use non-temporal attributes and convert them to temporal attributes by creating a
temporal function from their current value or history. This approach is described in
Section 4.2.1. Another possibility is to receive information about an attribute that can be
converted to a temporal function, e. g., a source that itself predicts values of that attribute
in the future. This is explained in Section 4.2.2.

4.2.1 DSMS Internal Temporalization

The conversion from a non-temporal attribute to a temporal attribute is called attribute
temporalization, or short, temporalization within this thesis. Let us start with an example
of a moving object. The moving object sends its location every few minutes in latitude
and longitude values. Unfortunately, having this information, it does not tell where it
was in-between these messages or where it will be in the future. In short, it does not
deliver a temporal function, but only locations for single points in time.

0 5 10 15 20 25 30

Location mea-
surements in
continuous time

Tuples with dis-
crete time inter-
val

Discrete time

Figure 4.2: Discrete representation of continuous location measurements

48 Physical Integration

time lat lng

Vessel 1

11:35 53.898717 7.334833
11:43 53.91125 7.417233
11:55 53.932683 7.56485
12:10 53.94925 7.668533

Vessel 2

11:35 53.826 7.59455
11:45 53.8742 7.6076
11:52 53.914267 7.708533
12:00 53.934883 7.810167

Table 4.1: Trajectories from ves-
sel 1 and 2

11:55

Map background: http://map.openseamap.org/
© OpenStreetMap contributors

CC BY-SA license, details: http://www.openstreetmap.org/copyright/en

11:52

12:001
2

11:45

11:35

12:10

11:43
11:35

Figure 4.3: Trajectories from vessel 1
and 2 on a map

An example how a data stream of location updates could look like is depicted in Fig-
ure 4.3. Here, the trajectories of two vessels (i. e., moving objects) are shown. Table 4.1
contains the raw data. Each moving object (Vessel 1 and Vessel 2) has a list of locations
ordered by time. These trajectories are drawn on the map in Figure 4.3. The number
(1 and 2) in the last location of each trajectory in Figure 4.3 states the id of the vessel.
As the locations of the moving objects in-between the given points are not known, the
points are connected by a straight line. The straight line is what a linear prediction func-
tion would calculate for the values in-between the known measurements in the second
temporal dimension tP [EGSV99].

Now, let us assume that the latitude and longitude values have been combined to a
point in the stream element. This attribute shall be made temporal with the temporaliza-
tion step, i. e., converted to a function which predicts unknown locations.

The process of temporalization is depicted in Figure 4.4. The first step is the transfor-
mation of an attribute from a non-temporal type to a temporal type. The moving object
data stream in Figure 4.4 has a certain schema, a stream time-interval [tS , tS E) and a
prediction time-interval [tP, tPE). In this case, the schema consists of a point and an int.
This tuple could be a measurement of the location of a moving object. The location of
the moving object is within the point value in the schema, the id of the object within
the int value. The point attribute is temporalized in the first step “temporalization of
point”. With the temporalization operation, the attribute is transformed to its temporal
counterpart. In this case, it is transformed from a point to a tpoint.

Which operator is used to do this temporalization step is not defined here, as it depends
on the use case and the necessary data input for the specific temporalization function.
Operators that are used for this purpose need to be able to apply functions on the stream

4.2 Temporal Attributes 49

tS tSEtP=0 tPE=∞
[point, int]

tS tSEtP=0 tPE=∞
[tpoint, int]

tS tSE tP tPE
[tpoint, int]

temporalization of point

set prediction time

Figure 4.4: Process of temporalization of a physical tuple

elements to make the transition from a non-temporal to a temporal type. The map op-
erator is an operator that applies a map function on a stream element. It is a possible
candidate for this purpose if no historical stream data is needed to apply a temporaliza-
tion function. If the temporalization function needs to use historical data, the aggregation
operator is a possible candidate to be extended by new temporalization functions. Hence,
the temporalization step can be done with extensions of both of these existing standard
operators, depending on the temporalization function.

4.2.2 Temporal Attributes from External Sources

In the previous case, the sensor delivered non-temporal information, i. e., the current
location. Other data sources could be capable to deliver more information, for example,
about past and possible future values. In that case, the data source also does not directly
deliver a temporal attribute, but information on how to create the temporal attribute.
This information is written into non-temporal attributes of a data stream element and
then used to create a temporal attribute. For example, a navigation system could deliver
a list of points where a vehicle will be in the future, together with estimated times when
the vehicle will be there. This list could be used to create a temporal function for a
temporal point attribute.

Similar to the internal temporalization, the function temporalizeβ(e) from Defini-
tion 4.2 uses the information from the source (e. g., a list with future locations) and
applies a function which is able to interpret the data and can transform it to a temporal
attribute.

50 Physical Integration

4.3 Prediction Time

The previous sections looked at temporal attributes and how to create them. The pre-
diction time intervals are an important part of a stream element with temporal attributes.
They define for which points in time the temporal functions of the temporal attributes
need to be calculated, or, from another perspective, can be used. On a semantic level,
they define at which time intervals the stream elements are valid in the prediction time
dimension.

Both in [Bol11] as well as in [GBE+00], the time-intervals at which a result (e. g., of
a predicate in a select operation) is valid is determined by an operation, or a so-called
lifted operation in the moving object algebra [GBE+00]. For example, a query could
determine the time-interval (or time-intervals) at which a moving point is within a given
non-moving region. The result would be a moving point with a temporal function that
returns the (predicted) location of that moving point within the time-interval at which
the point is within that region (cf. 3.3). The following representation with the second
order signature shows this operation:

tpoint × region→ tpoint [in_interior]

4.3.1 Manual Manipulation of the Prediction Time

An important question is for which time intervals the results needs to be calculated. The
times for which the temporal functions are calculated are determined by the prediction
time intervals. In some use cases, the user needs to know the results for the next month,
in some other cases maybe for the next few seconds or even for the past. Therefore, the
prediction time intervals can be chosen by the user when defining the query.

Even though the time intervals can be arbitrarily set, there are some considerations to
do before defining the time intervals. First, there are technical limits to the number of
possible calculations which need to be considered. Simply calculating all points in time
until ∞ can be, depending on the temporal function, impossible. Having a function that
can be solved algebraic could reduce the severity of the problem [Bol11], but that is not
always the case, e. g., due to temporal functions that are based on complex algorithms
such as neural networks.

Second, the use case may not require to predict values that are not in a certain time
interval. For example, a use case could only be interested in the next five minutes. Third,
predictions always come with an uncertainty, which typically grows with the temporal
distance to known values. Predicting a value which is far in the future may lead to only
a very limited information gain, because the accuracy of that result is very low.

In other words, the definition of the prediction time intervals needs to fit to the use case
and needs to be balanced between completeness of the result and the speed of calculation.
If the prediction time intervals are set too short, the query could miss some relevant

4.3 Prediction Time 51

results. If the prediction time intervals are too long, the computation could increase the
latency of the results, wherefore results could be calculated too late. Another factor for
this consideration is the prediction time granularity, which is explained in Section 4.3.3.

To define the query in a way that fits the use case, the time-interval can and should
be defined by the query. For example, the time-interval could be reduced to an interval
starting at tS and ending five minutes ahead of tS . This way, the query “looks” five
minutes into the future and reduces the number of points in time to a finite set. In other
words, the approach is limited from the question “What is the result of this query?” to
“What is the result of this query in the given time interval?”. The time interval could
be further reduced to a single point in time by setting tP to a chronon. In that case, the
question is further limited: “What is the result of this query at this point in time?”.

To achieve this, the predicted time is limited by an operation on the stream element
before the temporal operation. As depicted in Figure 4.4, in the non-temporal and the
temporalized version of the stream element, the prediction time-interval is [0,∞). This
is the most general possible time-interval as it represents the logical definition of the
operations on temporal types. In this example, it is limited to a short time-interval in the
future (i. e., ahead of tS).

The prediction time-interval can be manipulated with an operator similar to a mapping
operator:

Definition 4.3. (Set Prediction Time Operator): Let fp be a function that determines
for a given set of attributes and the stream timestamp a prediction timestamp.

ν fp(S L) := {(e, tS , t̂P, n) | ∃(e, tS , tP, n) ∈ S L ∧ fp(e, tS) = t̂P}

4.3.2 Prediction Time Manipulation with the Select Operation

The step described in the previous section is the preparation for the rest of the query and
should not be done again after an operation on temporal attributes, for example, after
a select operation. That is because other operations use the prediction time for their
results. The said select operation limits the prediction time intervals to those where the
predicate of the select operation is true. If there would be another manual manipulation
of the prediction time intervals afterwards, these results would be lost or at least change
their semantic meaning.

Manipulating the prediction time first and then applying temporal operations on the
stream is compatible to the logic of the bitemporal data stream. Doing it in that order,
only the given prediction time-interval is used for operations on temporal types, not
all possible time instances. To illustrate that, let us consider a select operation on the
bitemporal data stream from the example in Section 3.3.5 with Figure 3.4a. A select
operation with the predicate in_interior(m, r) would return the following physical stream
element: (m, [20, 21), < [11, 30) >) of the schema (tpoint, [tS , tS E), < [tP, tPE) >).

52 Physical Integration

Source

temporalize(loc)

set tP : [tP , tPE) := [tS − 20, tS + 20]

Select: in interior(loc, other)

(loc:point,id :int,other :region,[tS , tSE),[tP , tPE)) ((8, 9), 1, r, [20, 21), [0,∞))

(loc:tpoint,id :int,other :region,[tS , tSE),[tP , tPE)) (f1, 1, r, [20, 21), [0,∞))

(loc:tpoint,id :int,other :region,[tS , tSE),[tP , tPE)) (f1, 1, r, [20, 21), [0, 40))

(loc:tpoint,id :int,other :region,[tS , tSE),[tP , tPE)) (f1, 1, r, [20, 21), [11, 30))

Figure 4.5: Example of a query plan that transforms a point to a temporal point

If another select operation with the inverted predicate not(in_interior(m, r)) is done on
the result of the first select operation, the result should be empty. That is because if the
predicate would still consider all possible prediction timestamps (i. e., a prediction time
of [0,∞)), the result would be inverted, resulting in a stream element with two prediction
time intervals: (m, [20, 21), < [0, 11), [31,∞) >). Nevertheless, the set of results from
the first select does not contain these prediction time intervals, wherefore the prediction
time cannot be ignored.

The example from above can be depicted as a query plan. Figure 4.5 shows such a
plan. The operators are in the boxes. These perform the operations on the tuples on the
right. The schema is depicted on the left. The schema of the incoming stream element
(bottom) contains a location of a moving object as a point (loc), an identifier of the
moving object as an integer (id) and a region (other). The content of the region here is
abbreviated with r but could, for example, be a set of points defining the border of the
region.

The second operation takes a tuple and transforms an attribute, in this case the loc
attribute, to a temporal attribute (for details about the temporalization step, see 4.2.1).
In this example, a point is transformed to a tpoint. The content of the stream element
changes from a non-temporal point (8,9) to a function which represents the movement
over time (f1). The next step is to set the prediction time to make it fit to the use case
and to limit the computational load of this query. Here, the prediction time is simply
limited to 20 time instances before and after the stream start timestamp tS . The last
operator performs a selection based on the predicate in_interior(loc, other). The result
is a stream element for which the prediction time is limited to the interval in which the
object is inside the region.

4.3 Prediction Time 53

4.3.3 Prediction Time Granularity

The previous examples worked with stream and prediction time intervals, but never
stated how much time is between these integer timestamps. It could be a second or
an hour. For the concept it does not matter how much time lies in-between the time-
stamps. When applying the concept to real queries, the granularity of the time intervals
need to be considered and has an impact on the quality of the results and on the compu-
tational load for a query. Therefore, the granularity needs to be defined according to the
use case.

A time interval in a physical stream is discrete, i. e., consists of a finite number of time
instances between the start and the end timestamp. The number of time instances within,
for example, one minute, depends on the granularity of the time interval. The granularity
could be set to one millisecond, resulting in 60 000 time instances within one minute. If
set to one second, only 60 time instances are within the same time interval.

Both the stream time intervals and the prediction time intervals have a certain gran-
ularity. The granularity of the prediction time interval can be set independently from
the granularity of the stream time. Different granularities increase the flexibility of the
stream processing and allow the handling of bigger time intervals for prediction. In
other words, when having a long time interval, the computational load can be reduced
by choosing a lower granularity for the prediction. Depending on the data and the query,
one prediction per second could be sufficient. In contrast to a granularity of a millisec-
ond, the number of necessary predictions is reduced by a factor of 1000.

Concluding, the granularity of the prediction time intervals is another point of flexi-
bility for the user to adapt the query to the needs of the use case.

4.3.4 Number of Prediction Time Intervals

For each data stream element, exactly one list of prediction time intervals exist. Whether
it has none, one or even multiple temporal attributes, for all attributes in a data stream
element the same prediction time intervals apply. This rises the question whether it could
be useful to have a list of prediction time intervals for each temporal attribute. Having
multiple prediction times, a stream element could, for example, include two temporal
points from two moving objects. Both could be valid at different points in time. Even
though this seems to be a legitimate property of the temporal attributes on the first sight,
it raises some issues when applying operations on these temporal attributes.

Let us consider a stream element with three temporal attributes:

movement (tpoint) speed (treal) temperature (treal) stream time
some value + [0,10) some value + [0,10) some value + [100,200) [0,1)

54 Physical Integration

This could be a data stream from a runner with its location as a temporal point (move-
ment), the speed of the runner and the temperature of the environment. From such a
stream, some could, for example, see if the temperature has an impact on the speed of
the runner. Nevertheless, instead of having one prediction time interval, each temporal
attribute has its own temporal interval (written as “ + [0,10)”). While the movement
and the speed are predicted to the same time interval, the temperature is predicted to a
completely different time interval way further into the future (pretending that “now” is
at point in time 0). On the prediction time dimension, the temperature attribute seems to
be unrelated to the other two attributes. This lost relation between the attributes on the
prediction time dimension can lead to confusion when applying data stream operations
on such a stream.

This problem can be illustrated when applying a select operation on the example
stream element. When using a predicate speed > 10km/h to limit the stream to all
stream elements and prediction times when the runner is faster than 10 km/h, the result-
ing stream element could look like this:

movement (tpoint) speed (treal) temperature (treal) stream time
some value + [0,10) some value + [5,8) some value + [100,200) [0,1)

Now, the speed is limited to the three points in time (in the prediction time dimension)
5, 6 and 7 where the runner is faster than 10 km/h. As the attributes in one stream
element are related to each other, some would now expect to also have the trajectory
(i. e., temporal point in the movement attribute) where the runner is that fast and also to
know the temperature of these parts of the movement. Unfortunately, this is not possible
with this approach. The temporal point is not changed as it has its own prediction time
interval and the temperature is not even known during the resulting time interval.

When having only one set of prediction time intervals per stream element, the scenario
is solved correctly. The starting stream element is the following:

movement
(tpoint)

speed
(treal)

temperature
(treal) stream time prediction time

some value some value some value [0,1) [0,10)

Here, all three temporal attributes have the same prediction time interval [0,10). When
now using the previously described select operation, the result is the following:

movement
(tpoint)

speed
(treal)

temperature
(treal) stream time prediction time

some value some value some value [0,1) [5,8)

Now, the movement of the runner, the speed and the temperature of the environment
fit together. It is the same as with the stream time interval which is defined by a window

4.3 Prediction Time 55

tS tSE tP1 tPE1 tP2 tPE2

tS tSE tP3
tPE3

tS tSE tP4
tPE4

Input

Example result

Stream time Prediction time

time

Figure 4.6: Calculation of prediction time for an aggregation with the union merging
function

operator. The time interval is used per stream element, not per attribute. When a stream
element gets invalid from the stream time interval, the whole stream element is removed
from the stream, not some attributes.

4.3.5 Temporal Aggregation

The implications of the select operation on the prediction times has already been de-
scribed (cf. 4.3.2). Other operations on a bitemporal stream also manipulate the predic-
tion time intervals. Among them is the aggregation operation.

Temporal attributes can be used within aggregation functions. For example, a sum
over a temporal attribute from the last stream elements can be calculated. The prediction
time interval needs to be manipulated accordingly. In short, the time intervals of the
prediction times of the current stream elements (in the window) are unified. This is
shown in Figure 4.6.

The current stream elements are depicted by the three input time intervals on the upper
left. The stream time intervals of the elements are overlapping. The prediction time
intervals, i. e., the second temporal dimension, are right of the stream time intervals, i. e.,
they are in the future.

Calculating the aggregates would generate multiple results, because each different
overlapping situation (only first element is valid, first and second elements are valid,
etc.) has its own result. One of these is depicted below the input stream elements: the
result for the time span where all three input stream elements are valid. The stream time
interval is the intersection of all three time intervals.

In the second temporal dimension (the prediction time) a result for the aggregation
function is calculated for each point in the prediction time intervals (cf. 3.3.4). A value

56 Physical Integration

tS tSE tP1 tPE1 tP2 tPE2

tS tSE tP3
tPE3

tS tSE tP4
tPE4

Input

Example result

Stream time Prediction time

time

Figure 4.7: Calculation of prediction time for an aggregation with intersection merging
function

of a temporal attribute is only used if its prediction time interval is valid at that point
in time. In Figure 4.6, the result of the aggregation at tP1 is only calculated using the
temporal attribute from the first stream element, because the second and third stream
elements are not valid in the prediction time dimension at that point in time. Another
example: at time tP3 , the result is calculated from the first and second stream element, as
they are both valid in the prediction time dimension at that time.

The result is that the prediction time intervals are merged using the union function, as
can be seen in Figure 4.6 at the bottom: the resulting set of prediction time intervals is
the union of the prediction time intervals of the three input elements.

Nevertheless, at this point, the user should have the choice to pick the best merging
function for the prediction times for the respective use case. The union may not be the
desired result for all aggregation operations. The merging function for the prediction
time intervals could also be the intersection instead of the union. In that case, the aggre-
gation has only results where all temporal attributes are valid. In the given example in
Figure 4.6, the resulting prediction time intervals would be empty.

The slightly changed example in Figure 4.7 shows the result of an intersection merging
function for the prediction time intervals. Here, the result set of prediction time intervals
is not empty.

Both merging functions for the prediction time in an aggregation operation are possi-
ble. Hence, the decision which to use depends on the use case. When working with the
union merge function, the result of the aggregation for some points in time in the pre-
diction time dimension ignores null values from some stream elements, which, at other
points in time, contribute to the result. When using the intersection merge function, the
result for the aggregation is at all points in the prediction time created from all stream
elements.

4.3 Prediction Time 57

Example

The decision which merging function to apply depends on the use case. The following
examples give an idea of possible criteria for this decision.

tP

f(
t)

in
k
w

Figure 4.8: Electricity generation by three distinct generators (e. g., solar panels)

The first use case is depicted in Figure 4.8. The power output of three power genera-
tors, for example three solar panels, is depicted here. This is the predicted power output
from a temporal double attribute in three stream elements. The prediction functions only
predict the generated power for certain time periods. The aggregation function is the
sum function, calculating the total power generation of all three power generators. The
power output shall be calculated no matter from how many power generators a predic-
tion function is available, to have a prediction closest to the real generation as possible.
In this case it is better to have a potentially incomplete prediction than to have no pre-
diction for some points in time. Hence, the union merge function is applied in this use
case. The aggregation is calculated for all points in time from the start of the first (blue)
curve to the end of the last (red) curve. The resulting time span is depicted by the dashed
lines.

The second use case is depicted in Figure 4.9. Here, the stock prices from two compa-
nies are plotted over time. Again, these values are created from two prediction functions
from two stream elements that are currently in an aggregation function. Let the use case
be that the “min” aggregation function is applied to get the minimum valued company
for each point in the prediction time intervals. To avoid wrong claims about the mini-
mum valued company, the intersection merge function is used in this case. The results
are only calculated for the time interval between the dashed lines. If the union merge
would be used, the blue “Company 1” would be the result for the other points in time,
only because the prediction function for “Company 2” does not provide values for these
time intervals.

In conclusion, the merge function needs to be chosen depending on the use case.
While the union merge also creates results for time periods where only parts of the

58 Physical Integration

tP

V
al
u
a
ti
o
n
in

$

Company 1
Company 2

Figure 4.9: Stock market development of two shares

temporal attributes can be used due to their prediction time intervals, the intersection
merge only creates results for time periods where all current temporal attributes can be
used.

4.3.6 Temporal Join

Similar to the aggregation operation in the previous section, a join operation on a bite-
moral stream also implies changes to the prediction time intervals, i. e., the prediction
times need to be joined correctly. For the aggregation, two possible merging functions
for the prediction time intervals have been presented (cf. Section 4.3.5). For the join, the
intersection merging function is applied (cf. Figures 4.7 and 4.9).

When joining two stream elements, both stream elements possibly have temporal at-
tributes. The prediction time intervals on each stream element define when these tem-
poral attributes can be used. The points in time which are not covered cannot be used
for any kind of operation on these temporal attributes, e. g., for expressions. Therefore,
when joining two stream elements, the prediction time intervals of the joined stream
elements cannot cover any points in time where at least one of the temporal attributes
cannot be used. This makes it infeasible to union the prediction time intervals of both
stream elements, they need to be merged using the intersection.

The following example makes the need for the intersection merge function more clear.
Let us consider a stream with a temporal point which represents a moving object. A
select operation reduces the prediction time interval to the times where the moving object
is within a certain area. For a stream element A that may be from 12:00 o’clock to 13:00
o’clock, i. e. [12:00,13:00), and for a stream element B from 12:30 to 13:30, i. e.
[12:30,13:30). When joining these stream elements, a union merge function for the
prediction times would result in a prediction time interval [12:00, 13:30). Having

4.4 Lifted Expressions 59

this result, the semantics of the temporal attributes saying that the moving objects are
within a certain region would be nullified. Contradictory to the previous result, the
moving object from stream element A would be said to be within the region up until
13:30 o’clock, which is not the case.

Using the intersection, the semantics stays correct. When joining the two stream el-
ements, the resulting prediction time interval would be [12:30, 13:00). For both
moving objects from the original stream elements A and B the predicate from the previ-
ous select operation is still true for all points in time in the prediction time interval: they
are within the given region during this time interval. When using the resulting stream
element for further operations, e. g., an expression which calculates the distance between
these two moving objects, none of the two temporal attributes would return an invalid
(e. g., null) value for any of the given points in time.

4.4 Lifted Expressions

Expressions are a fundamental part of query processing. They use the attributes from
stream elements to calculate their results, which can be written into the result stream
element or used as predicates for select and join operations. With the “lifting” con-
cept [GBE+00], standard non-temporal expressions can be applied to temporal attributes.
For example, the non-temporal “+” operation can be applied to integer and real values,
both non-temporal as well as temporal. Nevertheless, the “+” operation itself does not
know about temporal types, as is was developed for non-temporal number values (inte-
gers, doubles, . . .).

To make it possible for this non-temporal operation to be applied to temporal at-
tributes, the expression is calculated for each point in time in the prediction time intervals
with the respective values from the temporal attributes. In other words, for each point
in time, the temporal attributes calculate their non-temporal value. This value is used to
calculate a non-temporal result with a non-temporal operation (e. g., the “+” operation).
Then, the results for the different points in time are combined again to a new temporal
attribute, which is the result of the lifted operation.

The following example shows the process when a non-temporal operation is used with
a temporal attribute. The stream element has a temporal integer attribute “v” (value).
The stream time interval is [0,2) (but is irrelevant here, because it does not affect this
example). As mention before, the stream time is not manipulated by temporal operations.
The prediction time interval is [5,10) and is important for the operation. The temporal
integer has five values, one for each time instance of the prediction time, accordingly.
This could be a function or a map from a time to an integer value. For simplicity, in this
example a map is used. The resulting stream element can be written as follows:

v (tinteger) stream time prediction time
5→10, 6→10, 7→20, 8→40, 9→50 [0,2) [5,10)

60 Physical Integration

On this element, a non-temporal “+” operation can be applied via a map operator.
This is the same “+” operation which is used for non-temporal integer or real values.
Let the operation be “v + 5”. When the “+” operation would get passed the temporal
integer, it would not be able to do anything with it, as it is an unknown type for this
operation. Some would need to create a special temporal “+” operation, which is not
desired, as each operation would need to be recreated. What happens instead is that
five non-temporal stream elements are created, one for each point in the prediction time
interval. Hence, the “+” operation works on these tuples:

v (integer) stream time
10 [0,2)
10 [0,2)
20 [0,2)
40 [0,2)
50 [0,2)

These stream elements never appear in the data stream, they are only created for the
non-temporal “+” operation. On these elements, the operation can calculate its results:

v (integer) stream time
15 [0,2)
15 [0,2)
25 [0,2)
45 [0,2)
55 [0,2)

Again, these stream elements never appear in the stream. They are packed into a
temporal attribute, hence, the result looks like the following:

v (tinteger) stream time prediction time
5→15, 6→15, 7→25, 8→45, 9→55 [0,2) [5,10)

This result can again be used to do other operations, for example, a boolean expression
“v > 20”. The process would be the same.

4.4.1 Temporal Operations

The moving object algebra also defines functions for expressions which are not lifted,
but work directly on temporal types (see 3.3.1). These functions do not need the non-
temporal versions of the stream element explained above, but use the temporal version.
For example, the “atMin” function reduces the values of a temporal attribute to those

4.5 Temporal Trust Value 61

values which are minimal. Using the result of the example from above, the result of the
“atMin(v)” mapping operation would be the following:

v (tinteger) stream time prediction time
5→15, 6→15 [0,2) [5,7)

The temporal integer “v” has been reduced to the points in time where the value is
“15” and the prediction time has been limited accordingly.

4.5 Temporal Trust Value

A temporal function is a function from a point in time to a value of a certain type. The
function is, for example, used to predict values at points in time when a measured value
is not available. The predicted values allow calculating predicted results with it, but the
results still stay predictions, which can be inaccurate. When working with the results of
a query, it can be useful to know how trustworthy a result is [Bra17]. If a result is very
trustworthy, the user can probably rely on this result, if it is not trustworthy, the user
maybe does not want to use it for some decisions. To decide this, the trustworthiness of
a prediction needs to be known to the user, but typically it is hidden. With the trust value
described here, the trustworthiness of a prediction is aimed to be made available to the
user.

Following the naming from [BGA17], this meta attribute can be called “trust” and
represents how trustworthy a data stream element, or in this case a specific prediction,
is. In contrast to [BGA17], a trust value is not only “trustworthy” or “untrustworthy”,
but can be represented with a continuous real value between 1.0 and 0.0. 1.0 means
that the result is considered as correct, while 0.0 means that the results is considered as
incorrect.

Nevertheless, to provide the trustworthiness or rather accuracy of a temporal attribute,
a single trust value is not sufficient, because the accuracy of the prediction can change
over time. For example, if a prediction is close to known values, it is probably more
accurate (and with that, trustworthy) than if it is far from a known value (in the temporal
dimension). Therefore, the prediction trustworthiness cannot be represented by a single
value but needs to be known for each point in the prediction time interval. Hence, the
prediction accuracy itself is a temporal (meta) attribute that has for each point in the
prediction time interval a trust value. In other words, the trust value for a temporal
attribute is itself a temporal real attribute.

Figure 4.10 gives an example of a trust function. At the points in time (the x-axis)
where the exact value of the temporal attribute is known, the trust is at its highest value,
marked with a dot. In-between, before and after the known points, the trust value de-
creases. Following operations and applications can use this value to interpret the results,
e. g., to increase safety margins. In addition to just using the trust value to interpret the

62 Physical Integration

time

tr
u
st

Figure 4.10: Trust value over time

results, they can also be used within the queries. For example, when having a radius
query around a (predicted) location of a moving object, the radius could be increased or
decreased depending on the trust of the temporal spatial point, i. e., the location of the
moving object over time.

Note that the trust function, i. e., the temporal double, is itself only a prediction func-
tion which can be inaccurate. The estimated trust of a value of a temporal attribute can
be wrong and, for example, estimate a high trust where the prediction is very inaccurate.
As the trust value is also a temporal attribute, it can also have a trust value for itself, i. e.,
a value stating how trustworthy the trust is. Concept-wise this can go on and on, but for
implementation purposes, at some point, there should be a function which states a static,
e. g., 1.0 trust.

Merging Trust Values

Each temporal attribute can have a trust value. When combining multiple temporal at-
tributes, for example through an expression (e. g., tempAttr1 * tempAttr2) or with
an aggregation operation, the trust attributes need to be merged. In that case, for each
point in the prediction time the minimum trust value of all involved temporal attributes
is used. That follows the merge function in [BGA17], where the trust of multiple stream
elements is always the minimal available trust. That is because a high trust of a certain
temporal attribute cannot increase the trust of a different temporal attribute at a certain
point in time. In short, by using the minimal trust value, the trust states a pessimistic
trust estimation.

A simplification of this concept where each temporal attribute has a trust value is a
variant where only one trust value per stream element exists. This simplifies the concept,

4.6 Queries with Multiple Moving Objects 63

tS=20

500m

tS=15

tS=12

tS=18

tS=19

tS=10

Figure 4.11: Center moving object at tS = 20 with surrounding moving objects

reduces the overhead for temporal attributes, but reduces the accuracy of the trust value.
That is because two temporal attributes in the same stream element can have a different
accuracy for the same points in time in the prediction time dimension. Whether a single
trust value is used or one trust value for each temporal attribute, the merge function stays
the same.

This approach to represent a trust value and work with uncertainties and probabilities
is rather simple but shows the advantages of using a DSMS that has mechanisms for han-
dling metadata. Different trust functions for certain use cases as well as different merge
functions to merge trust values from different stream elements or temporal attributes can
be applied. More advanced concepts for handling probabilities in data streams can be
found in [Kuk15].

4.6 Queries with Multiple Moving Objects

The physical concept of the temporal types has been described in the previous sections
of this chapter. Beginning with this section, another challenge that comes with the query
design for multiple moving objects is tackled. It appears independently from the tempo-
ral types, nevertheless, it is illustrated with examples containing temporal types.

In a previous example in Section 4.3.2, a query with a select operation over the
distance between two spatial objects contains one temporal object (loc) and one non-
temporal object (other). The temporal object is updated when new stream elements
arrive, the non-temporal object is not updated but static and will not change over time.
In such a situation, the data stream with the locations of the moving objects can be eas-
ily enriched with the static object to calculate the results of spatial operations. In other
words, each moving object can be calculated independently in this query. The situation
changes when the operations are done on multiple moving objects which change with
new elements in the stream.

64 Physical Integration

Consider the situation depicted in Figure 4.11: six moving objects irregularly send
their current location to the DSMS. Their location updates are not synchronized. The
user wants to know which moving objects are within a distance of 500 meters around
the moving object with the id = 1 (the “center element”). This is called a radius or
distance [Bri07] query. The predicate for a select operator that does such a radius query
can use the distance operation from the moving object algebra: distance(loc1, loc2) <
500m. Here, loc1 would be the location from the moving object with the id = 1 and
loc2 would be the location of the other moving object. Both locations would be of type
tpoint. The result is a time interval in prediction time in which the predicate is fulfilled.
When the user wants to know the objects that are close to the center object “now”, the
prediction time could be set to a single point in time exactly at the stream time tS of the
newest element.

4.6.1 Trigger

An important consideration is the question when to calculate new results for the query,
i. e., which stream elements trigger which new output. In a database, a radius query is
run once and the output reflects the known situation at the time the query is executed.
In a streaming system, the data that is available to run the query changes continuously.
Hence, it needs to be defined when new results have to be calculated. For queries that
observe a certain moving object, e. g. a radius query, the following triggers are possible:

1. on each center element
2. on each non-center element
3. both (on each element)

In the first case, with a calculation on each new stream element from the center object,
this element is combined with the newest element of each other known moving object.
As the result, a “picture” of the whole situation at the time instance of the newest stream
element of the center element is calculated. A disadvantage of this approach is that the
time instances and situations in-between the location updates of the center elements are
not calculated. If the direction of another moving object changes or a new moving object
appears, results can be missing. The advantage is that less calculations are necessary.

A scenario which shows the consequences of such a configuration is depicted in Fig-
ure 4.12. For the sake of simplicity, let us consider that the moving objects are of the
type tpoint but that the prediction always returns the last known value (i. e., the objects
are “jumping”). There are three subsequent location updates depicted. At each time in-
stance, the newest locations of all moving objects are known (i. e., within the window of
the query plan). At the left figure, the center element has updated its location at tS = 20.
The query calculates a result at this time instance and the user knows the result of the
radius query at this point in time (three other moving objects are in the circle). The

4.6 Queries with Multiple Moving Objects 65

tS=20

500m

tS=15

tS=12

tS=18

tS=19

tS=10

tS=20

tS=15

tS=18

tS=19

tS=10

tS=12
tS=22 tS=20 tS=25

tS=15

tS=18

tS=19

tS=10

tS=22

Figure 4.12: Scenario with moving objects over time

next incoming data stream element (i. e., location update) is at tS = 22 from a different
moving object, which moves out of the radius. In this configuration, this update does not
trigger a new result. Hence, this situation with only two elements in the radius is missed.
The third situation at tS = 25 is again triggered by the center element and therefore
creates a query result (with four elements in the radius).

The second case calculates a result for each other stream element than the center
element. When another moving object has a location update, this stream element is
combined with the newest known element from the center element. The result of the
query (e. g., a radius query) is calculated step by step with the location updates, not all
at once.

This approach again can be seen in Figure 4.12. As with the previous approach, re-
sults can be missing. When the center element sends an update, no update is triggered
with this approach (the left and the right situation depicted). In contrast to the previous
configuration, now the situation in the middle triggers a distance calculation between the
center element and the updated element at tS = 22. The distance is greater than the given
radius of 500 m so that at tS = 22 it is known that this element is no longer within the
radius.

To get all results, both approaches need to be combined, hence, new results need to be
calculated at every new location update from a moving object. This comes at the price
of more necessary calculations and therefore possibly a poorer query performance. The
decision, which approach is used, can be made by the user. On a technical level, the
approaches can be implemented with combinations of standard DSMS operators such as
selections, windows and joins.

4.6.2 Sample Radius Query

Concluding from these considerations, for a binary spatial operation (such as a distance
calculation), a data stream is needed with the following schema: (tpoint, int, tpoint,

66 Physical Integration

Source

Window

Aggregate (temporalization)

Select (non-center objects)Select (center object)

Window rightWindow left

set tP

Join

Map (calculate distance)

Select (radius predicate)

Figure 4.13: Query plan for a radius query

int, [tS , tS E), [tP, tPE)). For queries that calculate the situation only at the one time in-
stance that marks the newest known time (“now”), the stream time interval needs to be
a chronon and the prediction time interval needs to be equal to the stream time interval.
The int values are for the identification numbers of the moving objects. Unfortunately,
the incoming stream of location updates has a different schema: (point, int, [tS , tS E),
[tP, tPE)).

A number of steps are necessary to achieve the described schema for two combined
location updates. First, the point attribute of all stream elements need to be temporalized.
Second, the prediction time of the center object needs to be set to the stream time. Third,
the center object needs to be joined with the newest stream element of each other moving
object. The last step is the distance predicate in a select operator. A possible query plan
to achieve these steps can be seen in Figure 4.13.

4.6 Queries with Multiple Moving Objects 67

4.6.3 Step 1: Temporalization

The temporalization is done as defined in Section 4.2.1. In this case, an aggregate func-
tion is used, because the history of the respective moving object is needed to create the
temporal function of the temporal type (tpoint). To prevent an overflow of the data that
the aggregate operator keeps in memory and to emphasize newer data in the prediction
rather than old data, a window is used to reduce the amount of stream elements used for
the aggregation step. The window operator manipulates the end timestamp of the stream
time (tS E) but does not change the prediction time. For example, a time window with the
size of one hour could be used.

4.6.4 Step 2: Self-Join with Center Object

The next step is the self-join with the center object. Here, the center object (on the left)
is processed in a different way than the other objects (on the right). To separate the
elements, two select operators with an inverted predicate are used, e. g., id = 1 on the
left and id , 1 on the right.

The window operators above of the select operators control the trigger behavior ex-
plained above. Using an element window with only the newest element per moving
object (size set to 1 and partitioned by the id) on either side, a new element on the other
side triggers a combination with all elements (which are currently in the window). This
results in the following combinations for the described behavior.

1. Trigger on each center element: chronon window on the left, 1-element window on
the right

2. Trigger on each other element: 1-element window on the left, chronon window on
the right.

3. Trigger on each element: 1-element window on both sides.

After the window operator of the center element, the next operator manipulates the
prediction time (set tP). It is changed from the original [0,∞) to only a shorter time
period, and, following the example description from above, to only one time instance,
which marks exactly the “current time” or “now”: tP := tS and tPE := tP + 1.

The stream time interval of the objects on the right is also manipulated with a window
operator. Following the list above, this can be either a partitioned element window of the
size 1 or a time window with the size of one time instance.

Following these preparations, the join operator can join the two streams. The join
operator considers the stream time intervals of the stream elements so that the trigger
behavior can be achieved. The stream now has the necessary schema to calculate the
distance between two moving objects: (tpoint, int, tpoint, int, [tS , tS E), [tP, tPE)).

68 Physical Integration

4.6.5 Step 3: Distance Calculation and Radius Predicate

The last two operators are used for the actual radius calculation. The map operator calcu-
lates the distance between the two points in one stream element. Here, the lifted distance
operation is used because the two points are both of a temporal type. Nevertheless, due
to the limitation of the prediction time to one time instance, the result, a tfloat, is only
valid one time instance. The last step is a select operation that filters out the stream
elements where the tpoints have a distance greater than a given radius, e. g., 500 m.

The last steps could be combined into one predicate, and, for example, calculated in
the join operator. The separation in the example query plan makes the query easier to
understand. In the translation process from the query definition to an execution plan,
the query optimizer in the DSMS can optimize the query anyway due to the underlying
formal algebra. Additionally, the result now has the distance of the two objects within
the schema of the stream element. This can be used in additional steps to see which of
the selected moving objects are closer to the center than others.

4.6.6 Problems

When executing this query, some problems will occur, especially in the second step.
With the interval approach, element windows have a blocking behavior. Before they
can write an output, they have to know the end-timestamp [Krä07]. In a time window,
the end timestamp tS E can be calculated. In an element window, the window operator
needs to wait for the following element, because the start timestamp from the following
element defines the end-timestamp of the current element. The result in this case is that
the query cannot use the newest data, but only the last but one latest location.

The partitioning of the element window is another problem. To ensure the order of
the start timestamp of the stream time, the element window needs to know the current
elements of all groups. If one group stops to send location updates, i. e., one moving
object does not send location updates anymore, the window would block, too. This can
be seen in the example in Figure 4.14.

The example shows the input and output stream using an element window of size
one partitioned by the id of the element (in this case there are elements with the id “a”
and “b”). The elements are “streaming” in from top to bottom. When the first stream
element arrives, no output can be generated because the end timestamp of the element
is not known yet. The next element is from another partition (“b”) and therefore cannot
trigger an output for partition “a”. The third element is again from partition “a” and
can now trigger the output for the first element as the end timestamp tS E is now known
(the solid line indicates the tuple which is written to the output and the dashed line
indicates the tuple that triggered the output). The next element is again from partition
“a” and could trigger the next output (a, 16, 20). Even though everything in partition
“a” is known to write that output element, it cannot be written as the order of the stream

4.6 Queries with Multiple Moving Objects 69

id tS tSE

a 10 ∞
b 15 ∞
a 16 ∞
a 20 ∞

Input

id tS tSE

a 10 16

Output

-

-

Block

Figure 4.14: Blocking partitioned element window of size one

could be violated. If (a, 16, 20) would be written and the next stream element would
be from partition “b”, the start timestamp would be smaller than the start timestamp
from the previous element (16 would be written before 15). As this is not allowed
due to the stream properties (the stream needs to be ordered by start timestamp), the
element window operator cannot write the next output and will block until an element
from parition “b” will arrive. The same is true for the aggregate operator, which also
blocks if one group in the partition stops sending data [Krä07].

In a real-world scenario, such a situation can occur. Imagine a vessel moving out of
the range of an AIS antenna. No data from that vessel would be received anymore and
the query would block.

In addition to these blocking problems, the behavior of the windows cannot be con-
figured for other temporal aspects which are possibly required. For example, it could
be useful to limit the moving objects to those which sent a location update within the
last hour. This can be useful, for example, in a situation where many objects are in a
certain area for a short time and then leave the area. The objects that left the area will
stop sending data. To avoid that many very old objects are still considered for the query
processing, a window could help to limit the results to the elements that recently sent
data.

For the aggregation, the limitation is achieved with the first window in the query
plan. But due to the element window, the join also considers stream elements which
are older—it is only limited to the most recent stream element from each moving object
(partition). The exact formulation would be “From each moving object use the most
recent stream element, but only elements which are not older than one hour.”.

The conceptual structure here is a good example to illustrate the general handling of
queries with multiple moving objects and the problems that can occur with a straight-
forward solution. Some of these problems can be handled using an alternative query
approach.

70 Physical Integration

Window (e. g., 1h)

Aggregate (nest)

Map (create all pairs)

Unnest

Select (with center element)

Figure 4.15: Approach with a nest-aggregation

4.6.7 Resolve the Blocking Behavior (at a Cost)

The critical part of the query that brings together the non-center objects and the center
objects can be designed differently to resolve the blocking behavior. Instead of using
a join operation, an aggregation operation can be used to create pairs of nested stream
elements (a stream element containing multiple stream elements). A query using this
approach is depicted in Figure 4.15.

The aggregation operation here uses two ideas to solve this problem: (1) it nests the
stream element so that a stream element can contain other stream elements. Instead of
using a merge function (as, for example, in a join), which creates a new stream element
with the fields of the incoming elements, in this case the new stream element is created
by putting all elements into it. The second (2) idea is to give the aggregation operation
a key for which only one stream element is kept in memory. The key in this example
would be the id of a moving object. For each moving object, only one element would
be kept in memory, i. e., the latest location update. The nest operation then uses the last
valid element (valid in the sense of the window just before the aggregate) of each moving
object to create a new stream element. This new element contains all location updates as
a list, e. g., ((id1, loc1, ts, tS E),(id2, loc2, ts, tS E),(id3, loc3, ts, tS E),...).

In the next step, all possible pairs are created, resulting in a list with a number of lists,
each list containing two stream elements. These pairs are unnested so that each stream
element now contains a list with exactly two entries (while each entry again is a whole

4.7 Non-Blocking Queries with Multiple Objects 71

stream element). The select operation filters out all lists that do not contain a center
element. Now, the distance between the two elements in each stream element can be
calculated or other spatial operations can be done.

The upside of this approach is that it does not contain any blocking elements. At
each newly incoming location update, the new result, for example for a radius query,
can be calculated. This is because the element window is replaced by the option for the
aggregation to only use the latest element for each moving object.

Nevertheless, this upside comes at a cost. Creating all possible pairs of elements can
be computationally too heavy. For each incoming stream element, n · n (with n being
the number of different moving objects) pairs are created, which are afterwards filtered
again to only those pairs containing a center element. For huge numbers of moving
objects, the number of pairs could be too big in a streaming scenario. In comparison, the
join approach creates n elements for each incoming center element (joining this element
with all latest elements from the other objects) and one element (if the there is only
one center element) for each incoming non-center element (joining this element with the
center element).

Even though this approach has its downsides, the idea to use an integrated element
window within the aggregation operation can be used to improve the first idea of the
query with a join operation.

4.7 Non-Blocking Queries with Multiple Objects

The query plan in Section 4.6.2 was straightforward and allows correct results, but at
the cost of blocking behavior and the inability to reduce the stream to a time window.
Depending on the scenario, these sacrifices cannot be made. The query results are needed
immediately—that is one reason why one would use a streaming solution and not a
database in the first place. Therefore, a solution is needed that avoids these drawbacks.

The problematic operators in the query plan in Figure 4.13 are the blocking element
windows and the join operator that cannot use the information from the time window
that reduces the stream to the last one hour or so. This is the central part of the query: it
decides how to combine the information from multiple moving objects so that the spatial
operations from the moving object algebra can be processed.

To tackle these problems, an extension for the join operator based on the ideas in
Section 4.6.7 is proposed. First, the general solution is presented. Then, some special
properties of the radius query for moving objects are exploited to improve the general
approach for this scenario.

72 Physical Integration

Window (e. g., 1h) Window (e. g., 1h)

Element Join

Figure 4.16: Alternative join approach

4.7.1 Element-Join

Figure 4.16 depicts a query with only a join and two separate windows as the inputs.
The two incoming streams at the two input ports of the join are independent from each
other. One can be, in a temporal sense, faster than the other. The windows are used to
reduce the data stream to elements not older than the given time, in this case one hour.

Comparing the queries in Figure 4.13 and Figure 4.16, a main difference is that the left
and right window before the join are no element or chronon windows. These windows
have been used to control the triggering behavior but wiped the information about the
previous window which reduced the stream to a certain time span. This now has to be
done in the join operator. Additional to the standard join, the join has to imitate an
element window at one or two of the input ports without having a blocking behavior or
ignoring the given windows.

For this purpose, the element join is introduced, which solves both problems: the
blocking behavior and the limited temporal control. It does this by integrating a parti-
tioned element window behavior into the join itself. Instead of using the interval ap-
proach to create element windows by settings correct time intervals in a way that only
one or a given number of elements are valid at the same time, the join operator manages
the stream elements so that only the given number of elements is used at the same time.
This can be configured for each input port of the join operator:

1. none No element window is used, the join operator behaves as a normal join, i. e.,
only considering the time intervals of the incoming stream elements.

2. left An element window is only used at the left input port. The right input port
behaves normally.

3. right An element window is only used at the right input port. The left input port
behaves normally.

4. both An element window is used on both input ports.

4.7 Non-Blocking Queries with Multiple Objects 73

id tS tSE

a 20 30

Left Input

id tS tSE

b 8 18

c 9 19

b 16 26

Right Input

Figure 4.17: Example how the SweepArea is cleaned in a join operator

SweepArea

To understand the way the join operator works with the interval approach, the term
SweepArea needs to be introduced. A SweepArea is an abstract data structure that holds
a number of stream elements with regard to their stream time interval. That means that
a SweepArea stores stream elements, gives access to query them and is able to keep the
data structure clean in the sense that old elements which are no longer needed can be
removed. A stateful operator typically has one SweepArea per input port, hence a join
operator has a left and a right SweepArea [DSTW02].

The SweepArea is cleaned by the time intervals of its elements. When an element
with a start timestamp t arrives, all elements with an end timestamp tS E ≤ t can be
removed from the SweepArea. In a join, the elements from one port are used to clean
the SweepArea from the other port. This is depicted in Figure 4.17. The SweepArea
on the right holds three stream elements when the element (a, 20, 30) arrives on the
left input of the join. Two of the elements on the other side can now be removed from
the SweepArea and will not be used for any further join operations. The dashed arrows
indicate which elements could be removed from the incoming element on the left.

This behavior now needs to be extended by the element window approach. Doing that,
the element window can be seen as a property of the SweepArea. Leaving the partitions
aside for a moment, a simple assumption would be that the SweepArea needs to hold
exactly n elements for an element window of size n, e. g., one element. If a new element
is inserted to the SweepArea, the previous element can be removed.

Unfortunately, this simple approach leads to wrong, or, more precisely, missing re-
sults. When removing earlier stream elements, join matches can be missed. This is
depicted in Figure 4.18. The first element on the right removes the element on the left
(dashed arrow), because its start timestamp is greater than the end timestamp of the left
element (3 < 2). This is correct. The new, second element on the right removes the pre-
vious right element (bend dashed arrow), because we only want an one-element window
behavior. Nevertheless, this is wrong, because possible join matches with this element
can be missed. The next element on the left, which arrives after that, cannot be joined
with the potential join-partner (arrow) (b,3,7), which has already been removed.

74 Physical Integration

id tS tSE

a 1 2

a 3 5

Left Input

id tS tSE

b 3 7

b 6 10

Right Input

Figure 4.18: Wrong behavior of SweepArea for an element join with size one

id tS tSE

a 1 6

a 7 12

a 7 10

Left Input

id tS tSE

b 9 14

b 10 15

b 12 17

b 13 18

Right Input

Figure 4.19: Join with SweepArea element size set to one

The SweepArea in the element window needs to be defined a little different. It is not
limited to the number n of elements, but the join only joins the n newest possible matches
of the other side. For example, having two possible join partners with an element join
configured to the size one, only the newer element is used for the join. Nevertheless,
this does not mean that the older elements can be removed at that moment. The example
in Figure 4.19 depicts this. The third element on the left side could be joined with two
elements: the first and second on the right. Due to the element size set to one, it is only
joined with the newer of the two elements. The solid arrows depict the join partners.
Nevertheless, the older element on the right cannot be removed at this time, because it is
possible that it needs to be joined with later elements on the left. That is the case in this
example. The next element cannot be joined with the second element on the right due to
its time interval. It needs to be joined with the newest possible element, which is, in this
case, the oldest element on the right.

The conclusion from these considerations is that the elements cannot be removed from
the SweepAreas based on the number of elements but on the the start timestamp, just
like a normal join with normal SweepAreas. The difference is in the matching of the
elements to join. In all cases, only the n newest possible elements are joined, not all
possible elements.

4.7 Non-Blocking Queries with Multiple Objects 75

id value tS tSE

a 42 1 10

a 50 10 20

Left Input

id value tS tSE

b 100 5 15

b 200 8 18

Right Input

id left value left id right value right tS tSE

a 42 b 100 5 10

a 42 b 200 8 10

a 50 b 200 10 18

Output

Figure 4.20: Join with SweepArea element size set to one and the output with an end
timestamp set

Time Handling

Next to the handling of the elements in the SweepArea, the stream time also needs to be
considered for the result elements. Figure 4.20 shows an example of an element join with
the element size set to one. For this example input stream, three results are generated. To
make it simpler to distinguish the different stream elements, the schema was extended
by the “value” field.

In this example, the elements in the output stream use the intersection of the input
stream elements as their stream time interval. Even though this reflects the correct join
behavior [KS09], in this case it mixes up two semantics. From the perspective of the time
interval that is used for the output, the join reflects the semantics of the windows before
the join. This way, it is possible to have multiple stream elements with overlapping
validities. In Figure 4.20, at the time instances 8 and 9, two output elements are valid.
But when having the semantics from the previous windows, some would expect more
result elements. In this case, a fourth element could be expected, giving the result of the
join of the last element on the left with the first element on the right. But this element
is not created due to the limitation of the join to the newest elements. Hence, setting the
end timestamps as if there would not be an element limitation in the join is semantically
not totally correct, depending on the use case. Nevertheless, in some cases it could be
useful to not lose the information of the windows, i. e., merging the time intervals with
an intersection just as in the example and by that keeping the end timestamps.

76 Physical Integration

Having an element window inside of the join operator, another solution could be to
always have exactly one (or n) valid elements at a time. Then, the end timestamp of
an element would be set to the start timestamp of the following element. That would
be exactly the behavior of a regular element window and comes with the downside of a
blocking behavior.

Another solution is to not decide about the value of the end timestamp. This can be
done by setting it to infinity or a value that shows that the end timestamp is not known.
It does not lead to any blocking behavior and prevents the time model from having a
wrong or mixed semantics.

Algorithm

To include the element window approach into the relational theta-join algorithm for data
streams from [KS09], only a few changes are necessary. Algorithm 1 is basically the
algorithm from [KS09] with a few modifications.

The size of the “element window” of each of the two input ports is defined in the
elementS ize variable in Line 4. If all elements have to be used (no element window),
this variable is set to −1 (see Line 16). It is important to use the element limitation size
from the other input port to get the right number of join partners for a stream element
(see Line 19).

In contrast to the original algorithm, all possible join partners (quali f ies) are sorted
so that the newest elements are the first elements of the sorted list (see Line 14). In a real
implementation some would avoid the sorting if all elements are used. Nevertheless, for
better readability, in this case the elements are sorted in either case. The loop in Line 21
goes through the newest n elements (i. e., the window size) and creates the output stream
events. Unlike the algorithm from [KS09], the end timestamp is not derived from the
joined stream elements, but set to∞ (see Lines 25 and 27).

Another approach would be to extend the SweepArea to implement a method that only
returns the n newest elements instead of doing the sort in the join operator. Here, the
solution within the join operator was chosen to show all modifications in one algorithm.

4.7.2 Optimized Element Join

The approach for the element join above is generalized and ignores some special prop-
erties of the original motivation. Taking a look at the original query in Section 4.6.2
again, some special properties of this query can be exploited. First, the join is effectively
a self-join. The stream with all location updates is split up and then joined again. That
can be used to gain information about the temporal advance later in the query. Second,
the predicates of the select operators on the left and right before the join operation are
exactly inverse. One select operation selects all elements from the center, the other all

4.7 Non-Blocking Queries with Multiple Objects 77

Algorithm 1: Theta Join with Element Limitation
input : physical stream S in, S in2; join predicate θ
output: physical stream S out

1 S out ← �;
2 Let S Ai, i ∈ {1, 2} be two empty SweepAreas(≤tE , pθquery, premovei);
3 Let Q be an empty min-priority queue with priority ≤tS ;
4 Let elementS ize1, elementS ize2 be the size of the internal element window for

the left (1) and right (2) side;
5 /* j is this side, k is the other side. */
6 j, k ∈ {1, 2};
7 foreach s := (e, [tS , tE))←↩ S in j do
8 k ← (j mod 2) + 1;
9 S Ak.purgeElements(s, j);

10 S A j.insert(s);
11 /* Get all possible join partners. */
12 Iterator quali f ies← S Ak.query(s, j);
13 /* Sort the possible join partners so that the newest

elements are first in the list. */
14 List sortedQuali f ies← createSortedList (quali f ies);
15 /* Use only the first (newest) elements from the possible

join partners or all possible join partners. */
16 if elementS izek = −1 then
17 numberO f Elements← quali f ies.size();

18 else
19 numberO f Elements← elementS izek.size();

20 /* Create the output stream elements. */
21 for n← 0; n < numberO f Elements; n← n + 1 do
22 Element(ê, [t̂S , t̂E))← sortedQuali f ies.get(n);
23 if j = 1 then
24 /* Set the end timestamp to infinity. */
25 Q.insert((e ◦ ê, [max(tS , t̂S),∞)));

26 else
27 Q.insert((ê ◦ e, [max(tS , t̂S),∞)));

28 tS j ← tS ;
29 mintS ← min(tS 1 , tS 2);
30 if mintS ,⊥ then
31 /* Transfer all elements with a timestamp ≤ mintS to S out

*/
32 Transfer (Q,mintS , S out);

33 while ¬Q.isEmpty() do
34 Q.extractMin() ↪→ S out

78 Physical Integration

Window (e. g., 1h)

Route

Element Join

Heartbeats Heartbeats

Figure 4.21: Optimized alternative join approach

elements that are not from the center object. This can again be used to gain information
about the temporal advance of the data streams.

Considering these properties, an optimized solution for this scenario can be designed.
The basic idea is depicted in Figure 4.21. The query only contains the minimal number
of operators: a window to reduce the data stream to the last hour or so and by that to
ignore moving objects that did not send a location update in that time interval. Next, a
route operator is used that replaces the two select operators. The route operator is not a
standard operator considering the operator set from [Krä07]. Nevertheless, it simplifies
the operator plans by logically combining two inverse select operators. The results are
written out on two output ports. Hence, the route does the same as the select operators:
separating the center object stream elements and the non-center objects stream elements.
This is possible because the predicates of the select operators were exactly inverse. In
contrast to the selects, it reduces the number of necessary predicates from two to one
and emphasizes that the stream is from one source, i. e., the temporal advance according
to their start timestamps is equal. The last operator is the element join introduced in
Section 4.7.1 which joins the streams of the two select operators.

The knowledge of the temporal advance of the respective other output port of the
route can be used to improve the cleaning process in the SweepAreas. For each stream
element that has been filtered out on one side, a heartbeat can be send. Heartbeats
are stream elements that do not have payload but only contain information about the
temporal advance of a stream. That way, latencies can be reduced because results can
be written earlier [SW04]. In this scenario, heartbeats can be used to remove elements
from the SweepArea at earlier points in time than in the more general approach.

4.7 Non-Blocking Queries with Multiple Objects 79

id tS tSE

a 1 6

a 15 20

Left Input

HB(9)

HB(10)

HB(12)

HB(13)

id tS tSE

b 9 14

b 10 15

b 12 17

b 13 18

Right Input

Figure 4.22: Join with SweepArea element size set to one and heartbeats for cleaning

An example which shows a scenario with heartbeats and a SweepArea with an element
size set to one is depicted in Figure 4.22. For each regular stream element that flows into
the right side, a heartbeat (HB) with the start timestamp from that stream element (in
brackets) can be send on the other side. These heartbeats can be used to clean up the
other side. In this case, three elements on the right can be deleted due to incoming heart-
beats. This can only be done if there is already a newer element in the SweepArea to
keep at least one element. It can happen that the heartbeat on the left arrives earlier than
the stream element on the right. Take the last heartbeat as an example. If it arrives be-
fore the element (b,13,18) arrives on the right, the element (b,12,17) cannot be removed
immediately. In this case, the deletion is done at the moment the newer element on the
right arrives in the SweepArea. When a regular stream element on the left arrives, it can
be joined with the newest element on the right, as indicated by the arrow.

Being able to remove elements from the SweepArea at an earlier point in time has
some advantages. The amount of memory needed to store old stream elements is re-
duced, which is a critical property for streaming systems. This is due to the in-memory
processing with its rather limited resources (cf. 2.2). Additionally, the time to search for
the correct join partners is reduced. The SweepArea needs to be queried for the newest
n possible join partners. The fewer elements in the SweepArea, the fewer comparisons
need to be done. Another advantage is that the join can write out the results earlier as it
does not need to wait for previous elements which may be joined later (cf. 4.7.1).

4.7.3 Expiration Function premove with Early Cleanup

To add the optimized element join to the join algorithm with element limitation (Algo-
rithm 1), the expiration function premove (see Lines 2 and 9) needs to be changed. The
normal remove predicate removes all elements which end timestamp t̂E is less or equal to
the start timestamp tS of an incoming stream element: remove if tS ≥ t̂E [Krä07, KS09].

With the optimized element join (see Section 4.7.2), elements can be removed earlier.
Let s be an incoming stream element (s := (e, [tS , tE))) or an incoming heartbeat (s :=

80 Physical Integration

tS). In either way, the newly incoming stream element contains a timestamp with the
current stream time. Let ŝ := (ê, [t̂S , t̂E)) be a stream element in the SweepArea S A. Let
n be the element limitation for the join for the input port for which S A is the SweepArea.
Then, the following expiration function can be used:

premove(s, ŝ) :=

true if (tS ≥ t̂E) ∨ (tS ≥ t̂S ∧ |S A.getNewerElementsThan(ŝ)| ≥ n)
false otherwise

An element can be removed from the SweepArea if the new element has a greater or
equal start timestamp compared to the element in the SweepArea (tS ≥ t̂E). This is equal
to the normal expiration function. But there is an additional possibility to remove the
elements at an earlier point in time. If the new element has a start timestamp greater or
equal to the element in the SweepArea and there are at least n elements in the SweepArea
that are newer than the element to be removed, the element can be removed from the
SweepArea.

The function getNewerElementsThan(StreamElement s) needs to be added to
the SweepArea. It queries the SweepArea for elements that arrived after the stream
element s. This can be done using the start timestamps from the stream elements in the
SweepArea. Nevertheless, this is not enough. It is possible that multiple stream elements
have the same start timestamp. In that case, the elements still have an order in which
they arrived in the SweepArea which needs to be considered in this function. This can,
for example, be implemented using a counter (starting at 0 for each new start timestamp)
or a list that keeps the order of the elements. This is a difference to the element window
behavior in [Krä07] where element windows could cause indeterministic results because
of stream elements being indistinguishable when having the same timestamps [Krä07].

4.7.4 Partitioning

The initial motivation for this approach are spatio-temporal queries with multiple moving
objects. The idea is to use the newest stream element (i. e., location update) per moving
object. Therefore, the element join approach has to consider partitions. The input stream
is logically split into partitions which are handled independently from each other. In this
case, partitioning allows to join with the newest n elements per partition. To decide
which stream element is in which partition, a grouping function is used [Krä07, KS09].

Figure 4.23 uses the example from Figure 4.22 and extends it with partitions. The
stream elements are separated to the partitions by their id. On the left, only one partition
exists (a) and on the right there are stream elements from two partitions: b and c. The
cleaning process of the SweepArea is also separated by the partitions. Only if a newer
element for the respective partition exists, the older element can be removed. It is just
as if there would be a SweepArea for each partition. The matching for the join is done

4.8 Filter and Refine 81

id tS tSE

a 1 6

a 15 20

Left Input

HB(9)

HB(10)

HB(11)

HB(12)

HB(13)

HB(14)

id tS tSE

b 9 14

b 10 15

c 11 16

b 12 17

b 13 18

c 14 19

Right Input

Figure 4.23: Join with SweepArea element size set to one, partitioned by the id and with
heartbeats for early cleaning

for each partition as well: for the new element (a,15,20) on the left, two join partners are
found, one for each partition.

Algorithm 1 can be extended by the partitioning approach, which is done with Al-
gorithm 2. The grouping part of the algorithm is based on the algorithms for grouped
aggregation and the grouped element window from [Krä07].

Instead of using one SweepArea for each input port, a map of SweepAreas is used
(see Lines 2 and 3) with one SweepArea for each group. The group is determined with
the grouping functions fgroup1 and fgroup2 . Two functions are needed because each input
port can have its own grouping function. First, the correct SweepArea for the group of
the new element s is determined. If it does not exist yet, it is created (see Line 16).

The join operation needs to be done for each group individually. The loop in Line 21
loops through all SweepAreas of the other side of the incoming element. For each
SweepArea the same procedure as in Algorithm 1 is done. In addition, the algorithm
needs to remember the oldest start timestamp (the smallest) over all groups from each
side to decide which elements can be written to the output stream and which need to stay
in the queue Q (see Lines 37 and 38).

4.8 Filter and Refine

The initial goal of the join queries and extensions described above has been the ability
to combine moving objects in order to calculate their distance. The distance in turn
can be used to calculate a radius query. The described approaches take into account the
temporal aspects of the streams but leave out the spatial properties of the data.

82 Physical Integration

Algorithm 2: Partitioned Theta Join with Element Limitation
input : physical stream S in, S in2; grouping functions fgroup1 , fgroup2 , join

predicate θ
output: physical stream S out

1 S out ← �;
2 Let groups1 be an empty map with entries < groupID, sweepArea >;
3 Let groups2 be an empty map with entries < groupID, sweepArea >;
4 Let Q be an empty min-priority queue with priority ≤tS ;
5 Let elementS ize1, elementS ize2 be the size of the internal element window for

the left (1) and right (2) side;
6 /* j is this side, k is the other side. */
7 j, k ∈ {1, 2};
8 mintS ∈ T ∪ {⊥};
9 foreach s := (e, [tS , tE))←↩ S in j do

10 k ← (j mod 2) + 1;
11 /* Insert element in SweepArea on this side (j). */
12 GroupIdentifier groupID← fgroup j(e);
13 SweepArea S A;
14 if groups j.containsKey(groupID) then S A← groups j.get(groupID);
15 else
16 S A← new SweepArea(≤tS , pθquery, premove j);
17 groups j.put(groupID, S A);

18 mintS ←⊥;
19 S A.insert(s);
20 /* Do join algorithm for all SweepAreas of the other side

(k) */
21 foreach SweepArea S Aother in groupsk do
22 S Aother.purgeElements(s, j);
23 /* Get all possible join partners. */
24 Iterator quali f ies← S Aother.query(s, j);
25 /* Sort the possible join partners so that the newest

elements are first in the list. */
26 List sortedQuali f ies← createSortedList (quali f ies);
27 /* Use only the first (newest) elements from the

possible join partners or all possible join
partners. */

28 if elementS izek = −1 then numberO f Elements← quali f ies.size();
29 else numberO f Elements← elementS izek.size();
30 /* Create the output stream elements. */
31 for n← 0; n < numberO f Elements; n← n + 1 do
32 Element(ê, [t̂S , t̂E))← sortedQuali f ies.get(n);
33 /* Set the end timestamp to infinity. */
34 if j = 1 then Q.insert((e ◦ ê, [max(tS , t̂S),∞)));
35 else Q.insert((ê ◦ e, [max(tS , t̂S),∞)));

36 /* Save the smallest timestamp of this side over all
groups. */

37 if (tS j =⊥) ∨ (tS < tS j) then tS j ← tS ;

38 mintS ← min(tS 1 , tS 2);
39 /* Transfer all elements with a timestamp ≤ mintS to S out */
40 if mintS ,⊥ then Transfer (Q,mintS , S out);

41 while ¬Q.isEmpty() do Q.extractMin() ↪→ S out;

4.8 Filter and Refine 83

tS=19 tS=20

500m

tS=15

tS=18

tS=19

tS=10

Figure 4.24: Center moving object at tS = 20 with surrounding moving objects and an
object far away from the center

In order to improve the efficiency of the query, the number of necessary distance
calculations to get a result for the radius query can be reduced [BG19]. Doing this, the
accuracy of the result should not be unnecessarily decreased. Depending on the query
and spatial distribution of the data, both of these conflicting goals can be met.

Consider the example in Figure 4.24. At tS = 20, a new location update from the
center element arrives and is joined with the latest location updates from all other known
moving objects. Then, the distance between the center and all these other elements
is calculated. To do that, the other elements are predicted to the time instance 20 (by
setting their prediction time to tP = [20, 21)). Then, the distance is calculated (e. g., the
euclidean distance or the geodesic distance [Kar13]).

Now consider the element on the left. The last known location is only one time in-
stance old and the location is far away from the queried area. Assuming that the elements
can only move a short distance in that time (e. g., 50 meters), it is unlikely to impossible
that this element will be in the queried region at time 20. The prediction as well as the
distance calculation between the two elements is unnecessary as it seems to be clear that
this element will not be in the result. Nevertheless, to decide if the object is too far away,
the distance needs to be known, resulting in a calculation that was aimed to be omitted.

4.8.1 Filtering in a Streaming Scenario

In spatial databases, a similar problem occurs. The results of a spatial query have to be
calculated with as few costly spatial operations as possible. A common approach is to
use filter and refine steps (cf. 2.4.5). The candidate estimation in the filtering steps can
be done using spatial indexes. These allow quick approximations to filter out elements
that are not in the result set (cf. 2.4.5).

Such an index needs to be created and kept up to date with the current data. In a
streaming environment this is especially demanding as the data is changing continuously.

84 Physical Integration

Additionally, the temporal dimensions need to be considered. The spatial information is
valid at certain time intervals, which are represented by the stream time and prediction
time intervals. The spatial index cannot simply assume that all elements are valid at the
same time. Instead, it needs to be able to represent the spatial state at certain points
in time. Doing that, the size of an index and with that its memory usage needs to be
considered. Because in data stream processing most data is kept in memory, the index
size should be small enough to fit into this limited resource.

Another distinction to filtering approaches in databases is that the database can reduce
the number of data elements that are involved in a query by its first filtering step. A
spatial index can be used to reduce the number of elements that need to be read from
disk. In a streaming scenario, all elements flow into the query, independent of the fact if
they are filtered out later or not. This inverts the function of at least the first filter step:
it does not tell which elements are potential results (this is done in a database), but for a
certain element it tells if it is a potential result.

Due to the demanding requirements to a spatial index in a streaming scenario, solu-
tions without an index for certain queries can reduce the overhead of updating an index
but keep the general approach of filtering out elements at an early stage.

4.8.2 Filtering for a Radius Query

Taking another look at the radius query from Section 4.6.2 as an example for a query
that involves a spatial predicate with multiple moving objects, a feasible placement of a
filter would be at or directly after the join operation. That is because this is the earliest
point in the query where both spatial objects are known. The filter step can be applied
in a temporal or non-temporal manner, i. e., using prediction or not using prediction.
Calculating the filter step in a non-temporal manner typically should reduce the costs
of the filter step and be the preferred approach. Figure 4.25 depicts a query with one
filter step right after the join. Instead of one, multiple filter steps would be possible. The
prediction time would be set right after the filtering step to do the refinement step in a
temporal manner.

The important part of the filtering step, which is represented by a select operator from
the DSMS, is the filter predicate. As drafted in Figure 4.24, it needs to consider both the
temporal as well as the spatial distance between the object in the center and the other
object. The basic idea is to estimate the maximum distance the two objects could have
traveled (towards each other) from their respective known time to the time where the
query predicts them to and subsequently to calculate if the “other” object could reach
the queried area around the “center” object.

For the filter step, three approaches are presented and discussed in the following: the
approximate distance calculation, the single rectangle filter and the multi rectangle filter.

4.8 Filter and Refine 85

Window (e. g., 1h)

Route

Element Join

Select (filter)

set tp

Select (refine)

Heartbeats Heartbeats

Figure 4.25: Join approach with filter

86 Physical Integration

tS=15 tS=20

Travel to tS=24 Travel to tS=24

Figure 4.26: Estimation of possible travel distances when predicting to tS = 24

4.8.2.1 Approximate Distance

The goal of the filter step is to remove all objects from the stream which are far away
from the center object and to keep those in the stream which are close to it or could be
close at the time of prediction. This approach is a straight-forward implementation from
the concept explained above. The distance between the center object and the other object
is calculated and compared to the radius of the query and the possibly traveled distance
of both objects. When calculating the possibly traveled distance of the moving objects,
the time span between the point in time of the last known location and the time to which
the objects are predicted has to be used.

Estimate Traveled Distance

Having spatio-temporal data, it is not enough to estimate if the last known location of
each of the two involved objects are roughly close to each other, but if they could be in
the future to which they possibly are predicted. Figure 4.26 depicts a situation where the
possibly traveled distance needs to be considered. Both the locations from the other ele-
ment and the center element are from a point in time which is not equal to the prediction
time. Hence, this query asks for a possible future situation. To estimate if the element on
the right could possibly be within the radius, is has to be calculated how far the objects
can, at maximum, travel. The prediction function is not used as it could be computation-
ally too complex for a cheap filter step. To make this calculation, a maximum possible
velocity for the moving objects needs to be estimated.

The calculated traveled distance can be used to estimate how far the other object can
be away from the center object (using the measured, not the predicted locations) and still
could reach the queried area. As can be seen in the following formula, the maximum
distance between the two objects is the sum of the maximum distance each object can
move in that time and the radius from the radius query.

4.8 Filter and Refine 87

maxDistance = tempDistanceother ∗ vmaxother

+tempDistancecenter ∗ vmaxcenter

+radius

The temporal distance tempDistance between the time when the location has been
measured and the time of prediction can be set to max(|tS − tPE |, |tS − tP|). The max-
imum of the difference to the start or end timestamp of the prediction time interval is
used because the prediction can both be into the future and the past and the maximum
time an object could travel is needed. If the prediction time has multiple time intervals
(cf. 3.2), the maximum temporal difference over all prediction time intervals needs to
be used. Alternatively, each prediction time instance could be handled independently.
Nevertheless, this would increase the computational cost without gaining a considerable
advantage.

Filter Predicate

Having the maximum possibly traveled distance from both moving objects, the pred-
icate for the select operator that performs the filtering step can be defined as follows:
distance(loccenter, locother) < maxDistance. The distance between the non-temporal last
known location of the two moving objects is calculated and compared to the maximum
distance that these objects could travel.

Discussion

An advantage of this approach is that it is simple to implement and straight-forward. It
decides for each moving object individually if it could be in the result set or not and
thus can be comparably accurate. Additionally, the maximum speed vmax of the moving
objects can be individually defined, e. g., within the stream element. On the downside,
it uses a distance calculation between two objects, which is a comparatively expensive
operation. The idea of the filter step is to reduce those operations, not to add more of
them. Nevertheless, in this scenario, the downside is less critical if the prediction time
interval is large. Because the filter step is completely non-temporal, it is only calculated
once per stream element. The refine step is calculated once for each point in time in the
prediction time interval. For example, having a prediction time interval with 30 points
in time in it (e. g., 30 minutes with a one minute granularity), one distance calculation in
the filter step can avoid 30 distance calculations in the refinement step.

4.8.2.2 Single Rectangle

The previous concept for a filter step is straight-forward but uses a distance calculation
for every combination of center elements and other elements. Avoiding a potentially
expensive geodesic distance calculation could reduce the costs of the filtering step. The

88 Physical Integration

500m

1km

Figure 4.27: Rectangular box around the center element

idea of this approach is to create a bounding box around the center element once for every
location update of the center element and then reusing this bounding box for every joined
other element. Instead of calculating the possibly traveled distance and calculating the
distance between the elements, the only thing that needs to be checked is whether the
other element is within the rectangle or not.

This approach is depicted in Figure 4.27. The bounding box has the center moving ob-
ject in the middle and adds an extra margin around the queried radius, which is depicted
as a circle. The size of the margin is critical for the filtering step. A bigger bounding
box reduces the probability that some possible results are filtered out but increases the
number of possibly irrelevant elements that pass the filtering step. A smaller bounding
box reduces the number of elements that needs to be calculated in the more expensive
refinement step but increases the risk to loose correct results.

Discussion

An advantage of this approach is its simple implementation and its possibly high effi-
ciency. It is not necessary to calculate possible travel distances nor does the distance
between the center object and the other object needs to be calculated. The disadvantage
of this approach is that the decision which elements to filter out and which to keep is less
fine granular and not individual for each moving object. The margin around the radius is
fixed and the same for all elements. While the previous approach with the approximated
distances needs to decide the maximum possible velocity of the moving objects, the user
has to decide the necessary margin in this approach.

4.8.2.3 Multi Rectangle

While the previous approaches are either very individual but possibly expensive or do
not distinguish between the elements but are rather cheap, this approach tries to combine
both approaches. To do this, multiple bounding boxes are used and the correct bound-
ing box is chosen depending on the individual possible traveled distance of the moving
objects. The approach can be described in three steps:

4.8 Filter and Refine 89

500m

1km

2km

3km

Figure 4.28: Different boxes for different possible travel distances

Step 1: Create Bounding Boxes

Figure 4.28 depicts a center object with the radius from the radius query and three bound-
ing boxes with different minimum distances to the center. These boxes are later used
depending on the temporal distance: if the objects could have traveled far, a bigger box
is used than if they could only have traveled a short distance. If the objects are too far
away to be in any of the boxes, they are not considered. As the prediction has a limited
accuracy, using objects which are very far away are very vague results anyway. The
number and size of the bounding boxes can be aligned to the use case, the radius in the
refinement step and the prediction quality.

Step 2: Estimate Traveled Distance

This step is identical to the estimation of the traveled distance in the approach with
approximate distances (cf. 4.8.2.1). In short, for each moving object, the distance is
calculated that this object could travel in the time between the last known location and
the prediction time.

Step 3: Choose Correct Bounding Box

Based on the approximate distance from Step 2, the correct bounding box is chosen. In
the example from Figure 4.28, if the distance is 0.9 km, the first box would be chosen. If
the other object is within that box, it is not filtered out but send to the next step, which
could be another filter or the refinement step.

Discussion

All the described steps can be applied with standard operations in a DSMS such as
the select and map operations with spatial and mathematical expressions. The general

90 Physical Integration

structure of the queries does not need to be changed, which makes the integration of a
filter step into a query feasible. The seamless integration into the processing model of
a DSMS comes at the cost that it does not allow the calculation of early results (r1, r2,

. . .). If the predicate would be sure that a certain pair of elements is part of the result, it
is processed by the subsequent operations anyway.

This approach connects the advantages of the two previous approaches and thus al-
lows a more fine-grained selection of relevant elements than with a single bounding box
(cf. 4.8.2.2) while avoiding distance calculations (cf. 4.8.2.1). Nevertheless, it adds more
complexity to the query than the other two approaches and may be computationally more
expensive depending on the use case due to the need to create more than one rectangle
and calculating possible traveled distances.

When deciding for a filtering approach, different queries, data streams and require-
ments need to be considered. Even through this discussion cannot decide which ap-
proach is the best for each use case, it shows that the flexible DSMS approach to pro-
cess moving object data streams allows for multiple possibilities to include a filter and
refinement strategy to a query without the need to add new capabilities to the DSMS
itself. Other queries than radius queries, such as kNN, may require different approaches.
Nevertheless, queries which work with the proximity of objects can basically use these
approaches.

4.9 Conceptual Contribution and Differentiation to Related Work

The concept developed in this and the previous chapter builds upon existing work and
extends it for the use with moving object data streams. This section recaps the related
work that is closest to this thesis and shows the similarities and the differences to point
out the contribution of this work.

A main inspiration for the concept with the moving object algebra is the SECONDO
spatio-temporal database [GAA+05]. Despite having a very flexible algebra due to the
implemented moving object algebra, the system is designed for static data and not for
data streams. Hence, a key difference to SECONDO is the integration of temporal at-
tributes into a streaming system, combining stream time intervals with windowing func-
tionality on the one hand and prediction time intervals on the other hand. Additionally,
typical spatio-temporal queries such as the radius and kNN query are implemented with
standard DSMS operators.

Tile38 is another system that can run queries on moving object data streams. Nev-
ertheless, designed as a database, it has very limited capabilities when it comes to data
stream processing. For example, the system lacks a window concept or any other than
the spatio-temporal operations for which the system is designed. Hence, the approach
is less generic and the use case limited to the spatio-temporal queries. Nevertheless,
Tile38 gives good examples for queries on moving objects, such as static and roaming

4.10 Summary 91

geofences, which are similar to an intersection with a non-moving region and the radius
query.

MobyDick and OCEANUS from [Gal16] do not discuss queries where the locations
of multiple moving objects have to be compared, e. g., to find moving objects that are
close to another moving object. This kind of query is an important part of this the-
sis. For example, Section 4.7 explicitly develops a solution for non-blocking streaming
queries which involve multiple moving objects. The prediction concept with temporal
attributes is especially used for the case that the location of multiple moving objects are
not known at the same point in time. These challenges are not the focus of MobyDick
and OCEANUS, even though both works give a first impression for the integration of the
moving object algebra into a streaming system. Nevertheless, they do not use the interval
approach and therefore do not discuss the integration of multiple temporal dimensions,
while the discussion about the algebra when combined with the interval approach and
windows is an important contribution of this work.

The integration of two time dimensions is inspired by the Odysseus-based Stream-
Drive system from [Bol11]. The contribution of this work is that the bitemporal approach
from [Bol11] is combined with the moving object algebra to use it for spatio-temporal
queries. While [Bol11] is focused on driver assistance systems, this work uses a more
generic approach and applies it to moving object queries.

4.10 Summary

This chapter takes the results from Chapter 3 about the logical integration and transfers
them to the physical integration, which is closer to the implementation of the theoretical
concepts. For this purpose, the transformation from a physical stream to a logical stream
has been described in Section 4.1. Having that transformation definition, the results of
Chapter 3 can be applied to physical streams.

A main concept of this thesis are temporal attributes. They are basically a function
which uses the second temporal dimension, the prediction time. How attributes can be
made temporal, how the prediction time dimension is affected by operations and more
challenges and solutions with temporal attributes have been described in Section 4.2. To
work with temporal attributes, some existing operators need to be extended, among them
the aggregation, which has been described in Section 4.3.5.

The prediction time is basically an additional metadata for stream elements and there-
fore needs to be handled when stream elements are joined. How the prediction time is
merged, which is especially used in a join operation, is described in Section 4.3.6. The
section discusses different possible merging functions for the prediction time intervals.
Another metadata that has been used and extended in this thesis is the temporal trust
value, which can be used to represent the trustworthiness of a prediction by a temporal
attribute. In summary, a temporal trust value is itself a temporal double value which rep-

92 Physical Integration

resents an estimated prediction quality identifier (i. e., trust) for a stream element with
one or more temporal attributes.

The processing of queries on data streams from moving objects pose another stream
processing challenge which is independent of the prediction time and the spatio-temporal
nature of the data. The calculation of queries which need to join data from different
moving objects can cause a blocking behavior, which is very unhandy if event-driven
near real-time results are desired. Therefore, this thesis introduces a non-blocking join
operator for (grouped) element windows. In short, this allows to join the newest locations
of moving objects with each other without waiting for the next location by including
some window logic into the join operator itself. This is described in Sections 4.6 and
4.7.

Finally, Section 4.8 gives attention to the second part of the research question and
discusses possibilities and limitations on how the performance of continuous spatio-
temporal queries on moving object data streams can be improved. It starts by looking
at the filter and refine concept in traditional spatial databases and explains how parts of
this concept can be integrated into the stream processing environment. Three different
approaches for the filtering step are presented at the example of a radius query. They
reach from simple to more complex and have different properties when it comes to fil-
tering out the correct stream elements. When deciding for a filter approach, the query
and the data properties have to be considered.

The physical concept brought the idea of the moving object stream processing closer to
the implementation. Therefore, the next chapter looks closer at the details and challenges
of the implementation and explains solutions to make the concept work in a DSMS.

93

5 Architecture and Implementation

The previous chapters have shown a concept to query spatio-temporal moving objects
within a DSMS. To show the feasibility of the concept, it is implemented into an existing
DSMS. For the system to be extended, some requirements have to be met: (1) it needs
to be build upon the interval approach used in this thesis, (2) it needs to provide the
standard relational operators such as select and join and (3) it needs to be extensible. Due
to these requirements, the Odysseus DSMS framework is chosen as the foundation for
the implementation. It implements the time-interval approach and provides the standard
operators from the relational algebra. The open source code and the modular approach
make Odysseus extensible, so that the concepts of this work can be implemented into
the existing system while the already implemented capabilities can be reused.

This chapter describes the implementation of the concept into the DSMS Odysseus.
First, the architecture of Odysseus is described in Section 5.1. Then, the implementation
of the integration of the prediction time dimension and the temporal attributes from the
moving object algebra is explained in Section 5.2. This section contains details about
the new metadata type for the prediction times, about expressions on temporal attributes
and temporal functions as well as the implementation of the temporal trust value. The
implementations of the extensions for the standard non-temporal operators such as map
(cf. 5.2.6), select (cf. 5.2.8), aggregation (cf. 5.2.9) and others are an important part of
this section as well. The up- and downsides of the decisions are discussed and differences
to the concept are pointed out.

The implementation of the element join (cf. 4.7.2) is described in Section 5.3. This
is followed by Section 5.4 about spatial operations. The parts of the implementation
described above, even though targeted for moving objects, are not limited to spatial op-
erations. Nevertheless, these are important in this thesis. Hence, the implementation
parts which are especially about spatial operations can be found in this section. This
also includes the section about spatio-temporal filtering, which aims to improve the per-
formance of the queries.

Names of classes, variables, etc. of the source code are written in a monotype font.

5.1 Odysseus

Odysseus is an open-source DSMS developed at the University of Oldenburg. It is
written in Java and builds upon OSGi, which makes it a very modular software sys-
tem [BGJ+09, GHN14, JG08]. Due to this modularity, Odysseus can be easily extended
by new operations or concepts without changing or breaking existing code.

The processing concept is based upon the interval approach from [KS09]. Figure 5.1
provides a general overview of Odysseus. The core system of Odysseus is depicted in
the middle. The whole process from a defined query provided by the user in a query

94 Architecture and Implementation

language to a running and optimized query is handled by the system. Odysseus differ-
entiates logical and physical operators which represent the logical and physical algebra.
Hence, the translation takes a logical query definition in a query language and compiles
it into an executable physical query. The translation process is executed in steps and can
be extended by new rules which modify the physical plan, for example, to change the
order of operators or to choose an operator based on the type of the data stream elements
(e. g., key-value or relational tuples). These mechanisms have been used to implement
new translation steps necessary for the concept of this thesis.

As depicted, a query is represented by an operator graph that is made of operators and
connections between those. Every event (i. e., data steam element) consists of payload
and metadata. The metadata contains the time interval in which the element is valid and
can also contain more data, such as the data rate of the stream. The results of a query
can be send to other systems, for example, to store them in an archive, raise alarms or
monitor other systems.

An important goal of the architecture of Odysseus is that the DSMS is very modular
and extensible. Odysseus defines interfaces that can be used to create modules that ex-
tend the core system in many aspects. For example, new operator bundles can be added
so that Odysseus has more processing capabilities. The input and output adapters can
be extended to communicate with more systems, i. e., sources and sinks. Query lan-
guages can be added as well as other functionality such as recovery [BGA17], machine
learning [GHN14], driver assistance systems [BAG+12] and so on.

Odysseus supports multiple query languages and has a framework to include new
languages as well. Next to the SQL-like Continuous Query Language (CQL), Odysseus
supports the Procedural Query Language (PQL). In PQL, the query graph is defined by
the user by defining and connecting the included operators. The examples of queries in
this chapter are given in PQL.

5.2 Temporal Implementation in the DSMS Odysseus

An important goal of the implementation of the concept was to not break the existing sys-
tem. The spatio-temporal algebra is an optional addition to the system, but Odysseus has
to work without this extension, too. Therefore, the modularity of Odysseus is exploited
to add certain functionality as new modules. These are new metadata, the handling of
temporal attributes and some extensions to existing operators as well as new functions.

5.2.1 Metadata

The metadata in Odysseus adds meta information to each data stream element. This
is mainly the stream time for the interval approach. Additionally, the metadata can be
used to attach information about the latency and the data rate as well as the probability

5.2 Temporal Implementation in the DSMS Odysseus 95

U
se

r
L

og
in

Q
u

er
ie

s
C

on
tr

ol
s

(D
efi

n
e,

S
ta

rt
,

S
to

p
,

R
em

ov
e,

..
.)

..
.

︸︷︷︸
S

tr
ea

m
in

g
R

ea
l-

T
im

e
S

o
u

rc
es

-
S

en
so

rs
-

Io
T

D
ev

ic
es

-
L

og
s,

W
ar

n
in

gs
,

et
c.

fr
om

ex
te

rn
al

so
u

rc
es

-
..

.

In
d

u
st

ry
S

en
so

rs
L

o
ca

ti
on

D
at

a
S

m
ar

t
E

n
er

gy

D
a

ta
S

to
ra

g
e

D
at

ab
as

es
N

oS
Q

L
S

to
re

s
..

.

︸︷︷︸

O
d

ys
se

u
s

fo
r

E
ve

n
t

P
ro

ce
ss

in
g

Q
u

er
y

D
efi

n
it

io
n

a
n

d
C

o
n

tr
o

l
#
P
A
R
S
E
R
P
Q
L

s
o
u
r
c
e
=
A
C
C
E
S
S
(
.
.
.
)

m
a
p
=
M
A
P
(
.
.
.
)

.
.
.

L
o

g
ic

a
l

Q
u

er
y

a
n

d
O

p
ti

m
iz

er

S
ou

rc
e

M
ap

S
el

ec
t

S
in

k

O
p

ti
m

iz
at

io
n

R
u

le

P
h

ys
ic

a
l

Q
u

er
y

E
xe

cu
to

r

S
ou

rc
e

S
el

ec
t

M
ap

S
in

k
E

ve
n

ts
E

ve
n

ts
E

ve
n

ts

A
P

Is
fo

r
E

xt
en

si
b

le
M

o
d

u
le

s

W
in

d
ow

M
o

d
el

s

O
p

er
at

or
B

u
n

d
le

s
(G

eo
,

..
.)

Q
u

er
y

L
an

-
gu

ag
es

In
p

u
t

/
O

u
tp

u
t

A
d

ap
te

rs

U
se

r
M

an
ag

e-
m

en
t

R
ec

ov
er

y
G

U
Is

..
.

S
in

k
s

-
E

xt
er

n
al

S
ys

te
m

s
-

M
es

sa
ge

B
ro

ke
r

-
E

ve
n

t
L

og
s

-
A

rc
h

iv
es

-
..

.

A
la

rm
s

M
on

it
or

in
g

A
u

to
m

at
ic

C
on

tr
ol

︸ ︷︷ ︸

E
ve

n
ts

E
ve

n
ts

R
E

S
T

In
te

rf
a

ce

Fi
gu

re
5.

1:
O

ve
rv

ie
w

of
O

dy
ss

eu
s

96 Architecture and Implementation

for probabilistic stream processing [Kuk15]. The metadata is extended by the Predic-
tionTimes class. It contains a list of PredictionTime instances, which define the time
intervals to which the temporal types of the stream element have to be predicted. The
PredictionTime class uses the behavior of the existing stream time implementation
from the TimeInterval class.

During the definition of a query, the user can define that the prediction time is used. It
can be arbitrarily combined with other metadata such as the stream time TimeInterval.
Listing 5.1 gives an example access operator. Due to the definition of the metadata in
Line 11, the PredictionTimes metadata is used in this query. Having this metadata,
temporal attributes can be used and will be predicted to the given prediction time.

1 ACCESS({
2 . . .
3 schema =[
4 [’ id ’ , ’ I n t e g e r ’] ,
5 [’ x ’ , ’ I n t e g e r ’] ,
6 [’ y ’ , ’ I n t e g e r ’] ,
7 [’ s t a r t ’ , ’ S ta r tT imeStamp ’]
8] ,
9 i n p u t s c h e m a =[’ I n t e g e r ’ , ’ I n t e g e r ’ , ’ I n t e g e r ’ , ’ I n t e g e r ’] ,

10 . . .
11 m e t a a t t r i b u t e = [’ T i m e I n t e r v a l ’ , ’ P r e d i c t i o n T i m e s ’] ,
12 o p t i o n s = [. . .]
13 })

Listing 5.1: Using the PredictionTimes metadata in an access operator

The temporal operators can manipulate the prediction time according to the defini-
tion in the concept. Additionally, the user can manipulate the prediction time manually
with the PredictionTime operator. The metadata field PredictionTimes is initially
empty. Therefore, it is necessary to use the PredictionTime operator before using any
operations on temporal attributes. The prediction time needs to be set to a time interval
that fits to the purpose of the query. Typically, the prediction time is aligned to the stream
time, i. e., the temporal advance of the data stream.

Listing 5.2 shows an example of the PredictionTime operator that sets the predic-
tion time of the stream elements aligned to the current stream time. In this case, the
PredictionTimes will only include one time interval. The parameters addToStart-
Value and addToEndValue are mandatory and define a time which is added to the start
timestamp of the stream time to calculate the start and end timestamp of the prediction
time. If the prediction time has to be aligned at the end timestamp of the stream time-
stamp (and not at the start timestamp), this can be set with the parameter alignAtEnd.
The granularity of the prediction time can differ from the granularity of the stream time

5.2 Temporal Implementation in the DSMS Odysseus 97

(see 4.3.3). The granularity, i. e., the base time unit, of the prediction can be defined with
the parameter predictionBaseTimeUnit.

In this example, the start timestamp of the prediction time will be exactly the start
timestamp of the stream time. The end timestamp of the prediction time will be 10
seconds in the future. The prediction time is aligned at the start timestamp of the stream
time and the granularity is set to seconds.

1 / / / S e t t h e p r e d i c t i o n t ime
2 P r e d i c t i o n T i m e ({
3 a d d T o S t a r t V a l u e = [0 , ’ seconds ’] ,
4 addToEndValue = [1 0 , ’ seconds ’] ,
5 a l i g n A t E n d = f a l s e ,
6 p r e d i c t i o n B a s e T i m e U n i t = ’ seconds ’
7 } , i n p u t)

Listing 5.2: Initial manipulation of the prediction time metadata

The following example shows a stream element before being manipulated with the
PredictionTime operator. The prediction time is not set yet, hence, it is initially empty
(the empty list is written as []).

some attribute stream time prediction time
42 [10,12) []

After flowing through the PredictionTime operator defined above in Listing 5.2, the
prediction time is set:

some attribute stream time prediction time
42 [10,12) [[10,20)]

All following temporal operations will use the prediction time to predict temporal
attributes to this time interval.

5.2.2 Temporal Attributes

Odysseus does not support temporal attributes (cf. 4.2) by default, but allows to define
arbitrary attribute types. In contrast to other types, a temporal type in fact represents
another, non-temporal type. For example, a temporal integer represents an integer at-
tribute. Therefore, the type system itself is not extended. For the standard operations,
e. g., functions in a map operator, a temporal integer is simply an integer. This is a cru-
cial detail in the implementation. When a function sees a temporal integer simply as

98 Architecture and Implementation

MAP

MAP

temporalize(otherValue)

otherValue > 42

id otherValue
integer integer

id otherValue
integer integer; temporal

id otherValue > 42
integer integer; temporal boolean; temporal

Figure 5.2: Temporal constraint to mark temporal attributes

an integer, the function does not need to be changed. For example, let the “+” function
accept only “integer” attributes. If a temporal integer would be a new type of its own,
the “+” function would need to be changed to accept this type. Using the non-temporal
types in the schema makes the “+” operation simply accept the temporal attribute. This
increases the reusability of the existing code and minimizes the changes to the system.

The information that an attribute is temporal is instead added with a so-called con-
straint, a simple key-value field which is part of the schema for each attribute. It is writ-
ten during the transformation process, starting with the initial temporalization process
and then added down the query graph according to the operations which include tem-
poral attributes. This can be seen in Figure 5.2. At the beginning (bottom), no attribute
is temporal. The initial MAP function temporalize adds the temporal constraint, i. e.,
marks this attribute to be a temporal attribute. During the translation process, all other
attributes that are (partly) made of this initial temporal attribute, are also marked as being
temporal. In this example, the “> 42” attribute is marked as being temporal, because it
is created from an expression that includes a temporal attribute (“otherValue”).

Translation Process

In Odysseus, the translation process from a logical to a physical query is performed
in multiple steps. The steps are defined in the TransformRuleFlowGroup, currently
consisting of 13 steps. At each step, all available transformation rules for that step are
called for the available operators and can, if they are executable at that point of the
transformation and for that query, work on the query, or, to be more precise, on one
operator of that query.

The temporal constraint is added in the INIT phase of the translation process from
a logical to a physical query and with that as the second step. The two rules TSet-
TemporalConstraintsOnMapAORule and TSetTemporalConstraintsOnAggrega-
tionAORule go through the logical schema of a single operator and check for each

5.2 Temporal Implementation in the DSMS Odysseus 99

expression or aggregation function if temporal attributes are involved. They detect tem-
poral attributes by their temporal constraints, which have been set by a temporalization
function or an earlier run of these two rules (the rules can be called multiple times for
a translation process, because there can be multiple map or aggregation operators in a
query). If an output attribute is temporal, the temporal constraint is set at that attribute
in the output schema of that operator.

Having the temporal constraints set in the INIT phase of the translation process, the
constraints are already set when the logical operators are translated to physical oper-
ators in the TRANSFORMATION step. This is important to choose the correct temporal
operators (e. g., the temporal map operator, see 5.2.6). For example, based on the pres-
ence of a temporal constraint, the transformation rule TTemporalMapAORule for the
temporal map operator is activated, which creates a temporal map operator instead of a
non-temporal one.

5.2.3 Representation of Temporal Types

Temporal types are represented by classes that implement the generic TemporalType
interface. A temporal type can be implemented with a certain function, for example,
a linearly moving geometry can be represented using the TemporalGeometry class,
which in turn uses a temporal function to calculate the geometries (e. g., points) at given
points in time. The main method of the interface is T getValue(PointInTime time),
which returns a value of the type for a given point in time.

When working with temporal attributes in the query, e. g., with a temporal map op-
eration, it is not feasible or useful to always create a temporal function for the result.
For example, for the distance between two moving points, it is not feasible to create a
function which represents the distance variations over time precisely. Instead, a simple
map from the points in time to the values of the results is used. This is the Gener-
icTemporalType which can be used for all types and is typically used for the results of
operations.

Listing 5.3 contains an example of the content of a GenericTemporalType. Because
every single value is stored, instead of having a function to calculate the values, it can
happen that more values are stored than necessary. For example, if the GenericTem-
poralType contains values for ten points in time. Then, a select operation reduces the
PredictionTimes to one point in time. While following operations will only work with
that one point in time, the other values are still stored in the object, but will never be used
again. To reduce the memory consumption of a query and also to avoid cluttering the
view of a GenericTemporalType when reading the stream as a user, the unnecessary
values can be removed. For this purpose, the GenericTemporalType class implements
the trim method, which removes all stored points in time which are not in the Predic-
tionTimes intervals. The trim method can be called by the trimTemporal function
within a map operator.

100 Architecture and Implementation

1 1491005925 = 9451 .13
2 1491005926 = 9435 .16
3 1491005927 = 9439 .46
4 1491005928 = 9421 .31
5 1491005929 = 9404 .76

Listing 5.3: Example content of an GenericTemporalType

PredictionTime Granularity

As described in Section 4.3.3, the prediction time granularity can differ from the gran-
ularity of the data stream itself to reduce computational costs. Internally, the points in
time that are used to calculate, store and access the values from temporal attributes are
always in the time unit of the data stream. For example, if the data stream is in millisec-
onds and the prediction time is in seconds, when accessing the values for second 1 and
2, the temporal attributes are asked for the values at the points in time 1 000 and 2 000.

Always calculating the timestamp in the stream time eases the process of working
with stream elements that have differing prediction time units. As the temporal func-
tions always work with the stream time unit, it is irrelevant, for example, if the predic-
tion time unit changes during the query. This could happen with a PredictionTime
operator (cf. 5.2.1) which can change the PredictionBaseTimeUnit or when merging
two PredictionTimes metadata fields (cf. 5.2.13).

In cases where a high prediction time granularity is needed, the stream time granular-
ity needs to be increased (e. g., to nanoseconds). A higher granularity for the prediction
time than for the stream time is not possible. Nevertheless, increasing the stream time
granularity typically does not add expensive side effects (as opposed to the prediction
time granularity). For the stream time, simply two timestamps are stored. If they rep-
resent milli- or nanoseconds does not change the processing of the stream. Hence, it
should not be a problem to increase the stream time granularity if needed.

5.2.4 Temporalization Functions

A non-temporal attribute can be made temporal by using a temporalization function.
This can be either an aggregation function or a MAP function, depending on whether
it needs a history from a window or not. For moving points there is, for example, the
ToAcceleratingTemporalPoint aggregation function. It is a simple example func-
tion, which uses the speed difference between the first half and second half of the win-
dow to calculate the acceleration of the moving object. It is possible to implement more
complex algorithms to predict the objects movement, nevertheless, this has not been the
focus of this work.

5.2 Temporal Implementation in the DSMS Odysseus 101

Other examples for temporalization functions are ToLinearTemporalPoint and To-
LinearMovingRegion. These can be directly used in the aggregation operator, as can
be seen in Listing 5.4. Here, the attribute SpatialPoint is made temporal using the
ToLinearTemporalPoint function and the result is written to the temp_Spatial-
Point attribute. The operation is grouped by the id, because the trajectories of different
moving objects should not be mixed up. This operator should be used with a window
before it to reduce the considered and stored stream elements, for example, to the last
five minutes.

1 / / / T e m p o r a l i z e a s p a t i a l p o i n t
2 t e m p o r a l i z e = AGGREGATION({
3 a g g r e g a t i o n s = [
4 [’ f u n c t i o n ’ = ’ To L inea r Tempo ra lPo i n t ’ , ’ i n p u t _ a t t r i b u t e s ’ = ’

S p a t i a l P o i n t ’ , ’ o u t p u t _ a t t r i b u t e s ’ = ’ t e m p _ S p a t i a l P o i n t ’]
5] ,
6 GROUP_BY = [’ id ’]
7 } , i n p u t)

Listing 5.4: Temporalization of a spatial point

Another option is the ToSplineTemporalPoint aggregation function to create a
temporal function using splines. Doing this, not only a straight line, but also a curve
can be predicted.

All these temporalization functions create temporal attributes. These are represented
by classes that implement the TemporalAttribute<T> class. For the mentioned tem-
poralization functions, the temporal functions are implemented in the following classes:

• AcceleratingMovingPointFunction

• LinearMovingPointFunction

• SplineMovingPointFunction

• LinearMovingRegionFunction

All of these implement TemporalAttribute<GeometryWrapper>. The class Ge-
ometryWrapper encapsulates the JTS Geometry class for Odysseus (cf. 2.4.1).

5.2.5 Temporal Attributes from External Source

The previously described methods to make an attribute temporal are based on the as-
sumption that the future trajectory of a moving object is not known in advance, but can
be estimated using the history and current movement of the object (cf. 5.2.4). Neverthe-
less, in some cases the future trajectory from an object is known with high accuracy, for

102 Architecture and Implementation

example, in cases where the moving object follows the suggested route of a navigation
system [SSBK12].

The approach of temporal attributes is generic enough to also use this idea to create
a temporal spatial point. As a proof-of-concept, the function FromTemporalGeoJson
reads a GeoJSON string with additional temporal information to create a temporal point.
The trajectory needs to be given as a LineString (cf. 2.4.1), and the timestamp of each
point needs to be in an array (in the same order as the points) in the properties part
of the feature in an array called times. Because there is no official specification on how
to insert the time domain into GeoJSON, this format follows the handling of times in
the TimeDimension add-on for the Leaflet library1. Listing 5.5 gives an example of a
GeoJSON string with temporal information. This could, for example, be the calculated
route of a navigation system with a timestamp at every point or a future trajectory based
on a bus schedule.

In this example, the timestamps of the locations are given in an absolute value in
UNIX time milliseconds (milliseconds since January 1st 1970 [Gro]). Conceptually, it
would also be possible to use relative times between the locations. Then, the prediction
could start at an arbitrary point in time and the relative times would be added up to the
start timestamp of the trajectory. This would make it possible to reuse such a trajectory
without the need to change the timestamps.

1 https://github.com/socib/Leaflet.TimeDimension#ltimedimensionlayergeojson

https://github.com/socib/Leaflet.TimeDimension#ltimedimensionlayergeojson

5.2 Temporal Implementation in the DSMS Odysseus 103

1 {
2 " t y p e " : " F e a t u r e C o l l e c t i o n " ,
3 " f e a t u r e s " : [
4 {
5 " t y p e " : " F e a t u r e " ,
6 " p r o p e r t i e s " : {
7 " t i m e s " : [
8 "1534255083000" ,
9 "1534255093000" ,

10 "1534255003000"
11]
12 } ,
13 " geomet ry " : {
14 " t y p e " : " L i n e S t r i n g " ,
15 " c o o r d i n a t e s " : [
16 [
17 8 .188934326171875 ,
18 53.48722843308561
19] ,
20 [
21 8 .206787109375 ,
22 53.55581022359457
23] ,
24 [
25 8 .177947998046875 ,
26 53.63161060657857
27]
28]
29 }
30 }
31]
32 }

Listing 5.5: GeoJSON with additional temporal information

The movement in-between, as well as before and after the known locations could,
similar to the approaches without previously known trajectories, be calculated using dif-
ferent interpolation and extrapolation methods. The implementation in the FromTempo-
ralGeoJson class creates a TrajectoryMovingPointFunction which uses a linear
interpolation, i. e., a straight movement from point to point with constant speed. The
resulting temporal point can be used just as a temporal point created from a stream of
updating locations from a moving object. Currently, the implementation sticks to the
definition from Leaflet and always interprets the timestamps as absolute timestamps,
hence, relative times between the locations are not supported.

104 Architecture and Implementation

1 MAP({
2 e x p r e s s i o n s = [[’ FromTemporalGeoJson (geoJSON) ’ , ’ t empPoin t ’]]
3 } , i n p u t)

Listing 5.6: A map operator converting a GeoJSON with timestamps (see Listing 5.5)
to a temporal point

The function can be used in a map operator, which will output a temporal point. An
example can be seen in Listing 5.6 where the incoming data stream element has an
attribute geoJSON containing an appropriate GeoJSON string. The temporal point will
be in the tempPoint attribute of the output stream element. When the trajectory updates,
the temporal point can be re-created with a new GeoJSON string flowing into the system.
Potentially, other formats or data sources are possible to receive timestamped trajectories
for moving objects.

5.2.6 Temporal Map Operator

The map operator applies given functions on attributes of a stream element. The stan-
dard relational map operator is replaced by the TemporalRelationalMapPO if at least
one expression works on a temporal attribute. The temporal map operator extends the
standard relational map operator but overrides the init method. The difference is that
for each expression with at least one temporal attribute, a temporal expression is created.

A TemporalRelationalExpression in turn extends the RelationalExpression
so that for each point in the PredictionTimes, the expression is evaluated with the
non-temporal values of the attribute. This process is shown in Algorithm 3. The result
is always a GenericTemporalType (created in Line 1 and filled in Line 5) with a non-
temporal value for each point in the prediction time. The non-temporal stream element is
created in Line 3 by solving the temporal function for the given point in time time. The
expression is evaluated with the non-temporal stream element in Line 4 with the evaluate
method of the super class RelationalExpression. This way, all existing expressions
still work with temporal attributes.

The following operators in the query graph consider temporal attributes as well and
would also use the temporal version of the operator. Using this approach, the user does
not need to manually decide for each operator or expression if it is a temporal or non-
temporal one, but the translation process in the DSMS does this automatically.

Again, the temporal operator is used automatically, so that the user can define the op-
erator as if it would be non-temporal, as can be seen in Listing 5.7. Here, the orthodromic
distance between two temporal points is calculated. The result in turn is also temporal.
At this point in the query, the prediction time should already be set with an Prediction-
Time operator. If this is not done, the prediction time interval will be empty and hence,

5.2 Temporal Implementation in the DSMS Odysseus 105

Algorithm 3: Evaluation of a temporal expression
input: streamElement T

1 GenericTemporalType result = new GenericTemporalType();
2 foreach PointInTime time in streamElement.getPredictionTimes () do
3 Tuple nonTemporalTuple = createNonTemporalTuple (streamElement,

time);
4 singleResult = super.evaluate (nonTemporalTuple);
5 result.setValue (time, singleResult);

6 return result;

no result will be calculated (which is semantically correct but probably useless to the
user). The result of the operation is written to the temporal attribute “tdistance” and is a
temporal double value.

1 / / / C a l c u l a t e t h e d i s t a n c e f o r t h e p r e d i c t i o n t ime
2 c a l c u l a t e D i s t a n c e = MAP({
3 e x p r e s s i o n s = [
4 [’ O r t h o d r o m i c D i s t a n c e (c e n t e r _ t e m p _ S p a t i a l P o i n t , t e m p _ S p a t i a l P o i n t

) ’ , ’ t d i s t a n c e ’]
5] ,
6 } , i n p u t)

Listing 5.7: Map operation on a temporal attribute

Loosing Information

The result of a temporal map operation is always a GenericTemporalType, i. e., a map
from timestamps to values. Even if the temporal attribute on which the expression is
applied is represented by a function. Doing this, information is lost after the expression.
For example, the function would be able to calculate values with a higher granularity
or at different points in time than defined by the prediction time intervals. The Gener-
icTemporalType only includes the values for the timestamps in the prediction time
intervals. Nevertheless, the information that is lost is actually not needed later in the
query. The granularity is typically not changed within the query and the prediction time
intervals should not be manipulated manually after a temporal operation (cf. 4.3.2).

5.2.7 Combining Temporal Expressions

The way the temporal functions and operations have been implemented makes it possible
to combine the functions. For example, the result of a “+” operation on two temporal

106 Architecture and Implementation

attributes can be the input of a “≤” operation, which in turn results in a temporal Boolean,
which again can be the input for another temporal operation, and so on.

An example is shown in Listing 5.8 and Listing 5.9. Both queries have the same re-
sult. “x1” and “x2” are attributes with temporal integers. Therefore, the TTemporalMa-
pAORule is activated and translates the relational expression(s) to temporal relational
expressions. The query in Listing 5.8 has multiple consecutive expressions, which use
the previous result as the new input. The part x1 + x2 is solved to a temporal integer,
which is the input for the part map1 > 42. This part is solved to a temporal Boolean
result. The non-temporal negation operation “!” can be applied to this temporal Boolean
and negates each Boolean value at every point in time in the prediction time interval.
Thus, this example shows that temporal attributes can be used in expressions without the
need to explicitly declare the operations temporal or use different operations for temporal
attributes.

1 map1 = MAP({
2 e x p r e s s i o n s = [[’ x1 + x2 ’ , ’map1 ’]]
3 } , i n p u t)
4

5 map2 = MAP({
6 e x p r e s s i o n s = [[’ map1 > 42 ’ , ’map2 ’]]
7 } , map1)
8

9 map3 = MAP({
10 e x p r e s s i o n s = [[’ ! map2 ’ , ’map3 ’]]
11 } , map2)

Listing 5.8: Multiple temporal expressions in multiple map operators

This is even possible without splitting the parts of the expression into multiple map
operators. The same expression with the same result is shown in Listing 5.9. Here, the
intermediate results are not explicitly solved to temporal attributes. Nevertheless, due
to the implementation shown in Algorithm 3, the result of the expression is the same.
This is possible as long as all expressions need non-temporal values and are therefore
actually calculated on non-temporal instances of the temporal attributes. An example of
an expression that cannot be combined is given a few sections later in Section 5.2.12.

1 MAP({
2 e x p r e s s i o n s = [’ ! ((x1 + x2) > 42) ’]
3 } , i n p u t)

Listing 5.9: Multiple temporal expressions in one map operator

5.2 Temporal Implementation in the DSMS Odysseus 107

5.2.8 Temporal Select Operator

The temporal select operator works similarly to the temporal map operator (see 5.2.6). If
the predicate of the operator contains at least one temporal attribute, the predicate (which
is an expression with a Boolean return value) is changed to a TemporalRelational-
Expression. The temporal select operator differs from the non-temporal counterpart
in the way that it does not expect a Boolean result, but a temporal type with a Boolean
return value for every prediction point in time, typically a GenericTemporalType.

The temporal select operator takes all values where the expression returns true and
creates the PredictionTimes from it. The new prediction times are a subset (possibly
equal) of the prediction times of the incoming stream element. If the expression does
not return true for any point in time in the prediction times, the stream element is not
send to the output, which is just like the behavior of the non-temporal select operator.

Listing 5.10 gives an example on how the temporal select operator can be used in
PQL. In this case, the operator is used just after the previously shown temporal map
operator in Listing 5.7. The predicate works on a temporal attribute (“tdistance”) and
manipulates the prediction time intervals in the metadata of the stream elements.

1 d i s t a n c e S e l e c t = SELECT({
2 p r e d i c a t e = ’ t d i s t a n c e < 5000 ’
3 } , c a l c u l a t e D i s t a n c e)

Listing 5.10: Select operation on a temporal attribute

5.2.9 Temporal Aggregation Functions

Aggregation functions, such as a sum or an average, can also be done over temporal
attributes (cf. 4.3.5). In Odysseus, aggregation operations can be executed using the
Aggregation operator. The operator handles the stream elements and has an interface
for aggregation functions. These functions have three important methods: addNew to
add a new stream element to the function, removeOutdated to let the function know
which elements need to be removed from the result and evaluate to get the current
result.

When using non-temporal aggregations over a temporal attribute, a wrapper is needed
which splits the temporal stream elements into a set of non-temporal stream elements,
which can be used in the aggregation functions. During the translation process, the
TTemporalAggregationAORule is activated if the attribute of an aggregation function
is temporal. In that case, the normal aggregation function is interchanged with a temporal
aggregation function which takes the non-temporal function as an argument.

108 Architecture and Implementation

The TemporalIncrementalAggregationFunction2 acts as a wrapper around a
non-temporal aggregation function. To do this, it uses a number of copies of an ag-
gregation function, one for each point in the prediction time intervals of the currently
valid (in the sense of the stream time) stream elements.

Adding New Stream Elements

The algorithm for adding a new temporal stream element to an aggregation function can
be seen in Algorithm 4. When a new stream element is added to the temporal aggregation
function via the addNew(T newElement) method, where T stands for a stream element
with a PredictionTimes metadata field, the prediction time intervals Prediction-
Times are read from the metadata of the given stream element (Line 1). Then, for each
point in the prediction time, the non-temporal stream element is created by calculating
the temporal functions for all temporal attributes (Line 2). For each point in the pre-
diction time an aggregation function exists, i. e., a bare copy of the original aggregation
function is created for each point in time. This function is retrieved in Line 3 and filled
with the new non-temporal tuple in Line 4. To remove the non-temporal elements from
the aggregations later on, it needs to be known which non-temporal elements belong to
which temporal element. This is done in Line 5.

Algorithm 4: Adding a new temporal stream element to the non-temporal ag-
gregate functions

input: newElement T

1 foreach PointInTime time in newElement.getPredictionTimes () do
2 Tuple nonTemporalTuple = createNonTemporalTuple (newElement,

time);
3 AggregationFunction agg = getAggregationFunctionForTime (time);
4 agg.addNewTuple (nonTemporalTuple);
5 storeNonTemporalTuple (newElement, nonTemporalTuple);

Removing Outdated Stream Elements

When a stream element is outdated, the aggregation operator calls the removeOutdated
method, which is shown in Algorithm 5. Removing the stream elements from the ag-
gregations does the exact opposite of adding them: for the temporal stream element that
needs to be removed, all non-temporal elements are retrieved which belong to this tem-
poral stream element (Line 2). For each point in the prediction time of the temporal
stream element, a non-temporal stream element exists in this map. The non-temporal

2 Most aggregation functions are implemented in an incremental manner to reduce the computational load
in contrast to non-incremental algorithms.

5.2 Temporal Implementation in the DSMS Odysseus 109

element is then removed from the according non-temporal aggregation function for this
point in the prediction time (Line 6).

When the prediction times change over time so that some points in time are no longer
covered by any valid stream element, the old aggregation functions for these points in
time can be removed. This is done in Line 7.

Algorithm 5: Removing an outdated temporal stream element from the non-
temporal aggregate functions

input: outdatedElement T

1 /* Counterpart of the storeNonTemporalTuple method in
Algorithm 4 */

2 Map<PointInTime, T> nonTemporalElements = getNonTemporalElements
(outdatedElement);

3 foreach PointInTime time in outdatedElement.getPredictionTimes () do
4 T elementToRemove = nonTemporalElements.get (time);
5 AggregationFunction agg = getAggregationFunctionForTime (time);
6 agg.removeOutdated (elementToRemove);

7 removeOutdatedFunctions ();

Evaluate Aggregation Functions

When the aggregation operator needs a new result for a certain point in time, it calls the
evaluate method of the aggregation functions, which is shown in Algorithm 6. The
result will be a GenericTemporalType (Line 1) (cf. 5.2.3), i. e., for each point in time
in the prediction temporal dimension a result is stored. The getAllPredictionTimes
method returns the current prediction time intervals, which can be retrieved by merging
all the temporal stream elements which are currently within the aggregation function.
Then, for each prediction point in time, the correct aggregation function is retrieved
(Line 3), calculates the current result (Line 4) and puts the result into the result object
(Line 5).

Algorithm 6: Evaluate a temporal aggregation function
input: streamTime PointInTime

1 GenericTemporalType result = new GenericTemporalType();
2 foreach PointInTime time in getAllPredictionTimes () do
3 AggregationFunction agg = getAggregationFunctionForTime (time);
4 Object result = agg.evaluate (streamTime);
5 result.setValue (time, result);

6 return result;

110 Architecture and Implementation

Metadata Merging

To calculate the result of the aggregation, the prediction time intervals need to be known
(cf. Line 2). These can be calculated by merging the prediction time intervals of all
temporal stream elements currently in the temporal aggregation function. Section 4.3.5
describes that a union merge function as well as an intersection merge function would be
possible. In either case, the calculation of the merge function within the TemporalIn-
crementalAggregationFunction class does not affect the metadata of the resulting
stream element, it is only used to calculate the results for the correct points in time.
Hence, it would not change the result when doing a union merge within the Temporal-
IncrementalAggregationFunction but an intersection merge for the Prediction-
Times in the resulting stream element, as the result of the union always includes the
result of the intersection. Nevertheless, to prevent unnecessary computations, the merge
function should be the same.

5.2.10 Temporal Join Operator

Similar to the (temporal) select operator (cf. 5.2.8), the (temporal) join operator works
with predicates, which can be temporal, i. e., contain temporal attributes. The predicates
are evaluated by the SweepAreas that the join operator JoinTIPO uses to manage the
stream elements. As the whole stream element management and the predicate evaluation
happens in the SweepAreas, the join operator itself does not need to be changed or
extended when working with temporal predicates. Instead, the predicate needs to be
exchanged to be a temporal predicate and the SweepAreas need to be able to work with
temporal predicates.

The TTemporalJoinAORule overrides the standard transformation rule for the Join-
TIPO and is activated if the predicate contains at least one temporal attribute. In that
case, the join predicate is transformed to a temporal predicate in the setJoinPredi-
cate method, similar to the temporal select transformation rule (cf. 5.2.8).

For the SweepAreas, the TemporalJoinTISweepArea implementation is used. It ex-
tends the standard JoinTISweepArea and changes the way the evaluation of the predi-
cate is done so that it can handle the temporal Boolean result of the temporal predicate.
The method doTemporalEvaluation evaluates the predicate, constructs the correct
time intervals (just like the temporal select) and creates an output stream element with
the correct prediction time intervals. This is done by only using the points in time in the
prediction time interval where the temporal predicate returned true.

5.2.11 Temporal Unnest Operator

A nested stream element is a stream element within an attribute of a stream element.
This attribute can be temporal, too. When unnesting a stream element, the operator takes

5.2 Temporal Implementation in the DSMS Odysseus 111

the nested stream elements from the attribute and creates a new stream element for each
nested one. To unnest a temporal attribute, the TemporalRelationalUnnestPO creates
a non-temporal stream element for each point in time in the prediction time intervals and
then does the normal, non-temporal unnest operation.

If, for example, a stream element with a temporal nested attribute has three nested
stream elements in it and its prediction time interval contains two points in time, 3 ·2 = 6
stream elements are created. The operator can be used just as the non-temporal operator,
as can be seen in Listing 5.11.

1 / / / Unnes t t h e t u p l e
2 u n n e s t T e m p o r a l = UNNEST({
3 a t t r i b u t e = ’ t e m p o r a l N e s t e d A t t r i b u t e ’
4 } , i n p u t)

Listing 5.11: Unnest operation on a temporal attribute

5.2.12 Direct Temporal Functions

The moving object algebra describes both non-temporal functions, which are lifted to
temporal functions, and direct temporal functions (cf. 3.3.1). The non-temporal func-
tions are lifted by the temporal variants of the non-temporal operators as described in
Sections 5.2.6 and 5.2.8. The direct temporal functions can work on temporal types
without the need for a special operator.

Direct temporal functions, for example the “speed” function, implement the Tempo-
ralFunction interface. The translation rules and the temporal operators, such as the
TemporalRelationalMapPO, check if a function is a temporal function. If so, the pro-
cess of calculating a non-temporal result for each point in the prediction time is omitted
and the function works directly on the temporal attribute. The SpeedFunction is an
example for a temporal function. For each point in the prediction time it calculates the
speed of a moving geometry. The result is a temporal real value, just as defined in the
moving object algebra: speed: tpoint → treal3 [GBE+00].

Listing 5.12 gives an example on how to use a temporal function. It can be used simi-
larly to a non-temporal function in a map operator. It takes a temporal geometry, in this
case a temporal point, and the metadata which includes the prediction time. This is nec-
essary due to the architecture of functions in Odysseus, which can only access attributes
(including the metadata) that are explicitly given to them. Therefore, the metadata at-
tribute PredictionTimes has to be put there as a second attribute of the function. The
result is a temporal real value, here written to the output attribute “tspeed”.

3 The original moving object algebra uses the terms “mpoint” and “mreal” for “moving” instead of “tem-
poral”, which is just another term for the same idea.

112 Architecture and Implementation

1 speed = MAP({
2 e x p r e s s i o n s = [
3 [’ speed (t e m p _ S p a t i a l P o i n t , P r e d i c t i o n T i m e s) ’ , ’ t s p e e d ’]
4]
5 } , i n p u t)

Listing 5.12: Speed function on a temporal point

Other implemented functions that work directly on temporal attributes are AtMin and
AtMax, which calculate the minimum or maximum value(s) of a temporal number (inte-
ger, double, . . .). The TrajectoryFunction consumes a temporal point attribute and
converts it to a non-temporal spatial trajectory, i. e., a LineString. To be more precise,
a list of LineStrings is created, because the PredictionTimes can potentially have
multiple time intervals. The temporal information is lost during this process, but other
applications that need non-temporal data types can work with the output. This func-
tion is an example of a class that implements the RemoveTemporalFunction marker
interface. Functions that implement this marker take a temporal attribute and create a
non-temporal attribute. Odysseus needs to know this to update the schema and choose
the correct way to process the respective attribute.

The direct temporal function can be combined with other functions arbitrarily as long
as the respective outputs fit together. For example, a direct temporal function needs a
temporal attribute as its input. Internally, allowing such mixed expressions with temporal
and non-temporal functions is more complex than expressions that are not mixed. The
logic for these expressions is implemented mainly in the MixedTemporalRelational-
Expression class. Internally, it builds a tree from the expression and solves each part
of the expression individually to guarantee that each function has the correct input, i. e.,
temporal or non-temporal. Mixed expressions can be used in all standard operators that
work with expressions, i. e., the map, select and join operator. Listing 5.13 shows an
example for a mixed expression. The upper two map operators can be combined into
one map operator with the same output.

5.2 Temporal Implementation in the DSMS Odysseus 113

1

2 / / S e p a r a t e d
3 c a l c T r a j = MAP({
4 e x p r e s s i o n s = [
5 [’ T r a j e c t o r y (t e m p S p a t i a l P o i n t , P r e d i c t i o n T i m e s) ’ , ’ t r a j ’]
6] ,
7 k e e p i n p u t = t r u e
8 } , predTime)
9

10 MAP({
11 e x p r e s s i o n s = [[’ S p a t i a l L e n g t h (t r a j) ’ , ’ l en ’]] ,
12 k e e p i n p u t = t r u e
13 } , c a l c T r a j)
14

15 / / Combined i n a mixed e x p r e s s i o n
16 c a l c T r a j = MAP({
17 e x p r e s s i o n s = [
18 [’ S p a t i a l L e n g t h (T r a j e c t o r y (t e m p S p a t i a l P o i n t , P r e d i c t i o n T i m e s)) ’ , ’

l en ’]
19] ,
20 k e e p i n p u t = t r u e
21 } , predTime)

Listing 5.13: Calculating the traveled distance of a temporal point in a mixed
expression

5.2.13 PredictionTimes Metadata Merging

When multiple stream elements are combined, e. g., through a join or aggregation oper-
ation, the PredictionTimes metadata needs to be merged (cf. 4.3.5 and 4.3.6). The
merge functions are implemented in the classes PredictionTimesIntersection-
MetadataMergeFunction and PredictionTimesUnionMetadataMergeFunction.
When merging the prediction time intervals, the granularity of the prediction time needs
to be considered (cf. 4.3.3 and 5.2.3). In the case that the granularity of the two input
metadata elements differ, the coarser time unit is used. That is because the temporal
attributes with the less granular time unit possibly do not have the values for the points
in time of the more granular time unit. This problem is depicted in Figure 5.3.

The first stream element (“in 1”) has a less granular time unit while the second stream
element has a more granular time unit. For the result, the less granular time unit is
chosen. The intersection is actually an intersection of two sets with points in time in
them. Only those points in time that are in both sets are used.

114 Architecture and Implementation

in 1

in 2

result

t

Figure 5.3: Merging two time intervals with different granularities

5.2.14 Temporal Trust Value

The temporal trust (cf. 4.5) value is implemented as a meta attribute in the Temporal-
Trust class. It contains a GenericTemporalType which in turn contains values of the
type ITrust, a meta attribute that represents the trust as a double value. The Tempo-
ralTrustMergeFunction is used to merge two temporal trust meta attributes and uses
the minimal value for each point in time.

The initial trust values come from the temporal attributes themselves. Each temporal
type has a trust function which returns a trust for a given point in time. The interface for
temporal types, TemporalType<T>, has a method getTrust(PointInTime)which re-
turns the trust as a double value. This mechanism is independent from the meta attribute
TemporalTrust, but can and currently is used for the meta attribute.

In the PredictionTime operator, which manipulates the PredictionTimes inter-
vals, the trust of the temporal attributes in a stream element can be retrieved via the
getTrust(PointInTime) method. The smallest trust value for each point in the new
prediction time is written to the meta attribute TemporalTrust if this is used. In other
words: for each point in the prediction time, the operator iterates over all attributes in
the stream element and picks the lowest trust. This value is used for the temporal trust
value for the respective prediction time.

The trust function within a temporal attribute can be any function that implements the
TemporalAttribute<Double> interface. For example, the proof-of-concept tempor-
alization function ToLinearTemporalPoint that creates a TemporalGeometry uses a
spline function to represent the trust. The trust is very high (1.0) at the point in time
when the location of the moving object is known and approaches a low trust (0.0) when
the next known location is more than one point in time away. Of course, way more
sophisticated estimations of the trust would be possible.

5.2 Temporal Implementation in the DSMS Odysseus 115

With a temporal expression, a new temporal attribute can be created. For example,
using a map operator, two temporal integers can be multiplied. When doing this, the
result is again a temporal integer, which has its own temporal function to represent the
trust. Again, the minimum trust of all temporal input attributes can be used. This is
implemented in the TemporalRelationalExpression class.

The TemporalTrust metadata can be activated when the PredictionTimes meta-
data is used. The usage can, for example, be defined in an access operator with the
metaAttribute option. A typical definition for the metadata could be metaattribute
= [’TimeInterval’, ’PredictionTimes’, ’TemporalTrust’].

The following table shows an example stream with these metadata attributes:

movement
(tpoint)

stream
time

prediction
times

temporal
trust

temporal point 1 [1,11) [[1,3)] 1 = 1.0, 2=0.5
temporal point 2 [2,12) [[2,4)] 2 = 1.0, 3=0.8
temporal point 3 [5,15) [[10,14)] 10 = 0.7, 11=0.6, 12=0.6, 13=0.4

As can be seen, for each point in the prediction time intervals a trust value is in the
temporal trust meta attribute. In this example, the trust is higher (closer to 1.0), for times
where the prediction time is close to the stream time, which is because in this example
the newest known location of the temporal point is at the start of the stream time. From
there, the prediction gets less accurate and therefore less trustworthy. The temporal trust
value represents this loss in accuracy by reducing the trust value over time.

How the trust values are merged can be seen in the next example. Here, the first stream
element is joined with the two other data stream elements. The results of the join can be
seen in this table:

movement 1
(tpoint)

movement 2
(tpoint)

stream
time

prediction
times

temporal
trust

temporal point 1 temporal point 2 [2,11) [[2,3)] 2=0.5
temporal point 1 temporal point 3 [5,11) ∅ ∅

The stream time intervals as well as the prediction time intervals are merged by inter-
secting the stream time intervals of the two input stream elements. For the first result,
the prediction times include one point in time. For this point in time, the lowest value
of the two input stream elements is used for the trust. For point in time “2”, the values
“0.5” and “1.0” are in the input elements, hence, the result is “0.5”. For the second result
element, the prediction time intervals are not overlapping, wherefore the prediction time
intervals are empty and no trust value is or needs to be calculated.

116 Architecture and Implementation

5.3 Element Join

Using an element window in general causes blocking behavior with the interval ap-
proach, wherefore the element join takes the element window logic and puts it into the
join operator itself, as explained in Section 4.7.1. Doing this, the blocking behavior
can be omitted. To implement this extension, the standard join implementation class
JoinTIPO (“join time interval physical operator”) had to be changed.

5.3.1 Main Parts of the JoinTIPO

The main part of the JoinTIPO are the SweepAreas, one for each input data stream.
They manage the data stream elements in the windows, remove old data and are queried
for the relevant elements for a join operation with a certain stream element.

When a new stream element arrives at the process_next(T newElement, int
port) method, the SweepArea of the other port is cleaned up by purging all elements
which cannot overlap with this all all following stream elements. Next, the SweepArea
of the other port is queried for all temporally overlapping elements. These elements are
joined with the new element. For each pair of data stream elements, a dataMerge func-
tion merges the data and a metadataMerge function merges the metadata. The resulting
new stream element is transferred to the following operators in the operator graph.

5.3.2 The Element Window

After querying the according SweepArea for the elements to join the new stream element
with, the number of results needs to be reduced to the newest n elements with n being
the size of the element window of that input port. Within the processOutput method,
this is done with the reduceToNewestNElementsmethod. The reduced set of qualified
join elements is then joined as in the normal (non-element-window) join.

Nevertheless, the metadata of the output elements need to be changed to infinity to
state that they are not part of a window. If they have been part of a window before,
the window semantics is now no longer correct, wherefore removing the end timestamp
avoids confusion and incorrect behavior of following operators (cf. 4.7.1).

The algorithm from Sections 4.7.2 and 4.7.3 to remove elements that are no longer
needed from the SweepAreas as early as possible is implemented in the method tryEar-
lyCleanup. This method is called after each normal purging of all elements which are
too old and also in the processPunctuationmethod. This is especially important as it
implements the idea that the cleanup can be improved if the join is in fact a self-join with
a route operator, which sends a punctuation to all other ports when an element arrives.
The tryEarlyCleanup itself does simply remove all elements until only the n newest
elements are left for that SweepArea.

5.3 Element Join 117

The size of the element windows in the join operator can be set with the parameters
elementSizePort0 and elementSizePort1. It is possible to only use the element
window on one input port or on both input ports with different sizes. Listing 5.14 gives
an example for a join operator which uses an element window with different sizes for
each input port.

1 JOIN ({
2 e l e m e n t s i z e p o r t 0 = 42 ,
3 e l e m e n t s i z e p o r t 1 = 1
4 } , l e f t , r i g h t)

Listing 5.14: Join operator using element windows for both input ports

5.3.3 Groups

When using an element window, partitions are a helpful concept (cf. 4.7.4). Using
partitions, the count for the number of elements in the window is not done over the
whole stream, but for each partition or group. That way, it is, for example, possi-
ble to keep the newest element of each group. The partitioning can be done using a
list of attributes for each input port. For each resulting group, a SweepArea is used to
keep the elements of the group. The SweepAreas can be stored in and accessed with a
map: List<Map<Object, ITimeIntervalSweepArea<T>>> groups. The list con-
tains exactly two maps, one for each input port. The map in turn points from a group
identifier (Object) to an ITimeIntervalSweepArea.

When inserting a new element into a SweepArea, the correct SweepArea for the group
needs to be chosen. The method getSweepArea returns the correct SweepArea for the
given group or creates a new one if no fitting SweepArea exists. If no groups are defined
by the user, a standard group for each input port is used, resulting in exactly one group
for each of the two input ports. The other operations, such as removing old elements or
querying for elements to join with, iterate over all groups of the respective input port.

The user can define the grouping keys with the parameters group_by_port_0 and
group_by_port_1. An example is shown in Listing 5.15. For the left port (0), two
attributes are used to create the groups, for the right port (1), only one attribute is used.
When multiple attributes are used, all combinations of the input data of these attributes
form a separate group.

118 Architecture and Implementation

1 JOIN ({
2 e l e m e n t s i z e p o r t 0 = 42 ,
3 e l e m e n t s i z e p o r t 1 = 1 ,
4 g r o u p _ b y _ p o r t _ 0 = [’ i d _ l e f t ’ , ’ o t h e r A t t r i b u t e ’] ,
5 g r o u p _ b y _ p o r t _ 1 = [’ i d _ r i g h t ’] ,
6 } , l e f t , r i g h t)

Listing 5.15: Join operator using element windows and partitioning for both input
ports

Using these extensions to the join operator, the scenario from Section 4.6 can be solved
without a blocking behavior. The newest location updates from each moving object can
be used for the join by using an element size of 1 and the identification numbers of the
moving objects as grouping attributes.

5.4 Spatial Operations

The temporal extensions with the bitemporal data streams described above and in the
previous chapters do not require spatial operations. Nevertheless, spatial operations can
be used with this approach and are important for moving object data streams. Odysseus
already has spatial operations built in. These operations are lifted to the temporal domain
just as all other existing non-temporal operations (see 5.2).

The spatial implementations in Odysseus that largely already existed before this work
can be found in the bundle de.uniol.inf.is.odysseus.spatial. The spatial func-
tions such as SpatialWithin and FromWKT as well as the spatial data types such as
SpatialPoint are based on the JTS Topology Suite4. This standard Java library han-
dles most spatial operations in Odysseus.

The spatial operations are map operations, i. e., they are not used with a special op-
erator, but can be used in expressions. Hence, they are handled just like every other
expression when using it with a prediction time dimension (see 5.2.6).

For some additional spatial calculations, the GeoTools library is used5 (which inter-
nally also uses the JTS). For example, it offers a Coordinate Reference System (CRS)
library, so that different European Petroleum Survey Group Geodesy (EPSG) numbers
can be used in Odysseus. The standard CRS used is “urn:ogc:def:crs:epsg:7.1:4326”
(“EPSG:4326”), i. e., WGS 84.

Listing 5.16 gives an example map operator that uses the SpatialWithin func-
tion. For each incoming stream element it calculates if the spatial point in the attribute
“someSpatialPoint” is within the area in the attribute “area”.

4 https://github.com/locationtech/jts
5 http://www.geotools.org/

https://github.com/locationtech/jts
http://www.geotools.org/

5.5 Spatio-Temporal Filtering 119

1 MAP({
2 e x p r e s s i o n s = [
3 [’ S p a t i a l W i t h i n (s o m e S p a t i a l P o i n t , a r e a) ’ , ’ i s I n s i d e ’]
4] ,
5 k e e p i n p u t = t r u e
6 } , i n p u t)

Listing 5.16: An expression with a spatial function in a map operator

All spatial objects are represented by the GeometryWrapper class, which holds a JTS
geometry and adds some additional, Odysseus specific interfaces. Hence, there is no
extra class for spatial points, regions and so on, but only one class that represents all
geometries.

5.5 Spatio-Temporal Filtering

The filter and refine concept is described in Section 4.8. An advantage of the concept is
that it can be mainly implemented using existing DSMS functions. In this section, the
implementation of the different filtering approaches is described.

5.5.1 Approximate Distance

The steps of this filtering approach are mainly the calculation of the possibly traveled
distance of both involved moving objects, the calculation of the current distance between
these objects and then the filtering using these results.

Maximum Traveled Distance

The approximation of the maximum traveled distance can be purely expressed with an
expression, using the prediction time to which the moving object will be predicted, the
record time at which the known location has been recorded and the maximum speed of
the moving objects. Additionally, the time units of the stream and the prediction times
need to be known and converted to seconds (if the maximum speed is given in meters per
second). Even though this can be calculated with an expression without new functions,
the term is quite cluttered and difficult to read. The following expression could, for
example, be used for this purpose:

120 Architecture and Implementation

1 ((toLong (e l emen tAt (a s L i s t (e l emen tAt (P r e d i c t i o n T i m e s , 0)) , 1)) * ${
SECONDS_TO_MS})

2 − r eco rdT ime)
3 * (${MAX_SPEED} / ${MS_TO_SECONDS})

Listing 5.17: An expression to calculate the maximum traveled distance of a moving
object

As can be seen in Listing 5.17, the expression is cluttered due to many Odysseus-
internal functions which are necessary to interpret the values in the correct way. Basi-
cally, in Line 1, the end timestamp of the first prediction time interval is read (assuming
that the prediction time only contains one time interval). It is multiplied by 1000 (vari-
able SECONDS_TO_MS) to convert it from seconds to milliseconds (because the stream
time is in milliseconds and the prediction time in seconds, in this case). This value is
subtracted by the time when the last location was recorded (Line 2). To simplify this
expression, it is assumed that the prediction time is always bigger than the record time.
Now we have the temporal distance between the last known location and the predicted
location. This is multiplied by the maximum possible speed of the object (Line 3) di-
vided by 1000 (variable MS_TO_SECONDS) to convert the result into meters.

To simplify this process for the user, a simpler function is implemented, which au-
tomatically handles cases with, for example, multiple prediction time intervals, differ-
ent time units and cases where the prediction is before the record time. The function
CalculateMaxTraveledDistance expects three attributes: (1) the prediction times
metadata, (2) the record time and (3) the maximum possible speed of the moving object.
Then, the function can be applied as in Listing 5.18:

1 C a l c u l a t e M a x T r a v e l e d D i s t a n c e (P r e d i c t i o n T i m e s , recordTime , ${MAX_SPEED
})

Listing 5.18: Using a function in an expression to calculate the maximum traveled
distance of a moving object

Distance Between Moving Objects

The distance calculation is the next step of this approach. Distance calculations on the
surface of the earth are more computationally expensive than a distance calculation in the
two-dimensional Euclidean space. The costs of such a calculation depends on the needed
accuracy. While the Vincenty’s formulae [Vin75, Kar13] for distance calculations on an
ellipsoid and the haversine formula or the spherical law of cosines [HRH+09] for spher-
ical distance calculations need a number of trigonometric functions, the Euclidean dis-

5.5 Spatio-Temporal Filtering 121

tance calculation is less accurate on the surface on the earth, but needs less trigonometric
functions.

Avoiding the more expensive calculations can improve the performance of the filtering
approach. Therefore, in this step, an approximate distance calculation can be sufficient;
the exact distance can later be calculated in the refinement step for the candidate objects.
If an exact calculation for the distance is already desired in this step, it can also be applied
using the standard spatial distance calculation function OrthodromicDistance.

For the approximate distance, the new function ApproximateDistance can be ap-
plied. It uses the Pythagoras formula to calculate the distance on a equirectangular pro-
jection, i. e., all rectangles on the earth map have the same size6. It is less accurate
than a spherical or orthodromic distance calculation, but less computationally expen-
sive [HHD12]. The accuracy differs depending on the location, distance and direction of
the points. Figures 5.4 visualizes the relative error for the approximate distance in com-
parison to the haversine distance calculation for a scenario with distances up to about
5 km at the 53rd parallel north (one point is exactly at (53,0), the other at the respective
coordinates of the x and y axis). The graph has been re-created and evaluated roughly
based on the code from [Sal14]. Figure 7.3 in the appendix shows the absolute error for
the same configuration.

The error, relative or absolute, is depicted by the colors. The circle shows the dis-
tance of 5 km between the two points. The error is for this scenario stays under 0.1 cm,
respectively 0.00001 %. The error increases with bigger distances, as can be seen in
Figures 7.4 and 7.5, but stays below one meter for distances up to 50 km (orange circle).
Nevertheless, the error is bigger near the poles, as the Figures 7.1 (height of Spitsbergen)
and 7.2 show.

The ApproximateDistance function can be used in an expression as shown in List-
ing 5.19:

1 A p p r o x i m a t e D i s t a n c e (r e c o r d P o i n t , c e n t e r _ r e c o r d P o i n t)

Listing 5.19: Expression to calculate the approximate distance between two objects.

Tuple Filtering

Based on these calculations, a select operator can be used to filter out those elements
which are too far from each other. The select operator is shown in Listing 5.20:

6 For a closer look on this approach and other distance calculations, https://www.movable-type.co.uk/
scripts/latlong.html offers detailed explanations and formulas.

https://www.movable-type.co.uk/scripts/latlong.html
https://www.movable-type.co.uk/scripts/latlong.html

122 Architecture and Implementation

Relative Error in % at 53°N

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08

Longitue value

 52.95

 52.96

 52.97

 52.98

 52.99

 53

 53.01

 53.02

 53.03

 53.04

 53.05

La
ti

tu
d
e
 v

a
lu

e

 0

 2x10-6

 4x10-6

 6x10-6

 8x10-6

 1x10-5

Figure 5.4: Relative error of approximate distance calculation compared to distance
calculation with the haversine formula. Circle marks 5 km radius. Figure is reproduced
and slightly modified from [Sal14].

1 SELECT({ p r e d i c a t e = ’ a p p r o x D i s t a n c e < (m a x T r a v e l D i s t a n c e + r a d i u s) ’} ,
2 i n p u t)

Listing 5.20: Select operator to filter out elements that are too far away.

maxTravelDistance is the estimated maximum possible distance that the two ob-
jects can travel and approxDistance is the approximate distance between the two ob-
jects at their respective last known locations. The radius is the distance of the radius
query.

5.5.2 Single Rectangle

For the single-rectangle method (cf. 4.8.2.2), a new createRectangle function helps
to create a rectangle around a point. It takes a center point and a distance around that
point that needs to be within the rectangle. The rectangle can then be created with an
expression in a map operator, as shown in Listing 5.21:

5.5 Spatio-Temporal Filtering 123

1 MAP({
2 e x p r e s s i o n s = [
3 [’ c r e a t e R e c t a n g l e (c e n t e r _ r e c o r d P o i n t , ${REAL_DISTANCE} + ${

EXTRA_FILTER_DISTANCE }) ’ , ’ R e c t a n g l e F i l t e r ’]
4] ,
5 k e e p i n p u t = t r u e
6 } , i n p u t)

Listing 5.21: Creating a rectangle around a point.

In this example, the radius of the radius query is in the constant REAL_DISTANCE. The
additional margin around the real distance is in the constant EXTRA_FILTER_DISTANCE.
It is important to apply this map function before the join to reduce the number of cal-
culations. The rectangle needs only to be calculated once for each new center element,
not once for every new join output. Later, a select operator can be used to remove the
elements which are not in the rectangle, as shown in Listing 5.22:

1 SELECT({ p r e d i c a t e = ’ S p a t i a l C o n t a i n s (R e c t a n g l e F i l t e r , r e c o r d P o i n t) ’} ,
2 i n p u t)

Listing 5.22: Select operator to filter out elements that are not within the rectangle.

5.5.3 Multi Rectangle

The multi rectangle approach combines the two previous approaches and can therefore
also reuse the functions from these methods. Instead of one, multiple rectangles are
created, as shown in Listing 5.23:

124 Architecture and Implementation

1 a d d F i l t e r A r e a s = MAP({
2 e x p r e s s i o n s = [
3 [’ c r e a t e R e c t a n g l e (c e n t e r _ r e c o r d P o i n t , ${REAL_DISTANCE} + 1 * ${

FILTER_STEPS_METERS }) ’ , ’ R e c t a n g l e F i l t e r 1 ’] ,
4 [’ c r e a t e R e c t a n g l e (c e n t e r _ r e c o r d P o i n t , ${REAL_DISTANCE} + 2 * ${

FILTER_STEPS_METERS }) ’ , ’ R e c t a n g l e F i l t e r 2 ’] ,
5 [’ c r e a t e R e c t a n g l e (c e n t e r _ r e c o r d P o i n t , ${REAL_DISTANCE} + 3 * ${

FILTER_STEPS_METERS }) ’ , ’ R e c t a n g l e F i l t e r 3 ’]
6] ,
7 k e e p i n p u t = t r u e
8 } , i n p u t)
9

10 f i l t e r s T o L i s t = MAP({
11 e x p r e s s i o n s = [[’ t o L i s t (R e c t a n g l e F i l t e r 1 , R e c t a n g l e F i l t e r 2 ,

R e c t a n g l e F i l t e r 3) ’ , ’ F i l t e r A r e a s ’]] ,
12 k e e p i n p u t = t r u e
13 } , a d d F i l t e r A r e a s)

Listing 5.23: Creating multiple rectangles around a point.

Here, the margin around the real distance is increased by one additional FILTER_-
STEPS_METERS at each step. The rectangles are then put into a list to access them in the
filter step later in the process. The actual filter step again uses the CalculateMaxTrav-
eledDistance function (cf. 5.5.1). The whole filter step using the list of rectangles is
shown in Listing 5.24:

5.5 Spatio-Temporal Filtering 125

1 / / / Make f i l t e r v i s i b l e
2 f i l t e r P r e p a r a t i o n 1 = MAP({
3 e x p r e s s i o n s = [
4 [’ C a l c u l a t e M a x T r a v e l e d D i s t a n c e (P r e d i c t i o n T i m e s , recordTime , ${

MAX_SPEED}) ’ , ’ maxDis tanceOther ’] ,
5 [’ C a l c u l a t e M a x T r a v e l e d D i s t a n c e (P r e d i c t i o n T i m e s , c e n t e r _ r e c o r d T i m e

, ${MAX_SPEED}) ’ , ’ maxDis t anceCen te r ’]
6] ,
7 k e e p i n p u t = t r u e
8 } , predTime)
9

10 / / / C a l c u l a t e t h e b u c k e t
11 f i l t e r P r e p a r a t i o n 2 = MAP({
12 e x p r e s s i o n s = [[’ min (toLong (C e i l ((maxDis t anceOthe r +

m a x D i s t a n c e C e n t e r) / ${FILTER_STEPS_METERS }) −1) , ${NUMBER_STEPS
}−1) ’ , ’ AreaBucket ’]] ,

13 k e e p i n p u t = t r u e
14 } , f i l t e r P r e p a r a t i o n 1)
15

16 / / / F i l t e r s t e p
17 f i l t e r S t e p = SELECT({
18 p r e d i c a t e = ’ S p a t i a l C o n t a i n s (e l emen tAt (F i l t e r A r e a s , AreaBucket) ,

r e c o r d P o i n t) ’
19 } , f i l t e r P r e p a r a t i o n 2)

Listing 5.24: Filter elements with multiple rectangles based on the temporal distance.

The map operator in Line 2 calculates the maximum traveled distance of both involved
moving objects. The following operator in Line 11 calculates, which of the rectangles
need to be used for this stream element, i. e., pair of center element and other element.
When they can only have traveled a short distance, a smaller rectangle will be used. If
they can have traveled a long distance, a bigger rectangle will be used. If they can have
traveled further than the biggest rectangle, the biggest rectangle will be used (therefore
the min).

In the last operator in Line 17, the filter is applied by choosing the correct rectangle
from the list (elementAt(FilterAreas, AreaBucket)) and calculating if the ele-
ment is within the respective rectangle (SpatialContains).

The next step can be the the calculation of the real distance and the selection based on
the result. These steps would then be done in the temporal domain, i. e., calculating the
distances for the time instances in the PredictionTimes time intervals.

126 Architecture and Implementation

Source

Map, Project

Window

Aggregate, Map, ... (temporalization)

Select (Centers)

Map

Element Join

PredictionTime

Map, Select, ... (spatial operation)

︸
︷︷

︸

Preparation stage

︸
︷︷

︸

Temporalization stage

︸
︷︷

︸

Join stage

︸
︷︷

︸

Spatio-temporal stage

Figure 5.5: Typical structure of a spatial query with temporal functions [BG19]

5.6 Generic Moving Object Query Structure

The previously presented implementations can be applied to queries with moving ob-
jects. Those queries can be structured depending on the use case and can be build very
differently. Nevertheless, for some common use cases that need to combine multiple
moving objects, a generic structure can help to build the queries. Such a generic struc-
ture can ease the development and gives an idea on how to start more specific queries.

Figure 5.5 shows a query plan for temporal queries on moving objects. The plan is
divided into typical stages of a spatio-temporal query working on a stream with multiple
moving objects.

5.7 Summary 127

The first stage on the bottom is the preparation stage. The incoming stream is con-
verted into a common format. For example, latitude and longitude values are packed into
an internal point representation. The preparation can typically be done with map and
project operators. The next step is the creation of a temporal attribute for the represen-
tation of the object’s movement. Here, the incoming location updates from the moving
objects are used to create a temporal spatial object, e. g., a temporal point. When using
an aggregation operator for this purpose, a window operator should be used before it to
limit the used location updates to the newest ones. Other means of creating a temporal
attribute are also possible at this stage (cf. Section 4.2.2).

The join stage after the temporalization step defines how the moving objects are com-
bined for the spatial operations later in the query. A route or select operator can be used
to split the stream, which initially contains the movements from all objects. When hav-
ing more than one center element, the second input with the non-center objects in fact
has to contain the center objects, too. If this would not be the case, the join would not
join two center objects, which could lead to missing results. To avoid a center object
being joined with itself, the predicate of the join has to ensure that the ids of the two
joined objects are different.

Before joining the two streams again to have two temporal attributes (typically two
temporal points) in one stream element, it is useful to rename at least one of them to
distinguish them later on in the query. That is why another map operator is added in-
between the route and the join. The join operator can use the built-in element window to
join only the latest elements.

The last stage is the spatio-temporal stage. Here, the user can define the prediction
time with the PredictionTime operator. The last step is the spatial operation the user
wants to apply. This can be everything offered by standard operators, for example map
operations on the temporal attributes, e. g., the temporal points.

This query structure can be used for different purposes. The example scenarios in
Chapter 6 use the same basic structure.

5.7 Summary

The implementation described in this chapter finalizes the progress from the logical con-
cept to the implementation, following the physical concept in-between. First, the ar-
chitecture of the underlying system for the implementation is explained. Odysseus, as
the DSMS that is extended by this thesis, is presented in Section 5.1. Section 5.2 con-
tinues with the description of the implementation of the temporal types into Odysseus,
which is a main part of this thesis. It contains, among others, the integration of the new
PredictionTimes metadata and the temporal attributes.

The temporalization functions as well as the temporal implementations for the stan-
dard operators, such as map (cf. 5.2.6) and select (cf. 5.2.8), are also explained in this

128 Architecture and Implementation

section. These implementations have in common that they build on the existing non-
temporal implementations and only extend them. That way, it is not necessary to imple-
ment the existing logic again.

The extension of the metadata by the PredictionTimes as well as the temporal trust
value (cf. 4.5) also needs to be implemented, even though it also builds upon existing
solutions for metadata handling. For example, the merging process for prediction time
intervals with different granularities is described in Section 5.2.13 and the merging pro-
cess of temporal trust values in Section 5.2.14.

The element join is an extension which is not connected to the temporal types, but
is necessary for the queries on moving objects to avoid unnecessary latencies. The im-
plementation of the extension of the existing join operator is described in Section 5.3.
A short overview of the already existing spatial operations in Odysseus is given in Sec-
tion 5.4.

Section 5.5 continues the chapter with the description of the implementation of the
spatio-temporal filtering approach. The implementation of the three different approaches
with existing and new functions of Odysseus are explained, so that these approaches can
be applied in a query.

Finally, Section 5.6 describes a generic structure for moving object queries. It can be
used as a pattern when creating new queries on moving object data streams with temporal
attributes and eases the development of such queries.

This chapter finalizes the description of the development of this thesis. The imple-
mented system is evaluated in the next chapter to show the capabilities of the approach
and the performance of the implementation, as well as the effect of the filtering ap-
proaches on the result quality and performance.

129

6 Evaluation

The initial goal of this thesis is the research question from Chapter 1. The question asks
for two things: (1) expressing, i. e. defining, queries on moving object data streams and
(2) processing these queries. The concept uses approaches from data stream processing
and moving object databases, i. e. the moving object algebra, to tackle these questions.
Chapter 5 covers the feasibility evaluation by explaining how the concept can be imple-
mented into a DSMS. This chapter describes the next step of the evaluation and uses the
implementation from the previous chapter to evaluate the new concepts.

Section 6.1 describes the data that is used for the evaluation. The data that is used in
most evaluations is from the maritime domain. Using this data has some advantages for
the evaluation. First, it has typical properties of data from moving objects. The vessels
are not (strictly) bound to a network, as it would, for example, be the case for trains. Sec-
ond, they send their location every few seconds to minutes via AIS, wherefore the data
has typical data stream characteristics and is broadly available. Using this data does not
limit the generality of the evaluation, as the general characteristics are domain agnostic.
The generic nature of the approach is additionally demonstrated with an additional sce-
nario outside of the maritime and outside of the moving object domain in Section 6.2.8
with an energy consumption scenario.

This data is used for the scenario and performance evaluations. The scenario eval-
uation in Section 6.2 describes different scenarios, mainly from the maritime domain,
and explains how they can be realized with the implemented system. This part of the
evaluation evaluates the first part of the research question: “How can queries on spatio-
temporal data streams from moving objects be expressed flexibly and with generic
semantics [...]” (cf. 1.2). It does so by explaining the implemented system with com-
mon moving object queries and by generalizing from these specific queries. Due to the
generalization and the overall more generic approach to the queries, the evaluation, even
though using maritime scenarios, does not limit the validity to this specific domain.

Section 6.3 uses the described data and queries to evaluate the performance of the
implemented concept and with that the second part of the research question: “[...] and
processed efficiently?” (cf. 1.2). It analyses how queries can be build with different
performance goals and how the analyzed data affects the performance of the queries.
Additionally, the filter and refine approaches are evaluated to measure the effect on the
query performance and to prove that a streaming approach with a DSMS can be the
foundation for efficient query processing.

6.1 Data Description

For both the scenarios and the performance evaluation, data from the maritime domain in
the form of AIS data is used. As mentioned above, it has typical properties of data from

130 Evaluation

moving objects. The locations of the vessels are provided at irregular time intervals as
latitude and longitude values together with an identification number and other attributes.
Additionally, it is not guaranteed that a vessel will send its location forever; it could also
be the case that the vessel leaves the observed area and will not send data again.

For the performance evaluation, AIS data is used. The platform “marinecadastre.org”
offers AIS data from the US coast over several years and with that a vast amount of
data for evaluation1. The data contains comma-separated values (CSV) files with the
stored data, which then can be utilized as if it would be a stream. The data contains the
timestamp when the message was received, which can be set as the stream timestamp.

Unfortunately, the base stations, which receive the AIS messages and set the time-
stamp, seem to not have synchronized clocks, wherefore the messages are not correctly
ordered. In a real streaming scenario this is unlikely to happen: when messages are re-
ceived by the base station, they should be immediately forwarded to the central DSMS.
Then, the timestamp can be set by the DSMS to the point in time when the message was
received. The handling of unordered streams is a complex issue in data stream manage-
ment without a perfect solution but with multiple proposed approaches to handle such
streams [SW04, LTS+08, ABC+15, CKE+15b]. One possible approach could be to wait
a minute or so and sort the incoming elements within this time window. Unordered el-
ements that arrive afterwards with a higher time difference (i. e., more than one minute
in this example) would be dropped. Nevertheless, this approach makes the query lag
behind the current stream by the time it waits for temporal outliers, i. e., one minute in
this case. To avoid this problem for this data, the provided data set is sorted beforehand.

The locations are stored in latitude and longitude values with a WGS 84 datum2. For
the evaluation, the data set from April 2017 from UTM zone 10 is used, but trimmed
to the data points from April the 1st 2017, 10:00 to 12:00 o’clock to allow better data
handling when analyzing the query results. The data contains 81 132 AIS messages
from 1 171 vessels, which are in average around 69 messages per vessel and roughly
one message per vessel every two minutes. The original data set is already filtered to
at maximum one message per minute per vessel. Figure 6.1 shows the data drawn on a
map. The borders of the UTM zone 10 are visible where the data points end in the west
and east.

For one scenario that is not in the domain of moving objects, an artificial data set from
the energy domain is used, which is described in Section 6.2.8.

6.2 Scenario Evaluation

In this section, selected queries on moving object data streams are presented to show
how to apply the concept to real world data and scenarios. The radius- or distance

1 https://marinecadastre.gov/ais/
2 https://inport.nmfs.noaa.gov/inport/item/53161

https://marinecadastre.gov/ais/
https://inport.nmfs.noaa.gov/inport/item/53161

6.2 Scenario Evaluation 131

Figure 6.1: All data points from the data set in UTM zone 10 for April the 1st 2017
between 10:00 and 12:00 o’clock on a map. Map background: OpenStreetMap

132 Evaluation

query [Bri07] as well as the kNN query are typical queries in the spatial domain [RSV02,
ZZP+03, HXL05, Bri07, ZJDR10]. Even though their results seems to be similar (the
objects in a certain radius around a point or a certain number of nearest objects around
a point), the approach to these two queries is different. Therefore, it is interesting to see
how these queries can be implemented with the presented solution for streaming queries
and how they differ from each other. These two queries are followed by a moving region
query (cf. Section 6.2.3). In contrast to the radius and kNN queries, which in the given
examples work on points, the region query adds the aspect of regions and shows the
applicability of the concept to other geospatial objects than points. These queries build
upon the generic query structure presented in Section 5.6.

Following the usage of maritime data, two common maritime queries are also part
of the evaluation. The Closest Point of Approach (CPA) and Closest Time of Ap-
proach (CTA) queries in Section 6.2.4 expand the evaluation to more specific queries,
in addition to the more general queries motivated above. The following scenarios go
into more detailed aspects of the concept and implemented solution. In Section 6.2.5,
a query with a specific function from the moving object algebra is presented. It shows
the trajectory function as a representative function that converts temporal attributes
to non-temporal attributes.

While the radius and kNN queries of this evaluation use an aggregation function to
temporalize the location attribute, the scenario in Section 6.2.6 shows how a predefined
route can be converted into a temporal attribute. Section 6.2.7 looks at the newly intro-
duced metadata for the temporal trust and shows how the trust estimation can be applied.

Finally, Section 6.2.8 steps back from moving object data and shows that the presented
approach of this thesis is also applicable for other scenarios. In the given example, the
energy consumption of households is converted to a temporal attribute to have more
up-to-date values.

6.2.1 Radius Query

A radius query (also called distance query [Bri07]) is a common spatial query. The goal
is to find all objects within a certain distance around an object. In the case of moving
object data streams, the objects of interest are moving, i. e., they continuously change
their location [BG19]. For each calculation of new results, the most recent information
from each moving object shall be used. There are different possible solutions for this
query, with different window settings and joining predicates. One possible solution is
depicted in Figure 6.2.

Similar to the query depicted in Figure 4.13 in Section 4.6.2, this query receives the
data from an external source with a certain schema. In this case, the data has the schema
described in Section 6.1. The initial map operator at the bottom prepares the schema
for the rest of the query, for example, converting latitude and longitude values into an

6.2 Scenario Evaluation 133

Source

Map

Window

Aggregate (temporalization)

Select (centers)

Map
(rename attributes)

Element Join
(combine centers with all elements)

PredictionTime
(next x seconds, minutes, ...)

Map (calculate distance)

Select (radius predicate)

Sink

Figure 6.2: Query plan for a radius query

134 Evaluation

internal point representation. The following window is necessary for the aggregation
operation, which in this case is used to convert the non-temporal points to temporal
points (cf. Section 4.2.1). The aggregation can, for example, use a function with linear
interpolation between the known points. The definition of the aggregation operator can
be seen in Listing 6.1. The operator uses the function ToLinearTemporalPoint, which
creates a temporal point with linear interpolation using the non-temporal SpatialPoint
attribute. It writes the results to the attribute tempSpatialPoint. The function is
applied to each vessel individually, which is important to not mix locations from different
vessels into one temporal point. This is achieved by grouping the incoming stream
elements by their id.

Another option used here is eval_at_outdating, which is set to false. This means
that no new output is generated when a stream element leaves the window. If that op-
tion would not be set to false, potentially multiple outputs are generated for the same
moving object. Semantically, this would also be correct. Nevertheless, it would fill the
stream with additional results, which do not provide a real benefit for this use case, as
they are not based on new location updates. Finally, in Line 9 the previous map operator
is defined as the input for the aggregation operator.

1 t e m p o r a l i z a t i o n A g g r e g a t i o n = AGGREGATION({
2 a g g r e g a t i o n s = [[
3 ’ f u n c t i o n ’ = ’ To L inea r Tempo ra lPo i n t ’ ,
4 ’ i n p u t _ a t t r i b u t e s ’ = ’ S p a t i a l P o i n t ’ ,
5 ’ o u t p u t _ a t t r i b u t e s ’ = ’ t e m p S p a t i a l P o i n t ’
6]] ,
7 group_by = [’ id ’] ,
8 e v a l _ a t _ o u t d a t i n g = f a l s e } ,
9 map)

Listing 6.1: Aggregation operator to convert a point to a temporal point with linear
interpolation

The select operator separates the center objects (i. e., the objects for which the objects
in their surroundings are searched for) from the other objects, so that they can be joined
afterwards. The number of center objects depends on the predicate. Typically, they
are chosen by their id. It is also possible to join all objects with each other to do the
radius query for all objects. A sample for a select operator is shown in Listing 6.5.
The predicate chooses four moving objects with the ids being “1” to “4”. These are
the observed center objects for which the other objects within a certain distance will
be calculated. Another notable option is the heartbeatrate = 1. This is used for
the optimized element join (cf. Section 4.7.2) and tells the join operator the temporal
advance on this side of the stream even if all elements are filtered out.

6.2 Scenario Evaluation 135

1 / / / S e l e c t t h e c e n t e r
2 s e l e c t C e n t e r = SELECT({
3 p r e d i c a t e = ’ c o n t a i n s (id , t o L i s t (1 , 2 , 3 , 4)) ’ ,
4 h e a r t b e a t r a t e = 1
5 } , i n p u t)

Listing 6.2: Select operator to chose the center objects

The map in-between the select and the join only renames the attributes id and temp-
SpatialPoint to id_center and tempSpatialPoint_center to distinguish the cen-
ter attributes from the non-center attributes in the join. The following join operator is
an element join, which has its internal element window (cf. Section 4.7.1). It can be
configured as in Listing 6.3. Again, it is important to group the element window, as
we want the newest location information from each vessel, not only the newest location
information that has been received in general.

1 JOIN ({
2 e l e m e n t s i z e p o r t 0 = 1 ,
3 e l e m e n t s i z e p o r t 1 = 1 ,
4 g r o u p _ b y _ p o r t _ 0 = [’ i d _ c e n t e r ’] ,
5 g r o u p _ b y _ p o r t _ 1 = [’ id ’]
6 } , renameCente r , t e m p o r a l i z a t i o n A g g r e g a t i o n)

Listing 6.3: Join operator to join center objects with other objects

Next, the prediction time is defined. This can be done with the PredictionTime
operator. The prediction time determines for which points in time the expressions with
temporal attributes, in this case the temporal point, will be calculated. Having the base
time unit set to seconds, let us choose two seconds here. At this point, the actual pre-
diction time is less important. Here, two seconds simply have the effect that the result
is calculated for two different points in time. Later in this chapter, the effect on the per-
formance of different prediction times is measured. The definition of the operator can
be seen in Listing 6.4. In this case, the prediction time is defined in relation to the start
timestamp of the stream time.

1 PREDICTIONTIME ({
2 a d d t o s t a r t v a l u e = [0 , ’ seconds ’] ,
3 a d d t o e n d v a l u e = [2 , ’ seconds ’] } ,
4 j o i n)

Listing 6.4: Operator to set the prediction time of the joined stream elements

136 Evaluation

Now, the spatial query can be run on the resulting stream. Spatial expressions will
automatically be evaluated in the temporal dimension defined in the PredictionTime
operator. Hence, the definition of the expressions is identical to a query that does not use
any temporal attributes. In Listing 6.5, two operators are defined: (1) the map operator
to calculate the distance and (2) the following select operator to filter out elements
which are too far away. The distance is calculated using the OrthodromicDistance
function, which is based on the JTS method of the same name. The result is a temporal
double, which is used in the select operator. The keepinput = true option is used
to avoid the other attributes in the stream element besides the result of the expression to
disappear. The predicate in the select operator filters out all elements which are further
away than 5000 meters. The sink operator can write these results in a file, a database or
send it to another system.

1 c a l c D i s t a n c e = MAP({
2 e x p r e s s i o n s = [[’ O r t h o d r o m i c D i s t a n c e (c e n t e r _ S p a t i a l P o i n t ,

S p a t i a l P o i n t) ’ , ’ t d i s t a n c e ’]] ,
3 k e e p i n p u t = t r u e
4 } , i n p u t)
5

6 SELECT({
7 p r e d i c a t e = ’ t d i s t a n c e < 5000 ’
8 } , c a l c D i s t a n c e)

Listing 6.5: Select operator based on a distance calculation on temporal attributes

6.2.2 kNN Query

A kNN query searches for the k objects that are closest to a center object. It is, next to
the previously described radius query, a common query in the spatial domain [EM13,
YWS15, KS04a]. Even though it seems to be very similar, the queries differ processing-
wise. While the radius query can be implemented using a select operator, the kNN query
needs to be solved using an aggregation. Therefore, the spatio-temporal stage of the
generic query structure (cf. Section 5.6) differs from the radius query. Nevertheless, it
also shows that the mentioned query structure is generic enough to be used for these
different queries.

In this scenario, all objects are moving. The spatial kNN operation can be imple-
mented by a distance calculation in a map operator, which is identical to the radius query
(cf. Section 6.2.1) and a subsequent TopK operation in an aggregation operator, which
differs from the radius query. The TopK operation calculates the k values that have the
highest (or lowest) score according to a scoring attribute. In this case, the temporal
distance is used as the scoring attribute.

6.2 Scenario Evaluation 137

1 AGGREGATION({
2 a g g r e g a t i o n s = [[
3 ’FUNCTION’ = ’TopK ’ ,
4 ’TOP_K’ = ’2 ’ ,
5 ’INPUT_ATTRIBUTES ’ = [’ id ’ , ’ t d i s t a n c e ’] ,
6 ’SCORING_ATTRIBUTES’ = ’ t d i s t a n c e ’ ,
7 ’UNIQUE_ATTR’= ’ id ’ ,
8 ’ de scen d ing ’ = f a l s e ,
9 ’ a l w a y s _ o u t p u t ’ = t r u e

10]] ,
11 group_by = [’ i d _ c e n t e r ’]
12 } , c a l c u l a t e D i s t a n c e)

Listing 6.6: TopK function in aggregation operator to calculate kNN

The PQL definition of the aggregation operator is shown in Listing 6.6. The IN-
PUT_ATTRIBUTES option is used to define which attributes are in the output element.
If, for example, only the ids of the closest elements are needed, the “tdistance” could
be removed here. The UNIQUE_ATTR option makes the aggregation function replace a
previous stream element with the same id by a new one. This mimics an internal element
window of size one and is needed here to not have the same element as one of the nearest
neighbors multiple times.

Another difference to the radius query is the prediction time definition at the end of
the query. An additional time window is added after the join, because the element join
removed the end timestamp (cf. Section 4.7.1). Without a time window, the aggregation
operator would keep all elements in its memory, which could lead to a memory overflow
in long-running queries.

Additionally, the prediction time intervals are aligned so that all prediction time in-
tervals within a window are equal. Having this, the merging function for the prediction
time intervals in the aggregation (cf. Section 4.3.5) can be freely chosen, as both the
union and the intersection merge function would have the same result. The alignment
is achieved with a tumbling time window for the stream time and an option in the Pre-
dictionTime operator to align the prediction times at the end timestamp of the stream
time interval.

Listing 6.7 gives an example on how this can be achieved using PQL. The important
option in the PredictionTime operator is alignAtEnd. Using this option, the times
from addToStartValue and addToEndValue are added to the end timestamp of the
stream time. Due to the previous tumbling window, the end timestamps of one win-
dow are all equal, wherefore the prediction time intervals for all stream elements within
the window are identical. The window alignment is depicted in Figure 6.3. The figure
shows the stream time intervals of the stream elements. They have different start time-
stamps, but are, due to the tumbling window, aligned to one end timestamp per window.

138 Evaluation

tp start tp start

Time intervals

time

Figure 6.3: Tumbling window for prediction time alignment before an aggregation

The figure shows two windows, i. e., two different end timestamps for the five stream
elements. The prediction time interval is aligned at the end timestamp, wherefore all
stream elements in one tumbling window have the same prediction time interval.

Effectively, the query looks up to 61 seconds into the future, which happens exactly
when the first element of a new tumbling window flows into the window. When the
last element of the tumbling window flows in, the query looks only one second into the
future. The advantage of this approach is that there is at least one point in time where
all location updates of the last 60 seconds (or another time span, depending on the time
window) are used for the TopK calculation. In a sliding window with either of the two
merging functions, overlapping time intervals for the prediction time intervals either
cannot be guaranteed (for the intersection merge) or at some points in the prediction
time, the aggregation calculates a nearest neighbor without using all available moving
objects (for the union merge). Due to these limitations, a tumbling window should be
used in this case.

6.2 Scenario Evaluation 139

1 al ignWindow = TIMEWINDOW({
2 s i z e = [6 0 , ’SECONDS’] ,
3 advance = [6 0 , ’SECONDS’]
4 } , recombine)
5

6 / / / S e t t h e p r e d i c t i o n t ime
7 PREDICTIONTIME ({
8 a d d T o S t a r t V a l u e = [0 , ’ seconds ’] ,
9 addToEndValue = [2 , ’ seconds ’] ,

10 p r e d i c t i o n B a s e T i m e U n i t = ’SECONDS’ ,
11 a l i g n A t E n d = t r u e
12 } , al ignWindow)

Listing 6.7: A tumbling stream time window to align the prediction time intervals

This scenario shows how customizable the prediction approach with the time intervals
is, but also illustrates the complexity that can arise when developing the correct query
for a certain use case. There are multiple other possibilities to develop a kNN query.
Especially the handling of the temporal dimensions (both stream and prediction time)
can be adapted to fit to the needs of the user.

6.2.3 Moving Region Query

Moving objects are often represented by moving points, which are in many cases a close-
enough representation and reduce complexity in queries and calculations. Nevertheless,
some use cases require moving objects to have a spatial extend, for example, if a moving
oil field, a storm or a plastic spill needs to be represented [BG19]. Representing regions
within attributes of a stream object is possible due to the use of the Simple Feature
Access model for geometries (cf. Section 2.4). With this scenario, the possibility to use
other geometries than points is shown. New aspects are, among others, the prediction
of a region instead of a point and other spatial operations than distance calculations, for
example, the spatialWithin operation.

Figure 6.4 depicts an example for a moving region query. In this example, a moving
point enters a moving region (a polygon), is within the region for a while before the point
leaves the region again.

As with moving points, for a moving region a temporal function is necessary to rep-
resent the movement. Such a temporal function can, for example, be achieved with a
temporalization function. Snapshots of a moving region are used to interpolate and ex-
trapolate the movement of the region between the snapshots and for predicting future
movement. The demonstration functions in this example only support moving regions
that do not change the number of vertices over time. The vertices are internally repre-
sented as individually moving points.

140 Evaluation

Figure 6.4: A moving region (dashed polygon) and a moving point

Figure 6.5: Query plan view in Odysseus showing a moving region query

An example query plan with a moving region and moving points is shown in Fig-
ure 6.5. In contrast to the other examples, this query has two input sources: one on
the top for the moving region (i. e., the oil spill) and one on the bottom for the moving
objects (i. e., the vessels). Both are converted into temporal spatial objects with a tem-
poralization function in an aggregation operator and then joined. Again, an element join
is used to combine the newest moving region with the newest moving point from each
vessel. The result is a stream with stream elements containing a temporal point and a
temporal region, among other attributes. Next, the prediction time is set, for example, to
the next two seconds or minutes, depending on the use case.

The map and select operators at the end of the query do the spatial calculation: the
map operator checks, if the spatial point is inside of the spatial region at the prediction
time intervals given the previous PredictionTime operator. The select operator filters out
all the vessels which are not in that region (or filters objects which are only partly in that
region to the respective time intervals).

This query demonstrates that the concept also works with other spatial objects than
points. The necessary extensions are a temporalization function and an internal repre-
sentation for moving regions. Both can and should be adapted to the use case.

6.2 Scenario Evaluation 141

12:00

12:00

Figure 6.6: CPA and CTA of two moving points

6.2.4 Closest Point of Approach (CPA) and Closest Time of Approach (CTA)
Query

A common query in the maritime domain is the Closest Point of Approach (CPA) or
Closest Time of Approach (CTA) query [CD16, KWZH14]. Having two moving ob-
jects, the query calculates where or when these objects will be closest to each other. It is
important to notice that this is not simply the minimum distance between two trajecto-
ries, but the minimum distance of two moving objects considering the time. An example
is depicted in Figure 6.6. Two vessels move close to each other, from left to right, each
on its own trajectory, which are depicted with dashed lines. The CPA is at 12:00. Fur-
ther to the right, the trajectories are closer to each other, but the distance between the
two objects, considering that the two objects are not at the narrow gap at the same time,
is bigger.

The CPA query can be implemented with the atMin function from the moving object
algebra. It returns the minimum value of a temporal type. A plan of the last operators
of this query is depicted in Figure 6.7. The first operators are left out because they are
equal to the generic query structure (cf. Section 5.6). Before the shown operators, two
vessels for which the CPA should be calculated are picked and joined together so that
their temporal points are in one stream element.

The first operator in the figure (PredictionTime) sets the prediction time before the
distance calculation. If, for example, the CPA within the next 10 minutes is of interest,
the prediction time can be set to include the time from “now” until in 10 minutes, maybe
with a granularity of one second. Next, the distance for that time interval is calculated,
resulting in a temporal double value.

The select operator uses the predicate atMin(tdistance, PredictionTimes). The
PredictionTimes point to the metadata field for the prediction time intervals, which
in this case is necessary for Odysseus to access this field. The function reduces the Pre-
dictionTimes to the point(s) in time where the distance is at its minimum. This would
be sufficient to have the CPA (the temporal points from the two vessels at the prediction
time) and the CTA (the resulting prediction time). To make the result in the distance
attribute (a temporal double), which is a GenericTemporalType, more readable, the

142 Evaluation

...

PredictionTime

Map (calculate distance)

Select (atMin)

Map (trim)

Sink

Figure 6.7: Last operators of a CPA query

other distance results are removed with the trimTemporal function (cf.5.2.3). The ex-
pression in the last map operator is trimTemporal(tdistance,PredictionTimes).

Table 6.1 shows an example result for this query. The metadata fields have a slight
gray background. The prediction_time field states that the minimum value is at point
in time 1491005925 and that the granularity of the prediction is seconds. The distance
between the vessels with the ids 366970430 and 367605150 (fields id_1 and id_2) at
this point in time is 9451.135691970458 meters (field tdistance). The temporal points
are represented by a linear function, here simply represented by their speed and azimuth
(fields point_1 and point_2).

6.2.5 Trajectory Length of Moving Objects

The previous queries have in common that they start with non-temporal data streams,
convert some attributes into temporal attributes and then continue to work with temporal
attributes. Nevertheless, it can also be the case that temporal attributes are converted
back into non-temporal attributes. The trajectory function from the moving object
algebra [GBE+00] is such a function. It takes a temporal point as its input and creates a
non-temporal spatial line. On this line, the length can be calculated to get the distance
the moving object traveled during the prediction time.

Assuming that the attribute tempSpatialPoint is a temporal point, the operators in
Listing 6.8 calculate the distance that will presumably be traveled in the next four min-
utes. The prediction time is set to the next four minutes, starting with the latest known

6.2 Scenario Evaluation 143

field value
tdistance GenericTemporalType: 1491005925000 = 9451.135691970458
id_1 366970430
id_2 367605150

point_1

tpoint:
speed: 1.5069861260011568E-6 m

timeInstance ;
acceleration: 0.0 m

timeInstance2 ;
azimuth: 145.22315846095213°

point_2

tpoint:
speed: 1.6975420708553307E-6m m

timeInstance ;
acceleration: 0.0 m

timeInstance2 ;
azimuth: -54.2592189608814°

stream_time [1491005925000,∞)
prediction_time SECONDS: [[1491005925, 1491005926)]

Table 6.1: Example result of a CPA query

point in time (Line 1). The first map operator in Line 7 creates a non-temporal Mul-
tiLineString (cf. Section 2.4) from the temporal point tempSpatialPoint. The
MultiLineString is used here instead of a simple LineString because the predic-
tion time can have multiple time intervals, which would result in multiple non-temporal
trajectories, i. e., a MultiLineString.

The last map operator in Line 14 calculates the length of the non-temporal Multi-
LineString. The result is given in meters.

144 Evaluation

1 predTime = PREDICTIONTIME ({
2 a d d t o s t a r t v a l u e = [0 , ’MINUTES’] ,
3 a d d t o e n d v a l u e = [4 , ’MINUTES’] ,
4 p r e d i c t i o n b a s e t i m e u n i t = ’MINUTES’
5 } , i n p u t)
6

7 c a l c T r a j = MAP({
8 e x p r e s s i o n s = [
9 [’ T r a j e c t o r y (t e m p S p a t i a l P o i n t , P r e d i c t i o n T i m e s) ’ , ’ t r a j ’]

10] ,
11 k e e p i n p u t = t r u e
12 } , predTime)
13

14 MAP({
15 e x p r e s s i o n s = [[’ S p a t i a l L e n g t h (t r a j) ’ , ’ l en ’]] ,
16 k e e p i n p u t = t r u e
17 } , c a l c T r a j)

Listing 6.8: Calculating the traveled distance of a temporal point

6.2.6 Using Predefined Routes

Temporal attributes cannot only be created from non-temporal input data, such as the
movement of an object, but also from attributes which already include temporal infor-
mation about an object (cf. Section 5.2.5). For example, the movement of a point can
be described in a GeoJSON-like text. In this scenario, we have the movement of one
vessel from a predefined trajectory, e. g., created by a navigation system (“vessel 1”).
The movement of other vessels is created by a temporalization function based on the
past movement. The data is combined to calculate the distance between vessel 1 and the
other vessels.

The source for the temporal GeoJSON is a string attribute containing the GeoJSON
string. It can be converted to a temporal point using the FromTemporalGeoJson func-
tion as can be seen in Listing 6.9.

1 MAP({
2 e x p r e s s i o n s = [[’ FromTemporalGeoJson (d a t a) ’ , ’ t e m p T r a j e c t o r y ’]]
3 } , i n p u t)

Listing 6.9: Converting a GeoJSON string in the “data” attribute into a temporal point
in the “tempTrajectory” attribute

6.2 Scenario Evaluation 145

field value

tdistance GenericTemporalType: 1491004910000 = 4733.573835538204,
1491004911000 = 4733.573835538204

id 3
stream_time [1491004910000,oo)
prediction_time SECONDS: [[1491004910, 1491004912)]
temporal_trust GenericTemporalType: 1491004910000 = 1.0

1491004911000 = 0.14722182877031387

Table 6.2: Example result of a query using the temporal trust

After a join with the other temporal points from a different source, the temporal point
can be used like every other temporal point, for example, to calculate the temporal dis-
tance between the moving objects.

6.2.7 Trust Estimation

The trust value (cf. Section 5.2.14) to estimate the trustworthiness of a predicted result
is a temporal meta attribute. It can be activated by adding it to the metaattribute
field of the access operator (cf. Listing 6.10). In the background, the function to convert
attributes into temporal attributes will additionally create a function which estimates the
trust. In fact, the trust function is always created when creating a temporal attribute but
only added to the stream elements metadata if the trust metadata is activated.

1 m e t a a t t r i b u t e = [’ T i m e I n t e r v a l ’ , ’ P r e d i c t i o n T i m e s ’ , ’ Tempora lTrus t ’]

Listing 6.10: Using the “TemporalTrust” meta attribute in an access operator

The calculated temporal trust value is added to the metadata attributes of the stream
elements. Table 6.2 shows an example stream element with a temporal trust attribute.
As can be seen, the trust value is very high at 1491004910000 and decreases to a lower
value at 1491004911000. That is because the trust values of different temporal attributes
are merged. In this case, a map operator calculates the distance between two temporal
points. Both have a high trust at the first point in time (in the prediction time dimension),
but at least one has a lower trust at the second point in time. The merge function uses
the lowest trust of all involved temporal attributes (cf 4.5).

146 Evaluation

6.2.8 Energy Consumption

While this thesis is mainly focused on spatio-temporal data, the general approach of
temporal attributes can also be applied to other types of data. To give an example with
data from a different domain, in this section a scenario from the electricity domain is
described.

The scenario is the following: a smart meter measures the energy consumption of a
household and sends an aggregated value with the total sum of the energy consumption
every 15 minutes. Listing 6.11 shows such a data stream.

1 id , wh , t ime
2 1 ,0 ,0
3 2 ,0 ,3
4 3 ,0 ,6
5 1 ,115 ,15
6 2 ,50 ,18
7 3 ,250 ,21
8 1 ,200 ,30
9 2 ,60 ,33

10 3 ,500 ,36
11 1 ,210 ,45
12 2 ,100 ,48
13 3 ,600 ,51

Listing 6.11: Data stream with the id of the smart meter, the watt hours (wh) consumed
so far, and the time in minutes when the data was measured

To have a more up-to-date view on the current energy consumption of the households,
the consumption per minute per household shall be estimated for the next 15 minutes
until the new measured value arrives. Higher values, e. g., more than 300 watts, shall be
presented to the user, i. e., be the result of the query.

To achieve this goal, the energy consumption is converted into a temporal attribute.
For example, a linear prediction function based on the last two measured values can be
applied. This first part of the query is shown in Listing 6.12. The time window with a
size of 20 minutes has the effect that there are exactly two valid measurements per smart
meter in the current window. When a new element arrives 15 minutes after the last one,
the previous one is still valid so that it will be used in the aggregation operator. The
aggregation uses the last measurements and creates a temporal function and puts it in the
attribute temp_wh.

6.2 Scenario Evaluation 147

1 / / / Only use t h e l a s t two measured v a l u e s
2 t ime = TIMEWINDOW({ s i z e = [2 0 , ’ minu tes ’]
3 } , i n p u t)
4

5 / / / Conver t t h e wh− a t t r i b u t e t o a t e m p o r a l do ub l e
6 t e m p o r a l i z e = AGGREGATION({
7 a g g r e g a t i o n s = [[’ f u n c t i o n ’ = ’ ToTemporalDouble ’ , ’ i n p u t _ a t t r i b u t e s

’ = ’wh ’ , ’ o u t p u t _ a t t r i b u t e s ’ = ’ temp_wh ’]] ,
8 group_by = [’ id ’] ,
9 e v a l _ a t _ o u t d a t i n g = f a l s e

10 } , t ime)

Listing 6.12: A time window and the temporalization step in an aggregation operator

The middle part of the query, shown in Listing 6.13, sets the prediction time to the
next 15 minutes starting with the last known value from the respective smart meter. The
derivative function in Line 8 calculates the difference between the previous and the
next predicted value in the given minute granularity, i. e., the watt hours per minute. As
the prediction function is linear, the value will be equal for each predicted minute.

1 predTime = PREDICTIONTIME ({
2 a d d t o s t a r t v a l u e = [0 , ’MINUTES’] ,
3 a d d t o e n d v a l u e = [1 5 , ’MINUTEs ’]
4 } , t e m p o r a l i z e)
5

6 / / / Energy consumpt ion p e r h o u s e h o l d p e r minu te i n t h e n e x t 15
m i n u t e s

7 d e r i v a t i v e = MAP({
8 e x p r e s s i o n s = [[’ d e r i v a t i v e (temp_wh , P r e d i c t i o n T i m e s) ’ , ’ whPerMinute

’] , [’ id ’ , ’ id ’]]
9 } , predTime)

Listing 6.13: Calculating the predicted energy consumption

The last part of the query is shown in Listing 6.14. The map function in Line 3 converts
this value to watts. The select operator at the end of the query filters out tuples with a
low energy consumption (cf. Line 8).

148 Evaluation

field value

watt

GenericTemporalType: 51 = 0.0, 52 = 800.00, 53 = 800.00,
54 = 800.00, 55 = 800.00, 56 = 800.00, 57 = 800.00,
58 = 800.00, 59 = 800.00, 60 = 800.00, 61 = 800.00,
62 = 800.00, 63 = 800.00, 64 = 800.00, 65 = 800.00

id 3
stream_time [51,|∞|)
prediction_time MINUTES: [[52, 66)]

Table 6.3: Example result of the energy consumption query. Some rounding errors are
fixed for better readability.

1 / / / Energy consumpt ion p e r h o u s e h o l d p e r minu te i n t h e n e x t 15
m i n u t e s

2 w a t t s = MAP({
3 e x p r e s s i o n s = [[’ whPerMinute * 60 ’ , ’ wat t ’] , [’ id ’ , ’ id ’]]
4 } , d e r i v a t i v e)
5

6 / / / F i l t e r o u t e l e m e n t s wi th a low e ne rg y consumpt ion
7 highConsumpt ion = SELECT({
8 p r e d i c a t e = ’ w a t t > 300 ’
9 } , w a t t s)

Listing 6.14: Selecting tuples with higher consumption

An example result of the query is listed in Table 6.3. The “watt” attribute contains the
consumption over time in the next 15 minutes. Note, that the first value is 0: the deriva-
tive cannot be calculated, because the value before the first value does not exist. The
select operator selects for values higher than 300 watts, wherefore the first value at pre-
diction time 51 is not within the result. Hence, the prediction-times meta attribute
starts at 52. The additional value in the GenericTemporalType could be removed with
the trimTemporal map function but is left here for demonstration.

This scenario demonstrates that the approach of temporal attributes can be applied
to other fields than only moving objects. For this scenario, no additional functions or
changes to the concept are required. Nevertheless, similar to the scenarios with mov-
ing objects, the temporal function to represent the development of attributes should be
designed for the respective use case.

6.2.9 Scenario Evaluation Summary

The scenario evaluation presents the practical capabilities of the moving object alge-
bra integration into a DSMS, the element join, and the temporalization of non-temporal

6.3 Performance Evaluation 149

attributes, among others. For spatio-temporal queries on data streams from moving ob-
jects, the previously defined generic query structure (cf. Section 5.6) is used in scenarios
such as the radius and kNN queries. Other queries, for example the CPA query, demon-
strate scenarios from the maritime domain (cf. 6.2.4). The energy consumption scenario
in Section 6.2.8 gives an example for a non-spatial scenario in which the temporal at-
tributes can also be applied to solve a problem that would otherwise be hard to tackle.

With these scenarios and the application of the more general query structure for spatio-
temporal queries, this part of the evaluation focuses on the first part of the research
question (cf. 1.2), which asks for a flexible and generic semantics to define queries on
spatio-temporal data streams from moving objects. The scenarios show that the existing,
generic capabilities of a DSMS can be applied on the new temporal dimension, i. e., with
the prediction time. Using the semantics for the prediction time defined in this thesis,
queries can be defined in a very generic way and are not limited to certain use cases.
Following the ideas of the moving object algebra, even though differences are present
due to the streaming approach, a generic semantics is given. With that, the first part of
the research question is answered.

The next section tackles the second part of the research question and goes in-depth on
performance measurements and efficiency improvements.

6.3 Performance Evaluation

The scenario evaluation in Section 6.2 demonstrates scenarios where the temporal at-
tributes are used to solve challenges with streaming data. The performance evaluation
in this section uses parts of those and other scenarios to evaluate the performance of
the prototype implementation. Especially the additional costs due to the use of tem-
poralization and temporal attributes are measured. Additionally, the filter and refine
concept from Section 5.5 is evaluated. Latency and data rate (or: throughput) are two
of the most important performance indicators in a data stream environment [GHN14,
AAB+05, CcC+02]. Latency is especially important in scenarios where immediate re-
sults are necessary to react on the results as soon as possible.

6.3.1 Evaluation Environment

The performance evaluation is performed on an Linux server running Ubuntu Server
version 18.04.1. The Linux kernel version is 4.15.0-36. The system has 64 GiB of
memory. Odysseus is configured to use at maximum 50 GiB. The processor is an “In-
tel(R) Core(TM) i7-6700K CPU @ 4.00GHz”. The data is read from the internal SSD.
Odysseus runs on Java. The Java version on the machine is “Java(TM) SE Runtime En-
vironment (build 1.8.0_181-b13)”. The Odysseus version is a build from December 6th,
2018.

150 Evaluation

For the generation of the box plots for latency and data rate values, each query is
executed ten times. The values, such as the medians, are calculated using all the result
elements, reaching from a few hundred to a few thousand elements depending on the
query. That way, the impact of outliers due to other system processes can be reduced.

6.3.2 Measuring Performance in Streaming Queries

Odysseus offers built-in mechanisms to measure the data rate and latency. The data rate
can be measured with the datarate operator. It should be placed at the beginning of
a query right after the access operator. That is because at that point in the query, the
data rate of the incoming stream is measured. With a placement within the query, for
example, after a select operator, the data rate would be lower, i. e., not the real data rate
but the selectivity of the operator would be measured.

The latency on the other hand is typically measured within or at the end of a query.
The latency measures how long it takes from a stream element entering the query until
a stream element created from this input reaches the latency measurement operator. The
time that is needed to read the data from disk and write the result to the disk is not part
of the measured latency, because the measurement starts when the stream element is
already within the query. That way, the measured value is independent from the disk
speed.

In Odysseus, the calcLatency operator is used for measuring the latency. It can be
placed at multiple stages in the query to measure how the latency is affected by the dif-
ferent operators. The operator in Odysseus already solves some difficulties when mea-
suring the latency. For example, when having a join operator, the latency of a resulting
stream element needs to be created with the younger of the two elements. That is be-
cause the performance of the operator has to be measured and not the data distribution
of the streams. The data distribution could otherwise affect the latency because waiting
times, for example in a join operator, would be counted as part of the latency.

For this evaluation, calcLatency operators are placed at different stages in the query,
which are described in the following sections. The placement of the measurement oper-
ators is depicted in Figure 6.8. At the end of each stage a calcLatency operator is placed
so that the impact on the latency of each stage can be measured. The data rate of the
whole query is measured at the beginning of the query with a datarate operator.

For the measurement of these values the previously described radius query is used.
Each stage can have multiple parameters and with that different configurations, which
may have an impact on the performance of the query. The evaluated parameters are
described in the following sections. Additionally, the performance of the kNN query is
evaluated.

6.3 Performance Evaluation 151

Source

Datarate

Map, Project

Window

Aggregate, Map, ... (temporalization)

Calclatency 1

Select (Centers)

Map

Element Join

Calclatency 2

PredictionTime

Map, Select, ... (spatial operation)

Calclatency 3

︸
︷︷

︸

Preparation stage

︸
︷︷

︸

Temporalization stage

︸
︷︷

︸
Join stage

︸
︷︷

︸

Spatio-temporal stage

Figure 6.8: Latency and data rate measurements in a typical structure of a spatial query
with temporal functions

152 Evaluation

6.3.3 Costs of the Preparation and Temporalization

The first steps of a query with temporal attributes are often the preparation of the data
and the conversion from a non-temporal attribute to a temporal attribute (cf. 5.6). The
complexity of this step depends on the process of temporalization. The temporalization
method, the window size as well as the complexity of the attribute (e. g., a point or a
polygon) are parameters that impact the performance of the temporalization step.

To evaluate the costs of the temporalization, different temporalization methods with
different window sizes are compared to each other. The window sizes can be of signifi-
cance because the aggregation operator, which is used for the temporalization functions,
stores the stream elements that are currently in the window. As window sizes, 10, 20 and
30 minutes are used. Hence, all location updates from the vessels within this time period
are available to the temporalization functions. For the temporalization step, the func-
tions ToLinearTemporalPoint and ToSplineTemporalPoint are applied. A part of
the query is shown in Listing 6.15.

1 t ime = TIMEWINDOW({
2 s i z e = [6 0 , ’ minu tes ’]
3 } , i n p u t)
4

5 [. . .]
6

7 / / / T e m p o r a l i z e t h e l o c a t i o n a t t r i b u t e
8 t e m p o r a l i z e = AGGREGATION({
9 a g g r e g a t i o n s = [

10 [’ f u n c t i o n ’ = ’ T o S p l i n e T e m p o r a l P o i n t ’ , ’ i n p u t _ a t t r i b u t e s ’
= ’ S p a t i a l P o i n t ’ , ’ o u t p u t _ a t t r i b u t e s ’ = ’

t e m p _ S p a t i a l P o i n t ’]
11] ,
12 group_by = [’ id ’] ,
13 e v a l _ a t _ o u t d a t i n g = f a l s e
14 } , t ime)

Listing 6.15: Part of the evaluated query with the window and the aggregation
operators

Figure 6.9 shows the results for the different queries3. As can be seen, the time needed
for the temporalization step with these algorithms is very low. With about 0.012 ms and
lower in median the temporalization step uses only a very limited portion of the overall
latency, as will be discussed in the next sections. The spline algorithm is slightly faster
than the linear algorithm. This could be due to a faster implementation in the integrated

3 The “Without Outliers” at this and the following figures means that the outliers are not printed in the box
plot for better readability, not that the outliers are removed from the data. Hence, the data still contains the
whole data including the outliers, wherefore the printing of the rest of the plot is not compromised.

6.3 Performance Evaluation 153

Lin
ea

r 1
0m

Lin
ea

r 2
0m

Lin
ea

r 3
0m

Sp
lin

e
10

m

Sp
lin

e
20

m

Sp
lin

e
30

m

Configuration

0.006

0.008

0.010

0.012

0.014
La

te
nc

y
in

 m
s

Latency Temporalization (Without Outliers)

Figure 6.9: Latency of the temporalization queries in ms

spline library compared to the self-written linear algorithm. Nevertheless, the absolute
difference is negligible. The latency grows slightly with larger window sizes.

6.3.4 Costs of the Join Stage

For spatio-temporal queries on multiple moving objects, the join stage combines the
location information from different moving objects. For this purpose, the previously de-
scribed element join (cf. 4.6) can be used. In this part of the evaluation, the impact of the
join on the performance is measured. For that purpose, the calcLatency operator mea-
sures the latency right behind the join operator. The join operator produces, depending
on the configuration, a lot of new elements and with that a high load on the following
spatio-temporal operations. Odysseus evaluates the stream elements depth-first, where-
fore a waiting situation can occur. The join waits for the following operators to finish
before it continues to produce new join elements. When that happens, the latency of the
join stage goes up without the join being the bottleneck.

To reduce the impact of that effect in the measurements, a (threaded) buffer has been
inserted after the latency measurements. The buffer stores the incoming elements in-
memory. Therefore, the join can continue to produce new results at full speed without
needing to wait for the following operators. Additionally, the buffer allows to run the
spatio-temporal stage in multiple threads, potentially increasing the throughput. De-
pending on the scenario and the size of the buffer, the buffer can become filled and un-
able to buffer more elements. In that case, the same waiting situation will occur and the

154 Evaluation

latency of the join will increase. In the standard configuration, a buffer size of 200 000
elements is used.

Listing 6.16 shows an example configuration of a join operator.

1 a l l O b j e c t s = TIMEWINDOW({
2 s i z e = [6 0 , ’ minu tes ’]
3 } , c r e a t e S p a t i a l O b j e c t)
4

5 c e n t e r O b j e c t s = TIMEWINDOW({
6 s i z e = [1 , ’MILLISECONDS ’]
7 } , r enameCen te r)
8

9 JOIN ({
10 p r e d i c a t e = ’ i d != i d _ c e n t e r ’ ,
11 e l e m e n t s i z e p o r t 0 = 1 ,
12 e l e m e n t s i z e p o r t 1 = 1 ,
13 g r o u p _ b y _ p o r t _ 0 = [’ i d _ c e n t e r ’] ,
14 g r o u p _ b y _ p o r t _ 1 = [’ id ’]
15 } , c e n t e r O b j e c t s , a l l O b j e c t s)

Listing 6.16: Configuration of an element join which is triggered on elements on the
left port

Listing 6.16 shows the definition of the window and join operators. In this example,
the join is triggered on each stream element from the left input (centerObjects) and
joins this new center element with the latest stream element from each other moving
object (allObjects). The other stream elements are only considered for one hour. If
a moving object did not send a location update within this time span, it is no longer
considered.

These configurations, i. e., the window sizes and the way the center objects are se-
lected, are the most important parameters for the evaluation of the join stage. 20 ele-
ments were randomly chosen from the data set as the center elements. The queries were
run with 2, 4, 6, . . . , 20 center elements. To keep the number of configurations low, the
window size for the center element stream is set to either one time instance (i. e., one
millisecond) or to 60 minutes. The former reflects a trigger on center elements only, the
latter additionally reflects a trigger on each non-center stream element.

Figure 6.10 shows a box plot of the latencies of all configurations. Two main observa-
tions can be made. First, the median latency is significantly lower for queries where all
stream elements trigger a join, i. e., with a 60 minutes (60m) window on the non-center
input port of the join. The query also has results with a higher latency as indicated by
the whiskers. Nevertheless, the median value is lower because of the joins which are
triggered by the non-center elements. These produce less join results and therefore have
a lower load on the following operators, resulting on lower latencies.

6.3 Performance Evaluation 155

02
c,

 1
m

s
02

c,
 6

0m

04
c,

 1
m

s
04

c,
 6

0m

06
c,

 1
m

s
06

c,
 6

0m

08
c,

 1
m

s
08

c,
 6

0m

10
c,

 1
m

s
10

c,
 6

0m

12
c,

 1
m

s
12

c,
 6

0m

14
c,

 1
m

s
14

c,
 6

0m

16
c,

 1
m

s
16

c,
 6

0m

18
c,

 1
m

s
18

c,
 6

0m

20
c,

 1
m

s
20

c,
 6

0m

Configuration

0

50

100

150

200

250
La

te
nc

y
in

 m
s

Latency Join (Without Outliers)

Figure 6.10: The latencies of the join stage with different configurations and a buffer
with a size of 200 000 elements.

The second observation is that the median latency increases with the number of center
vessels. This is because the number of elements produced by the join increases with the
number of center elements. Therefore, the created elements have to wait longer for the
next spatio-temporal stage. This congestion leads to higher latencies.

The described behavior of the effects in Figure 6.10 can better be seen in a latency
plot over time. Figure 6.11 plots the latency of the result elements over time. The
latency of the elements is low as long as the buffer is not filled. Later, the latency has
a lot of high peaks. The number of peaks can be reduced or eliminated with a bigger
buffer. Figures 6.12 and 6.13 make this effect visible. With the increasing buffer size, the
latencies for the different queries are lowered in comparison to Figure 6.10, as the box
plot in Figure 6.15 shows. The more elements are produced (on the right of the plot),
the more likely that the buffer is too small. The remaining peaks are probably situations
where the garbage collector of the Java Virtual Machine (JVM) cleans up the memory.

The characteristics of the peaks can better be seen in a more detailed view. Figure 6.14
shows such a detailed view on a part of the plot from Figure 6.11. Such a peak increases
step by step and falls down sharply at its end. This can be explained by the join behavior:
when a center element arrives at the join operator, it is joined with all non-center ele-
ments (depending on the point in time this can roughly be about a thousand elements).
The first joined element can be processed by the next step immediately. The second
has to wait a little for the previous element and so on. The last element has to wait the
longest. In this plot, only roughly above 150 elements are in the plot because not every

156 Evaluation

0 2000 4000 6000 8000 10000 12000 14000
Result Elements

0

50

100

150

200

250

La
te

nc
y

in
 m

s

Latency over Time (10c, 1ms, 200000 buffer)

Figure 6.11: The latency of the join stage over time with 10 center elements, a center
window of size 1 ms and a buffer with a size of 200 000 elements.

0 2000 4000 6000 8000 10000 12000 14000
Result Elements

0

50

100

150

200

250

300

350

La
te

nc
y

in
 m

s

Latency over Time (10c, 1ms, 500000 buffer)

Figure 6.12: The latency of the join stage over time with 10 center elements, a center
window of size 1 ms and a buffer with a size of 500 000 elements.

joined element will be in the result set after the spatio-temporal step. Nevertheless, the
tendency of the behavior is visible anyway.

Real-Time Data Rate

The described scenarios are a test of the maximum capabilities of the created system.
Nevertheless, an important measurement is if the system is capable to run the queries in
real-time, i. e., to keep up with the pace of the stream. That is the case if the data rate
of the processing measured in this evaluation is higher than the data rate of the original
data stream. For this test, no buffer should be used as it would distort the results of this
scenario with a limited stream compared to an unbounded stream.

The data set has 81 132 data elements in two hours (cf. 6.1). Thus, the data rate of the
live input stream would be roughly 81132 tuples

2·60·60 seconds =
81132 tuples
7200 seconds ≈ 11.3 tuples per second.

6.3 Performance Evaluation 157

0 2000 4000 6000 8000 10000 12000 14000
Result Elements

0

20

40

60

80

100

120

La
te

nc
y

in
 m

s

Latency over Time (10c, 1ms, 1000000 buffer)

Figure 6.13: The latency of the join stage over time with 10 center elements, a center
window of size 1 ms and a buffer with a size of 1 000 000 elements.

0 50 100 150 200
Result Elements

0

20

40

60

80

100

120

140

La
te

nc
y

in
 m

s

Latency over Time (10c, 1ms, 200000 buffer)

Figure 6.14: Detail view of the latency of the join stage over time with 10 center ele-
ments, a center window of size 1 ms and a buffer with a size of 200 000 elements.

158 Evaluation

02
c,

 1
m

s
02

c,
 6

0m

04
c,

 1
m

s
04

c,
 6

0m

06
c,

 1
m

s
06

c,
 6

0m

08
c,

 1
m

s
08

c,
 6

0m

10
c,

 1
m

s
10

c,
 6

0m

12
c,

 1
m

s
12

c,
 6

0m

14
c,

 1
m

s
14

c,
 6

0m

16
c,

 1
m

s
16

c,
 6

0m

18
c,

 1
m

s
18

c,
 6

0m

20
c,

 1
m

s
20

c,
 6

0m

Configuration

0

50

100

150

200

250

300

La
te

nc
y

in
 m

s

Latency Join (Without Outliers)

Figure 6.15: The latencies of the join stage with different configurations and a buffer
with a size of 1 000 000 elements.

If the evaluated data rate is higher than this value, the system can keep up with the
real-time data rate.

Figure 6.16 shows the data rates of different configurations of the query with different
numbers of observed center elements, no buffer, ten points in time in the prediction time
dimension and a radius of 5000 meters. Note that the measured values are for the whole
query, not only for the join stage. As can be seen, the data rate of the queries with a 60
minutes window on the center-port is remarkably lower than the queries with only a one
millisecond window. This is because the join produces more results in that configuration,
which leads to a higher load on the following operators. Nevertheless, the data rate is in
all cases above the average real-time data rate of this specific data set. For example, the
lowest value is 238 tuples per second for the “20c, 60m” configuration.

In conclusion, the join stage has a significant impact on the overall query performance.
While the join itself does not add too much latency to the query as can be seen in the sit-
uations with a non-filled buffer or with an input delay to mimic the real stream data rate,
the created load due to the higher amount of stream elements can lead to a congestion
in the stream processing pipeline especially because of the following spatio-temporal
stage. With a real-time stream (with the chosen original scenario), no congestion occurs.
The effect of congestion can be decreased with an in-memory buffer. The next section
discusses the last stage of this query.

6.3 Performance Evaluation 159

02
c,

 1
m

s
02

c,
 6

0m

04
c,

 1
m

s
04

c,
 6

0m

06
c,

 1
m

s
06

c,
 6

0m

08
c,

 1
m

s
08

c,
 6

0m

10
c,

 1
m

s
10

c,
 6

0m

12
c,

 1
m

s
12

c,
 6

0m

14
c,

 1
m

s
14

c,
 6

0m

16
c,

 1
m

s
16

c,
 6

0m

18
c,

 1
m

s
18

c,
 6

0m

20
c,

 1
m

s
20

c,
 6

0m

Configuration

0

2000

4000

6000

8000

10000
Da

ta
 ra

te
 in

 tu
pl

es
 p

er
 se

co
nd

Datarate (Without Outliers)

Figure 6.16: Data rate of the radius query with different configurations and without a
buffer.

6.3.5 Spatio-Temporal Stage

The last step in the presented generic moving object query structure (cf. 5.6) is the spatio-
temporal calculation. As a common spatial or spatio-temporal query, a radius query is
evaluated in this section. Again, the join parameters are an important factor for the per-
formance of the query. As they have been evaluated independently, the join parameters
are fixed in this query and only the relevant parameters for the radius calculation are
altered. The other parameters are set to one center element with a trigger only on new
center elements and a buffer of 200 000 elements.

These include mainly the prediction time interval and the granularity of the prediction
time. Additionally, the size of the radius can be altered. An example configuration is
shown in Listing 6.17. Here, the prediction time includes ten points in time, hence,
for each incoming stream element ten distances have to be calculated and the distance
predicate in the select operator needs to be evaluated ten times.

160 Evaluation

1 / / / S e t t h e p r e d i c t i o n t ime
2 predTime = PREDICTIONTIME ({
3 a d d T o S t a r t V a l u e = [0 , ’SECONDS’] ,
4 addToEndValue = [1 0 , ’SECONDS’] ,
5 P r e d i c t i o n B a s e T i m e U n i t = ’SECONDS’
6 } , i n p u t)
7

8 / / / C a l c u l a t e e x a c t d i s t a n c e
9 c a l c D i s t a n c e = MAP({

10 e x p r e s s i o n s = [[’ O r t h o d r o m i c D i s t a n c e (c e n t e r _ t e m p _ S p a t i a l P o i n t ,
t e m p _ S p a t i a l P o i n t) ’ , ’ t d i s t a n c e ’]] ,

11 k e e p I n p u t = t r u e
12 } , predTime)
13

14 / / / S e l e c t v e s s e l s w i t h i n t h e r a d i u s
15 d i s t a n c e S e l e c t = SELECT({
16 p r e d i c a t e = ’ t d i s t a n c e < 1000 ’
17 } , c a l c D i s t a n c e)

Listing 6.17: Spatio-temporal stage of a radius query

For the evaluation of the impact of the prediction time, the radius has been fixed to
5 000 meters and the granularity to one minute. Then, the prediction time has been set
to the next 10, 20 and 30 minutes.

The radius is evaluated independently to reduce the number of different configurations.
The prediction time is set to the next ten minutes with a one minute granularity. For
the radius, 5 000, 10 000, 15 000 and 20 000 meters are used. With a growing radius,
more vessels are expected to be within the result set, which may has an impact on the
performance.

Figure 6.17 depicts the latencies of the different radius configurations. The main take-
aways from this plot are that (1) the latency of the whole radius query for this configura-
tion stays below 200 ms and that (2) the size of the radius does not affect the latency of
the query in a way that it would be significant for the use case. The reason for this lies
in the way the query works: it calculates the distance between the center element and all
joined elements (i. e., all other elements) and then does a comparison of the predefined
radius and the calculated distances. Hence, the number of distance calculations and com-
parisons is equal for different sizes of the radius. As the selection of the elements in the
radius is the last step of the query, the number of selected elements does not influence
the performance of following operators. Therefore, no performance differences can be
measured.

As expected, the latency behavior over time, which has already been described in the
join stage (cf. 6.3.4), can be observed in this stage, too. Figure 6.18 shows the effect with
the result elements of a full query. In fact, it is the same waiting time as in the previous

6.3 Performance Evaluation 161

05
00

0m

10
00

0m

15
00

0m

20
00

0m

Configuration

0
25
50
75

100
125
150
175

La
te

nc
y

in
 m

s

Latency Radius (Without Outliers)

Figure 6.17: Latencies of the full radius query with different radii and a buffer of 200 000
elements, one center element and a center window of 1 ms.

stage. When a center element is joined, the latency grows for each joined element and
then shrinks abruptly when all elements are joined for that specific center element.

Prediction Time

Next, the impact of the prediction time interval on the query latency is measured. The
results can be seen in Figure 6.19. The left three boxes show the latencies for a query
with one center element, the right three boxes for 20 center elements.

The median latency for the first three queries grows from about 61 ms for 10 prediction
minutes over 123 ms to 206 ms. As can be seen, the latency grows roughly linear with the
number of points in time to predict, which is expected. Internally, the spatial calculation
is done multiple times, one time for each prediction minute. Hence, when creating a
query, the prediction time should be carefully chosen for the right balance between time
span and granularity versus the computational costs.

The right three boxes show that the latency is only slightly negatively affected when
increasing the number of center elements. For the scenario with 20 center elements, the
median latency is nearly identical. The reason is that the computational costs for a single
stream element flowing through the query graph is not affected by the number of center
elements. In each case, a stream element that is a center element needs to go through
the same steps, among others the join stage and the spatio-temporal stage. Hence, the
time a single element needs to be processed does not change, there are just more stream
elements that need to be processed (one after each other). Nevertheless, this only affects
the data rate, as has been shown in Figure 6.16.

162 Evaluation

0 100 200 300 400 500
Result Elements

0

25

50

75

100

125

150

175

La
te

nc
y

in
 m

s

Latency over Time for Full Query (1c, 1ms, 200000 buffer)

Figure 6.18: Latency of one full radius query over time with a radius of 5 000 meters, a
buffer of 200 000 elements, one center element and a center window of 1 ms.

1c
, 1

0
pr

ed
. m

in

1c
, 2

0
pr

ed
. m

in

1c
, 3

0
pr

ed
. m

in

20
c,

 1
0

pr
ed

. m
in

20
c,

 2
0

pr
ed

. m
in

20
c,

 3
0

pr
ed

. m
in

Configuration

0

100

200

300

400

La
te

nc
y

in
 m

s

Latency Prediction Time (Without Outliers)

Figure 6.19: Latency of the full radius query with a radius of 5 000 meters, no buffer and
a center window of 1 ms.

6.3 Performance Evaluation 163

1c
, 1

0
pr

ed
. m

in

1c
, 2

0
pr

ed
. m

in

1c
, 3

0
pr

ed
. m

in

20
c,

 1
0

pr
ed

. m
in

20
c,

 2
0

pr
ed

. m
in

20
c,

 3
0

pr
ed

. m
in

Configuration

0
10000
20000
30000
40000
50000
60000
70000

La
te

nc
y

in
 m

s

Latency Prediction Time (Without Outliers)

Figure 6.20: Latency of the full radius query over time with a radius of 5 000 meters, a
buffer of 200 000 elements and a center window of 1 ms.

Buffer

The previous measurement has been done without any buffer. Figure 6.20 shows the
latencies when using a buffer with a size of 200 000 elements. As can be seen, the
latencies, especially of the queries with 20 center elements, grow significantly to median
values of 26, 42 and 67 seconds. That is because of the waiting time within the buffer.
The join can work faster, but the elements have to wait longer before the spatio-temporal
processing is finished.

In conclusion, the query latency is significantly influenced by the configuration, espe-
cially in the join operator and with the prediction time configuration. When measuring
the performance of the stages independently, e. g., by using a buffer, it is clearly visi-
ble that the spatio-temporal stage is the bottleneck in this query. The median latency
of the whole query is in all tested configurations below one second. Nevertheless, the
evaluation also shows that a performance improvement in the spatio-temporal stage is
desirable. For that purpose, the filter and refine concept is evaluated later in this chap-
ter. Before going on with the optimized radius query, another spatio-temporal query is
evaluated in the next section.

164 Evaluation

6.3.6 kNN Query

Next to the radius query, the kNN query is also a common spatial query. It seems to be
conceptually similar to the radius query, as it also calculates objects which are close to
another object, but works differently. Instead of a select operator for the spatial stage,
an aggregation with a top k function is used. Therefore, it is another interesting query to
evaluate.

Listing 6.18 shows the spatial stage of the kNN query. Again, the prediction time
is defined in Line 1 and then the distance between the joined objects is calculated. In
Line 10, a time window is set, because the element join beforehand has removed the
window information (cf. 4.7.1). The window here includes all the elements that have
been joined with the center element with the last trigger, because they have the same
start timestamp (the start timestamp from the trigger). Hence, the aggregation uses all
the latest elements for the TopK function. A tumbling window is used to create exactly
one result per center element.

For this query, again, the prediction time has an impact on the performance. Addi-
tionally, the “k” parameter of the TopK function (here set with ’TOP_K’ = ’2’) and the
prediction function can impact the performance. Because the impact of the prediction
time has already been evaluated for the radius query, the varying parameter here is only
the “k”. The query is analyzed with “k” set to 10, 20, 30 and 40. For the prediction func-
tion, the ToLinearTemporalPoint temporalization function is used, which creates a
linear function. The query is executed with one center element which sends its location
37 times during the two hours of the data set. The query uses a buffer with a size of
200 000 elements, to have it comparable to the radius query above.

6.3 Performance Evaluation 165

k
=

10

k
=

20

k
=

30

k
=

40

Configuration

0

100

200

300

La
te

nc
y

in
 m

s

kNN Query Latency (Without Outliers)

Figure 6.21: The latency distribution for different values for k in a kNN query.

1 predTime = PREDICTIONTIME ({
2 a d d T o S t a r t V a l u e = [0 , ’MINUTES’] , addToEndValue = [1 0 , ’MINUTES’] ,

p r e d i c t i o n B a s e T i m e U n i t = ’MINUTES’
3 } , i n p u t)
4

5 c a l c D i s t a n c e = MAP({
6 e x p r e s s i o n s = [[’ O r t h o d r o m i c D i s t a n c e (c e n t e r _ t e m p _ S p a t i a l P o i n t ,

t e m p _ S p a t i a l P o i n t) ’ , ’ t d i s t a n c e ’]] ,
7 k e e p i n p u t = t r u e
8 } , predTime)
9

10 t imeWin = TIMEWINDOW({ s i z e = [1 , ’SECONDS’] , advance = [1 , ’SECONDS
’] } , c a l c D i s t a n c e)

11

12 AGGREGATION({
13 a g g r e g a t i o n s = [[’ FUNCTION’ = ’TopK ’ , ’TOP_K’ = ’10 ’ , ’

INPUT_ATTRIBUTES ’ = [’ id ’ , ’ t d i s t a n c e ’] , ’SCORING_ATTRIBUTES’ =

’ t d i s t a n c e ’ , ’UNIQUE_ATTR’ = ’ id ’]] ,
14 e v a l _ a t _ o u t d a t i n g = f a l s e
15 } , timeWin)

Listing 6.18: Spatio-temporal stage of a kNN query

Figures 6.21 and 6.22 show the evaluation results. As can be seen, the median latency
grows moderately with the k parameter from about 17 to about 37 ms for k set to ten and
40, respectively. The data rate decreases slightly from about 4450 down to about 4200
tuples per second with an increasing k. Hence, the data rate is way above the original
data rate of the data set.

166 Evaluation

k
=

10

k
=

20

k
=

30

k
=

40

Configuration

3000

4000

5000

6000

Da
ta

 ra
te

 in
 tu

pl
es

 p
er

 se
co

nd

kNN Query Data Rate (Without Outliers)

Figure 6.22: The data rate distribution for different values for k in a kNN query.

6.4 Filter Approaches in Moving Object Queries

The previously described and evaluated queries use the straightforward structure for
spatio-temporal queries from Section 5.6. To increase query performance, Section 5.5
describes how a filter and refine approach can be applied to streaming spatio-temporal
queries. In this section, this approach is evaluated to measure the impact on the query
performance as well as on the completeness of the result. The approach is evaluated on
the radius and the kNN query.

6.4.1 Optimized Radius Query

To evaluate the performance improvement of the filtering approaches, the latencies and
data rates of the same spatio-temporal query are compared while applying different fil-
tering techniques. The following filtering techniques and configurations were used:

• no filter: Normal radius query (cf. 6.2.1) with a radius set to 5 000 m

• approx. dist.: Approximate distance (cf. 5.5.1) with maximum speed of vessels set
to 6 meters per second

• single rect.: Single rectangle (cf. 5.5.2) with additional radius set to 3 000 m

• multi rect.: Multi rectangle (cf. 5.5.3) with additional rectangles around the radius
set to three times 1 000 m

Figure 6.23 depicts the latencies of the optimized queries with an inserted filter step
compared to the non-optimized queries. As can be seen, the latencies can be reduced
significantly from around 70 ms to around 5 to 8 ms. The effect is also visible in the data
rate measurements. Especially for more demanding queries with more center elements,

6.4 Filter Approaches in Moving Object Queries 167

05
c,

 a
pp

ro
x.

 d
ist

.
05

c,
 m

ul
ti

re
ct

.
05

c,
 n

o
fil

te
r

05
c,

 si
ng

le
 re

ct
.

10
c,

 a
pp

ro
x.

 d
ist

.
10

c,
 m

ul
ti

re
ct

.
10

c,
 n

o
fil

te
r

10
c,

 si
ng

le
 re

ct
.

15
c,

 a
pp

ro
x.

 d
ist

.
15

c,
 m

ul
ti

re
ct

.
15

c,
 n

o
fil

te
r

15
c,

 si
ng

le
 re

ct
.

20
c,

 a
pp

ro
x.

 d
ist

.
20

c,
 m

ul
ti

re
ct

.
20

c,
 n

o
fil

te
r

20
c,

 si
ng

le
 re

ct
.

Configuration

0

50

100

150

200

250

La
te

nc
y

in
 m

s

Latency Optimized Radius Query (Without Outliers)

Figure 6.23: Latencies of optimized and not optimized radius queries without any buffer
and with ten points in time in the prediction time interval. 05c indicates five center
elements, 10c ten center elements and so on.

such as 15 and 20, the data rate of the non-optimized queries are way lower than the data
rates of the optimized queries.

Queries can be more demanding with more center elements or with more points in
time to predict, among other configurations. In these examples, only ten minutes with
a granularity of one minute (i. e., ten points in time) were predicted. When predicting
more points in time, the filtering techniques will improve the performance advantage
compared to a non-optimized query even more.

When taking a closer look at the optimized queries on Figure 6.25, two trends are
visible. First, the median latency is reduced with a growing number of center elements.
That can be explained with the decreasing data rate (see Figure 6.24) for more center
elements. When the elements enter the stream in a lower pace, they have a lower waiting
time after the join before they can enter the spatio-temporal stage.

The second trend is that the single rectangle performs slightly better than the other
filter approaches in every query while the approximate distance performs worst. The
reason is that the rectangle only needs to be calculated once for each new center ele-
ment and then only a spatial within needs to be calculated. The approximate distance
needs to be calculated for each element after the join, which is more demanding than the
within calculation. The multi rectangle may be better in filtering out more elements,

168 Evaluation

05
c,

 a
pp

ro
x.

 d
ist

.
05

c,
 m

ul
ti

re
ct

.
05

c,
 n

o
fil

te
r

05
c,

 si
ng

le
 re

ct
.

10
c,

 a
pp

ro
x.

 d
ist

.
10

c,
 m

ul
ti

re
ct

.
10

c,
 n

o
fil

te
r

10
c,

 si
ng

le
 re

ct
.

15
c,

 a
pp

ro
x.

 d
ist

.
15

c,
 m

ul
ti

re
ct

.
15

c,
 n

o
fil

te
r

15
c,

 si
ng

le
 re

ct
.

20
c,

 a
pp

ro
x.

 d
ist

.
20

c,
 m

ul
ti

re
ct

.
20

c,
 n

o
fil

te
r

20
c,

 si
ng

le
 re

ct
.

Configuration

0

2000

4000

6000

8000

10000

Da
ta

 ra
te

 in
 tu

pl
es

 p
er

 se
co

nd

Data Rate Optimized Radius Query (Without Outliers)

Figure 6.24: Data rates of optimized and not optimized radius queries without any buffer
and with ten points in time in the prediction time interval. 05c indicates five center
elements, 10c ten center elements and so on [BG19].

05
c,

 a
pp

ro
x.

 d
ist

.

05
c,

 m
ul

ti
re

ct
.

05
c,

 si
ng

le
 re

ct
.

10
c,

 a
pp

ro
x.

 d
ist

.

10
c,

 m
ul

ti
re

ct
.

10
c,

 si
ng

le
 re

ct
.

15
c,

 a
pp

ro
x.

 d
ist

.

15
c,

 m
ul

ti
re

ct
.

15
c,

 si
ng

le
 re

ct
.

20
c,

 a
pp

ro
x.

 d
ist

.

20
c,

 m
ul

ti
re

ct
.

20
c,

 si
ng

le
 re

ct
.

Configuration

0

10

20

30

La
te

nc
y

in
 m

s

Latency Optimized Radius Query (Without Outliers)

Figure 6.25: Latencies of optimized radius queries without any buffer and with ten points
in time in the prediction time interval. 05c indicates five center elements, 10c ten center
elements and so on.

6.4 Filter Approaches in Moving Object Queries 169

but this effect seems to be not worth the higher complexity of calculating more rectangles
and later on deciding which rectangle to use.

Even though the performance can be improved significantly, the presented filtering
techniques have a downside: it is possible that they miss results. With the evaluated con-
figurations, the numbers of missed results are rather low. The results are best visible for
the scenario with 20 center elements, because this scenario has the most result elements.
The original result set from the radius query without any filter contains 43 488 elements.
The approximate distance filter misses one result, the rest of the result set is equal to the
original one.

The single rectangle and multi-rectangle methods both miss 28 results, i. e., about
0.064%. As expected, they miss exactly the same number, because the three time 1000 m
from the multi rectangle query are equal to the one time 3000 m from the single rectan-
gle query. Additionally to the low number of missed elements it has to be said that those
elements are left out that are far away from the respective center element and therefore
have a possibly lower prediction quality anyway. Nevertheless, if it needs to be guar-
anteed that all possible results are in the result set, the filtering approaches cannot be
applied.

In conclusion, the filter approaches for the radius query are a possible and effective
method to improve the performance of the query. They miss only very few possible
results but improve the latency and data rate significantly, especially for more demanding
queries. The best configurations for the filtering approaches depend on the use case.
The values used here were only a good guess based on the nature of the data (e. g., the
speed at which vessels move). With a more sophisticated parameter tuning that balances
between result completeness and performance improvement, the results may be even
more improved.

6.4.2 Optimized kNN Query

The previously evaluated filter techniques are made for the radius query. They filter out
elements based on the distance to a center object. The kNN also uses the distance of
objects to calculate the nearest neighbors, but the actual distance of the elements is not
known in advance. Therefore, the presented filtering techniques may perform worse for
the kNN query. This is evaluated with a kNN query with ten center elements and k set
to ten. In other words, the query searches for ten different elements for the nearest ten
elements. To have comparable results for the different queries, a result element is created
at maximum once every minute for each center element.

Figures 6.26 and 6.27 show the performance comparison between a non-optimized
query and the previously described three optimized queries. For all of the filtering tech-
niques, some settings are necessary. For the evaluation, a radius of 40 km for the ap-
proximate distance query and the single rectangle has been used. For the multi-rectangle

170 Evaluation

10
c,

 1
0k

, a
pp

ro
x.

 d
ist

.

10
c,

 1
0k

, m
ul

ti
re

ct
.

10
c,

 1
0k

, n
o

fil
te

r

10
c,

 1
0k

, s
in

gl
e

re
ct

.

Configuration

0

250

500

750

1000

1250

1500

La
te

nc
y

in
 m

s

Latency Optimized kNN Query 40km filter (Without Outliers)

Figure 6.26: Box plot of the latency of optimized and not optimized kNN queries.

method, three times 13.333 km has been used. Here, a major weakness of the approaches
for the kNN query is visible: the density of the objects has to be guessed and the assumed
density is identical for each part of the data. Unfortunately, that is not the case in the
data set for the evaluation: on the ocean, the vessel density is lower than in a harbor.

As expected, the performance of the query can be improved with the introduction of
a filtering step. The latency shrinks from a median of about 480 ms to about 160 ms
for the optimized queries. It can be seen that the multi-rectangle method performs best
with a median of around 130 ms compared to the around 150 ms of the single rectangle
and about 160 ms of the approximate distance. The data rate is also improved from about
3350 tuples per second to about 4770 (multi rectangle), 4540 (single rectangle) and 4460
(approximate distance) tuples per second (all median values).

The evaluation shows a significant improvement of the performance of the queries
when using the filtering approaches. The multi rectangle approach performs best both
in the latency as well as in the data rate evaluation. Nevertheless, an important question
is if the filtering step removes relevant results. In this important measurement, the multi
rectangle performs significantly worse compared to the two other methods. While the
approximate distance with 94% and the single rectangle with 95% equal results com-
pared to the non-filtered version come very close to a perfect result, the multi rectangle
only creates 12% equal results and misses 62 of the 509 result elements completely. The
two other methods create all results and only miss a few of the closest elements that
are very (more than 40 km) far away from the center element. For example, instead of

6.4 Filter Approaches in Moving Object Queries 171

10
c,

 1
0k

, a
pp

ro
x.

 d
ist

.

10
c,

 1
0k

, m
ul

ti
re

ct
.

10
c,

 1
0k

, n
o

fil
te

r

10
c,

 1
0k

, s
in

gl
e

re
ct

.

Configuration

0

2000

4000

6000

8000
Da

ta
 ra

te
 in

 tu
pl

es
 p

er
 se

co
nd

Data Rate Optimized kNN Query 40km filter (Without Outliers)

Figure 6.27: Box plot of the data rate of optimized and not optimized kNN queries.

finding the required ten elements, only eight are found in some cases, wherefore for this
part of the result the answer would be considered as 80% equal.

The poor performance of the multi-rectangle method can be easily explained. As
the temporal distance of the elements is small (probably only a few minutes in most
cases), in all cases only the smallest rectangle is used. With its 13 km, a lot of results
are missed. The approach of the multi rectangle filter does not work with the way the
kNN query is implemented here. Other ways of implementing this approach could be
possible, for example by learning the density of the vessels in certain areas and choosing
the rectangle based on that information instead on the possible temporal distance.

In the case that the filter radius is set to 10 km instead of 40, the poor performance
can also be seen for the other methods. The amount of correct results shrinks down
to about 10 to 12%. Nevertheless, the performance improvement stays similar to the
improvement of the 40 km filter. Hence, parameter tuning could improve the results
even further and are specific for the query and the properties of the data. All in all it
can be seen that the filtering techniques also work for kNN queries but in the case of the
multi rectangle would need to be adapted.

172 Evaluation

6.4.3 Key Takeaways

The filter approaches evaluated in this section can be applied for radius and kNN queries
on data streams and are capable to improve the performance significantly, both the la-
tency and the data rate. Nevertheless, the approaches depend on a few parameters which
have to be tuned for the specific query and the properties of the data. When having un-
suitable parameter settings, the filters can lead to a significant loss of relevant results,
as can be seen in the kNN query (cf. 6.4.2). The filter approaches work best for radius
queries but can also be applied on kNN queries. For good results with the multi rectangle
approach in the kNN query, the approach would need to be adapted for the way the kNN
query is implemented.

6.5 Summary

The evaluation of the integration of temporal attributes into Odysseus is split into two
parts to cover the two parts of the research question (cf. 1.2). The first half of the research
question asks for a flexible and generic semantics to express queries on moving object
data streams. The first part of the evaluation in this chapter in Section 6.2 uses common
generic query types such as the radius and the kNN query to show that these can be
expressed with the implemented system. Scenarios in the maritime domain, based on
AIS data described in Section 6.1, illustrate how the temporal algebra can be used for
practical use cases. Another scenario without moving objects from the energy domain in
Section 6.2.8 illustrates that the system is generic enough to be applied to a wide range
of use cases.

The second half of the research question asks for the performance of the queries.
Therefore, the second part of the evaluation in Section 6.3 takes a closer look at the
performance indicators of the queries and with that of the implemented temporal alge-
bra. The costs of the different typical steps in a spatio-temporal streaming query are
measured and important parameters for the performance of the queries are determined.
Especially the join and prediction time settings have a significant impact on the query
performance. The evaluated queries all performed significantly faster than real-time and
should therefore be applicable for real use cases with the data and scenarios used for the
evaluation.

In the concept, filtering techniques are presented to improve the performance of spatio-
temporal queries even further (cf. 5.5). These filtering techniques are evaluated in Sec-
tion 6.4. The evaluation shows that the performance of the queries can be significantly
improved. Based on the parameters, the results of the queries with filters are identical
or very close to the queries without a filter. Nevertheless, when using unsuitable pa-
rameters, the query can miss a significant part of the original results. The presented
techniques work best for radius queries but can also be applied for kNN queries. Never-

6.5 Summary 173

theless, especially for the multi rectangle approach, further adaptation for the kNN query
would be necessary.

All in all, the evaluation shows that the derived concepts from the moving object alge-
bra and the concept of another temporal dimension are applicable in the data streaming
context, with moving objects and even in scenarios without a spatial context. The new
capabilities in a DSMS allow for more flexible queries especially when dealing with tem-
poral differences in the data. The impact on the performance depends on the parameters
but can be significantly improved with the presented filtering techniques.

The goal of this chapter is to evaluate if and how the concept and implementation
of this work answers the research question from Chapter 1. Based on the results of
this evaluation, the research question can be considered as answered. This work shows
how queries on spatio-temporal data streams from moving objects can be expressed and
executed using a DSMS as the foundation and by extending it with a temporal algebra
and spatio-temporal capabilities. The evaluation shows that not only can the queries be
executed, but also that they can be processed efficiently. That goal is achieved by a new
approach to use a join operator with element windows and additionally by adding a filter
step to spatio-temporal queries.

174 Evaluation

175

7 Conclusion and Future Work

This chapter concludes the thesis about spatio-temporal queries on data streams from
moving objects and starts with a summary of the essential parts of the thesis in Sec-
tion 7.1. The following Section 7.2 reviews and evaluates the results considering the
goals of this work and summarizes the contributions. Section 7.3 concludes this thesis
with a look on future work that can be done based on this thesis.

7.1 Summary

The motivation behind this work is the usage of spatio-temporal data streams for sce-
narios with multiple moving objects such as vessels in a densely crowded area. Here,
near real-time queries are useful to automatically detect moving objects which are or
will be (too) close to each other, which head to forbidden areas or in general to get a
better overview of a situation due to better information processing. Running queries
on spatio-temporal data streams from moving objects is a necessary capability for these
goals. DSMS are a good starting point to reach this goal, as they are made to process
data streams. Nevertheless, they lack necessary capabilities for the desired goal, for ex-
ample, handling temporal gaps between the data stream elements from different moving
objects. Based on these goals and challenges, the following research question emerged:

How can queries on spatio-temporal data streams from moving objects be expressed
flexibly and with generic semantics and processed efficiently?

This research question has been analyzed in this thesis. The foundation for the analysis
are DSMS using the interval approach. The thesis develops an extension for such a
DSMS based on the ideas from the moving object algebra. In the following, the most
important parts of the thesis are summarized.

Representation of Moving Objects in Data Streams

In a data stream with stream elements, each stream element can have multiple attributes.
The attributes can hold data, which in turn can have certain types, for example a string.
Unfortunately, DSMS typically cannot represent moving spatial objects, e. g. a moving
point. Chapter 3 lays out the foundations to integrate this capability into DSMS.

Instead of adding certain special types for moving points, regions and so on, the con-
cept is kept more generic by adding the possibility to make any attribute a temporal
attribute. This way, not only moving points, i. e., points that change over time, but also
moving integers, etc. are possible. This idea is based on the concept from the moving
object algebra for spatial databases by [GBE+00]. To state more clearly that this con-
cept does not only work for spatial attributes, these attributes are called temporal in this
thesis, e. g., a temporal integer or a temporal point.

176 Conclusion and Future Work

Having the attribute types available is not enough to use them for query processing.
The behavior of the operations on those attributes also needs to be defined. Section 3.3
describes the logical integration into a DSMS with time-interval approach. This leads
to a bitemporal stream [Bol11]: one time interval from the interval approach and one
time interval from the temporal attribute types. One goal of the research question is the
flexible and generic semantics, which is achieved with this approach.

An important aspect for the integration is that the existing operations of a DSMS
should still be applicable on temporal attributes. If they would need to be reimplemented,
many advantages of using a DSMS would be lost. This has been achieved with wrappers
around the existing operations, so that the existing logic did not need to be changed and
the code changes could be kept small.

Aspects of Physical Integration

Based on the definitions of the logical algebra in Chapter 3, Chapter 4 describes the
physical integration with aspects that are closer to the real implementation.

The temporalization is an important first step in a spatio-temporal query. It converts
a non-temporal attribute into a temporal attribute with a temporalization function. This
function can often be an aggregation function and is then executed by the aggregation
operator. Again, existing capabilities from the DSMS have been reused to have a seam-
less integration. Closely related to this step is the definition and behavior of the time
interval for the temporal attributes. Next to the existing stream time interval, the predic-
tion time is introduced in Section 4.3. It defines the time in which the temporal attributes
can be used. The behavior of the prediction time is an important aspect of the newly in-
troduced temporal attributes. The section describes how the different operations on the
data stream, such as a select operation, affect the prediction time.

Just as non-temporal attributes, temporal attributes can occur in expressions. Expres-
sions with temporal attributes are evaluated for all points in time from in the prediction
time interval. The process of translating the expression to a temporal expression is called
“lifting”, i. e., the resulting expression is called a lifted expression. The aspects of lifted
expressions are detailed in Section 4.4, followed by Section 4.5 which explains the tem-
poral trust value that can be used to estimate the trustworthiness of a predicted value.

The previous sections discuss the foundations of temporal attributes and lifted ex-
pressions in general. Sections 4.6 and 4.7 show a challenge that occurs in queries with
multiple moving objects and develop a generic solution for this challenge. First, in Sec-
tion 4.6, a query plan for a spatio-temporal radius query is developed. A main downside
of this query is a blocking behavior that has its origin in the join behavior and the neces-
sary element windows before it. The blocking behavior is not acceptable for a query that
should produce results as soon as new location updates arrive at the system. Therefore,
Section 4.7 develops a solution for non-blocking queries by introducing the element join
operator, a join with an integrated element window. By integrating the element window

7.1 Summary 177

into the join operator itself instead of having the element window in a window operator
before the join, the operator does not have to wait for the next element before processing
the current element. The details of time interval handling, the algorithm as well as an
optimized version of the element join operator are explained in this section. Even though
being a more generic solution for stream processing, the element join is a crucial part of
the spatio-temporal moving object queries.

The final section in Chapter 4 continues the path to more specific optimizations for
moving object queries. In Section 4.8, a spatio-temporal filter concept is developed for
a filter and refine step in spatio-temporal queries on moving objects. A challenge for
this concept is that moving objects might move over time, but predicting the movement
could be computationally expensive and should be avoided. The filter concepts allow
a certain approximation and with that a certain inaccuracy with the risk to loose some
results for the upside of improving the query performance. The concepts try to estimate
the possible movement of the moving objects to filter out those which are too far away
to be in the result set. The filter approaches are mainly focused on radius queries.

In conclusion, Chapter 4 develops the physical foundations for moving object queries
on data streams. The following chapter uses these foundations to implement them into a
system.

Architecture and Implementation

The physical integration represents the theoretical background for the implementation
in Chapter 5. The developed approach is implemented into the open source DSMS
Odysseus to show the feasibility of using the physical concept with a real DSMS and
with real data streams. An important aspect of the implementation is the ability to reuse
existing concepts and capabilities of the extended system to benefit from the previous
work that has been done for the chosen system.

A main extension to Odysseus is the temporal algebra, consisting of the temporal
metadata (the prediction time), temporal attributes and the translation process from non-
temporal operators to temporal operators, all described in Section 5.2. Most of these
extensions are integrated in a way so that the user can create queries in Odysseus with
only a few changes to benefit from the additional temporal operations. For example, to
process map operations in the prediction time dimension on temporal attributes, the user
can apply existing map functions on those attributes simply as if they would be applied
to non-temporal attributes. Odysseus translates those parts of a query into temporal
operations in the background and produces temporal attributes as the result. The same is
true for other operators such as the select operator and the aggregation operator. When
implementing the translation process, the existing operators are reused, i. e., the standard
operators do not need to be reimplemented, which was a main goal of the approach.

178 Conclusion and Future Work

The element join, the join operator that includes an internal element window, is also
implemented into Odysseus. The implementation is described in Section 5.3, followed
by a brief description of the already existing spatial operations in Odysseus.

The previous chapter introduced approaches to do a filter step in spatio-temporal
queries on moving objects. The three approaches are mainly based on standard stream
processing operations. Nevertheless, a few implementations ease the filtering descrip-
tion and process for the query and are described in Section 5.5. Error estimates for the
approximate distance are discussed as well as query definitions for the different filter
approaches.

Finally, Section 5.6 develops a query structure that can be applied for different spatio-
temporal queries on moving object data streams. Based on this query structure and the
implemented extensions to Odysseus, the following chapter can evaluate the approach
according to the research question.

Evaluation

The evaluation in Chapter 6 evaluates the solution with regard to the research question
of this work. The real data that is used for most of the evaluations is described in Sec-
tion 6.1 and consists of maritime AIS messages from the US coast. To review if and
how this work answers the research question, the evaluation looks at the two parts of
the research question. First, it is evaluated in Section 6.2 if queries can be “expressed
flexibly and with generic semantics”, which is the first requirement from the research
question. For the evaluation, data from the maritime domain is used. Different typical
queries of this domain, which also represent typical queries on moving objects in gen-
eral, such as a radius and kNN query, are implemented using the developed system. To
show the generic approach of this work, another scenario is presented which does not
use any moving object related data, but works in the smart grid domain.

The second important part is the performance evaluation in Section 6.3. It evaluates
the second part of the research question: “[...] and processed efficiently”. The perfor-
mance impact of typical steps in a moving object query is measured with the radius query
as a sample query. Latency and data rate values are measured, compared and explained
for different configurations to identify the parameters with the main impact on the query
performance and to give guidance for users which create queries. A main takeaway from
the evaluation is that the tested queries work significantly faster than real-time for the
data used in this evaluation. Nevertheless, especially the join configuration which con-
trols which moving objects are observed, and the prediction time configuration which
controls how details and how far into the future the queries are predicted, influence the
performance of the queries. Another important takeaway is that the spatio-temporal
stage of the queries is a main bottleneck, wherefore the filter approaches are likely to
improve the queries performance.

7.2 Contribution 179

These filters are evaluated in Section 6.4. Not only the performance improvement is
an interesting measurement, but also how many potential results are lost. A main result
of this evaluation is that all three approaches can significantly reduce the latency of the
queries, e. g., for an optimized radius query from 70 ms (not optimized) down to 5 to 8 ms
for the optimized version. All the filter approaches only miss a very low percentage of
the possible results (e. g., 0.065%). Performance-wise, the very simple single-rectangle
method performs best, but only slightly better than the other approaches. The evaluation
shows that the same methods can also be applied to the kNN query, even if they have
slightly more missed results. The multi rectangle approach is not recommendable for
the kNN query in its current form. Another results is that for all methods in all queries
the parameters have to be tuned to gain good results. All in all, the filter step and the
developed approaches work for the presented queries on moving object data streams.

7.2 Contribution

Performing queries on spatio-temporal data streams from moving objects in a flexible
manner with high performance, especially low latency, is a non-trivial task. Previous
work does not offer a satisfying solution, even though systems for stream processing
exist. Therefore, this work offers a solution for this research gap by developing an ex-
tension for DSMS that, in a very generic way, allows to perform spatio-temporal queries
with another temporal dimension and with multiple moving objects. The developed sys-
tem is generic enough to be applicable in different scenarios, with different data streams
and even in scenarios without a spatial context. This is achieved by integrating a second
temporal dimension into the stream processing, inspired by the moving object algebra
by [GBE+00].

The contribution of this work is the integration of the aforementioned concepts into
DSMS which are build on top of the interval approach by [KS09]. Additionally, a new
concept to handle element windows in a join operator with the interval approach has
been developed to tackle blocking behavior that occurs in queries with multiple moving
objects. Using these new DSMS capabilities, the work designs a generic approach for
queries with multiple moving objects and uses this kind of template for common moving
objects queries such as radius, kNN and Closest Point of Approach (CPA). Finally, this
thesis develops approaches to integrate a filter step for performance improvements in
streaming spatio-temporal queries.

Building on top of an existing DSMS and emphasizing reusability of existing capa-
bilities of the system has been proved to be very beneficial. The vast amount of existing
operators in the DSMS can now be used with more temporal flexibility and gives the
user a great flexibility when designing and implementing queries on data streams in gen-
eral. The evaluation shows that the queries are not only very flexible, but also perform
well, depending on the use case. Especially when applying a filter step before the spatio-

180 Conclusion and Future Work

temporal stage of a query, the performance can be greatly improved while maintaining
most if not all of the results, depending on the filter approach and the chosen parameters.

Nevertheless, the approach also shows its limits. The new temporal algebra, even
though integrated into the system in a way that it can be used in a seamless way together
with the existing operators, adds a certain amount of complexity to the query creation
process. The query creator has a lot of parameters than can be tuned, which can improve
the query significantly, but can also be confusing if someone is not familiar with the
system.

The granularity and range of the prediction can decrease the performance significantly.
Even though the presented filters can improve the performance, they share the downside
that they can miss potential results. Additionally, the thesis does not cover the precision
of the prediction itself, but assumes that a method for creating a prediction function from
previous data exists for the respective domain and use case. Creating a new function that
converts historic movement data to a prediction function is not trivial. In scenarios where
the given two functions (linear and spline) are not applicable, the work to create a new
function needs to be taken into account.

In conclusion, the work shows a very flexible system to define and execute continuous
queries on data streams from moving objects. The system is build on top of an existing
DSMS and therefore can reuse most of the available capabilities. Due to this approach,
instead of a specialized system for just this use case, the functionality of the created
system is extensive and can be extended with ease due to the modular architecture of
Odysseus. For example, additionally to the core extensions of this work, a new temporal
trust value has been added to the system. Nevertheless, further improvement is possible
in future work.

7.3 Future Work

The concepts of this work and the implementation in Odysseus offer a system for stream-
ing moving object queries. Even though the implemented system is capable to be used
for certain scenarios, this work also shows interesting research gaps that can be tackled
in future work. Some of those shall be briefly discussed in the following.

Temporalization Functions

The temporalization functions introduced in this work are rather simple: they do a linear
prediction or use a spline function. These functions are more or less domain agnostic,
but could be too simple or inaccurate for some scenarios or domains. Hence, developing
better prediction functions and a system for measuring the prediction accuracy could
improve the applicability of this system for more scenarios.

In the scenarios shown, historic data from the objects that need to be predicted is
available. This could be used for to train better prediction functions. In this field, ma-

7.3 Future Work 181

chine learning could be an interesting starting point. Due to the nature of the moving
object queries, it is typically known where the objects move to. The real location can be
compared to the predicted location to improve the prediction function. Additionally, the
streaming approach with windows already offers the tools necessary to deal with concept
drifts and other streaming related challenges.

Additionally, to create a new prediction function, the source code of Odysseus needs
to be extended. Allowing to create and change the temporalization function without the
need to change the source code, e. g., with a Domain Specific Language (DSL), could
improve the usability of the system for more use cases.

Network-Restricted Scenarios

This thesis focuses on scenarios with moving objects whose movement is not restricted
to a certain network, but which can move more or less freely in space. For example,
trains are network restricted moving objects, while vessels have more freedom in their
movement. While the basic concept of this thesis also works with restricted movement,
some concepts can be adapted and studied for the context of network-restricted move-
ment. For example, the prediction functions can improve their prediction quality if they
are aware of the network and filter algorithms have to take into account the distance
within the network, not the air-line distance.

kNN Filter Algorithm

The presented filter algorithms for the filter step are optimized for radius queries. Even
though they can be applied to kNN queries and likely to more spatio-temporal queries,
an adaption especially for the multi-rectangle method for kNN queries would be an im-
provement. The other methods, i. e., the approximate distance as well as the single rect-
angular method, could also be improved to work better with kNN queries. For example,
the algorithm could estimate the density of moving objects in different areas and adjust
the extra radius for each area individually.

Automatic Parameter Tuning for Filter Algorithms

The filter algorithms currently have some parameters such as maximum speed of the
moving objects that need to be adjusted for the use case. Nevertheless, it should be
possible to optimize these settings automatically. For example, the maximum or average
speed of moving objects could be learned, even individually for each moving object.
The number of rectangles for the multi rectangle algorithm could be optimized using
benchmark queries to balance accuracy (not loosing potential results) and performance.

182 Conclusion and Future Work

Scalability

Good performance of the created system is a main goal of the research question. This
goal is tackled with query design, a special join implementation as well as a filter step
for spatio-temporal operations. Another topic for good performance in this field is the
scalability of a system. For example, having a radius query for a huge area with a lot of
moving objects, is it possible to run this query in a distributed manner on multiple nodes?
One basic approach could be to split the query at the join operator, i. e., to have a certain
amount of center elements for each node. This should be a comparably simple solution
that reduces the bottleneck of the spatio-temporal stage by distributing it to multiple
nodes. While it should be possible to manually define a query that way, a dynamic load
balancer and query distributor in a cluster of computer nodes would be an interesting
research question.

Analytical and Heuristic Expression Evaluation

The current implementation of the evaluation of temporal expressions calculates the non-
temporal expression for each point in time in the prediction time interval. This is a very
generic solution but can reduce the performance of the evaluation for larger prediction
time intervals. Another approach would be to keep functions over time instead of eval-
uated values for each point in time and solve the functions analytically. For example, if
an expression “x+5” is applied on the temporal attribute “x”, instead of calculating each
value for each point in time, the function is stored. When an expression “x + 5 > 10”
is applied, the function is analytically solved for the intervals for which the expression
in true of false. This way, the performance can be improved. This approach is similar
to [Bol11].

Another option is to only solve the expressions with a heuristic. Instead of calculating
all results, only some results are calculated for which the heuristic assumes that they are
relevant or representative. The other values in-between could, again, be interpolated.

Dynamic Query Adjustment

Another more generic topic for data stream processing is the dynamic adjustment of
queries while they are running. In the scenarios of this thesis especially the selection of
center elements is likely to change. A solution to do this on the fly while the query is
running would be an interesting extension to query processing in general. This is not a
simple task because of the states of the operators. Simply stopping the running query,
changing the parameters of the operators and starting the query again would remove the
current states of the operators. Hence, a more sophisticated solution is desirable.

7.3 Future Work 183

Integration into Query Languages

Currently, the implementation of this work relies on PQL as the query language, which
implies some manual work for the user. For some scenarios, an integration into other
query languages such as CQL could ease the process of query development and reduce
the chance of errors made by the user. For example, the manual manipulation of the
prediction time gives a lot of freedom and possibilities, but can also change the semantics
of the results in an undesired way. Hence, integrating the prediction time definition in a
query language such as CQL, where the possibilities for the user are more limited, could
be beneficial for many use cases.

Scenarios with the Prototype

The number of scenarios for which the current prototype has been used is limited to the
moving object domain, and, more specific, to the maritime domain. Even though it has
been shown that the prototype and general approach of this work can be applied for non-
spatial domains, the number of scenarios could be extended. Using the current prototype
for different scenarios, especially for real-world problems, could further evaluate what
can be done with the current system and which parts should be extended. The moving
object domain currently has lots of other use cases due to the ubiquitous availability of
location data and internet connections from mobile devices such as connected vehicles
(cars, buses, trains, smart bikes, etc.), pedestrians with their smartphones and so on.
Upcoming services such as ride sharing as well as existing services that are more and
more connected, for example in the logistics domain, demand new solutions for spatio-
temporal query processing.

184 Conclusion and Future Work

185

Appendix

A Error of Equirectangular Distance Calculation

Relative Error in % at 78°N

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Longitue value

 77.6

 77.8

 78

 78.2

 78.4

La
ti

tu
d
e
 v

a
lu

e

 0

 0.005

 0.01

 0.015

 0.02

Figure 7.1: Relative error of approximate distance calculation compared to distance
calculation with the haversine formula. This is at the height of Spitsbergen. The circle
depicts a 50 km distance. Figure is reproduced and slightly modified from [Sal14].

186 Appendix

Relative Error in % at 85°N

-4 -2 0 2 4

Longitue value

 84.6

 84.8

 85

 85.2

 85.4

La
ti

tu
d
e
 v

a
lu

e

 0

 0.02

 0.04

 0.06

 0.08

 0.1

Figure 7.2: Relative error of approximate distance calculation compared to distance
calculation with the haversine formula. The circle depicts a 50 km distance. Figure is
reproduced and slightly modified from [Sal14].

Absolute Error in Centimeters at 53°N

abs_err(x,y,0,53)*100

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08

Longitue value

 52.95

 52.96

 52.97

 52.98

 52.99

 53

 53.01

 53.02

 53.03

 53.04

 53.05

La
ti

tu
d
e
 v

a
lu

e

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

Figure 7.3: Absolute error in meters of approximate distance calculation compared to
distance calculation with the haversine formula. Circle marks 5 km radius. Figure is
reproduced and slightly modified from [Sal14].

A Error of Equirectangular Distance Calculation 187

Relative Error in % at 53°N

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Longitue value

 52.6

 52.8

 53

 53.2

 53.4

La
ti

tu
d
e
 v

a
lu

e

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

Figure 7.4: Relative error of approximate distance calculation compared to distance
calculation with the haversine formula. Circle marks 50 km radius. Figure is reproduced
and slightly modified from [Sal14].

Absolute Error in Meters at 53°N

abs_err(x,y,0,53)

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Longitue value

 52.6

 52.8

 53

 53.2

 53.4

La
ti

tu
d
e
 v

a
lu

e

 0

 0.2

 0.4

 0.6

 0.8

 1

Figure 7.5: Absolute error in meters of approximate distance calculation compared to
distance calculation with the haversine formula. Circle marks 50 km radius. Figure is
reproduced and slightly modified from [Sal14].

188 Appendix

189

Glossary

Below, essential terms of this theses are summarized and explained. An elaborated ex-
planation can be found in the introducing sections of these terms and in the references
which are given there. It is assumed that the reader has background knowledge in the
field of computer science, wherefore general terms of this field are not listed. The used
symbol ∼ in the explanations below refers to the respective term currently explained, the
symbol ↑ refers to another term explained in this glossary.

Active data source An ∼ sends its data without a previous pull-request, i. e., it pushes
the data to one or multiple receivers. Such an active data source could, for example,
be a sensor or an ↑AIS sender.

Automatic Identification System (AIS) A system to broadcast information about ves-
sels via radio signals, mainly the identification number and the current location, di-
rection and other information related to the movement of the vessel. The ∼ messages
are broadcasted via radio signals and can be received with up to around 70 km dis-
tance due to the curvature of the earth. Messages from vessels far away from a coast
are sometimes received via satellites.

Bitemporal data stream A data stream with two temporal dimensions. One ↑time in-
terval for the window definition in the ↑interval approach and a list of time intervals
for the ↑prediction time of the ↑temporal attributes.

Chronon Time between two consecutive ↑points in time. Also see ↑temporal granular-
ity.

Concept Drift A change of the underlying behavior of data that is used to train a model.
For example, a model to predict customer behavior for buying sunglasses learned in
summer will be less accurate or completely unusable in winter because an underlying
concept (the weather) has changed over time [WK96].

Continuous query A ∼ is a ↑query over a ↑data stream that is installed once and then
runs continuously, producing new results as new ↑data stream elements arrive at the
↑query.

Closest Point of Approach (CPA) The ∼ is the location at which two moving objects
have the smallest distance between each other. It is similar to the ↑Closest Time of
Approach.

Closest Time of Approach (CTA) The ∼ is the time at which two moving objects have
the smallest distance between each other. It is similar to the ↑Closest Point of Ap-
proach.

Data Stream A ∼ is a continuously updating source of data from an ↑Active Data
Source, which is potentially ↑unbounded and consists of ↑Data Stream Elements.

190 Glossary

Data Stream Element A ↑Data Stream consists of single elements of data which arrive
at a receiver, e. g., a ↑DSMS, one after each other. Often, the elements consists of a
number of attributes following a defined schema. In that case, a ∼ can also be called
a ↑tuple.

Datum ↑Geodetic datum

Data Stream Management System (DSMS) A ∼ is a system to define and execute
↑continuous queries on ↑data streams. It can offer query languages, ↑operators, ac-
cess methods to different data sources, user management and more.

Expression An ∼ is a number of variables and constants concatenated by operators.
The variables are attributes in a ↑data stream element. An ∼ could, for example, be
“someNumber + 5 < 42”. The result of such an expression would be a Boolean
value and can thus also be called a ↑predicate.

Filter and refinement To reduce the costs of a spatial ↑query, a ∼ mechanism tries to
“reduce the set of objects to be looked at when processing the query” [RSV02]. In
one or many ↑filtering steps, the number of spatial objects is reduced, mainly with
the use of ↑spatial indices. In the ↑refinement step, the actual, computationally more
costly spatial operations of the spatial query are calculated.

Filter step The step before the ↑refinement step in a ↑filter and refinement process. It
reduces the number of candidate objects of the result set of a spatial ↑query, often
with the help of a ↑spatial index.

Geodesic distance The ∼ is “the shortest path between two points on the earth” [Kar13].
When simplified to a sphere, it can, for example, be calculated with the ↑Haversine
formula. When treated as an oblate ellipsoid, using the ↑Vincenty’s formulae is a
way to calculate this distance.

Geodetic datum A coordinate system containing a reference ellipsoid and reference
points to map locations to the earth. Also see ↑WGS 84.

Geodetic distance ↑Geodesic distance

GeoJSON A JavaScript Object Notation (JSON) based “format for encoding a variety
of geographic data structures”1.

Global Navigation Satellite System (GNSS) A satellite based system to determine the
location on the earth, e. g., via a navigation system. GPS is the most common ∼ .

Great-circle distance A distance calculation on a sphere. The ∼ is the shortest path
between two points on a sphere. See also ↑Geodesic distance.

1 http://geojson.org/

http://geojson.org/

191

Haversine formula A common formula to calculate the ↑Great-circle distance between
two points on the surface of the earth. In contrast to the ↑Vincenty’s formulae it is
less accurate as it simplifies the earth to a perfect sphere.

Interval approach An approach for ↑windows on data streams. Each ↑data stream
element has a time interval, the ↑stream time interval, in the form [tS , tE). The start
timestamp tS determines the ↑point in time from when the ↑data stream element is
valid. The end timestamp tE determines the ↑point in time when the ↑data stream
element falls out of the window and is no longer used for operations in a ↑query.

JTS Topology Suite (JTS) The ∼ is a Java library for creating and manipulating vector
geometry [Loc]. It implements a geometry model based on ↑Open Geospatial Con-
sortium standards, geometric functions and spatial structures as well as readers and
writers for common data formats such as ↑Well-known text.

Latency The ∼ is the time that a ↑DSMS needs to process a ↑data stream element. It
is the difference of the ↑point in time at which the element enters the ↑query and the
↑point in time when the element leaves the ↑query.

Location Based Services (LBSs) ∼ “can be defined as services that integrate a mobile
device’s location or position with other information so as to provide added value to
a user” [SV04]. ∼ often work with location information from ↑Global Navigation
Satellite System (GNSS). An example is a smartphone app that provides information
about nearby restaurants.

Location update In the context of this work, a ∼ is a message (i. e., ↑data stream ele-
ment) which contains the location of a ↑moving object at a certain ↑point in time.

Moving object A ∼ is a spatial object, e. g., a vessel or a pedestrian, that moves in space,
in most cases on the surface of the earth. A moving object can often be simplified to
a moving point, hence, a spatial object without a shape.

Odysseus An open source data stream management system developed at the University
of Oldenburg. It is written in Java, is modular and extensible and offers a set of
↑operators. It implements the ↑interval approach.

Open Geospatial Consortium (OGC) “The OGC (Open Geospatial Consortium) is an
international not for profit organization committed to making quality open standards
for the global geospatial community” [OGC]. The standards are, for example, used
for the ↑JTS Topology Suite.

Operator An ∼ is a processing unit in a ↑query which consumes an arbitrary number
of input ↑data streams and creates an arbitrary number of output ↑data steams. In-
between, the ∼ processes the ↑data stream elements.

Orthodromic distance ↑Great-circle distance

192 Glossary

Point in time A number t ∈ Z that is a timestamp and typically counts up from a certain
date in a certain time unit. A common timestamp is the number of milliseconds since
January 1st 1970. A ↑time interval typically consists of two timestamps.

Procedural Query Language (PQL) A ↑query language used in the ↑DSMS ↑Odysseus
to define ↑continuous queries. In the ∼ , the ↑operators with their parameters and the
connections between them are defined. Doing this, a ↑query graph is created which
can be executed.

Predicate An ↑expression with a Boolean result. A ∼ can be used for select and join
↑operators.

Prediction In the context of this work, a ∼ is the calculation of a value of a ↑temporal
attribute for a certain ↑point in time at which no measured value is known. This can
be a prediction into the future (a forecast), a prediction to the current ↑point in time
(a nowcast), a prediction to values in-between known values (an interpolation) or a
prediction to a ↑point in time before the first known measured value.

Prediction time A ↑point in time in the ↑prediction time interval to which a ↑temporal
attribute is predicted to.

Prediction time interval A ↑time interval that includes all ↑points in time to which the
↑temporal attributes in a ↑data stream element can be ↑predicted. As it is possible to
predict the attributes to multiple different ↑time intervals, each ↑data stream element
in fact has a list of ∼ .

Punctuation A ↑data stream element without any content but only a ↑point in time
which marks the progress of the time in the ↑data stream.

Query With a ∼ , data (e. g., a ↑data stream) can be processes, mainly with the goal to
retrieve information. On ↑data streams, ↑continuous queries are used. A ∼ can be
represented by a ↑query graph.

Query Graph A ∼ represents a ↑query in a directed graph (V, E) of ↑operators V . The
↑operators are connected to each other by directed edges E. The ↑data streams flow
in the direction of the edges.

Refinement step The ∼ in the ↑filter and refinement process uses the set of candidate
elements from the previous ↑filtering step and does the exact calculation of the spatial
↑predicate, which is typically more expensive than the filtering.

Route operator The ∼ is an operator in ↑Odysseus that routes the incoming stream
elements to certain output ports according to a number of ↑predicates. The route op-
erator is similar to parallel select operators. Additionally, the ∼ sends a ↑punctuation
for each incoming stream element to all output ports to indicate the temporal progress
to all subsequent ↑operators in the ↑query graph.

193

Figure 7.6: An example for a z-order curve over a grid of cells.

Space-filling curve A ∼ is used to create a proximity-preserving order of cells in a
multi-dimensional space. This way, spatial objects such as rectangular cells can be
ordered in a one-dimensional space. A popular ∼ is the ↑z-ordering curve, which is
depicted in Figure 7.6.

Spatial index A ∼ is used for the ↑filtering step in the ↑filter and refinement process for
spatial ↑queries. An example for a spatial index is an R-tree.

Spatio-temporal data ∼ is data with spatial and temporal information. For example, a
↑location update from a ↑moving object contains the location of that object as a point
(spatial information) and the ↑point in time at which the location has been measured.

Stateful operator An ↑operator that uses the history of the ↑data stream to process its
results. For example, a join or an aggregation in a ↑continuous query are ∼ . A ∼
should be used after a ↑window operator to avoid an infinite size of the state due to
an ↑unbounded ↑data stream.

Stream time interval A ↑time interval at which a ↑data stream element is valid. The ∼
can be manipulated by a ↑window operator. It determines, how long a ↑data stream
element is used by ↑operators that have a state, i. e., work on the elements in the
window (and not only the current element). Such operators are, for example, the join
and the aggregation operators.

SweepArea A ∼ is an abstract data structure to manage the ↑data stream elements
within a ↑window for a ↑stateful operator. It maintains the ↑data stream elements
which are in a ↑window and removes the elements which dropped out of a ↑window
because they are too old.

Temporal attribute A ∼ is an attribute in a ↑data stream element with a ↑temporal
type. A ↑data stream element can have multiple ∼ and typically has a ↑prediction

194 Glossary

time interval. The ∼ can, for example, be a temporal integer or a temporal spatial
point.

Temporal granularity The amount of time between two consecutive ↑points in time.
For example, when having a granularity of one minute, there is one minute between
the ↑points in time 1 and 2.

Temporal type A ∼ is a type (e. g., an integer or a spatial point) which has a temporal
dimension and has for each ↑point in time of the ↑prediction time interval(s) a value
of the type.

Throughput A value to benchmark ↑continuous queries on ↑data streams. The ∼ de-
scribes the number of ↑data stream elements that are processed per second (or a
different duration). The higher, the better.

Timestamp ↑Point in time

Time interval A ∼ defines a range of ↑points in time. It is typically written as a half-
open interval [tS , tE), including the start timestamp tS and excluding the end time-
stamp tE .

Trust A value that describes how trustworthy a ↑data stream element is. Especially
when ↑predicting a ↑temporal attribute, the ∼ can change over time due to a higher
or lower accuracy of the ↑prediction.

Tuple A ↑data stream element which attributes follow a certain schema.

Unbounded A ↑data stream is typically ∼ , as it is potentially infinite or it is not known
if or when the ↑data stream will end. ↑Windows are a concept to work with ∼ ↑data
streams.

UTM Universal Transverse Mercator (UTM) is a system of map projections. It divides
the earth into 60 zones and uses a projection for each zone.

Vessel A more generic term for a ship.

Vincenty’s formulae Two methods to calculate the ↑Geodesic distance between two
points on the earth. In contrast to the ↑Haversine formula, it is more accurate as it
uses an oblate ellipsoid to model the earth.

Vessel Traffic Service (VTS) A ∼monitors and controls maritime traffic, e. g., in ports.
Among others, a ∼ uses the ↑Automatic Identification System.

Window A concept in ↑Data Stream Management Systems to limit the view on a ↑data
stream to a finite set of ↑data stream elements. A window can, for example, be
defined over a period of time (“keep the last 30 minutes of the stream”) or over a
number of elements (“keep the last 100 elements of the stream”). In an ↑continuous
query, a window can be defined with a ↑window operator and be implemented with
the ↑interval approach.

195

Window operator The ↑window operator is used to manipulate the ↑stream time inter-
val in the ↑interval approach. The ∼ only manipulates the time interval but does not
store any ↑data stream elements.

World Geodetic System 1984 (WGS 84) A very common global spatial reference sys-
tem for the earth, which defines the flattened ellipsoid that is used as a model of the
earth.

Well-known text (WKT) A text format to represent spatial objects. For example, a
spatial point can be represented as POINT (42 21) with 42 being the x-coordinate
and 21 being the y-coordinate.

z-order curve ↑Space-filling curve

196 Glossary

197

Acronyms

AIS Automatic Identification System

CPA Closest Point of Approach

CRS Coordinate Reference System

CTA Closest Time of Approach

COG Course Over Ground

CQL Continuous Query Language

CSV comma-separated values

DBMS Data Base Management System

DE-9IM Dimensionally Extended Nine-Intersection Model

DSL Domain Specific Language

DSMS Data Stream Management System

EPSG European Petroleum Survey Group Geodesy

GCS Global Coordinate System

GIS Geographic Information Systems

GNSS Global Navigation Satellite System

GPS Global Positioning System

IoT Internet of Things

JSON JavaScript Object Notation

JTS JTS Topology Suite

JVM Java Virtual Machine

kNN k-nearest neighbors

LBS Location Based Service

MMSI Maritime Mobile Service Identity

OGC Open Geospatial Consortium

PCS Projected Coordinate System

198 Acronyms

PQL Procedural Query Language

SAMS Safe Automation of Maritime Systems

SFA Simple Feature Access

UTM Universal Transverse Mercator

VTS Vessel Traffic Service

WGS 84 World Geodetic System 1984

WKT Well-known text

199

List of Figures

1.1 Process model of the Design Science Research Method by [PTRC07] . 4

2.1 Schema of a DBMS. Figure based on [KS09]. 10
2.2 Schema of a DSMS. Figure based on [KS09]. 10
2.3 Example of an operator graph with the data flowing from bottom to top. 12
2.4 Window on a data stream. Figure based on [Bol11]. 13
2.5 Example transformation from a physical to a logical stream 16
2.6 Example of a trajectory . 17
2.7 Flattened ellipsoid, similar to [LGMR10] 18
2.8 Geometry class hierarchy of the OGC SFA object model in version 1.2.1.

Figure by [IH11]. 19
2.9 Example of the DE-9IM . 19
2.10 Steps in the filter and refine process. Figure reproduced based on [Bri07] 22
2.11 A spatial area covered by a quadtree. Figure reproduced based on [BG18] 22
2.12 The spatial data types [GBE+00] . 25
2.13 Sliced data from a moving point in time, similar to [AGB06] 26
2.14 Traffic at the North Sea and the English Channel. Screenshot from

https://marinetraffic.com/ with map background data by Google. 28

3.1 Unordered stream due to prediction 35
3.2 Stream ordered by tS with a predicted tuple 35
3.3 A moving vessel being in the queried region twice 37
3.4 Example of an in_interior operation of a tpoint “m” and a region “r” . . 41

4.1 Example of a physical data stream and its logical counterpart 45
4.2 Discrete representation of continuous location measurements 47
4.3 Trajectories from vessel 1 and 2 on a map 48
4.4 Process of temporalization of a physical tuple 49
4.5 Example of a query plan that transforms a point to a temporal point . . . 52
4.6 Calculation of prediction time for an aggregation with the union merging

function . 55
4.7 Calculation of prediction time for an aggregation with intersection merg-

ing function . 56
4.8 Electricity generation by three distinct generators (e. g., solar panels) . . 57
4.9 Stock market development of two shares 58
4.10 Trust value over time . 62

https://marinetraffic.com/

200 List of Figures

4.11 Center moving object at tS = 20 with surrounding moving objects . . . 63
4.12 Scenario with moving objects over time 65
4.13 Query plan for a radius query . 66
4.14 Blocking partitioned element window of size one 69
4.15 Approach with a nest-aggregation . 70
4.16 Alternative join approach . 72
4.17 Example how the SweepArea is cleaned in a join operator 73
4.18 Wrong behavior of SweepArea for an element join with size one 74
4.19 Join with SweepArea element size set to one 74
4.20 Join with SweepArea element size set to one and the output with an end

timestamp set . 75
4.21 Optimized alternative join approach 78
4.22 Join with SweepArea element size set to one and heartbeats for cleaning 79
4.23 Join with SweepArea element size set to one, partitioned by the id and

with heartbeats for early cleaning . 81
4.24 Center moving object at tS = 20 with surrounding moving objects and

an object far away from the center . 83
4.25 Join approach with filter . 85
4.26 Estimation of possible travel distances when predicting to tS = 24 . . . 86
4.27 Rectangular box around the center element 88
4.28 Different boxes for different possible travel distances 89

5.1 Overview of Odysseus . 95
5.2 Temporal constraint to mark temporal attributes 98
5.3 Merging two time intervals with different granularities 114
5.4 Relative error of approximate distance calculation compared to distance

calculation with the haversine formula. Circle marks 5 km radius. Figure
is reproduced and slightly modified from [Sal14]. 122

5.5 Typical structure of a spatial query with temporal functions [BG19] . . 126

6.1 All data points from the data set in UTM zone 10 for April the 1st 2017
between 10:00 and 12:00 o’clock on a map. Map background: Open-
StreetMap . 131

6.2 Query plan for a radius query . 133
6.3 Tumbling window for prediction time alignment before an aggregation . 138
6.4 A moving region (dashed polygon) and a moving point 140
6.5 Query plan view in Odysseus showing a moving region query 140
6.6 CPA and CTA of two moving points 141
6.7 Last operators of a CPA query . 142

201

6.8 Latency and data rate measurements in a typical structure of a spatial
query with temporal functions . 151

6.9 Latency of the temporalization queries in ms 153
6.10 The latencies of the join stage with different configurations and a buffer

with a size of 200 000 elements. 155
6.11 The latency of the join stage over time with 10 center elements, a center

window of size 1 ms and a buffer with a size of 200 000 elements. . . . 156
6.12 The latency of the join stage over time with 10 center elements, a center

window of size 1 ms and a buffer with a size of 500 000 elements. . . . 156
6.13 The latency of the join stage over time with 10 center elements, a center

window of size 1 ms and a buffer with a size of 1 000 000 elements. . . . 157
6.14 Detail view of the latency of the join stage over time with 10 center ele-

ments, a center window of size 1 ms and a buffer with a size of 200 000
elements. 157

6.15 The latencies of the join stage with different configurations and a buffer
with a size of 1 000 000 elements. 158

6.16 Data rate of the radius query with different configurations and without a
buffer. 159

6.17 Latencies of the full radius query with different radii and a buffer of
200 000 elements, one center element and a center window of 1 ms. . . 161

6.18 Latency of one full radius query over time with a radius of 5 000 meters,
a buffer of 200 000 elements, one center element and a center window of
1 ms. 162

6.19 Latency of the full radius query with a radius of 5 000 meters, no buffer
and a center window of 1 ms. 162

6.20 Latency of the full radius query over time with a radius of 5 000 meters,
a buffer of 200 000 elements and a center window of 1 ms. 163

6.21 The latency distribution for different values for k in a kNN query. 165
6.22 The data rate distribution for different values for k in a kNN query. . . . 166
6.23 Latencies of optimized and not optimized radius queries without any

buffer and with ten points in time in the prediction time interval. 05c
indicates five center elements, 10c ten center elements and so on. 167

6.24 Data rates of optimized and not optimized radius queries without any
buffer and with ten points in time in the prediction time interval. 05c
indicates five center elements, 10c ten center elements and so on [BG19]. 168

6.25 Latencies of optimized radius queries without any buffer and with ten
points in time in the prediction time interval. 05c indicates five center
elements, 10c ten center elements and so on. 168

6.26 Box plot of the latency of optimized and not optimized kNN queries. . . 170
6.27 Box plot of the data rate of optimized and not optimized kNN queries. . 171

202 List of Figures

7.1 Relative error of approximate distance calculation compared to distance
calculation with the haversine formula. This is at the height of Spits-
bergen. The circle depicts a 50 km distance. Figure is reproduced and
slightly modified from [Sal14]. 185

7.2 Relative error of approximate distance calculation compared to distance
calculation with the haversine formula. The circle depicts a 50 km dis-
tance. Figure is reproduced and slightly modified from [Sal14]. 186

7.3 Absolute error in meters of approximate distance calculation compared
to distance calculation with the haversine formula. Circle marks 5 km
radius. Figure is reproduced and slightly modified from [Sal14]. 186

7.4 Relative error of approximate distance calculation compared to distance
calculation with the haversine formula. Circle marks 50 km radius. Fig-
ure is reproduced and slightly modified from [Sal14]. 187

7.5 Absolute error in meters of approximate distance calculation compared
to distance calculation with the haversine formula. Circle marks 50 km
radius. Figure is reproduced and slightly modified from [Sal14]. 187

7.6 An example for a z-order curve over a grid of cells. 193

203

List of Publications

[BG17] Brandt, Tobias ; Grawunder, Marco: Moving Object Stream Processing With
Short-Time Prediction. In: Proceedings of the 8th ACM SIGSPATIAL Workshop
on GeoStreaming. New York, NY, USA : ACM, 2017 (IWGS’17). – ISBN
978–1–4503–5492–9, 49–56

[BG18] Brandt, Tobias ; Grawunder, Marco: GeoStreams: A Survey. In: ACM Com-
put. Surv. 51 (2018), Mai, Nr. 3, 44:1–44:37. http://dx.doi.org/10.1145/
3177848. – DOI 10.1145/3177848. – ISSN 0360–0300

[BG19] Brandt, Tobias ; Grawunder, Marco: Spatial Query Processing on AIS Data
Streams in Data Stream Management Systems. In: Abramowicz, Witold (Hrsg.)
; Corchuelo, Rafael (Hrsg.): Business Information Systems Workshops. Cham
: Springer International Publishing, 2019. – ISBN 978–3–030–36691–9, S.
461–472

[Bra17] Brandt, Tobias: Processing Moving Object Data Streams with Data Stream
Management Systems. In: Proceedings of the VLDB 2017 PhD Workshop,
2017. – ISSN 1613–0073

http://dx.doi.org/10.1145/3177848
http://dx.doi.org/10.1145/3177848

204 List of Publications

205

Bibliography

[AAB+05] Abadi, Daniel J. ; Ahmad, Yanif ; Balazinska, Magdalena ; Çetintemel,
Uǧur ; Cherniack, Mitch ; Hwang, Jeong Hyon ; Lindner, Wolfgang ;
Maskey, Anurag S. ; Rasin, Alexander ; Ryvkina, Esther ; Tatbul, Nes-
ime ; Xing, Ying ; Zdonik, Stan: The design of the Borealis stream pro-
cessing engine. In: 2nd Biennial Conference on Innovative Data Systems
Research, CIDR 2005, 2005, S. 277–289

[ABC+15] Akidau, Tyler ; Bradshaw, Robert ; Chambers, Craig ; Chernyak,
Slava ; Fernández-Moctezuma, Rafael J. ; Lax, Reuven ; McVeety,
Sam ; Mills, Daniel ; Perry, Frances ; Schmidt, Eric ; Whittle,
Sam: The Dataflow Model: A Practical Approach to Balancing Cor-
rectness, Latency, and Cost in Massive-scale, Unbounded, Out-of-order
Data Processing. In: Proc. VLDB Endow. 8 (2015), August, Nr. 12,
1792–1803. http://dx.doi.org/10.14778/2824032.2824076. – DOI
10.14778/2824032.2824076. – ISSN 2150–8097

[AG05] Almeida, Victor T. ; Güting, Ralf H.: Supporting Uncertainty in Moving
Objects in Network Databases. In: Proceedings of the 13th Annual ACM
International Workshop on Geographic Information Systems. New York,
NY, USA : ACM, 2005 (GIS ’05). – ISBN 1–59593–146–5, 31–40

[AGB06] Almeida, Victor T. ; Güting, Ralf H. ; Behr, Thomas: Querying Moving
Objects in SECONDO. In: 7th International Conference on Mobile Data
Management (MDM’06) Bd. 6, IEEE, May 2006. – ISSN 1551–6245,
S. 47

[AGG+12] Appelrath, H.-Jürgen ; Geesen, Dennis ; Grawunder, Marco ; Michelsen,
Timo ; Nicklas, Daniela: Odysseus: A Highly Customizable Framework
for Creating Efficient Event Stream Management Systems. In: Proceed-
ings of the 6th ACM International Conference on Distributed Event-Based
Systems. New York, NY, USA : ACM, 2012 (DEBS ’12). – ISBN 978–1–
4503–1315–5, 367–368

[Ala17] Alarabi, Louai: ST-Hadoop: A MapReduce Framework for Big Spatio-
temporal Data. In: Proceedings of the 2017 ACM International Confer-
ence on Management of Data. New York, NY, USA : ACM, 2017 (SIG-
MOD SRC ’17). – ISBN 978–1–4503–4199–8, 40–42

[AR99] Abraham, Tamas ; Roddick, John F.: Survey of Spatio-Temporal
Databases. In: Geoinformatica 3 (1999), März, Nr. 1, 61–
99. http://dx.doi.org/10.1023/A:1009800916313. – DOI
10.1023/A:1009800916313. – ISSN 1384–6175

http://dx.doi.org/10.14778/2824032.2824076
http://dx.doi.org/10.1023/A:1009800916313

206 Bibliography

[BAG+12] Bolles, A. ; Appelrath, H. J. ; Geesen, D. ; Grawunder, M. ; Hannibal,
M. ; Jacobi, J. ; Köster, F. ; Nicklas, D.: StreamCars: A new flexible
architecture for driver assistance systems. In: 2012 IEEE Intelligent Vehi-
cles Symposium, 2012. – ISSN 1931–0587, S. 252–257

[BBC+15] Brand, Michael ; Brandt, Tobias ; Cordes, Carsten ; Wilken, Marc ;
Michelsen, Timo: Herakles: A system for sensor-based live sport anal-
ysis using private peer-to-peer networks. In: Ritter, Norbert (Hrsg.) ;
Henrich, Andreas (Hrsg.) ; Lehner, Wolfgang (Hrsg.) ; Thor, Andreas
(Hrsg.) ; Friedrich, Steffen (Hrsg.) ; Wingerath, Wolfram (Hrsg.): Daten-
banksysteme für Business, Technologie und Web (BTW 2015) - Workshop-
band. Bonn : Gesellschaft für Informatik e.V., 2015, S. 71–80

[BBF+10] Biem, Alain ; Bouillet, Eric ; Feng, Hanhua ; Ranganathan, Anand ; Ri-
abov, Anton ; Verscheure, Olivier ; Koutsopoulos, Haris ; Moran, Car-
los: IBM Infosphere Streams for Scalable, Real-time, Intelligent Trans-
portation Services. In: Proceedings of the 2010 ACM SIGMOD Interna-
tional Conference on Management of Data. New York, NY, USA : ACM,
2010 (SIGMOD ’10). – ISBN 978–1–4503–0032–2, 1093–1104

[BBMS05] Balazinska, Magdalena ; Balakrishnan, Hari ; Madden, Samuel ; Stone-
braker, Michael: Fault-tolerance in the Borealis Distributed Stream Pro-
cessing System. In: Proceedings of the 2005 ACM SIGMOD International
Conference on Management of Data. New York, NY, USA : ACM, 2005
(SIGMOD ’05). – ISBN 1–59593–060–4, 13–24

[BG17] Brandt, Tobias ; Grawunder, Marco: Moving Object Stream Processing
With Short-Time Prediction. In: Proceedings of the 8th ACM SIGSPA-
TIAL Workshop on GeoStreaming. New York, NY, USA : ACM, 2017
(IWGS’17). – ISBN 978–1–4503–5492–9, 49–56

[BG18] Brandt, Tobias ; Grawunder, Marco: GeoStreams: A Survey. In: ACM
Comput. Surv. 51 (2018), Mai, Nr. 3, 44:1–44:37. http://dx.doi.org/
10.1145/3177848. – DOI 10.1145/3177848. – ISSN 0360–0300

[BG19] Brandt, Tobias ; Grawunder, Marco: Spatial Query Processing on AIS
Data Streams in Data Stream Management Systems. In: Abramowicz,
Witold (Hrsg.) ; Corchuelo, Rafael (Hrsg.): Business Information Sys-
tems Workshops. Cham : Springer International Publishing, 2019. – ISBN
978–3–030–36691–9, S. 461–472

[BGA16] Brandt, T. ; Grawunder, M. ; Appelrath, H. J.: Anomaly detection on
data streams for machine condition monitoring. In: 2016 IEEE 14th In-
ternational Conference on Industrial Informatics (INDIN), 2016, S. 1282–
1287

http://dx.doi.org/10.1145/3177848
http://dx.doi.org/10.1145/3177848

207

[BGA17] Brand, Michael ; Grawunder, Marco ; Appelrath, H.-Jürgen: A Modular
Approach for Non-Distributed Crash Recovery for Streaming Systems. In:
Mitschang, Bernhard (Hrsg.) ; Nicklas, Daniela (Hrsg.) ; Leymann, Frank
(Hrsg.) ; Schöning, Harald (Hrsg.) ; Herschel, Melanie (Hrsg.) ; Teubner,
Jens (Hrsg.) ; Härder, Theo (Hrsg.) ; Kopp, Oliver (Hrsg.) ; Wieland,
Matthias (Hrsg.): Datenbanksysteme für Business, Technologie und Web
(BTW 2017), Gesellschaft für Informatik, Bonn, 2017, S. 309–328

[BGJ+09] Bolles, Andre ; Grawunder, Marco ; Jacobi, Jonas ; Nicklas, Daniela ;
Appelrath, Hans-Jürgen: Odysseus: Ein Framework für maßgeschnei-
derte Datenstrommanagementsysteme. In: GI Jahrestagung, 2009, S.
2000–2014

[BKS93] Brinkhoff, T. ; Kriegel, H. P. ; Schneider, R.: Comparison of approxima-
tions of complex objects used for approximation-based query processing
in spatial database systems. In: Proceedings of IEEE 9th International
Conference on Data Engineering, 1993, S. 40–49

[BM72] Bayer, R. ; Mccreight, E. M.: Organization and Maintenance of
Large Ordered Indexes. In: Acta Inf. 1 (1972), September, Nr.
3, 173–189. http://dx.doi.org/10.1007/BF00288683. – DOI
10.1007/BF00288683. – ISSN 0001–5903

[Bol11] Bolles, André: Ein datenstrombasiertes Framework zur Objektverfol-
gung am Beispiel von Fahrerassistenzsystemen, Carl von Ossietzky Uni-
versity of Oldenburg, Diss., 2011. http://d-nb.info/1014605520

[Bra17] Brandt, Tobias: Processing Moving Object Data Streams with Data
Stream Management Systems. In: Proceedings of the VLDB 2017 PhD
Workshop, 2017. – ISSN 1613–0073

[Bri07] Brinkhoff, Thomas: Geodatenbanken. In: Kudrass, Thomas (Hrsg.):
Taschenbuch Datenbanken. Leipzig : Carl Hanser Verlag GmbH & Co.
KG, 2007, Kapitel 16, S. 496–527

[BSS18] Bakli, Mohamed S. ; Sakr, Mahmoud A. ; Soliman, Taysir Has-
san A.: A spatiotemporal algebra in Hadoop for moving ob-
jects. In: Geo-spatial Information Science 21 (2018), Nr. 2, 102-
114. http://dx.doi.org/10.1080/10095020.2017.1413798. – DOI
10.1080/10095020.2017.1413798

[ÇAA+16] Çetintemel, Uğur ; Abadi, Daniel ; Ahmad, Yanif ; Balakrishnan, Hari ;
Balazinska, Magdalena ; Cherniack, Mitch ; Hwang, Jeong-Hyon ; Mad-
den, Samuel ; Maskey, Anurag ; Rasin, Alexander ; Ryvkina, Esther ;
Stonebraker, Mike ; Tatbul, Nesime ; Xing, Ying ; Zdonik, Stan: The

http://dx.doi.org/10.1007/BF00288683
http://d-nb.info/1014605520
http://dx.doi.org/10.1080/10095020.2017.1413798

208 Bibliography

Aurora and Borealis Stream Processing Engines. In: Garofalakis, Mi-
nos (Hrsg.) ; Gehrke, Johannes (Hrsg.) ; Rastogi, Rajeev (Hrsg.): Data
Stream Management: Processing High-Speed Data Streams. Berlin, Hei-
delberg : Springer Berlin Heidelberg, 2016. – ISBN 978–3–540–28608–0,
337–359

[CcC+02] Carney, Don ; Çetintemel, Uǧur ; Cherniack, Mitch ; Convey, Christian
; Lee, Sangdon ; Seidman, Greg ; Stonebraker, Michael ; Tatbul, Nesime
; Zdonik, Stan: Monitoring Streams: A New Class of Data Management
Applications. In: Proceedings of the 28th International Conference on
Very Large Data Bases, VLDB Endowment, 2002 (VLDB ’02), 215–226

[CCD+03] Chandrasekaran, Sirish ; Cooper, Owen ; Deshpande, Amol ; Franklin,
Michael J. ; Hellerstein, Joseph M. ; Hong, Wei ; Krishnamurthy,
Sailesh ; Madden, Samuel R. ; Reiss, Fred ; Shah, Mehul A.: Tele-
graphCQ: Continuous Dataflow Processing. In: Proceedings of the 2003
ACM SIGMOD International Conference on Management of Data. New
York, NY, USA : ACM, 2003 (SIGMOD ’03). – ISBN 1–58113–634–X,
668–668

[CD16] Christian Denker, Axel H.: MTCAS - An Assistance System for Mar-
itime Collision Avoidance. In: 12th International Symposium on Inte-
grated Ship’s Information Systems & Marine Traffic Engineering
Conference DGON, 2016. – In recent years accident statistics have shown
a continuous increase in serious and very serious accidents at sea. In the
near future, higher traffic density is estimated, which may further con-
tribute to this increase. Within the 3-year Project MTCAS, par

[CHKS04] Cammert, Michael ; Heinz, Christoph ; Krämer, Jürgen ; Seeger, Bern-
hard: Anfrageverarbeitung auf datenströmen. In: Datenbank-Spektrum, S
(2004), S. 5–13

[CKE+15a] Carbone, Paris ; Katsifodimos, Asterios ; Ewen, Stephan ; Markl, Volker
; Haridi, Seif ; Tzoumas, Kostas: Apache Flink™: Stream and Batch
Processing in a Single Engine. In: IEEE Data Eng. Bull. 38 (2015), Nr. 4,
S. 28–38

[CKE+15b] Carbone, Paris ; Katsifodimos, Asterios ; Ewen, Stephan ; Markl, Volker
; Haridi, Seif ; Tzoumas, Kostas: Apache Flink™: Stream and Batch
Processing in a Single Engine. In: IEEE Data Eng. Bull. 38 (2015), Nr. 4,
28–38. http://sites.computer.org/debull/A15dec/p28.pdf

[CZC+13] Chen, C. ; Zhang, D. ; Castro, P. S. ; Li, N. ; Sun, L. ; Li, S. ; Wang,
Z.: iBOAT: Isolation-Based Online Anomalous Trajectory Detection. In:
IEEE Transactions on Intelligent Transportation Systems 14 (2013), June,

http://sites.computer.org/debull/A15dec/p28.pdf

209

Nr. 2, S. 806–818. http://dx.doi.org/10.1109/TITS.2013.2238531.
– DOI 10.1109/TITS.2013.2238531. – ISSN 1524–9050

[DSTW02] Dittrich, Jens-Peter ; Seeger, Bernhard ; Taylor, David S. ; Widmayer,
Peter: Progressive Merge Join: A Generic and Non-blocking Sort-based
Join Algorithm. In: Proceedings of the 28th International Conference on
Very Large Data Bases, VLDB Endowment, 2002 (VLDB ’02), 299–310

[EEB+07] Eide, Magnus S. ; Endresen Øyvind ; Brett, Per O. ; Ervik, Jon L.
; Røang, Kjell: Intelligent ship traffic monitoring for oil spill pre-
vention: Risk based decision support building on AIS. In: Ma-
rine Pollution Bulletin 54 (2007), Nr. 2, 145 - 148. http://
dx.doi.org/https://doi.org/10.1016/j.marpolbul.2006.11.004. –
DOI https://doi.org/10.1016/j.marpolbul.2006.11.004. – ISSN 0025–
326X

[EGSV99] Erwig, Martin ; Güting, Ralf H. ; Schneider, Markus ; Vazirgian-
nis, Michalis: Spatio-Temporal Data Types: An Approach to Model-
ing and Querying Moving Objects in Databases. In: Geoinformatica 3
(1999), September, Nr. 3, 269–296. http://dx.doi.org/10.1023/A:
1009805532638. – DOI 10.1023/A:1009805532638. – ISSN 1384–6175

[EM13] Eldawy, Ahmed ; Mokbel, Mohamed F.: A Demonstration
of SpatialHadoop: An Efficient Mapreduce Framework for Spatial
Data. In: Proc. VLDB Endow. 6 (2013), August, Nr. 12, 1230–
1233. http://dx.doi.org/10.14778/2536274.2536283. – DOI
10.14778/2536274.2536283. – ISSN 2150–8097

[EPS07] EPSG: WGS 84 – WGS84 - World Geodetic System 1984, used in GPS.
https://epsg.io/4326. Version: 2007

[ESL15] Eom, Sungkwang ; Shin, Sangjin ; Lee, Kyong-Ho: Spatiotemporal query
processing for semantic data stream. In: Semantic Computing (ICSC),
2015 IEEE International Conference on IEEE, 2015, S. 290–297

[ESRa] ESRI: Managing spatiotemporal big data stores. http:
//enterprise.arcgis.com/de/geoevent/latest/administer/
managing-big-data-stores.htm

[ESRb] ESRI: Working with spatial references. http://help.arcgis.com/
en/sdk/10.0/arcobjects_net/conceptualhelp/index.html#/
/0001000002mq000000

[FB74] Finkel, R. A. ; Bentley, J. L.: Quad Trees a Data Structure for Retrieval
on Composite Keys. In: Acta Inf. 4 (1974), März, Nr. 1, 1–9. http:
//dx.doi.org/10.1007/BF00288933. – DOI 10.1007/BF00288933. –
ISSN 0001–5903

http://dx.doi.org/10.1109/TITS.2013.2238531
http://dx.doi.org/https://doi.org/10.1016/j.marpolbul.2006.11.004
http://dx.doi.org/https://doi.org/10.1016/j.marpolbul.2006.11.004
http://dx.doi.org/10.1023/A:1009805532638
http://dx.doi.org/10.1023/A:1009805532638
http://dx.doi.org/10.14778/2536274.2536283
https://epsg.io/4326
http://enterprise.arcgis.com/de/geoevent/latest/administer/managing-big-data-stores.htm
http://enterprise.arcgis.com/de/geoevent/latest/administer/managing-big-data-stores.htm
http://enterprise.arcgis.com/de/geoevent/latest/administer/managing-big-data-stores.htm
http://help.arcgis.com/en/sdk/10.0/arcobjects_net/conceptualhelp/index.html#//0001000002mq000000
http://help.arcgis.com/en/sdk/10.0/arcobjects_net/conceptualhelp/index.html#//0001000002mq000000
http://help.arcgis.com/en/sdk/10.0/arcobjects_net/conceptualhelp/index.html#//0001000002mq000000
http://dx.doi.org/10.1007/BF00288933
http://dx.doi.org/10.1007/BF00288933

210 Bibliography

[FEHL13] Fox, A. ; Eichelberger, C. ; Hughes, J. ; Lyon, S.: Spatio-temporal index-
ing in non-relational distributed databases. In: 2013 IEEE International
Conference on Big Data, 2013, S. 291–299

[FXX+13] Feng, Shenzhu ; Xu, Jian ; Xu, Ming ; Zheng, Ning ; Zhang, Xiaofei:
EHSTC: An Enhanced Method for Semantic Trajectory Compression.
In: Proceedings of the 4th ACM SIGSPATIAL International Workshop on
GeoStreaming. New York, NY, USA : ACM, 2013 (IWGS ’13). – ISBN
978–1–4503–2532–5, 43–49

[GAA+05] Guting, R. H. ; Almeida, V. ; Ansorge, D. ; Behr, T. ; Ding, Z. ; Hose,
T. ; Hoffmann, F. ; Spiekermann, M. ; Telle, U.: SECONDO: an ex-
tensible DBMS platform for research prototyping and teaching. In: 21st
International Conference on Data Engineering (ICDE’05), 2005. – ISSN
1063–6382, S. 1115–1116

[Gal16] Galić, Zdravko: Spatio-Temporal Data Streams. New York, NY :
Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-
6575-5. http://dx.doi.org/10.1007/978-1-4939-6575-5. – ISBN
978–1–4939–6575–5

[GBE+00] Güting, Ralf H. ; Böhlen, Michael H. ; Erwig, Martin ; Jensen, Chris-
tian S. ; Lorentzos, Nikos A. ; Schneider, Markus ; Vazirgiannis,
Michalis: A Foundation for Representing and Querying Moving Objects.
In: ACM Trans. Database Syst. 25 (2000), März, Nr. 1, 1–42. http://
dx.doi.org/10.1145/352958.352963. – DOI 10.1145/352958.352963.
– ISSN 0362–5915

[GBKM14] Galić, Z. ; Baranović, M. ; Križanović, K. ; Mešković, E.: Geospa-
tial data streams: Formal framework and implementation. In:
Data & Knowledge Engineering 91 (2014), 1 - 16. http://
dx.doi.org/https://doi.org/10.1016/j.datak.2014.02.002. – DOI
https://doi.org/10.1016/j.datak.2014.02.002. – ISSN 0169–023X

[Gei13] Geisler, Sandra: Data Stream Management Systems. Version: 2013.
http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:
0030-drops-42975. In: Kolaitis, Phokion G. (Hrsg.) ; Lenzerini, Mau-
rizio (Hrsg.) ; Schweikardt, Nicole (Hrsg.): Data Exchange, Integration,
and Streams Bd. 5. Dagstuhl, Germany : Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2013. – URN urn:nbn:de:0030–drops–42975. –
ISBN 978–3–939897–61–3, 275–304

[GFW+11] Grün, Thomas von d. ; Franke, Norbert ; Wolf, Daniel ; Witt, Nicolas ;
Eidloth, Andreas: A Real-Time Tracking System for Football Match and
Training Analysis. In: Heuberger, Albert (Hrsg.) ; Elst, Günter (Hrsg.) ;

http://dx.doi.org/10.1007/978-1-4939-6575-5
http://dx.doi.org/10.1007/978-1-4939-6575-5
http://dx.doi.org/10.1007/978-1-4939-6575-5
http://dx.doi.org/10.1145/352958.352963
http://dx.doi.org/10.1145/352958.352963
http://dx.doi.org/https://doi.org/10.1016/j.datak.2014.02.002
http://dx.doi.org/https://doi.org/10.1016/j.datak.2014.02.002
http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:0030-drops-42975
http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:0030-drops-42975

211

Hanke, Randolf (Hrsg.): Microelectronic Systems: Circuits, Systems and
Applications. Berlin, Heidelberg : Springer Berlin Heidelberg, 2011. –
ISBN 978–3–642–23071–4, 199–212

[GHN14] Geesen, Dennis ; Herzog, Otthein ; Nicklas, Jun-Prof Dr D.:
Maschinelles Lernen in Datenstrommanagementsystemen. OlWIR, Old-
enburger Verlag für Wirtschaft, Informatik und Recht, 2014

[GLW08] Gudmundsson, Joachim ; Laube, Patrick ; Wolle, Thomas: Movement
Patterns in Spatio-temporal Data. In: Encyclopedia of GIS. Boston, MA :
Springer US, 2008. – ISBN 978–0–387–35973–1, 726–732

[GMKB12] Galić, Zdravko ; Mešković, Emir ; Križanović, Krešimir ; Baranović,
Mirta: OCEANUS: A Spatio-temporal Data Stream System Prototype.
In: Proceedings of the 3rd ACM SIGSPATIAL International Workshop on
GeoStreaming. New York, NY, USA : ACM, 2012 (IWGS ’12). – ISBN
978–1–4503–1695–8, 109–115

[Gro] Group, The O.: 4.16 Seconds Since the Epoch. http:
//pubs.opengroup.org/onlinepubs/9699919799/basedefs/
V1_chap04.html#tag_04_16

[GSF11] Gariel, M. ; Srivastava, A. N. ; Feron, E.: Trajectory Cluster-
ing and an Application to Airspace Monitoring. In: IEEE Transac-
tions on Intelligent Transportation Systems 12 (2011), Dec, Nr. 4, S.
1511–1524. http://dx.doi.org/10.1109/TITS.2011.2160628. – DOI
10.1109/TITS.2011.2160628. – ISSN 1524–9050

[Gut84] Guttman, Antonin: R-trees: A Dynamic Index Structure for Spatial
Searching. In: SIGMOD Rec. 14 (1984), Juni, Nr. 2, 47–57. http://
dx.doi.org/10.1145/971697.602266. – DOI 10.1145/971697.602266.
– ISSN 0163–5808

[Gü93] Güting, Ralf H.: Second-order Signature: A Tool for Specifying Data
Models, Query Processing, and Optimization. In: Proceedings of the 1993
ACM SIGMOD International Conference on Management of Data. New
York, NY, USA : ACM, 1993 (SIGMOD ’93). – ISBN 0–89791–592–5,
277–286

[Gü94] Güting, Ralf H.: An Introduction to Spatial Database Systems. In: The
VLDB Journal 3 (1994), Oktober, Nr. 4, 357–399. http://dl.acm.org/
citation.cfm?id=615204.615206. – ISSN 1066–8888

[HAF+03] Hammad, Moustafa A. ; Aref, Walid G. ; Franklin, Michael J. ; Mokbel,
Mohammed P. ; Elmagarmid, Ahmed K.: Efficient execution of sliding-
window queries over data streams. (2003)

http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_16
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_16
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_16
http://dx.doi.org/10.1109/TITS.2011.2160628
http://dx.doi.org/10.1145/971697.602266
http://dx.doi.org/10.1145/971697.602266
http://dl.acm.org/citation.cfm?id=615204.615206
http://dl.acm.org/citation.cfm?id=615204.615206

212 Bibliography

[HHD12] Hoque, M. A. ; Hong, X. ; Dixon, B.: Analysis of mobility patterns
for urban taxi cabs. In: 2012 International Conference on Computing,
Networking and Communications (ICNC), 2012, S. 756–760

[HMPR04] Hevner, Alan R. ; March, Salvatore T. ; Park, Jinsoo ; Ram, Sudha:
Design Science in Information Systems Research. In: MIS quarterly 28
(2004), Nr. 1, S. 75–105

[HRH+09] Hasan, Khondker S. ; Rahman, Mashiur ; Haque, Abul L. ; Rahman, M A. ;
Rahman, Tanzil ; Rasheed, M M.: Cost effective GPS-GPRS based object
tracking system. In: Proceedings of the international multiconference of
engineers and computer scientists Bd. 1, 2009, S. 18–20

[Hub12] Huber, William A.: How accurate is approximating the Earth as a
sphere? https://gis.stackexchange.com/questions/25494/how-
accurate-is-approximating-the-earth-as-a-sphere#25580.
Version: 2012

[HXL05] Hu, Haibo ; Xu, Jianliang ; Lee, Dik L.: A Generic Framework for Moni-
toring Continuous Spatial Queries over Moving Objects. In: Proceedings
of the 2005 ACM SIGMOD International Conference on Management of
Data. New York, NY, USA : ACM, 2005 (SIGMOD ’05). – ISBN 1–
59593–060–4, 479–490

[HZEF16] Hughes, James N. ; Zimmerman, Matthew D. ; Eichelberger, Christo-
pher N. ; Fox, Anthony D.: A Survey of Techniques and Open-source
Tools for Processing Streams of Spatio-temporal Events. In: Proceedings
of the 7th ACM SIGSPATIAL International Workshop on GeoStreaming.
New York, NY, USA : ACM, 2016 (IWGS ’16). – ISBN 978–1–4503–
4579–8, 6:1–6:4

[IH11] Inc., Open Geospatial C. ; Herring, John R.: OpenGIS ® Imple-
mentation Standard for Geographic information - Simple feature access
- Part 1: Common architecture. http://www.opengeospatial.org/
standards/sfa. Version: 2011

[JDB+98] Jensen, Christian S. ; Dyreson, Curtis E. ; Bohlen, Michael ; Clifford,
James ; Elmasri, Ramez ; Gadia, Shashi K. ; Grandi, Fabio ; Hayes, Pat
; Jajodia, Sushil ; Käfer, Wolfgang ; Kline, Nick ; Lorentzos, Nikos
; Mitsopoulos, Yannis ; Montanari, Angelo ; Nonen, Daniel ; Peressi,
Elisa ; Pernici, Barbara ; Roddick, John F. ; Sarda, Nandlal L. ; Scalas,
Maria Rita ; Segev, Arie ; Snodgrass, Richard T. ; Soo, Mike D. ; Tansel,
Abdullah ; Tiberio, Paolo ; Wiederhold, Gio: The consensus glossary of
temporal database concepts - february 1998 version. In: Lecture Notes in
Computer Science 1399 (1998), S. 367–405. – ISSN 0302–9743

https://gis.stackexchange.com/questions/25494/how-accurate-is-approximating-the-earth-as-a-sphere#25580
https://gis.stackexchange.com/questions/25494/how-accurate-is-approximating-the-earth-as-a-sphere#25580
http://www.opengeospatial.org/standards/sfa
http://www.opengeospatial.org/standards/sfa

213

[JG08] Jacobi, Jonas ; Grawunder, Marco: ODYSSEUS: Ein flexibles Frame-
work zum Erstellen anwendungsspezifischer Datenstrommanagementsys-
teme. In: Grundlagen von Datenbanken 1 (2008), S. 86–90

[JG10] Junghans, Conny ; Gertz, Michael: Modeling and Prediction of Moving
Region Trajectories. In: Proceedings of the ACM SIGSPATIAL Interna-
tional Workshop on GeoStreaming. New York, NY, USA : ACM, 2010
(IWGS ’10). – ISBN 978–1–4503–0431–3, 23–30

[Kar13] Karney, Charles F. F.: Algorithms for geodesics. In: Journal of Geodesy
87 (2013), Jan, Nr. 1, 43–55. http://dx.doi.org/10.1007/s00190-
012-0578-z. – DOI 10.1007/s00190–012–0578–z. – ISSN 1432–1394

[Krä07] Krämer, Jürgen ; Seeger, Bernhard (Prof. D. (Hrsg.): Continuous
Queries over Data Streams - Semantics and Implementation. Philipps-
Universität Marburg, 2007 http://archiv.ub.uni-marburg.de/diss/
z2007/0671/pdf/djk.pdf

[KS04a] Kolahdouzan, Mohammad R. ; Shahabi, Cyrus: Continuous K-Nearest
Neighbor Queries in Spatial Network Databases. In: GeoInformatica 9
(2004), S. 321–341

[KS04b] Krämer, Jürgen ; Seeger, Bernhard: PIPES: A Public Infrastructure for
Processing and Exploring Streams. In: Proceedings of the 2004 ACM
SIGMOD International Conference on Management of Data. New York,
NY, USA : ACM, 2004 (SIGMOD ’04). – ISBN 1–58113–859–8, 925–
926

[KS09] Krämer, Jürgen ; Seeger, Bernhard: Semantics and Implementation of
Continuous Sliding Window Queries over Data Streams. In: ACM Trans.
Database Syst. 34 (2009), April, Nr. 1, 4:1–4:49. http://dx.doi.org/
10.1145/1508857.1508861. – DOI 10.1145/1508857.1508861. – ISSN
0362–5915

[KSF+03] Koubarakis, Manolis ; Sellis, Timos ; Frank, Andrew U. ; Grumbach,
Stéphane ; Güting, Ralf H. ; Jensen, Christian S. ; Lorentzos, Nikos
; Manolopoulos, Yannis ; Nardelli, Enrico ; Pernici, Barbara u. a.:
Spatio-temporal databases: The CHOROCHRONOS approach. Bd. 2520.
Springer, 2003

[Kuk15] Kuka, Christian: Qualitätssensitive Datenstromverarbeitung zur Erstel-
lung von dynamischen Kontextmodellen, Universität Oldenburg, Diss.,
2015

[KWZH14] Kuwata, Y. ; Wolf, M. T. ; Zarzhitsky, D. ; Huntsberger, T. L.: Safe
Maritime Autonomous Navigation With COLREGS, Using Velocity Ob-
stacles. In: IEEE Journal of Oceanic Engineering 39 (2014), Jan, Nr. 1,

http://dx.doi.org/10.1007/s00190-012-0578-z
http://dx.doi.org/10.1007/s00190-012-0578-z
http://archiv.ub.uni-marburg.de/diss/z2007/0671/pdf/djk.pdf
http://archiv.ub.uni-marburg.de/diss/z2007/0671/pdf/djk.pdf
http://dx.doi.org/10.1145/1508857.1508861
http://dx.doi.org/10.1145/1508857.1508861

214 Bibliography

S. 110–119. http://dx.doi.org/10.1109/JOE.2013.2254214. – DOI
10.1109/JOE.2013.2254214. – ISSN 0364–9059

[LCY07] Lin, Dan ; Cui, Bin ; Yang, Dongqing: Optimizing Moving Queries over
Moving Object Data Streams. In: Kotagiri, Ramamohanarao (Hrsg.) ;
Krishna, P. R. (Hrsg.) ; Mohania, Mukesh (Hrsg.) ; Nantajeewarawat,
Ekawit (Hrsg.): Advances in Databases: Concepts, Systems and Applica-
tions: 12th International Conference on Database Systems for Advanced
Applications, DASFAA 2007, Bangkok, Thailand, April 9-12, 2007. Pro-
ceedings. Berlin, Heidelberg : Springer Berlin Heidelberg, 2007. – ISBN
978–3–540–71703–4, 563–575

[LGMR10] Longley, Paul A. ; Goodchild, Mike ; Maguire, David J. ; Rhind,
David W.: Geographic Information Systems and Science. 3rd. Wiley
Publishing, 2010. – ISBN 0470721448, 9780470721445

[LH06] Lin, Bin ; Huang, Chih-Hao: Comparison between ARPA Radar and AIS
Characteristics for Vessel Traffic Services. In: Journal of Marine Science
and Technology 14 (2006), Sep, Nr. 3, S. 182–189. – ISSN 1023–2796

[Loc] LocationTech: locationtech jts. https://github.com/locationtech/
jts

[LTS+08] Li, Jin ; Tufte, Kristin ; Shkapenyuk, Vladislav ; Papadimos, Vassilis ;
Johnson, Theodore ; Maier, David: Out-of-order processing: a new ar-
chitecture for high-performance stream systems. In: PVLDB 1 (2008), Nr.
1, 274–288. http://dx.doi.org/10.14778/1453856.1453890. – DOI
10.14778/1453856.1453890

[Luc02] Luckham, David C.: The Power of Events - An Introduction to Com-
plex Event Processing in Distributed Enterprise Systems. Amsterdam :
Addison-Wesley, 2002. – ISBN 978–0–201–72789–0

[Lud15] Ludmann, Cornelius A.: Online Recommender Systems Based on Data
Stream Management Systems. In: Proceedings of the 9th ACM Con-
ference on Recommender Systems. New York, NY, USA : ACM, 2015
(RecSys ’15). – ISBN 978–1–4503–3692–5, 391–394

[Lud17] Ludmann, Cornelius A.: Recommending News Articles in the CLEF
News Recommendation Evaluation Lab with the Data Stream Manage-
ment System Odysseus. In: Cappellato, Linda (Hrsg.) ; Ferro, Nicola
(Hrsg.) ; Goeuriot, Lorraine (Hrsg.) ; Mandl, Thomas (Hrsg.): Working
Notes of CLEF 2017 - Conference and Labs of the Evaluation Forum,
Dublin, Ireland, September 11-14, 2017. Bd. 1866, CEUR-WS.org, 2017
(CEUR Workshop Proceedings)

http://dx.doi.org/10.1109/JOE.2013.2254214
https://github.com/locationtech/jts
https://github.com/locationtech/jts
http://dx.doi.org/10.14778/1453856.1453890

215

[MA08] Mokbel, Mohamed F. ; Aref, Walid G.: SOLE: scalable on-line execution
of continuous queries on spatio-temporal data streams. In: The VLDB
Journal 17 (2008), Nr. 5, S. 971–995

[MFBM14] McKenney, Mark ; Frye, Roger ; Benchly, Zachary ; Maughan, Logan:
Temporal coverage aggregates over moving region streams. In: Proceed-
ings of the 5th ACM SIGSPATIAL International Workshop on GeoStream-
ing ACM, 2014, S. 21–24

[OGC] OGC: Welcome to the OGC. http://www.opengeospatial.org/

[Oos99] Oosterom, Peter van: Spatial Access Methods. In: Encyclopedia of
Database Systems, 1999

[PAA+17] Patroumpas, Kostas ; Alevizos, Elias ; Artikis, Alexander ; Vodas, Mar-
ios ; Pelekis, Nikos ; Theodoridis, Yannis: Online event recognition
from moving vessel trajectories. In: GeoInformatica 21 (2017), Nr. 2,
389–427. http://dx.doi.org/10.1007/s10707-016-0266-x. – DOI
10.1007/s10707–016–0266–x. – ISSN 1573–7624

[PTRC07] Peffers, Ken ; Tuunanen, Tuure ; Rothenberger, Marcus A. ; Chatterjee,
Samir: A design science research methodology for information systems
research. In: Journal of management information systems 24 (2007), Nr.
3, S. 45–77

[PVB13] Pallotta, Giuliana ; Vespe, Michele ; Bryan, Karna: Vessel pattern
knowledge discovery from ais data: A framework for anomaly detection
and route prediction. In: Entropy 15 (2013), Nr. 6, S. 2218–2245

[RH10] Roh, Gook-Pil ; Hwang, Seung-won: NNCluster: An Efficient Clustering
Algorithm for Road Network Trajectories. In: Proceedings of the 15th In-
ternational Conference on Database Systems for Advanced Applications -
Volume Part II. Berlin, Heidelberg : Springer-Verlag, 2010 (DASFAA’10).
– ISBN 3–642–12097–0, 978–3–642–12097–8, 47–61

[RSV02] Rigaux, Ph ; Scholl, Michel O. ; Voisard, Agnès: Spatial Databases -
With Application to GIS. San Francisco, Calif : Morgan Kaufmann, 2002.
– ISBN 978–1–558–60588–6

[Sal14] Salonen, Joni: Geographic distance can be simple and fast.
http://jonisalonen.com/2014/computing-distance-between-
coordinates-can-be-simple-and-fast. Version: 2014

[SM07] Schwehr, K. D. ; McGillivary, P. A.: Marine Ship Automatic Identifi-
cation System (AIS) for Enhanced Coastal Security Capabilities: An Oil
Spill Tracking Application. In: OCEANS 2007, 2007. – ISSN 0197–7385,
S. 1–9

http://www.opengeospatial.org/
http://dx.doi.org/10.1007/s10707-016-0266-x
http://jonisalonen.com/2014/computing-distance-between-coordinates-can-be-simple-and-fast
http://jonisalonen.com/2014/computing-distance-between-coordinates-can-be-simple-and-fast

216 Bibliography

[SRC+16] Schmidt, Desmond ; Radke, Kenneth ; Camtepe, Seyit ; Foo, Ernest ;
Ren, Michał: A survey and analysis of the GNSS spoofing threat and
countermeasures. In: ACM Computing Surveys (CSUR) 48 (2016), Nr. 4,
S. 64

[SSBK12] Schmiegelt, Philip ; Seeger, Bernhard ; Behrend, Andreas ; Koch, Wolf-
gang: Continuous Queries on Trajectories of Moving Objects. In: Pro-
ceedings of the 16th International Database Engineering & Applica-
tions Sysmposium. New York, NY, USA : ACM, 2012 (IDEAS ’12). –
ISBN 978–1–4503–1234–9, 165–174

[Sto03] Stolze, Knut: SQL/MM Spatial-The Standard to Manage Spatial Data in
a Relational Database System. In: BTW Bd. 2003, 2003, S. 247–264

[SV04] Schiller, Jochen ; Voisard, Agnès: Location-Based Services. Amsterdam
: Elsevier, 2004. – ISBN 978–0–080–49172–1

[SW04] Srivastava, Utkarsh ; Widom, Jennifer: Flexible Time Management
in Data Stream Systems. In: Proceedings of the Twenty-third ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Sys-
tems. New York, NY, USA : ACM, 2004 (PODS ’04). – ISBN
158113858X, 263–274

[THC+14] Tseng, P. J. ; Hung, C. C. ; Chuang, Y. H. ; Kao, K. ; Chen, W. H. ; Chiang,
C. Y.: Scaling the Real-Time Traffic Sensing with GPS Equipped Probe
Vehicles. In: 2014 IEEE 79th Vehicular Technology Conference (VTC
Spring), 2014. – ISSN 1550–2252, S. 1–5

[TMRDR12] Tao, Sha ; Manolopoulos, Vasileios ; Rodriguez Duenas, Saul ; Rusu,
Ana: Real-Time Urban Traffic State Estimation with A-GPS Mobile
Phones as Probes. In: Journal of Transportation Technologies 2 (2012),
Nr. 1, 22–31. http://dx.doi.org/10.4236/jtts.2012.21003. – DOI
10.4236/jtts.2012.21003. – QC 20120312

[Tso16] Tsou, Ming-Cheng: Online analysis process on Automatic Identifica-
tion System data warehouse for application in vessel traffic service. In:
Proceedings of the Institution of Mechanical Engineers, Part M: Jour-
nal of Engineering for the Maritime Environment 230 (2016), Nr. 1,
199-215. http://dx.doi.org/10.1177/1475090214541426. – DOI
10.1177/1475090214541426

[Vin75] Vincenty, Thaddeus: Direct and inverse solutions of geodesics on the el-
lipsoid with application of nested equations. In: Survey review 23 (1975),
Nr. 176, S. 88–93

http://dx.doi.org/10.4236/jtts.2012.21003
http://dx.doi.org/10.1177/1475090214541426

217

[VVBB12] Vespe, M. ; Visentini, I. ; Bryan, K. ; Braca, P.: Unsupervised learning
of maritime traffic patterns for anomaly detection. In: 9th IET Data Fu-
sion Target Tracking Conference (DF TT 2012): Algorithms Applications,
2012, S. 1–5

[WK96] Widmer, Gerhard ; Kubat, Miroslav: Learning in the Presence of Concept
Drift and Hidden Contexts. In: Machine Learning 23 (1996), Apr, Nr.
1, 69–101. http://dx.doi.org/10.1023/A:1018046501280. – DOI
10.1023/A:1018046501280. – ISSN 1573–0565

[WKK+14] Wakamiya, Shoko ; Kawai, Yukiko ; Kawasaki, Hiroshi ; Lee, Ryong ;
Sumiya, Kazutoshi ; Akiyama, Toyokazu: Crowd-sourced prediction of
pedestrian congestion for bike navigation systems. In: Proceedings of the
5th ACM SIGSPATIAL International Workshop on GeoStreaming ACM,
2014, S. 25–32

[WLN14] Whittier, J. C. ; Liang, Qinghan ; Nittel, Silvia: Evaluating Stream Pred-
icates over Dynamic Fields. In: Proceedings of the 5th ACM SIGSPATIAL
International Workshop on GeoStreaming. New York, NY, USA : ACM,
2014 (IWGS ’14). – ISBN 978–1–4503–3139–5, 2–11

[WNPL13] Whittier, J. C. ; Nittel, Silvia ; Plummer, Mark A. ; Liang, Qinghan: To-
wards Window Stream Queries over Continuous Phenomena. In: Proceed-
ings of the 4th ACM SIGSPATIAL International Workshop on GeoStream-
ing. New York, NY, USA : ACM, 2013 (IWGS ’13). – ISBN 978–1–
4503–2532–5, 2–11

[YWS15] Yu, Jia ; Wu, Jinxuan ; Sarwat, Mohamed: GeoSpark: A Cluster Com-
puting Framework for Processing Large-scale Spatial Data. In: Proceed-
ings of the 23rd SIGSPATIAL International Conference on Advances in
Geographic Information Systems. New York, NY, USA : ACM, 2015
(SIGSPATIAL ’15). – ISBN 978–1–4503–3967–4, 70:1–70:4

[ZJDR10] Zhang, Rui ; Jagadish, H.V. ; Dai, Bing T. ; Ramamohanarao, Kotagiri:
Optimized algorithms for predictive range and KNN queries on moving
objects. In: Information Systems 35 (2010), Nr. 8, 911 - 932. http:
//dx.doi.org/https://doi.org/10.1016/j.is.2010.05.004. – DOI
https://doi.org/10.1016/j.is.2010.05.004. – ISSN 0306–4379

[ZZP+03] Zhang, Jun ; Zhu, Manli ; Papadias, Dimitris ; Tao, Yufei ; Lee, Dik L.:
Location-based Spatial Queries. In: Proceedings of the 2003 ACM SIG-
MOD International Conference on Management of Data. New York, NY,
USA : ACM, 2003 (SIGMOD ’03). – ISBN 1–58113–634–X, 443–454

http://dx.doi.org/10.1023/A:1018046501280
http://dx.doi.org/https://doi.org/10.1016/j.is.2010.05.004
http://dx.doi.org/https://doi.org/10.1016/j.is.2010.05.004

218 Bibliography

219

Index
Symbols

2.5D. .18

A
Active Data Source 7
AIS. .7, 28, 129
Approximate Distance

Error . 121
Filter . 86, 119, 166

Attribute
Temporal 36, 44, 46, 94, 97

B
Bitemporal

Aggregation . 40
Mapping . 40
Selection. .39

Bitemporal Data Streams 33
Bounding Box 87, 88
Buffer . 153

C
Center Element . 63, 67, 70, 123, 154, 159,

164, 166
Chronon . 8, 16
Closest Point of Approach 23, 141
Closest Time of Approach 141
Concept Drift . 180
Continuous Query 9, 11
Coordinate Reference System 17, 118
Course Over Ground 8

D
Data Rate . 149, 150
Data Stream . 7

Unbounded. .8
DE-9IM . 18
Design Science . 3
Direct Temporal Function 111
DSMS . 9

E
Efficiency.2, 81, 119, 166
Element Join 72, 116, 135

Algorithm. .76
Algorithm Partitioned 81

Element Window. . . 36, 46, 67, 68, 71, 72,
116, 135

Ellipsoid . 17
EPSG . 118
Event-Driven 3, 9, 23
Expression . 135

Combining . 105
Lifted . 59
Spatial .135
Temporal . 59, 104

External Temporal Source 49, 101

F
Filter 21, 43, 81, 83, 84, 87, 119, 166

Approximate Distance 86, 119, 166
Multi Rectangle 88, 123
Single Rectangle 87, 122

Filter and Refine . . . 21, 43, 81, 83, 84, 87,
119, 166

Flattening . 17

G
GenericTemporalType 99, 141
Geodetic Datum . 17
Geometry . 18

Line . 24
LineString . 18
Point . 18, 24
Polygon . 18
Region . 24

GeoSPARQL . 30
GeoTools . 118
Global Coordinate System 8
GNSS . 8, 17
GPS . 8
Granularity .16, 53, 96, 100, 105, 113, 159

220 Index

Grouping 81, 117, 135

H
Haversine Formula 20, 120

I
Interval Approach 13, 33, 38, 93

J
Join . 72, 116, 135
JTS . 18, 101, 118

K
kNN . 136, 164

L
Latency . 149, 150
Lifting . 25, 39
Linear Function 47, 100
Location Based Service 27
Location Update . . . 8, 46, 47, 63, 126, 152
Logical Query

Translation . 98
Logical Stream . 15

Transformation . 15

M
Major Axis . 17
Map Matching . 9
Metadata . 94

Data Rate . 150
Granularity 16, 53, 113, 159
Latency. .150
Merging 62, 110, 113
Prediction Time 33, 35, 44, 50
Stream Time 35, 44
Temporal Trust . 61

Minor Axis. .17
MobyDick . 29, 90
Moving Object

Data Stream . 14
Database . 29
Generic Query 126

Moving Object Algebra 24
Periods . 38, 39

Moving Object Functions
area . 25
atinstant . 27
atMax . 112
atMin 39, 60, 112, 141
direction . 25
distance. .25
final . 26
in_interior . 25, 51
initial . 26
Other . 40
Rate of Change . 38
speed . 38
trajectory . 142
turn . 38

Moving Region Query 139
Moving Type . 25, 37
Multi Rectangle Filter 88, 123, 166
Multiplicity . 36

O
OCEANUS . 29, 90
Odysseus . 93
Open Geospatial Consortium.18
Operator . 11
Operator Graph . 11

P
Partitioning 80, 117, 135
Performance Measurements 149
Periods . 38, 39
Physical Stream . 15

Transformation . 15
Positive-Negative Approach 13
PostGIS . 23
PQL . 94
Predicate Window.12, 36, 41
Prediction Time 33, 38, 50, 94, 110

Granularity 53, 100, 105, 113, 159
Manipulation 50, 51
Merging . 55, 110

221

Number of . 53
Operator . 135
Performance . 161

Projected Coordinate System 8
Pull-based . 7
Push-based . 7

Q
Query . 9, 11

Logical . 93
Physical . 93
Translation . 98

Query Graph . 11
Query Language . 94

PQL . 94

R
Radius Query 63, 65, 84
Restricted Movement 9
Route Operator . 78

S
Second-order signature 24
SECONDO.29, 33, 90
Signature . 24
Simple Feature Access 17, 18
Single Rectangle Filter 87, 122, 166
Sliced Representation 26
Smart Meter . 146
Snapshot . 14
Snapshot-Reducability 14
Spatial Data . 17, 118
Spatial Filter . . 21, 43, 81, 83, 84, 87, 119,

166
Spatial Index . 21

Quadtree . 21
Spatial Operation . 18
Spatio-Temporal

Algebra . 94
Data Processing . 1
Data Streams 1, 2, 8, 126, 148
Database . 90
Filter . 81, 119, 166

Query 23, 126, 148
Stage . 126, 159

Spherical Distance 20, 120
Spline Function 101, 152
Stream Time . 35
SweepArea . 73, 110

T
Temporal Attribute 46, 94, 97
Temporal Function 37

Direct . 111
Temporal Operator

Aggregation. .107
Join . 110
Map . 104
Select . 107
Unnest . 110

Temporal Trust61, 114
Merging . 62

Temporal Type 25, 37, 44, 111
Temporalization . . . 46, 47, 49, 67, 97, 132

Costs . 152
Function . 100

Throughput . 149
Tile38 . 29, 90
Time Instant . 16
Time Interval 15, 16, 36, 38, 50
Timestamp . 13, 14
Trajectory . 16
Trigger 64, 67, 68, 154
Tuple . 11, 14

U
Unbounded Data Stream 8
Unrestricted Movement 9

V
Vessel Traffic Service 27

W
WGS84 . 8
Windows . 12
WKT . 24

222 Index

223

Erklärung

Hiermit versichere ich, dass ich diese Arbeit selbstständig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel verwendet habe. Außerdem versichere ich,
dass ich die allgemeinen Prinzipien wissenschaftlicher Arbeit und Veröffentlichung, wie
sie in den Leitlinien guter wissenschaftlicher Praxis an der Carl von Ossietzky Uni-
versität Oldenburg und den DFG-Richtlinien festgelegt sind, befolgt habe. Des Weit-
eren habe ich im Zusammenhang mit dem Promotionsvorhaben keine kommerziellen
Vermittlungs- oder Beratungsdienste in Anspruch genommen.

Oldenburg, den 3. März 2020

Tobias Brandt

	Title: Query Processing on Spatio-TemporalData Streams from Moving Objects
	Zusammenfassung
	Abstract
	Acknowledgments
	Contents
	Introduction
	Motivation and Goals
	Problem Statement
	Research Method
	Organization of the Thesis

	Background
	Moving Object Data Streams
	Data Stream Management Systems
	Formal Definition of Data Stream Processing
	Spatial Data Processing
	Moving Object Algebra
	Location Based Services and Vessel Traffic Services
	Related Work
	Summary

	Moving Object Stream Query Processing
	Bitemporal Data Streams
	Temporal Types
	Operations on Moving Object Streams
	Summary

	Physical Integration
	Physical Moving Object Data Stream
	Temporal Attributes
	Prediction Time
	Lifted Expressions
	Temporal Trust Value
	Queries with Multiple Moving Objects
	Non-Blocking Queries with Multiple Objects
	Filter and Refine
	Conceptual Contribution and Differentiation to Related Work
	Summary

	Architecture and Implementation
	Odysseus
	Temporal Implementation in the DSMS Odysseus
	Element Join
	Spatial Operations
	Spatio-Temporal Filtering
	Generic Moving Object Query Structure
	Summary

	Evaluation
	Data Description
	Scenario Evaluation
	Performance Evaluation
	Filter Approaches in Moving Object Queries
	Summary

	Conclusion and Future Work
	Summary
	Contribution
	Future Work

	Appendix
	Error of Equirectangular Distance Calculation

	Glossary
	Acronyms
	List of Figures
	List of Publications
	Bibliography
	Index
	Erklärung

