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Abstract

Power system operation involves a wide range of complex optimization problems
that require the coordination of power generation and consumption across a large
number of distributed units. For various reasons, such as scalability, robustness, or
data privacy, a decentralized system is advantageous for controlling these processes.
Self-organized agent-based control systems are a viable approach for this purpose.
Thanks to special capabilities such as self-optimization or self-healing, they can
flexibly adapt to changing environments. The distributed optimization problems that
such control systems have to solve in energy systems are usually very complex, i.e.,
nonlinear, high-dimensional, and with a high degree of interdependencies among the
decision variables. Using optimization heuristics instead of exact solution methods
is therefore often a practical approach. For the application in distributed control
systems, these optimization heuristics must operate in a distributed manner as
well.

The communication or exchange topology, which determines the direct communi-
cation links between agents, is an important hyperparameter for such parallel and
distributed optimization heuristics. It has a strong impact on the dissemination of
information in the system and thus influences the degree of exploration and ex-
ploitation of the distributed search space. The balance between these two properties
significantly affects the performance of optimization heuristics in terms of solution
quality, computational effort and the communication overhead. Furthermore, each
agent controls only a subset of the decision variables. Thus, solving the global
problem by making choices for all decision variables requires cooperation among
agents.

This makes the choice of the communication topology an important design aspect
for such distributed optimization heuristics. In addition, the most beneficial degree
of exploration and exploitation changes over the course of the optimization process.
Runtime parameter tuning is a common method for improving algorithmic perfor-
mance. Adapting the communication topology is therefore a promising strategy for
improving the performance of distributed optimization heuristics. In the present
work, a runtime adaptation of the communicating topology has been developed.
Starting from an initial small-world topology, this method increases or decreases the
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connectivity of the topology at a configurable rate. The combination of the initial
topology with the runtime adaptation is termed Communication Topology Variant
(CTV). The application of CTVs shows significant effects on the performance of the
distributed optimization algorithms.

The characteristics of the optimization problem determine which type of CTV is
beneficial. Thus, for the selection of an appropriate CTV, the properties of the
distributed optimization problem must first be determined. A common approach
for this is Fitness Landscape Analysis (FLA), which includes a number of techniques
typically based on drawing samples from a search space and then computing metrics
based on the position of these samples, their fitness values, and neighborhood
metrics. In this work, a method for spatially distributed execution of FLA has been
developed. The resulting FLA metrics were successfully used as a basis for selecting
appropriate CTVs. Machine learning models were trained to make predictions for
various performance dimensions, such as solution quality, computational effort, and
communication overhead, given the FLA metrics and CTV parameters. Based on
these predictions, a problem-specific CTV can be selected that matches a predefined
prioritization of performance dimensions to improve the optimization process in a
targeted manner.

Zusammenfassung

Der Betrieb von Energiesystemen umfasst eine Vielzahl komplexer Optimierungs-
probleme, die die Koordination von Energieerzeugung und -verbrauch einer großen
Anzahl verteilter Anlagen erfordern. Verschiedene Aspekte wie Skalierbarkeit, Ro-
bustheit oder Datenschutz sprechen für ein dezentrales System zur Steuerung dieser
Prozesse. Selbstorganisierende agentenbasierte Steuerungssysteme sind hierfür ein
geeigneter Ansatz, da sie sich durch besondere Fähigkeiten wie Selbstoptimierung
oder Selbstheilung flexibel an sich verändernde Umgebungen anpassen können. Die
verteilten Optimierungsprobleme, die solche Steuerungssysteme in Energiesystemen
lösen müssen, sind in der Regel sehr komplex, d.h. nicht linear, hochdimensional und
mit einem hohen Grad an Abhängigkeiten zwischen den Entscheidungsvariablen.
Aus diesem Grund lassen sie sich in der Praxis häufig mit Hilfe von Optimierungs-
heuristiken lösen, die jedoch für den Einsatz in verteilten Kontrollsystemen auch
räumlich verteilt funktionieren müssen.
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Die Kommunikationstopologie bestimmt die direkten Kommunikationsverbindungen
zwischen Agenten und ist ein wichtiger Hyperparameter für solche parallelen und
verteilten Optimierungsheuristiken. Sie hat einen starken Einfluss auf die Informati-
onsverbreitung im System und damit auf den Grad der Exploration und Exploitation
des verteilten Suchraums. Für die Leistungsfähigkeit von Optimierungsheuristiken
in Bezug auf Lösungsqualität, Rechen- und Kommunikationsaufwand ist die Balance
zwischen diesen beiden Eigenschaften von entscheidender Bedeutung. Jeder Agent
hat dabei nur die Kontrolle über eine Teilmenge der Entscheidungsvariablen. Die
Lösung des Gesamtproblems und die damit verbundene Festlegung aller Entschei-
dungsvariablen erfordert daher die Kooperation der Agenten.

Dies macht die Wahl der Kommunikationstopologie zu einem wichtigen Designa-
spekt für solche verteilten Optimierungsheuristiken. Darüber hinaus ändert sich im
Laufe des Optimierungsprozesses, welcher Grad an Exploration und Exploitation am
vorteilhaftesten ist. Eine gängige Methode zur Verbesserung der algorithmischen
Leistungsfähigkeit ist die Anpassung von Hyperparametern zur Laufzeit. Daher ist
die Adaption der Kommunikationstopologie zur Laufzeit eine vielversprechende
Strategie, um die Performance von verteilten Optimierungsheuristiken zu verbessern.
In dieser Arbeit wurde eine Methode zur Anpassung der Kommunikationstopolo-
gie zur Laufzeit entwickelt. Ausgehend von einer Small-World-Topologie wird die
Konnektivität der Topologie mit einer konfigurierbaren Geschwindigkeit erhöht oder
verringert. Die Kombination aus initialer Topologie und Laufzeitanpassung wird als
Kommunikationstopologievariante (CTV) definiert. Die Anwendung dieser Adapti-
onsmethode zeigt signifikante Auswirkungen auf die Performance von verteilten
Optimierungsalgorithmen.

Welche Art von CTV vorteilhaft ist, hängt von den Eigenschaften des Optimie-
rungsproblems ab. Um eine geeignete CTV zu wählen, müssen daher zunächst
die Eigenschaften des verteilten Optimierungsproblems bestimmt werden. Ein ge-
bräuchlicher Ansatz hierfür ist die Fitnesslandschaftsanalyse (FLA). Sie umfasst eine
Reihe von Techniken, die typischerweise auf der Entnahme von Stichproben aus
einem Suchraum und der anschließenden Berechnung von Metriken beruhen. Die
Metriken basieren auf der Position dieser Stichproben, ihren Fitnesswerten und
den Nachbarschaftsbeziehungen zwischen ihnen. In dieser Arbeit wurde eine Me-
thode zur räumlich verteilten Ausführung von FLA entwickelt. Die resultierenden
FLA-Metriken wurden erfolgreich als Grundlage für die Auswahl geeigneter CTVs
verwendet. Dazu wurden Machine-Learning-Modelle auf Basis der FLA-Metriken
und der Parameter der CTV trainiert, um Vorhersagen für verschiedene Performance-
dimensionen wie Lösungsqualität, Rechen- und Kommunikationsaufwand zu treffen.
Anhand dieser Vorhersagen kann eine problemspezifische CTV ausgewählt werden,
die einer vordefinierten Priorisierung von Performancedimensionen entspricht und
den Optimierungsprozess gezielt verbessert.
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Part I

Introduction

This introduction presents the motivational context of optimization problems in
power systems and highlights their particularities and challenges (section 1.1). These
motivate the use of agent-based and self-organized control systems (section 1.2),
as well as the use of truly distributed network-based optimization heuristics. In
section 1.3, the research hypotheses and research questions of this thesis are derived,
which deal with the problem-specific optimization of an important hyperparameter
of these optimization heuristics: the communication topology. Finally, section 1.4
outlines the development objective and the subsequent organization of this thesis.





1Introduction

The electrical energy system is currently in a process of profound change as a large
proportion of conventional power plants is replaced by renewable energy sources.
The energy transition is a complex and multi-faceted process that involves changes
at many levels, from the way energy is produced and consumed to the policies
and regulations that govern it [Gie+19]. This demands new approaches, such as
decentralized control at device level, distributed coordination of energy sources, or
real-time optimization at system level [Dör+19].

Power system operation involves many optimization problems that aim to balance
generation and consumption. Other factors, such as the operating limits of power
plants and grid resources, or economic aspects, often need to be considered as well.
With the increase in generators and controllable loads at the distribution grid level,
such optimization problems become more complex and are further compounded by
other challenges such as increased uncertainty due to volatile weather-dependent
feed-in, the distributed nature of the required data, and real-time requirements.
These types of problems serve as motivating use cases for this thesis. Therefore,
they are presented in more detail below (section 1.1), along with an example to
illustrate the challenges. Self-organized agent-based control systems are a suit-
able and practical approach to meet these challenges [Dör+19; Kan+15; TAA20;
Mol+17]. By implementing so-called self-x capabilities, such systems are able to
adapt dynamically to changing requirements and conditions. They provide the
systems engineering context for this thesis. As such, they are introduced in more
detail in section 1.2. Although agent-based control systems provide the systems
engineering paradigm, implementing the optimization algorithm or choosing an
appropriate optimization method is a separate design decision. Due to problem char-
acteristics such as nonlinearity, high dimensionality, and multimodality, the use of
optimization heuristics instead of exact methods is often an adequate choice [Tal09].
However, they pose their own unique challenges, especially when implemented
in a distributed or networked control system. One of them is the selection of a
suitable Communication Topology (CT) that determines the information exchange
between the distributed solvers and thus the information dissemination during the
optimization process [Cra19; CT07]. The modeling of (dynamic) communication
topologies and the impact of different topology variants on algorithm performance
is a major focus of this thesis. Since the impact also depends on the problem charac-
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teristics [HN21b; HN21a], the second main focus is on the systematic analysis of
distributed optimization problems via Fitness Landscape Analysis (FLA). Section 1.3
gives a brief introduction to the fundamental concepts, highlights the underlying
relationships, and presents the derived research hypotheses and research questions.
Finally, section 1.4 presents the development objective and the further outline of the
thesis.

1.1 Motivation: Distributed power system
optimization problems

Power system optimization problems are manifold. They range from planning
problems for future power system expansion to everything needed for day-to-day op-
erations. Safe and reliable operation entails a variety of optimization problems, such
as classical unit commitment, economic dispatch, optimal power flow, distribution
system reconfiguration, and maintenance scheduling [CM20]. Furthermore, many
ancillary services like voltage and frequency control, reactive power supply, and con-
gestion management involve optimization. The focus of this work is on optimization
problems that require the coordination of generation and consumption in distri-
bution grids, such as the aforementioned ancillary services or economic dispatch.
The large-scale expansion of distributed energy resources (DERs), among them
PV systems, controllable loads, or battery storages, also in the form of e-mobility,
raises the complexity of coordination tasks in distribution grids, but also offers
opportunities [Lop+20]. Intelligent control strategies can harness the flexibility of
these multifaceted resources. For example, marketing flexibility in (future) ancillary
services markets can provide additional benefits to unit operators and ensure the
safe and reliable operation of the power system in an efficient manner [Hol+20].
Virtual Power Plants (VPPs) are already in operation today and are a concept for
pooling small-scale flexibility. A VPP is an aggregation of distributed units in the
power grid, usually coordinated by a central control system. The purpose of the
VPP is the joint marketing of electricity and the flexibility of the combined pool of
units1. This type of aggregation also requires coordination of the units’ power supply
and consumption. To illustrate the characteristics of this type of problem, a simple
formalization for such scheduling in virtual power plants is described in more detail
below.

The goal of operational planning in a VPP is to jointly achieve a target schedule
involving all units in the pool. This target schedule is a time series, typically at
15-minute resolution, that contains power value targets. To formalize this, the
flexibility of the units must first be modeled. A simple form of flexibility modeling is

1https://www.next-kraftwerke.com/knowledge/what-is-a-virtual-power-plant
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to determine a set of feasible schedules for each unit. These schedules are again time
series with the same resolution as the target schedule, containing feasible values for
power generation or consumption. This results in a multiple-choice combinatorial
optimization problem in which one of these schedules must be selected for each
unit, and the combination of all chosen schedules should be as close as possible to
the target schedule [HLS13a]. The following formalization is based on the work of
Hinrichs et al. in [HLS13a; Hin14]. Table 1.1 specifies the definitions required for
the subsequent objective function and constraints.

u
identifies a single unit of the VPP, with i ∈ {1, 2, . . . , k} and k
being the number of units

j index of a single schedule of a unit, with j ∈ {1, 2, . . . , m}
i index of a single interval of a schedule, with i ∈ {1, 2, . . . n}
puji power of schedule j of unit u at time interval i

xuj
boolean that indicates if schedule j is selected for unit u, with
xuj ∈ {0, 1}

ti power of the target schedule at time interval i

Tab. 1.1.: Definitions of terms used in eq. (1.1) and eq. (1.2)

Equation (1.1) is the objective function that aims to minimize the deviation from
the target schedule for each time interval.

min

 n∑
i=1

(
|ti −

k∑
u=1

m∑
j=1

puji · xaj |
) (1.1)

Equation (1.2) is the constraint that ensures that for each unit exactly one schedule
is chosen.

s.t.
m∑

j=1
xaj = 1 (1.2)

The presented problem is similar to the well-known multiple-choice knapsack prob-
lem that can be solved in polynomial time using dynamic programming [HLS13a].
However, it serves as a simple entry point to demonstrate the basic properties of
such optimization problems involving the coordination of power generation and
demand in any form. Simply modeling flexibility differently can significantly change
the optimization problem. For example, the set of schedules can be replaced by a
flexibility model that reflects the technical degrees of freedom and constraints of the
units in detail and unfolds the possibly continuous space of feasible schedules, e.g.,
[Tie+22], [BRS11]. The choice of each unit’s schedule still represents a multidimen-
sional decision variable (number of time intervals) for the global problem. However,
depending on the constraints of the unit and the modeling of flexibility, the search
space for this unit may be discrete, continuous, or a combination of these.

Coordinating Distributed Energy Resources (DERs) and controllable loads often leads
to optimization problems in which each unit must contribute to a global objective, as
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illustrated in the motivational example. Thus, how well the contribution of one unit
serves the overall goal depends on the contributions of other units. Consequently,
there are dependencies between the decision variables. However, each unit has
its own constraints, and the operating options form a separate subsearch space
for the global optimization problem. This corresponds to an inherent decision set
decomposition, i.e., a partition of the search space into several subsearch spaces.
Search space decomposition is usually applied to very complex and large-scale
problems in order to make them solvable. Due to the number of units and the
length of the planning horizon, energy optimization problems are usually high-
dimensional. Thus, the existing decomposition of the search space can be used to
achieve scalability in problem solving. As explained above, the subsearch spaces
in the energy system are also interdependent, which means that the subproblems
cannot be solved independently. These subsearch spaces, i.e. the plant flexibilities,
can be very heterogeneous, and the information needed to compute them is usually
distributed. This information consists of a static component, the plant master data,
and dynamic components, such as the current state of the plant or other local
conditions or requirements. At least the second part of this information is originally
only available at the plant site and can change constantly.

In summary, energy optimization problems that aim at coordinating the power
generation and consumption of a large number of decentralized units are typically
high-dimensional, information is distributed, and the entire search space is inherently
distributed over a large number of heterogeneous and interdependent subsearch spaces.
Such natively distributed optimization problems can be solved using distributed
optimization techniques, which can handle many of the potentially problematic
problem characteristics. In such a distributed optimization system each unit can be
represented by an agent. This agent knows the local measures, cost functions, and
constraints of its unit. The agents only share information that is actually needed to
find a common solution. This solves the problem of distributed information, increases
the privacy of data, and reduces the required communication effort, since not all
information has to be sent to a central system. Furthermore, an agent-based system
can exploit the existing decomposition of the search space. Interdependencies can
be taken into account by exchanging information between agents. In addition, such
decentralized systems increase robustness since there is no single point of failure,
and the scalability of a distributed system is one of the biggest advantages [Mol+17].
Distributed control systems and the implementation of distributed optimization are
a central systems engineering context of this thesis. Therefore, the basic concept will
be explained in the following sections.
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1.2 Context: Self-organized agent-based control
systems

The use of self-organized agent-based control systems has become increasingly
popular in recent years due to their ability to provide efficient and robust control
in complex and dynamic environments. In the following, the basics of software
agents, Multi-Agent Aystems (MAS), and their use as control systems are briefly
described. This is followed by an introduction to self-organizing systems and soft-
ware engineering paradigms that allow MAS to be designed with the necessary
flexibility and reliability through the implementation of self-management capabilities
in combination with control mechanisms.

1.2.1 Agent-based control systems

The agent paradigm is a software engineering paradigm that enables the modeling of
software architectures that contain numerous dynamically interacting components,
with each component having its own thread of control and employing complex
coordination protocols [WC00]. An agent is a software program that is able to
perceive its environment via sensors, model the acquired knowledge internally if
necessary, and act autonomously in this environment to achieve its design objectives
[Rus10; WJ95]. According to Wooldridge [Woo01], autonomous action in this
context means that no intervention by humans or other systems is necessary, i.e.
the agent has control over its internal state and behavior. Furthermore, intelligent
agents are capable of flexible autonomous actions and thus react timely to changes
in their environment or even take pro-active actions to meet their design objectives.
In addition, intelligent agents possess social abilities and can interact with other
agents (or even humans). These social capabilities enable agents to negotiate and
cooperate with others. The resulting Multi-Agent System (MAS) allows agents to
collectively achieve goals that would be unattainable for a single agent.

In [JB03], Jennings and Bussmann argue that agent-oriented approaches are well
suited for engineering complex control systems. The agent paradigm provides the
fundamental means to manage complexity, i.e., decomposition, abstraction, and
organization. Agent-oriented decomposition is an effective method to partition the
problem space of a complex system as it modularizes the components with respect to
their intended objectives. In addition, agent-oriented approaches model the interac-
tion between subsystems and among their components in terms of high-level social
interactions providing an intuitive abstraction. Modeling these social interactions
also allows for intuitive and flexible modeling and management of organizational
relationships, enabling different levels of aggregation and straightforward extensi-
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bility. Application areas of agent-based control systems include many distributed
optimization problems such as sensor networks, building automation, smart manu-
facturing, and especially energy systems [Yan+19]. Spatially distributed systems,
such as power systems, pose a particularly difficult control challenge as they often
are nonlinear and have distributed information and control structures that include
sensors, controllers, and actuators [TÇT07].

In addition to increasing complexity, increasing volatility poses challenges for control
systems. These systems must operate in dynamic and heterogeneous environments.
Moreover, requirements can change frequently. Therefore, the control systems must
be robust and able to flexibly adapt to evolving environments [SGK06]. The concept
of self-organization allows the design of agent-based control systems that are capable
of dynamically adapting to changing requirements and conditions. In [SGK05],
Serugendo et al. define self-organization as "as the mechanism or the process
enabling a system to change its organization without explicit external command
during its execution time". The key properties of self-organizing systems are thus
autonomy, i.e., no explicit external control, and dynamic operation, i.e., the ability
of the system to evolve over time. Serugendo et al. further distinguish between
weak and strong self-organization, depending on the degree of centralization or
decentralization of the system’s internal control mechanisms. The concept of self-
organization is also often linked to the phenomenon of emergence. According to
Serugendo et al. "emergence is the fact that a structure, not explicitly represented at
a lower level, appears at a higher level"[SGK06]. In the case of a MAS, this means
that the global behavior of the system often emerges from the local interactions
of individual agents. Self-organization and emergent behavior often coincide in
systems characterized by decentralised control and local interactions. However, both
concepts can occur independently [SGK06].

The ability of control systems to flexibly adapt to external and internal changes is
crucial for use in safety-critical systems such as power systems. However, the self-
organizing behavior of control systems also involves risks such as negative emergence,
i.e., the interaction of autonomous systems or agents leading to undesired behavior.
Therefore, several concepts have been developed to monitor such dynamic systems
and to intervene in a corrective way if necessary, while at the same time enhancing
the systems’ capabilities for self-adaptation and self-improvement. In the following,
such concepts from the fields of organic computing and autonomic computing are
presented.
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1.2.2 Organic and autonomic computing

Organic Computing (OC) is a systems engineering paradigm that seeks to address
increasing complexity by employing concepts similar to those found in nature, i.e.,
"found in living things". The organic behavior of systems aims to achieve certain
capabilities, including robustness, continuous optimization, adaptivity, flexibility,
and efficiency, even when subject to internal or external disturbances [MT17]. These
capabilities are to be achieved by equipping systems with a set of so-called self-x
capabilities. Such properties increase the autonomy of the system and shift decisions
from design-time to run-time and from the system engineer to the systems themselves
[MT17]. To ensure the necessary trustworthiness of the system, it should still be
possible to monitor and explicitly interfere with these self-x processes in order to
prevent undesired behavior. This leads to the notion of "controlled self-organization",
which combines the organic capability of the system with a control mechanism. This
control mechanism is usually implemented by the Observer/Controller architecture
[Tom+11]. The generic Observer/Controller design pattern is a regulatory feedback
mechanism that continuously monitors the behavior and environmental conditions
of the productive system (responsible for the system’s basic purpose). The behavior
of the productive system can be influenced, if necessary, by the adjustment of
parameters that have an impact on the performance of the system with respect to
the given system goals. Figure 1.1 illustrates this structure following [Tom+11].
The productive system is referred to as the System under Observation and Control
(SuOC). Instead of being centralized as shown in the figure, the Observer/Controller
structure itself may be implemented in different distribution variants.
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outputinput SuOC

Fig. 1.1.: Observer/Controller architecture that forms an organic system with a System
Under Observation and Control (SuOC); Figure adapted from [Tom+11]

Autonomic Computing (AC) [KC03] is another computing paradigm that aims to
address the increasing complexity of ICT systems by introducing self-management
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capabilities. Inspiration again comes from biological principles, as reflected in the
naming after the autonomic nervous system. The primary concern is to reduce the
required level of human intervention in the installation, configuration, optimization
and maintenance of systems. For this purpose, the productive parts of the system
(Managed Resources) are equipped with a control mechanism (Autonomic Manager)
that takes over the management of its resource and also adjusts the interactions with
other resources. AC focuses more on automating management and control functions
to ensure reliable and efficient operation, while OC focuses more on the emergence
of behavior from component interactions, allowing the system to evolve and adapt
over time. However, both approaches are based on the self-management of systems
consisting of a set of autonomous and interacting components combined with control
mechanisms that can be centralized or decentralized to varying degrees.

There is no generally accepted definition of the self-x properties that constitute the
self-managing behavior of systems. Below are some of the most prominent self-x
properties relevant to this thesis, as defined by Loeser et al. in [Loe+22]. They are
based on the terminology used in OC [MT17] and AC [KC03].

Self-Configuration

Loeser et al. [Loe+22] define "self-configuration as the ability of a control mechanism
to change the parameterization of components and systems following high-level
policies" according to [KC03]. This can be performed in a static or an adaptive
manner. Static approaches require fully predictable environments, while adaptive
self-configuration mechanisms must ensure reliable and accurate operation under
uncertainty. The aspect of decision techniques in the context of self-configuration is
further emphasized by Loeser et al. Decision-making techniques for self-configuration
include predefined decisions, decision-making driven by machine learning (ML),
and constraint programming. Predefined decisions imply a fixed behavior for a
given situation determined at design time. ML approaches either integrate the
self-configuration decision into a learning algorithm, or use learning techniques to
obtain predefined decision options. Constraint programming employs solvers to
search for an optimal solution. Regarding dynamic control problems, Loeser et al.
attribute the most potential to ML-based methods.

Self-Organization

Self-organization is defined by Loeser et al. based on [MT17] as follows: "Self-
organization is the ability of distributed controllers to modify the overall system’s
structure (i.e., relations between components and the corresponding interaction
schemes) depending on current conditions and based on the particular system goal".
This is consistent with the definition of Serugendo et al. [SGK05] referenced in
section 1.2.1. The organizational aspects can be grouped into the main categories of
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task or resource allocation, relation adaptation, organisational design, and collective
decision making. Self-organising task allocation deals with how individual agents or
subsystems are assigned specific tasks or resources. Existing work often addresses
this aspect in the context of wireless sensor networks [LLA04] and multi-robot sys-
tems [Liu+07], using decentralized algorithms to assign specific tasks to individual
sensor nodes or robots. Relation adaptation is concerned with how autonomous
subsystems modify their relationships with other subsystems. Organizational design
focuses on the interaction and relationship of the agents or actors in the system,
which is often implemented through the assignment of roles. Collective decision
making is concerned with how members of a group reach consensus or make deci-
sions in a decentralized manner. Consensus typically reflects a compromise among
the various members and also involves the challenge of balancing the conflicting
goals of efficiency, accuracy, fairness, and robustness in dynamic and uncertain
environments.

Self-Optimization

According to Loeser et al. self-optimization typically deals "with the improvement
of control parameters of the productive system or the management of the over-
all system structure based on a given set of goals". The goal is to achieve better
system performance or efficiency without the need for external intervention or hu-
man input. The two main approaches to self-optimizing systems are ML-based and
optimization-based techniques. Optimization techniques are often used to generate
new system configurations or adaptation plans, including techniques from proba-
bilistic, combinatorial, evolutionary, stochastic, mathematical, and metaheuristic
optimization. Self-optimization can also be achieved through autonomous learning,
with reinforcement learning being the most prominent variant.

In the motivational context of power system optimization problems, the primary task
for an organic control system is to optimize one or more aspects of the power system.
Of course, such optimization processes can also be optimized by adjusting relevant
parameters of the organic control system depending on the current conditions. This
corresponds to a self-optimization of the optimization process and is one of the
main aspects of this thesis. In the following section, basic principles of optimization
in distributed systems will be presented. Subsequently, the type of optimization
algorithms and the parameters to be optimized are discussed. Furthermore, chal-
lenges and prerequisites are outlined, which eventually leads to the hypotheses and
research questions addressed in this thesis.
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1.3 Research Goal: Optimized search in
distributed search spaces

Distributed optimization is often an important functionality in distributed control
systems. Due to the complexity of the optimization problems, heuristic methods are
often preferred over exact methods. Distributed optimization also requires multiple
distributed solvers that interact with each other over networks. In the following, the
basics of optimization problems in general and of heuristic optimization methods in
particular are briefly presented. Afterwards, the special aspects of distributed execu-
tion of heuristics are discussed with emphasis on the the so-called Communication
Topology (CT). In addition, the concept of characterizing optimization problems
through Fitness Landscape Analysis (FLA) is introduced. The last subsection puts
the presented challenges back into the motivational context of distributed energy
problems and self-organized control systems. This leads to the hypotheses and
research questions underlying this thesis.

1.3.1 Heuristic optimization

In classical optimization models, the goal is to find the best solution to a problem
from the set of all feasible solutions. The optimization problem can thus be defined
by the couple (S, f), where S is the set of feasible solutions, also called search
space, and f : S → R is the objective function, that aims to maximize or minimize
the cost, utility, or fitness function [Tal09]. Optimization models can be classified
according to different aspects. First, it must be considered whether an optimization
is constrained or unconstrained, i.e., whether the problem contains constraints that
must be satisfied in addition to optimizing the objective function. The constraints
limit the space of feasible solutions. Second, the type of decision variables varies.
They can be continuous, discrete (integer), or even mixed. Finally, the type of
function of the objective function and the constraints is of importance. A basic
distinction in this case is the one between linear and nonlinear functions. For
linear optimization models, i.e., models with linear objective functions and linear
constraints [Tal09], there are efficient exact algorithms, such as the simplex-type
method [Dan51] or interior-point methods [Kar84]. Nonlinear programming models
(NLP) have a nonlinear objective function and/or nonlinear constraints. They
are much harder to solve than linear models, although linearization techniques
can be used and problems of moderate size can be solved by some efficient exact
algorithms. Especially when other factors are added, such as high dimensionality,
multimodality, epistasis (interaction of parameters) and non-differentiability, this
type of optimization problem quickly becomes very difficult or impossible to solve
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with exact methods [Tal09]. However, many optimization problems in the energy
system possess exactly such properties, as presented in section 1.1.

Since the solution with exact methods would either take a very long time or is not
possible at all, optimization heuristics are often used for this type of problem models.
A heuristic is an optimization algorithm that does not aim for an exact solution, but
instead approximates the solution. It often leads to good solutions in a reasonable
amount of time, even for large problem instances. However, there is no guarantee
that globally optimal solutions will be found, nor that minimum solution quality or
run time constraints apply. Optimization heuristics can be developed specifically for a
problem or problem instance. Metaheuristics, on the other hand, are general-purpose
algorithms. They are often inspired by natural phenomena, such as the behavior of
ant colonies, the cooling of metal, or the process of evolution. These methods can
be considered as high-level general procedures that serve as guiding strategies for
the development of problem-specific algorithms [Tal09]. Most metaheuristics are
iterative algorithms. They start with a complete solution (or a set of solutions), i.e.
with a value for each decision variable, which is transformed in each iteration by
applying operators.

The metaheuristic’s general procedure, including transformation operators, specifies
how the search space S is sampled. Heuristic search involves two opposing aspects:
exploration of the search space (diversification) and exploitation of the best solutions
found (intensification) [Tal09]. A search algorithm must achieve a good balance
between exploration and exploitation to be successful [ČLM13]. That such a balance
is necessary can be easily realized if we consider the two extreme cases: A search
algorithm that maximizes exploration, i.e., aims to visit completely new regions of
a search space at each iteration, resembles a random search. However, if a search
algorithm heavily exploits the regions of a search space within the neighborhood
of previously visited points, it comes closer to a local search, e.g., a hill-climbing
algorithm. The balance between exploration and exploitation determines the way in
which the search space is covered, i.e., which solutions can be found at all, and thus
has a significant impact on the solution quality and the time and computational effort
required for optimization. This balance is usually achieved by setting appropriate
control parameters (hyperparameters) for metaheuristics. However, even for the
same metaheuristic, the effect of the hyperparameter settings is problem dependent
and requires different choices for different problems. In [ČLM13], Črepinšek et
al. provide a survey about exploration and exploitation in Evolutionary Algorithms
(EAs). They give several examples of how different aspects in EAs, such as selection,
mutation operators, population size, and representation, can influence the degree
of exploration and exploitation. In general, two different approaches to controlling
parameters can be distinguished [EHM99]:
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• parameter tuning: selection of the hyperparameter set in advance (offline),
e.g. by following general guidelines or employing design of experiments
techniques [RK10; Kra08].

• parameter control: hyperparameters are adjusted during runtime (online);
this can be done in different ways [EHM99]:

– deterministic: the value of a parameter is modified by a deterministic
policy, e.g. after a predefined number of iterations, without regard to the
current state of the search.

– adaptive: based on the current progress of the optimization process,
the direction and/or magnitude of the change in the hyperparameter is
determined.

– self-adaptive: hyperparameters can be encoded in the representation
of the solution, e.g. in the chromosomes for EAs, and are subject to
metaheuristic operators such as mutation and recombination. The idea
is that better values of these encoded parameters will lead to better
individuals. These individuals will have a higher probability to survive
and thus propagate these better parameter values.

For many optimization problems, it has been shown that it is advantageous to start
with exploration and move to exploitation later in the search. This can be achieved
by deterministic parameter control. However, certain problem characteristics, such
as multimodal or dynamic environments, may favor (self-)adaptive approaches.
Furthermore, there are many optimization problems that do not require runtime
parameter control to be solved efficiently [ČLM13].

1.3.2 Networked heuristics and domain decomposition

As outlined above, the power system poses a number of distributed optimization
problems for which a distributed control system is expected to be advantageous for
various reasons. Optimization heuristics used for this purpose must meet the special
requirements of distributed search spaces, given the flexibility of various DERs that
are intended to collectively solve a higher-level problem. This is a use case for which
parallel metaheuristics based on communication topologies are well suited. In such
a heuristic, several solvers run in parallel. They exchange information via a commu-
nication or exchange topology. This is usually modeled by a graph, where the nodes
correspond to the solvers and an edge indicates direct information exchange between
the solvers located at the respective nodes. This Communication Topology (CT) is
an important hyperparameter for this type of heuristics. In [KHE14], Karafotias et
al. cite several examples of work examining the effects of communication topologies
on parallel EAs. This includes the work of Arnaldo et al. [Arn+13], which sup-
ports the fact that different problem characteristics require different communication
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topologies. Another work cited by Karafotias is that of Cantú-Paz [Can99], in which
he presented a theoretical analysis of various hyperparameters that determine the
information exchange in parallel EAs, such as the CT, and their interdependencies.
One of Cantú-Paz’s main findings was that the degree of connectivity of the topology
strongly influences the quality of the solution.

The CT determines the information flow in the system. Low connectivity leads
to little exchange between solvers and thus to diversification (exploration) of the
search. High connectivity leads to strong information diffusion and thus exploitative
search behavior. Figure 1.2 illustrates this relationship. This effect is not exclusive to

Exploration
(Diversification)

Exploitation
(Intensification)

Fig. 1.2.: Effect of CT connectivity on parallel metaheuristics: A high degree of connectivity
leads to a high rate of information exchange and thus to more intensive search in
certain regions of the search space, while a low degree of connectivity leads to a
higher diversification of information and thus to exploratory search behavior.

parallel search heuristics. In [LF07], Lazer and Friedman examined how the structure
of communication networks among actors might influence systemic performance,
especially collective problem-solving, with respect to social and organizational
networks. Their results show a similar effect of strong and weak interconnection of
topologies. Moreover, they highlight the trade-off between these two designs. Both
contribute to system performance, either by maintaining the necessary diversity or
by rapidly propagating powerful strategies.

However, existing work on communication topologies rarely considers problems that
are truly spatially distributed and whose search space S is composed of multiple
distributed subsearch spaces S = {S1, S2, . . . , Sn}. But this is exactly the case
we encounter in distributed optimization problems in the energy sector. These
optimization problems often involve coordinating the energy supply and demand of
a large number of DERs and controllable loads, as discussed in section 1.1. Figure 1.3
illustrates this with the motivational example from section 1.1. An overall operation
schedule for a grid area, is composed of the individual schedules of all involved
plants. The goal in the example is to reach a target schedule for the grid area. Thus,
the flexibility of each of these plants is a part of the solution. In the chosen example,
the flexibility that each agent can contribute to solving the optimization problem
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is represented by a set of feasible schedules for its asset portfolio2. The choice of
a particular schedule by an agent thus represents a decision variable for the global
optimization problem. Therefore, the flexibility of each plant may be considered as
a separate dimension of the overall search space S. When this global optimization
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Fig. 1.3.: Illustrating example of the inherent decomposition of the search space S in energy
system optimization problems

problem is solved in a distributed way, e.g. by an agent-based control system (see
section 1.2), each agent controls only its own plant or portfolio of plants. Thus, it
can choose a schedule for its plant(s) and must cooperate with the other agents
to achieve the overall target schedule. This is a decision set decomposition from
the perspective of the global optimization problem. This means that each solver

2Note that flexibility can be represented in several ways. For the sake of clarity, and following the
example in section 1.1, a set of feasible schedules has been chosen for the illustration.
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or agent has exclusive control over a set of decision variables. Without decision
set decomposition, the CT influences how information is exchanged between self-
contained solvers to improve the overall search process. However, each solver is
capable of finding a complete solution on its own. With decision set decomposition,
each solver can only solve a part of the problem and is thus highly dependent on
information about the partial solutions of the other solvers. Moreover, unless the
decomposed decision variables are separable, which is not the case for the motivating
problems from the energy domain, one agent’s choice affects how another agent must
assess its own set of choices. For example, when an agent chooses a schedule for its
plant, this changes which possible schedules from another plant best complement it
and thus come closest to the overall target schedule. As a result, the impact of the
CT is strongly pronounced.

Previous work on designing optimized communication topologies in an algorithmic
context mainly addresses parallel metaheuristics without decision set decomposition
(see section 4.3 for more references). In addition, there is little discussion of
adjusting the CT at runtime as part of parameter control. There is clear evidence that
the CT has a strong impact on the degree of exploration and exploitation. Therefore,
finding a way to induce a beneficial shift between explorative and exploitative search
behavior by adjusting the connectivity of the topology at runtime is an essential part
of this thesis. However, which topology, or which topology adaptation at runtime,
yields the best results is likely to depend heavily on the properties of the specific
optimization problem.

In order to determine an appropriate topology or topology adaptation for a given
problem in advance, the relationship between problem characteristics and the
effect of different topology variants must be investigated. For this purpose, the
characteristics of the optimization problems have to be captured and quantified in
order to make them comparable. So-called Fitness Landscape Analysis (FLA) can
be applied for exactly this purpose. FLA is the study of the relationships between
the possible solutions in the search space and the optimization objective function
(or fitness function). It involves a variety of methods, most of which first draw
samples from the search space and then compute metrics based on the position of
those samples in the search space and the associated values of the objective function.
These metrics allow to characterize the problem with respect to different properties,
such as modality or the degree of interdependence of decision variables. FLA is often
used to estimate a particular optimization problem’s hardness for a particular type
of algorithm, and therefore which algorithms are best suited to solve the problem
[Mal21]. It can also be used as a basis for parameter tuning or parameter control.

The special case of distributed search spaces with dependencies between decision
variables corresponds to the concept of so-called coupled fitness landscapes in FLA.
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Each subsearch space in S is considered a distinct fitness landscape. The values of
the objective function for the solutions in a subsearch space change depending on
the values assumed for the decision variables from other subsearch spaces. This
is also the case for the example given in fig. 1.3. When an agent changes its
schedule choice, this changes the way other agents’ schedules complement that
schedule to achieve the target schedule. FLA for coupled fitness landscapes is
mostly studied in the context of coevolutionary algorithms (see section 2.3 for more
details). The methods commonly used to compute fitness landscape metrics are
not suitable for computation in spatially distributed systems, since they require
consolidated knowledge about all subsearch spaces in a central location. Distributed
computation of such metrics poses its own challenges, such as the tradeoff between
metric accuracy and computational and communication overhead. However, the
characteristics of the problem are an essential input for a problem-specific design of
the CT or an appropriate parameterization of the topology adaptation. Therefore,
the development of a distributed computation method for an appropriate set of
fitness landscape metrics is another important part of this thesis. The following
section summarizes the main points outlined above and highlights the resulting
hypotheses and research questions.

1.3.3 Hypotheses and research questions

Previously, real-world optimization problems were presented as a motivating context
and the concepts of self-organizing agent-based control systems were introduced
as a suitable solution framework. Furthermore, the challenges at the algorithmic
level and the special role of communication topologies for distributed optimization
heuristics were highlighted.

The story in a nutshell is as follows:
Power system operation involves a wide range of complex optimization problems,
requiring the coordination of power generation and consumption across a large
number of distributed units. For various reasons, such as scalability, robustness or
data privacy, a decentralized system is advantageous for controlling these processes.
Self-organized agent-based control systems are a promising approach, since they
can flexibly adapt to changing environments through special capabilities such as
self-configuration or self-optimization. The distributed optimization problems are
usually very complex, i.e., nonlinear, high-dimensional, and with a high degree of
interdependencies among the decision variables. Therefore, optimization heuristics
are a practical solution method. In turn, for use in a distributed control system, the
optimization heuristic must also operate in a distributed manner.
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The Communication Topology (CT), which determines the direct communication
links between agents, is an important hyperparameter for such parallel and dis-
tributed optimization heuristics. It has a strong impact on the dissemination of
information in the system and thus influences the degree of exploration and ex-
ploitation of the distributed search space. The balance between these two properties
significantly affects the performance of optimization heuristics in terms of solution
quality and computational effort. For spatially distributed systems that rely heavily
on network communication, this effect is even more pronounced. Moreover, the mo-
tivating optimization problems from the energy domain exhibit an inherent decision
set decomposition. In other words, each agent controls only a subset of the decision
variables, and thus solving the global problem and making choices for all decision
variables requires cooperation among agents.

This makes the choice of CTs an important design aspect for such distributed op-
timization heuristics. In addition, the most beneficial degree of exploration and
exploitation changes over the course of the optimization process. Adjusting hyper-
parameters at runtime in the context of parameter control is a common method
for improving algorithmic performance. Therefore, adjusting the CT at runtime
is a promising strategy for improving the performance of distributed optimization
heuristics to meet the self-optimizing aspirations of organic computing.

This leads to the first hypothesis:

Hypothesis 1
An adaptation of the communication topology at runtime of a distributed optimization
heuristic solving an optimization problem with inherent decision set decomposition
affects the search behavior of the algorithm and can improve its performance in terms
of solution quality, computational effort and communication overhead.

The first research question follows from this hypothesis:

Research Question 1

How can dynamic communication topology variants composed of an initial
topology and a topology adaptation strategy be modeled, and how do these
variants affect the various performance dimensions of distributed heuristics?

In addition, it is very likely that there is no such thing as a "one size fits all" approach.
The effects of a Communication Topology Variant (CTV) depend on the optimization
heuristic as well as on the properties of the problem at hand. In order to pre-
determine a good CTV for a given problem, first a relationship between the problem
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properties and the effects of different CTVs must be established. As pointed out,
fitness landscape analysis (FLA) can be applied to determine the characteristics
of optimization problems. However, there are few approaches to perform FLA for
search spaces with inherent decision set decomposition, and none at all when FLA
must be performed in a distributed manner. The presumption is that this is feasible,
with suitable sampling methods. However, it is also likely that there is a compromise
between computational cost and the expressive power of the features. This leads to
the second hypothesis:

Hypothesis 2
Distributed fitness landscape analysis for search spaces with decision-set decomposition
can determine meaningful features that can serve as the basis for parameter tuning and
control of distributed optimization heuristics.

This hypothesis, in turn, leads directly to the second research question:

Research Question 2

How can fitness landscape analysis be performed in a distributed manner
while creating a reasonable tradeoff between computational and communication
effort and the expressiveness of the computed features and which metrics need
to be included into a set to provide a reasonable characterization of distributed
optimization problems?

Addressing research question 2 leads to the development of a methodology for the
distributed computation of fitness landscape metrics and a selection of a set of
metrics that provide a comprehensive characterization of optimization problems
with inherent decision set decomposition. The final goal is to combine this with the
modeling of CTVs to enable an optimized selection of these variants according to the
problem characteristics. This is only possible if there is a causal relationship between
the problem characteristics and the effects of the CTV on algorithm performance.
The performance has several dimensions, namely the solution quality, the required
computational effort and the communication overhead. The priority of these perfor-
mance dimensions may vary depending on the use case of the optimization heuristic,
but the CT is likely to affect all of them. The existence of this causal relationship is
the subject of the final hypothesis under investigation:

Hypothesis 3
There is a causal relationship between the characteristics of the distributed optimization
problems and the effects of the communication topology variants. Thus, the commu-
nication topology variant of a distributed optimization heuristic can be selected in a
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problem-dependent manner to increase the optimization performance according to a
predefined prioritization of performance dimensions based on a set of distributedly
computed fitness landscape metrics.

It should be possible to learn which CTV is most appropriate for a given problem
if the assumed causal relationship between problem characteristics and the effects
of CTVs exists, if the distributed set of fitness landscape metrics is appropriate
for characterizing the problems, and if the model for CT adaptation is adequate.
Therefore, the final research question not only aims to address hypothesis 3, but also
serves to evaluate the artifacts developed in response to research questions 1 and 2.
The final research question is as follows:

Research Question 3

How can machine learning models be used to show the causal relationship
between the characteristics of distributed optimization problems and the impact of
communication topology variants, thus enabling the problem-specific selection of
communication topology variants?

Note that the focus is clearly on using machine learning models to support the
idea that there is a relationship that can be learned. The goal is not to develop an
optimized learning model. Therefore, the investigation of this learning capability
also serves as a proof-of-concept and even an evaluation for the methods developed
to answer research questions 1 and 2.

Reference to own preliminary work

Some of these aspects have already been addressed in preliminary work. In [HN20],
first investigations on the effects of different static CTs on the optimization runs
with the heuristic COHDA were carried out for a selected continuous optimization
problem. The effects of the CTs on the algorithm performance and the correlation
with certain graph properties, such as mean degree, diameter, and Fiedler eigenvalue,
were examined. This work was continued in [HN21b] and [HN21a].

In [HN21b] a first version of the dynamic CT adaptation (RQ 1) was presented.
Using the heuristic COHDA (see section 4.2.1), optimization runs were performed
on a set of continuous benchmark functions with these adaptive CTs and several
variants of static CTs, such as path graph, ring topology, 2-D lattice topologies, small
world, and fully connected graphs. Then, based on centrally performed fitness
landscape analyses, decision trees were trained to select the best CT or type of CT
for different performance dimensions.
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In [HN21a] the focus was on the (spatially) distributed execution of the Fitness
Landscape Analysis (FLA) (RQ 2). The concept was presented and tested with several
FLA metrics. In addition, the construction of composite spaces (see section 3.2)
was introduced. These composite spaces can be used to easily create optimization
problems with domain decomposition and different subsearch spaces based on
continuous benchmark functions. The set of distributed FLA metrics was tested for
its suitability as a basis for selecting appropriate static CTs tailored to the composite
optimization problems.

These papers provide the essential foundation for this dissertation. However, all
of the concepts and results published in these papers are extended and examined
in much greater detail in this thesis, both individually and in combination. In the
following section, the development objective that serves to investigate the research
questions is described in more detail. Afterwards, the remainder of the dissertation’s
structure is outlined.

1.4 Outline: Development objective and structure
of the thesis

Optimization problems in energy systems provide the motivational context for this
thesis. In particular, the properties of the optimization problems such as high
dimensionality, multimodality, dependencies between decision variables, and the
inherent decision set decomposition are of interest. Increasing complexity and
volatility highlight the benefits of concepts such as OC to implement controlled
self-organization. These concepts provide the systems engineering context for this
work. Despite this contextual embedding, the focus of the thesis is clearly on the
algorithmic aspects, such as the influence of communication topologies on distributed
optimization heuristics and the handling of decision set decomposition in the FLA.
Therefore, the additional complexity that would be needed to build power system
scenarios and transfer fitness landscape concepts to modeling plant flexibility is
refrained from and left for future work. Instead, the studies are conducted on
synthetic problem instances based on well-established benchmark functions.

A number of different artefacts need to be developed as part of the investigation
of the research questions raised. These artefacts, when combined, represent the
development objective. This development objective is best explained in the context
of an application scenario. In the scenario, a distributed optimization problem is to
be solved using a distributed cooperative optimization heuristic. The objective is to
select the optimal CTV for a given prioritization of performance dimensions.
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To design such a scenario, suitable optimization problems are first needed. In
this thesis, continuous optimization problems are used. These are well suited
because there is a wide range of benchmark functions and some aspects can be
easily visualized by 3D plots. In particular, it is possible to easily create derived
problems with decision set decomposition, such that different agents have different
search spaces. Such problems are called composite search spaces in this thesis
(see section 3.2). Second, a CT-based cooperative optimization heuristic that can
handle decision set decomposition is needed. Topology variants are expected to have
different effects on different heuristics. For reasons of feasibility, only two different
heuristics are used in this work, namely the Combinatorial Optimization Heuristic for
Distributed Agents (COHDA) [HS17] and the Island Model Differential Co-Evolution
(IDICE) (which was developed as part of the thesis). If adjusting the CT at runtime
can have positive effects, if these effects are problem-specific, and if it is possible to
choose the CTV tailored to the problem for these two optimization heuristics, then it
is at least likely that this is also true for other CT-based cooperative optimization
heuristics. The heuristics are integrated into an observer-controller architecture
(cf. OC). Observer and controller take over the selection of the initial CT and, if
necessary, the adaptation at runtime. Figure 1.4 shows the development objective in
context.
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Fig. 1.4.: Development Objective: given an optimization problem, an optimization heuris-
tic, and a prioritization of performance dimensions as premise, the agents first
perform a distributed FLA for their decomposed search spaces, based on which
the controller can select an initial CT and later adjust the topology at runtime if
necessary (Topology Variant Optimization (ToVarO)). This serves to improve the
performance of the algorithm in a problem-specific way.
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The choice of the CTV needs to be tailored to the problem. Therefore, the agents
must first perform the FLA in a distributed manner. The methodology for this is
the first artefact of the thesis (research question 2). The set of metrics is also an
artifact, since it should be composed in such a way that it provides a good overall
picture of the optimization problem, but at the same time the effort should remain
proportionate. This set of metrics, together with a predefined prioritization of the
performance dimensions (use case specific), serves as input for the ToVarO executed
by the controller. This requires two artifacts: on the one hand, the modeling of the
CTV that emerges from the investigation of research question 1. On the other hand,
one or more trained machine learning models that relate the problem characteristics
to the most advantageous CTV for a given prioritization. Based on this, the controller
can determine an initial topology and communicate it to the agents. The agents
can then start the actual optimization and execute the cooperative heuristic. The
observer monitors the activities during the optimization. Based on these observations,
the controller can adjust the topology at runtime if necessary.

In terms of the concepts of OC, the following picture emerges: The agent-based con-
trol system represents the productive part of the considered organic system, whose
main task is to execute the distributed optimization heuristic. The optimization
heuristic itself can be considered as a form of distributed decision making and thus
as part of the self-organization of the system. The selection and adaptation of the CT
at runtime is a form of self-optimization that is handled by the Observer/Controller
mechanism via ML-based decision making. At the same time, it also contains aspects
of self-configuration, since the parameterization of components is modified according
to high-level policies, namely the given prioritization of performance dimensions.

In order to achieve the development objective, each of the three research questions
(RQ) will be the focus of one part of the thesis. The order of RQ1 and RQ2 is reversed,
since the fitness landscape analysis is a prerequisite for the subsequent work and
the modeling of the CTV already requires knowledge about the problem properties
for an intermediate analysis of the effect of the variants. Figure 1.5 summarizes the
structure of the thesis.

Each part contains a chapter on the basics and a chapter with original contributions.
First, part II is dedicated to fitness landscape analysis. It is divided into a basic part
introducing FLA features, techniques and metrics (chapter 2). Then, in chapter 3,
the methodology for distributed computation is presented and the initial set of
distributedly computed metrics is subjected to a correlation analysis to determine
the reduced final set. In part III, the focus is on the algorithmic implications of
communication topologies. To this end, chapter 4 first presents the basics of parallel
cooperative metaheuristics. This is followed by a presentation of the two applied
heuristics, COHDA and IDICE, where IDICE was developed in the context of the
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thesis by combining well-known principles of parallel EAs. The chapter concludes by
reviewing related work that has addressed communication topologies in the context
of cooperative metaheuristics, highlighting the research gap. Chapter 5 introduces
the concept for modeling CTVs and presents a preliminary assessment of the impact
of these variants.

Part IV of the thesis integrates the concepts developed in the previous two parts.
In section 6.2, the relevance of the FLA metrics and the CTV for the prediction
of the performance dimensions is evaluated using statistical methods as well as
machine learning models. Section 6.3 then examines the patterns that ML models
learn in this setup, draws conclusions about a possible causal relationships, and
finally demonstrates the model-based selection of appropriate topology variants.
Furthermore, the impact of noisy data on the predictions is investigated. In the final
part V, a summary of the results and conclusions is given, as well as an outlook on
possible future research topics that would continue the presented work.
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Part II

Fitness Landscape Analysis

This part is dedicated to Fitness Landscape Analysis (FLA). Chapter 2 presents the
fundamentals of FLA, starting with section 2.1, which describes a number of fitness
landscape features that are often associated with the difficulty of problems. Then,
in section 2.2, concrete techniques and metrics for quantifying such features are
presented. Finally, section 2.3 discusses the specifics of dynamic and coupled fitness
landscapes.

Chapter 3 presents the proposed approach for spatially distributed computation of
fitness landscape metrics. The specifics of transferring this approach to different types
of the previously presented techniques are discussed. Finally, the set of distributedly
computed metrics is subjected to a correlation analysis to obtain a final reduced set
for further usage.





2Global Fitness Landscape
Analysis

The aim of FLA is to gain a better understanding of optimization problems. It
includes a large set of techniques to calculate various features that quantify different
properties of a landscape, such as the level of ruggedness or modality. In many
cases, the purpose is to estimate how hard a particular optimization problem is for a
particular type of algorithm, and hence which algorithms are best suited for solving
the problem [Mal21]. A Fitness Landscape (FL), as presented e.g. in [Tal09], is
defined by the search space X and the fitness function f : X → R. The search space
is formally defined as directed graph G = (S, E), with S representing all possible
solutions of the optimization problem as nodes. The set of edges E represents a
notion of neighborhood NF LA

1. An edge between two nodes indicates the two
solutions are neighboring. The understanding of NF LA may depend on a general or
neutral concept of distance between solutions such as the Hamming distance or the
Euclidean distance. However, NF LA can also be characterized by the specific move
operator of an algorithm. This implies that one solution can be obtained by a direct
transition of the move operator from the other solution [ME13a].

Fitness landscapes for continuous problems, i.e. with continuous search spaces
and continuous fitness values, often use euclidean distance measures to define
the NF LA. Thus they can be described as landscapes with the search space as
the bottom floor and the landscape surface being elevated according to the values
of the fitness function f [Tal09]. In analogy to a geographical landscape, fitness
landscapes can consist of peaks, valleys, plains, ravines, cliffs, plateaus, basins and
the like. Investigating these landscape characteristics provides clues as to how
difficult it is to find an optimum, i.e., the highest mountain peak (maximization) or
the lowest valley (minimization). Figure 2.1 shows 3-D plots of benchmark functions
for the simplified example of 2-D problems demonstrating some manifestations of
such landscape features. Both their global shape and fine granular nature differ
substantially. Figure 2.1a shows a multimodal landscape with deep valleys but
also high peaks. At the same time, the surface of the landscape is smooth and
without asperities. In contrast, fig. 2.1b shows a landscape with a global parabolic
shape, making the search for the minimum seem easy for many algorithm types, e.g.

1To distinguish the neighborhood in the later context of communication topologies, the symbol will
be used for neighborhoods in FLA in the following
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gradient based methods. However, the search can be significantly impeded by the
highly rugged surface.

(a) Rana function in the range [-10, 10] (b) Rastrigin in the range [-5.12, 5.12]

Fig. 2.1.: Exemplary 2D Fitness Landscapes of continuous benchmark functions

The analysis of such landscape features requires considerable effort. In [PA12],
Pitzer et al. argue that fitness landscape analysis is therefore not practical for
solving a single problem instance, but when a deeper understanding of an entire
problem class is desired. In addition to the general properties of a problem class,
the variations between different problem instances can be examined. This is also a
reasonable approach to the energy system optimization problems that motivate this
work. Although the analysis of the problem properties is considered as a preliminary
step for the actual optimization, it will not be performed before every optimization,
but only if essential parameters change.

To illustrate the structure of the following chapters, it is first necessary to clarify
several terms related to FLA as they are used in this thesis. A FLA feature is a general
characteristic of the fitness landscape. Section 2.1 introduces several features
that have been shown to affect the difficulty of optimization problems. A FLA
metric is a measure that quantifies the degree to which a feature is present in a
given landscape. FLA techniques are used to determine such metrics. They involve
some sort of sampling method and subsequent computational operations on the
derived samples. The FLA techniques, including the sampling procedures and
the derived metrics chosen to capture the presented features, are presented in
section 2.2. Figure 2.2 summarizes the terms and their interdependencies. In
addition, Section 2.3 expands the notion of fitness landscapes by introducing the
concept of dynamic and coupled fitness landscapes. Aspects of this section were
published in [HN21b] and [HN21a].

30 Chapter 2 Global Fitness Landscape Analysis



Feature Metric Technique
Sampling 
Method

is quantified by is determined by involves

General characteristic 
of the landscape 

Quantification of the 
extent of a feature

Method for 
determining metrics. 

(sampling & 
computational 

operations)

Procedure for 
obtaining samples 

from the search space

Section 2.1 Section 2.2

Fig. 2.2.: Summary of terms used to structure FLA aspects

2.1 Fitness landscape features

The goal of various initial approaches to characterizing optimization problems was
to divide them into easy and hard to solve problems, using only a single measure
[ME13a]. He et al. [He+07] proved that such a general measure of the difficulty
of black-box optimization problems - should it exist - could only be computed in
polynomial time if certain complexity-theoretic assumptions do not hold (P = NP or
BPP2 = NP). One explanation for this is that while several properties of the fitness
landscape affect the difficulty of an optimization problem, none of them causes the
degree of difficulty by itself [ME13a]. For instance, modality is often used as an
indicator for difficulty. However, there are also numerous counterexamples, such as
the work of Kallel et al. [KNR01] in which they showed for both hill-climbers and
genetic algorithms that multi-modality neither inevitably leads to nor is essential for
difficult problems. Therefore, it is generally assumed that a combination of several
properties of a fitness landscape determines the degree of difficulty in solving the
optimization problem for a given algorithm [ME13a; Sun+14; PA12].

This section presents features of fitness landscapes that have been shown to influence
the difficulty of optimization problems. The collection is by no means exhaustive,
but aims to cover a wide range of characteristics that, when combined, can give a
good overall picture of the landscape. Features that can only be determined for a
particular search algorithm, are not considered. The features and their descriptions
are mainly taken from [ME13a] and [Sun+14]. In [ME13a], Malan et al. first
present an overview of the characteristics of fitness landscapes and then give a
survey of different FL techniques and link them to the characteristics presented. In
[Sun+14], Sun et al. describe several basic features of fitness landscapes and argue

2BPP: bounded-error, probabilistic, polynomial time
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that these features must be considered when selecting a set of metrics to properly
characterize a landscape.

2.1.1 Degree of variable separability

The decision variables of an optimization problem are separable if there is no
interaction between them and hence the problem can be divided into subproblems
that can be solved independently:

argx min f(x) = (argx1 min f(x), . . . , argxm min f(x)) (2.1)

where x = ⟨x1, . . . , xD⟩ is a decision vector of D dimensions and x1, . . . , xm are
disjoint sub-vectors of x and 2 ≤ m ≤ D [Li+13]. If all sub-vectors x1, . . . , xm are
1-dimensional and thus m = D, the function is fully separable, else it is partially
separable. When decision variables are non-separable, they interact with each other,
which means that changing the value of one variable has an effect on how the values
of another variable alter the outcome. In the case of complex problems, the inter-
action can take many different forms, resulting in different orders of non-linearity.
For some classes of algorithms, e.g. genetic algorithms, studies demonstrated that
linearly separable functions are easier to solve than non-linearly separable functions
[ME13a].

The degree of variable interdependence can be related to the concept of epistasis
from genetics. Epistasis describes the impact one gene has on the effect of another
gene [PA12]. Various measures of epistasis have been developed as part of research
in genetic algorithms, e.g. epistasis variance [Dav90], bit-wise epistasis [FRP98],
graded epistasis and graded epistasis correlation [Roc97]. Originating in the field
of genetic algorithms, these techniques assume binary representations. However,
there are also techniques for determining the degree of interaction of variables for
continuous problems as in [Wai+19; WMZ20] or [SKH16]. The relevance of variable
interaction in the context of distributed optimization is elaborated in section 2.3.

2.1.2 Noise

In real optimization problems, the same choice of input parameters does not always
lead to the same result. This may be due to incomplete knowledge or control of the
system or inaccuracies in the measurement. In theoretical optimization problems,
this property is modeled by noise, i.e., by adding randomness to benchmark functions.
Figure 2.3 shows a segment of the Rana function with and without noise.
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Fig. 2.3.: Rana function in the range [-5, 5]

(a) Noiseless (b) With high resolution gaussian noise

In [LK95], Levitan and Kauffman showed that noise can have both negative and
positive effects on search performance when using hill-climbing algorithms. For FLA,
noise could be quantified by resampling data points multiple times and calculating
some measure of difference such as the variance or standard deviation [ME13a].
The effects of noise on an optimization algorithm need to be evaluated to ensure its
practicality for real-world problems.

2.1.3 Characterization of fitness distribution

The fitness distribution of a landscape can be viewed in two different ways. First,
the fitness distribution denotes the frequency with which each fitness value occurs.
This is estimated for example in the density of states technique [REA96] or the
fitness variance from [WMZ20]. A wide distribution of fitness values may indicate a
harder problem, while a low variance could imply that probabilistic methods perform
equally well as more sophisticated ones [WMZ20].

The second aspect is the fitness distribution across the search space. This differs
from the first approach by additionally considering the position of the fitness values.
Example techniques for this feature in binary landscapes are the HDIL (Hamming
Distance In a Level) and HDBL (Hamming Distance Between a Level) measures from
[BH00]. In [WMZ20], Waibel et al. presented the state variance as approach for
continuous landscapes.
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2.1.4 Modality, basins of attraction and deception

A local optimum is a point or set of points (plateau or ridge) whose fitness value is
better than that of all neighboring points. For a maximization problem, this can be
described by the connected set C of points with equal fitness: ∀c1, c2 ∈ C : f(c1) =
f(c2). All candidate solutions x which are neighboring points of C, are inferior to
all points in C, i.e. f(x) < f(c)∀c ∈ C. Unimodal problems have only one local and
simultaneously global optimum, whereas multimodal problems are characterized by
many local optima.

The number and frequency of local optima has often been linked to the difficulty of
optimization problems, as search algorithms may be unable to escape inferior local
optima and therefore converge prematurely. But the distribution of local optima and
the size, shape and depth (or height) of their basins of attraction may be even more
relevant [Ste99; KNR01; PA12; ME13a; Sun+14]. Basins of attraction are areas
around the local optima where a local gradient-based search would lead directly
to that optimum [PA12; Sun+14]. Local optima with relatively small areas of
attraction are called isolated (the specifics of this a suspect to the chosen metric,
e.g. section 2.2.3, section 2.2.4). Figure 2.5a shows an example of a needle-in-the-
haystack-type landscape with a large neutral area (see section 2.1.6) and one isolated
peak with a small basin of attraction. In contrast to this unimodal shape, fig. 2.5b
shows a multimodal landscape with many local optima in a region of the search space
whose basins of attraction merge. However, the global optimum is isolated here as
well. Both landscapes in fig. 2.5 pose quite different challenges for search algorithms.
Thus, it is likely that different, or differently parameterized, search algorithms would
yield the best performance in each case. An example of FLA techniques related to
modality are the so-called local optima networks (LONs) of Ochoa et al. [Och+08].
In this technique, key landscape features are mapped onto a graph. Further examples
include the technique for estimating the number and distribution of local optima by
Garnier and Kallel [GK01] and the information-theoretic technique by Vassilev et
al. [VFM00] for determining the partial information content. With respect to basins
of attraction, Merz’s [Mer04] escape rate measure for estimating the size of basins
can be cited as an example. However, the influence of basins of attraction can also
be implicitly assessed using other FLA metrics, as the size of basins of attraction is
related to both ruggedness and smoothness (see section 2.1.6), to the extent that
larger basins of attraction tend to have smoother landscapes [Sun+14].

Large and deep basins of attraction of local optima combined with an isolated
global optimum, as shown in fig. 2.5b, can prove fairly deceptive (as defined in
section 2.1.4) for a search algorithm. The structure of the landscape guides the search
away from the global optimum and towards the inferior local optima. This misleading
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(a) Unimodal function with large neutral area and
isolated global optimum with so called needle-
in-the-haystack characteristic

(b) Multimodal function with isolated global op-
timum and large possibly deceiving basins of
attraction towards local optima

Fig. 2.5.: Different degrees of modality

information provided by the landscape, is perceived as deception [ME13a]. Which
features of a landscape prove to be deceiving and which not depends on the specific
search algorithm. A landscape that is deceiving for a Genetic Algorithm (GA) is not
necessarily deceiving for Simulated Annealing (SA) or Particle Swarm Optimization
(PSO). Thus, customized metrics have been developed for specific search algorithms,
such as GA-deception [Gol89] and the deceptiveness coefficient for GAs [JTV99] or
the relative size of basins of attraction (local versus global) for PSOs [XCP09]. In
[Mal+14], Malan proposed gradient-based FLA metrics, also presented in [ME13b],
as a way to capture the deceptiveness of landscapes for PSOs.

2.1.5 Global landscape structure

In contrast to aforementioned basins of attraction of local optima, a funnel is a
global basin shape, within the regarded domain. It can therefore be understood as a
cluster of local optima. The landscape is structured on the global scale by one or
more funnels. Figure 2.6 shows two examples of different types of global landscape
shapes. The 2-D Ackley function in fig. 2.6a clearly demonstrates the shape of a
single funnel, although the landscape has a multimodal surface with many local
basins of attraction. Figure 2.6b shows a section of the 2-D Eggholder function,
which displays a multi-funnel shape. Just like local basins of attraction, landscapes
with multiple funnels can increase the difficulty of optimization problems, as they
may deceive search algorithms into basins with local optima where they might get
trapped and converge prematurely [ME13a]. A well-known technique for estimating
the presence of funnels in a fitness landscape is Lunacek and Whitley’s dispersion
metric [LW06].
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(a) Ackley in the range [-4,4] as example for a
single-funnel shape

(b) Eggholder-function in range [-250, 100] as
example for a multi-funnel shape

Fig. 2.6.: Examples for single- and multi-funnel landscapes

2.1.6 Ruggedness, smoothness and neutrality

Ruggedness and smoothness pertain to the fitness differences between neighboring
points. The neutrality of the landscape is determined by the flat fitness landscape
areas [VFM02]. Hence, the features refer to the number and distribution of local
optima in the search space. The fitness differences in a NF LA can be large (rugged),
small (smooth), or hardly present (neutral), with each of these surface shapes posing
different challenges for optimization algorithms.

The ruggedness of landscapes has been extensively studied using Kauffmann’s NK
landscapes [Kau89]. The model allows to create landscapes with N decision variables
and a varying degree of ruggedness defined by the parameter K. Thus, the effects
of these degrees of ruggedness on optimization algorithms can be investigated. In
general, rugged landscapes, such as the one depicted in fig. 2.1b, are quite difficult
for optimization algorithms, as they again pose the risk of algorithms remaining
trapped in local optima [ME13a]. However, smooth and neutral landscapes can
also be challenging. Smoothness is related to the size of basins of attraction, as a
landscape with a small number of optima and large basins of attraction is smooth.
Figure 2.5b shows an example of such a smooth landscape, which can be fairly
deceptive and thus challenging for a search algorithm, as discussed in section 2.1.4.
The largely neutral landscape in fig. 2.5a with the isolated optimum and no clues
in the landscape to guide the search towards it, is one example for the difficulties
that neutrality in a landscape can cause. Neutral regions in landscapes can also be
plateaus or ridges that might be misinterpreted as local optima, since the progress
of a search algorithm’s fitness improvement stagnates as it moves through such a
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region. However, as discussed in section 2.1.4, a plateau or ridge may in fact be a
local or even a global optimum.

Several techniques for analysing all three features have been developed. Measures
for ruggedness are e.g. autocorrelation measures [Wei90], correlation length [Lip91]
and amplitude spectra [HS98]. The information theoretic technique by Vassilev et
al. [VFM00; VFM02] determines measures for ruggedness (first entropic measure)
and smoothness (second entropic measure). Neutrality can be measured by using
neutral walks [RS01] or neutral network analysis [VPC06; Van+07].

2.2 Choosing fitness landscape techniques and
metrics

The previous section presented a number of features of fitness landscapes that have
been associated with problem difficulty. This section details the techniques used
in this work for FLA. The selection was based on several criteria related to the
presented FLA features and the requirements of the selected problem class as well as
the motivating use case. Since the selection of the presented FLA features aimed at
providing a good overall picture of the landscapes of optimization problems, these
features should also be considered when selecting metrics and techniques. This
coverage is therefore the first criterion. It is worth noting that some metrics refer to
several characteristics. Furthermore, noise is not explicitly assessed by a FLA metric,
but the effects of noise are evaluated in later in section 6.3.4. The second criterion
is derived from the selected benchmark problems. These problems are continuous
problems and thus have continuous search spaces and continuous fitness values,
to which the techniques must be applicable. As third criterion the independence
from specific algorithms is required. This serves to ensure the independence of the
entire approach. Many FLA techniques require a distance measure. Here, a neutral
measure like the euclidean distance can be used (for continuous search spaces)
or the move operator of a heuristic. Depending on this, different landscapes with
different properties are obtained. Just like the respective distance measure, the
landscape is neutral or only applicable to a certain search algorithm. Furthermore,
some techniques do not only use the move operator of an algorithm, but the sampling
is done by the actual execution of the algorithm. In contrast, there are techniques
where no distance measure is required and only the objective function is used. Such
techniques are completely independent of a search algorithm [ME13a]. Lastly, the
tradeoff between efficiently computing the full set of FLA metrics and covering the
search space sufficiently by using different sampling methods must be addressed.
On the one hand, the overall computational effort should be kept to a minimum,
since the method is considered as a sporadically used preliminary step to the actual
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optimization (see the introduction of chapter 2 for further explanation). Therefore,
synergies in computing different metrics for different features should be exploited.
On the other hand, the result should be meaningful and usable for the intended
use case. Therefore, different sampling techniques should be used to diversify the
considered aspects.

The presented criteria can be summarized as follows:

1. Covering features: the presented features should be covered

2. Continuous: the techniques should be applicable to continuous landscapes

3. Algorithm independent: the metrics should not depend on a specific search
operator

4. Efficient: during the calculation of the entire feature set, synergies should be
used as much as possible to reduce the calculation effort (e.g. use a sample set
to calculate multiple metrics)

5. Diverse sampling methods: different sampling methods should be used across
the feature set to avoid bias caused by consistently capturing the same portion
of the landscape

The following subsections present the FLA techniques and the resulting metrics
selected to meet these criteria. They are organized according to the sampling
techniques employed.

2.2.1 Variable interaction and sensitivity

In [Wai+19; WMZ20], Waibel et al. presented a technique for computing two
measures related to the degree of variable separability using Sobol’s sensitivity
analysis [Sob01]. The aim of sensitivity analysis is to examine how the uncertainty
in the output of a model can be attributed to different sources of uncertainty in
the model inputs [Sal+10]. In the following, the basic concept of variance-based
sensitivity analysis is first introduced, followed by an explanation of sampling based
estimators for the computation of first order and total sensitivity indices, and finally
the FLA metrics based on the indices are presented. Notation and definitions are
taken from Saltelli et al. [Sal+10].

Variance-based sensitivity analysis

Sobol’s sensitivity indices are based on the ANOVA (ANalysis Of VAriances) decom-
position:

Y = f(x) = f0 +
∑

i

fi +
∑

i

∑
j>i

fij + · · ·+ f12...k (2.2)
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which means that for a model with k input variables (x1, . . . , xk) the variance of the
output is decomposed into 2k factors. The values of the factors are obtained from:

f0 = E(Y )

fi = EX∼i(Y |Xi)− E(Y )

fij = EX∼ij (Y |Xi, Xj)− fi − fj − E(Y )

(2.3)

where xi is the i-th variable and X∼i denotes the matrix of all variables except xi.
Thus, EX∼i(Y |Xi) is the mean of Y over all possible values of X∼i while keeping
xi constant. In other words, f0 as the mean can be considered as a constant part
of the output Y . The other factors are the contribution that a single variable or
the interaction between several variables have on the output. The term fi denotes
the expected changes in the output due to the input xi. Similarly, fij denotes the
expected changes in output due to the interaction of xi and xj , excluding the effect
of the two variables by themselves (fi and fj).

Based on these definitions, the first and the total order indices of the k variables
are computed. The first order index Si of a variable xi indicates the amount of
variation of Y caused solely by the individual variable i.e. without considering
variable interactions:

Si = Vxi(EX∼i(Y |Xi))
V (Y ) (2.4)

The outer variance is calculated over all possible values of xi, while the expectation
operator varies all possible values of X∼i while xi remains fixed (as in eq. (2.3)). In
theory, for a fully separable problem

∑k
i=1 Si = 1, since the entire variance of the

output value could be explained by the effects of variations in individual variables’
values without any interaction effects.

The total order index ST i measures the total effect of a variable xi, comprising first
and higher order effects:

ST i = EX∼i(Vxi(Y |X∼i))
V (Y ) = 1− VX∼i(Exi(Y |X∼i))

V (Y ) (2.5)

As indicated, the total order effect of xi can also be interpreted in the following way:
VX∼i(Exi(Y |X∼i)) indicates the whole share of the variance of Y related to X∼i and
thus unrelated to xi. Subtracting this from the total variance V (Y ) gives the total
contribution of xi.
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Sampling based estimators

Since the calculation of first and total order indices requires the calculation of inte-
grals over integrals and can therefore be very difficult, sampling-based approaches
are usually used. The basis consists of two matrices A and B independently sampled
with a Low Discrepancy Sequence (LDS), such as Sobol’s quasi-random sequence
[Sob67] or latin hypercube sampling [Ste87]. The entries in A and B are denoted
by aji and bji, where index i ( 1 ≤ i ≤ k) belongs to a variable in x and index j

(1 ≤ i ≤ N) indicates the number of the sample in N simulations. Various formulas
have been developed to calculate the sensitivity indices on the basis of A and B.
Here, the formulas proposed by Saltelli et al. in [Sal+10] are used. The matrix A

(i)
B

shares the same columns as A, except for the i-th column, which is taken from B.

The first order index Si can be computed using:

Vxi(EX∼i(Y |Xi)) = 1
N

N∑
j=1

f(B)j (f(A(i)
B )j − f(A)j) (2.6)

And the total order index ST i can be computed using:

EX∼i(Vxi(Y |X∼i)) = 1
2N

N∑
j=1

(f(A)j − f(A(i)
B )j)2 (2.7)

FLA metrics based on Sobol indices

Waibel et al. [Wai+19; WMZ20] proposed two FLA metrics based on the first
and total order sensitivity indices: the degree of variable interaction vinter and the
coefficient of variation in variable sensitivity vcv.

The metric vinter describes how much the fitness value is varied due to interaction
effects between multiple xi

vinter = 1−
k∑

i=1
Si (2.8)

As explained earlier, the sum of all first-order effects approaches 1 when a problem
is completely separable. The difference between this sum and 1 thus quantifies the
influence that the interaction effects of the variables have on the variance of the
output. Hence, vinter ∈ [0, 1] and a small value indicates variable separability while
a large value indicates a strong influence of variable interaction on the output.
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The metric vcv describes how sensitive the cost value (cv) of a function f (x) reacts
to individual decision variables xi:

vcv = σST

ST
(2.9)

where σST
is the standard deviation and ST the mean of all total order effects Sti.

A large value of vcv indicates that a small subset of the decision variables xi is
responsible for most of the variance in output, implying an uneven distribution of
impact. In contrast, a small value of vcv implies a similar level of influence by most
of the variables. In the remainder of this thesis, these metrics will be referred to as
Sensitivity Analysis based Fitness Landscape Analysis (SA-FLA).

Waibel et al. compared the SA-FLA metrics with several established ones and showed
a significant difference between the distributions in statistical tests. They concluded
that the metrics reveal novel characteristics of fitness landscapes. However, they
also noted that empirical and theoretical evidence of the usefulness of the proposed
metrics for FLA tasks, such as hyperparameter tuning or algorithm selection, is
still missing. In the context of the work at hand, the use of the metrics for the
optimization of exactly such parameters is empirically tested.

2.2.2 Fitness and state distribution

Waibel et al. in [Wai+19; WMZ20] also proposed two metrics for measuring fitness
and state variance. The first is a straightforward approach, since given a sample of
the search space, the variance of the encountered fitness values is computed:

µ2(y) = E(y′ − µy′)2 (2.10)

where y′ is y = f(x) after mean normalization and µy′ the mean of y′. A low
value for this fitness variance indicates a less rugged landscape where probabilistic
search algorithms might also perform adequately, while larger values indicate more
challenging problems.

The second proposed metric by Waibel et al. is the state variance. For this purpose,
the samples are sorted into bins based on their fitness values, similar to the process
used for a histogram. Per bin b the the mean normalized distance of all samples is
calculated:

||db|| =
1

#b

#b∑
j=1

(
1
k

k∑
i=1

√
(||xb,j,i|| − ||xb,i||)2

)
(2.11)

where j is the index of samples in bin b, #b the cardinality of b, k the problem
dimension and ||xb|| is the normalized mean point of b. The larger the value of ||db||,
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the further apart lie the points in a bin, i.e. samples with similar fitness values.
Waibel et al. propose to take the variance of all values of ||db|| over all bins:

µ2(||d||) = E(||d|| − µd)2 (2.12)

where ||d|| is the distribution of all ||db|| and µd its mean. They argue that a high
variance of the state distribution indicates that scattering of states occurs over a
wide range of cost values, while a small variance indicates that scattered solutions
cluster around a particular cost value.

In the work at hand, the mean over the distribution of ||db|| is additionally taken as
metric, as it could give a good overall impression of the distribution of points with
similar fitness in the search space:

µ(||d||) = 1
#B

#B∑
b=1
||db|| (2.13)

where #B is the number of bins. In the remainder of this thesis, the three presented
metrics are referred to as Fitness and State Distribution based Fitness Landscape
Analysis (FSD-FLA) metrics.

2.2.3 Dispersion and global landscape structure

As explained in section 2.1.5, a funnel is a cluster of local optima that forms a
global basin shape [ME13b]. The dispersion metric (DM) of Lunacek et al. [LW06]
provides insight into the global topology of fitness functions and thus indirectly
allows estimation of the presence of funnels. In [ME13b], Malan and Engelbrecht
proposed a normalized version to allow comparison of functions with different
domain sizes. To compute the dispersion metric, a random sample S of length n is
drawn that is uniformly distributed over the search space. From this sample S , a
subset S ∗ is determined that contains the N best points by fitness values. To make
functions with different domain sizes comparable, the position vectors of S ∗ are
normalized in such a way that the search space is scaled to [0,1]. In addition, a
comparison sample C also of size N is sampled uniformly across the search space.
Let disp(S ) be the average pairwise distance between normalized positions in the
sample S . Then the dispersion metric DM is defined as follows:

DM = disp(S ∗)− disp(C ) (2.14)

Thus, the metric quantifies how far points with high fitness values are away from
each other compared to a large uniform random sample. It yields values in the
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range of [-1,1]. A low value (DM < 0) indicates a single funnel landscape with an
underlying unimodal structure. A high value (DM > 0) indicates a multi-funnel
landscape and underlying multimodal structure.

2.2.4 Walking through unpaved landscapes

The following FLA metrics are all based on information derived by randoms walks.
A random walk is a series of steps in a fitness landscape that are connected by
the chosen notion of NF LA. The resulting series of neighboring sample points
in the search space with their respective fitness values serves as the basis for the
computation of a range of FLA metrics, such as autocorrelation [Wei90], correlation
length [Lip91], the entropic measures for ruggedness, smoothness and modality
[VFM00; VFM02] and the gradient based metrics by Malan et al [ME13c]. Below,
the type of random walks used in this study is presented first. This is followed by a
description of the walk-based FLA techniques that have been selected.

Progressive random walks

In [ME14], Malan and Engelbrecht presented progressive random walks as a sam-
pling method for neighbouring fitness values in continuous spaces. They argue that
random walks should be stochastic in nature and should not be biased by the fitness
values of neighboring points. Also, a generic definition of NF LA should be used and
a wide area of the search space should be covered at an acceptable computational
cost. In summary, their goal was to create a sample of the search space that is
independent of algorithms and provides sufficient coverage with reasonable effort.

Simple random walks in continuous spaces that take random steps in an arbitrary
direction (isotropic), tend to yield clustered sample points and thus do not result
in an adequate coverage of the search space. Therefore, Malan and Engelbrecht
suggest a more directed method. They describe their approach as follows:

"A walk starts on the edge of the multi-dimensional search space, pro-
gresses in a random way, but with a bias in direction towards the opposite
side of the search space. If a search space boundary is reached, the bias
is changed to the opposite direction. Multiple walks are generated from
different random starting positions on the outer boundaries of the search
space."

The first step is to determine the starting zones for the walks. The foundation for
this are the corner points. A n-dimensional search space has 2n corner points of
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the form (c1, . . . , cn), with ci ∈ {xmin
i , xmax

i }. If each dimension is extended form
the given extreme point (xmin

i or xmax
i ) to the midpoints of the axis range the

respective starting zone around a corner is determined. This definition results in 2n

non-overlapping starting zones. The four starting zones and the directions in which
the walks are progressed accordingly for a 2-dimensional search space are depicted
in fig. 2.7 from [ME14]. A starting point for a walk must be in a starting zone with

starting zone 01 starting zone 11

starting zone 00 starting zone 10

x2 axis

x1 axis

Biased towards increasing 

x1 and decreasing x2

Biased towards decreasing 

x1 and x2

Biased towards increasing 

x1 and x2

Biased towards decreasing 

x1 and increasing x2

midpoint of range

midpoint of range

2D search 
space

Fig. 2.7.: Four starting zones for a two-dimensional search space; adapted from [ME14]

one dimension being an extreme point. For each starting zone a predefined number
of steps (usually 1000) is taken in the direction of the opposite corner. A step is
determined as described in algorithm 1.

Malan and Engelbrecht showed that the resulting directed, and thus anisotropic,
walk provides much better coverage of the search space than simple isotropic
approaches. However, high-dimensional search spaces pose a challenge as the size
of the search space increases exponentially with the number of dimensions. Thus,
more dimensions require more random walks to provide sufficient coverage. The
ideal number of walks would be equivalent to the number of corners, and thus equal
to 2n. In high-dimensional settings, the computational effort for such a number of
walks would be disproportionately high. Therefore, this number of walks should
only be used for n ≤ 3. For higher dimensional problems, Malan and Engelbrecht
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Algorithm 1 Determination of one step in a progressive random walk

Given starting zone as binary array of size n:
S = (s1, . . . , sn), with si ∈ {0, 1}

Given position of previous step:
stepp = (stepp1 , . . . , steppn), with steppi ∈ [xmin

i , xmax
i ]

for all i ∈ [1, . . . , n] do
r ← random([0, stepsize]) ▷ generate a random number r
if si = 1 then

r ← −r ▷ change direction if necessary
end if
step(p+1)i

← steppi + r ▷ set value for next step in dimension i
if step(p+1)i

≤ xmin
i then ▷ if step exceeds lower bound

step(p+1)i
← 2 ∗ xmin

i − step(p+1)i
▷ Set to mirrored position inside bounds

si = 0 ▷ Flip bit of starting zone to walk in opposite direction
else if step(p+1)i

≥ xmax
i then ▷ if step exceeds upper bound

step(p+1)i
← 2 ∗ xmax

i − step(p+1)i
▷ Set to mirrored position inside bounds

si = 1 ▷ Flip bit of starting zone to walk in opposite direction
end if

end for

propose to perform n random walks, each walk starting from a different starting
zone, to ensure linear growth in computation time with increasing dimensionality.

A special form of this random walk approach is used in the calculation of the gradient-
based FLA metrics (see paragraph on Gradient based measures). The procedure for a
Manhattan progressive random walk is quite similar, but in each step the position is
only altered in one randomly chosen dimension and the step size for a dimension is
always of equal size during the entire walk.

Information theoretic analysis

In [ME09] Malan and Engelbrecht adapted the entropy based measure for rugged-
ness, smoothness and modality that was first proposed by Vassilev et al. [VFM00;
VFM02] for continuous fitness landscapes. The information theoretic technique is
based on a random walk through the search space. The initial information derived by
the random walk, i.e. a series of positions in the search space and the corresponding
series of fitness values, is converted into a string representation. This is done with
respect to the information stability measure ϵ. For this purpose, the time series is
scanned from front to back. If the difference between the fitness values of two con-
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secutive entries is less than ϵ, they are considered equal. The string representation is
obtained as follows:

Si(ϵ) =


−1, if fi − fi−1 < −ϵ

0, if |fi − fi−1| ≤ ϵ

1, if fi − fi−1 > ϵ

(2.15)

The entropy-based values for ruggedness, smoothness, and modality can be deter-
mined for the resulting string S(ϵ). To do so, the difference between the adjacent
values in S(ϵ) is analyzed.

For ruggedness, the differences between the successive values are of interest. The
corresponding entropy value is calculated for the resulting string S(ϵ) as follows:

H(ϵ) = −
∑
p ̸=q

P[pq]log6P[pq] (2.16)

where P[pq] is the frequency of occurrence of the block [pq] in Si(ϵ) with p, q ∈
{−1, 0, 1}. This entropy is calculated with various ϵ between 0 and ϵmax, which
is the value at which the resulting string consists only of zeros. The maximum of
all attained entropy measures is taken as the final result [ME09]. This entropy
measure reflects the information content of the random walk. This is naturally high
for a rugged landscape, whereas a smoother landscape has a smaller entropy value.
Ruggedness refers to fitness differences in a NF LA and therefore depends heavily on
the notion of NF LA embodied in a landscape. This is reflected by the stepsizes in
the random walks. Thus, depending on the step size, ruggedness can be viewed on
different scales.

Malan suggested to compute the metric once based on random walks with a max-
imum step size of 1% of the search space and once with 10%. The resulting
metrics FEMmicro and respectively FEMmacro (First Entropic Measure as defined
by [VFM02] ) are values in [0, 1] and reflect the relationship between ruggedness
and neutrality on micro and macro scale.

Similarly to the FEM a second entropy measure can be calculated that estimates
the smoothness of the function. Based on the string S(ϵ) the entropy of smooth
blocks, i.e. two consecutive characters with the same sign, is calculated as follows:

h(ϵ) = −
∑
p=q

P[pq]log3P[pq] (2.17)

The same approach as for FEM is applied by calculating h(ϵ) with different values
for ϵ and keeping the maximum of all entropy values as SEM (Second Entropy
Measure). The SEMmicro and SEMmacro (Second Entropy Measure) are again
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values in [0, 1], but refer to the relation of smoothness and neutrality of the landscape
[VFM02].

The modality of a function corresponds to the number of local optima. Modality and
ruggedness are closely related, since a rugged landscape may also include many local
optima. In [VFM00], Vassilev et al. also proposed a metric to quantify the modality
of the random walk encoded by eq. (2.15). A new string S′(ϵ) is constructed by
removing all zeros from S(ϵ) and reducing sequences of equal characters to one
character. Thus, S′(ϵ) contains only information that is essential with respect to
modality. The resulting modality measure is called partial information content (PIC)
and is given by

PIC(ϵ) = µ

n
(2.18)

where n is the length of S(ϵ) and µ the length of S′(ϵ). If the random walk encoun-
tered a landscape with high modality, the length of S′(ϵ) is almost the same as that
of S(ϵ), resulting in PIC(ϵ) being close to or equal to one. If the path is flat or only
leading in one direction PIC(ϵ) tends to or is equal to zero. For PIC, the same
procedure as for FEM and SEM is used by performing random walks with varying
step sizes to look at modality at different scales. The respective metrics are PICmicro

and PICmacro.

Gradient based measures

A characteristic that might be deceiving for some algorithms is the steepness of
gradients. In [ME13c], Malan and Engelbrecht proposed a technique for estimating
gradients. The technique is based on a Manhattan progressive random walk (as
described in the section on Progressive random walks). Each step in this random walk
is of equal step size. Between two consecutive points, e.g. solution vectors x(t) and
x(t + 1), the gradient is calculated in terms of fitness and position. The gradient is
normalized to allow comparison between functions with different domain sizes and
fitness ranges, as defined in the following equation:

g(t) =
f(x(t+1))−f(x(t))

fmax−fmin

stepSize∑n

i=1(xmax
i −xmin

i )

(2.19)

were fmax and fmin are the best and worst fitness values encountered in the walk
and xmax

i and xmin
i are the bounds of the search space in dimension i. For the

resulting sequence of gradient measures, the mean Gavg and standard deviation
Gdev of the absolute values are calculated. A high Gavg indicates steep gradients
that might deceive an algorithm if they lead into local optima. A high value for Gdev

suggests that the landscape has irregularities such as steep cliffs, straight plains, or
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sudden peaks. Low values of Gdev imply that Gavg provides a good estimate over
gradients.

2.2.5 Summary of applied fitness landscape features

The set of presented FLA techniques covers the features of fitness landscapes previ-
ously described in section 2.1. Furthermore, all of them are algorithm independent
and can be used for continuous optimization problems. Some of the techniques are
based on LDS samples, some on different kinds of random walks and one on uniform
random sampling. Thus, a diverse set of sampling techniques is employed. At the
same time one sample set can be used for the computation of more than one FLA
metric, to make the computation of the overall set more efficient. Table 2.1 shows an
overview of the applied FLA techniques, the corresponding landscape characteristics
and the applied sampling method. Additionally, the techniques are classified into
different feature groups depending on how they can be computed in a distributed
manner, which is described in more detail in chapter 3. The mappings are added
in table 2.1 to give a complete overview of the techniques and their relation to
various other aspects. SA-FLA and FSD-FLA metrics were already introduced as
such in the respective sections 2.2.1 and 2.2.2. All other techniques are computed
in the same distributed manner and are referred to as Structure Exploring Fitness
Landscape Analysis (SE-FLA) metrics. The umbrella term SE-FLA was chosen, since
these are primarily random walk-based methods that explore the surface structure
of the fitness landscape step by step.

2.3 Coupled and dynamic fitness landscapes

Most fitness landscapes investigated in classic FLA are static in nature. This means
that the optimization takes place in a constant environment and an optimization
heuristic explores this static landscape during its search. However, some types of
optimization problems lead to dynamic landscapes that evolve over time. One cause
of this might be a varying objective function. Another cause may be the coupling of
landscapes. In this case, multiple fitness landscapes reflecting different but coupled
optimization problems interact with each other. The objective functions of the
individual optimization problems are coupled in such a way that the selection of a
concrete value of a decision variable in one of the optimization problems affects the
objective function values of the solution candidates of other optimization problems.
The concept is mostly studied in the context of coevolutionary algorithms. These
algorithms mimic the coevolution of multiple species in nature. The evolution of
one species influences the fitness of another species, leading to adaptation to the
changing environment, which in turn may influence the first species.
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FL feature FL metric description
sampling
method

feature
group

degree of
variable
separability

vinter Degree of Variable Interaction

low-
discrepancy
sequence

SA-
FLA

vcv
Coefficient of Variation in Vari-
able Sensitivity

fitness dis-
tribution

µ2(y) Fitness variance FSD-
FLA

(in the
search
space)

µ(||d||) Mean state distance

µ2(||d||) State variance

global
landscape
structure

DM

dispersion metric that quanti-
fies distances between good so-
lutions and thus indicates the
presence of funnels

uniform

SE-
FLA

modality
PICmacro

measure of partial information
content concerning modality
on macro and micro scale

progressive
random
walk

PICmicro

ruggedness
FEMmacro

first entropy based measure of
ruggedness on macro and micro
scaleFEMmicro

smoothness
SEMmacro

second entropy based measure
of smoothness on macro and
micro scaleSEMmicro

deception
Gavg

mean gradient that indicates
the steepness of gradients

manhattan
random
walk

Gdev

standard deviation of gradi-
ents, indicates whether the
landscape has large irregular-
ities

Tab. 2.1.: Overview of the entire set of applied FLA techniques, consisting of the features
covered, the metrics calculated, and the sampling methods employed. In addi-
tion, the assignment to features groups is specified, which are relevant for the
distributed calculation in the following section.
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Figure 2.8 illustrates the concept with a simple example in which three species are
co-evolving. Each species has two evolvable characteristics that correspond to the
assigned decision variables. The Rana function (see appendix A.1) was chosen as
an exemplary fitness function for species A. When analyzing the fitness landscape
of species A, assumptions must be made about other decision variables that are not
controlled by A, or the values are given by the current specification of the other
species. In the figure, four examples of different decision set specifications and the
resulting fitness landscapes for species A are presented. These examples illustrate
the extent to which a coupled fitness landscape can transform through the evolution
of interdependent species or optimization problems respectively.

Fitness function Species A:  

Species B

Species C

Species A

Species A: Fitness Landscape Variations

Coupled Fitness Landscapes 

Example 3

Example 2Example 1

Example 4

Features 
Species A

Features 
Species  B

Features 
Species C

Fig. 2.8.: Simple example for coupled landscapes (see appendix A.1 for definition of used
benchmark function)
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Research on coupled fitness landscapes mostly targets the co-dynamics in such
optimization problems. The behavior of the co-evolving species can be chaotic, lead
to oscillation, or in the best case, analogous to a Nash equilibrium, lead to each
species being at a peak that coincides with the peaks of the other species [HK05].

In [HK05], Hordijk and Kauffman perform a correlation analysis for so-called NKC

models. These are an extension of the well-known NK models with N decision
variables and a varying degree of ruggedness, defined by the parameter K. A NKC

model consists of several coupled NK models, whose degree of interdependence
can be specified by the parameter C. To investigate the effects of coevolution on the
correlation structure of landscapes, Hordijk and Kauffman performed interlinked
random walks. During a random walk in the search space of a species, every m steps
the values in the search spaces of the coupled species are altered by performing
steps in random walks there as well. The resulting random walk of the first species
is then taken as basis for correlation analysis. One of the main findings was that
intermediate or fast coevolution rates reduce the correlation of the fitness values in
the FLA of a species significantly.

In [Ric06] and [Ric08], Richter used coupled map lattices for the construction of
landscapes and the modeling of landscape dynamics. In this way spatio–temporal
fitness landscapes are constructed. Richter analysed these landscapes regarding
various FLA measures. Furthermore, he investigated the contribution of dynamic
aspects, such as change frequency and dynamic severity, to problem hardness.
In [Ric06], the analysis of the relationship between landscape measures and the
performance of an evolutionary algorithm showed that at small change frequencies,
the landscape measures modality and ruggedness were strongly correlated with
algorithm performance. This correlation ceased at larger change frequencies. In
[Ric08], Richter extended the approach to further FLA measures, namely information
content (see section 2.2.4) and epistasis. The results confirmed the findings of
[Ric06] and also showed a strong correlation between algorithm performance and
information content.

In a later work [Ric14], Richter used simple and abstract models to study the rela-
tionship and codynamics between objective and subjective fitness in coevolutionary
setups. The objective landscape represents the global view of the problem to be
solved and thus concerns complete solutions. The subjective landscape is the coevo-
lutionary algorithm’s view of the problem and thus represents the fitness of partial
solutions from a local perspective (of one species). Richter computes similarity
measures between objective and subjective landscapes and argues that these are
suitable for quantifying and discriminating the codynamics between these fitness
types. In [De 07], de Jong suggested the Objective Fitness Correlation as a measure
for the correlation between the objective fitness and the subjective fitness used in
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coevolutionary algorithms. His results suggest that a high correlation between the
two landscapes is associated with an increase in objective quality, while decoupling
can lead to the failure of coevolutionary algorithms.

The presented research in the field of coupled landscapes is mostly focused on
better understanding the dynamics of coevolution. Furthermore, it is assumed
that all information about the subsearch spaces is available at a central point.
Accordingly, the employed methods for calculation of FLA features are not meant
to be implemented in a spatially distributed system. They are either unsuitable for
this purpose by requiring a central instance with complete knowledge [Ric06; Ric08;
De 07; Ric14] or the distributed computation would be very time consuming and
involve extensive communication, especially for higher dimensional problems, such
as the interlinked random walks of Hordijk and Kauffman [HK05].

The concept of coupled and dynamic landscapes is also applicable to optimization
problems in the real world, such as the energy optimization problems in spatially
distributed systems that motivate this thesis. In such systems, optimization can be
performed by multi-agent systems in which each agent controls an asset relevant
to the optimization problem, e.g., energy resources, controllable loads, or electrical
devices such as transformers. The agents share the same global optimization problem,
but each of them controls only a small part of the decision variables. This natural
decomposition of the search space leads to coupled and dynamic fitness landscapes.

An analysis of the properties of such distributed optimization problems should pro-
vide valuable hints for the selection and parameterization of distributed optimization
heuristics. The same reasons that favor the use of distributed optimization in such a
real-world problem also imply that the information needed for a FLA of the entire
search space is not available in a central location. In other words, the analysis of
the fitness landscape in a spatially distributed optimization setup should also be
performed in a distributed manner. In the following chapter, the aspects that have to
be considered for a spatially distributed computation of FLA metrics are highlighted
and the solution approach developed in this thesis is presented.
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3Distributed Fitness Landscape
Analysis

The spatial distribution of entities jointly performing a FLA of a common overall
problem, respectively a search space, imposes its own requirements. On the one
hand, spatial distribution makes communication of information an important aspect
in itself. On the other hand, not all knowledge about the local search spaces can be
transmitted to a central instance. This would result in a very high communication
overhead. In addition, distributed optimization may be chosen for reasons such as
data privacy or scalability requirements. In such a case, it would be unreasonable to
collect all the information in a central location in a preparatory step for distributed
optimization.

FLA techniques, as explained in chapter 2, generally rely on sampling the search
space in a certain way and computing metrics based on the position of the samples
and their respective fitness values. In a distributed computation, no agent knows the
full search space, and thus the resulting metrics are based on limited information.
The goal of this chapter is to present a distributed computation method that considers
a trade-off between the expressiveness of the metrics and the computational effort.
This corresponds to an investigation of hypothesis 2 and research question 2 as
presented in section 1.3.3:

Hypothesis 2
Distributed fitness landscape analysis for search spaces with decision-set decomposition
can determine meaningful features that can serve as the basis for parameter tuning and
control of distributed optimization heuristics.

Research Question 2

How can fitness landscape analysis be performed in a distributed manner
while creating a reasonable tradeoff between computational and communication
effort and the expressiveness of the computed features and which metrics need
to be included into a set to provide a reasonable characterization of distributed
optimization problems?
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To investigate this research question, a distributed FLA approach based on distributed
sampling, sample recombination, and local application of FLA techniques is presented
below. The resulting metrics are compared to their centrally computed counterparts
to assess their meaningfulness. At the same time, the impact of sampling techniques
and number of samples is examined to assess the balance between expressiveness
and computational cost. In addition, a correlation analysis is performed to investigate
whether the metrics capture different aspects of the search space. The usability for
parameter tuning and control will be investigated later in part IV.

In the following, first the general approach to the distributed computation of FL
metrics is presented in section 3.1. Afterwards, the distributed FLA is further
explained for different groups of jointly computed metrics in sections 3.3, 3.4 and
3.5. Finally, the correlation analysis is performed for the complete set of metrics in
section 3.7.

3.1 Distributed computation of metrics

Before developing an approach for distributed FLA, general requirements must be
identified. The basic requirements are straightforward:

1. Reasonable effort: the entire procedure should be carried out in reason-
able time and with reasonable communication and computation effort, so it
may be performed as preliminary step (if the optimization problem changes
significantly).

2. Exploitable results: The set of calculated metrics should be suitable for
optimizing the parameters for initialization and adaptation of the CT on a
problem-specific basis.

The basic idea behind requirement 1 was already touched upon at the beginning of
chapter 2. FLA is a preparatory step before the actual optimization. Performing it
every time is not reasonable. Instead, the goal is to characterize a problem class and,
if appropriate, the difference between different problem instances. For the motivating
use case of a distributed energy optimization problem, this would mean that the
analysis is performed before the first couple of runs to obtain an initial parameter
setting of the search heuristic. Later, it would be repeated when the problem changes
significantly, e.g., when a sufficient number of plants are joining or leaving, or when
the target values differ greatly from the original ones. Understanding of the problem
class would thus grow substantially over time, revealing the overall picture more
and more. How large the differences in the problem setup must be to trigger a new
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execution of the FLA is a question in itself. Nevertheless, the effort for the analysis
should be kept within reasonable limits compared to the actual optimization. It
consumes both communicative and computational resources and must be carried
out during the ongoing operation of a system, whose effectiveness and efficiency it
is intended to improve.

Requirement 2 includes two aspects. First, the set of selected FLA metrics should
cover enough characteristics of the landscape to provide a sufficient picture of the
landscape. This aspect was taken into account when selecting the FLA metrics in
section 2.2. On the other hand, the distributed computation of the chosen metrics
is inherently accompanied by a loss of information. Clearly, an agent cannot have
complete knowledge of the search spaces of all other agents, as would be the case
in a fully centralized system. The method should, however, allow to sufficiently
approximate the properties of the overall optimization problem. The crucial point
is that the derived features are suitable for their intended purpose, namely the
optimized parameterization of the search algorithm. This will be evaluated later on
in chapter 6.

Approach

The proposed approach for the distributed computation of FLA metrics of a decom-
posed and distributed optimization problem is straightforward. The steps are shown
in fig. 3.1 along with a simple illustrative example. The basic idea is that agents
first sample values for their own decision variables (step 1: initial sampling) and
exchange this information (step 2: dissemination). Thereafter, each agent can
perform a local FLA (step 3) using the samples of the other agents as additional
input. The agent either uses these samples to create a complete set of samples,
including its own decision variables, and calculates the local metrics on that basis.
Or it recombines only the samples of the other agents and uses them as the basis
for its random walks. In the latter case, recombination leads to a large number of
variations of the values of the decision variables of the other agents. Assuming that
the values of the decision variables in each of these combinations are fixed, the
agent obtains different versions of its local search space. This corresponds to the
concept of dynamic and coupled fitness landscapes (see section 2.3). The exact form
of this local computation of FLA metrics and the final feature composition (step 4)
differs depending on the feature group (see summary table 2.1 for the assignment of
metrics to groups). The metrics were classified into these groups because they can
be computed in the same distributed manner based on the underlying techniques,
especially the sampling methods. Within the SA-FLA, each agent calculates the
sensitivity indices for its own decision variables. Only the central controller obtains
the actual FLA metrics based on all sensitivity indices. For SE-FLA and FSD-FLA
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Fig. 3.1.: Distributed FLA approach with simple example for illustration
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metrics, each FLA metric is computed for the local subsearch spaces. The central
controller then computes the mean and standard deviation for each metric across
all subspaces. The consideration of the mean values and the standard deviations
of the features allows to estimate the basic properties of the overall search space
as well as to quantify the heterogeneity of the subsearch spaces. The difference
between SE-FLA and FSD-FLA lies in the way an agent samples its own search space
in combination with the samples of the other agents. The exact procedure for the
local FLA in the individual feature groups is described in more detail in the respective
sections (3.3, 3.4 and 3.5).

The approach has similarities to the approach of Hordijk and Kauffman [HK05]
(see section 2.3) as the fitness landscape of one agent is investigated with different
preset values for other agents decision variables. However, in the work of Hordijk
and Kauffman, the values of the other variables were changed while performing
the random walks and then the effect of co-dynamics on the correlation in the
agent’s search space was studied. In the approach presented in this thesis, the entire
computation of the FLA features is performed for each set of variables. The mean
values of the FLA metrics computed over all sets therefore give more of an estimate
of what kind of landscape an agent encounters on average.

For the complete formulation of the approach several parameters have to be chosen.
This concerns mainly the initial sampling and the local FLA. For both phases, a
tradeoff between the computational and communication effort (due to the number
of samples) and the accuracy of the computed metrics is to be expected. The tradeoff
might be reduced by choosing a suitable sampling method.

In addition, the initial sampling must be designed in such a way that it provides a
good basis for SA-FLA, FSD-FLA and SE-FLA techniques. Therefore, a method based
on LDS is required, as this is a prerequisite for the calculation of SA-FLA and FSD-FLA
metrics. For the second sampling for partial feature determination, a LDS-technique
naturally has to be performed again for the LDS-based techniques, while it plays a
minor role for the SE-FLA techniques. For this reason, only LDS techniques are used
for sampling. The equilibrium properties of one of the low-discrepancy sequences
employed, the Sobol sequence, require the number of samples generated to be a
power of two. Therefore, only powers of two are used. Table 3.1 shows an overview
of the varied parameters and the chosen value ranges.

In the following, the experimental setup is described first, specifically how the
optimization problems for the evaluation of the approach are constructed. Then,
for the three groups of FLA metrics, the peculiarities of distributed computation are
presented and the results of parameter tuning are evaluated in each case. With the
final selected parameter setting, the FLA metrics are computed for a much larger set
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phase parameter description /impact value range
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method

Depending on the sampling technique,
the selected points in the search space
vary

sobol, halton, latin
hypercube (classic
and centered)

1.2: num-
ber of
samples

The more samples the more accu-
rate the FLA metrics might be. But
the computational and communica-
tion overhead would increase as well.

32, 64, 128

lo
ca

lF
LA

2.1: sam-
pling
method

Method for recombination of the sam-
ples received by other agents; It in-
volves generating the samples in the
agents own search space for LDS-
based techniques. In random walk-
based techniques, the recombined en-
tries are taken as the basis for random
walks.

halton, latin hy-
percube (classic
and centered)

2.2:
number
of
samples

see 1.2, but without communication
costs

256, 512, 1024,
1536 for LDS

32, 64, 128 com-
bined with other
local sampling
technique

2.3: num-
ber of rep-
etitions

In random walk-based techniques, it
is common to repeat the calculation of
the metrics several times and finally
average them. This is supposed to
compensate for random effects. How-
ever, it leads to an enormous increase
of the calculation effort.

10, 20, 30

Tab. 3.1.: Parameters of distributed FLA
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of optimization problems. Based on this, the correlation of the metrics with each
other is investigated.

3.2 Composite search spaces

For the design and evaluation of the distributed FLA and also the subsequent op-
timization runs, simple problem instances implementing dynamic and coupled
landscapes are needed. Consequently, well-known benchmark functions for global
optimization are used as synthetic problem instances (see appendix A.1)1. To in-
vestigate different system sizes, instances with 10 and 1002 decision variables are
employed. One agent is always responsible for two of the decision variables, result-
ing in either 5 or 50 involved agents. The degree to which the individual fitness
landscapes of the agents are coupled depends on the specific objective function.
Furthermore, for each agent, the boundaries of the search space are varied such
that each agent examines a different section of the search space, resulting in a more
heterogeneous setup. In order to generate a setup, Latin Hypercube (LHS) is used
to determine the lower and upper bounds of each agent’s search space. Then, two
decision variables are randomly assigned to each agent, both of which may only be
varied within the previously defined limits. In this way, for each benchmark function
20 so-called composite spaces were created.

Figure 3.2 shows examples of such composite spaces for different benchmark func-
tions. To plot each agent’s 3-D fitness landscape, a random value within the individ-
ual thresholds of each of the other agents’ decision variables was chosen and treated
as fixed when calculating the fitness values. The examples show that the different
subspaces exhibit different landscape characteristics. Still, all agents share the same
global objective. When the objective function is not separable (as is the case for most
of the selected functions), the subspaces are dynamic and coupled since the selection
of an agent with respect to a decision value changes the fitness values obtained for
other agents.

3.3 Distributed sensitivity analysis

In order to calculate the SA-FLA metrics for the degree of variable separability
presented in section 2.2.1, the Sobol sensitivity indices must first be determined.

1For the rationale behind the selection of benchmark functions, see also appendix A.1.
2Problem dimension 100 is also used for subsequent heuristic optimization runs, as it has been shown

in preliminary studies to provide a good trade-off between computational time and observability of
the effects of CTVs. The smaller 10-D setups are used to determine if there are dimension-related
effects, such as larger differences from the centrally computed metrics.
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(a) Eggholder composites space

(b) Schaffer F6 composite space

(c) Xin-She Yang 1 composite space

Fig. 3.2.: Examples for composite spaces with 10 dimensional benchmark functions and 5
agents handling 2 decision variables each.
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These indices are based on LDS, and therefore require a sample with low discrepancy.
During the distributed computation, an agent receives only a certain amount of
samples from other agents, i.e., from other dimensions of the overall problem,
but can extensively sample its own search space. Thus, the goal of the following
evaluation is first to investigate how large the possible bias caused by this approach
is and whether the distributedly computed sensitivity indices can be used as a basis
for the FLA metrics.

The specific procedure for the distributed computation of the indices involves a joint
recombination of the samples from other agents and the sampling of the own search
space. For this purpose, the problem dimensions of other agents are considered as
categorical axes for which only the transmitted values can be chosen, while the own
problem dimensions are sampled in full scope.3 Figure 3.3 shows two examples that
illustrate the procedure. The two functions were developed for benchmarking in
sensitivity analysis and are shown as 3-D plots [AR22]:

F1 :=f(x) = 10 ∗ x1 + 0.2 ∗ x3
2

G− function :=f(x) =
n∏

i=1

|4xi − 2|+ ai

1 + ai
ai ̸= −1

For reference, the two decision variables x1 and x2 were globally sampled using
Saltelli’s extension of Sobol’ sequence [Sal02] (left figure in each case) and the
sensitivity indices were calculated thereon.4 The other two figures show the samples
obtained by the two agents performing the distributed computation procedure. Each
of them took 32 initial samples and generated 2048 samples each, for the matrices
A and B and thus also for A

(i)
B (see section 2.2.1 for reference), leading to a total

number of 6144 samples, which equals the number of samples in the global approach.
The relatively small number of initial samples highlights the different structures
of the sample sets, as the lines along each of the agents’ own variable axes are
clearly visible. Even with this very limited knowledge of each other’s capabilities,
the calculated sensitivity indices are fairly close to the reference values. Initial
case studies have shown that increasing the number of initial samples significantly
increases the accuracy of the obtained indices, but a low number was chosen here
for illustrative purposes.

Extending the approach to a higher dimensional setup where an agent is responsible
for more than one problem dimension raises a problematic aspect in the way the
foreign samples are used as categorical axes. This leads to the loss of possible
relationships between several problem dimensions belonging to one foreign agent.
An example of such a relationship might be that the value of one variable can

3For this combined sampling the sampling library of [Hea+21] is used
4For reference of global sensitivity analysis the python library SAlib is used [IUH22; HU17]
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(a) F1 function from [AR22]

(b) G-function from [AR22]

Fig. 3.3.: Examples for distributed computation of sensitivity indices: The number of
samples for the global calculation is equal to that of the individual agents (6144).
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only be in a certain value range if the value of another variable is below a certain
threshold. This might result in using combinations of variables from other agents
that may not be realistic. If this is only a small part of the total sample set, it should
not significantly affect the quantification of the impact of the agents’ own decision
variables. Especially when applied to real world problems, this aspect will have to
be considered again and the recombination of the samples will have to be modified
in order to preserve relations between variables. However, the theoretical problem
instances used here are not affected, since there are no such dependencies between
an agent’s decision variables.

Parameter tuning

The parameter tuning with respect to the SA-FLA metrics concerns the impact of
sampling methods and number of samples, both in the initial sampling phase and
in the local FLA, as summarized in table 3.1. The detailed analysis is provided in
appendix B.1.1. In summary, the parameter evaluation showed that initial sampling
has only a minor impact on the accuracy of the indices and the computational
effort with the current setup. From a number of 128 samples on, no significant
improvement was observed. However, the parameterization for local FLA shows a
clear correlation between the number of samples and the quality of the results as
well as the computational effort. Especially for higher dimensional problems, there
is also a clear difference between different sampling techniques. Table B.1 in the
appendix gives an overview of the findings and the chosen values for the parameters
used in the further course of this work.

Globally and distributedly computed sensitivity indices

After the selection of a suitable parameterization, the analysis of the discrepancies
between the distributedly computed indices and their centrally computed coun-
terparts can be performed. Figure 3.4 shows the indices for all decision variables
for one composite space per 10-dimensional benchmark function. The total order
effects in fig. 3.4a have very small Root Mean Square Error (RMSE), which is also
clearly visible from the centrally and distributedly calculated indices superimposed
in the scatter plots. For the first order effects in fig. 3.4b this still holds for most
benchmark functions. The distributedly computed first-order effects in fig. 3.4b are
also very close to the reference points for most benchmark functions. The exceptions
are Ackley, Salomon and Schaffer f6. Considering the 100-dimensional problem
instances in fig. 3.5, the same pattern emerges. The total order effects are calculated
very accurately, despite distributed computation. The first order effects are again
also well captured for most benchmark functions. However, the deviations for Ackley,
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Salomon and Schaffer f6 increase even further. This observation suggests that these
functions have one or more properties that cause this strong divergence.

Figure 3.6 shows the SiRMSE plotted against other FLA metrics for two composite
spaces per benchmark function. Plots with other FLA metrics are not shown as
no correlation is apparent there. The errors seem to correlate with metrics that
quantify the landscape structure on micro scale as shown in fig. 3.6a. The error is
remarkably higher for landscapes which are highly rugged or show high modality
and respectively low smoothness on micro scale (stepsize about 1 % of the domain).
The gradient based metrics derived from walks with even smaller step sizes (about
0.1% of the domain) also exhibit a correlation with the error sizes, as shown in
fig. 3.6b. This could suggest that the smaller subspaces in the distributed calculation
of the first-order effect leads to an overestimation of the effects of the decision
variables given that the fitness differences of the landscape at the microscale are
large.

Whether the discrepancy of the Si values is problematic for the later use of the
derived metric vinter remains unclear at this point. After all, the metric is largely
correct for many problem instances. In other cases it may fail to indicate variable
interdependence. However, high values of vinter would then most likely be associated
with high and strongly varying gradients and ruggedness or multimodality at the
micro level. Later in the thesis, a correlation analysis between the FLA metrics is
performed (see section 3.7), where vinter could be discarded if it has no unique
information content. Furthermore, the evaluation in section 6.2 examines the
importance of the features, which could lead to the exclusion of vinter if it proves to
be a misleading metric for predicting algorithm performance.

3.4 Distributed computation of fitness distributions

The distributed computation of the FSD-FLA metrics regarding fitness and state
distribution represents a middle ground between the way sensitivity-based FLA
metrics and walk-based metrics are obtained. As with the former, a new LDS
sample matrix is generated upon the samples of the other agents and the agent’s
own subsearch spaces. The metrics are then derived from this matrix. In order to
achieve synergy, the same sampling matrix should be used as in the calculation of
the sensitivity-based metrics. The calculation of the metrics, is done as described in
section 2.2.2. As suggested by Waibel et al. [WMZ20], 20 bins are used to categorize
the samples. If the mean distance of the points in a bin is calculated and there are
not enough points in a bin, the mean distance of the bin is set to 0. Also following
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(a) Total order effect Sti - impact of variables xi including effect of variable interaction

(b) First order effect Si - impact of variables xi excluding effect of variable interaction

Fig. 3.4.: Comparison of globally and distributedly computed sensitivity indices for 10-
dimensional benchmark functions

3.4 Distributed computation of fitness distributions 65



(a) Total order effect Sti - impact of variables xi including effect of variable interaction

(b) First order effect Si - impact of variables xi excluding effect of variable interaction

Fig. 3.5.: Comparison of globally and distributedly computed sensitivity indices for 100-
dimensional benchmark functions
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(a) Correlation of SiRMSE and FLA metrics on micro scale

(b) Correlation of SiRMSE and gradient based FLA metrics

Fig. 3.6.: Correlation of RMSE for first order effects and other FLA metrics in dimension 10
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Waibel et al., the threshold for a bin to be considered underpopulated is 1.5 ∗ k,
where k is the number of samples.

During the computation of the SA-FLA metrics, the sensitivity indices are computed
for each subspace individually, and only by combining all indices the FLA metrics can
be computed later. In contrast, for FSD-FLA metrics, each agent already computes
the FLA metric for its subspace. The combined FLA metric for the overall problem
is obtained by computing the mean of the metric over all subspaces. The standard
deviation is additionally computed as an indicator for heterogeneity of the subspaces.
Therein lies the shared approach with the SE-FLA techniques, where the same
procedure is used.

Parameter tuning

The parameter tuning with respect to the FSD-FLA metrics concerns the impact of
sampling methods and number of samples, both in the initial sampling phase and
in the local FLA, as summarized in table 3.1. The detailed analysis is provided in
appendix B.1.2. In summary, the parameters for initial sampling showed no major
impact on the deviations between distributedly and centrally computed metrics.
Thus, parameters can be set according to requirements of other FLA metrics. For
local FLA, the number of samples had a positive effect on the deviations of some
metrics, but also resulted in a higher computational effort. This increased effort
seems do be less relevant when centered LHS is used. In conclusion, centered LHS
with 1024 samples appears to be a reasonable compromise that is also consistent
with the setting most appropriate for distributed sensitivity analysis. Table B.1 in
the appendix summarizes the findings for all feature groups and the final choice of
parameters.

3.5 Distributed computation of structure exploring
metrics

SE-FLA metrics comprise all FLA metrics that are not based on LDS sampling. This
includes all techniques based on random walks and the dispersion metric, which
uses uniform random sampling. The difference with SA-FLA and FSD-FLA is that
the sampling of the agent’s own search space and the recombination of other agents’
samples are not performed jointly. Thus, the LDS procedure is used only for the
recombination of the foreign samples. For the computation of the local FLA metrics,
the matrix of recombined foreign samples is iterated over. Each combination of
samples from other agents (i.e., a row in the matrix) is considered fixed, and a
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random walk is performed or a uniform sample is taken and the corresponding
metric is computed. With each row in the recombined samples matrix, a different
version of the local subsearch spaces is created and subsequently explored. After all
rows have been processed, the mean value is calculated for each SE-FLA metric. This
indicates which properties the agent encounters on average in its local subsearch
spaces. Since each row in the matrix of recombined foreign samples is combined
with either a random walk of 1000 steps or the uniform sample of more than 1000
points, much fewer samples are generated during recombination. For this reason,
different numbers of samples are used here than for SA-FLA and FSD-FLA. The
whole process is repeated several times, as it is common in FLA. This number of
repetitions is therefore an additional tuning parameter for this feature group.

For the selection of the parameters, again the centrally computed counterparts of
the metrics are used as reference. Nevertheless, there is a key difference that must
be taken into account when evaluating the results. For the central computation of
metrics for a n-dimensional problem, n random walks are performed (as suggested
in the paragraph on Progressive random walks) from different corners of the search
space (refer to fig. 2.7 for illustration). In each step, the position in all n dimensions
is changed. For the decentralized computation, each agent is responsible for only two
decision variables of the overall problem. Thus n

2 agents examine 2 dimensions each.
For a walk, an agent keeps all other variables fixed. Agents perform 4 walks5 from
each of the starting zones ("00","01","10","11"), resulting in a total of 4∗ n

2 = 2n walks.
In each walk, an agent only varies the position of its own two problem dimensions.
Given the difference in dimensionality, the agents’ local walks cover the examined
version of the search space very thoroughly. However, they only investigate some
versions of their search space. As a result, the decentrally computed features are
based on a completely different coverage of the search space than the centrally
computed features. It is inevitable that the derived metrics will differ. But the
agents’ view of the search spaces in the distributed computation is the same as they
have when performing the optimization. Therefore, the distributed metrics might
provide a picture that is more relevant to distributed optimization approaches. The
comparison to the centrally calculated metrics is nevertheless the most meaningful
criterion for the parameter selection. Therefore, the deviation between the centrally
calculated reference value and the mean value of the distributedly calculated values
is evaluated for each metric (analogous to eq. (B.3)).

5This is the number of walks suggested by Malan [ME14], depending on the number of problem
dimensions
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Parameter tuning

The parameter tuning of the SE-FLA metrics involves the same parameters as the
previous two feature groups, namely the sampling method and the number of
samples, for the initial sampling and the local FLA. In addition, the random walks
for the local FLA are repeated a number of times to compensate for random effects,
as this is a common approach in the literature (e.g., [ME13b]). The number of
repetitions is therefore another considered parameter (see table 3.1). The detailed
analysis is provided in appendix B.1.3. The impact of the parameters on the deviation
between centrally and decentrally calculated metrics is very small for this category.
Thus, for initial sampling, the sampling method and number of samples can be chosen
according to other feature group requirements. For local FLA, the recombination of
foreign samples is coupled with random walks. Again, the sampling method did not
show much influence. Even the smallest number of samples was sufficient. Also,
repeating the random walks did not provide any additional benefit. For efficient
computation, sampling with only 32 recombinations without repetitions is sufficient
for local FLA. Table B.1 in the appendix summarizes the findings for all feature
groups and the final choice of parameters.

3.6 Summary of distributed computation of feature
groups

The parallel calculation of the metrics for all three feature groups is summarized
below. The goal is to clarify which calculation steps are shared for multiple feature
groups in order to take advantage of synergies, and where different calculation steps
are necessary. Figure 3.7 illustrates these relationships. All metrics are based on the
same initial sampling, which is how agents obtain knowledge about the possible
assignment of external decision variables in the first place.

The local FLA can be divided into several steps. First, the samples of external agents
must be recombined to generate different variants of the assignment of all external
decision variables and thus different versions of the local fitness landscape. A second
step is to perform the sampling for the own decision variables and assess them in
the context of these different local fitness landscapes. For the SA-FLA and FSD-FLA
metrics, these two steps can be performed not only together for both feature groups,
but also in a single step. For this purpose, a joint LDS sampling is performed, in
which the external variables are considered as categorical axes and thus only the
values transmitted by the initial sampling are used, while the full range of values
is used for the own decision variables. For the SE-FLA metrics, only the external
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Fig. 3.7.: Overview of parallel distributed calculation of all feature group metrics

samples are recombined using a LDS method. The resulting different versions of the
local fitness landscape then serve as the basis for random walks and other sampling
methods for the own decision variables.

The final step of the local FLA is the actual calculation of the metrics or their
precursors based on the combined sampling of external and own decision variables
in the previous two steps. This is where all three feature groups differ. In SA-FLA,
the sensitivity indices for the own decision variables are calculated based on the
LDS sample set. In FSD-FLA and SE-FLA, the actual fitness landscape metrics are
calculated for the subspace. However, in SE-FLA, they are computed individually for
each version of the local fitness landscape and then the mean values are calculated.

The locally calculated values for all three feature groups are then sent to the con-
troller agent. In the final step, the controller agent calculates the mean values and
standard deviations across all subsearch spaces for the FLA metrics from the FSD-FLA
and SE-FLA. For the SA-FLA metrics, on the other hand, the actual calculation of the
FLA metrics takes place here on the basis of the transmitted sensitivity indices.

For all three feature groups, the effects of sampling methods and the number of
samples used in the initial sampling and in the local FLA were examined individually
and the appropriate parameter selection was determined (see appendix B.1). Thus,
for the common steps, such as the initial sampling, the parameterization that is
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suitable for all feature groups could be selected (see table B.1). In this way, an
investigation into parameter sensitivity was carried out while at the same time
aiming to achieve the greatest possible synergy effects in the calculation of the entire
feature set.

However, by still using different sampling methods, the computational basis of the
sample set should also be reasonably diversified. This is the trade-off between
computational effort and sufficient coverage of the characteristics outlined in points
4 and 5 of the criteria for selecting the total set of metrics in section 2.2. The
consideration of the individual metrics instead of the feature groups shows the
continuation of this principle, since e.g. the different local fitness landscapes within
SE-FLA are examined with different types of random walks. In the following section,
a correlation analysis of all distributed metrics is performed to determine whether
the desired variance in the information content of the calculated metrics has been
achieved.

3.7 Correlation analysis of metrics

The presented catalog of metrics for the FLA was composed with the intention of
covering a wide range of features that, when combined, can give a good overall
picture of the landscape. Since the distributed calculation of metrics often considers
the mean and standard deviation across all subsearch spaces, the number of all
metrics amounts to 26. Therefore, a reasonable next step is to investigate the
correlation between these metrics. The goal is to reduce the number of metrics
needed for further application, but at the same time to maintain the contained
information of the set. The metrics were computed using the final parameter setup
displayed in table B.1 for all 100 dimensional composite spaces for all benchmark
functions in set number 1 (appendix A.1.1) and set number 2 (appendix A.1.2),
corresponding to a total of 460 composite spaces, with 23,000 subsearch spaces.
The metrics were all rescaled using min-max normalization.

Figure 3.8 shows the resulting heatmap of the Spearman correlation coefficient along
with a dendrogram representing the hierarchical clustering of features, obtained
by the UPGMA algorithm [Mül11]. In addition, table 3.2 gives an overview of the
determined clusters.

Several metrics, such as the dispersion metric or the coefficient of variable interaction
vinter, did not correlate sufficiently with other metrics to be included in a cluster.
This suggests that the information provided by these metrics is unique in the set of
metrics. Furthermore, there are 4 clusters with two metrics each. Clusters 9 and 10
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Fig. 3.8.: The Spearman correlation coefficients for all FLA metrics are shown in the heat
map. The dendrogram shows the subsequent clustering with the UPGMA algo-
rithm.
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Tab. 3.2.: Clustered FLA metrics based on Spearman correlation coefficient
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each include the metrics for ruggedness FEM and modality PIC on micro scale.
The corresponding cluster on macro scale is number 14, which also includes the
mean value over all subsearch spaces of the average gradients Gavg mean. That
these metrics correlate in both mean and standard deviation seems reasonable, as
multi-modality, ruggedness and higher gradients often go hand in hand. However,
the correlation does not hold for the standard deviation on the macro scale. The
PICmacro std is clustered with SEMmacro std (nr. 12). Since the standard deviation
represents a measure of the heterogeneity of the subsearch spaces, it appears sensible
that this heterogeneity is similar with respect to modality and smoothness. The
same measure of ruggedness, FEMmacro std, was not assigned to any cluster. The
correlation coefficient with PICmacro std and SEMmacro std is 0.706 and 0.785,
respectively. As such, there is a degree of correlation between the three standard
deviation metrics, but the threshold chosen by the UPGMA algorithm was too high
to form a joint cluster.

Cluster 13 includes all gradient based metrics that involve some kind of deviation.
Gdev mean is the mean value over all subsearch spaces, for Gdev which is the
standard deviation of gradients in one subsearch space and thus indicates whether
the landscape has large irregularities. Whereas Gavg std is the standard deviation
across all subsearch spaces of the mean of the gradients in one subsearch space. The
last cluster, number 15, contains all metrics related to state variance. Similar to
cluster 13, all included metrics contain various combinations of means, standard
deviations, and variances that summarize the distance of similar fitness values in the
subsearch spaces for the entire composite space.

Figure 3.9 shows the values of the included metrics across all problem instances in
shared scatter plots for clusters 9 to 11. The correlation of the clustered metrics
is clearly visible, as the relation of the values between different problem instances
is very similar. See appendix B.2 for additional scatter plots for the remaining
clusters.

The closer examination of the clusters illustrates that for the differentiation and
classification of different problem instances, one representative metric per cluster is
sufficient. Thus, the number of metrics considered can be reduced from 26 to 15.
Such a reduced set is used to proceed in chapter 6 when the FLA metrics are used as
the basis for the training of machine learning models. First, however, the algorithmic
aspects are considered in more detail in the following part III.
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Fig. 3.9.: Clusters 9 - 11: values of clustered metrics across problem instances
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Part III

Communication Topologies for distributed
Optimization Algorithms

This part addresses the algorithmic aspects of the thesis. First, chapter 4 introduces
the fundamentals of distributed optimization algorithms in the form of parallel
cooperative metaheuristics. Section 4.1 places particular emphasis on different
types of parallelization and on the information sharing cooperation mechanism.
This mechanism covers all aspects related to the interaction of distributed solvers,
including the communication topology. In section 4.2, two distributed optimization
heuristics are presented in detail, which serve as exemplary algorithms in this thesis.
Finally, section 4.3 provides an overview of existing research on communication
topologies in the context of parallel cooperative metaheuristics and highlights the
research gap. Most of the original contributions in this part are presented in chapter 5.
It presents the conceptual design of the communication topology variants that
allow for different runtime adaptations, and illustrates their impact on algorithmic
performance on several problem instances.





4Distributed Optimization
Algorithms

In recent years, a transition to networked systems is emerging in many application
areas, such as sensor networks, building automation, smart manufacturing, and
especially energy systems. A networked system is composed of a large number of
interconnected subsystems that have to cooperate to achieve a global goal [Yan+19].
In particular, future energy systems can be viewed as complex systems of systems,
sometimes referred to as multi-energy cyber-physical systems of cyber-physical-
energy-systems, linking communication, power, heat, and gas systems [NTS13].

Distributed control and optimization systems represent a way to handle the new
scalability requirements arising from the large number of energy sources and the
increased complexity caused by distributed information, increasing uncertainties,
and real-time requirements. In such distributed control and optimization systems,
decentralized components take over control tasks at the local level, while the global
system behavior emerges from the interaction of these components [HN20].

The general principle of operation of such distributed control and optimization
systems implemented by MAS is as follows: Each asset or subsystem is represented
by an intelligent agent. Agents have control over their local asset and knowledge of
their environment (control parameters, constraints, local preferences, cost functions,
etc.). They exchange information and iteratively adjust decisions regarding their own
control parameters to jointly solve a global optimization problem. Direct information
exchange in such a peer-to-peer architecture is usually limited, as it would quickly
lead to an enormous communication overhead when dealing with a large number
of agents. The Communication Topology (CT) determines which agents directly
exchange information. It is modeled as a graph G = (V, E), where each agent ai

is represented by a node vi. An edge eij ∈ E indicates that the two agents ai and
aj communicate directly. Agents usually share the information they receive from
their neighbors. In this way, the decisions of all agents can eventually reach all
other agents. Thus, different communication topologies lead to different information
dissemination in the system. The impact and design of the CT on the optimization
process is the core of the thesis. First, however, the principles concerning distributed
optimization algorithms that use such topologies must be explained in more detail.

79



Such distributed systems have several advantages over centralized approaches. First,
agents exchange only a limited amount of data, which improves cybersecurity and
privacy of data such as measurements, cost functions, and constraints, and reduces
communication traffic in comparison to systems where all data is transmitted to a
central location. Second, the robustness of the system is increased since there is
no single point of failure. Third, parallel computation can lead to an acceleration
of problem solving, which of course also depends on the hardware. Finally, the
scalability of a distributed system is one of the biggest advantages [Mol+17].

Considerable research on distributed optimization in the power system has been con-
ducted in the field of control theory, where systematic mathematical approaches are
used to design distributed controllers [Mol+17]. However, the type of problems that
can be solved with such approaches is limited [RAT18]. Distributed energy resources
are very heterogeneous regarding forecast precision and flexibility potential. Further-
more, as outlined in section 1.1 and section 1.3, energy optimization problems are
often nonlinear, high-dimensional, multimodal, and their decision variables can be
highly interdependent. This makes heuristic solution approaches a reasonable choice,
and thus heuristic approaches for distributed optimization a central aspect of this
thesis. Such approaches correspond to so-called parallel cooperative metaheuristics,
which are able to cooperate over a network infrastructure.

Parallel cooperative metaheuristics are the key element of the remainder of the
chapter. First, we start with an overview of the design principles of parallel cooper-
ative metaheuristics. In section 4.2, two heuristics that meet the requirements of
the motivating use case are presented in detail, as they will be used as exemplary
algorithms in the further course of the thesis. The chapter concludes with a survey
of related work dealing with the influence and design of communication topologies
for parallel cooperative metaheuristics.

4.1 Parallel cooperative metaheuristics

In parallel metaheuristics, multiple (meta) heuristic solvers run in parallel to solve
an optimization problem. If these solvers exchange information during the search,
the search is considered cooperative. The parallel design of metaheuristics offers
several advantages over the sequential execution. The first goal is usually a speed
up of the search, as the simultaneously running solvers need less time to explore the
search space. At the same time, parallel metaheuristics often yield results of higher
solution quality compared to their sequential counter parts. This is especially the
case in cooperative approaches, where the exchanged information alters the search
behavior of the solvers. The robustness of the search in terms of the ability to
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effectively find solutions to different problems and problem instances is increased
while the sensitivity to parameters of the metaheuristic is reduced by the parallel
design. In addition, parallelization allows many large optimization problems to be
solved for the first time [Tal09].

The parallelization of the optimization can be accomplished on different levels.
Furthermore, the information exchange in cooperative search is a very important
design aspect. Both topics are presented in more detail in the following.

4.1.1 Levels of parallelism

According to Crainic [Cra19] parallelization can be based on a decomposition of
the algorithm, the search space or the problem structure. Figure 4.1 summarizes
Crainic’s classification and adds additional aspects such as problem dependence and
impact on search behavior, inspired by the classification of [Tal09].
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Fig. 4.1.: Types of parallel metaheuristics

The low level parallelization corresponds to decomposition of computationally
intensive tasks (during an iteration of the heuristic). Examples include mutation or
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recombination of large populations in an evolutionary heuristic. This parallelization
can therefore be performed to speed up the original heuristic without significant
changes. It is still possible to work with only one solver. The procedure is therefore
also independent of the optimization problem.

Independent multi-search and cooperative search are the other two parallelization
approaches that can be performed independently of the problem. In both methods,
several solvers run simultaneously to solve the problem. This concurrent exploration
of the search space by the (self-contained) solvers implicitly decomposes the problem
domain. Nevertheless, the individual solvers are not restricted and can theoretically
explore the complete search space. The difference between the two approaches is
whether the different solvers cooperate with each other. In independent multi-
search, the solvers run independently. In the final step, the best overall solution is
taken. Thus, in terms of solution quality, the search is equivalent to the sequential
execution of solvers. The behavior with respect to a single sequential solver is
modified, but not compared to the sequential execution of multiple solvers. In
cooperative search, on the other hand, the solvers exchange information during
the search and can thus benefit from each other. Therefore, the search behavior of a
metaheuristic parallelized in this way is quite different and can not only speed up
the search, but also often lead to solutions of higher quality [Cra19].

Search space partitioning and decision-set decomposition are the two approaches
which explicitly decompose the search space. How this decomposition is performed
is problem dependant. The simplest scenario for partitioning the search space is to
divide the search space into smaller subspaces and solve the resulting subproblems by
applying sequential metaheuristics to each subspace, thus performing an independent
multi-search. With decision-set decomposition, each solver receives a subset
of decision variables and the corresponding constraints. When optimizing this
subset, other variables are discarded or (temporarily) fixed. The fixed variables
of other solvers can be updated during the iterative optimization process. Often,
separation is determined by a single control process that re-assembles and evaluates
the entire decision set. If decision-set decomposition is performed without a central
coordination process, a cooperative search allows solvers to exchange information
about the current candidate solutions for their respective decision variables. Thus,
each solver can regularly update the fixed foreign variables and the solvers jointly
converge to an overall solution.

The presented parallelization approaches can be combined in various ways. However,
the combination of decision-set decomposition and cooperative search yields the
kind of distributed optimization heuristic that is the subject of further investigation
in this thesis. The decomposition of decision sets is inherent to spatially distributed
optimization problems from the energy domain.
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Optimizing these problems by cooperative search allows to simultaneously exploit
the aforementioned advantages of distributed computation (see introduction of this
chapter) and also to leverage the positive effects of solver interaction. The design
of the cooperation mechanism for cooperative search has a strong influence on its
performance and is especially important in spatially distributed systems. Therefore,
the information-sharing cooperation mechanism is considered in more detail next.

4.1.2 Information-sharing cooperation mechanism

The Information-Sharing Cooperation Mechanism (ISCM) covers all aspects related
to information exchange and cooperation between solvers. The global search be-
haviour of the cooperative search emerges from the interactions that are specified
by this mechanism. The ISCM itself can thus be regarded as a new metaheuristic
[Cra19].
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Fig. 4.2.: Design decisions regarding the cooperation mechanism [Tal09; CT07]
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Figure 4.2 shows an overview of the design decisions to be considered when devel-
oping a cooperation mechanism according to Talbi [Tal09] and Crainic and Toulouse
[CT07]. The first question that arises is what information should be exchanged
between the solvers. This usually includes elite solutions, such as the overall best
solution or the best solution of the current iteration. Furthermore, additional in-
formation from the solver’s search memory can be provided and used to adapt the
search parameters of other solvers. One example are the pheromone trails (or the
probability model) in ant colonies.

The next design decision concerns how the received information is processed by
the solvers. In population-based metaheuristics, for example, the worst solution
candidates in the solver’s own population can be replaced by the newly obtained
solution candidates. One way to use contextual information from the search memory
is to combine it with the local version. For example, in ant colonies, the local and
neighboring pheromone matrices can be aggregated linearly.

Another important aspect is timing. According to Talbi, the exchange of information
can either follow a blind scheme, i.e. periodically or probabilistically, or be intelli-
gently adapted to the runtime behavior. For instance, the sending of messages can
be tied to achieving a large enough improvement in the elite solution.

The design decision that is of central interest for this thesis is the connectivity. Crainic
and Toulouse differentiate between direct and indirect communication. In the fist
case, all solvers can directly share information. Such a direct exchange can be
realized via shared memory or blackboard architectures, for example. For spatially
distributed systems, it can be implemented by a fully meshed Communication
Topology (CT), respectively a complete graph. In indirect communication, the
number of solvers that communicate directly with each other is limited. The CT
determines which solvers are adjacent and explicitly exchange information. When
a solver receives information from a neighbor, it influences its own search and
thus the messages it sends to its other neighbors. Therefore, information is shared
between cooperating solvers not only explicitly through the direct exchange, but
also implicitly through a propagation (or diffusion) process. Crainic and Toulouse
identify the dynamic behavior emerging from solver cooperation as an important
area of research. They point out that the explicit design of implicit interactions could
be leveraged to increase algorithms’ performance.

The mode of the information exchange is another important design decision. Syn-
chronous communication requires information exchange phases, in which all solvers
engage and stop other activities. The synchronization may be at predefined points,
e.g., after a number of iterations, or may be initiated by a specific solver. The aim
is a recreation of a state of full knowledge. However, synchronous communication
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is usually time inefficient since the slowest search process typically sets the pace.
In general, asynchronous information sharing outperforms synchronous methods.
In asynchronous communication mechanisms solvers initiate cooperation activities
based on their internal logic. This can be realized, for instance, by sending a newly
found superior solution candidate, or by requesting new information from other
solvers when the own optimization process stagnates. This eliminates the time
overhead of waiting for slower solvers. Furthermore, the asynchrony of the solvers
also allows for increased adaptability of the solvers and thus dynamic adaptation of
the exploration of the search space. However, the asynchronous nature also poses
challenges, as poorly chosen parameters (e.g., the exchange interval or criterion)
can cause undesirable behavior, such as erratic searches in which the corresponding
search trajectories resemble random walks [CT07].

The last design decision according to Crainic and Toulouse [CT07] is the so called
scope. This describes the ability of a cooperation mechanism to extract new infor-
mation and knowledge from the exchanged data in order to guide the search. Most
examples of this originate from the context of asynchronous cooperative search with
centralized memory. For instance, the combination of complementary metaheuristic
and exact methods allows intelligent coordination between different solvers spe-
cialized in exploration or exploitation of the search space. The data stored by the
solvers in the central memory may also be used to learn about the parts of the search
space that have already been explored, or the relationships between the values of
certain decision variables. Cooperative search strategies that involve decision-set
decomposition must include a mechanism for reconstructing complete solutions.
This is also considered a form of knowledge creation. Crainic and Toulouse explicitly
name the Integrative Cooperative Search by Lahrichi et al. [Lah+15] as example
for this. Lahrichi et al. combine a number of independent exact or metaheuristic
solvers. Some of them work on the subproblems, while the so-called integrators
combine the resulting partial solutions into overall solutions, aiming for high solution
quality. The solvers collaborate through an adaptive search-guidance mechanism
based on the paradigm of cooperative search with centralized memory. Another
example are coevolutionary algorithms. The recombination of partial solutions can
be performed in various ways, e.g. by different information splicing methods [SS04]
(see section 4.2.2 for more detail), and thus influence the further search process
significantly.

In the examples mentioned, knowledge creation takes place in a central instance that
recombines the partial solutions of the solvers. However, such a recombination and
thus knowledge creation must also take place in completely distributed algorithms.
Two variants for such a distributed mechanism are presented in the following
chapter.
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4.2 Spatially distributed optimization of
decomposed domains

The motivating use case of optimized operation of spatially distributed energy sources
and consumers poses certain challenges. Each asset has its own local requirements,
constraints and preferences, that lead to different kinds of flexibility. Nevertheless,
the assets need to jointly reach a global target, e.g. to achieve a load reduction in
a certain area of the grid to prevent a transformer overload. Due to the scalability
and data protection issues mentioned earlier, it is not advantageous to gather all
information about energy resource flexibilities in a central location. However, the
plants still need to be jointly coordinated. A solution to this is an optimization
algorithm that allows distributed agents to optimize their own assets locally, but
share information with the other agents to find an overall solution. In addition, a
decision set decomposition is inherent to these optimization problems, since the
contribution of each asset can be considered as a subset of the decision variables
of the overall problem. Thus, the importance of the communication aspects is even
more pronounced in this use case compared to a centrally performed cooperative
search. On the one hand, there is an actual spatial distribution and, on the other
hand, the agents have to be informed regularly about the selection of the other
agents, as it may massively impact the evaluation of their own solution options (see
section 2.3).

In the work at hand, two optimization heuristics which suit this use case are em-
ployed to explore the impact of different communication topologies and how these
topologies can be designed in an optimized manner. The first, COHDA is a fully
distributed optimization heuristic developed for energy resource scheduling [HS17].
The second, named IDICE, was developed as part of this work by combining well
known principles of the generalized island model, coevolutionary algorithms and
differential evolution.

4.2.1 Combinatorial optimization heuristic for distributed
agents (COHDA)

COHDA is a combinatorial optimization heuristic for distributed agents, and was
developed for the self-organized scheduling of distributed energy resources in virtual
power plants [HS17; Hin14]. Since it was developed for the motivating use case, it
has exactly the required properties: it is a cooperative search with domain decompo-
sition. In the original setup, each agent has to choose an operation schedule for its
power plant, while the combination of all chosen schedules is supposed to reach an
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overall target schedule. In [BL17], Bremer et al. adapted COHDA to find the global
minimum of a real valued objective function. In the work at hand this approach
is adopted, but each agent is responsible for two decision variables of the overall
problem. This approach is used to combine fitness landscape analysis for distributed
search spaces (see chapter 3) in a convenient way with the investigation of algorithm
performance in relation to communication topologies. By adapting to this setup, the
heuristic is slightly simplified compared to the version in [HS17]. In the following,
the heuristic as implemented in this work is presented in more detail.

Each agent knows the global objective function f(x⃗) = f(x1, x2, . . . , xn), which
depends partly on its own decision variables, but largely on the decisions of the
other agents. In its so-called working memory κi= (Ωi, Υi), the agent stores the
believed current configuration of the whole system Ωi and the best known solution
candidate Υi.1 The current system state Ωi= [(x1Ωi , λ1i), (x2Ωi , λ2i), . . . , (xnΩi , λni)]
contains the latest known choice for each decision variable in x⃗, together with the
version counter λj of the respective agent aj which is responsible for the variable.
The solution candidate Υi= ([x1Υi , x2Υi , . . . , xnΥi ], aΥi) also contains a choice for
each decision variable in x⃗ and the id of the agent which found the candidate. The
working memory κi is used for the local operation of the agent, but also sent to its
neighboring agents.

The basic workflow of the heuristic consists of each agent performing the following
three steps in each iteration:

1. perceive: the agent processes all newly received messages. It updates Ωi

when a newer selection of variables becomes known, and it updates Υi when
it receives a better solution candidate (see section on information integration
below for more detail).

2. decide: the agent performs a local optimization to check if it can find a better
solution candidate with given choices of other agents from Ωi. For this, the
Simplicial Homology Global Optimization (SHGO) [ESF18] is employed.2. If
the newly found solution outperforms Υi, the candidate is updated. Otherwise,
the agent falls back on its selection in Υi for its own decision variables and
uses them to update the system state Ωi.

3. act: if any component in the working memory κi= (Ωi, Υi) has changed in the
previous two steps, the agent sends its updated κi to its neighbors.

Abstracting COHDA from its original use case, the sequence of the three steps
mentioned above remains, as well as the specification of the inter-agent cooperation.

1Note that the original working memory also contains the target schedule. This was omitted since the
benchmark function f(x⃗) does not change and is known to the agents from the beginning.

2Implementation by python library SciPy [Vir+20]
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The local optimization in the "decide" step can be designed arbitrarily depending
on the use case and, for example, consider local constraints or additional local
objective functions. Therefore, according to Crainic’s definition [Cra19], COHDA can
be viewed as an ISCM that allows arbitrary (meta-)heuristic solvers to cooperatively
solve a problem with domain decomposition. The design decisions that determine
the cooperation mechanism, as presented in section 4.1.2 with an overview in fig. 4.2,
have several aspects that overlap with the phases outlined above. However, for the
sake of completeness, they are all described below:

Content: Agents send their working memory κi= (Ωi, Υi), including their believed
current system state and the best known solution candidate.

Information Integration: To integrate the newly received working memory
κj = (Ωj , Υj) from agent j, agent i checks if Ωi or Υi have to be updated.

• the believed current system state Ωi is updated according to the following
rules:

– if Ωj includes decision variables that are not included in Ωi, they are
added to Ωi

3

– if Ωj contains newer values for a decision variable, i.e. the version counter
λkj for the decision variable xk is greater than λki, then the corresponding
decision variable is replaced

• the solution candidate Υi is updated according to the following rules:
– if Υj contains more decision variables than Υi, Υi is replaced by Υj

3

– if Υj contains other decision variables than Υi, these decision variables
are added to Υi

3

– if Υj and Υi contain the same number of decision variables, but the
objective value of Υj is better, then Υi is replaced

– if Υj and Υi contain the same number of decision variables and the
objective values are equal, then the solution that was found by the agent
with the lowest id is taken. This requires unique identifiers for the agents
that allow a lexicographic ordering. The step is necessary to break ties
and allow convergence to a common solution.

Timing/ Exchange Criterion: In the "act" phase of each iteration, the working
memory κ is sent to the neighbors if anything has changed in the current iteration,
whether by external information or during local optimization.

3This is the case in the initial phase, when the agent doesn’t yet know the initial decisions made by
all other agents.
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Connectivity: A bidirectional graph defines the Communication Topology (CT).
Each agents sends information to all of its neighbors. The CT must be interconnected,
irreflexive and symmetrical [Hin14].

Mode: Messages are passed asynchronously between agents. The spatial dis-
tribution of the agents results in different transmission times (e.g. with TCP/IP
communication on the public internet). In [HLS13b], Hinrichs et al. have shown
that these varying delays do not negatively affect the achieved solution quality, and
that COHDA even benefits from a slight agent-level variation caused by message
delays. This aspect was further explored and exploited by Bremer et al.[BL19] by
introducing laziness to agents. The agents probabilistically delayed their reaction
to received messages, which often led to an increase in diversity in the solution
population of the overall heuristic, preventing premature convergence and thus
achieving better solution quality. To leverage the positive effects of inter-agent varia-
tion, the simulation studies in the work at hand included a short sleeping period with
a random value between 0.05 and 0.15 seconds in the beginning of each iteration of
an agent.

Scope: Unlike most cooperative search algorithms based on decision set decom-
position, COHDA does not recombine the different solution fragments at a central
point. Instead, a variety of complete solutions are present in the system at any given
time in the form of perceived system states Ω. These system states are updated
asynchronously, causing their diversity to fluctuate during runtime. They provide
the basis for the local optimization runs, which include the full execution of the local
solver, not just a few iterations as in most cooperative search algorithms.

For a better understanding, fig. 4.3 shows a small example. The setup involves only
three agents, each of which has two decision variables. Agent A receives a message
from Agent B and performs one iteration, which includes the three phases of updating
its knowledge, performing local optimization, and informing its neighbors.
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Fig. 4.3.: Exemplary behavior in COHDA of agent A in one iteration after receiving a
message from agent B
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4.2.2 Island model differential coevolution (IDICE)

IDICE is a combination of the generalized island model [IRB12] with the concept of
coevolution [SS04]. Both models are approaches for distributed EAs. In [Gon+15],
Gong et al. distinguish between population-distributed and dimension-distributed
models. Population distributed EAs, like the island-model, distribute the individuals
of the population (or subpopulations) across multiple processors or computational
nodes. Thus, they are by their design suitable for a spatially distributed computation.
Dimension-distributed models, like coevolution, distribute partitions of the problem
dimensions (or subspaces), i.e., they perform a decision set decomposition. However,
in the majority of works in literature, the individual solvers are coordinated by a
central mechanism (master slave setup) that also repeatedly assembles complete
solutions and passes them to all solvers as a new global iteration step (e.g. [SS04]).
Instead of this central coordination mechanism, the island model is used here. Both
models combined meet the requirements of the motivating use case, since the island
model allows to handle the distributed nature of the system and the inherent decision
set decomposition can be addressed by coevolution.

The generalized island model [IRB12] by Izzo et al. is a generic framework for the
combination of different metaheuristics by the island model. Each metaheuristic is
executed by a solver on an "island". The islands exchange information via a migration
topology to mutually enrich their searches. Izzo et al. define the archipelago A,
that is the overall setup for optimization, by the set of islands I and their migration
topology T , hence A = (I, T ). The set of islands of course corresponds to the set of
agents and the migration topology to the CT for the presented use case.

Every island Ii is defined by a quadruple:

Ii = (Ai, Gi,Mi,Ri) (4.1)

where Ai is the optimization algorithm and Gi the population, respectively the
current generation (which may only contain one individual for trajectory-based
heuristics). Mi is the migration selection policy, which is used to select the migration
pool P containing individuals from Gi that will be sent to neighboring islands. Ri is
the migration replacement policy, which determines how individuals from a received
migration pool P are integrated into the existing population. Mi and Ri correspond
to the exchanged content and the integration of information regarding the design
decisions of the cooperation mechanism shown in fig. 4.2.

Combining this setup with the concept of coevolution, metaphorically speaking,
a different species lives on each island. The species evolve on their islands. For
the evaluation of the fitness of a species, however, all other species are relevant.

4.2 Spatially distributed optimization of decomposed domains 91



Migration between islands regularly brings new individuals from other species to the
islands. They are not integrated into the local population, but they change how the
current population is evaluated in terms of fitness and thus how it must evolve to
improve its fitness. Thus, similar to COHDA, in IDICE each agent requires a perceived
current system state Ω. This contains the currently assumed values for the properties
of the other species, respectively for the decision variables of the other agents.
The agents again share the global objective function f(x⃗) = f(x1, x2, . . . , xn). To
evaluate the fitness of its population, which includes only its own decision variables,
an agent uses the values from Ω for the other decision variables.

The islands also store the best found solution candidate Υi= ([x1Υi , x2Υi , . . . , xnΥi ], aΥi)
which contains a value for each decision variable in x⃗ and the id of the agent which
found the candidate. To ensure that all islands eventually converge to a common
solution despite the distributed computation without a central controller, Υ is sent to
the neighboring islands together with the migration pool P . In analogy to COHDA,
agents send their working memory κ = (P, Υ), In addition, migration does not
change the population on the islands. Therefore, no migration-replacement policy
Ri is needed, but rather an update policy Ui for Ωi and Υi. Therefore, in IDICE the
islands are defined by a six-tuple:

Ii = (Ai, Gi, Ωi, Υi,Mi,Ui) (4.2)

Izzo et al. specify the optimization algorithm A as any optimization process that
supports an evolution operator G′ = A(G, µ), where µ refers to the migration
interval, i.e., the number of iterations performed between migrations. For IDICE,
Differential Evolution (DE)[SP97] is employed as optimization algorithm by each
agent. The implementations of mutation, crossover and selection are taken from
[Vir+20], but adapted to the special setup in the island model. Moreover, Gi includes
only the own decision variables of Ii. Thus, Ωi is always necessary for the evaluation
and further development of Gi by an algorithm. The evolution operator is hence
specified as G′ = DE(G, Ω, µ).

In analogy to COHDA, each island agent also must iteratively perform the three basic
steps:

• "perceive": process messages from neighbors
• "decide": continue local optimization process
• "act": send messages to neighbors

The order of the steps in IDICE is therefore different from that in the generalized
island model of Izzo et al, namely: decide - act - perceive. Because of the fully
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distributed optimization new solution candidates (Υ) should always be forwarded.
Therefore, in this setting, it is most reasonable to perform the "act" step last. Fur-
thermore, a local optimization is most useful after Ω has been updated. Due to these
considerations, the same order is used for IDICE as for COHDA, i.e. perceive- decide
- act. Algorithm 2 shows the general flow of the optimization algorithm for an island
agent as pseudocode.

Algorithm 2 Process of optimization on the island Ii respectively for the agent ai

initialize Gi

P ∗ ←Mi(Gi) ▷ select initial choices as migration pool
/* Send initial choices to islands adjacent to Ii in T */

while !stop_criteria do
/* Let K be a set of working memories κ = (P, Υ) from neighboring islands */
Ωi, Υi ← Ui(G,K) ▷ Update Ω and Υ
Gi ← DE(Gi, Ωi, µ) ▷ Perform µ iterations of DE to evolve Gi with given Ω
P ∗ ←Mi(Gi) ▷ select migration pool
/* Send κ∗ = (P ∗, Υi) to islands adjacent to Ii in T */

end while

After outlining the general workflow of the heuristic, the design aspects of the ISCM
can be examined in more detail in order to gain a deeper insight into the algorithm.
The final parameterization of IDICE with all mentioned parameters can be found in
the appendix in appendix A.2.2.

Content: Agents send their working memory κi= (Pi, Υi), including the migration
pool and the best known solution candidate. The migration pool Pi contains the
k-best individuals from the current generation of the population Gi. The current
values for foreign decision variables are completed from Ωi, which was also used to
evaluate the individuals from Gi. (See message of agent B in fig. 4.4 as example)

Information Integration: In the "perceive" phase an island agent processes all
messages received since its last iteration. The messages contain a set of working
memories K from neighboring islands. Based on this, the the best found solution
candidate Υi and the perceived system state Ωi are updated.

The island agent examines all received solution candidates Υ and updates its own
Υi (similar to COHDA) by the foreign solution candidate Υj if necessary using the
following rules:

• if the objective value of Υj is better, then Υi is replaced
• if the objective values of Υj and Υi are equal, then the solution that was found

by the agent with the lowest id is taken. This requires unique identifiers for
the agents that allow a lexicographic ordering. The step is necessary to break
ties and allow convergence to a common solution.
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In order to update Ωi, the island agent first collects all received migration pools from
other agents and adds its own k-best individuals from the current generation to form
the combined pool P ′. Based on P ′, the splicing pool P ′′ is generated. The goal of the
information splicing operation is to combine information from agents stochastically.
For IDICE, the unified splicing operation proposed by Subbu and Sanderson in
[SS04] is used. Here, the splicing pool P ′′ is generated by randomly taking one
value for each decision variable from the values contained in P ′ to construct ρ new
solutions. This procedure is valid for the selected benchmark functions. However,
for real-world problems, dependencies between decision variables would have to
be taken into account. Finally, P ′ and P ′′ are combined into the full solution pool
P ∗. The best individual in P ∗ is selected as new Ωi. This coordination scheme
corresponds to the "pooling" strategy of Subbu and Sanderson, which achieved the
best results in their work compared to other schemes.

Note that the agent only receives messages from its direct neighbors. Therefore, in
the obtained migration pools, the decision variables of the direct neighbors vary
most. However, due to different Ω of the neighbors, the pool P ′ also contains
many different values for decision variables of more distant agents. This indirect
propagation of possible values for all decision variables is largely responsible for
the system’s information dissemination process, especially in sparse communication
topologies.

Another noteworthy aspect concerns population evaluation. During the optimization
process, the objective function remains the same, but Ω changes frequently after
messages from other agents arrive. Thus, the evaluation of the existing population
changes after an update of Ω, which leads to the fact that the population can
deteriorate repeatedly. However, this does not apply to the solution candidate Υ. It
contains a complete solution and only ever improves over the entire course of the
optimization.

Timing/ Exchange Criterion: In the "act" phase of each iteration, the working
memory κ is sent to the neighbors if at least one of two conditions holds: either
the agent has so far performed fewer iterations of its DE solver than minimally
required (iter ≤ itermin), or a new best solution candidate Υi has been found.
The first condition aims to ensure that at the beginning of the heuristic, agents
communicate their migration pools after each iteration to drive the propagation of
different valid values for all decision variables. The second condition is necessary to
enable convergence on a common solution. In order to accelerate convergence, the
threshold for the required improvement of the self-discovered Υ increases with time
(determined by the parameter cf ). Solution candidates, which originate from other
agents, must nevertheless be forwarded even in the case of smaller improvements in
order to allow convergence to a common solution. Following Talbi’s classification
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of the exchange criterion [Tal09], IDICE transitions from a "blind" scheme to an
adaptive one. In the initial phase, each agent communicates blindly after each µ

iteration of the DE solver. While later, communication is only triggered depending
on solution candidate improvements.

Connectivity: A bidirectional graph defines the communication topology. Each
agents sends information to all of its neighbors. The CT must be interconnected,
irreflexive and symmetrical.

Mode: Messages are passed asynchronously between agents. The spatial dis-
tribution of the agents results in different transmission times (e.g. with TCP/IP
communication on the public internet). Like COHDA, IDICE also involves a short
sleeping period with a random value between 0.05 and 0.15 seconds in the beginning
of each iteration of an agent. This is intended to leverage potentially positive effects
of the inter-agent variation.

Scope: The information splicing operation described for the information integra-
tion aspect is the primary mechanism for recombining information from the overall
system. Depending on the CT that defines the information flow in the system, very
different combinations of partial solutions are created in this step. This allows the
island agents to reach completely different areas in the high-dimensional search
space and to further explore the most promising one after updating Ω.

For a better understanding, the same example as for COHDA is shown in fig. 4.4.
The setup involves only three agents, each of which has two decision variables.
Agent A receives a message from Agent B and performs one iteration, which includes
the three phases of updating its knowledge, performing local optimization, and
informing its neighbors.

After presenting the two heuristics used in this thesis, the communication aspects
need to be considered in more detail. Therefore, the following section presents
research that investigates the impact of communication topologies on distributed
optimization heuristics.
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4.3 Impact of communication topologies

So far, this chapter has introduced the basic principles of parallelization in meta-
heuristics, given special attention to the Information-Sharing Cooperation Mecha-
nism (ISCM), and presented two heuristics as exemplary algorithms and placed them
in the framework of the ISCM. The CT is an important component of ISCM. The
impact of different exchange topologies on algorithm performance, and in particular
the design of dynamic topology adaptation at runtime, is a main subject of this
thesis. The following literature review is intended to provide an overview of existing
work on the influence and design of exchange topologies in the context of parallel
cooperative metaheuristics and, in the process, to highlight the research gap that the
approach presented in this thesis aims to fill.

The first studies of the CT for the COHDA algorithm were conducted during its
development. In [Hin14], Hinrichs investigated the impact of several topologies,
namely path graph, ring, small world [Str01], complete graph and a grid topology,
on the performance of COHDA. In his experiments, the topology had little effect on
solution quality. However, they did show a correlation between a high degree of
topology connectivity and faster termination and higher communication overhead.
The lack of impact on solution quality in Hinrichs’ work may be due to the optimiza-
tion problem examined, as there is certainly an impact on solution quality when
using COHDA to solve continuous global optimization problems [HN20; HN21b;
HN21a]. Nevertheless, Hinrichs identified the topology as a tuning parameter for
the heuristic that can be customized according to a prioritization of the performance
dimensions.

The effect of communication topologies on the performance of parallel cooperative
metaheuristics has been studied mainly for the island model. In most works, different
topologies for a given parallel heuristic are evaluated on several benchmark problems,
and the topologies are ranked according to the achieved performance, which may
involve different aspects [RIB10], [SZ18], [HC09], [HC11], [SJ15], [Wan+19].

Ruciński et al. investigated the effect of different migration topologies, including
ring, cartwheel and hypercube topologies, on the performance of two different
parallel global optimization algorithms cooperating via the island model [RIB10]. As
a measure of performance, they used objective function values of the final solution
or the evolution of the objective function values after migration periods. Both
island-model based heuristics were designed with homogeneous solvers, i.e., either
only instances of solvers using differential evolution or only instances of solvers
performing simulated annealing with adaptive neighborhoods were used. They
evaluated different topologies for both heuristics according to the performance
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obtained. Since the results varied widely, Ruciński et al. suggested that such studies
should be conducted in the future for other heuristics and with more problem
instances.

In [SZ18], Shia and Zhang presented a parallel elite biased framework (PEB frame-
work) for parallel trajectory-based metaheuristics. They used the framework to
implement a parallel variant of guided local search (PEBGLS) and conducted experi-
ments to solve the symmetric traveling salesman problem (TSP) to demonstrate the
competitiveness of PEBGLS and thus the applicability of the framework. In these
experiments two types of topologies were applied: the bidirectional ring topology
and the torus topology. They used different numbers of parallel processes, hence
instances of guided local search, to solve the TSP with the two different topologies
(adjusted to number of processes). They also varied the communication frequency
and compared the results in terms of speed up an efficiency. For the problem in-
stances considered, the torus topology led to a higher speedup in most cases and
was also more efficient.

Hijaze and Corne [HC09] analyzed how different topologies affect the performance
of an asynchronous distributed evolutionary algorithm (EA). They examined three
different topologies. A master node is informed by the subpopulations about newly
found best values. The master then forwards this best value to the population
with the worst progress. The topologies differ in whether and how subpopula-
tions are divided into subgroups that communicate directly. In this case, only
one of the subpopulations communicates directly with the master node. They
evaluated the effect of the topologies on the performance of the algorithm using
30-dimensional target functions (Sphere, Rosenbrock, Schwefel, Rastrigin, Griewank,
Ackley [MY13][Li+13]). The success rate in finding the optimum was similar for
all topologies, but better than for the standard single population EA (with equal
total population size). The speedup was consistently highest for a topology variant
that divides all subpolulations into groups of two. Based on their results, Hijaze and
Corne hypothesized that the different performance was due to a different balance
between exploration and exploitation.

In their follow-up work in [HC11], they introduced an online adaptation of the
migration scheme in which the migration probability was adjusted based on the
progress of subpopulations on islands. They performed the experiments with the
same topologies and same objective functions, but higher dimensions (50d and 100d).
The adaptive migration scheme is based on the progress of the subpopulations. As
long as this is high, a low migration probability is used. If the progress decreases,
the migration probability is increased. With the adaptive scheme, optimal solutions
were regularly found in less time and with a higher success rate, suggesting that
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a balance between exploration and exploitation can be achieved by dynamically
adjusting the migration mechanisms.

In [SJ15], Sanu and Jeyakumar conducted an empirical analysis on the performance
of distributed Differential Evolution (DE) for several migration topologies. They used
various topologies (basic ring and ring variants, star, cartwheel, torus and mesh) and
multiple benchmark functions (e.g. Sphere, Schwefel (1,2,3), Rosenbrock, Rastrigin)
to investigate the impact of the topologies on the performance of an island model DE.
They considered not only the convergence speed and solution quality based metrics,
but also the computational effort, i.e., the number of function evaluations. They
concluded that no single topology is suitable for all optimization problems and took
a first step towards linking characteristics of the search spaces to the performance of
the topologies by roughly categorizing the functions (modality and separability) and
assigning the best performing topologies in each case.

Wang et al. [Wan+19] studied the effects of various island model parameters,
including migration topology, on solution quality, convergence speed, and diversity
for large-scale optimization functions with 1,000 dimensions. The study considers a
ring, lattice and a fully connected topology and ranks them with a non-parametric
Mann-Whitney U-test. In this study the fully connected graph obtained the best
rank. However, in that approach the migration rate is used to limit the number of
neighboring islands migrated to at the same time. With 100 islands, this migration
rate is at most 5. Therefore, not too much migration takes place in the fully meshed
topology, but between which populations the exchange takes place is much more
variable than in the other two topologies.

In [Arn+13], Arnaldo et al. performed a systematic analysis of the correlation
between island topologies and problem structure. The problem structure in this
sense is the structure in which the decision variables are interconnected. Arnaldo et
al. analyzed both idealized and real-world problems as well as a real-world scenario
and found that different problem structures require different island topologies. They
also emphasized that topologies should be designed in a problem-dependent manner,
but that the relationship between island topologies and problem structures is highly
complex. In their work, however, they were able to construct the problem structure
in the synthetic problem instances themselves. For the real-world scenario, no
analysis of the problem structure was performed, but meta-optimization was used to
select an optimal topology. Furthermore, the notion of problem structure covers only
a small part of the actual problem characteristics as expressed by Fitness Landscape
Analysis (FLA). Therefore, no systematic link between problem characteristics and
favorable topologies has been established.
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The presented research can be summarized as follows: First, different communication
topologies affect the performance of the various parallel metaheuristics. Second,
the notion of performance is mainly limited to the achieved solution quality and
convergence speed. Third, the design of communication topologies leads to different
balances between exploration and exploitation of the search space. In some cases,
it is investigated how this balance can be improved by adjusting parameters such
as migration frequency or migration rate. Finally, the effect of communication
topologies depends on the characteristics of the underlying problem.

This leaves a research gap, as the following aspects have either not been studied
thoroughly or not in combination:

• No spatial distribution: Usually no spatial distribution of the parallel cooper-
ative metaheuristic is assumed. Thus aspects such as the costs of collaboration,
especially the resulting message traffic are not considered.

• No dynamic adaptation: So far, no systematic modeling of different dynamic
approaches for tuning exploration and exploitation in the search process and
thus improving optimization performance has been presented.

• No problem-dependant selection: To date, there has been no systematic
study of the correlation between problem characteristics and the influence of
topologies, or how to select a topology tailored to the problem based on the
problem characteristics determined by a comprehensive FLA.

This work aims to fill this research gap. In chapter 5 a systematic approach for
the design of communication topologies and their dynamic adaptation at runtime
is presented. The problem-dependent selection of the topology and its adaptation
strategy based on a comprehensive set of FLA metrics characterizing the problem
is the goal of the Topology Variant Optimization (ToVarO) in chapter 6. Thereby,
several performance dimensions, namely the solution quality, the computational
effort and also the communication overhead are considered.
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5Dynamic Communication
Topology Adaptation

As described in section 4.3, the communication topologies of distributed optimization
heuristics affect the degree of exploration and exploitation of the search space.
Strongly meshed topologies lead to a high amount of information exchange between
units. This leads to a fast convergence but bears the risk of a premature convergence
into local optima. In contrast, with sparsely meshed topologies, the individual agents
can evolve more independently. This leads to an intensified search in some areas of
the search space. But in the worst case, these areas can be far away from the global
optimum.

Several of the aforementioned papers in section 4.3 have pointed out that the
CT could be used deliberately to control the flow of information in the system,
thus supporting the search for good solutions to the problem at hand. As such, it
could play an important role in enhancing the performance of cooperative search
procedures [CT07; Cra19; RIB10]. This is the gist of hypothesis 1, which was
presented in section 1.3.3 and will be examined in this chapter. Let us recall
hypothesis 1:

Hypothesis 1
An adaptation of the communication topology at runtime of a distributed optimization
heuristic solving an optimization problem with inherent decision set decomposition
affects the search behavior of the algorithm and can improve its performance in terms
of solution quality, computational effort and communication overhead.

The corresponding research question to the hypothesis is research question 1:

Research Question 1

How can dynamic communication topology variants composed of an initial
topology and a topology adaptation strategy be modeled, and how do these
variants affect the various performance dimensions of distributed heuristics?
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The goal of this chapter is to present the modeling approach for the topology variants
and show its effects in a preliminary study (before the actual evaluation takes place in
part IV). Since the performance of distributed algorithms is multifaceted, this chapter
first discusses several performance dimensions that are affected by the CT. Then,
in section 5.2, the modeling approach for topology variants is presented, including
both the initial topology construction and the possible runtime adaptation. Finally,
in section 5.3, the effects of the topology variants on the performance dimensions
are demonstrated with several examples.

5.1 Dimensions of algorithm performance

The first measure of the performance of optimization heuristics is the quality of
the solution. The time and computational effort required for optimization are also
evident measures.1 For cooperative optimization heuristics that are in fact spatially
distributed, the resulting communication traffic is also important. Between these
performance indicators there is naturally a certain trade-off. For instance, a higher
solution quality is usually accompanied by longer computation times and may require
more communication between the distributed entities. Figure 5.1 visualizes the
tension between the three dimensions of performance.

These performance dimensions are also reflected in the requirements from the moti-
vating use cases. The scheduling of energy sources leads to direct control commands
for the assets. The quality of the solution therefore influences the utilization of
the power grid. Depending on the specific use case ( i.e. congestion management
or voltage control), there are also different requirements for the duration of the

1In evaluations in this work, the calculation effort is used as a criterion, rather than the required
convergence time. The effort is determined by the sum of required iterations or local optimization
runs of all agents. In contrast to the convergence time, this results in an indicator that is much
more independent of the hardware used and any other parallel utilization.
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solution finding process. Sufficient solution quality achieved in an acceptable time
can thus be directly linked to the reliable operation of power grids. The resulting
message traffic as well as the computational effort are also not to be neglected.
For example, if there is a high traffic load on the communication network due to
external influences, optimization with low message traffic is advantageous. Similarly,
the computation is performed on edge devices distributed in the field, which have
limited computational capabilities. There are other aspects that could be included,
such as robustness to different types of impairments. However, the goal of this work
is to extend the commonly used performance definitions of solution quality and
computational effort to include the dimension of collaboration costs by taking into
account the communication effort, which is particularly relevant in spatially dis-
tributed systems. An extension of the performance dimensions considered would be
particularly appropriate when transferring the approach to real-world applications.

The CT affects all three considered performance dimensions. A high degree of
connectivity in the CT results in higher message traffic. However, in many cases, the
convergence time is also reduced, so that the increased message volume decreases
more quickly. The topology also influences the degree of exploration and exploitation
during the search. The balance between exploration and exploitation in turn affects
the quality of the solution found, the speed at which the heuristic converges, and
consequently the overall computational effort.

Figure 5.2 uses a small example with COHDA (see section 4.2.1) to illustrate how
the degree of exploration and exploitation is affected by the topology. In the case
of a strongly meshed topology, like the fully connected graph displayed in the
top part of the figure, an agent is likely to receive messages from all or most of
the other agents in each iteration. Therefore, after the agent’s "perceive" phase
during which it processes all these messages, its perceived system state Ω changes
fundamentally, as all foreign decision variables may have been updated. Since Ω
is the basis for the agent’s local optimization, this means that in each iteration the
agent will find a completely different starting point for this optimization in the
high-dimensional overall search space, in other words, a completely different local
fitness landscape. This corresponds to the principle of coupled and dynamic fitness
landscapes introduced in section 2.3. Thus, in strongly meshed topologies, many
different variants of the local search space are explored from the point of view of the
individual agents. However, the search behavior of the heuristic as a whole tends to
be exploitative, since all agents remain relatively "close" to each other in the high-
dimensional overall search space. In contrast, in sparsely meshed topologies, such as
the ring topology shown second, fewer messages from other agents reach an agent
within an iteration. In the perceived system state Ω, therefore, few foreign decision
variables change. Thus, the starting points for local optimization in successive
iterations are not too far apart. This means that the local fitness landscape of the
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agents changes less from iteration to iteration than in strongly meshed topologies.
From this point of view, an exploitation of the space of possible fitness landscapes
for individual agents takes place. However, if all agents are considered as a whole,
and thus the search in all problem dimensions, this topology tends to diversify the
search.

In IDICE (see section 4.2.2), the second heuristic considered in this thesis, the degree
of connectivity has similar effects. In highly meshed topologies, an agent receives
migration pools P from many other agents. In a migration pool Pi, the decision
variables of the sending agent i vary in each entry, while the values for all other
variables are the same. The combined solution pool P ∗, which contains all the
migration pools received plus the recombinations created by splicing, is therefore
very large and highly heterogeneous. Since the best solution from P ∗ becomes
the new Ω, the probability of major changes in Ω is very high with such a large
and diverse pool. With a weakly meshed topology, an agent receives much fewer
migration pools. Accordingly, P ∗ is much smaller and less heterogeneous. The
probability of an Ω being closer to its predecessor is therefore higher.
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Fig. 5.2.: Updating the perceived current system state Ω of agent 3 in COHDA; In strongly
meshed topologies, it is likely that (almost) all decision variables are updated in
each iteration. In weakly meshed topologies, it is likely that only a few decision
variables are updated. (Note that decision variables from agents that are not
directly connected may also be updated. This has been omitted here to emphasize
the different behavior.)

In the following, an approach is presented that aims to use this relationship as
a guide for the optimization process in order to improve the performance of the
algorithms by targeting its different dimensions.
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5.2 Topology variants

The goal of the presented approach is to achieve an advantageous balance between
exploration and exploitation that in the best case leads to a high solution quality
while keeping the required time and the costs of collaboration at acceptable levels.
Of course, the actual meaning of "acceptable" depends on the specific application
of the optimization heuristic. In addition the approach should allow to prioritize
the performance dimensions in different order and adapt the optimization process
accordingly. Which topology achieves the desired effect depends on the optimization
problem (i.e., the fitness landscape), the optimization heuristic, and the prioritization
of the performance dimensions.

A CT variant involves two design issues, which are presented in more detail in the
next sections:

1. (Initial) Topology: The topology, i.e. especially its degree of meshing, must
be chosen in an appropriate way to achieve the best possible results for a
chosen prioritization of the performance dimensions. Let G = (V, E) denote
the bidirectional graph that represents the communication topology. V is the
set of n nodes, where each node is assigned to an agent and thus to one part
of the distributed solver. E is the set of edges. An edge between two nodes
indicates direct communication between the two agents assigned to the nodes.

2. Topology adaptation strategy: A variation of the degree of exploration and
exploitation during the search of a heuristic often leads to better optimiza-
tion results [ČLM13]. Therefore, it is necessary to decide whether such an
adaptation is beneficial, and if so, in which way it should be performed.

5.2.1 Starting in a small world

In [WS98], Watts and Strogatz presented their random graph generation model
for creating small-world topologies. They coined the term "small-world" networks
in reference to the small-world phenomenon popularized by Milgram [Mil67]).
Milgram conducted a well-known experiment in which letters were to be delivered
between strangers in different regions of the United States. Each participant was
asked to forward the letter to a close acquaintance who he or she thought was
more likely to have a connection with the target. The letters that reached the
target had changed hands only about five to six times. Watts later investigated
the small-world hypothesis further, e.g. in [Wat04; WS98], and also studied the
properties of other real-world networks that are often highly clustered but have
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small characteristic path lengths. Since the constructed small-world networks should
reflect the properties of real-world networks, the goal was to interpolate between
regular and random networks to achieve both high clustering and small characteristic
path lengths. Examples of such small-world networks include the neural network
of the worm Caenorhabditis elegans, the power grid of the western United States,
and the collaboration graph of movie actors [WS98]. Besides resembling real-world
networks, models of dynamical systems with small-world coupling also possess
properties, such as increased signal propagation speed, computational power, and
synchronizability. Small world networks can be highly clustered, such as regular
lattices, but still have small characteristic path lengths, such as random graphs.
Watts and Strogatz quantify the structural properties of the graphs by

• the characteristic path length L(p): measures the typical separation between
two vertices in the graph (a global property)

• the clustering coefficient C(p): measures the cliquishness of a typical neigh-
bourhood (a local property).

Since small world networks are intended to combine the properties of regular and
fully random networks, they are also generated by a combination of these. For
a graph with n vertices, a ring lattice with k edges per vertex is generated first.
Thereon, each edge is rewired with probability p. Thus, by the two parameters k

and p it is possible to control at which level the structural properties L(p) and C(p)
emerge. A graph with sufficiently large k (n≫ k ≫ ln(n)≫ 1) and p = 0 will be a
regular lattice which is a highly clustered and L(p) grows linearly with n. If p = 1
the graph will be a random network which is a poorly clustered small world where
L(p) grows only logarithmically with n.

In the present work, the Watts-Strogatz small-world graph was slightly adapted.
Before the rewiring step, a subset of edges forming a ring topology is selected as non-
removable edges. This design decision was made with runtime topology adaptation
in mind (see next section). The reasoning behind this is as follows: In order for
a distributed optimization heuristic to work, the CT must be interconnected. The
topology type with the fewest edges that satisfies this criterion is the path graph.
The ring topology possesses only one more edge, but showed much better results
than the path graph in preliminary work [HN20]. Therefore, the ring topology is set
as the minimum layout.

Figure 5.3 shows example topologies that were generated by the adapted approach.
For the two extreme cases, the ring topology and the fully connected graph, p has
no effect. The other graphs show various examples of the graphs generated by the
interplay of k and p, resulting in different characteristic path lengths and clustering
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(a) k = 2 leads to a ring topology, while p has no
effect

k: 2 
L(p): 2.78    C(p): 0.0

(b) k = n, leads to a fully meshed topology, while
p has no effect

k: 10 
L(p): 1.0    C(p): 1.0

(c) regular ring lattice with k = 4 and no
rewiring

k: 4                   p: 0.0 
L(p): 1.67    C(p): 0.5

(d) ring lattice from (c) after rewiring with p =
0.7

k: 4                   p: 0.7 
L(p): 1.58    C(p): 0.39

(e) regular ring lattice with k = 6 and no
rewiring

k: 6                   p: 0.0 
L(p): 1.33    C(p): 0.6

(f) ring lattice from (e) after rewiring with p =
0.7

k: 6                   p: 0.7 
L(p): 1.33    C(p): 0.66

Fig. 5.3.: Examples of the modified Watts–Strogatz small-world graph for 10 nodes display-
ing the effects of different values for k and p
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coefficients. This illustrates that using only the two parameters k and p, a wide
variety of topologies, from rings to fully meshed graphs, can be generated. At the
same time, despite the rewiring by p, the number of edges remains the same (unlike
other small world graph generation methods like the Newman–Watts–Strogatz small-
world graph [NW99]) and makes this property easily controllable, which is necessary
for the adaptation strategies in the next section. Thus, the adapted Watts-Strogatz
small-world graphs provide an appropriate and easy-to-parameterize model for
generating a wide range of (initial) topologies.

5.2.2 Adaptation strategies

Many metaheuristics adjust parameters at runtime (parameter control) to allow a
transition from exploration to exploitation [EHM99; ČLM13]. An example of this
is the adjustment of the temperature parameter T for simulated annealing (SA)
[BR03]. SA is a trajectory-based metaheuristic and is based on the annealing process
of metals and glass. At each iteration a solution from the current neighborhood is
randomly chosen. If the fitness of this new sample is better than the existing one,
it is accepted as the new solution. If the fitness is worse, the new sample is still
accepted with a probability that depends on the difference between the fitness values
and the temperature parameter. The algorithm starts with a high temperature. This
leads to an increased probability of selecting inferior solutions and thus to an erratic
exploration of the search space. Over time, the temperature cools down continuously,
resulting in a transition to exploitative behavior [BR03].

As discussed, the CT for cooperative search heuristics also influences the degree
of exploration and exploitation. Therefore, the CT can be adapted during runtime
to achieve the desired transition. However, due to the domain decomposition,
a topology has different effects on the local optimization of one agent and the
collaborative global optimization of all agents. Therefore, it is difficult to assess in
advance which type of adaptation is beneficial for a specific problem. Figure 5.4
illustrates the adaptation process from the global and local point of view.

Analogous to the cooling process in SA, a high temperature may correspond to a
strongly or sparsely meshed topology, while a low temperature corresponds to the
respective counterpart. The shift from exploration to exploitation could thus be
approached either from the perspective of individual agents or from that of the entire
multi-agent system. The former means starting with a highly meshed topology for
an initial exploration phase and then moving to exploitative behavior by removing
edges. The second involves starting with a sparsely meshed topology for the initial
exploration phase and proceeding to exploitative behavior by adding edges. The
inclusion and variable weighting of the performance dimensions leads to a further
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Global Search Space

Local Sub-Search Space Variants

Exploitation
(Intensification)

Exploration
(Diversification)

Exploration
(Diversification)

Exploitation
(Intensification)

Fig. 5.4.: Dynamic topology adaptation from the perspective of global optimization involv-
ing all agents and from the perspective of individual agents. Individual agents
explore or exploit the space of their own subsearch space variants resp. the space
of different variants of their coupled and dynamic fitness landscapes.

differentiation of which adaptation is most beneficial under which circumstances. In
addition, for some combinations of problem characteristics and heuristics, topology
adaptation is not necessary, since it only adds unnecessary complexity. Hence, the
presented approach implements different modes that either omit adaptation or frame
the topology adaptation by removing or adding edges.

These modes include:

• static: no adaptation is performed and the initial topology is used throughout
the optimization process

• decrease: starts with a rather strongly meshed topology, transitions to small
world intermediate stages by removing edges, and ends with a ring to exploit
the most promising regions in the solution space

• increase: starts with a rather weakly meshed topology, transitions over small
world intermediate stages by adding edges, and ends with a complete graph

The modes decrease and increase are both a form of deterministic parameter control,
as the value of a parameter, i.e. the number of edges, is modified by a deterministic
policy without regard to the current state of the search.

If topology adaptation is performed, the general procedure is inspired by the cooling
process in SA. To model the cooling process, SA uses a so-called cooling schedule to
determine the temperature at different stages of the algorithm. Similarly, a topology
schedule is used that specifies the number of edges in the CT for different stages of
the distributed algorithm. A cooling schedule for SA is determined by

• the initialization parameter: the initial temperature T0

• the cooling, i.e. the adaptation: the rate at which the temperature decreases,
respectively the temperature steps in the schedule
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• the equilibrium state: the criterion that controls when the transition to the
next temperature level occurs

Exactly these aspects must also be determined for the topology schedule, whereby the
special requirements of the different modes must also be taken into account. These
aspects will therefore be discussed in more detail below.

Initialization parameter: The initialization parameter for the topology schedule
are the number of edges in the initial topology G0 = (V, E0). The initial topology
must therefore be chosen appropriately for the mode, i.e. strongly meshed for
decrease and weakly meshed for increase. The initial number of edges |E0| thus
lies in the range between a complete graph |E0| = n·(n−1)

2 and a ring topology
|E0| = n.

Adaptation: There are several approaches to modeling cooling process of SA
in the literature. Geometric functions are particularly popular to model cooling,
whereas logarithmic functions are considered too slow for practical application,
although they theoretically converge to a global optimum [Tal09]. Considering that
the initial number of edges is much smaller than usual starting temperatures, a
slower reduction, respectively increase, seems appropriate. A combination of linear,
geometric and logarithmic reduction functions was chosen. The equations 5.1 and
5.2 display the functions that determine the number of edges δ at each schedule step
for the modes decrease, and increase:

decrease : δi+1 = |Ei| −
|E0|

ln(i + 2) · α, with α ∈ ]0, 1] (5.1)

increase : δi+1 = |Ei|+
|E0|

ln(i + 2) · α, with α ∈ ]0, 1] (5.2)

The index i represents the index of the step in the topology schedule. δi determines
the number of edges that should be part of the graph Gi in step i.2 Hence, upon
transition to the next schedule step, a new CT graph is constructed such that

Gi+1 = (V, Ei+1), with |Ei+1| = δi+1 (5.3)

The parameter α controls how many steps the topology schedule includes. If it is
close to 0, only a few edges are removed or added in each step, leading to a slow
change in connectivity. If it is equal to 1, the number of edges is reduced or increased
in large steps, resulting in a rapid shift in connectivity. The edges to be removed
or added, are selected randomly. In the decrease mode, the final ring topology is
preserved.

2Note that when calculating the schedule steps, an offset of 2 is added for the calculation of ln(i) to
prevent division by undefined values or 0
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The figures 5.5 and 5.6 show schedules for the two adaptive modes, which are
based on the same initial topology and use the same α. The initial topology for
n = 100 was constructed with k = 50, thus leading to an initial number of edges
of |E0| = n·k

2 = 2500. The two schedules for the decrease and increase mode are
processed from left to right during optimization. The figures 5.5 and 5.6 also show
the impact of the parameter α on the granularity of the schedules. Depending on n

and k, a maximum α can be calculated where the schedule consists of only a single
step. This is the case, for example, when more edges are to be removed in the first
step than can be removed, i.e. δ1 = |E0| − |E0|

ln(2) · α ≤ n. This is the case when
α ≥ ln(2) · (1 − 2

k ). Therefore the maximum α for n = 100 when starting from a
complete graph is about 0.68. Thus, the chosen value of α = 0.5 still shows coarse-
grained steps, while the smaller value of α = 0.1 yields a much more fine-grained
resolution.
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Fig. 5.5.: Exemplary topology schedules for n = 100 displaying the three modes. Both start
from the same initial topology with k = 50 and thus |E0| = 2500. Both use the
same α = 0.1

equilibrium state: The equilibrium state aka. the transition criterion defines
when a transition from one schedule step to the next occurs. Common conditions for
a temperature adaptation in SA are counting of iterations, acceptances, rejections or
a combination of these [Tal09]. For the topology schedule in the decrease and increase
mode, a simple approach is used, where the number of local searches (equivalent to
the number of iterations) since the last transition is counted. As soon as this number
becomes larger than n, the topology is adjusted. This rapid transition was chosen
since it showed the best results in preliminary experiments.
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Fig. 5.6.: Exemplary topology schedules for n = 100 displaying the three modes. Both start
from the same initial topology with k = 50 and thus |E0| = 2500. Both use the
same α = 0.5

The next section is intended to give an impression of the impact that different
topology adaptation strategies can have on the performance of the optimization
heuristics, before the more detailed evaluation in part IV.

5.3 Observed effects of topology variants

The claim of hypothesis 1 is that the presented topology variants, consisting of
the initial topology and the adaptation strategy, lead to a different information
dissemination in the course of the distributed optimization process. This informa-
tion dissemination affects the performance dimensions, i.e., the solution quality,
the required runtime, and the communication overhead. In this section, a brief
preliminary study is conducted to support this claim with examples, before it is
evaluated in part IV in combination with the results of the distributed FLA. For this
purpose, several optimization runs were performed with COHDA and IDICE. For
comparison, each optimization for each problem instance was performed with the
topology variants presented in table 5.1. In the spectrum of possible variants that
emerges from the presented methodology for creating the initial topology and its
adaptation, the selected variants represent extreme points that differ greatly from
each other. The variant static equals a moderately meshed small world topology and
serves as reference. Both variants with mode decrease start from a complete graph,
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but decrease connectivity at different rates. The same holds for the two variants
with the mode increase, which proceed from a ring topology.

Topology
Variant

Initial Topology Topology Adaptation

k p mode α

static 24 0.5 static -

decrease slowly 50 0.5 decrease 0.05

decrease fast 50 0.5 decrease 0.7

increase slowly 2 0.5 increase 0.05

increase fast 2 0.5 increase 0.7
Tab. 5.1.: Employed topology variants for 100-D benchmark problems

Moreover, Drop Wave and Sargan were chosen as the basis for the problem instances.
The global structure of the two basis functions is very different, e.g., multi-funnel vs.
single-funnel shape, which results in composite spaces based on Drop Wave being very
heterogeneous, while composite spaces based on Sargan are rather homogeneous.
The first three composite spaces of both functions were used. The optimization
runs were performed for each problem instance with each topology variant with 3
different random seeds each for the topology variant and the optimization, i.e. 9
times in total with the same setting.

Figure 5.7 and fig. 5.8 show the results for several performance dimensions for
COHDA and IDICE. All results were jointly normalized by min-max scaling. The
results for the Drop Wave-based composite spaces for COHDA in fig. 5.7a show
that the increase slowly variant outperforms the others in terms of solution quality.
However, this comes at the cost of computational time and effort, as well as a
higher communication overhead. Thus, depending on the weight of the performance
dimensions, the increase slowly or increase fast variant would be preferred. The
results for the Sargan-based composite spaces in fig. 5.7b display a different picture.
The two variants that scored best in terms of solution quality for Drop Wave perform
worst in this case. The two decrease variants and the static one perform similarly
well in terms of solution quality. Considering the other performance dimensions, the
static topology would be preferable here.

The results for IDICE in fig. 5.8 show different effects of the topology variants. For
the Drop Wave-based problem instances in fig. 5.8a, the two variants with the mode
increase likewise perform best with respect to the solution quality. With IDICE,
however, these variants also have an advantage regarding the other two performance
dimensions. In addition, the increase fast variant is slightly better in terms of solution
quality, whereas in COHDA the slow increase performed significantly better. For
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(a) Drop Wave

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

static increase slowly increase fast decrease slowly decrease fast
0

0.2

0.4

0.6

0.8

1

cohda - dropwave
normalized error

normalized number of search executions

normalized number of messages

(b) Sargan

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

static increase slowly increase fast decrease slowly decrease fast
0

0.2

0.4

0.6

0.8

1

cohda - sargan
normalized error

normalized number of search executions

normalized number of messages

Fig. 5.7.: Results for optimization runs with COHDA
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Fig. 5.8.: Results for optimization runs with IDICE
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the Sargan-based problem instances in fig. 5.8b, optimization with IDICE leads
to excellent solution quality with all topology variants. Since the variants are
equivalent concerning the solution quality, either increase fast or increase slowly
would be preferred, depending on whether the computation time or the number of
messages are weighted more strongly.

These examples show on the one hand that the topology variants influence the
course of the optimization and thus also affect the performance dimensions. On
the other hand, it becomes clear that the choice of a suitable, or preferably the
best, topology variant must be made with respect to both - the applied heuristic
and the problem at hand. The following chapter therefore investigates whether
systematic relationships exist between the properties of optimization problems -
quantified by Fitness Landscape Analysis (FLA) - and the effect of topology variants
on performance dimensions. The goal is to learn these relationships and thus be
able to make an optimized topology variant selection for new problems.
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Part IV

Learning Optimal Topology Variants

This part of the thesis is dedicated to the investigation of the causal relationship,
postulated in research hypothesis 3, between the properties of distributed optimiza-
tion problems and the effects of the CTVs. The hypothesis should be strengthened
by training machine learning models that allow selecting an appropriate topology
variant for a given problem instance and a given prioritization of performance dimen-
sions. Therefore, chapter 6 first examines the relevance of FLA and CTparameters for
predicting performance dimensions. Then, a machine learning model is trained to
learn the hypothesized causal relationship. The predictive capabilities of the model
and its ability to select the CTV for a given problem are examined. This will also
serve to evaluate the two artifacts obtained from the investigation of the research
questions 1 and 2, i.e. the modeling of the topology variants and the distributed
fitness landscape analysis.





6Topology variant optimization
(ToVarO)

The Topology Variant Optimization (ToVarO) is the process of determining the best
topology variant(s) based on the distributed fitness landscape metrics and a given
prioritization of performance dimensions. The development objective of this thesis
was stated in section 1.4. In the presented system architecture, the behavior of the
productive system, i.e. the optimization heuristic, is monitored and, if necessary,
subject to control intervention by a controller/observer structure following the
paradigm of controlled self-organization from organic computing. ToVarO belongs
to the tasks of the controller, which can select the initial topology and also modify it
at runtime based on observed information. Figure 6.1 shows the system architecture
for the development objective as presented in section 1.4.
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Fig. 6.1.: Development Objective a presented in section 1.4: given an optimization problem,
an optimization heuristic, and a prioritization of performance dimensions as
premise, the agents first perform a distributed FLA for their decomposed search
spaces, based on which the controller can select an initial CT and later adjust the
topology at runtime if necessary (ToVarO). This serves to improve the performance
of the algorithm in a problem-specific way.
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Of course, this problem-specific selection is only possible if the three hypotheses
postulated in section 1.3.3 hold, i.e.

1. The topology variants have an effect on the performance of the optimization
heuristics in the performance dimensions (as exemplified in section 5.3).

2. The distributed fitness landscape analysis can determine meaningful features
that can serve as a basis for parameter tuning and control (preliminary investi-
gation by comparison with centrally calculated metrics in appendix B.1 and
correlation analysis in section 3.7).

3. There is a relationship between the problem characteristics and the effects of
the topology variants.

The full-length hypothesis 3 states:

Hypothesis 3
There is a causal relationship between the characteristics of the distributed optimization
problems and the effects of the communication topology variants. Thus, the commu-
nication topology variant of a distributed optimization heuristic can be selected in a
problem-dependent manner to increase the optimization performance according to a
predefined prioritization of performance dimensions based on a set of distributedly
computed fitness landscape metrics.

The goal of the topology variant optimization (ToVarO) is to combine these three
aspects of the three hypotheses by developing a machine learning model that can
determine a suitable and, in the best case, optimal topology variant for a problem
instance based on the distributedly computed FLA metrics. If successful, this will
further support the idea that the distributed FLA metrics contain sufficient infor-
mation to be used for parameter tuning, and that the effect of topology variants is
problem specific and can be used to systematically improve algorithm performance.
The question of how machine learning models can be used for this purpose is the
subject of the third research question:

Research Question 3

How can machine learning models be used to show the causal relationship
between the characteristics of distributed optimization problems and the impact of
communication topology variants, thus enabling the problem-specific selection of
communication topology variants?

The following qualities of a Machine Learning (ML) model can corroborate this
relationship:
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• Good prediction results: This means that the model has learned patterns that
allow it to predict output parameters based on input parameters with low error
rates.

• Visible differences between different problem instances and CTVs: If a
model shows clear and comprehensible differences between different topolo-
gies for different problem instances, then this confirms that different CTVs
have different effects depending on the problem characteristics. Furthermore,
it shows that the model can distinguish the problem instances using the FLA
metrics and thus affirms the suitability of the FLA metrics for problem-specific
parameter optimization.

Optimally, such a ML model would take the metrics of the fitness landscape analysis
as input and return the best variant of the CT as output. Such an approach was
taken in previous publications [HN21b; HN21a]. In both works, optimization runs
for global optimization on continuous benchmark functions were performed with
COHDA, once on the full problem domain [HN21b] and once on composite spaces
constructed in the same way as presented in this thesis [HN21a]. The optimization
runs were performed using several variants of static exchange topologies, such as
path graph, ring topology, 2-D lattice topologies, small world, and fully connected
graphs. In [HN21b] a reduced version of the decrease topology variant was also
employed. Several runs were performed for each problem instance with each
configuration, and the best CT was selected either by solution quality alone or by
a combined consideration of solution quality and execution time. Decision trees
were trained based on fitness landscape metrics computed in a centralized [HN21b]
or distributed manner [HN21a] to select an appropriate topology based on the
problem characteristics. In both works, a correlation was found between certain
FLA metrics and the degree of connectivity of the best-fit topologies (with accuracies
of the trained models ranging from 74% to 88%). However, only a few topologies
were used in these works, and their properties varied considerably. The extended
design of CTVs as presented in this thesis has increased the complexity of the learning
problem. Instead of a few very different static topology variants (and simple dynamic
approaches), there are now a large number of topology variants with different initial
conditions and different behavior at runtime. Also, more problem instances are
considered, which improves the data base and facilitates other learning methods.

In the following section 6.1, the experimental setup is presented. Section 6.2
analyzes the relevance of FLA metrics and CTVs for predicting performance metrics.
The predictive power of the ML models used is then examined in section 6.3. This
includes evaluating a targeted selection of topology variants based on the predictions
and analyzing the impact of noise on system performance.
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6.1 Experimental setup

The details of the experimental setup for the evaluation of the concepts developed
in the previous parts are presented below. Section 6.1.1 provides an overview of the
problem instances, the FLA metrics, and the parameter settings of the optimization
heuristics, including the CTVs. In addition, section 6.1.2 presents the metrics used
to quantify the performance dimensions. The challenges of labeling the resulting
experimental data are then discussed in section section 6.1.3.

6.1.1 Problem instances, FLA metrics, and optimization
parameters

To investigate the hypothesized causal relationship between the properties of opti-
mization problems and the effects of CTVs, 20 composite spaces were created based
on each of the 23 benchmark functions presented in appendix A.1. Thus, 460 differ-
ent problem instances are considered. The objective functions are 100-dimensional
and each agent is responsible for 2 decision variables. This system size was chosen
because preliminary studies showed that the effects of the CT increase with system
size. In 10D experiments, only minor effects were observed, while in 100D they
were much more pronounced. At the same time, the experiments can still be run in
an acceptable time with this system size and the available hardware. All problems
are minimization problems.

For each problem instance, the distributed fitness landscape analysis was conducted.
One representative from each of the clusters determined by the correlation analysis in
section 3.7 was selected as the basis for further computations, reducing the number
of FLA metrics from 26 to 15. Table 6.1 shows the clusters from table 3.2 and the
associated representatives. Since an arbitrary metric may be selected, the top metric
has been chosen in each case.

Optimization runs were performed on all problem instances using COHDA and IDICE
with the different CTVs. The parameterizations described in appendix A.2 were
applied to the heuristics (config 2 for IDICE). Table 6.2 shows the configurations for
the topology variants. The setup is such that for the two adaptive modes decrease
and increase a low, medium and high value has been set for each parameter. For the
initial topology, k = 50 results in a fully meshed topology, while k = 2 results in a
ring topology. Thus, k = 24 produces a moderately meshed topology. In variants with
the decrease mode, edges are removed. Thus, only initial topologies with a sufficient
number of edges and thus edge removal potential are appropriate. The same is true
for the increase mode. In this mode, only initial topologies with sufficient potential
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size no. metrics remarks representative
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1 vcv

Coefficient of variation in variable sensi-
tivity

vcv

2 vinter Degree of variable interaction vinter

3 DM mean Dispersion metric mean DM mean

4 DM std Dispersion metric standard deviation DM std

5 F EMmacro std
Standard deviation of entropy based mea-
sure of ruggedness on macro scale

F EMmacro std

6 SEMmicro std
Standard deviation of entropy based mea-
sure of smoothness on micro scale

SEMmicro std

7 µ2(y) mean Fitness variance mean µ2(y) mean

8 µ2(y) std Fitness variance standard deviation µ2(y) std

2
fe

at
ur

e
cl

us
te

rs

9
F EMmicro mean Mean values over all subsearch spaces of

ruggedness and modality on micro scale
F EMmicro mean

P ICmicro mean

10
F EMmicro std Standard deviations over all subsearch

spaces of ruggedness and modality on
micro scale

F EMmicro std
P ICmicro std

11
SEMmacro mean Mean values over all subsearch spaces of

smoothness on macro and micro scale
SEMmacro mean

SEMmicro mean

12
SEMmacro std Standard deviations (as measure for

heterogeneity) of smoothness and
modality in macro scale

SEMmacro std
P ICmacro std

3
fe
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us
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rs 13

Gdev mean

Gradient based metrics involving
standard deviations

Gdev meanGavg std

Gdev std

14

F EMmacro mean
Mean values for ruggedness and
modality on macro scale combined with
average gradients

F EMmacro meanP ICmacro mean

Gavg mean

4
fe
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ur

e
cl

us
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r

15

µ2(||d||) mean

metrics concerning state distance and
variance

µ2(||d||) mean
µ2(||d||) std

µ(||d||) mean

µ(||d||) std

Tab. 6.1.: Clustered FLA metrics based on Spearman correlation coefficient and the chosen
representatives for each cluster
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for edge addition should be used. The static mode does not change the topology.
Here, all values for k are used that occur in the other two modes. Thus, for each
adaptive setup there is a static counterpart that runs with the same initial topology
parameters. The parameter p determines the number of edges that are rewired when
the initial topology is created. The topology largely resembles a regular lattice for
small values of p. With a large p, the topology corresponds more to a random graph.
For all 3 modes the same 3 values were tested, again one low, one medium and
one high. The parameter α is only relevant for the two adaptive modes. A value of
α = 0.7 is the largest reasonable value, since this results in a "one-step-schedule",
meaning a schedule that contains only one step from the initial topology to the
respective final state, i.e. the fully meshed or the ring topology (see section 5.2.2 for
the calculation). Depending on the mode and the value for k, the topology schedule
contains up to 1408 steps with α = 0.1.

parameters

mode static decrease increase

k

2 - 2

12 - 12

24 24 24

36 36 -

50 50 -

p

0.1 0.1 0.1

0.5 0.5 0.5

0.9 0.9 0.9

α

- 0.1 0.1

- 0.3 0.3

- 0.7 0.7
Tab. 6.2.: Setups for CTVs

With these setups, optimization runs with 53 different CTVs were performed for
each composite space (when starting with k = 2 or k = 50, the parameter p has
no effect and is therefore not varied). Two different seeds for random operations
were implemented, one responsible for all operations concerning the topology and
one relevant for the actual optimization. In each case, 3 seed values are used,
which translates to 9 optimization runs with different seed combinations for each
configuration. Thus, 477 optimization runs were performed per problem instance,
resulting in a total number of 219,420 runs for all problem instances. All numbers
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given here refer to each heuristic. Thus, 219,420 runs were performed for both
COHDA and IDICE, for a total of 438,840 runs1.

6.1.2 Measures for performance dimensions

The considered dimensions of algorithm performance are (as described in sec-
tion 5.1) the achieved solution quality, the required computational effort, and the
resulting communication overhead. In order to evaluate these three dimensions, the
appropriate data must be collected from the optimization runs:

• Solution quality: value of the objective function f(x) for the final x

• Communication overhead: total number of messages |M | sent by all agents
during the optimization run

• Computational effort: total number of local optimizations (decide steps) |SE|
of all agents during the optimization run

For the two heuristics, the local optimization effort and the number of messages
are very different. For instance, IDICE has larger message sizes. On the other
hand, a local optimization run is less costly than for COHDA, since only a few DE
iterations are performed, whereas COHDA performs a complete run of the local
SHGO optimizer. However, since the goal is not to compare the two heuristics,
but only the CTVs within the heuristics, these differences are not relevant for this
evaluation.

To allow comparability of performance on different problem instances, the metrics
are normalized per problem instance. This is achieved by applying min-max scaling
to the performance metrics for each problem instance, i.e., to the results for each
composite space. This scales the values to the range [0,1]. All three performance
dimensions favor smaller values, making 0 the optimum. In addition, before scaling,
outliers in solution quality, number of messages, and number of local searches are
detected using isolation forests [LTZ12] and then removed from the dataset2.

This approach makes it easier to see the differences between topology variants.
However, there is another important aspect that is lost when using this procedure.
For some problem instances, many or even all topology variants produce very good
results. In other words, compared to the total range of values, all found results are
very close to each other. This aspect is eliminated by the regular min-max scaling of
the results of the optimization runs. A second possibility for scaling, at least for the

1For COHDA, most of the optimization runs were even performed with 5 different seeds, i.e. 25
repetitions, but this could not be performed in all cases due to time constraints. Therefore, the data
set for COHDA actually contains 523,118 data points.

2implementation by [Ped+11]
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solution quality, is therefore to perform a maximization for each problem instance in
order to determine a new upper bound of the value range. This new upper bound can
then also be used for the min-max scaling. The thus calculated metric f(x)norm−max

displays the ratio of the value range obtained in the optimization runs to the total
value range.

Fig. 6.2.: Results for three different problem instances (columns) with different normaliza-
tion approaches (rows): f(x) represents the raw result after the optimization run,
f(x)norm is normalized with a min-max scaling based on the values obtained in
the optimization runs, and f(x)norm−max is normalized with a larger maximum
value determined by an additional maximization run.
In each figure, the CTVs are plotted along the x-axis (sorted by their label in the
form mode_k_p_α, e.g. decrease_24_0.1_0.1 on the far left and static_50_0_0 on
the far right).

For illustration purposes, fig. 6.2 shows the different normalization approaches using
three examples. The bottom row shows the raw result values of f(x) after the
optimization runs with COHDA. The columns show the results of the first composite
space based on Weierstrass, Drop Wave, and the Wavy function. The colors, shapes,
and sizes of the markers in the scatterplots represent the different CTVs, although
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this figure is intended to show only a general tendency. In the middle row, the results
for the three problem instances are normalized with regular min-max scaling. In the
top row they are scaled with the upper bound obtained by maximization.

The Weierstrass problem instance in the first column exemplifies problems wherein
CTVs differ in effect but yield fairly similar results relative to the total value range.
Considering the original value range of f(x) and the regular normalized value range
f(x)norm, it is noticeable that variants with large values for k ∈ 24, 36, 50 and the
mode decrease perform better on average. Values with f(x) ∈ [25.8682, 40.4535]
were obtained in the optimization runs. The maximization for this problem instance
resulted in f(x)max = 253.9390. Thus, compared to the known total range of
values [25.8682, 253.9390], the range of values ([25.8682, 40.45355]) found in the
optimization is only about 6.4 %. When normalized by f(x)max, f(x)norm−max is in
the range [0.0000, 0.064] with a mean of 0.0363.

The problem instance based on the Drop Wave in the middle column shows a
different picture. Here the original values lie in a seemingly small value range
f(x) ∈ [0.9925, 0.9955]. Both f(x) and f(x)norm show that especially variants with
k = 2 and the modes increase and static lead to better results. The upper bound found
by maximization was 0.999. Thus, the range of values obtained by optimization has
a share of about 45.59 % of the known total value range. This is noticeable by the
larger values at f(x)norm−max compared to Weierstrass 1. The mean value here is
0.3263. In combination, f(x)norm−max and f(x)norm show that the choice of CT is a
relevant design decision for this problem instance, and also indicate which choices
are likely to be advantageous.

As a last example, the third column shows a problem instance that is based on
the wavy function. Using f(x) and f(x)norm, we can see that the majority of all
optimization runs lead to the same local optimum. A few runs have achieved
better results, although there is no tendency for any particular CTV. The original
value range is similarly small as for Drop Wave 1: f(x) ∈ [0.4895, 0.4941]. The
maximization yielded an upper bound of 1.1956. The percentage of the range of
values occurring in the optimization to the total range of values is 0.66 %. The mean
at f(x)norm−max is correspondingly low at 0.0064. For this problem, the effect of
exchange topologies is relatively small. In addition, there is no clear preference for
any topology variant.

The presented examples illustrate that the two metrics f(x)norm and f(x)norm−max

emphasize two different aspects. The metric f(x)norm−max indicates the extent to
which topology variants influence the result. While the metric f(x)norm highlights
differences between variants.
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In the following, both metrics are used to evaluate the solution quality. Additionally,
the number of messages |M | is used to consider the communication overhead and
the number of local searches |SE| is used to consider the computational effort. Since
it is not possible to determine maximum values otherwise, both are normalized only
by the regular min-max scaling. Figure 6.3 shows all used performance parameters
for Weierstrass 1 and Drop Wave 1.

Fig. 6.3.: Examples of applied parameters for performance dimensions (rows) on two
problem instances (columns); In each figure, the CTVs are plotted along the x-axis
(sorted by their label in the form mode_k_p_α, e.g. decrease_24_0.1_0.1 on the
far left and static_50_0_0 on the far right).

As noted above, f(x)norm−max generally indicates a greater influence of the CTV for
Drop Wave 1 than for Weierstrass 1. However, for both problems a clear difference
between the variants can be seen in f(x)norm. For Weierstrass 1 the variants with
large k and the mode decrease perform well, but also some runs with static ring
topologies. For Drop Wave 1, on the other hand, variants with k = 2, i.e. also ring
topologies with the modes increase and static, are advantageous. In terms of the
computational effort |SE|norm, the variants with large k as well as the static ring
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topologies tend to perform poorly for both problem instances. For Weierstrass 1
these are exactly the configurations that also yielded the best solution quality. In
contrast, for Drop Wave 1, the configurations with mode increase and k = 2 show
both very low computational overhead and advantages in solution quality. Regarding
the communication overhead |M |norm, there are no clear differences between the
CTVs for both problem instances.

Considering these exemplary results, it becomes clear that choosing the best topology
variant for a problem instance is not trivial. For the example Drop Wave 1, the
choice might still be relatively clear, since runs with the mode increase and k = 2
perform well in all performance dimensions. For Weierstrass 1, the choice would be
much harder, since a tradeoff between different performance dimensions is needed.
Furthermore, random factors introduce variance into the results and make it hard to
make an unambiguous selection. The object of investigation in the following chapter
is therefore the problem of labeling, i.e. the presumed selection of the best topology
variant for each problem instance.

6.1.3 The labeling problem

As outlined above, in previous work [HN21b; HN21a], machine learning models
have been trained to predict the best CTV for optimization with COHDA based on a
set of FLA metrics. However, these works only compared different static topologies
and some simple dynamic approaches. Therefore, the performance differences were
usually large enough to clearly identify the best topology variant. In [HN21b],
supergroups of topology types (e.g. highly meshed) were manually assigned when
several topology types performed comparably well. Since then, the modeling of
topology variants has become much more sophisticated. Therefore, it is likely that
similar variants, e.g., those that differ by only one parameter, will perform similarly.
A "winner-takes-all" labeling, i.e., considering only one topology as the best for a
problem instance and using it as a label, is not appropriate. Consider two similar
problem instances, i.e., with similar characteristics of the FLA metrics. It is likely
that topology variants that perform well on one problem instance will also perform
well on the other problem instance. However, the same variant may not perform
best on both problem instances.

Figure 6.4 shows an example of such a case. The top two rows show the results
for f(x)norm for the 53 different CTVs for the two problem instances Weierstrass 1
and Weierstrass 17 as box plots. The CTVs are encoded on the x-axis in the form
mode_k_p_α. The bottom row shows the values for the 15 Fitness Landscape metrics
for the two problem instances. From the FLA metrics, it is easy to see that the two
problem instances are very similar. Looking at the box plots, we see that for both
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Fig. 6.4.: Comparison of the performance in terms of solution quality of all CTVs for two sim-
ilar problem instances. Topology variants are encoded in the form mode_k_p_α.
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problem instances, the topology variants with the mode decrease and α ∈ [0.3, 0.7] as
well as the static ring topology (static_2_0.0_0.0) perform well. The best run with
respect to the mean value of f(x)norm is marked with a green star. If only these
variants were set as the label for the best topology variant with respect to f(x)norm

for the given problem instance, all other variants that also performed very well
would be ignored.

Such a labeling approach would be a poor basis for ML models (such as the decision
trees used in [HN21b; HN21a]), since the labels are independent classes and the
models cannot generalize or interconnect them. In the example shown, manual
labeling and thus defining and assigning superclasses for groups of topology variants
would be an option. Clustering algorithms could potentially be used for this purpose.
However, since it would still require human control, such an approach is not practical.
Furthermore, the selection of the appropriate topology variant shouldn’t be based
solely on the solution quality. Other performance dimensions should also be taken
into account with varying priorities. A weighted sum (as in [HN21a]) can be used
for this purpose. However, this would require re-labeling and training a new ML
model for each new weight distribution.

Given these challenges, an alternative approach seems more reasonable. Instead of
using a CTV as a label and trying to learn the best variant for a given prioritization
of performance dimensions, we add the topology variant parameters as input to the
ML model and aim to learn the performance metrics.

Fig. 6.5.: General structure of the ML model that will serve as the core of ToVarO. The
FLA metrics and the CTV parameters are used as input, while the values of the
performance metrics are predicted. A separate model for each performance metric
or a combined model for all metrics can be trained.

6.1 Experimental setup 131



In other words, the model receives as input the FLA metrics, i.e., the problem
characteristics, and the topology variant parameters, i.e., mode, k, p, and α. The
model then has to learn how to predict the performance of the optimization heuristic
based on the characterization of the problem and a given topology variant. Figure 6.5
illustrates this general structure. This implies that for the envisaged automatic
selection of topology variants by the controller, the trained model must be executed
once for each topology variant in question. Since running trained models is fast
and not computationally demanding, this should not be an issue. On the other
hand, many of the above problems are solved. It is no longer necessary to select a
single topology variant as a label. Thus, good results of other variants are no longer
neglected. Furthermore, the predicted values for the performance parameters can be
arbitrarily combined. Thus, at most one model per performance dimension is needed
instead of one model per different prioritization of the performance dimensions.

After presenting the experimental setup and the basics of the envisioned ML model
setting, the next step is to investigate the effects of the intended input factors on the
performance dimensions. This serves to consolidate or adapt the input-output setup
on a solid information base and thus to start the training with a suitable model.

6.2 Evaluation of feature importance

The importance of features reflects their relevance to the prediction of the target
values. It can be used to gain insight into the data itself or into a trained model. In
this thesis, the analysis of the feature importance is the first step in the investigation
of the experimental results. This serves as an initial exploration of the relationship
between the selected input and output parameters, as well as the first examination
of the influence of the parameters of the CTVs.

A number of different techniques can be used to explore the importance of features.
First, section 6.2.1 examines the general suitability of the feature set for predicting
the performance metrics. The focus then shifts to the effects of individual features. In
section section 6.2.2, the model-independent technique of correlation analysis is used
for this purpose. Finally, in section 6.2.3, the permutation importance is analyzed.
The effect of a features can be examined in combination with its interactions with
other features, although this is model-dependent. Furthermore, the combined effect
of features can also be analyzed, which is particularly interesting for the parameters
of the CTVs.
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6.2.1 Coefficients of determination

In statistics, the coefficient of determination (R2) is a metric that can be used to
assess the quality of the fit of a regression. In a regression model, it represents the
proportion of the variance in the output variable that can be predicted using only
the input variables, i.e., how well the output can be predicted based on the input.
The error between the predicted targets ŷ and actual target values y is calculated
and compared to the error that would result from a continuous prediction of the
average target value [Ped+11]:

R2(y, ŷ) = 1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

where ȳ = 1
n

∑n
i=1 yi.

The best possible score is 1.0, which would indicate perfect prediction. A R2 score
of 0.0 would indicate that the prediction is as good as always predicting the mean
ȳ, and a negative score is worse than always predicting ȳ. In this section, the R2

score is used to investigate the general suitability of the setup of input and output
variables presented in fig. 6.5. For each performance metric and both optimization
heuristics, 50 different splits between training (70 %) and test data (30%) were
performed and a decision tree regressor3 subsequently trained. An equal distribution
of problem instances was ensured when dividing the data into training and test
data. The figures 6.6 and 6.7 show the resulting R2 scores on the training and test
data. Here, fig. 6.6 shows the scores for the two metrics of solution quality, once for
COHDA (fig. 6.6a) and once for IDICE (fig. 6.6a). As expected, the scores are higher
for the training data. For f(x)norm and COHDA, the scores range from 0.852 to 0.854
for the training data and from 0.829 to 0.835 for the test data. For f(x)norm−max

the values are even higher, ranging from 0.9878 to 0.9887 for the training data and
from 0.985 to 0.988 for the test data. The higher scores for f(x)norm−max can be
explained by the fact that the values, although scaled to the range between [0, 1],
tend to be very small, but include a few prominent exceptions. The mean of the
training and test data is about 0.068 for f(x)norm−max, while it is about 0.34 for
f(x)norm. Thus, the prediction significantly outperforms ȳ if a model is able to
distinguish between the problem instances that have very small values and the few
that have much larger values, presumably using the FLA metrics. Figure 6.6 shows
a similar picture for IDICE, but the scores, especially for f(x)norm are considerably
lower, ranging from 0.661 to 0.673 for the test data. In general, both the mean and
the standard deviation for both metrics are smaller in the optimization runs with
IDICE, even though the problem instances and CTVs are the same. Accordingly,
IDICE seems to have less variance in solution quality. The results for both heuristics

3Implementation by [Ped+11]
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were normalized separately to examine differences between the CTVs within the
heuristics, not differences between the two heuristics. Therefore, no conclusion can
be drawn as to whether the results of IDICE are worse or better on average (although
joint normalization shows that IDICE runs are better on average). However, they are
comparatively consistent, and therefore the coupling between the variance of the
input and output data seems to be lower with IDICE.

(a) R2 for COHDA

(b) R2 for IDICE

Fig. 6.6.: Determination coefficients (R2): proportion of the variation of f(x)norm and
f(x)norm−max that is predictable from FLA metrics and CT parameters according
to 50 trained decision tree regressors

Figure 6.7 shows the results for both heuristics for the |SE|norm and |M |norm. For
COHDA and |SE|norm, the R2 score is about 0.83 on the training data and 0.79 on
the test data. For |M |norm the score is about 0.81 on the training data and about
0.77 on the test data. These results all indicate reasonable accuracy of the trained
models, but still a significant amount of variance in the performance metrics that the
models could not predict based on the input parameters. Interestingly, the scores
for IDICE and |M |norm are much higher, always above 0.98. This indicates that
the number of messages exchanged in IDICE is closely related to one or more of
the input parameters. For |SE|norm, however, predicting IDICE seems to be more
difficult. The R2 value on the test data is only about 0.6.
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Overall, the R2 scores show promising results. They indicate that for both optimiza-
tion heuristics, at least a large portion of the variance in the performance metrics can
be easily predicted with simple models, such as decision tree regressors, based solely
on the FLA metrics and the parameters of the CTVs. As a whole, the feature set is
generally appropriate. The next steps focus on individual features. This allows you
to gain insight into the impact of each of these features, as well as identify features
that may be unnecessary or misleading.

(a) R2 for COHDA

(b) R2 for IDICE

Fig. 6.7.: Determination coefficient (R2): proportion of the variation of |SE|norm and
|M |norm that is predictable from FLA metrics and CT parameters according to 50
trained decision tree regressor

6.2.2 Correlation Analysis

The correlation of individual features with performance metrics can provide an
indication of how relevant they are for predicting these performance metrics regard-
less of a specific model. Spearman’s rank correlation coefficient is a nonparametric
measure of rank correlation, assessing how well a monotonic function describes
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the relationship between two variables. The correlation is 1 for maximum positive
correlation, -1 for maximum negative correlation, and 0 for no correlation.

The full dataset for COHDA or IDICE was used to compute the coefficients (after
removing the top 1% combined outliers for the performance metrics). For each
CTV, the mean value of the respective performance metric was calculated for each
problem instance. Then, for each topology variant across all problem instances, the
correlation coefficients per FLA metric were calculated. Thus, the data series used for
the correlation analysis each had 460 data points (number of problem instances).

Several guiding questions are of particular relevance in the following discussion of
the results, which were visualized in the form of heat maps:

1. General impression: What is the value range of the correlation coefficients?
Are the correlation values of the FLA feature fairly similar or are there large
differences?

2. FLA correlation values: Which FLA metrics show the highest correlation
and which the lowest? Is the direction of the correlation consistent with
expectations for FLA metrics?

3. Effect of CTVs: Does the correlation vary depending on the variant of the CT
that was used? If so, is there a trend with respect to certain parameters of the
topology variants?

Solution quality

Figure 6.8 shows the results for the performance metric f(x)norm for COHDA
(fig. 6.8a) and IDICE (fig. 6.8b). The heat map plots the correlation coefficients
for each FLA metric with f(x)norm for each CTV. For each FLA metric, the average
across all topology variants is shown at the top of the column. Note that these FLA
metrics are representatives for their metric cluster as defined in table 6.1.

The general impression is: Most metrics show a low or moderate correlation. For
COHDA, it is not above or below 0.4 and -0.4, respectively. For IDICE, the values
range from -0.59 to 0.70. The correlation values are also higher on average, for
IDICE. However, there are a few metrics that show a relatively small negative
correlation for IDICE, while showing a (very) small positive correlation for COHDA.
These are mainly µ2(y)mean, µ2(y)std, and SEMmicrostd

. These metrics relate to the
mean and standard deviation of the fitness variance and the heterogeneity across all
subsearch spaces in terms of smoothness at micro scale. They are likely to have little
significance for predicting f(x)norm.
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(a) Spearman coefficients with f(x)norm for COHDA

(b) Spearman coefficients with f(x)norm for IDICE

Fig. 6.8.: Spearman correlation coefficients for the FLA metrics with f(x)norm computed
separately for each CTV and across all problem instances.
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In the appendix, the FLA metrics with the highest positive and negative correlations
are considered in more detail (see tables C.2 and C.1). The positive correlation of
DMmean and FEMmacromean is consistent with expectations, as it indicates increased
difficulty for optimization problems with multi-funnel shapes, higher ruggedness,
modality, and average gradients. Interestingly, IDICE also indicates increased diffi-
culty of optimization problems related to heterogeneity of subsearch spaces in terms
of smoothness and global landscape structure.

The correlation coefficients are quite similar for most CTVs. However, many metrics
show discrepant values for the static ring topology (static_2_0_0), especially for
IDICE, but also for COHDA. Often the correlation coefficients are much lower than for
the other topologies. For some, the direction of the correlation is even reversed. Thus,
this topology seems to reduce the correlation between the problem characteristics
and the f(x)norm.

Figure 6.9 shows the results for the performance metric f(x)norm−max for COHDA
(fig. 6.9a) and IDICE (fig. 6.9b). Compared to f(x)norm, the patterns of the two
heuristics are more similar. Again, there is generally a moderate or low correlation of
up to -0.53 and 0.55 for IDICE and -0.35 and 0.37 for COHDA. The FLA metrics with
the highest positive and negative correlations are the same as for f(x)norm. Among
the top metrics with negative correlation, only FEMmicrostd

is added. Thus, lower
solution quality f(x)norm−max is correlated with lower heterogeneity in terms of
ruggedness and modality on micro scale. Likewise, higher solution quality correlates
with higher heterogeneity. The differences between the CTVs are very small. Again,
the static ring topology (static_2_0_0) shows slightly different results, but the
deviation is much smaller than for f(x)norm. In general, the differences between the
topologies are marginal.

Computational effort

Figure 6.10 shows the results for the performance metric |SE|norm for COHDA
(fig. 6.10a) and IDICE (fig. 6.10b). Again, there is a moderate or low correlation
between -0.53 and 0.41. This performance metric shows clear differences between
the CTVs. Furthermore, the results for the two heuristics are completely different. It
is not surprising that there are few parallels here, since the metric |SE|norm measures
the computational effort in terms of local search executions in the decide step of the
heuristics, and these are processed and embedded differently in the heuristics.

For both heuristics, the topology variants with the mode decrease have the highest
correlation coefficients for the FLA metrics. A possible explanation could be: In this
mode, there is initially quite high exchange between the agents, but after a while the
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(a) Spearman coefficients with f(x)norm−max for COHDA

(b) Spearman coefficients with f(x)norm−max for IDICE

Fig. 6.9.: Spearman correlation coefficients for the FLA metrics with f(x)norm−max com-
puted separately for each CTV and across all problem instances.
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topology transforms into a ring. From the perspective of the individual agents, they
then enter an exploitation phase in which they receive little input from other agents
and thus only investigate slightly different variants of their own search space (cf.
fig. 5.4). Accordingly, properties of the fitness landscape that speed up or slow down
the search could have a stronger effect, since in the first case the agents quickly find
a favorable region of the overall search space, exploit it individually, and terminate
quickly. In the case of unfavorable properties, however, the search can take a very
long time, since small improvements need a long time to propagate throughout
the system when communicating over a ring topology. It is also noteworthy that
several FLA metrics are correlated with opposite signs for COHDA and IDICE (e.g.,
vcv, µ2(||d||)mean, FEMmacromean). This is probably due to the peculiarities of the
two heuristics.

For |SE|norm, we can summarize that different FLA metrics have a moderate or low
positive or negative impact on the computational effort. It depends on both the
heuristic and the CTV which metrics correlate positively and which negatively. For
both heuristics, the correlation coefficients are often higher for topology variants
with the mode decrease.

Communication overhead

Figure 6.11 shows the results for the performance metric |M |norm for COHDA
(fig. 6.11a) and IDICE (fig. 6.11b). The values of the correlation coefficients are
relatively low, almost negligible, often in the range [-0.1, 0.1]. A very different
pattern emerges for the two heuristics. For IDICE, the correlation coefficients differ
mostly depending on the mode of the topology variant. For example, for vcv there is
a negative correlation for all topology variants with the modes increase and static
(except for the static ring topology), and a positive correlation for all topology
variants with the mode decrease. In both cases, however, the correlation coefficients
are very small. For COHDA, there are no large differences between modes. However,
for several FLA metrics the correlation becomes stronger or weaker depending on
the value of α. But again, the correlation coefficients are quite small. This suggests
that the expected communication overhead depends primarily on the CTV and is
only slightly affected by the properties of the fitness landscape.

Statistical significance and summary

An important part of the correlation analysis is to test the statistical significance of
the results. For each of the examined FLA metrics (x) and performance metrics (y),
the following null hypothesis is stated:
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(a) Spearman coefficients with |SE|norm for COHDA

(b) Spearman coefficients with |SE|norm for IDICE

Fig. 6.10.: Spearman correlation coefficients for the FLA metrics with |SE|norm computed
separately for each CTV and across all problem instances.
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(a) Spearman coefficients with |M |norm for COHDA

(b) Spearman coefficients with |M |norm for IDICE

Fig. 6.11.: Spearman correlation coefficients for the FLA metrics with |M |norm computed
separately for each CTV and across all problem instances.
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Null Hypothesis. There is no significant correlation between the FLA Metric x and the
performance metric y.

The p-value indicates the probability with which the respective null hypothesis can
be rejected, and thus the probability of obtaining results that are as extreme or more
extreme than the calculated correlation coefficients, given that the null hypothesis is
true. Since the same setup was used to compute the correlation for each combination
of FLA and performance metrics, e.g., number of data points and same underlying
problem instances, the absolute magnitude of the correlation coefficients is the main
factor determining how likely such values are to occur at random. Figure 6.12
shows the plot of the correlation coefficients versus their corresponding p-values
for COHDA (fig. 6.12a) and IDICE (fig. 6.12b). The vertical dashed line shows the
p-value of 0.05, which is commonly used as a threshold for statistical significance.
For both COHDA and IDICE, all correlation coefficients with an absolute value of
approximately 0.091 are above this threshold. For the larger correlation coefficients,
the p-values quickly become very small (up to 10−69). Thus, for the correlations
between FLA and performance metrics explicitly discussed in the previous sections,
statistical significance was found. Even for |SE|norm and |M |norm, which generally
show very low coefficients, the higher correlation coefficients discussed for several
CTVs are in the statistically significant range. In appendix C.1, the p-values are shown
in separate heatmaps, analogous to the heatmaps for the correlation coefficients
shown earlier.

(a) Spearman coefficients relative to the corre-
sponding p-values for COHDA

(b) Spearman coefficients relative to the corre-
sponding p-values for IDICE

Fig. 6.12.: Spearman coefficients relative to the corresponding p-values
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In summary, the analysis of the correlation coefficients yields the following picture:
Overall, the magnitude of the coefficients is moderate or low, being almost negligible
for |SE|norm and |M |norm. Regarding solution quality, there were the expected cor-
relations between problem difficulty and the FLA metrics representing multimodality,
ruggedness, gradient height, and multi-funnel shapes. In addition, heterogeneity of
subsearch spaces with respect to some landscape features (e.g., global shape and
macro smoothness) tends to be associated with increasing problem difficulty, but
may also be correlated with better solution quality with respect to other features
(e.g., micro-level ruggedness). Regarding the correlation coefficients with respect
to solution quality, the results for both heuristics are quite similar, but for |SE|norm

and |M |norm they are completely different.

The CTVs show only small differences in solution quality related performance metrics.
This is different for the computational overhead |SE|norm and the communication
overhead |M |norm. The FLA metrics are much less relevant here. Instead, parameters
of the CT such as the mode or speed of topology adaptation at runtime α are
of interest. Therefore, it is expected that the FLA metrics are most relevant for
training prediction models with respect to solution quality, while the relevance of
the CT parameters increases for the other performance dimensions. In addition, the
importance of the features is expected to be different for the two heuristics.

However, the aspects that can be examined in the performed correlation analysis
are limited. Only monotonic 1:1 relationships between features can be analyzed.
Therefore, in the next section, the impact of features and their interactions with
other features will be examined using permutation importance.

6.2.3 Permutation importance

Permutation importance is a technique for analyzing the relevance of input variables
for the prediction of trained machine learning models. This technique was developed
by Breiman [Bre01] with the introduction of random forests to explore the random
forest mechanism.

The procedure for calculating the permutation importance is based on the imple-
mentation in [Ped+11] and follows these steps::

1. A model m is trained on the training data that contains data for the input
features IF (in this case the FLA metrics and the CT parameters) and the
output features OF (here one of the performance metrics)
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2. The test data D is used to compute a base line score sbase for the model, in this
case the MSE = 1

nsamples

∑nsamples

j=1 (yj − ŷj)2, with y being the actual target
values and ŷ the predicted target values of the output feature from OF

3. For each input variable i in IF :
• for each repetition r ∈ 1, 2, . . . , R

– the data column of the input feature i is randomly shuffled to generate
a corrupted version of the data D̃i,r

– the score si,r is computed for the model m on the corrupted data D̃i,r

• the permutation importance pii of the input variable i is defined as:
pii = sbase − 1

R

∑R
r=1 si,r

Shuffling the column preserves statistical features such as the mean and variance
of the input variable, but breaks the relationship between the feature and the
target. Therefore, the decrease in the model score is an indication of the model’s
dependence on the feature. To increase the reliability of the results, the shuffling
and subsequent calculation of the score on corrupted data is repeated R times. The
permutation importance is a measure of how important a feature is to a particular
model, rather than an objective measure of the predictive power of a feature.
Accordingly, permutation importance only provides valuable information if the
underlying model is sufficiently good.

A potential drawback of permutation feature importance is that correlated features
may produce misleading values, since the shuffling of one feature may be compen-
sated by another correlated feature that remains untouched, thus resulting in an
underestimation of the importance of the first feature. Since the FLA metrics have
already been subjected to correlation analysis and only one representative from each
of the identified clusters is included, this is unlikely to be a problem here. The CT
parameters cannot be correlated in this sense because they are not measured or
calculated, but explicitly specified. Correlation exists where certain values for the
parameters occur only in combination, such as the mode and specific values of α or
k.

The permutation importance can even be modified in a very useful way to improve
the analysis of the influence of the CT parameters. The impact of the CT parameters
on the performance measures are expected to be most significant when they are
considered together. In fact, it is possible to shuffle several input variables at the
same time to calculate common importance values. This is exactly what was done
for different combinations of CT parameters.

A random forest regressor with 100 trees was used to compute the importance of each
feature. This model is suitable considering that the decision tree regressors used in
section 6.2.1 for the investigation of the coefficients of determination already showed
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promising values for the R2 score and test runs with random forest regressors showed
low MSE values. The results for the three performance dimensions are analyzed
separately below. The results are also summarized in tables 6.3 and 6.4.

Solution quality

Figure 6.13 show the results for COHDA and IDICE, respectively. The captions of the
sub-figures also provide the corresponding reference value for the MSE. The y-axis
shows the percentage change in this reference score. For example, in fig. 6.13a we
can see that the reference MSE for f(x)norm increased by an average of 768% from
0.0211 to about 0.18 due to the permutation of DMmean. The black error bars show
the standard deviation of the permutation importances computed for R = 3 times.
However, these are so small that they are hardly noticeable.

Figures 6.13a and 6.13b show the results for f(x)norm for COHDA and IDICE. For
both heuristics, several FLA metrics clearly stand out, while the influence of the
CT parameters is rather small to moderate. Which FLA metrics are most important
for the predictions differs significantly between the two optimization heuristics.
For COHDA, DMmean (+768%), DMstd (+132%), FEMmicromean (+161%), and
SEMmacrostd

(+486%) are the most important. These are the mean and standard
deviation of the dispersion metric, i.e. the global shape, the ruggedness at the micro
level, and the heterogeneity of the subsearch spaces with respect to smoothness at
the macro level. These are the same FLA metrics that had the highest coefficients in
the correlation analysis, except for FEMmacromean . This could be due to the fact that
DMmean correlates to some extent with FEMmacromean , respectively with the cluster
it represents (see section 3.7). In contrast, the most relevant variable for predicting
f(x)norm for IDICE is vinter, i.e. the degree of variable interaction. For IDICE, some
features have negative scores, meaning that the MSE has decreased with their
permutation, including DMstd (-1. 4%), FEMmacrostd

(-2.7%), µ2(y)std (-2.4%),
SEMmacrostd

(-0.5 %), and FEMmacromean (-0.7 %). However, these negative values
are very small, suggesting that the features are irrelevant to IDICE rather than
actually impairing the prediction of f(x)norm. For both optimization heuristics, the
parameters of the CT are of similar importance. In COHDA, the CT (topo variant)
reaches +51 %, with mode and k having the largest contribution. For IDICE, the
influence is similarly high (+41 %). Here, however, p and k, which together form
the initial topology, are most important.

The figures 6.13c and 6.13d show the results for f(x)norm−max. For both heuristics,
the FLA metric µ2(y)mean is outstanding with + 11,118 % for COHDA and + 2,680
% for IDICE. This is the mean of the fitness variance, which can also be considered
as a measure of ruggedness. The y-axis has been broken for f(x)norm−max to make
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(a) Permutation importances f(x)norm for COHDA; base line MSE: 0.0211

(b) Permutation importances f(x)norm for IDICE; base line MSE: 0.0259

(c) Permutation importances f(x)norm−max for COHDA; base line MSE: 0.0005

(d) Permutation importances f(x)norm−max for IDICE; base line MSE: 0.0012

Fig. 6.13.: Permutation importances with respect to MSE for f(x)norm and f(x)norm−max;
The CT parameters are considered individually as well as in combination. The
initial topology includes k and p, the topo variant considers all topology parame-
ters.
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it easier to read. One explanation for the extremely high values of µ2(y)mean for
COHDA is that the baseline MSE for COHDA is much lower than for IDICE. The
permutation of µ2(y)mean increases the MSE from 0.0005 to 0.0566 for COHDA
and from 0.0012 to 0.0332 for IDICE. The second most important feature for both
heuristics is vcv, i.e. the coefficient of variation of the variable sensitivity, which
indicates how evenly the influence of individual variables on the result of the
optimization is distributed. Relative to this, most of the other features have low
importance, although this time in COHDA the parameters of the CT have a greater
influence, and various combinations of topology parameters show an importance
score around +140%, with the main influence coming from k (+148%).

Computational effort

Figures 6.14a and 6.14b show the results for permutation importance regarding
the computational effort |SE|norm. For both heuristics, the effects on the MSE are
greatest with permutations of the topology parameters. For COHDA, the mode
is most relevant. But k and α are also important. However, mode and α alone
are as important (+615 %) as all topology parameters together (+617 %). For
IDICE, the parameter p, i.e. the degree of random rewiring when creating the initial
small-world topology, also has a high importance score of +95%. Together, the
topology parameters have a score of +271%.

For this performance metric, only a few FLA metrics are relevant. For COHDA this
refers only to FEMmicromean (+ 141 %), which represents the average ruggedness
and modality on micro scale across all subsearch spaces. For IDICE, all non-topology-
related features are below an importance score of 100%. Some even have very small
negative scores and are therefore considered irrelevant.

Communication overhead

Figures 6.14c and 6.14d show the results for the permutation importances related
to communication overhead |M |norm. Again, the parameters of the CT are very
important for both heuristics. For IDICE, the y-axis in fig. 6.14d has been interrupted
because the very small reference MSE of 0.0005 results in extremely high permuta-
tion importance scores. The parameter k (+14,554%) and the mode (+6,220%) are
already individually very important in IDICE. In combination, the parameters of the
CT reach an importance of +16,6717% and an increase of the MSE to 0.0801. Topol-
ogy parameters are also very important for COHDA, reaching an importance score of
+198%. However, there are also some FLA metrics that are important for both heuris-
tics. For COHDA, these include vinter (+183%), DMmean (+135%), and DMstd
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(a) Permutation importances |SE|norm for COHDA; base line MSE: 0.0093

(b) Permutation importances |SE|norm for IDICE; base line MSE: 0.0161

(c) Permutation importances |M |norm for COHDA; base line MSE: 0.0114

(d) Permutation importances |M |norm for IDICE; base line MSE: 0.0005

Fig. 6.14.: Permutation importances with respect to MSE for |SE|norm and |M |norm; The
CT parameters are considered individually as well as in combination. The initial
topology includes k and p, the topo variant considers all topology parameters.
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features f(x)norm f(x)norm−max |SE|norm |M |norm

vcv 24.12% 589.32% 21.25% 43.20%
vinter 20.05% 2.37% 8.28% 183.42%
DMmean 767.82% 208.10% 14.22% 135.32%
DMstd 132.43% 32.75% 8.91% 121.69%
FEMmacrostd

3.55% 2.94% 0.16% 18.88%
SEMmicrostd

9.59% 42.68% 3.55% 4.37%
µ2(y)mean 35.92% 11117.66% 15.90% 5.09%
µ2(y)std 27.52% 37.14% 1.11% 2.05%
FEMmicromean 161.40% 20.14% 20.70% 24.47%
FEMmicrostd

65.22% 49.65% 141.45% 25.38%
SEMmacromean 30.76% 228.85% 8.23% 4.76%
SEMmacrostd

485.56% -0.57% 25.93% 15.02%
Gdevmean 2.29% -0.53% 28.65% 39.08%
FEMmacromean 22.19% 102.52% 70.19% -0.02%
µ2(||d||)mean 23.33% 43.02% -0.10% 3.28%
α 7.50% 20.39% 110.27% 53.35%
p 0.53% -0.44% 2.38% 8.97%
k 24.99% 148.12% 155.40% 131.30%
mode 24.21% 2.90% 513.42% 117.69%
mode & α 31.90% 35.56% 615.18% 153.70%
α & k 30.21% 145.64% 239.70% 156.46%
initial topology 27.82% 148.14% 162.20% 147.13%
mode & k 43.05% 137.06% 533.27% 173.49%
mode, α & k 47.64% 151.59% 614.85% 185.53%
topo variant 50.84% 151.91% 617.81% 198.44%

Tab. 6.3.: Permutation feature importance as a measure of increase or decrease of the MSE
in % for COHDA

(+122%). For IDICE, vinter (+442%), FEMmicromean (+683%), FEMmicrostd

(+1096%), and Gdevmean (+528%) are again particularly important. Since these
FLA metrics are also associated with solution quality or problem difficulty in several
cases, it is not surprising that they are also relevant for predicting communication
overhead. It is noteworthy that, with the exception of vinter, there is no overlap
between the two optimization heuristics. Since the communicative behavior of the
two heuristics is very different, and since the correlation analysis already yielded
very different results for Mnorm, the different importance of the FLA metrics is not
unexpected. Nevertheless, the strong influence of the CT parameters can be observed
for both heuristics.

Summary

The following observations can be summarized after considering the individual
permutation importances for the performance dimensions: As expected based on the
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features f(x)norm f(x)norm−max |SE|norm |M |norm

vcv -2.85% 126.38% 69.36% 48.65%
vinter 160.07% 30.62% -0.95% 442.25%
DMmean 27.81% 39.17% 12.96% 73.74%
DMstd -1.36% -1.81% 26.21% 37.96%
FEMmacrostd

-2.74% -1.06% -2.61% 282.70%
SEMmicrostd

4.43% 5.46% 8.08% 213.55%
µ2(y)mean 2.04% 2679.80% 5.42% 135.92%
µ2(y)std -2.42% 2.10% 3.76% 4.56%
FEMmicromean 2.08% 8.63% 39.03% 682.66%
FEMmicrostd

33.31% -1.82% 26.14% 1095.65%
SEMmacromean 27.01% 17.16% 12.00% 83.59%
SEMmacrostd

-0.50% -2.13% 15.37% 152.15%
Gdevmean 27.24% 0.16% 9.97% 528.06%
FEMmacromean -0.68% 12.24% 1.37% 55.94%
µ2(||d||)mean -2.41% -1.72% -2.79% 262.91%
α 5.78% -1.11% 33.06% 626.13%
p 23.75% 0.46% 95.27% 249.46%
k 22.24% 2.89% 47.44% 14553.68%
mode 15.36% -2.76% 169.14% 6220.19%
mode & α 26.19% 0.63% 204.10% 7564.66%
α & k 23.61% 1.48% 65.38% 14439.93%
initial topology 38.45% 5.31% 137.44% 15064.37%
mode & k 27.44% 1.70% 183.07% 15476.63%
mode, α & k 34.17% 4.64% 205.96% 16125.36%
topo variant 41.27% 7.67% 271.36% 16671.70%

Tab. 6.4.: Permutation feature importance as a measure of increase or decrease of the MSE
in % for IDICE

correlation analysis, the FLA features are most relevant for predicting the solution
quality based performance metrics. Which features are most important depends on
the heuristic. However, the topology parameters also have an influence, which is
higher for COHDA at fnorm−max and for IDICE at fnorm. In contrast, SEnorm, i.e.
the computational cost, depends mainly on the topology parameters. The influence
of FLA metrics is very small. Which metrics have any influence at all differs between
the two heuristics. Also for Mnorm, the communication overhead, the influence of
the topology parameters is very high for both heuristics. Here, some FLA metrics are
slightly more relevant (compared to SEnorm), which are again different FLA metrics
for the two heuristics.

Tables 6.3 and 6.4 summarize the feature importance for all input features. The
importance of each feature varies greatly depending on the optimization heuristic
and performance metric. However, each feature is justified in the sense that it has
a unique contribution to at least one combination of heuristic and performance
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metric that is relevant to the prediction. The few negative importance scores are very
small. This indicates that the features do not interfere much with the predictions.
Since each feature is relevant to at least one prediction constellation, the feature set
presented is kept as-is for the sake of generalizability.

The main findings so far are as follows:

• Even untuned random forest regressors are able to make good predictions with
low MSEs for all performance metrics.

• The resulting permutation importance scores show that both the problem
characteristics in the form of the FLA metrics and the parameters of the
CTVs influence the performance dimensions and can be used to predict the
performance metrics.

• The importance of individual input features varies depending on the perfor-
mance metric and optimization heuristic.

• Each feature is relevant to the prediction of at least one performance metric
for one heuristic.

• These results support the postulated causal relationship between problem
characteristics, CTVs, and performance dimensions.

The analysis of the importance of features has shown that there is a statistical
correlation between the distributed FLA metrics in combination with the parameters
of the CT and the performance dimensions, and that ML-based predictions are
possible.

So far, the predictive ability of ML models has been studied only in an abstract
way, using metrics such as MSE or R2 to investigate the general performance of
the models. In the following, a more in-depth investigation will be carried out
by examining the predictions of the trained models in more detail and drawing
conclusions for the postulated causal relationship.
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6.3 Evaluation of predictive capability of ML
models

In order to use ML models to support research hypothesis 3, it is first necessary to
train models that produce sufficiently good prediction results. Second, these predic-
tions must be examined to determine whether they distinguish reasonably between
different problem instances and CTVs. Together, these two aspects determine the
predictive capability of a model for the use case in question.

Therefore, a specific ML model type is selected in section 6.3.1 below. The focus is
on finding a sufficiently good model with reasonable effort. It is not necessary to find
the best possible model for this evaluation. Then, in section 6.3.2, the predictions of
the trained models are analyzed in detail, and in section 6.3.3, they are applied to
perform an exemplary selection of topology variants. Finally, as a first step towards
transfer to real-world problems, the performance of the models is investigated under
the influence of noise in section 6.3.4.

For all subsequent investigations, the data was initially split into training and
validation data (80/20), stratified by problem instance. Thus, 80% of all data,
equally distributed across all problem instances, was used to train the models, while
20% was kept for later evaluation. The evaluation data is used in sections 6.3.2 and
6.3.3.

6.3.1 Choosing models for ToVarO

In the permutation importance study in the previous section, random forest regres-
sors were used. They immediately showed good results with respect to the MSE.
Therefore, they are a reasonable candidate for the selection of a suitable model for
the Topology Variant Optimization (ToVarO). The goal is to find models which are
well suited to investigate learnability of relations between problem characteristics,
exchange topologies, and performance measures. Therefore, a short investigation
whether another machine learning method might be more suitable will be carried
out.

The prediction problem is a nonlinear problem and the feature importance analysis
showed that the features have different influences. Artificial neural networks are the
state of the art for such problems and are therefore well suited for comparison with
the random forest regressors. Since there are no temporal dependencies between
the data, a Multi-layer Perceptron (MLP) was tested. For the MLP, parameter tuning
was performed using Bayesian optimization. Due to the assumed complexity of the
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problem, 1-2 hidden layers were assumed to be sufficient. Since the parameter mode
was preprocessed with One Hot Encoding, the number of input parameters is 21.
Accordingly, a reasonable number of neurons could be approximately in this range.
Furthermore, the optimizer, the learning rate, the batch size, and the number of
epochs were varied. Parameter tuning was also performed for the random forests.
For this purpose, a random search for hyper parameter optimization [BB12] was
applied4. Table 6.5 provides an overview of the value ranges used for the two hyper
parameter tunings.

parameter values

M
LP

number of hidden layers 1,2

number of neurons (for one or two
layers)

[5,50]

optimizer Adam, SGD

learning rate [1e.5, 0.1]

batch size [32, 1024]

epochs [20, 40]

fo
re

st

number of trees [10, 300]

criterion to measure the quality of a
split

squared error, friedman mse, poisson

max depth of trees
10, 20, 30, 40, 50, 60, 70, 80, 90, 100,
110, None

minimum number of samples re-
quired to split an internal node

2, 5, 10

minimum number of samples re-
quired to be at a leaf node

1, 2, 4

Tab. 6.5.: Parameter setups for MLP parameter tuning with Bayesian optimizer and random
forest regressor with randomize grid search, both evaluated with 3-fold cross
validation

The Bayesian optimizer performed 110 evaluations, each with 3-fold cross-validation,
again stratifying the folds by problem instances. The random search for hyperpa-
rameter optimization of the random forest regressors ran 30 iterations for each
performance metric and optimization heuristic, also using 3-fold cross-validation
and stratifying the folds by problem instances. The final parameter selection is
provided in the appendix in table C.9. The tuned MLPs performed well. However,
they did not quite achieve the same results as the random forest regressors. Table 6.6

4implementation by [Ped+11]
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shows the results of the trained MLPs and random forests for all combinations of
optimization heuristics and performance metrics. The MSE and R2 are obtained for
the evaluation data, which is unseen data to the models. The random forests always
perform at least as well, and often better than the MLPs. It is likely that the MLPs
could be improved even further with more extensive parameter tuning. However,
since the random forest regressors already show quite low error values, they seem to
be suitable for further evaluation of the predictive capabilities. Thus, the following
evaluation is performed with the random forest regressors retrained with the full
training data set.

f(x)norm f(x)norm−max |SE|norm |M |norm

MSE R2 MSE R2 MSE R2 MSE R2

C
O

H
D

A MLP 0.0301 0.8020 0.0016 0.9588 0.0104 0.7277 0.0175 0.4629

forest 0.0208 0.8354 0.0005 0.9878 0.0091 0.7778 0.0111 0.6740

ID
IC

E MLP 0.0269 0.6424 0.0012 0.9479 0.0170 0.5794 0.0014 0.9619

forest 0.0235 0.688 0.0011 0.9567 0.0151 0.6181 0.0005 0.9889

Tab. 6.6.: Quality Metrics for the best found version of the MLP and the random forest
regressor, both for COHDA and IDICE and all performance parameters on the
evaluation data

6.3.2 Analysis of predictions

The fact that the model predictions are on average close to the actual values is
already indicated by the low MSEs in table 6.6. However, it is still unclear what this
means at a more detailed level. For example, the models might predict the same
value for a problem instance regardless of the topology variant. After all, for COHDA,
the permutation importance scores of the topology parameters at f(x)norm were
rather low (see fig. 6.13a). Therefore, in the following, the predictions for several
problem instances will be examined in order to investigate the prediction ability in
more detail. For this purpose, the same instances were chosen as in section 6.1.2,
namely Drop Wave 1 and Weierstrass 1. These two problems are particularly well
suited because they differ greatly both in the effects of the CTVs and in the relevance
of the CT for solution quality (see fig. 6.3). Furthermore, the previous figures provide
additional illustrative material.

The figures 6.15 and 6.16 show the predictions obtained with the trained random
forest regressors for all performance metrics and both heuristics. The corresponding
metric is always plotted on the y-axis. The CTVs are plotted on the x-axis. For the
same problem instance, the input features of the ML model differ only in the topology
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parameters. The other input parameters are the FLA metrics, which are always the
same for a particular problem instance. The mean value from the training data was
plotted as an orange diamond for each problem instance and each topology variant.
The mean from the evaluation data was plotted as a blue circle. The predictions are
plotted as yellow stars.

First, we take a closer look at the results for COHDA in fig. 6.15. The predictions,
i.e. the stars, are usually very close to the mean values of the training data, i.e. the
diamonds. This means that the models have learned to predict values close to the
mean of the training data per problem instance and per CTV. Of course, this could
be an indication of overfitting. However, the parameters were determined by 3-fold
cross-validation, and the trees were then retrained on the entire training data for
further evaluation. The fact that these parameter settings performed well in the
cross-validation supports the notion that predictions close to the mean are good
approximations. The mean values from the evaluation data are slightly different,
but in general the pattern of differences between the topology variants is still very
similar to the training data. These differences are due to variation caused by random
effects and maybe other unknown factors. Previous figures (e.g. figures 6.3, 5.7
and 5.8) also show that the results for a CTV exhibit some variance. The low MSEs
indicate that the predictions close to the mean values of the training data learned by
the models are good approximations of how a topology variant will perform on a
problem instance. If the results of a topology variant were completely unpredictable,
this would result in much higher error rates. The learning of this pattern by the
models shows that the CTVs have distinct and learnable effects on all performance
dimensions. Furthermore, these effects clearly differ between different problem
instances, as in the examples Drop Wave 1 and Weierstrass 1.

The results for IDICE in fig. 6.16 show a slightly different pattern. For |SE|norm and
|M |norm, the predictions are again very close to the mean values of the training data.
The ML models learned slightly more generalized patterns for the two metrics based
on solution quality. Since the results are much more scattered than for COHDA, this
is to be expected. As a consequence, the R2 scores for IDICE are also significantly
lower than for COHDA (see table 6.6). At the same time, the MSEs are still at a low
level. Thus, predictions for IDICE seem to be more challenging. Considering the
low MSE scores, the predicted values still appear to be accurate enough to select
an appropriate CTV for a specific problem. Accordingly, both heuristics show a
learnable pattern of relationships between the problem characteristics, the CTVs,
and the algorithmic performance.

The two selected example problem instances differ significantly in their FLA metrics.
In order to show that even smaller differences have an impact and that the models
do not only differentiate according to the basic benchmark functions, fig. 6.17 shows
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Fig. 6.15.: Exemplary predictive performance for COHDA; The corresponding metric is
always plotted on the y-axis. The CTVs are plotted on the x-axis and are encoded
in the form mode_k_p_α.
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Fig. 6.16.: Exemplary predictive performance for IDICE; The corresponding metric is always
plotted on the y-axis. The CTVs are plotted on the x-axis and are encoded in the
form mode_k_p_α.
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Fig. 6.17.: Exemplary predictive performance for highly similar problem instances; The
corresponding metric is always plotted on the y-axis. The CTVs are plotted on
the x-axis. Additionally, the FLA metrics for the problem instances are shown
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the comparison for two quite similar Eggholder-based problem instances for COHDA.
The bottom row shows the FLA metrics for the two problem instances. The values
for all metrics are very close, showing that both instances are quite similar, but with
minor differences. Looking at the performance metrics, however, it is clear that
there are distinctions in the effects of the CTVs. The ML models again learned values
close to the respective mean values of the training data. This shows that even the
small variations in the FLA metrics are sufficient to change the effect of the CTVs
and that the models are able to learn them. This is a confirmation of the suitability
of the FLA metrics as indicators for predicting the performance of CTVs and also for
characterizing the problem properties.

Intermediate results

• The random forest regressors learn to predict values close to the mean values
of the training data per problem instance and per CTV.

• Combined with the low error rates on the evaluation data, this implies that
the mean values are good approximations of the performance of the CTVs.

• The examples show differences between the topology variants, which empha-
sizes the purpose of the targeted selection.

• The performance of the CTVs varies even between very similar problem in-
stances. The mean values learned by the ML models are still good predictors
and the differentiation based on the subtle differences in the input parameters
is sufficient. This underpins the suitability of the distributedly computed FLA
features for problem-specific parameter selection for heuristics.

Now that the general prediction behavior has been investigated, the next step is to
use the trained models to perform an exemplary topology variant selection.

6.3.3 Prediction based topology selection

The selection of an appropriate topology variant is a multi-objective optimization
problem, since all different problem dimensions can be considered. The prioritization
of the performance dimensions may differ depending on the use case. For example,
in some use cases, solution quality is of paramount importance, while computational
and communication efforts are less critical. However, there are also situations where
solution quality is considered less important and computational efficiency is more
relevant. A simple way to represent the different priorities of the performance
dimensions is to use a weighted sum. An individual weighting factor can be assigned
to each dimension.

In addition, there are two performance metrics related to solution quality. While
f(x)norm shows how different CTVs affect the solution quality, f(x)norm−max is an
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indicator of how important the CT is for the solution quality in general. Therefore,
it is reasonable to use only f(x)norm for the weighted sum by default. Optionally,
the weighting factor of f(x)norm can be multiplied by f(x)norm−max to reduce the
influence of f(x)norm on the selection of the topology variant. This is useful when
the influence of f(x)norm on the specific problem instance is rather small and it is
more appropriate to put emphasis on the other performance dimensions. In the
following, different prioritizations (or weight distributions) are tested, both with
and without the consideration of f(x)norm−max. Table 6.7 shows the setups for the
study.

setup1 w1 = 0.33 · f(x)norm + 0.33 · |SE|norm + 0.33 · |M |norm

Setup with equal weights of the power dimensions

setup2 w2 = 0.8 · f(x)norm + 0.1 · |SE|norm + 0.1 · |M |norm

Setup with strong emphasis on solution quality

setup3 w3 = 0.8 · f(x)norm · f(x)norm−max + 0.1 · |SE|norm + 0.1 · |M |norm

Setup with strong emphasis on solution quality, but relativized by the
general influence of CTVs on solution quality f(x)norm−max

Tab. 6.7.: Setups to prioritize performance dimensions using weighted sums

The chosen setups allow to show the result of an equal weighting of the performance
dimensions (w1), the result of a strong focus on the solution quality (w2), and how
the simultaneous inclusion of the general relevance of the topology variant for the
solution quality affects the result in the second case (w3). In order to use the trained
models to select an appropriate CTV for a problem instance, the following steps must
be performed:

1. Predict all performance metrics for all topology variants

2. Calculate scores for the given weighted sum representing the prioritization of
performance dimensions

3. Select the best topology variant

This procedure was performed using the Penalized Schwefel 2.26 - 8 problem instance
and the optimization with COHDA as an example. The results are displayed in
table 6.8. The best topology variants for w1, w2, and w3 are highlighted in different
colors. For a better illustration of the results, all predictions and the values of the
training data for all performance metrics for Penalized Schwefel 2.26 - 8 are also
plotted in fig. 6.18. The best topology variants are highlighted in the same colors as
in table 6.8. For this problem instance, all CTVs with mode decrease and the static
ring topology show good solution qualities, but require high effort. In contrast, the
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variants with mode increase or static are comparatively weak in terms of solution
quality, but have an advantage for |SE|norm and |M |norm.

For w1 the variant increase_2_0.0_0.1 was chosen. This is the topology variant that
starts with a ring topology (k = 2, p = 0) and slowly increases the number of edges
(α = 0.1). Looking at fig. 6.18, it is clear that this topology variant is one of the least
computationally and communicationally expensive, but at the same time results in
moderate values of f(x)norm. Therefore, this topology seems to be a reasonable
choice if the performance dimensions are equally weighted.

For w2, the focus was on the solution quality. Here the topology variant
decrease_36_0.5_0.7 was chosen. This starts with a rather strongly meshed initial
topology (k = 36, p = 0.5) and reduces the number of edges very quickly (α = 0.7).
This topology variant is the one with the smallest predicted value for f(x)norm. The
increased |SE|norm and |M |norm are negligible in consequence of w2. However, if the
importance of the topology variants for the solution quality is taken into account, as
in w3, the choice is increase_2_0.0_0.7. This variant starts again with a ring topology,
but increases the number of edges fast (α = 0.7). This is because the values for
f(x)norm−max are very small. Therefore, f(x)norm has even less weight than for w1.
This stronger focus on |SE|norm and |M |norm might be more appropriate considering
this assumed low relevance of CTV for solution quality.

Intermediate results and discussion

The example illustrates how the weighted sum approach and ML-based predictions
can be used to select topology variants for a given problem. With theoretical problem
instances, the feasibility of the overall concept as presented in the development
objective (see fig. 6.1) was thus demonstrated. The application works for all problem
instances investigated in this thesis.

Nevertheless, the exemplary evaluation revealed several areas for potential im-
provement. One reasonable extension could be the additional consideration of
uncertainties. For different topology variants, the variance of the results may vary.
Such uncertainty factors could be part of the selection process, e.g. by additional
predictions.

Another improvement could be a more sophisticated evaluation of the relevance
of CTVs to solution quality. Including f(x)norm−max seems reasonable for all cases
where computational and communication overhead is relevant. So far, for its
computation a value determined by maximization has been used as an upper bound.
This is a theoretically achievable maximum value of bad solution quality. But no
conclusion could be drawn about the probability of occurrence of such a value.

162 Chapter 6 Topology variant optimization (ToVarO)



topology variant f(x)norm f(x)norm−max |SE|norm |M |norm w1 w2 w3

decrease_24_0.1_0.1 0.162 0.013 0.396 0.427 0.325 0.212 0.084
decrease_24_0.1_0.3 0.053 0.013 0.648 0.637 0.441 0.170 0.129
decrease_24_0.1_0.7 0.035 0.013 0.589 0.569 0.394 0.144 0.116
decrease_24_0.5_0.1 0.173 0.013 0.370 0.409 0.314 0.216 0.080
decrease_24_0.5_0.3 0.067 0.013 0.627 0.608 0.430 0.177 0.124
decrease_24_0.5_0.7 0.078 0.013 0.562 0.534 0.387 0.172 0.110
decrease_24_0.9_0.1 0.174 0.013 0.431 0.464 0.353 0.229 0.091
decrease_24_0.9_0.3 0.050 0.013 0.567 0.557 0.388 0.153 0.113
decrease_24_0.9_0.7 0.036 0.013 0.602 0.606 0.410 0.149 0.121
decrease_36_0.1_0.1 0.164 0.013 0.434 0.503 0.363 0.225 0.095
decrease_36_0.1_0.3 0.039 0.013 0.676 0.672 0.458 0.166 0.135
decrease_36_0.1_0.7 0.051 0.013 0.632 0.637 0.435 0.167 0.127
decrease_36_0.5_0.1 0.165 0.013 0.617 0.687 0.485 0.262 0.132
decrease_36_0.5_0.3 0.102 0.013 0.685 0.686 0.486 0.219 0.138
decrease_36_0.5_0.7 0.032 0.013 0.572 0.560 0.384 0.139 0.114
decrease_36_0.9_0.1 0.185 0.013 0.435 0.502 0.371 0.242 0.096
decrease_36_0.9_0.3 0.112 0.013 0.571 0.574 0.415 0.204 0.116
decrease_36_0.9_0.7 0.046 0.013 0.545 0.523 0.368 0.144 0.107
decrease_50_0.0_0.1 0.199 0.013 0.445 0.547 0.393 0.259 0.101
decrease_50_0.0_0.3 0.065 0.013 0.622 0.638 0.437 0.178 0.127
decrease_50_0.0_0.7 0.098 0.013 0.598 0.598 0.427 0.198 0.121
increase_2_0.0_0.1 0.224 0.034 0.055 0.106 0.127 0.195 0.022
increase_2_0.0_0.3 0.298 0.034 0.034 0.122 0.150 0.254 0.024
increase_2_0.0_0.7 0.299 0.034 0.018 0.106 0.140 0.252 0.021
increase_12_0.1_0.1 0.294 0.034 0.016 0.158 0.154 0.253 0.025
increase_12_0.1_0.3 0.400 0.034 0.010 0.190 0.198 0.340 0.031
increase_12_0.1_0.7 0.385 0.034 0.012 0.284 0.225 0.337 0.040
increase_12_0.5_0.1 0.303 0.034 0.016 0.157 0.157 0.260 0.026
increase_12_0.5_0.3 0.333 0.034 0.011 0.202 0.180 0.288 0.030
increase_12_0.5_0.7 0.388 0.034 0.010 0.256 0.216 0.337 0.037
increase_12_0.9_0.1 0.293 0.034 0.017 0.173 0.160 0.254 0.027
increase_12_0.9_0.3 0.353 0.034 0.010 0.187 0.182 0.302 0.029
increase_12_0.9_0.7 0.381 0.034 0.012 0.284 0.223 0.334 0.040
increase_24_0.1_0.1 0.303 0.034 0.009 0.186 0.164 0.262 0.028
increase_24_0.1_0.3 0.295 0.034 0.011 0.291 0.197 0.267 0.038
increase_24_0.1_0.7 0.290 0.034 0.010 0.284 0.193 0.261 0.037
increase_24_0.5_0.1 0.290 0.034 0.011 0.220 0.172 0.255 0.031
increase_24_0.5_0.3 0.302 0.034 0.009 0.245 0.184 0.267 0.034
increase_24_0.5_0.7 0.296 0.034 0.011 0.291 0.197 0.267 0.038
increase_24_0.9_0.1 0.318 0.034 0.011 0.227 0.183 0.278 0.032
increase_24_0.9_0.3 0.323 0.034 0.011 0.286 0.204 0.288 0.038
increase_24_0.9_0.7 0.302 0.034 0.009 0.253 0.186 0.268 0.034
static_2_0.0_0.0 0.072 0.034 0.598 0.569 0.409 0.174 0.119
static_12_0.1_0.0 0.305 0.034 0.029 0.159 0.163 0.263 0.027
static_12_0.5_0.0 0.251 0.034 0.028 0.151 0.142 0.218 0.025
static_12_0.9_0.0 0.262 0.034 0.033 0.172 0.154 0.230 0.028
static_24_0.1_0.0 0.282 0.034 0.017 0.200 0.165 0.247 0.029
static_24_0.5_0.0 0.248 0.034 0.021 0.255 0.173 0.226 0.034
static_24_0.9_0.0 0.263 0.034 0.021 0.250 0.176 0.238 0.034
static_36_0.1_0.0 0.294 0.034 0.015 0.290 0.198 0.266 0.038
static_36_0.5_0.0 0.279 0.034 0.016 0.322 0.204 0.257 0.041
static_36_0.9_0.0 0.275 0.034 0.012 0.220 0.167 0.243 0.031
static_50_0.0_0.0 0.293 0.034 0.010 0.291 0.196 0.265 0.038

Tab. 6.8.: Predictions for Penalized Schwefel 2.26 - 8 using the weighted sums specified in
table 6.7; The best topology variants are highlighted in color.
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Fig. 6.18.: Exemplary prediction based CTV selection for Penalized Schwefel 2.26 - 8; The
corresponding metric is always plotted on the y-axis. The CTVs are plotted on
the x-axis. Topology variants are encoded in the form mode_k_p_α.
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This could lead to an underestimation of the influence of the exchange topologies
with the current approach. To evaluate the relevance of CTVs to solution quality,
other metrics could be used or specific domain knowledge could be applied. These
approaches remain subject to future research.

After demonstrating the applicability of the overall concept to the problem instances
generated on the basis of the benchmark functions, the last step of the evaluation is
to investigate the effects of noise. This represents a first step towards transferability
to real-world problems.

6.3.4 Sensitivity to noise

In real-world optimization problems, the same choice of input parameters does not
always lead to the same result. This can be caused by incomplete knowledge or
control of the system, or by measurement inaccuracies. In theoretical optimization
problems, this property can be modeled by noise, i.e. the addition of randomness to
the return values of the objective functions.

So far, training ML models has shown that there are learnable patterns in the data
that can be used to select a problem-specific CTV to improve performance. The
question is whether this is still the case for noisy data. The predicted values were
in most cases very close to the mean values of the training data. This could be
an indication of overfitting. However, if the patterns can be learned consistently
even in the presence of noise, this further supports the validity of these patterns.
Furthermore, it is a first step towards transferability to real-world problems that
require the ability to process noisy data.

To investigate the robustness of the patterns to noise, the optimization runs were
repeated with noise for each of the 23 benchmark functions for the first three derived
composite spaces. In this way, noisy data is available for 69 problem instances. For
each problem instance, all 53 CTVs were again computed with 9 different seed
combinations. In total, the noisy data set contains 32,913 optimization runs per
optimization heuristic. No seeds were set for the application of the noise itself. This
resulted in different values for the same points in the search space when computed
multiple times. In addition to the optimization runs, the distributed FLA was also
run with noise applied.

The resulting noisy dataset was again split into training and evaluation data (70:30)
ensuring an even distribution of problem instances. The random forest regressors
were re-trained on the combined training set of noiseless and noisy data. The same
settings as in table 6.5 were used for parameter tuning with 3-fold cross-validation.
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The resulting parameter settings are shown in table C.10. However, before the effects
of noise on the prediction of performance metrics can be examined, the type of noise
must first be specified. Different types of noise are introduced below.

Application of noise

Typically, noise is applied by adding or multiplying random values to a function
value with some probability. In [Fin+], Finck et al. presented three different types
of noise for real-parameter black-box optimization benchmarking: the Gaussian, the
uniform, and the Cauchy noise model.

The Gaussian noise model is defined as:

fGN (f, β) = f · exp(β N (0, 1)) (6.1)

where f is the noiseless value obtained by the benchmark function and N (0, 1)
draws a random value in the interval [0, 1] from a log-normal distribution. The
parameter β controls the noise strength. It is set to β = 0.1 for moderate noise. This
noise model is scale invariant.

The uniform noise model is defined as:

fUN (f, α, β) = f · U(0, 1)β max

(
1,
( 109

f + ϵ

)α U(0,1))
(6.2)

where U(0, 1) draws a random samples in the interval [0, 1] from a uniform dis-
tribution. The parameters α and β control the noise strength and are set to
α = 0.01(0.49 + 1

D ) (D is the number of dimensions) and β = 0.01. The pa-
rameter ϵ is set to 10−99 to prevent the division by zero. This noise model is not
scale invariant, since the strength of the noise increases with decreasing positive
values of f and thus becomes more severe for most benchmark functions near (local)
optima.

The Cauchy noise model is defined as:

fCN (f, α, p) = f + α max

(
0, 1000 +

∏
U(0,1)<p

N (0, 1)
|N (0, 1)|+ ϵ

)
(6.3)

where α defines the strength and p the frequency of the noise. The parameters are
set to α = 0.01 and p = 0.2 for moderate but frequent noise. Again the parameter ϵ

serves to prevent the division by 0. It is set to ϵ = 10−199.

In [Fin+], Finck et al. propose to apply a final step after the calculation of the noise
affected function values in order to "to achieve a convenient testing for the target

166 Chapter 6 Topology variant optimization (ToVarO)



function value". This step is applied here as well. The final function value is thus
computed as follows:

fXX(f, . . .) =

fXX(f, . . .) + 1.01 · 10−8 if f ≥ 10−8

f otherwise
(6.4)

Section 6.3.4 shows an exemplary application of the noise models to the benchmark
function Alpine no. 2 with 2 decision variables. While the Gaussian noise is quite
moderate and evenly distributed, the uniform noise model is more severe and the
noise level increases in certain areas since it is not scale invariant. The Cauchy
noise model shows a completely different type of noise. The majority of the function
values are not affected by the noise. But there are some large outliers that occur
occasionally. This makes it hard to predict the degree of noise for a given value.

Fig. 6.19.: Application example of the noise models

In the following, the Gaussian noise model is applied since it is one of the most
commonly used types of noise. Furthermore, it is a reasonable choice for modeling
noise in optimization problems because many real-world phenomena, such as elec-
tronic circuits and communication systems, exhibit approximately Gaussian behavior
[PP02]. Moderate Gaussian noise with β = 0.1 is applied.

Effect of Noise

To investigate the effects of the noisy data, the overall performance of the retrained
random forest regressors is examined using the MSE and R2 values. This is followed
by a detailed look at the predictions for individual problem distances to gain a better
understanding of the learned patterns.

Noise directly affects f(x)norm and f(x)norm−max. For |SE|norm and |M |norm, the
effects are indirect because the noise is not applied to the values of the metrics
themselves. However, there may well be effects on computational or communication
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overhead when random noise is applied to the values of the objective functions.
These effects can be either positive or negative. By applying Gaussian noise, the func-
tion values are sometimes significantly higher or lower than those obtained without
noise. For comparability, the original bounds were used for scaling. This leads to
values outside the interval [0,1]. These deviations were small for all performance
metrics except f(x)norm. Here, a repeated min-max scaling was performed on the
entire training data set.

f(x)norm f(x)norm−max |SE|norm |M |norm

MSE R2 MSE R2 MSE R2 MSE R2

C
O

H
D

A

training
data

0.0167 0.8600 0.0006 0.9852 0.1092 0.7789 0.0304 0.7691

noiseless
evalua-
tion data

0.0179 0.8530 0.0005 0.9879 0.0092 0.7756 0.0112 0.6705

noisy
evalua-
tion data

0.0218 0.7461 0.0020 0.9606 0.91105 0.7381 0.1974 0.7369

ID
IC

E

training
data

0.0173 0.7727 0.0011 0.9595 0.0108 0.7738 0.0005 0.9871

noiseless
evalua-
tion data

0.0989 0.3419 0.0011 0.9565 0.0153 0.6142 0.0005 0.9888

noisy
evalua-
tion data

0.0138 0.7713 0.0014 0.9510 0.0099 0.8541 0.0012 0.9713

Tab. 6.9.: MSE and R2 scores for the random forest regressor after retraining with partly
noisy training data

Table 6.9 shows the results for the newly trained random forest regressors. Both
MSE and R2 for the noiseless evaluation data are very similar to the original models
for both heuristics and all performance measures ( cf. Table 6.6). The only exception
is f(x)norm for IDICE, where the scores for the noiseless evaluation data are strongly
degraded in comparison. A bias in the noiseless scoring data could be responsible for
this. Although a uniform distribution of the problem instances was ensured during
the splitting, this is not the case for the CTs. However, for f(x)norm in IDICE, the R2

score actually improved for the training data. The improvement could be due to the
fact that the noisy data is easier to predict, or that overfitting is avoided or reduced
by its integration. For the noisy evaluation data, the scores are often slightly worse
than for the noiseless data. In general, the differences are small. In addition, the
difference in the MSE is usually larger, as this measure is more sensitive to outliers.
However, the R2 in these cases tends to show similarly good values as it does for the
noiseless data.
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In some cases, the predictions for the noisy data are even slightly better, namely for
COHDA and |M |norm, and for IDICE and |SE|norm. For these two cases, the values
for R2 have been greatly improved by training on the partially noisy data. The lower
values for R2 with the noisy data here still roughly correspond to the values obtained
with the standard models trained without noisy data ( cf. table 6.6). In these cases,
the noisy data itself seems to be more predictable. As a result, the score for the
training data, which now contains noisy data, also increases. Moreover, these are
performance metrics that are only indirectly affected by the noise application.

Overall, the models trained using partly noisy data tend to perform at least as well
as those trained without it. The prediction quality of the noisy evaluation data is
generally good. Only for IDICE and f(x)norm the prediction quality of the noiseless
evaluation data decreases significantly.

After examining the general performance of the newly trained models and the
predictability of the noisy data, we now take a detailed look at specific problem
instances. Figures 6.20 and 6.21 show the predictions of the new models for noiseless
and noisy evaluation data for the two problem instances Drop Wave 1 and Weierstrass
1 for COHDA and IDICE. The first impression shows: The solution quality of the two
problem instances is usually worse with noisy data. Furthermore, the computational
and communication effort for Drop Wave 1 tends to decrease with noisy data. For
Weierstrass 1 it tends to increase.

The differences between the performance of CTVs tend to follow similar patterns for
noiseless and noisy data. However, with respect to the solution quality, the variations
are usually less pronounced with noise. But there is an exception with Drop Wave 1
and IDICE. Here, for some CTVs with mode increase without noise, f(x) goes down,
which means increased solution quality, while with noise the values go up, which
means decreased solution quality. Thus, for this problem instance, such CTVs seem
to suffer more from noise.

Figure 6.20 shows that the predictions for COHDA for both noisy and noiseless
evaluation data are very close to the mean values of the respective evaluation
data. Compared to the previous models, where the predictions were closest to the
means of the training data, this is actually an improvement. This implies that some
overfitting occurred earlier, although similarly good results were obtained for MSE

and R2. The predictions for IDICE in fig. 6.21 show a similar picture. Drop Wave
1 is an example that shows that the noiseless data for f(x)norm are more scattered
and therefore more difficult to predict than the noisy data. However, the pattern
is actually reproduced more accurately compared to the models trained without
noise. For Weierstrass 1, on the other hand, both noisy and noiseless predictions for
f(x)norm are excellent. For f(x)norm−max, however, the model is inaccurate. Here,
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the predicted value is almost always identical, although there are differences in
the actual data points. For |SE|norm and |M |norm, both heuristics approximate the
patterns very well.

Intermediate results
The following results were obtained by examining the predictive ability of ML models
trained on a mixture of noiseless and noisy data:

• Data obtained from optimization runs with moderate Gaussian noise still follow
similar patterns as their noiseless counterparts.

• ML models trained on a mixture of noisy and noiseless data can typically
predict the noiseless data just as well or even better.

• Predictions for noisy data are usually about as accurate as for noiseless data.
• Training with a proportion of moderately noisy data reduces the risk of overfit-

ting

These results support the general suitability of the approach for a future transfer to
problems in the real world.
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Fig. 6.20.: Predictions for noiseless and noisy evaluation data after retraining with a mixed
set of training data. The corresponding metric is always plotted on the y-axis.
The CTVs are plotted on the x-axis and are encoded in the form mode_k_p_α.
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Fig. 6.21.: Predictions for noiseless and noisy evaluation data after retraining with a mixed
set of training data. The corresponding metric is always plotted on the y-axis.
The CTVs are plotted on the x-axis and are encoded in the form mode_k_p_α.
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Part V

Conclusion

In this final part, the results and conclusions of this thesis are summarized and the
multifaceted possibilities for further research are highlighted.





7
Conclusion

Power system operation involves a wide range of complex optimization problems,
requiring the coordination of power generation and consumption across a large
number of distributed units. When applying parallel optimization heuristics to such
spatially distributed problems, the communication topology, which specifies the
communication paths between distributed solvers, is an important hyperparameter
that affects algorithm performance in several aspects, including solution quality,
computational cost, and communication overhead. In this thesis, the effects of
run-time adaptation of the Communication Topology (CT) and the relevance of the
problem characteristics in this process have been investigated. Eventually, the idea
of a causal relationship between these two aspects and the algorithm’s performance
was assessed. For this purpose, such an adaptation of the CT had to be modeled
and a method for capturing problem properties in distributed systems developed.
In the following, the results of the investigations and the research contribution are
summarized in section 7.1. Finally, an overview of possible extensions and research
topics for future work is given in section 7.2.

7.1 Results and research contributions

The work was divided into several parts, each dealing with one of the main aspects.
Part II was devoted to Fitness Landscape Analysis (FLA), which serves to determine
problem characteristics. Part III dealt with distributed optimization algorithms and
in particular the role of communication topologies and the modeling of topology
adaptation strategies at runtime. Finally, part IV combined both aspects to investigate
the relationship between problem characteristics, Communication Topology Variant
(CTV)s, and algorithm performance.

An overview of the main research contributions is provided below, before a more
detailed explanation of the approach and the resulting contributions for each part
follows in the remainder of the section.
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Main contributions:

Method for distributed computation of fitness landscape
metrics in spatially distributed systems.

RQ 2 part II

Modeling the adaptation of the communication topol-
ogy for distributed optimization heuristics at runtime.

RQ 1 part III

IDICE: Island Model Differential coevolution as a combi-
nation of distributed evolutionary algorithm approaches to
obtain an optimization heuristic that operates in a spatially
distributed manner through network communication and
with decision set decomposition.

part III

Investigation of predictability of algorithm performance
based on the FLA metrics and CTV parameters.

RQ 3 part IV

7.1.1 Part II: Distributed Fitness Landscape Analysis

Part II focused on the Fitness Landscape Analysis (FLA). In chapter 2, the basics
of FLA were explained by first introducing different features of fitness landscapes
that are associated with the difficulty of optimization problems (section 2.1). Then,
in section 2.2, concrete techniques and metrics that can be used to quantify these
features were presented. Next, the concept of dynamic and coupled fitness land-
scapes was introduced in section 2.3. These fitness landscapes are characterized
by the fact that the overall search space is divided into several subsearch spaces,
and the selection of decision variables in one subsearch space influences the fitness
landscape of the other subsearch spaces. This is the case, for example, in energy
optimization problems where several power plants have to reach a common target
power value. If one plant chooses a certain power value, the suitability of the other
plants’ power values may change with respect to the target power.

A new approach has been developed and presented in chapter 3, as there are
no methods available to analyze such dynamic and coupled fitness landscapes
in spatially distributed systems. This approach is based on a combination of an
initial local sampling of all subsearch spaces, an exchange of these samples, and a
subsequent recombination of the transmitted samples and their use for local fitness
landscape analyses for each subsearch space. In the final step, the results from all
subsearch spaces are combined. This basic principle was applied to the different types
of FLA techniques in the following sections 3.3 - 3.5. Parameter tuning was performed
for the different parameters such as number of samples and sampling techniques.
A parameter selection considering the trade-off between computational effort and
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expressiveness of the FLA metrics was conducted by comparing the results with
centrally computed FLA metrics (see Appendix appendix B.1). Finally, a correlation
analysis for the distributed set of FLA metrics was performed in section 3.7.

The main findings of part II can be summarized as follows:

• The sampling-based method for distributed FLA provides a reasonable trade-off
between computational and communication effort and the expressiveness of
the computed features.

• For the same problem instances, the absolute values of the centralized and
decentralized FLA metrics differ. However, for most metrics, the decentralized
calculation comes close to the centrally calculated reference values. In addition,
the relationship for a given FLA metric is usually similar across problem
instances (e.g., higher for problem x than for problem y).

7.1.2 Part III: Communication Topologies for distributed
Optimization Algorithms

Part III focused on the importance of exchange topologies for distributed optimiza-
tion algorithms. In chapter 4, the basics of distributed optimization algorithms were
presented. A special focus was put on the information sharing cooperation mech-
anism. This is the mechanism that defines all aspects of communication between
distributed solvers, including the communication topology. The two optimization
heuristics used in this work, COHDA and IDICE, were also introduced. IDICE is
the result of combining different concepts of distributed evolutionary algorithms,
namely the island model and coevolution.

The main original contribution in part III was made in chapter 5. The modeling
of the CT adaptation was inspired by the cooling process of simulated annealing.
The adaptation process is specified by a so-called topology schedule, which contains
the number of edges that the CT should have at different steps of the optimization
process. Edges can be removed or added during the optimization, and the speed of
the adaptation, i.e. the number of modified edges, can be varied. This adaptation
strategy is combined with a slightly modified Watts-Strogatz small-world graph as
initial topology to form so-called communication topology variants (CTVs). Many
combinations of initial topology and topology adaptation strategies can be created
with just a few parameters

The main findings of part III can be summarized as follows:

7.1 Results and research contributions 177



• A preliminary study in section 5.3 showed for exemplary benchmark problems
that topology variants affect all performance dimensions and that the effects
differ depending on the optimization heuristic and problem instance.

• It was demonstrated that adapting the CT at runtime can improve the algo-
rithm’s performance.

• The choice of the best topology depends not only on the heuristic and the
problem instance, but also on the prioritization of the performance dimensions.
There is a natural trade-off between these dimensions.

• Since there is both a global view of the optimization process and a local view
of individual optimizers, it is not trivial which topology leads to exploratory
and which to exploitative behavior.

7.1.3 Part IV: Learning Optimal Topology Variants

In part IV the artifacts from the previous two parts were incorporated by investigating
the relationship between the characteristics of the distributed optimization problems
and the effects of the CTVs. The experimental setup that was employed has been
explained in section 6.1. This included the considered problem instances, the set of
distributed FLA metrics remaining after the correlation analysis of Section section 3.7,
and the parameter setup for the CTVs. The first part of the evaluation was performed
in Section section 6.2. There, the analysis of correlation coefficients and permutation
importance scores was used to investigate the relevance of the FLA metrics and
the parameters of the CTVs for predicting the performance metrics. All parameters
were relevant to the prediction of the performance metrics, but the importance
varied greatly depending on the optimization heuristic and the specific performance
metric.

The second part of the evaluation in section 6.3 investigated the predictive capability
of ML models. First, an appropriate ML model type was selected in section 6.3.1.
Random forest regressors were chosen. These showed low error rates for both
optimization heuristics and all performance metrics. Then, in section 6.3.2, the
patterns learned by the models were examined using exemplary problem instances.
The predictions were clearly dependent on the problem instance as well as on the
CTV. This further confirmed the learnable relationship between these two aspects
and the algorithm performance. In section 6.3.3, the trained models were used to
select appropriate topology variants for different prioritizations of the performance
dimensions. This demonstrated the feasibility of the overall concept. Afterwards, the
tolerance to noisy data was investigated to make a first step towards transferability
to real world problems.

The main findings of part IV can be summarized as follows:
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• Distributedly computed FLA metrics and CTV parameters are important factors
in predicting performance metrics, although the importance of individual
metrics varies depending on the heuristic and performance metric.

• Distributedly computed FLA metrics are suitable for problem-specific parameter
tuning and control for distributed optimization heuristics.

• An adequate CTV can be selected tailored to the problem and a prioritization
of performance dimensions.

• The assumption of a causal relationship could be further supported.
• The observed patterns persisted even with moderate noise and were still

learnable by ML models.

7.2 Future work

In preparing this thesis, it was necessary to establish a fixed scope. This results in
many starting points for subsequent research topics. On the one hand, this concerns
the expansion of individual aspects in the overall concept developed. Some of them
have already been mentioned in this thesis. On the other hand, the logical next
step is to transfer the concept from the theoretical problem instances to real-world
optimization problems in power systems, which have formed the motivating context.
In the following, the individual research topics are explained in more detail.

7.2.1 Extension of distributed FLA

The method for sampling-based distributed FLA developed in this thesis provides
opportunities for future work.

Extension to more landscape features and techniques:

The selection of FLA features and methods used in this work was done systematically.
The goal was to cover a wide range of different properties, but at the same time to
take advantage of synergies in the computations. However, the set is by no means
complete. Investigating further concepts of FLA for their suitability for a distributed
computation approach and, if possible, developing adapted concepts would be an
interesting prospect. These might include fitness clouds [Van+04], which illustrate
evolvability with respect to a particular search operator, or local optima networks
(LONs) [Och+14], a graph-based model for representing landscape structure in
terms of local optima.
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Enhanced sampling techniques:

The developed method for distributed FLA includes the step of local FLA, which
involves the recombination of all samples received by an agent from other agents.
Until now, classical methods such as Halton Sampling or Latin Hypercube were
used, where the samples of other agents were treated as categorical and thus only
the transmitted values could be used. The fact that relations between the decision
variables of other agents are not taken into account was already pointed out in the
corresponding chapter. This was unproblematic for the problem instances used in
this work. However, when applied to real-world scenarios, this will most likely not
be the case. Therefore, a first step towards transferability would be the development
of further methods for recombining the samples, especially taking into account
interdependencies between decision variables. In addition, other aspects, such as
the best possible coverage of the space of possible local fitness landscapes, could be
pursued more thoroughly.

Investigation of problem classes

The FLA is a preparatory step for the actual optimization. Therefore, as already
mentioned in the corresponding chapter, suitable CTVs should be selected not only
for a specific problem instance, but for a problem class. An essential research
question is consequently how such classes can be reasonably assigned, and how
much a problem has to change in order to leave a class and thus require a new
selection of CTVs. In the motivating use cases from energy systems, this could be
the case if there is a sufficiently large change in the target schedule, or if DERs are
joining or leaving (and thus changing the number of decision variables of the overall
problem).

7.2.2 Refining communication topology adaptation
strategies

The topology adaptation model provides also an area for further research.

Adaptive modes:

So far, the static, decrease, and increase modes have been used, in which either no
topology adaptation takes place or a largely deterministic adaptation is performed.
The number of edges is adapted according to a deterministic policy and is either
always decreased or always increased after a certain number of local optimizations.
It would be worth investigating the use of an adaptive mode that, for example, reacts
to the progress of the optimization and can reactively change the direction of the
edge adaptation. The design of such a mode is not trivial, since exploration and
exploitation in parallel optimization heuristics with decision set decomposition can
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be considered on both global and local levels, and different effects can be attributed
to the exchange topologies depending on the perspective (see section 5.2.2 for more
explanation).

Purposeful selection of edges:

Both the edges in the initial CT and the edges added or removed in the increase and
decrease modes were randomly selected. A number of different criteria could be used
to select the edges.

Considering graph properties would be one possibility. Selected aspects of graph
theory could be optimized in both the initial and intermediate topologies. One
example is the second largest eigenvalue (SLE) of the graph Laplacian (also known
as algebraic connectivity or Fiedler eigenvalue), which has been shown to be an
important factor in quantifying the convergence speed of consensus algorithms
[OFM07]. Other examples would be the optimization of average shortest path
lengths or average clustering coefficients.

The algorithmic progress of individual agents could also be a criterion for edge
adaptation at runtime. Stagnating agents can get new impulses from new or dif-
ferent neighbors. Such an approach is also used in some forms of Particle Swarm
Optimization (PSO).

Another edge selection criterion could be the contribution potential of individual
agents. For example, in the motivating energy use case, agents that have greater
flexibility may also have a greater contribution to the achievement of the overall
goal. Integrating such agents more communicatively (through more edges) might be
advantageous.

When applied to real-world problems, the underlying physical communication
infrastructure may also be an important aspect. For instance, if some agents can
only be reached via a limited communication link, it is probably not ideal to send a
large number of messages to these agents. Accordingly, they should be connected
with only a few edges in the initial and intermediate exchange topologies.

7.2.3 Advancement of algorithmic aspects

Further possibilities for research and development arise from the algorithmic aspects.
These are related to the developed overall concept, the assessment of performance
and to the optimization heuristic IDICE.
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Extended application of the overall concept:

So far, two optimization heuristics have been used to test the overall concept of
distributed FLA and the corresponding selection of an appropriate topology variant.
The evaluation showed that the effects of FLA properties and topology variants can
be very different for the two heuristics. Therefore, a next step would be to explore
the concept with additional parallel optimization heuristics that can handle both
decision set decomposition and spatial distribution of solvers.

Furthermore, some steps of the overall concept, namely the selection of topology
variants and the adaptation of the topology at runtime, have so far been performed
centrally, in the controller. It would be desirable to investigate the extent to which
these aspects can also be performed in a decentralized manner. For example,
agents could decide locally or bilaterally about the addition or removal of edges. But
this would require more knowledge about the overall system at the local level.

However, it is also possible to further develop the learning component in a
centralized way. First, the methodology has not been tested for unknown problems.
This would be a logical next step, probably requiring a revision of ML models.
Moreover, there may be a need for additional FLA metrics for better prediction
quality. A more drastic transformation from offline to online learning would also be
conceivable. For instance, reinforcement learning could be used to learn optimal
topology variants.

Advancement of the performance assessment:

So far, uncertainty has not been a part of the prediction of performance metrics.
For different CTVs within a problem instance, the variance of the results can vary
significantly. Therefore, it would be reasonable to consider this uncertainty when
selecting an appropriate topology variant. For example, the variance or the standard
deviation could be predicted for each of the topology variants.

Another highly relevant extension would be to expand the performance dimen-
sions. An example would be the consideration of robustness with respect to commu-
nication impairments or component failures. Such additional performance dimen-
sions would first have to be assessed, and then the effects of CTVs on them would
have to be determined. Improving performance dimensions such as robustness and
resilience through an appropriate selection of CTVs would then also contribute to
strengthening the self-healing capabilities of the system.

In addition, assessing the relevance of CTVs for solution quality could be improved.
The metric f(x)norm−max is already an indicator for this, but might lead to an under-
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estimation of the relevance. One possibility to implement a reasonable alternative
could be the use of domain knowledge.

Further development and evaluation of IDICE:

The Island Model Differential Co-Evolution (IDICE) was developed to combine the
ability to deal with decision set decomposition (coevolution) and to work in a
spatially distributed system where solvers communicate via a CT (island model). So
far, however, the heuristic has only been used to evaluate the CTVs. In the future, the
heuristic will be compared with other centralized and decentralized state-of-the-art
optimization heuristics in all performance dimensions. The scalability will also be
explicitly investigated and compared. Finally, it is likely that the heuristic itself has
room for improvement.

7.2.4 Transfer to real-world energy system optimization
problems

The main obstacle in the transfer of the overall concept to energy system optimization
problems, where the supply and consumption of many distributed plants must be
coordinated, is the transfer of the FLA. In the motivating real-world problems, the
subsearch spaces that make up the total search space are the flexibilities of the
individual plants. These can be modeled in a wide variety of ways. These range from
simple sets of feasible schedules to complex representations that reflect the technical
degrees of freedom and constraints of the units in detail and unfold a multifaceted
space of feasible schedules, e.g., [Tie+22], [BRS11].

In order to capture the characteristics of the problem, the concepts of FLA have to
be transferred to flexibility representations. This requires sampling methods that are
applicable to the particular flexibility model and that sample the space of possibilities
sufficiently well. This is likely to vary in difficulty depending on the type of system.
For example, battery storage systems can be extremely flexible. Therefore, they offer
a very wide range of possible schedules. There is also a temporal component, as
coordinating generation and consumption often involves more than one time step.
In addition, the flexibility that is used by a plant in one time step often affects the
flexibility that is available in other time steps. Ideally, a method for conducting
FLA would be developed for scenarios with multiple asset types, multiple flexibility
models, and extended timeframes. The applicability of the calculated metrics would
have to be demonstrated, for example, through prediction of algorithm performance
or selection of algorithms or algorithm parameters on their basis.

7.2 Future work 183



In an actual field test, the system would also have to cope with limited observability
and measurement errors. Investigating the predictive ability of ML models in the
presence of noise was a first step in this direction. However, more extensive investi-
gations and possibly the extension of the overall system by self-healing mechanisms
would be necessary. Under these assumptions, the presented approach could be
applied in real applications. It could contribute to making distributed control systems
smarter by improving their self-optimization capabilities.
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Acronyms

AC Autonomic Computing.

COHDA Combinatorial Optimization Heuristic for Distributed Agents.

CT Communication Topology.

CTV Communication Topology Variant.

DE Differential Evolution.

DER Distributed Energy Resource.

DERs Distributed Energy Resources.

EA Evolutionary Algorithm.

EAs Evolutionary Algorithms.

FL Fitness Landscape.

FLA Fitness Landscape Analysis.

FLM Fitness Landscape Metric.

FSD-FLA Fitness and State Distribution based Fitness Landscape Analysis.

GA Genetic Algorithm.

IDICE Island Model Differential Co-Evolution.

ISCM Information-Sharing Cooperation Mechanism.
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LDS Low Discrepancy Sequence.

LHS Latin Hypercube.

MAS Multi-Agent Aystems.

MAS Multi-Agent System.

ML Machine Learning.

MLP Multi-layer Perceptron.

OC Organic Computing.

PSO Particle Swarm Optimization.

RMSE Root Mean Square Error.

SA Simulated Annealing.

SA-FLA Sensitivity Analysis based Fitness Landscape Analysis.

SE-FLA Structure Exploring Fitness Landscape Analysis.

SHGO Simplicial Homology Global Optimization.

ToVarO Topology Variant Optimization.
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List of Symbols

f(x)norm final value of the objective function f(x) after an optimization run, nor-
malized by min-max scaling using only values obtained by optimization runs.

f(x)norm−max final value of the objective function f(x) after an optimization run,
normalized by min-max scaling using a value obtained by a maximization run
as upper bound.

|M |norm total number of messages sent by all agents during an optimization run,
normalized by min-max scaling.

|SE|norm total number of local optimizations ("decide" steps) of all agents during
the optimization run, normalized by min-max scaling.

µ2(y) Fitness Variance.

µ(||d||) Mean state distance.

FEMmicro First Entropic Measure (for ruggedness) on micro scale.

FEMmacro First Entropic Measure (for ruggedness) on macro scale.

SEMmicro Second Entropic Measure (for smoothness) on micro scale.

SEMmacro Second Entropic Measure (for smoothness) on macro scale.

PIC Partial Information Content (for modality).

FEM First Entropic Measure (for ruggedness).

SEM Second Entropic Measure (for smoothness).
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PICmicro Partial Information Content (for modality) on micro scale.

PICmacro Partial Information Content (for modality) on macro scale.

µ2(||d||) State variance.

NF LA notion of neighborhood in the context of FLA.

Υi best known solution candidate.

Ωi (believed) current system state (choices of other agents).

vcv Coefficient of Variation in Variable Sensitivity.

λj version counter for variable choices of agents in COHDA.

vinter Degree of Variable Interaction.

κi working memory of an agent that it sends to its neighbors.
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[ČLM13] Matej Črepinšek, Shih-Hsi Liu, and Marjan Mernik. „Exploration and exploitation
in evolutionary algorithms: A survey“. In: ACM computing surveys (CSUR) 45.3
(2013), pp. 1–33 (cit. on pp. 13, 14, 105, 108).

[CM20] Gianfranco Chicco and Andrea Mazza. „Metaheuristic optimization of power and
energy systems: underlying principles and main issues of the ‘rush to heuristics’“.
In: energies 13.19 (2020), p. 5097 (cit. on p. 4).

[Cra19] Teodor Crainic. „Parallel metaheuristics and cooperative search“. In: Handbook
of Metaheuristics. Springer, 2019, pp. 419–451 (cit. on pp. 3, 81–83, 88, 101).

[CT07] Teodor Gabriel Crainic and Michel Toulouse. „Explicit and emergent cooperation
schemes for search algorithms“. In: International Conference on Learning and
Intelligent Optimization. Springer. 2007, pp. 95–109 (cit. on pp. 3, 83–85, 101).

[Dan51] George B Dantzig. „Maximization of a linear function of variables subject to
linear inequalities“. In: Activity analysis of production and allocation 13 (1951),
pp. 339–347 (cit. on p. 12).

[Dav90] Yuval Davidor. „Epistasis variance: Suitability of a representation to genetic
algorithms“. In: Complex Systems 4.4 (1990), pp. 369–383 (cit. on p. 32).

[De 07] Edwin D De Jong. „Objective fitness correlation“. In: Proceedings of the 9th
annual conference on Genetic and evolutionary computation. 2007, pp. 440–447
(cit. on pp. 51, 52).

[Dör+19] Florian Dörfler, Saverio Bolognani, John W Simpson-Porco, and Sergio Gram-
matico. „Distributed control and optimization for autonomous power grids“.
In: 2019 18th European Control Conference (ECC). IEEE. 2019, pp. 2436–2453
(cit. on p. 3).

[EHM99] Ágoston E Eiben, Robert Hinterding, and Zbigniew Michalewicz. „Parameter
control in evolutionary algorithms“. In: IEEE Transactions on evolutionary compu-
tation 3.2 (1999), pp. 124–141 (cit. on pp. 13, 14, 108).

[ESF18] Stefan C Endres, Carl Sandrock, and Walter W Focke. „A simplicial homology
algorithm for Lipschitz optimisation“. In: Journal of Global Optimization 72.2
(2018), pp. 181–217 (cit. on pp. 87, 223).

[Fin+] Steffen Finck, Nikolaus Hansen, Raymond Ros, and Anne Auger. Real-parameter
black-box optimization benchmarking 2010: Presentation of the noisy functions.
Tech. rep. Citeseer (cit. on pp. 166, 218).

[FRP98] Cyril Fonlupt, Denis Robilliard, and Philippe Preux. „A bit-wise epistasis measure
for binary search spaces“. In: International Conference on Parallel Problem Solving
from Nature. Springer. 1998, pp. 47–56 (cit. on p. 32).

[Gie+19] Dolf Gielen, Francisco Boshell, Deger Saygin, et al. „The role of renewable energy
in the global energy transformation“. In: Energy Strategy Reviews 24 (2019),
pp. 38–50 (cit. on p. 3).

[GK01] J Garnier and L Kallel. „How to detect all maxima of a function“. In: Theoretical
aspects of evolutionary computing. Springer, 2001, pp. 343–370 (cit. on p. 34).

192 Bibliography



[Gol89] David E Goldberg. „Genetic algorithms and walsh functions-partii: Deception
and its analysis“. In: Complex systems 3 (1989), pp. 153–171 (cit. on p. 35).

[Gon+15] Yue-Jiao Gong, Wei-Neng Chen, Zhi-Hui Zhan, et al. „Distributed evolutionary
algorithms and their models: A survey of the state-of-the-art“. In: Applied Soft
Computing 34 (2015), pp. 286–300 (cit. on p. 91).

[HC09] Muhannad Hijaze and David Corne. „An investigation of topologies and migra-
tion schemes for asynchronous distributed evolutionary algorithms“. In: 2009
World Congress on Nature & Biologically Inspired Computing (NaBIC). IEEE. 2009,
pp. 636–641 (cit. on pp. 97, 98).

[HC11] Muhannad Hijaze and David Corne. „Distributed evolutionary algorithm topolo-
gies with adaptive migration schemes“. In: 2011 IEEE Congress of Evolutionary
Computation (CEC). IEEE. 2011, pp. 608–615 (cit. on pp. 97, 98).

[He+07] Jun He, Colin Reeves, Carsten Witt, and Xin Yao. „A note on problem difficulty
measures in black-box optimization: Classification, realizations and predictabil-
ity“. In: Evolutionary Computation 15.4 (2007), pp. 435–443 (cit. on p. 31).

[Hea+21] Tim Head, Manoj Kumar, Holger Nahrstaedt, Gilles Louppe, and Iaroslav Shcherbatyi.
scikit-optimize/scikit-optimize. Version v0.9.0. Oct. 2021 (cit. on p. 61).

[Hin14] Christian Hinrichs. „Selbstorganisierte Einsatzplanung dezentraler Akteure im
smart grid“. PhD thesis. Universität Oldenburg, 2014 (cit. on pp. 5, 86, 89, 97,
223).

[HK05] Wim Hordijk and Stuart A Kauffman. „Correlation analysis of coupled fitness
landscapes“. In: Complexity 10.6 (2005), pp. 41–49 (cit. on pp. 51, 52, 57).

[HLS13a] Christian Hinrichs, Sebastian Lehnhoff, and Michael Sonnenschein. „A decen-
tralized heuristic for multiple-choice combinatorial optimization problems“. In:
Operations Research Proceedings 2012: Selected Papers of the International Annual
Conference of the German Operations Research Society (GOR), Leibniz University of
Hannover, Germany, September 5-7, 2012. Springer. 2013, pp. 297–302 (cit. on
p. 5).

[HLS13b] Christian Hinrichs, Sebastian Lehnhoff, and Michael Sonnenschein. „COHDA:
A combinatorial optimization heuristic for distributed agents“. In: International
Conference on Agents and Artificial Intelligence. Springer. 2013, pp. 23–39 (cit. on
p. 89).

[HN20] Stefanie Holly and Astrid Nieße. „On the effects of communication topologies
on the performance of distributed optimization heuristics in smart grids“. In:
INFORMATIK 2020: Back to the Future - 50. Jahrestagung der Gesellschaft für
Informatik (2020) (cit. on pp. 21, 79, 97, 106, 213).

[HN21a] Stefanie Holly and Astrid Nieße. „Distributed fitness landscape analysis for
cooperative search with domain decomposition“. In: IEEE Symposium Series on
Computational Intelligence (IEEE SSCI 2021). in Press. IEEE. 2021 (cit. on pp. 4,
21, 22, 30, 97, 121, 129, 131).

[HN21b] Stefanie Holly and Astrid Nieße. „Dynamic communication topologies for dis-
tributed heuristics in energy system optimization algorithms“. In: 2021 16th
Conference on Computer Science and Intelligence Systems (FedCSIS). IEEE. 2021,
pp. 191–200 (cit. on pp. 4, 21, 30, 97, 121, 129, 131).

Bibliography 193



[Hol+20] Stefanie Holly, Astrid Nieße, Martin Tröschel, et al. „Flexibility management and
provision of balancing services with battery-electric automated guided vehicles
in the Hamburg container terminal Altenwerder“. In: Energy Informatics 3.1
(2020), pp. 1–20 (cit. on p. 4).

[HS17] Christian Hinrichs and Michael Sonnenschein. „A distributed combinatorial
optimisation heuristic for the scheduling of energy resources represented by
self-interested agents.“ In: IJBIC 10.2 (2017), pp. 69–78 (cit. on pp. 23, 86, 87).

[HS98] Wim Hordijk and Peter F Stadler. „Amplitude spectra of fitness landscapes“. In:
Advances in Complex Systems 1.01 (1998), pp. 39–66 (cit. on p. 37).

[HU17] Jon Herman and Will Usher. „SALib: An open-source Python library for Sensitivity
Analysis“. In: The Journal of Open Source Software 2.9 (Jan. 2017) (cit. on pp. 61,
227).
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AAppendix A

A.1 Benchmark functions

This appendix includes the real-valued continuous benchmark functions for global
optimization that were used for this study. Most of these benchmark functions were
taken from collections of continuous benchmark functions for global optimization,
mainly [MY13] and [PS22]. Scalability was an important selection criterion, as
it should be possible to construct scenarios of arbitrary size. Also, most of the
functions are inseparable to reflect the high interdependence of solution variables
in the motivating energy optimization problems. Figure A.1 shows the values of
the FLA metrics presented in section 2.2 for the 100-dimensional versions of the
benchmark functions. The metrics have been split into two sets for this purpose
due to different scales and for better visibility. The figures show that the values
of the FLA metrics vary widely across the full set of benchmark functions. Some
patterns emerge, such as high values for the ruggedness metrics, i.e. FEMmacro and
FEMmicro, usually being accompanied by low values for the smoothness metrics
SEMmacro and SEMmicro. But functions that are closely aligned at some points
usually still have significantly different values for at least one other metric. Of course,
a set of 23 functions can by no means represent a complete coverage of all possible
combinations of function properties. Nevertheless, the set presented should provide
a solid basis for the experiments performed in this thesis.

The function are split in two sets. Set 1 was primarily used for parameter tuning
or preliminary studies at various points in the development of the overall concept.
Together with set 2, the total set of functions used for the more extensive experiments
is obtained. The tables A.1 and A.2 display the definitions, the default domains,
and the values and positions of the global optima when the functions are used in
the regular way. In addition, 3-D plots of each function are shown from different
sections of the domain. From left to right:

• Full domain

• 10% of the domain, centered around the original domain center
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• 10% of the domain, center shifted 25% of the original domain range from the
original center

• 1% of the origin domain, centered around the original domain center

On the one hand, the plots are intended to give an impression of the different
properties of the fitness landscapes of the functions. On the other hand, they show
how different the characteristics of the different subspaces of a composites space
generated on the basis of a function might be.
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(a) metrics set 1

(b) metrics set 2

Fig. A.1.: FLA metrics for 100-dimensional benchmark functions
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A.1.1 Function set 1

function Definition, Domain and global optimum f(x⃗∗) figure
no.

Ackley
[MY13;
Li+13]

f(x⃗) = −20exp(−0.2
√

1
n

∑n
i=1 x2

i )

A.2
−exp( 1

n

∑n
i=1 cos(2πxi)) + a + exp(1)

xi ∈ [−35, 35]

f(x⃗∗) = 0, with x∗ = (0, . . . , 0)

Eggholder
[MY13; Al-
15]

f(x⃗) =
∑n−1

i=1 [−xisin(
√
|xi − xi+1 − 47|)

A.3
−(xi+1 + 47)sin(

√
|0.5xi + xi+1 + 47|)]

xi ∈ [−512, 512]

f(x⃗∗) = −959.64, with x∗ = (512, 404) for n = 2

Griewank
[MY13]

f(x⃗) = 1 +
∑n

i=1
x2

i
4000 −

∏n
i=1 cos( xi√

i
)

A.4xi ∈ [−100, 100]

f(x⃗∗) = 0, with x∗ = (0, . . . , 0)

Rana
[MY13]

f(x⃗) =
∑n

i=1[xisin(t2)cos(t1) + (x1 + 1)sin(t1)cos(t2)]

A.5with t1 =
√
|x1 + xi + 1| and t2 =

√
|x1 − xi + 1|

xi ∈ [−500, 500]

f(x⃗∗) = −959.64, with x∗ = (512, 404) for n = 2

Salomon
[MY13]

f(x⃗) = 1− cos(2π
√∑D

i=1 x2
i ) + 0.1

√∑D
i=1 x2

i

A.6xi ∈ [−100, 100]

f(x⃗∗) = 0, with x∗ = (0, . . . , 0)
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function Definition, Domain and global optimum f(x⃗∗) figure
no.

Sargan
[MY13]

f(x⃗) =
∑n

i=1 n(x2
i + 0.4

∑n
j ̸=i xixj)

A.7xi ∈ [−100, 100]

f(x⃗∗) = 0, with x∗ = (0, . . . , 0)

Schaffer F6
[MY13]

f(x⃗) =
∑n

i=1 0.5 + sin2(
√

x2
i +x2

i+1)−0.5
[1+0.001·(x2

i +x2
i+1)]2

A.8xi ∈ [−100, 100]

f(x⃗∗) = 0, with x∗ = (0, . . . , 0)

Schwefel
2.26 [Sch81;
MY13]

f(x⃗) = 418.9829n−
n∑

i=1
xi sin

√
|xi|

A.9xi ∈ [−500, 500]

f(x⃗∗) = 0, with x∗ = (420, 968746, . . . , 420, 968746)

Penalized
Schwefel
2.26 [HN20]

f(x⃗) = 418.9829n−
n∑

i=1
xi sin

√
|xi|+

∣∣∣∣ n
2∑

i=1
x2i −

n
2∑

i=1
x2i−1

∣∣∣∣
A.10xi ∈ [−500, 500]

f(x⃗∗) = 0, with x∗ = (420, 968746, . . . , 420, 968746)

Qing [MY13]

f(x⃗) =
∑n

i=1(x2 − i)2

A.11xi ∈ [−500, 500]

f(x⃗∗) = 0, with x∗ = (±
√

i, . . . ,±
√

i)

Tab. A.1.: Benchmark function set No. 1
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Fig. A.2.: Ackley

Fig. A.3.: Eggholder

Fig. A.4.: Griewank
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Fig. A.5.: Rana

Fig. A.6.: Salomon

Fig. A.7.: Sargan

Fig. A.8.: Schaffer F6
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Fig. A.9.: Schwefel 2.26

Fig. A.10.: Penalized Schwefel 2.26

Fig. A.11.: Qing
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A.1.2 Function set 2

function Definition, Domain and global optimum f(x⃗∗) figure
no.

Alpine 2
[MY13]

f(x⃗) = −
∏n

i=1
√

xisin(xi)

A.12xi ∈ [0, 10]

f(x⃗∗) = 2.808n , with x∗ = (7.917, . . . , 7.917)

Drop Wave
[PS22]

f(x⃗) = 1−
1+cos

(
12
√∑n

i=1 x2
i

)
0.5
∑n

i=1 x2
i +2

A.13xi ∈ [−5.12, 5.12]

f(x⃗∗) = 0, with x∗ = (0, . . . , 0)

Happy Cat
[BF12; PS22]

f(x⃗) =
[(
||x||2 − n

)2]α + 1
n

(
1
2 ||x||

2 +
∑n

i=1 xi

)
+ 1

2

A.14xi ∈ [−20, 20]

f(x⃗∗) = 0, with x∗ = (−1, . . . ,−1)

Levy [LM05]

f(x⃗) = sin2(πw1) +
∑d−1

i=1 (wi − 1)2[1 + 10sin2(πwi + 1)]

A.15
+(wd − 1)2[1 + sin2(2πwd)]

xi ∈ [−10, 10] and wi = 1 + xi−1
4 for all i = 1, . . . , d

f(x⃗∗) = 0, with x∗ = (1, . . . , 1)

Michalewicz
function
[Al-15]

f(x⃗) = −
∑n

i=1(sin(xi) ∗ sin( ix2
i

π )2m)

A.16xi ∈ [0, π] and m = 10

f(x⃗∗) ≈ −1.8 , with x∗ ≈ (1.8, 1.6) for n = 2
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function Definition, Domain and global optimum f(x⃗∗) figure
no.

Mishra 11
[MY13]

f(x⃗) =
(

1
n

∑n
i=1 |xi| −

(∏n
i=1 |xi|

) 1
n

)2

A.17xi ∈ [−10, 10]

f(x⃗∗) = 0, with x∗ = (0, . . . , 0)

Rastrigin
[Li+13]

f(x⃗) = 10n +
∑n

i=1(x2
i − 10cos(2πxi))

A.18xi ∈ [−5.12, 5.12]

f(x⃗∗) = 0, with x∗ = (0, . . . , 0)

Rosenbrock
[MY13]

f(x⃗) =
∑n

i=1(100(xi+1 − x2
i )2 + (1− xi)2)

A.19xi ∈ [−30, 30]

f(x⃗∗) = 0, with x∗ = (1, . . . , 1)

Sphere Func-
tion [MY13]

f(x⃗) =
∑n

i=1(x2
i )

A.20xi ∈ [−100, 100]

f(x⃗∗) = 0, with x∗ = (0, . . . , 0)

Wavy Func-
tion [MY13]

f(x⃗) = 1− 1
n

∑n
i=1 cos(kxi) ∗ exp(−x2

i
2 )

A.21xi ∈ [−2π, 2π] and k = 50

f(x⃗∗) = 0, with x∗ = (0, . . . , 0)

Weierstrass
Function
[MY13;
Fin+; PS22]

f(x⃗) =
∑n

i=1(
∑kmax

k=0 (ak ∗ cos(2πbk(xi + 0.5))))

A.22
−n ∗

∑kmax
k=0 (ak cos(πbk))

xi ∈ [−5, 5] and a = 0.5, b = 3, kmax = 11

f(x⃗∗) = 0, with x∗ = (0, . . . , 0)

Whitley
[MY13]

f(x⃗) =
∑n

i=1
∑n

j=1

(
(100(x2

i −xj)2+(1−xj)2)2

4000 − cos(100(x2
i − xj)2

A.23
+(1− xj)2) + 1

)
xi ∈ [−10.24, 10.24]

f(x⃗∗) = 0, with x∗ = (1, . . . , 1)
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function Definition, Domain and global optimum f(x⃗∗) figure
no.

Xin-She
Yang 1
[PS22]

f(x⃗) =
(∑n

i=1(|xi|)
)
∗ exp

(
−
∑n

i=1 sin(x2
i )
)

A.24xi ∈ [−2π, 2π]

f(x⃗∗) = 0, with x∗ = (0, . . . , 0)

Tab. A.2.: Benchmark function set No. 2

Fig. A.12.: Alpine No. 2

Fig. A.13.: Drop Wave

Fig. A.14.: Happy Cat
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Fig. A.15.: Levy

Fig. A.16.: Michalewicz

Fig. A.17.: Mishra 11

Fig. A.18.: Rastrigin
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Fig. A.19.: Rosenbrock

Fig. A.20.: Sphere

Fig. A.21.: Wavy function

Fig. A.22.: Weierstrass
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Fig. A.23.: Whitley

Fig. A.24.: Xin-She Yang 1

A.2 Algorithm Setup

The general principles of the two algorithms in use are described in the respective
chapters, namely section 4.2.1 and section 4.2.2. For both algorithms, several param-
eters must be set appropriately. The focus of this work is only on one hyperparameter,
namely the communication topology. Since the goal is to evaluate optimization runs
with different communication topologies, reasonable default values for other parame-
ters were determined in advance, but no extensive parameter tuning was performed.
The analysis of the interactions of the topology with other parameters is left for
future work. The default settings are presented below for both algorithms.

A.2.1 COHDA

A major advantage of COHDA is that hardly any hyperparameters need to be specified.
In the implementation for continuous global optimization problems used here, only
the so-called reaction time and the choice of the local optimizer remain. The reaction
time or sleeping time is a short period of time during which the agent remains idle
between two iterations of its perceive - decide - act phases. During this time, new
messages may arrive from other agents. These messages are processed together in the
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subsequent perceive phase. In [Hin14] Hinrichs showed that such an intermediate
idle phase has a positive effect on the performance of the algorithm. This is especially
the case if the agents are slightly asynchronous due to different reaction times, i.e.
with increased inter-agent variation. A similar direction was taken in the study of
Bremer et al. [BL19]. By explicitly adding laziness to the agent behavior, i.e. by
randomly delaying the decision phase, they were able to show an improvement in
optimization performance in many cases. Since inter-agent variation is expected
to have positive effects, but a high reaction time also increases the simulation time
considerably, a compromise had to be found. In all optimizations performed with
COHDA in this thesis, the agents choose the reaction time after each iteration as a
random value between 0.05 and 0.15 seconds.

Second, the local optimizer must be selected. In the chosen setting, this optimizer
has to optimize only two decision variables within their feasible bounds for a given
objective function. Therefore, a variety of pre-implemented global optimization
methods can be used. In a preliminary study, several optimizers from the python
library SciPy [Vir+20] were tested. The simplicial homology global optimization
(SHGO) [ESF18] showed the best tradeoff between runtime and solution quality.
The local optimizers have their own hyperparameters. For SHGO, the default
parameters of the SciPy library have been used mainly, with only minor adjustments
in a few places. A final adaptation of COHDA is to limit the simulation time to
50 minutes (chosen based on the number of agents). Since the simulations run
on a single machine, this corresponds to about one minute of CPU time per agent.
In a real distributed environment, they would run in parallel, but there would be
communication overhead. Without a fixed timeout, some of the simulation runs for
particularly difficult problems may otherwise take an extremely long time. However,
due to the anytime property of COHDA, complete solutions are available shortly
after the start of the optimization. In the case of a timeout, the best solution that
has been found so far will be taken as the result of the negotiation. Table A.3 gives
an overview of all parameters required for COHDA in this variant and the values
chosen.

A.2.2 IDICE

The IDICE algorithm is a combination of the island model and co-evolutionary algo-
rithms. In addition, the local optimization specifically implemented is Differential
Evolution (DE). Therefore, several parameters have to be selected, some of which
are related to the characteristics of the island model, some to DE, and some to their
combination in the spatially distributed setup. The response time between iterations
and the 50-minute timeout are handled in the same way as for COHDA.
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parameter description value

reaction time
idle time between the "act" step
of an iteration and the "perceive"
step of the next iteration

random value between
0.05 and 0.15 seconds

local optimizer

optimization algorithm that is ap-
plied in each "decide" step to
choose new values for the agent’s
own decision variables

simplicial homology
global optimization
(SHGO)

sampling method
sampling method applied by
SHGO

simplicial (default by
SciPy) - "provides the
theoretical guarantee
of convergence to the
global minimum in finite
time" [Vir+20]

n
"Number of sampling points used
in the construction of the simpli-
cial complex" [Vir+20]

200 (100 is default by
SciPy)

iters
"Number of iterations used in the
construction of the simplicial com-
plex" [Vir+20]

5 (1 is default by SciPy)

timeout timeout of an optimization run
50 minutes (wall-clock
time)

Tab. A.3.: Applied parameter Setting for COHDA

In contrast to COHDA in combination with SHGO, it is not possible to resort to
default parameters. Therefore, a small preliminary study on parameter tuning was
carried out. An experimental setup for assigning parameters was created using Latin
Hypercube and tested using 3 composite spaces per benchmark function. Depending
on the weighting of solution quality and convergence time, different configurations
are advantageous. As a result of the preliminary study, two configurations were
selected, both of which are listed in table A.4. The normalized error and the
normalized computation time as a weighted sum were used as selection criteria.
Config 1 puts more emphasis on solution quality (6:4), while Config 2 puts more
emphasis on fast computation time (4:6).

Figure A.25 shows the performance of both configurations for several benchmark
functions, also compared to COHDA. For each benchmark function, the first 3
composite spaces were used and optimizations were performed with a static small-
world topology (k = 24, p = 0.5) and simplified setups of decrease (k = 50, p = 0.5)
and increase (k = 2, p = 0.5). In each case there was a fast (α = 0.7) and a
slow (α = 0.05) adaptation variant. Normalization was performed separately for
each composite space. A min-max scaling was used for all occurring values. The
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parameter description config 1 config 2

reaction time
idle time between the "act" step
of an iteration and the "perceive"
step of the next iteration

random value between
0.05 and 0.15 seconds

itermin
minimal number of iterations
each agent must perform

18 37

µ
number of iterations between mi-
grations

6 10

k k-best solutions are migrated 10 12

m population size on each island 10 30

ρ
how many samples should be gen-
erated in the splicing operation

equal to number of deci-
sion variables

strategy mutation strategy in DE rand2bin
currentto-
best1exp

itermax

number of iterations without im-
provement after which the agent
requests termination

231 284

cf

convergence factor: after cf ∗ µ
iterations of the DE solver the
rounding factor for self-retrieved
candidates is reduced by one dec-
imal place

45 7

timeout timeout of an optimization run
50 minutes (wall-clock
time)

Tab. A.4.: Applied parameter Setting for IDICE; The parameters’ functionality is described
in more detail in section 4.2.2 in the relevant steps.

A.2 Algorithm Setup 225



figure shows that the performance of the different heuristics or configurations varies
depending on the benchmark function and thus probably depends on the problem
characteristics.

COHDA is usually more efficient in terms of the number of search executions and
the number of messages. But the two IDICE configurations are quite competitive,
especially in terms of the error rate, where they perform significantly better in
several benchmarks. In addition, the difference between the two configurations
becomes apparent. Config 1 requires more resources but yields better results. Config
2, on the other hand, is slightly less resource-intensive, but usually finds sufficiently
good solutions. Both setups should be suitable for investigating the influence of
the communication topology, since they show different performance in different
benchmark functions.

Fig. A.25.: Comparison of performance of IDICE configurations and COHDA on a subset of
benchmark functions
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BAppendix B

B.1 Parameter Tuning for distributed FLA

In chapter 3, the techniques for the computation of FLA metrics have been divided
into different feature groups depending on the sampling techniques used for their
computation in the different phases of the distributed FLA. Below, a parameter
tuning for distributed computation is performed for each of these feature groups.
The tunable parameters and value ranges are listed in table 3.1. Centrally computed
FLA metrics are always used for reference.

B.1.1 Distributed sensitivity analysis

To fine-tune the distributed calculation of the sensitivity indices, 5 composite spaces
were selected from each of the 10 benchmark functions in set number 1 (ap-
pendix A.1.1), resulting in 50 problem instances (per dimension). The calculation
was performed using the different parameter combinations from table 3.1. The
global calculation using SAlib [IUH22; HU17] serves as a reference. Thus, across
all decision variables, the RMSE can be computed for both the first order and total
order effects:

SiRMSE =

√√√√1
k

k∑
i=1

(Si − Si−ref )2 (B.1)

StiRMSE =

√√√√1
k

k∑
i=1

(Sti − Sti ref )2 (B.2)

where Si and Sti are the distributedly computed indices, Si−ref and Sti−ref the
indices computed by SAlib and k the number decision variables. The experiments
were performed with 10 and 100 decision variables to investigate the impact on
different system sizes.
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Results

In the following, first the effect of the initial sampling parameters and then the effect
of the local FLA are examined. In each case, the sampling method and the number
of samples are varied. Figure B.1 shows the results for the combination of different
initial sampling methods and number of samples. There is no discernible trend in
either the error rates of the two indices, nor in the calculation duration. This could be
due to the small number of variables (2) that each agent holds in this configuration.
When considering larger dimensions, a drop in the error rate can be observed for
more than 32 initial samples. To investigate whether this trend continues, even
larger values for the initial sample size were tested for the 100-dimensional problems,
namely 256 and 512. Figure B.2 shows the results. For sample sizes greater than 32,
a reduction in large error values resp. outliers in the violin plots for the errors in
the total order indices is noticeable. In addition, the probability density functions
become significantly flatter between 64 and 128 for most samplers, indicating a
higher probability of even smaller errors with more than 64 samples. The positive
trend is not continued with even more samples. The error rates of first order indices
seem not be significantly influenced by the initial sampling. The computation time
has been omitted from this plot, as it was not affected by the initial sampling.

Fig. B.1.: Violin plots showing the effects of the initial sampling method and the number of
samples on the error rates of the indices and the computation time for dimension
10

In contrast to the initial sampling, the local FLA showed larger impact on both, errors
and computation time. Figure B.3 shows the results for 10 dimensions. The errors
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Fig. B.2.: Violin plots showing the effects of the initial sampling method and the number of
samples on the error rates of the indices and the computation time for dimension
100 with extended number of initial samples

for both indices show a clear downward trend as more samples are used, while at
the same time the computation time increases. If a worst case calculation time of
6 seconds is acceptable for the use cases, the largest possible number of samples
would surely be chosen for a small number of dimensions. No clear favorite can
be identified in the sampling method. They seem to have little influence on the
calculation time. For the total order indices, the LHS variants perform slightly better,
for the first order indices Halton.

However, the problem instances with 100 dimensions present a different result.
Figure B.4a shows the results for all combinations of sampling techniques and the
number of samples. Here the runs with Halton sampling produced inferior results.
Removing the runs with Halton and those with 264 samples leaves the results in
fig. B.4b. The two LHS variants perform equally well. Again, the clear relationship
between the number of samples and the reduction of errors is evident. In order to
select a suitable number of samples, it is necessary to evaluate which calculation
time is still appropriate and to choose the largest possible number accordingly. The
appropriate computation time is of course dependant on the use case. When con-
sidering the computation times displayed in fig. B.4b, it must be taken into account
that the computation in the experimental setup was not performed in parallel, since
all agents were running on one process core (no computer with 100 cores available).
The time required for communication in spatially distributed systems was in turn
not needed. The computation times are therefore a rather rough estimate and are
only intended to serve as an indicator of the increased computational effort. Another
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Fig. B.3.: Violin plots showing the effects of the sampling method and the number of
samples for local FLA on the error rates of the indices for dimension 10

important aspect at this point are also the computational resources. The devices in
the field on which the agents run have only limited capacities. The multiplication
of large matrices, as required for the calculation of the sensitivity indices, can be
overstraining for such a device. Especially if the calculations for the FLA is not the
only parallel running task of the agent.

Figure B.5 shows the same results as fig. B.4b, but instead of the distribution as
violin plots uses scatter plots over all problem instances (x-axis). Once again, this
shows that a higher number of samples reduces the errors for both indices. However,
it also shows that the error size is influenced most by the problem itself. All problem
instances located in the upper point cloud with the largest errors at Sti are composite
spaces of Salomon. All problem instances in the point cloud with the highest errors
at Si are composite spaces of Salomon and Schaffer F6. The same holds for the
computation times. The extreme Points in fig. B.5c all belong to composite spaces of
the Sargan function. Excluding Sargan, fig. B.5d is retrieved.

In summary, the parameter evaluation showed that initial sampling has only a minor
impact on the accuracy of the indices and the computational effort with the current
setup. From a number of 128 samples on, no significant improvement was observed.
However, the parameterization for local FLA shows a clear correlation between the
number of samples and the quality of the results as well as the computational effort.
Especially for higher dimensional problems, there is also a clear difference between
different sampling techniques. Table B.1 gives an overview of the findings and the
chosen values for the parameters used in the further course of this work.
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(a) Full set of results. Errors for runs with Halton sampling stand out.

(b) Reduced result set excluding runs with Halton sampling and the ones with 256 samples

Fig. B.4.: Violin plots showing the effects of the sampling method and the number of
samples for local FLA on the error rates of the indices for dimension 100.
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(a) Sti

(b) Si

(c) calculation time

(d) calculation time without sargan

Fig. B.5.: Scatter plots showing how sampling methods and the number of samples for local
FLA perform across the used problem instances for dimension 100.
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B.1.2 Distributed computation of fitness distributions

The parameter tuning for fitness distribution based metrics follows the same setup
as for sensitivity based metrics (see appendix B.1.1 and table 3.1). First the effect of
the initial sampling parameters and then the effect of the local FLA are examined. In
each case, the sampling method and the number of samples are varied. For reference,
the calculation of the metrics is additionally performed centrally. Since the mean
value over the metrics calculated for the subspaces should be close to the centrally
calculated metric over all search spaces, the deviation from this reference value is
used below as a criterion for parameter selection:

deviation fitness variance: µ2(y)dev =|µ2(y)mean − µ2(y)ref |

deviation state variance: µ2(||d||)dev =|µ2(||d||)mean − µ2(||d||)ref |

deviation mean state distance: µ(||d||)dev =|µ(||d||)mean − µ(||d||)ref | (B.3)

Results

Figure B.6 and fig. B.7 show the results of varying the initial sampling on 10 D and
100 D problemin instances. The initial sampling does not appear to have a significant
impact on the deviation from the centrally calculated metrics, Thus, the parameters
proposed for the distributed sensitivity analysis can be adopted.

Whereas, the parameters of local FLA do show an impact on the quality of the results
of the metrics as depicted in fig. B.8 and fig. B.9. As expected, the computational
effort increases with the number of samples. Interestingly, this increase was consid-
erably smaller for centered LHS in the case of 100-dimensional problem instances.
The effects of varying parameters on the deviations of the three fitness and state
distribution based metrics differ and therefore need to be considered individually.

Regarding the deviations of fitness variances, a clear downwards trend is visible
for 10 dimensions. In the higher dimensional case this is not observable, but the
deviations decrease compared to the lower dimensional case. It is noteworthy
that some of the setups with just 265 samples exhibit the smallest deviation. The
sampling method itself does not seem to have major influence on the variances,
although for dimension 10 Sobol sampling shows slightly better results. In general,
however, the deviations in this metric tend to be small, and some variation is to be
expected due to the stochastic nature of the sampling process.

The deviation of the state variances shows a different picture. In general, the violin
plots rather resemble box plots, since most values show small deviation and some
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Fig. B.6.: Violin plots showing the impact of the initial sampling methods and the number
of samples on the deviation of fitness and state variance based metrics from
centrally computed counterparts for dimension 10.

Fig. B.7.: Violin plots showing the impact of the initial sampling methods and the number
of samples on the deviation of fitness and state variance based metrics from
centrally computed counterparts for dimension 100.
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Fig. B.8.: Violin plots showing the impact of the sampling method and the number of
samples for local FLA on the deviation of fitness and state variance based metrics
from centrally computed counterparts for dimension 10.

Fig. B.9.: Violin plots showing the impact of the sampling method and the number of
samples for local FLA on the deviation of fitness and state variance based metrics
from centrally computed counterparts for dimension 100.
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outliers dominate the impression. However, when looking at the 100 dimensional
runs, with an increase in the number of samples, a decrease in the height of the
boxes and a decrease in the number and magnitude of the outliers becomes apparent.
Here, the Halton sampling compares poorly.

The deviation of the mean state distances shows hardly any difference for the
different parameterizations in the 10-dimensional setups. For the 100-dimensional
setups, the number of samples again has no discernible effect. For the sampling
method, on the other hand, differences are noticeable, with Halton Sampling pro-
ducing slightly better results.

The following can therefore be stated as an overall summary: The parameters for
initial sampling showed no major impact on the deviations. Thus, parameters can be
set according to requirements of other FLA metrics. For local FLA, the number of
samples had a positive effect on the deviations of some metrics, but also resulted
in a higher computational effort. This increased effort seems do be less relevant
when centered LHS is used. In summary, centered LHS with 1024 samples seems to
be a reasonable compromise, which is also consistent with the setting that is most
appropriate for distributed sensitivity analysis.

B.1.3 Distributed computation of structure exploring metrics

The parameter tuning of the SE-FLA metrics involves the same parameters as the
previous two feature groups, namely the sampling method and the number of
samples, for the initial sampling and the local FLA. In addition, the random walks
for the local FLA are repeated a number of times to compensate for random effects.
The number of repetitions is therefore another relevant parameter (see table 3.1).
The figures B.10,B.11, B.12, B.13, B.14 and B.15 show the deviation for the centrally
and distributedly calculated FEM with different parameter combinations for the
initial sampling and the local FLA. The FEM is taken as exemplary metric, but
the impression remains the same for all SE-FLA metrics. In addition, for the 100-
dimensional problems, only a reduced set of parameter values (e.g., the largest and
smallest number of samples) was used for the calculation after no effect was observed
for the 10-dimensional problems. The influence of the parameters concerning
the sampling is very small with respect to the calculated values. The deviations
are almost equal, since the calculated values differ only by a few decimal places.
Consequently, the violin plots look virtually identical. The initial sampling method
and number of samples in fig. B.10 and B.11 do not even influence the computational
effort. Regarding the local FLA, the sampling method is also negligible. The number
of samples, however, and the number of repetitions of the entire computation
procedure affect the computational effort, as shown in figures B.12, B.13, B.14 and

236 Chapter B Appendix B



B.15. Since they do not seem to have influence on the calculated values, the most
sensible conclusion is to choose the smallest number in each case and thus the least
required computational effort.

Since the repetition of the overall computation procedure increases the computa-
tional effort immensely and 30 repetitions did not show different results than 10
repetitions, the experiments where repeated with even less repetitions in the dis-
tributed computation, namely 5 and 1 as shown in fig. B.15. A possible explanation
is that, based on the recombined samples of the other agents, many random walks
have already been performed in different versions of the local search space. Thus,
further repetitions of the random walks are unlikely to add further value.

Fig. B.10.: Violin plots showing the impact of the initial sampling methods and the number
of samples on the deviation of FEM from centrally computed counterpart for
dimension 10.

In order to obtain a more comprehensive impression of the distributed computation
of the SE-FLA metrics, the values for a composite space in 10-D of each benchmark
function are shown in figures B.16 and B.17. These are scatter plots in which a
separate data point is plotted for each combination of sampling parameters (sampling
method and number of samples for both phases and number of repetitions). However,
in most cases these points are so close together that only one point is visible. Three
calculations with 30 repetitions were performed for the centrally calculated reference
points. FEM and PIC as measures for ruggedness and modality are in all cases
slightly underestimated. The SEM as measure of smoothness is also underestimated
on micro scale but mostly overestimated on macro scale. The distributed calculation
of the dispersion metric always results in a lower values, which indicate single funnel
landscapes. It seems reasonable that the global shape of the landscape is harder to
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Fig. B.11.: Violin plots showing the impact of the initial sampling methods and the number
of samples on the deviation of FEM from centrally computed counterpart for
dimension 100.

Fig. B.12.: Violin plots showing the impact of the sampling method and the number of
samples for local FLA on the deviation of FEM from centrally computed
counterpart for dimension 10.
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Fig. B.13.: Violin plots showing the impact of the sampling method and the number of
samples for local FLA on the deviation of FEM from centrally computed
counterpart for dimension 100.

Fig. B.14.: Violin plots showing the impact of the the number of samples for local FLA
and the number of repetitions of the local FLA on the deviation of FEM from
centrally computed counterpart for dimension 10.
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Fig. B.15.: Violin plots showing the impact of the the number of samples for local FLA
and the number of repetitions of the local FLA on the deviation of FEM from
centrally computed counterpart for dimension 100.

perceive in the local calculation due to the limited perspective. The gradient-based
metrics are very close to the centrally calculated values for most functions. The
exceptions are Salomon, Ackley and Schaffer F6, where the values are estimated to
be significantly higher in the distributed calculation. These are the same functions
for which the first order effects in the distributed and the central calculation deviate
strongly from each other. The results for 100-D problem instance show the same
picture.

In general, the deviations are similar for each metric when compared across multiple
problem instances (i.e., composite spaces). This could indicate that they properly
represent the distributed view of the problem or that there is a relatively constant bias
compared to the central computation. Either way, this seems to provide comparability
among problem instances, suggesting suitability for the metrics’ actual purpose,
namely, problem-specific parameterization of distributed optimization heuristics.
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(a) F EM as measures for ruggedness on micro and macro scale (maximum step size of 1% and 10%
of the search space)

(b) SEM as measures for smoothness on micro and macro scale (maximum step size of 1% and 10%
of the search space)

(c) P IC as measures for modality on micro and macro scale (maximum step size of 1% and 10% of
the search space)

Fig. B.16.: Comparison of central and distributed calculation of information theoretic
measures for 10-D problem instances
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(a) Dispersion metric that indicates the presence of funnels

(b) gradient measures

Fig. B.17.: Comparison of central and distributed calculation of gradient based measures
and the dispersion metric for 10-D problem instances
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B.1.4 Final parameter setup

Table B.1 summarizes the findings on the impact of the parameters and the conse-
quently chosen values for each parameter.

phase parameter findings
chosen
value

in
it

ia
ls

am
pl

in
g

1.1: sampling
method

SA-FLA:
No detectable influence for small number of deci-
sion variable per agent. Thus any sampling method
(sobol, halton, LHS) may be used

LHS
classic

FSD-FLA:
No detectable influence on deviation from centrally
computed reference values

SE-FLA:
No detectable influence on deviation from centrally
computed reference values

1.2: number of
samples

SA-FLA:
128 is sufficient, but larger numbers do not in-
crease computational times significantly and could
be taken as well if beneficial for other metrics 128

FSD-FLA:
No detectable influence on deviation from centrally
computed reference values

SE-FLA:
No detectable influence on deviation from centrally
computed reference values
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phase parameter findings
chosen
value

lo
ca

lF
LA

2.1: sampling
method

SA-FLA:
For a small number of samples, Halton sampling
yields slightly better results for first order indices.

Halton for
10-D

For larger problem dimensions, the two LHS vari-
ants considerably outperform Halton. LHS

centered
for 100-DFSD-FLA:

Different sampling methods have slight advantages
or disadvantages for different metrics and problem
dimensions. In terms of deviations from the ref-
erence values, no method stands out in particular.
In terms of computational effort, LHS centered is
clearly preferable, especially for larger system sizes.

SE-FLA:
No detectable influence on deviation from centrally
computed reference values

2.2: number of
samples

The more samples, the better the results, but at the
cost of computational effort. Largest possible value
should be chosen depending on the use case. 1024 for

LDS
SA-FLA:
1024 is sufficient

FSD-FLA:
1024 is sufficient

SE-FLA:
No detectable influence on deviation from centrally
computed reference values but on the computa-
tional effort. Thus, the lowest number is appropri-
ate.

32
for SE-
FLA

2.3: number of repe-
titions

SE-FLA:
No detectable influence on deviation from centrally
computed reference values but on the computa-
tional effort. Thus, the lowest number is appropri-
ate.

10

Tab. B.1.: Overview of the findings about the impact of parameters and the chosen values
for FLA features

B.2 Correlation Analysis of distributed FLA
metrics

In section 3.7, the correlation of all distributed FLA metrics was calculated using the Spearman
correlation coefficient and clustered by applying the UPGMA algorithm [Mül11]. Figures B.18, B.19,
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and B.20 show, for each cluster, the values of the included metrics across all problem instances in
shared scatter plots. For clusters 9 - 14, the correlation of the clustered metrics is clearly visible, as the
relation of the values between different problem instances is very similar. For cluster number 15, high
spikes occur for several functions (Alpine 2, Drop Wave, Mishra 11, Rastrigin and Xin She Yang 1). First,
these extremely high values for the state variance metrics show that for these functions the differences
between different subsearch spaces in a composite space are large (high standard deviations). Second,
both the variances and the mean values within the subsearch spaces for the mean distances of points
with similar fitness are large. Overall, this indicates very heterogeneous setups. If these functions
are omitted from the analysis (fig. B.20b), it is easier to see that all 4 metrics show spikes for the
same problems, but at different magnitudes. For the Sargan function, the increase of µ(||d||) mean

is strikingly high compared to the other metrics. This could be due to the fact that Sargan is a bowl
shaped function with high edges and similar fitness values can therefore be very far apart. At the
same time, its shape changes little when the subspaces are created, which makes the heterogeneity
comparatively small. Moreover, µ(||d||) mean is the only one of the 4 metrics that is based solely on
mean values and does not include variance or standard deviation. Nevertheless, the 4 metrics show an
overall similar behavior when considering all problem instances.
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Fig. B.18.: Clusters 9 - 11: values of clustered metrics across problem instances
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Fig. B.19.: Clusters 12 - 14: values of clustered metrics across problem instances
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(a) Full set of problem instances
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(b) reduced set of problem instances (and rescaled)
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Fig. B.20.: Cluster 15: values of clustered metrics across problem instances
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CAppendix C

This part of the appendix presents additional data and figures related to chapter 6
and thus to the evaluation of the importance of features or the evaluation of the
predictive ability of ML models.

C.1 Correlation Analysis

In section 6.2.2, a correlation analysis was performed between the distributedly
computed FLA metrics and the performance metrics. This analysis also distinguished
between different CTVs.

C.1.1 Interpretation of correlation coefficients

The following tables C.1, C.2, C.3 and C.4 list the proportionally highest positive
and negative correlations and discuss the resulting implications. A bold marking of
the heuristic name indicates a relatively high coefficient for the metric compared to
other coefficients for that heuristic.

vcv

- COHDA (-0.32)
- IDICE (-0.18)

Coefficient of variation in variable sensitivity

↑ f(x)norm (lower solution quality) correlates with

↓ vcv: degree of influence by the variables becomes more balanced

↓ f(x)norm (higher solution quality) correlates with

↑ vcv: degree of influence by the variables becomes more unevenly distributed

SEMmacromean

- COHDA (-0.31)
- IDICE (-0.39)

mean value of smoothness over all sub-search spaces

↑ f(x)norm (lower solution quality) correlates with

↓ SEMmacromean : lower average smoothness

↓ f(x)norm (higher solution quality) correlates with

↑ SEMmacromean : higher average smoothness

Tab. C.1.: Proportionally high negative correlation for f(x)norm; A bold marking of the
heuristic indicates a relatively high coefficient for the metric compared to other
coefficients for the heuristic. The numbers in parentheses are the average
correlation coefficients for the FLA metric and the heuristic.
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C.1.2 P-Values

During the correlation analysis in section 6.2.2, the p-values for the correlation
coefficients were calculated. These p-values are an indication of how likely it is that
the value of the correlation coefficient could have been obtained by chance. They
are plotted in heatmaps similar to the heatmaps plotted in section 6.2.2 with the
correlation coefficients, in figures C.1, C.2, C.3a and C.4.

C.2 Permutation Importance

In section 6.2.3, the permutation importance of the FLA metrics and CTV parameters
was examined in relation to the prediction of the performance metrics. Tables C.5,
C.6, C.7 and C.8 show the permutation importance scores used to generate the bar
charts in section 6.2.3.

C.3 ML Model Parameters

The Random Forest regression models in section X were tuned with a random search
for hyper parameter optimization. Table C.9 shows the final parameter settings used
for the analyses in section 6.3.2 and section 6.3.3. The final parameter settings for
section 6.3.4, chosen after applying noise to a subset of the training data, are shown
in table C.10.
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metric implication

DMmean

- COHDA (0.26)
- IDICE (0.49)

Dispersion metric mean

↑ f(x)norm (lower solution quality) correlates with

↑ DMmean: more likely multi-funnel landscapes

↓ f(x)norm (higher solution quality) correlates with

↓ DMmean: more likely single-funnel landscapes

DMstd

- COHDA (0.17)
- IDICE (0.55)

Dispersion metric standard deviation

↑ f(x)norm (lower solution quality) correlates with

↑ DMstd: greater heterogeneity with respect to global shapes across subsearch
spaces

↓ f(x)norm (higher solution quality) correlates with

↓ DMstd: lower heterogeneity with respect to global shapes across subsearch
spaces

SEMmacrostd

- COHDA (0.11)
- IDICE (0.53)

Standard deviations of smoothness and modality on macro scale

↑ f(x)norm (lower solution quality) correlates with

↑ SEMmacrostd : greater heterogeneity with respect to smoothness and modality
across subsearch spaces

↓ f(x)norm (higher solution quality) correlates with

↓ SEMmacrostd : lower heterogeneity with respect to smoothness and modality
across subsearch spaces

F EMmacromean

- COHDA (0.32)
- IDICE (0.266)

Mean values for ruggedness and modality on macro scale combined with average
gradients

↑ f(x)norm (lower solution quality) correlates with

↑ F EMmacromean : greater mean ruggedness, modality and average gradients

↓ f(x)norm (higher solution quality) correlates with

↓ F EMmacromean : lower mean ruggedness, modality and average gradients

Tab. C.2.: Proportionally high positive correlation for f(x)norm; A bold marking of the
heuristic indicates a relatively high coefficient for the metric compared to other
coefficients for the heuristic. The numbers in parentheses are the average
correlation coefficients for the FLA metric and the heuristic.
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F EMmacromean

- COHDA
- decrease
- α = 0.7 (0.40)

Mean values for ruggedness and modality on macro scale combined with
average gradients

↑ |SE|norm higher computational effort correlates with

↑ F EMmacromean : greater mean ruggedness, modality and average gra-
dients

↓ |SE|norm lower computational effort correlates with

↓ F EMmacromean : lower mean ruggedness, modality and average gradi-
ents

vcv

- IDICE
- decrease (0.41)

Coefficient of variation in variable sensitivity

↑ |SE|norm higher computational effort correlates with

↑ vcv: degree of influence by the variables becomes more unevenly dis-
tributed

↓ |SE|norm lower computational effort correlates with

↓ vcv: degree of influence by the variables becomes more balanced

vinter

- IDICE
- decrease
- k ̸= 50 (0.40)

Degree of variable interaction

↑ |SE|norm higher computational effort correlates with

↑ vinter: higher degree of variable interaction

↓ |SE|norm lower computational effort correlates with

↓ vinter: lower degree of variable interaction (towards separability)

µ(||d||)
- IDICE
- decrease
- k ̸= 50 (0.41)

State distance and variance

↑ |SE|norm higher computational effort correlates with

↑ µ(||d||): higher state distances

↓ |SE|norm lower computational effort correlates with

↓ µ(||d||): lower state distances

Tab. C.3.: Proportionally high positive correlation for |SE|norm; The numbers in paren-
theses are the maximum correlation coefficients for the FLA metric and the
annotated variants of the exchange topology in combination with the heuristic.
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vcv

- COHDA
- decrease
- k ̸= 50
- α = 0.7 (-0.47)

Coefficient of variation in variable sensitivity

↑ |SE|norm higher computational effort correlates with

↓ vcv: degree of influence by the variables becomes more balanced

↓ |SE|norm lower computational effort correlates with

↑ vcv: degree of influence by the variables becomes more unevenly dis-
tributed

F EMmicrostd

- COHDA
- decrease (-0.44)

standard deviation over all sub-search spaces of ruggedness and modality
on micro sale

↑ |SE|norm higher computational effort correlates with

↓ F EMmicrostd : lower heterogeneity of ruggedness and modality on
micro sale

↓ |SE|norm lower computational effort correlates with

↑ F EMmicrostd : higher heterogeneity of ruggedness and modality on
micro sale

F EMmacromean

- IDICE
- decrease (-0.38)

Mean values for ruggedness and modality on macro scale combined with
average gradients

↑ |SE|norm higher computational effort correlates with

↓ F EMmacromean : lower mean ruggedness, modality and average gradi-
ents

↓ |SE|norm lower computational effort correlates with

↑ F EMmacromean : greater mean ruggedness, modality and average gra-
dients

F EMmicromean

- IDICE
- decrease (-0.45)

Mean values for ruggedness and modality on micro scale

↑ |SE|norm higher computational effort correlates with

↓ F EMmicromean : lower mean ruggedness and modality on micro scale

↓ |SE|norm lower computational effort correlates with

↑ F EMmicromean : greater mean ruggedness and modality on micro scale

Tab. C.4.: Proportionally high negative correlation for |SE|norm; The numbers in paren-
theses are the maximum correlation coefficients for the FLA metric and the
annotated variants of the exchange topology in combination with the heuristic.
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(a) Probability value for spearman coefficients with f(x)norm for COHDA

(b) Probability value for spearman coefficients with f(x)norm for IDICE

Fig. C.1.: Probability value for spearman correlation coefficients for the FLA metrics with
f(x)norm computed separately for each exchange topology variant and across all
problem instances.
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(a) Probability value for spearman coefficients with f(x)norm−max for COHDA

(b) Probability value for spearman coefficients with f(x)norm−max for IDICE

Fig. C.2.: Probability value for spearman correlation coefficients for the FLA metrics with
f(x)norm−max computed separately for each exchange topology variant and
across all problem instances.
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(a) Probability value for spearman coefficients with |SE|norm for COHDA

(b) Probability value for spearman coefficients with |SE|norm for IDICE

Fig. C.3.: Probability value for spearman correlation coefficients for the FLA metrics with
|SE|norm computed separately for each exchange topology variant and across all
problem instances.
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(a) Probability value for spearman coefficients with |M |norm for COHDA

(b) Probability value for spearman coefficients with |M |norm for IDICE

Fig. C.4.: Probability value for spearman correlation coefficients for the FLA metrics with
|M |norm computed separately for each exchange topology variant and across all
problem instances.
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feature f(x)norm f(x)norm−max

base
MSE

MSE
mean

MSE std
(±)

base
MSE

MSE
mean

MSE std
(±)

vcv 0.0211 0.0262 0.0000 0.0005 0.0035 0.0000

vinter 0.0211 0.0253 0.0001 0.0005 0.0005 0.0000

DMmean 0.0211 0.1829 0.0006 0.0005 0.0016 0.0000

DMstd 0.0211 0.0490 0.0003 0.0005 0.0007 0.0000

FEMmacrostd
0.0211 0.0218 0.0000 0.0005 0.0005 0.0000

SEMmicrostd
0.0211 0.0231 0.0000 0.0005 0.0007 0.0000

µ2(y)mean 0.0211 0.0286 0.0001 0.0005 0.0566 0.0001

µ2(y)std 0.0211 0.0269 0.0001 0.0005 0.0007 0.0000

FEMmicromean 0.0211 0.0551 0.0003 0.0005 0.0006 0.0000

FEMmicrostd
0.0211 0.0348 0.0001 0.0005 0.0008 0.0000

SEMmacromean 0.0211 0.0276 0.0001 0.0005 0.0017 0.0000

SEMmacrostd
0.0211 0.1234 0.0005 0.0005 0.0005 0.0000

Gdevmean 0.0211 0.0216 0.0000 0.0005 0.0005 0.0000

FEMmacromean 0.0211 0.0258 0.0001 0.0005 0.0010 0.0000

µ2(||d||)mean 0.0211 0.0260 0.0000 0.0005 0.0007 0.0000

α 0.0211 0.0227 0.0001 0.0005 0.0006 0.0000

p 0.0211 0.0212 0.0000 0.0005 0.0005 0.0000

k 0.0211 0.0263 0.0001 0.0005 0.0013 0.0000

mode 0.0211 0.0262 0.0001 0.0005 0.0005 0.0000

mode & α 0.0211 0.0278 0.0001 0.0005 0.0007 0.0000

α & k 0.0211 0.0274 0.0000 0.0005 0.0012 0.0000

initial topology 0.0211 0.0269 0.0001 0.0005 0.0013 0.0000

mode & k 0.0211 0.0301 0.0000 0.0005 0.0012 0.0000

mode, α & k 0.0211 0.0311 0.0001 0.0005 0.0013 0.0000

topo variant 0.0211 0.0318 0.0001 0.0005 0.0013 0.0000

Tab. C.5.: Retrieved MSE with permuted features for COHDA
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feature |SE|norm |M |norm

base
MSE

MSE
mean

MSE std
(±)

base
MSE

MSE
mean

MSE std
(±)

vcv 0.0093 0.0112 0.0000 0.0114 0.0163 0.0000

vinter 0.0093 0.0100 0.0000 0.0114 0.0322 0.0002

DMmean 0.0093 0.0106 0.0000 0.0114 0.0267 0.0001

DMstd 0.0093 0.0101 0.0000 0.0114 0.0252 0.0001

FEMmacrostd
0.0093 0.0093 0.0000 0.0114 0.0135 0.0000

SEMmicrostd
0.0093 0.0096 0.0000 0.0114 0.0118 0.0000

µ2(y)mean 0.0093 0.0107 0.0000 0.0114 0.0119 0.0000

µ2(y)std 0.0093 0.0094 0.0000 0.0114 0.0116 0.0000

FEMmicromean 0.0093 0.0112 0.0000 0.0114 0.0141 0.0000

FEMmicrostd
0.0093 0.0223 0.0002 0.0114 0.0142 0.0000

SEMmacromean 0.0093 0.0100 0.0000 0.0114 0.0119 0.0000

SEMmacrostd
0.0093 0.0117 0.0001 0.0114 0.0131 0.0000

Gdevmean 0.0093 0.0119 0.0000 0.0114 0.0158 0.0000

FEMmacromean 0.0093 0.0157 0.0001 0.0114 0.0113 0.0000

µ2(||d||)mean 0.0093 0.0092 0.0000 0.0114 0.0117 0.0000

α 0.0093 0.0195 0.0001 0.0114 0.0174 0.0000

p 0.0093 0.0095 0.0000 0.0114 0.0124 0.0000

k 0.0093 0.0236 0.0002 0.0114 0.0263 0.0001

mode 0.0093 0.0568 0.0004 0.0114 0.0247 0.0001

mode & α 0.0093 0.0662 0.0004 0.0114 0.0288 0.0001

α & k 0.0093 0.0314 0.0002 0.0114 0.0291 0.0001

initial topology 0.0093 0.0243 0.0002 0.0114 0.0280 0.0001

mode & k 0.0093 0.0586 0.0002 0.0114 0.0310 0.0001

mode, α & k 0.0093 0.0662 0.0002 0.0114 0.0324 0.0001

topo variant 0.0093 0.0664 0.0002 0.0114 0.0339 0.0001

Tab. C.6.: Retrieved MSE with permuted features for COHDA
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feature f(x)norm f(x)norm−max

base
MSE

MSE
mean

MSE std
(±)

base
MSE

MSE
mean

MSE std
(±)

vcv 0.0259 0.0252 0.0000 0.0012 0.0027 0.0000

vinter 0.0259 0.0674 0.0003 0.0012 0.0016 0.0000

DMmean 0.0259 0.0331 0.0002 0.0012 0.0017 0.0000

DMstd 0.0259 0.0256 0.0000 0.0012 0.0012 0.0000

FEMmacrostd
0.0259 0.0252 0.0000 0.0012 0.0012 0.0000

SEMmicrostd
0.0259 0.0271 0.0001 0.0012 0.0013 0.0000

µ2(y)mean 0.0259 0.0264 0.0000 0.0012 0.0332 0.0001

µ2(y)std 0.0259 0.0253 0.0000 0.0012 0.0012 0.0000

FEMmicromean 0.0259 0.0265 0.0001 0.0012 0.0013 0.0000

FEMmicrostd
0.0259 0.0346 0.0001 0.0012 0.0012 0.0000

SEMmacromean 0.0259 0.0329 0.0001 0.0012 0.0014 0.0000

SEMmacrostd
0.0259 0.0258 0.0000 0.0012 0.0012 0.0000

Gdevmean 0.0259 0.0330 0.0001 0.0012 0.0012 0.0000

FEMmacromean 0.0259 0.0257 0.0000 0.0012 0.0013 0.0000

µ2(||d||)mean 0.0259 0.0253 0.0000 0.0012 0.0012 0.0000

α 0.0259 0.0274 0.0001 0.0012 0.0012 0.0000

p 0.0259 0.0321 0.0002 0.0012 0.0012 0.0000

k 0.0259 0.0317 0.0001 0.0012 0.0012 0.0000

mode 0.0259 0.0299 0.0002 0.0012 0.0012 0.0000

mode & α 0.0259 0.0327 0.0002 0.0012 0.0012 0.0000

α & k 0.0259 0.0320 0.0001 0.0012 0.0012 0.0000

initial topology 0.0259 0.0359 0.0002 0.0012 0.0013 0.0000

mode & k 0.0259 0.0330 0.0002 0.0012 0.0012 0.0000

mode, α & k 0.0259 0.0348 0.0002 0.0012 0.0013 0.0000

topo variant 0.0259 0.0366 0.0002 0.0012 0.0013 0.0000

Tab. C.7.: Retrieved MSE with permuted features for IDICE
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feature |SE|norm |M |norm

base
MSE

MSE
mean

MSE std
(±)

base
MSE

MSE
mean

MSE std
(±)

vcv 0.0161 0.0272 0.0002 0.0005 0.0007 0.0000

vinter 0.0161 0.0159 0.0000 0.0005 0.0026 0.0000

DMmean 0.0161 0.0181 0.0000 0.0005 0.0008 0.0000

DMstd 0.0161 0.0203 0.0001 0.0005 0.0007 0.0000

FEMmacrostd
0.0161 0.0156 0.0000 0.0005 0.0018 0.0000

SEMmicrostd
0.0161 0.0174 0.0000 0.0005 0.0015 0.0000

µ2(y)mean 0.0161 0.0169 0.0000 0.0005 0.0011 0.0000

µ2(y)std 0.0161 0.0167 0.0000 0.0005 0.0005 0.0000

FEMmicromean 0.0161 0.0223 0.0001 0.0005 0.0037 0.0000

FEMmicrostd
0.0161 0.0203 0.0000 0.0005 0.0057 0.0000

SEMmacromean 0.0161 0.0180 0.0000 0.0005 0.0009 0.0000

SEMmacrostd
0.0161 0.0185 0.0000 0.0005 0.0012 0.0000

Gdevmean 0.0161 0.0177 0.0000 0.0005 0.0030 0.0000

FEMmacromean 0.0161 0.0163 0.0000 0.0005 0.0007 0.0000

µ2(||d||)mean 0.0161 0.0156 0.0000 0.0005 0.0017 0.0000

α 0.0161 0.0214 0.0001 0.0005 0.0035 0.0000

p 0.0161 0.0314 0.0002 0.0005 0.0017 0.0000

k 0.0161 0.0237 0.0001 0.0005 0.0700 0.0003

mode 0.0161 0.0432 0.0002 0.0005 0.0302 0.0001

mode & α 0.0161 0.0488 0.0002 0.0005 0.0366 0.0001

α & k 0.0161 0.0266 0.0001 0.0005 0.0695 0.0004

initial topology 0.0161 0.0381 0.0002 0.0005 0.0724 0.0004

mode & k 0.0161 0.0455 0.0002 0.0005 0.0744 0.0003

mode, α & k 0.0161 0.0491 0.0002 0.0005 0.0775 0.0003

topo variant 0.0161 0.0597 0.0003 0.0005 0.0801 0.0003

Tab. C.8.: Retrieved MSE with permuted features for IDICE
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parameter f(x)norm f(x)norm−max |SE|norm |M |norm

C
O

H
D

A

number of trees 138 117 267 138

criterion to mea-
sure the quality of
a split

poisson
friedman
mse

friedman
mse

poisson

max depth of
trees

20 10 20 20

minimum num-
ber of samples
required to split
an internal node

5 5 2 5

minimum num-
ber of samples
required to be at a
leaf node

4 1 4 4

ID
IC

E

number of trees 171 42 138 138

criterion to mea-
sure the quality of
a split

friedman
mse

squared er-
ror

poisson poisson

max depth of
trees

10 10 20 20

minimum num-
ber of samples
required to split
an internal node

5 10 5 5

minimum num-
ber of samples
required to be at a
leaf node

1 1 4 4

Tab. C.9.: Chosen parameter setups random forest regressors
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parameter f(x)norm f(x)norm−max |SE|norm |M |norm

C
O

H
D

A

number of trees 171 138 235 235

criterion to mea-
sure the quality of
a split

squared er-
ror

friedman
mse

squared er-
ror

friedman
mse

max depth of
trees

20 10 70 None

minimum num-
ber of samples
required to split
an internal node

5 10 10 10

minimum num-
ber of samples
required to be at a
leaf node

2 4 1 4

ID
IC

E

number of trees 235 138 235 235

criterion to mea-
sure the quality of
a split

friedman
mse

friedman
mse

friedman
mse

friedman
mse

max depth of
trees

None 10 None None

minimum num-
ber of samples
required to split
an internal node

10 10 10 10

minimum num-
ber of samples
required to be at a
leaf node

4 4 4 4

Tab. C.10.: Chosen parameter setups random forest regressors for predicting noisy data
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