
Fakultät II – Informatik, Wirtschafts- und Rechtswissenschaften

Department für Informatik

Resource Management in Virtualized Data
Centers Regarding Performance and

Energy Aspects

Dissertation zur Erlangung des Grades eines

Doktors der Ingenieurwissenschaften

vorgelegt von

Dipl.-Inform. Marko Hoyer

18. Februar, 2011





Contents

1 Introduction 1

1.1 Static Resource Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Dynamic Resource Management . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contributions of this Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Document Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Context and Related Work 7

2.1 IT Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Data Center Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Operating Systems, IT Services, and Software . . . . . . . . . . . . . . . . . . . 8

2.3.1 Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.2 Resource Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Problem Statement 13

3.1 Technical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Service Level Agreements . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.2 Server Virtualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.3 Server Virtualization and Live Migration . . . . . . . . . . . . . . . . . 17

3.1.4 Dealing with Shared Resources in Virtualized Data Centers . . . . . . . 18

3.1.5 Power States of Servers . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Conceptual View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Pessimistic Static Resource Management . . . . . . . . . . . . . . . . . . 23

3.2.2 Optimized Static Resource Management . . . . . . . . . . . . . . . . . . 24

3.2.3 Dynamic Resource Management . . . . . . . . . . . . . . . . . . . . . . 24

3.3 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.1 Involved Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.2 Limited Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.3 Overhead and Prerequisites of Control Mechanisms . . . . . . . . . . . . 30

3.3.4 Service Level Agreements . . . . . . . . . . . . . . . . . . . . . . . . . . 32

iii



Contents

3.4 Formal Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.1 Terminology and Declarations . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.2 Problem Definition: Static Resource Management . . . . . . . . . . . . 36

3.4.3 Problem Definition: Dynamic Resource Management . . . . . . . . . . . 37

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Pessimistic Static Resource Management 41

4.1 Service Level Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Modeling the Resource Demand . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Static Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.1 Known Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.2 Vector Bin Packing and Resource Management . . . . . . . . . . . . . . 43

5 Statistical Static Resource Management 45

5.1 Mathematical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1.1 Discrete Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1.2 Operations on Discrete Random Variables . . . . . . . . . . . . . . . . . 46

5.1.3 Stochastic Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1.4 Probabilities of Realizations of Stochastic Processes . . . . . . . . . . . 49

5.2 Service Level Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2.1 Known Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2.2 Fine Grained SLO Specification . . . . . . . . . . . . . . . . . . . . . . . 51

5.2.3 Mapping Performance Metrics on Required Resource Capacity . . . . . 52

5.2.4 Deriving Constraints for Autonomous Resource Management . . . . . . 54

5.2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3 Modeling the Resource Demand . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3.1 Requirements on the Model . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3.2 Known Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3.3 Modeling Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.4 Static Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.4.1 Known Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4.2 Pessimistic Statistical Scheduling . . . . . . . . . . . . . . . . . . . . . . 67

5.4.3 Interdependence between Required and Provided Resource Capacity . . 73

5.4.4 Separating Seasonal Trend and Noise from Long Term Trend . . . . . . 75

5.4.5 Using Correlations for Improved Statistical Scheduling . . . . . . . . . . 76

5.4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

iv



Contents

5.5 Changes in Demand Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.5.1 Impact of Changed Demand Behavior . . . . . . . . . . . . . . . . . . . 81

5.5.2 Detecting Changed Demand Behavior . . . . . . . . . . . . . . . . . . . 82

5.5.3 Preventing SLO Violations Caused by Changed Demand Behavior . . . 82

5.5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6 Dynamic Resource Management 85

6.1 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.1.1 Autocorrelation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.1.2 Testing Whether a Graph is Acyclic . . . . . . . . . . . . . . . . . . . . 86

6.2 Service Level Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.3 Modeling the Resource Demand . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.3.1 Requirements on the Model . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.3.2 Known Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.3.3 Modeling Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.4 Dynamic Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.4.1 Known Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.4.2 Basic Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.4.3 Ensuring Resource Constraints . . . . . . . . . . . . . . . . . . . . . . . 100

6.4.4 Extracting a Set of Feasible Operations . . . . . . . . . . . . . . . . . . 103

6.4.5 Ensuring Time Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.4.6 Scheduling Algorithm - Overview . . . . . . . . . . . . . . . . . . . . . . 108

6.4.7 Scheduling Algorithm - Consolidating VMs . . . . . . . . . . . . . . . . 109

6.4.8 Scheduling Algorithm - Resolving Resource Shortages . . . . . . . . . . 110

6.4.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.5 Changes in Demand Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.5.1 Impact of Changed Demand Behavior . . . . . . . . . . . . . . . . . . . 121

6.5.2 Detecting Changed Demand Behavior . . . . . . . . . . . . . . . . . . . 121

6.5.3 Adapting the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.5.4 Resolving Resource Shortages . . . . . . . . . . . . . . . . . . . . . . . . 123

6.5.5 Limiting the Impact of Changed Demand Behavior . . . . . . . . . . . . 123

6.5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

v



Contents

7 Experimental Assessment 127

7.1 Fine Grained QoS Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.1.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.1.2 Comparison to Known Approaches . . . . . . . . . . . . . . . . . . . . . 131

7.1.3 Influence of the Number of Defined Performance Goals . . . . . . . . . . 132

7.1.4 Conclusion and Limits of the Analyses . . . . . . . . . . . . . . . . . . . 133

7.2 Resource Demand Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.2.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.2.2 Comparison to Known Approaches . . . . . . . . . . . . . . . . . . . . . 136

7.2.3 Finding the Predominant Period . . . . . . . . . . . . . . . . . . . . . . 139

7.2.4 Influence of Minimal Duration of Saving Intervals . . . . . . . . . . . . . 140

7.2.5 Influence of Long Term Trends . . . . . . . . . . . . . . . . . . . . . . . 141

7.2.6 Different VMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.2.7 Conclusion and Limits of the Analyses . . . . . . . . . . . . . . . . . . . 143

7.3 Statistical Static Resource Management . . . . . . . . . . . . . . . . . . . . . . 144

7.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.3.2 Comparison to Known Approaches . . . . . . . . . . . . . . . . . . . . . 146

7.3.3 Influence of Server Configuration . . . . . . . . . . . . . . . . . . . . . . 149

7.3.4 Expected Power Savings in Data Centers . . . . . . . . . . . . . . . . . 150

7.3.5 Conclusion and Limits of the Analyses . . . . . . . . . . . . . . . . . . . 151

7.4 Dynamic Resource Management . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.4.2 Comparison to Known Approaches . . . . . . . . . . . . . . . . . . . . . 154

7.4.3 Influence of Server Configuration and Virtualization Environment . . . 155

7.4.4 Limiting the Impact of Forecasting Errors . . . . . . . . . . . . . . . . . 156

7.4.5 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.4.6 Conclusion and Limits of Analyses . . . . . . . . . . . . . . . . . . . . . 159

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

8 Summary and Conclusion 163

8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

8.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

Glossary 167

Bibliography 169

vi



vii





Acknowledgement

First of all I would like to thank my supervisor Prof. Dr. Wolfgang Nebel for his support

and helpful advices concerning the principals of academic work. His contacts to industrial

companies further helped me to gather some practical insights into the topic of this thesis.

The theoretical concepts developed in this thesis could very closely address real practical issues

due to this background. In addition, I would like to thank Prof. Dr. Michael Sonnenschein

for taking the time to review this document.

Much of the work presented in this thesis was supported by two of my students: Pierre

Petliczew and Daniel Schlitt. Thank you both for your good work. I would also like to thank

my colleagues for many constructive discussions; especially Henrik Lipskoch for helping me

with mathematical background, Kiril Schröder and Daniel Schlitt for discussions about the

concepts, and Domenik Helms and Gunnar Schomaker for some tips concerning the formal

representation of some optimization problems. Additionally, special thanks to the NOWIS

company for providing me very good evaluation data to assess my concepts.

A large portion of my work was further supported by the OFFIS Institute for Information

Technology. I did most of the research within the research project “Energy Efficiency in Data

Centers”. Finally, an internal scholarship helped me to finish my work and to write down this

thesis.

And last but not least I want to thank my family for their support. Especially the last two

month of my work were hard for me for several reasons. Thank you for your help.

***

Ein spezieller Dank soll an dieser Stelle an meine Familie für ihre mentale Unterstützung

gehen. Die letzten zwei Monate dieser Arbeit waren aus verschiedenen Gründen nicht einfach

für mich. Vielen Dank für Eure Hilfe.

ix





Abstract

Todays data centers take an ever growing share of the energy consumption of Germany’s

Information and Communication Technology (ICT). The energy efficiency of data center com-

ponents has been continuously increased over the last few years. But the energy consumption

is still expected to grow further. The demand for IT services increases faster than energy

consumption can be reduced by the improvements.

A completely different approach is followed in this thesis to counteract this development. It

is tried to reduce the number of active IT components (servers) needed to deploy a set of IT

services. Thus, the part of energy consumed by IT components as well as the energy consumed

by data center infrastructure can be reduced. The respective approach first tries to minimize

the number of servers required at all. In a second step, it is tried to take advantage of the

varying resource demand of the services. Services are consolidated to a few servers in times of

low overall demand. Unused servers are switched off to save energy.

This approach belongs to the class of resource management approaches. It improves known

ones by taking the resource demand behavior of the IT services into account in a special way.

Hence, an important part of this work is to properly model this behavior. In addition, the

new approach supports trading off resources against service performance. Clients can define a

wanted performance behavior using a new kind of specification. Finally, the algorithms that

assign the services to servers form another challenge that is addressed within this thesis. One

of them initially distributes the services to a minimal set of servers. A second one redistributes

them at runtime according to the current resource demand. The performance goals must not

be violated.

The developed approach was evaluated based on simulations using the demand behavior of

services observed in a real data center. The initial distribution of services to servers already

achieved between 25% and 42% of server savings compared to a widely used approach. These

savings can reduce the energy consumption by 12.5% up to 42% depending on the data center.

The consumption can be further reduced by additional 20%, if services are dynamically redis-

tributed at runtime. Violations of the defined performance goals can basically occur, when the

demand behavior is taken into account for resource management decisions. But they actually

occurred during the simulations in less than 0.2% of the simulated time.

xi





Zusammenfassung

Rechenzentren zählen mit einem Anteil von etwa 17% zu den Großverbrauchern der heutigen

Informations- und Kommunikationstechnologie. Verschiedene Maßnahmen haben die Energie-

effizienz der Rechenzentrumskomponenten bereits deutlich erhöht. Dennoch wird ein weiterer

Anstieg des Energieverbrauchs prognostiziert. Der Bedarf an IT-Diensten steigt offensichtlich

stärker, als die Weiterentwicklung der Komponenten deren Verbrauch reduzieren kann.

Um dieser Entwicklung entgegen zu wirken verfolgt diese Arbeit einen anderen Ansatz.

Es wird versucht, die für eine bestimmte Menge an IT-Diensten benötigte Anzahl aktivier

IT-Komponenten (Server) zu reduzieren. Auf diese Weise lässt sich der Verbrauchsanteil der

IT-Komponenten als auch der zum Betrieb nötigen Infrastruktur senken. Ein entsprechender

Ansatz versucht hierbei zunächst die überhaupt benötigte Anzahl an Servern zu minimieren.

In einem zweiten Schritt wird variierender Ressourcenbedarf der Dienste genutzt, um in Zeiten

geringer Anfragelast die Dienste auf weniger Server zu konsolidieren. Ungenutzte Server werden

abgeschaltet um Energie zu sparen.

Dieser Ansatz fällt daher in den Bereich des Ressourcenmanagements. Das Einsparpotential

ergibt sich gegenüber bisherigen Ansätzen durch die gezielte Nutzung des Bedarfsverhaltens der

Dienste. Dessen Modellierung ist daher wichtiger Kernbestandteil der Arbeit. Auch die gezielte

Abwägung zwischen angebotener Ressourcenkapazität und der Performanz der Dienste wurde

verfolgt. Nutzer können hierzu das gewünschte Performanceverhaltens der Dienste geeignet

spezifizieren. Schlussendlich bilden die Algorithmen, welche die Zuordnung der Dienste zu

den Servern vornehmen, eine weitere Herausforderung, der sich diese Arbeit stellt. Ein erster

Algorithmus bestimmt hierbei eine initiale Verteilung, während ein zweiter die Umsortierung

zur Laufzeit vornimmt. Die Performanzziele dürfen hierdurch nicht verletzt werden.

Das entwickelte Konzept wurde in Simulationen mit dem von echten Diensten beobachteten

Bedarfsverhalten evaluiert. Bereits die initiale Verteilung der Dienste konnte zwischen 25% und

42% an Servereinsparungen erzielen, die je nach Rechenzentrum zu Energieeinsparungen von

zwischen 12.5% und 42% führen können. Die zusätzlich dynamische Umsortierung der Dienste

zur Laufzeit konnte gegenüber der statischen Verteilung weitere 20% an Energieeinsparungen

erreichen. Bei der Berücksichtigung des Bedarfsverhaltens kann eine Verletzung der vorgegeben

Performanzziele grundsätzlich nicht ausgeschlossen werden. Diese traten aber nur in weniger

als 0.2% der Simulationszeit tatsächlich auf.

xiii





1 Introduction

The energy consumption of the information and communication technology (ICT) contin-

uously increases year by year. Around 55TWh of electric energy were consumed by ICT

devices in Germany in 2007, which corresponds to about 10% of the country’s overall power

consumption[112]. Only 38 TWh electric power were generated by wind power plants in the

same year[68]. Power generation only for ICT causes more carbon dioxide emission as the

whole German aviation produces[99] regarding the overall energy mix in Germany. This part

of energy consumption is expected to grow to more than 66 TWh in the year 2020[112].

9,8%

10,9%11,6%

59,6% 60,7% 62,5% 61,3%

en
er

g
y
 c

o
n

su
m

p
ti

o
n

 [
T

W
h

]

0

20

40

60

12,3% 12,1%
10,4%16,5% 16,4%

10,3%

10,9%

16,4%
18,5%

2007 2010 2015 2020

network and telecom

servers and data centers

devices in business companies

devices in households

55,4 58,4
63,0

year

66,7

Figure 1.1: Estimated energy consumption caused by ICT consumers in Germany[112]

Consumer electronics - first and foremost the entertainment electronics - will take the biggest

portion of the ICT’s energy consumption in the next few years, as illustrated in Figure 1.1.

But one can also note that especially data centers and the Internet will take an ever growing

share due to an exponentially increasing demand.

Different reasons motivate to address the high power consumption in data centers already

today. Carbon dioxide emitted while electric power is generated is thought to cause ecological

problems. Reducing the energy consumption may help to solve this issue. Additionally, data

center operators are motivated by economical aspects. Energy cost form a significant part

of the overall costs in data centers[115]. In addition, simple technical reasons need to be

addressed. Some modern data centers would have the capacity to host additional servers but

they do not get the power from their local supplier to run them.

The energy efficiency in data centers has been continuously increased over the last few years.

1



1 Introduction

The improvements mainly concerned infrastructure components needed to run the servers. As

a consequence, the power usage efficiency value (PUE) that relates IT power to overall power

consumption got closer and closer to its theoretical limit of 1.0. Earlier data centers typically

had a PUE of far above 2.5. The best of today’s data centers can achieve a PUE down to

1.25[40]. This means that 1.25 kW power are needed to run 1 kW server hardware.

The energy efficiency of server hardware continuously increases as well. Each new CPU

generation has a higher ratio between computing power and energy consumption than the

generation before. Power management techniques such as DVFS1 or clock gating adapt the

power consumption of CPUs to their utilization to save energy in times of low workload.

But the energy consumption of data centers is expected to increase further despite of these

improvements[112]. The demand for IT services obviously increases faster than the improve-

ments reduce the energy consumption of IT components and the data center infrastructure.

The work described in this thesis does not directly address the energy efficiency of individual

IT or infrastructure components. Instead, a concept will be introduced for more efficiently

using them. The aim is to reduce the number of active servers that are required to deploy a

given set of IT service. It is expected that the IT power consumption in a data center as well

as power consumed by the infrastructure can be further reduced this way.

Determining the hardware resources needed to run a set of IT services is known as resource

or capacity management. Mainly the number and type of required servers and the assignments

of the services to them need to be determined. It will be distinguished between static and

dynamic resource management within this thesis. Static resource management determines an

assignment of services on servers that is constant at runtime. Dynamic resource management,

in contrast, can reassign services at runtime. It will be detailed some more in the following

how both types of resource management can reduce the power consumption in data centers by

more efficiently using active servers.

1.1 Static Resource Management

Static resource management tries to minimize the number of servers required at all to deploy

a given set of IT services. Common modern server hardware typically provides far more

computing power than actually required by many services deployed in typical data centers.

Hence, deploying each service on an individual server would waste much resources and energy.

As a consequence, virtualization came back up again in the last view years. A set of different

services can be deployed on one powerful server using this technique. The server’s resources

are shared between the services, which reduces the number of servers required. Modern virtu-

alization environments such as VMware ESX Server, Citrix Xen Server, or Microsoft Hyper-V

1dynamic voltage and frequency scaling

2



1.2 Dynamic Resource Management

allow assigning parts of the resource capacity to each service in a fine grained way. Resource

capacity can be exactly adjusted to the demand of a service.

The main challenges of static resource management are determining the resources required

by services and finding an appropriate assignment of them to servers. Providing less resource

capacity than actually required can slow down or completely break down a service depending

on the resource type (e.g. CPU time or RAM). If more resources are reserved for a service

than actually required, resources and hence energy are wasted.

Static resource management must take care of maximally expected workload while deter-

mining resource capacity required by a service, since services cannot be reassigned at runtime.

Such maximum is typically part of an contract between a Service Provider and the clients,

which is called Service Level Agreement (SLA). A certain performance goal (such as response

time or throughput) must be guaranteed by the Service Provider, if this maximum is not

exceeded by the clients. Such performance goals are expressed by Service Level Objectives

(SLOs). Common static resource management approaches perform benchmarks to find the

amount of resources maximally required by a service. Services are then distributed to servers

according to these estimates. A certain amount of reserve capacity is included to take care of

unexpected peeks.

But applying this pessimistic approach often results in much unused resource capacity. Many

services require their maximal resource capacity not very often. Different services hardly

require their maximum all at the same time. Regarding these facts, resources can be used

far more efficiently. Further resource savings can be achieved, if clients define not fixed but

more soft performance goals in their SLA with the service provider. Resource management can

apply resource performance trade-offs, if in definable seldom cases a slower service response is

accepted.

In a first part of this thesis, an approach for static resource management is presented that

supports such ideas. This new approach statistically evaluates the demand behavior of the

services and hence belongs to the class of statistic static resource management approaches. In

contrast to previous works, a new kind of SLO specification is supported that allows performing

resource power trade-offs in a more flexible way, which increases the achievable resource savings.

In addition, correlations between the workload behavior of different services are considered.

All known approaches in contrast expect uncorrelated workload, which is not given in most

data centers. Hence, such assumption can lead to violations of SLOs in worst case.

1.2 Dynamic Resource Management

The workload of most IT services is not constant but varying over time. Services have hardly

something to do at night while they are heavily used by day in many cases. Sometimes, the

3



1 Introduction

maximum occurs in the evening or at the weekend. In any case, such variations cause varying

resource demand of the services. Hence, any static resource management approach will waste

resources in times of low workload.

Power management techniques can reduce the power consumption of CPUs in these times

as mentioned before. But different other components such as memory and the main board

limit the overall savings that are achievable by these techniques. The reason is that their

consumption is independent from the utilization[21, 13]. As a result, today’s servers consume

still between 65% and 80% of their maximal power even when they have nothing to do. Really

energy efficient ones can reduce their consumption down to 50%[13].

Quite more energy savings can be achieved when servers are switched off or put into a

suspend state such as STR (Safe to RAM). But no services can run on the servers in this

state. Hence, all services must be moved away to other servers first before a low power

state is entered. Common server virtualization environments support moving services between

different servers without the need to stop them. The move is nearly transparent for the service.

Using this so called live migration technique, services can be consolidated to only a view servers

in times of low workload. Unused servers can be switched off to save energy.

Such an approach will be called dynamic resource management within this thesis. An

important challenge of dynamic resource management is to reactivate servers right in time

when they are needed. Servers need time for reactivation as well as it takes time to move a

service between two servers. Such delays must be considered by dynamic resource management.

It must be ensured that servers have been reactivated and services have been redistributed

right before an upcoming resource shortage actually occurs. For this, the underlying algorithm

needs to know the resource demand behavior of the services in the future.

Known approaches typically use trend based forecasting methods. Capacity buffers equal

out the delay of a control decision. But this approach can lead to strong resource shortages de-

pending on how fast the resource demand changes and on the size of the buffer. Furthermore,

such resource shortages can last for a long time until the algorithm resolves them. Technical re-

strictions of the virtualization environment can lead to deadlocks in some cases. In those cases,

the approach cannot resolve the resource shortage at all. SLO violations are the consequence.

A new approach for dynamic resource management will be presented in the second part of

this thesis. This approach overestimates the resource demand of the services expected in the

future. Such forecasts base on periodic workload behavior observed in the past. A scheduling

algorithm ensures that at each time an upcoming resource shortage can be resolved right in

time as long as the actual resource demand does not deviate from the expected one.

4



1.3 Contributions of this Work

1.3 Contributions of this Work

The main outcome of this thesis is a holistic concept for static and dynamic resource man-

agement in virtualized data centers. This concept supports the ideas shortly motivated in the

previous two sections. The main weaknesses of known approaches are considered by the new

concept as well. The following tasks form the main contributions of this work:

• A holistic concept for static and dynamic resource management was devel-

oped that is described in Chapter 3.

– A general approach was worked out.

– Technical parameters, limits, and basic prerequisites determined by data center

operation were analyzed.

– Challenges and problems to be addressed were extracted and formalized based on

this information.

• The part of this concept that realizes static resource management was worked

out. It is presented in Chapter 5.

– A new kind of SLO specification was developed that supports resource performance

trade-offs in a flexible way.

– A modeling approach was developed that allows estimating the resources maximally

required by the services in the future based on demand behavior observed in the

past.

– A scheduling algorithm was developed that distributes services to a minimal set of

required servers with respect to the estimated resource demand.

• The part of this concept that realizes dynamic resource management was

worked out. It is presented in Chapter 6.

– The SLO specification was extended in a way that negative impact of forecasting

errors on the service performance can be limited.

– The models were extended in a way that the time dependent resource demand

expected in the future can be forecasted.

– A scheduling algorithm was developed that realizes dynamic resource management

based on the forecasts. This algorithm can guarantee that no resource shortages

will occur, if the forecasts are correct.

– An extension of the models and the scheduling algorithm was developed that adapts

changed demand behavior at runtime.

5



1 Introduction

• The developed concepts, models, and optimization algorithms were evaluated

in a simulation environment. The results are presented in Chapter 7.

– Energy savings and resource savings were compared to known approaches.

– The amount of occurred resource shortages that could lead to SLO violations were

determined.

– The impact of different relevant parameters on the savings and on the amount of

SLO violations was analyzed.

1.4 Document Overview

The content of this thesis is structured into eight chapters. Resource management has been

motivated in this first one as a way to significantly reduce energy consumption in today’s data

centers. The aim is to more efficiently use active server hardware. The main contributions of

this thesis have been presented as well.

Works related to energy efficiency in data centers is discussed in the following chapter.

Resource management will be pointed out as one of the important research areas in this field.

Known approaches that are related to the ones presented in this thesis are shortly presented.

They will be discussed more detailed later on in the chapters, in which the new approaches

are presented.

The holistic concept for static and dynamic resource management is presented in Chapter 3.

Challenges to be addressed will be extracted and transfered into formal optimization problems.

These challenges are addressed in the Chapters 4 to 6. The chapters 4 and 5 deal with static

resource management. The dynamic resource management is addressed in Chapter 6. All of

these chapters have nearly the same structure. The SLO specification, the modeling approach,

and finally the scheduling approach that distributes services to servers are subsequently worked

out.

Finally, the whole resource management concept is evaluated in Chapter 7. A short summary

and conclusion closes this thesis in Chapter 8.

6



2 Context and Related Work

Energy efficiency is currently addressed in a data center mainly at three different layers. Dif-

ferent improvements try to reduce the energy consumption of the IT components (servers and

network components) at different points. A second group of approaches addresses the addi-

tional infrastructure needed to run the IT components. And a third group aims to improve

the energy efficiency at software level. The state of the art in each of these groups will be

shortly presented in the following.

2.1 IT Components

Hardware manufacturers such as Intel, AMD, or IBM continuously increase the energy ef-

ficiency of electronic devices such as memory or the CPU. The transistor technologies and

hardware design processes are improved with respect to performance and energy consumption.

Power management techniques reduce the power consumption, when devices or parts of devices

are not used. An overview of the state of the art in this field is presented in [52, 63].

Power consumed by disks has been addressed by several works. Mainly different speeds and

low power modes of disks have been exploited to save energy[20, 46, 47]. Caches have been

taken into account to increase the idle periods[133, 132]. Disks can remain switched off for

a longer time this way. Intelligent power management strategies that could be also used to

control the power state of a disk have been presented for instance in [57, 16].

Modern blade server systems from IBM, HP, or Dell for instance contain different additional

power management techniques. They can control the speed of the fans in the enclosure de-

pending on the number of active servers and on their workload. Power supply units can be

switched on and off according to the current power demand, which increases their efficiency.

Servers can be switched off, can be put into a suspend state, and can be reactivated using a

software interface.

2.2 Data Center Infrastructure

Data center infrastructure is optimized mainly at two different points. The first one concerns all

components that are involved in power supply. Critical devices are the uninterruptible power

7



2 Context and Related Work

supply (UPS) and the power distribution units. Manufacturers of UPS devices continuously

try to increase the energy efficiency of their hardware. This is important, since nearly most of

the power consumed in a data center passes the UPS. Hence, only a view percent of overhead

power consumed by the UPS will already lead to significant energy wasting. Efficiency goals

for new UPS devices have been defined by the European Commission in conjunction with the

manufacturers in a Code of Conduct [39].

Besides the UPS, different additional ways to increase the energy efficiency of the power

supply chain are focused as well. Replacing AC by DC power in a data center is a heavily

discussed field [93]. A further trend seems to be strongly followed at the moment. It is tried

to increase the scalability of the devices [92]. They are designed in a way that they can

be continuously extended by new ones with increasing power demand. This prevents over

provisioning, which increases the energy efficiency of the currently running ones.

Several improvements increased the energy efficiency of the cooling infrastructure as well.

Classical room based cooling has been more and more replaced by rack or row based cooling

strategies in large data centers[37]. Modern powerful hardware and the server virtualization

concept concentrate a huge amount of energy in a comparable small area. Special cooling

techniques such as water cooling for instance address this issue[84, 64]. It is further tried to

reuse heat energy for different purposes. Finally, free cooling is a popular technique to reduce

the energy consumption as well. Cool air from outside the data center is used to support the

chillers. A good overview of such modern cooling concepts is presented in [48].

2.3 Operating Systems, IT Services, and Software

Some of the power reduction techniques implemented in hardware must be controlled by a so

called power management controller from operating system level or even above. Some of them

that are used in today’s servers or data centers will be presented in the following. A second

common way to optimize the energy consumption at software level is resource management.

The aim is to minimize the hardware resources needed to deploy a given set of services, as

already described in the introduction section. Known approaches for static as well as dynamic

resource management will presented later on in this section as well.

2.3.1 Power Management

The controller for DVFS is typically implemented in the operating system. At this level,

the controller knows the amount of computing power needed at a time. The power state of

individual devices of servers are typically controlled by the operating system as well for the

same reason. A controller, in contrast, that switches off a complete server needs a broader

view. Most IT services must be available all the time. But a service that is deployed on a

8



2.3 Operating Systems, IT Services, and Software

suspended server cannot process requests. Hence, it needs to be moved to another server first,

which requires to regard a set of servers to realize such a controller. The dynamic part of

the resource management approach presented in this thesis can be regarded as such a server

comprehensive controller.

2.3.2 Resource Management

Resource management approaches strongly differ depending on the kind of IT services man-

aged. It can be distinguished between request based and job based IT services to cluster known

approaches. The first category can be further subdivided into small-scale and large-scale re-

quest based IT service. The main characteristics will be shortly presented in the following.

Known approaches will be presented for each of these categories as well. The approach pre-

sented in this thesis targets mainly small-scale request based IT services.

Job Based IT Services

A significant part of today’s IT services is job based. One job typically consists of different

tasks that are processed partly sequentially and partly in parallel. Billings, for instance, are

often created using batch jobs. They process data base requests, select some data from a file

server, and concatenate and print the results. Fundamental research in different areas often

starts simulations in batch jobs that can occupy whole server clusters for a long time.

The challenge for resource management approaches that focuses on job based IT services is

mainly to assign the jobs to servers when they arrive. Possible priorities and deadlines must

be taken into account.

Such resource management approaches belong to the field of high performance computing

(HPC) that has been widely addressed by past research. Most works focused on performance

only. In the last view years, classical HPC frameworks such as MPI[78] have been combined

with virtualization techniques [80, 41, 59]. Such trend enabled the way to additionally take

energy aspects into account[119]. In general, all HPC approaches strongly differ from the work

presented in thesis, since a completely different method is required to deal with request based

IT services.

Large-Scale Request Based IT Services

Request based IT services are characterized through a dialog between the service and the client.

The client sends a request to the service and expects a comparable fast answer. Normally,

further requests are send based on this answer. Furthermore, many clients send requests in

parallel to the service. And finally, more than one IT service can be involved, while a request

is processed. Web services and data bases are typical examples.

9



2 Context and Related Work

Complex IT services that have to deal with a large number of requests at the same time often

require far more resources than provided by one server. They are called large-scale request

based IT services within this thesis. Several instances of the same service are typically deployed

on different servers, which are called nodes in this context. Requests can be dynamically routed

to these nodes to evenly distribute the workload between them. This concept is widely known

as workload dispatching.

The major challenge for a resource management approach is to route the requests. Nodes

can be switched off in times of low workload to save energy. Simple algorithms can realize

such resource management, since workload and hence resource demand can be shifted between

nodes without any significant delay. Such an algorithm was presented in [25] for instance.

These algorithms form the base for many additional works. Two market model based ap-

proaches were presented in [24, 73], in which users bid for resources. Granted resources are

negotiated between all users according to their respective SLAs. An optimization algorithm

aims at minimal overall costs in terms of energy and money for the data center. Another idea

has been followed by [73, 96, 103]. They suggest adapting the varying utilization of a service

by measuring the current Quality of Service (QoS) level. Requests are assigned to the nodes

dynamically using a control loop. And finally, different approaches take thermal conditions in

a data center into account to reduce the energy consumption of the whole data center[88, 77].

Most of these algorithms cannot be directly applied to small-scale request based IT services.

Such services are typically only deployed once in a data center. Hence, the load dispatching

approach does not work for them. The dynamic part of the concept presented in this thesis

can be regarded as a basis to support such ideas for small-scale request based IT services. Only

energy and performance will be regarded as optimization criteria within this thesis. But the

underlying optimization algorithms can be easily extended to consider additional parameters

as well.

Small-Scale Request Based IT Services

Only one or a few small-scale request based IT services were deployed on one server in the

past due to maintenance reasons and to achieve performance and data isolation. Such services

typically need hardly the whole resource capacity of one modern server. Server virtualization

that allows different services to run on the same server was the answer to that issue.

The challenges of resource management approaches for small-scale request based IT services

in virtualization based data centers have already been presented in the introduction section.

Hence, only the known approaches will be shortly presented here.

Different trace based tools already exist for static resource management [55, 122, 60]. They

measure the resource demand of the services over time. Services are then assigned to servers

based on this information. Measured resource demand is multiplied by a certain factor to take

10



2.3 Operating Systems, IT Services, and Software

care of virtualization overhead and noise. This kind of modeling can either lead to significant

over provisioning or to resource shortages in some cases depending on the behavior of the

services [128]. Furthermore, neither SLOs nor resource performance trade-offs are supported

by these tools. Many research groups followed the idea of trace based resource management

as well [44, 43, 95]. The static part of the concept presented in this thesis is partly inspired by

the idea of trace based modeling. But the underlying resource demand models support SLOs

and resource performance trade-offs in contrast to known works.

Another class of approaches uses statistic models to describe the resource demand behavior

of the services [102, 117, 58, 17, 45]. SLOs and resource performance trade-offs are supported.

These approaches are similar to the one presented in this thesis. In contrast to them, non

stationarity of the resource demand behavior as well as correlations between the resource

demand of different services are considered by the new one.

Different dynamic resource management approaches have been presented for small-scale

request based IT services as well. Some of them leave open how to change from an existing to

a new distribution of services to servers [17, 90, 102]. Others address this issue by incrementally

redistributing services [53, 12, 66, 129, 118, 15]. The dynamic part of the concept presented

in this thesis focuses on an incremental redistribution as well. But in contrast to known

approaches, the new one can ensure that any upcoming resource shortage can be resolved

right in time, if the forecasted resource demand meets the actual one.

11





3 Problem Statement

The main goal of this thesis is to develop a concept for static and dynamic resource management

that optimizes the energy consumption in virtualized data centers by utilizing active server

hardware maximally.

First, a given set of services must be assigned to servers in a way that minimizes the overall

number of required servers. Service Level Agreements between clients of the service and the

Service Provider must be taken into account. This minimizes required hardware resources and

hence energy consumption. In a second step, an extended algorithm tries to take advantage

of varying workload that causes varying resource demand of the services. The services should

be consolidated to less servers in times of low workload. Unused servers are switched off to

save energy. This further reduces the energy consumption by adapting the active hardware

resources to the actual workload anytime in the best possible way.

Such a resource management concept will be worked out within this chapter. Some technical

background will be given in a first section that helps to understand the conceptual decisions

made. The concept itself is presented in a next section. It divides into different phases. For

each of them individual challenges and optimization problems will be worked out. Relevant

components of the data center as well as additional components used for the resource man-

agement are presented and related to each other in a third section. This analysis provides

parameters and constraints that additionally have to be taken into account by the resource

management concept. Finally, the optimization problems, the system, and the derived param-

eters and constraints will be mathematically described to derive formal problem statements

from them.

3.1 Technical Background

Different technical circumstances given in common data centers must be taken into account

by the resource management concept. They will be presented one by one within this section.

3.1.1 Service Level Agreements

The deployment of IT services typically involves different parties such as Service Providers

and clients. So called Service Level Agreements (SLAs) must be negotiated between them to

13



3 Problem Statement

define rights and obligations. Different specifications, protocols, and specification languages

[87, 62, 116, 106] exist for defining these SLAs.

A typical scenario taken from [106] is presented in Figure 3.1 to illustrate how Quality of

Service (QoS) can be ensured by using SLAs.

serviceISP

w x

z y

request

answer

Clients

SLO
§

SLA

Client & SP

SLO
§

SLA

ISP & SP

Figure 3.1: A typical scenario of service hosting in data centers and possible SLAs between
different parties involved.

Three parties are involved in this scenario. Clients are using a service provided by a Service

Provider (SP). Both are typically connected via a network operated by an Internet Service

Provider (ISP).

The clients send requests (w) through the network to the service in a typical use case. The

service processes these requests and sends the answers (y) back to the clients. A client has two

expectations. First, the answer should be present within a predefined time period. Second,

the service must behave as described by the SP before.

Clients and the SP can ensure these expectations by negotiating SLAs. Attributes such as

the required response time, performance, or throughput are defined by throughput conditions.

They are expressed in so called Service Level Objectives (SLOs). The service behavior is

captured by reliability constraints also expressed in SLOs. Limited resources of the SP restrict

its ability to guarantee SLOs. These limits concern the usage of the service mainly referred to

a limit of requests in a time interval. The respective SLO can be violated, if the client exceeds

the defined limit. These limits are part of many existing SLOs [106, 7] already today.

The reliable work of the service does not only depend on the SP as can be seen in Figure 3.1.

Especially the response time, performance, and throughput are influenced by the network as

well. Thus, a second SLA exists between the SP and the ISP ensuring that the time between

w and x and between y and z does not exceed a predefined limit.

SLAs can not only be used as a contract between different parties but also as input for

tools that autonomously manage the hardware resources of the Service Provider [87]. This

objective is pursued within this thesis. It will be detailed in Section 3.3.4 how the resource

management concept presented in this thesis takes care of SLOs concerning throughput and

reliability conditions.

14



3.1 Technical Background

3.1.2 Server Virtualization

The server virtualization technique serves as a basis for the resource management presented in

this thesis. This concept allows different services to share the same hardware server[107]. An

abstraction layer separates the service from the hardware at a certain point. An interface is

integrated to control the parallel access of different services to the shared hardware resources.

Each service is implemented in an individual isolated environment. The services cannot

directly interact with each other this way, which is import for security reasons. They do not

even know that they share hardware resources with other services in most cases. An external

software component schedules the access of all services to the hardware resources.

The abstraction layer separates the services from the hardware resources at different layers

depending on the virtualization technique. One can distinguish between operation system level

and server level virtualization. Operation system virtualization provides an individual instance

of a virtual operating system to each service in a so called container. This virtual operating

system looks like a real one that directly runs on hardware from the service’s perspective.

Actually, one real operating system schedules the parallel access of different containers with

different virtual operating systems.

Server virtualization, in contrast, does not only simulate operating systems but complete

servers. Any kind of compatible operation system and the respective service can be installed

on each virtual server. Different services with different individual operating systems can share

the same hardware server this way. The virtual server looks like a real one from the perspective

of the installed operating system1. An underlying scheduler regulates the parallel accesses of

different virtual servers to the real one.

Server virtualization is focused within this thesis because many services in common data

centers require individual operating systems for security and maintenance reasons. A virtual

servers is called Virtual Machine (VM) within this thesis. The underlying scheduler is typically

called Virtual Machine Monitor (VMM). The whole hardware and software system that realizes

the server virtualization is called virtualization environment.

Common virtualization environments for server virtualization can be divided further into

three different classes. An overview of each of the underlying concepts is illustrated in Figure

3.2 and will be shortly described in the following. Further information is provided in [107, 134]

and other related literature.

Full Virtualization

Any access of the guest operating system (guest OS) installed in a VM to shared hardware

resources must pass the VMM, if full virtualization is used (cf. Figure 3.2 a)). Direct access

1This is not completely true, if paravirtualization is used. At least the kernel of the guest operating system
is aware of the virtual server in this case.

15



3 Problem Statement

original
OS kernel

original
OS kernel

modified
OS kernel

modified
OS kernel

hardware

VMM

original
OS kernel

guest OS

original
OS kernel

guest OS

V
M

M

V
M

M

hardware

a) b) c)

guest

OS

guest

OS

guest

OS

guest

OS

hardware

Figure 3.2: Three different concepts of server virtualization. a) full virtualization b) paravir-
tualization c) hardware assisted virtualization

is impossible because the VMM can not control when the kernel of a guest OS accesses the

hardware resources. Hence, the VMM has to simulate individual hardware components such

as processors, a system bios, the ram, and the network cards to gain control. The VMM

can decide when the virtual components are actually accessing the physical ones this way.

Special drivers installed in the guest OS enable the communication with the virtual hardware

components.

The VMM itself can be realized in two different ways. First, a common operation system

(Windows, Linux, or Sun OS) is installed on the real hardware server. The VMM is a program

that runs in this operating system besides other programs. VMware Server [125] and Microsoft

Virtual PC [76] are popular examples. The VMware ESX Server [124] forms a more efficient

full virtualization environment. This VMM is an operating system itself. Hence, more direct

access to hardware resources is possible. The kernel schedules parallel accesses of different

simulated hardware components to the physical ones.

Paravirtualization

The guest OSs in paravirtualization environments can directly access real hardware compo-

nents in contrast to full virtualization (cf. Figure 3.2 b)). Guest OSs must communicate with

the VMM before they access any hardware. This allows the VMM2 to schedule the access

of different VMs to the same hardware component. Therefore, they typically must imple-

ment an interface of the VMM. Hence, only operating systems that support the underlying

virtualization environment can be installed on paravirtualizated VMs.

The efficient way for the VMM to schedule parallel hardware requests is an advantage

compared to full virtualization. It is not required to analyze the accesses of guest OSs to the

virtual hardware components to find out whether or not they can be granted at the moment.

The guest OS simply requests an access to a certain hardware component and waits until it

gets a grant from the VMM.

2The VMM is often called hypervisor in paravirtualization environments.

16



3.1 Technical Background

Examples for server virtualization environments that are based on paravirtualization are

Citrix Xen Server [29] and IBM z/VM [61].

Hardware Assisted Virtualization

The need of modified operating system kernels of the guest OSs is a big disadvantage of

paravirtualization. Especially closed source operating systems can not be used in most of

the paravirtualization environments. Microsoft Windows XP, for instance, can not run as an

paravirtualized guest OS in a classical XenServer environment without any extensions.

Hardware assisted virtualization(cf. Figure 3.2 c)) overcomes this drawback by using special

features of today’s CPU families (VT-x/VT-i(in Intel cores), Pacifica (in AMD cores)). These

features allow the VMM to schedule hardware accesses of the guest OS at hardware level.

Modifications of the guest OS are no longer required.

An extension called HVM enables hardware assisted virtualization for the paravirtualization

environment Citrix Xen Server [29]. Microsoft integrated virtualization support into the server

operating system Windows Server 2008. The underlying virtualization environment Hyper-V

[75] is also based on hardware assisted server virtualization.

3.1.3 Server Virtualization and Live Migration

The idea of live migration is to move VMs between two hardware servers without stopping

them. The abstraction layer between virtual and real hardware provides a basis for this

technique. Most common virtualization environments for server virtualization such as VMware

ESX Server [124], Citrix Xen Server [29], and Microsoft Hyper-V [75] already support live

migration of VMs.

It is required to move the context of the VM concerning memory (RAM), CPU state, and the

state of additional hardware devices used by the VM (e.g. the network adapter) to migrate a

VM between two servers at runtime. Common virtualization environments assume that hard

disk content is stored in centralized storages that are accessed via network to support live

migration. Hence, it is not needed to copy this content as well.

Three different strategies for live migration exist. A pure stop-and-copy strategy [98, 70]

stops the VM, copies the content through the network to the destination server, and starts the

VM at the new server. The problem of this strategy is that the service remains suspended for

the whole time needed to copy the context.

A second strategy [131] addresses this issue. Only the CPU and hardware context are copied

first. The VM is then started on the new server. The memory content is copied while the

VM is already running on the new server. A major disadvantage of this approach is the

unpredictable performance loss when requested memory pages are not yet present and must

be loaded through the network.

17



3 Problem Statement

A third strategy [30] copies the memory content of the VM to the new server while the

VM remains on the current one. Memory pages that are changed by the VM after they have

already been copied have to be copied again. The VM is stopped when almost the whole

content of the memory has been transferred to the destination server. The changed pages and

the hardware context are copied and the VM is started on its new server. The time a VM is

actually suspended can be far below 100ms [30] this way.

This strategy is supported by the dynamic part of the resource management concept pre-

sented in this thesis since most common virtualization environments use it to realize live

migration.

3.1.4 Dealing with Shared Resources in Virtualized Data Centers

This section provides some background on how virtualization environments shares the resource

capacity of servers between different VMs. This knowledge is an essential prerequisite to

understand how shared resources are modeled in the resource management concept.

Mainly three types of resources are shared between VMs. They will be discussed one by one

in the following.

CPU Time

Modern servers contain several CPUs. Each modern CPU has typically more than one core.

All cores of all CPUs form the CPU capacity of a server. Typically, one core of one CPU is

reserved for the VMM itself so that the overall CPU capacity provided to VMs is reduced by

one core.

VMs are consuming CPU time. CPU time is a measure that indicates how long a certain

VM uses or requires one core of one CPU. In general, CPU time is not used as an absolute

value but related to a fixed measuring interval and expressed in percent in most cases3.

VMs can provide one or more virtual CPUs to their guest operating system. The number

of virtual CPUs of all VMs that are running on the same server can exceed the number of

real hardware cores present. In this case, different virtual cores are mapped onto the same

hardware core. The CPU time is scheduled between them. One virtual core can provide the

whole computing power of one real hardware core to its guest OS at a maximum.

Common virtualization environments allow specifying upper and lower limits to control the

distribution of CPU time to virtual CPUs that are mapped on the same core. A lower limit

guarantees minimal CPU time to the respective virtual CPU. The maximal CPU time a virtual

CPU can provide to its guest OS can be defined by an upper limit. Setting such limits helps

to isolate different VMs from each other. If a service exceeds the expected CPU time demand

3Sometimes MHz is used as unit for CPU time. This unit can be regarded as CPU cycles per second. Knowing
the duration of one CPU cycle one can translate this unit into percent as well.

18



3.1 Technical Background

because of failures or an attack, the performance of none of the other services that are running

on the same server will be influenced.

The first virtualization environments supported only an fixed assignment of virtual CPUs to

real cores that must be manually set by the administrator. Modern ones such as VMware ESX

Server and Citrix XenServer (when the Credit-Based CPU-Scheduler [108] is used) integrate

load balancing schedulers that dynamically reassign the virtual CPUs according to current

workload conditions. A big advantage of this dynamic assignment is that all cores of all CPUs

can be regarded as one big pool of CPU time capacity. All virtual CPUs can individually take

CPU time out of this pool as long as the sum of all does not exceed the overall capacity. If

for instance three virtual CPUs require 40%, 80%, and 70% CPU time, this capacity can be

provided by two real cores. The scheduler continuously reassigns the three virtual CPUs to

the two real cores so that the CPU time provided to the virtual CPUs fits on average.

Of course, the accuracy the CPU time is scheduled to the virtual CPUs depends on the time

interval that is regarded. Conventional schedulers have rescheduling periods of the virtual

CPUs of below 50ms (XenServer: 30ms). Hence, actually used CPU time should not signifi-

cantly deviate from the specified values any more already after a few multiples of this period.

Running applications on virtual servers that require provisioning in smaller times scales is a

big challenge at all because any kind of resource scheduling must be able to deal with these

small deadlines. This issue will be not addressed any deeper in this thesis. It must be mainly

addressed by the virtualization environment and the underlying schedulers.

RAM

Memory capacity is allocated by the VM in different ways depending on the virtualization

environment used. Citrix Xen Server, for instance, allocates the complete memory that is

assigned to a VM directly when the VM is started [109]. The amount of assigned memory

can be changed by the VMM at runtime using a technique called ballooning. But the VMM

is not aware of the amount of memory that is actually used by the guest OS in a VM. Hence,

automatically adjusting provided memory capacity to the demand of a VM is not possible

without any additional communication to the operating system. The resource management

must allocate a fixed amount of memory capacity that satisfies the maximal demand of the

VM ever expected in the future as a consequence.

Full virtualization environments such as VMware ESX Server provide special hardware

driver for the simulated hardware components as mentioned in Section 3.1.2. These drivers

are installed in the guest OS and hence enable a kind of special communication between the

guest OS and the VMM. The VMM knows about the amount of memory capacity actually

required by the guest OS at any time. Hence, it does not have to allocate the whole amount

of memory assigned to a VM directly when the VM is started. It can allocate memory when

19



3 Problem Statement

it is needed. Especially memory that is not needed any more by the guest OS can be released

at runtime and used by other VMs placed on the same server.

In principal, both kinds of virtualization techniques allow overbooking the memory. The

virtual memory capacity provided to all VMs can exceed the capacity of the server. Swap-

ping files are used to compensate the missing memory capacity. But possible performance

losses caused when memory pages must be reloaded from the swap file are hardly predictable

[109]. Hence, the resource management concept presented in this thesis will not draw on this

technique.

Network

The concept of virtual network adapters is widely distributed in most common server virtual-

ization environments. One or more virtual network adapters can be assigned to a VM. Each

of them has its own MAC address. Hence, they look like physical ones from an outside view.

The direct assignment of physical network adapters to VMs is not supported in most cases.

Instead, the VMM provides methods to connect virtual network adapters with physical ones.

Citrix Xen Server introduced the bridging concept [110] already known from the Linux oper-

ating system for this purpose. Different virtual and physical network adapters can be freely

connected to each other, which allows a very flexible configuration. A similar approach is

followed by the VMware ESX Server. They introduced virtual switches (called vNetwork

Standard Switches in VMware vSphere 4.X ) that are a software implementation of a hardware

switch [120]. Virtual as well as physical network adapter can be connected to these virtual

switches. Different of them can be instantiated in a VMM.

The capacity (throughput) of a virtual network adapter typically is much higher compared

to a physical one. It is mainly limited by the CPU capacity provided to the VM and to the

underlying VMM. But the virtual adapter is not the limiting resource in most cases. Different

physical components contained in the server and especially the network infrastructure behind

can form the bottle neck depending on the destination of the network traffic. Hence, network

capacity provided to the VM depends on all components of the network infrastructure (physical

and virtual) but also on the destination of the traffic itself.

A further challenge in virtualization based data centers arises when live migration of VMs

must be supported. Older server virtualization environments (e.g. VMware ESX 3.5 and

XenServer) require that the same virtual bridges and virtual switches are instantiated on all

possible destination server of a VM. The virtual network adapters can be simply connected

to them on each of the servers this way. All of these duplicated virtual switches must be

connected to the same underlying physical network. Moving a virtual adapter from one switch

to another is not a problem for open connection due to the individual MAC and IP address.

Respective network packets are simply routed to their new position by the switches.

20



3.1 Technical Background

VMware recently introduced a more holistic network concept into its newest server virtual-

ization environment VMware vSphere 4.X. So called vNetwork Distributed Switches [121] have

been introduced in addition to the vNetwork Standard Switches. They function as a single

switch across different servers. They better support VM migration and load balancing in the

whole network compared to the local switches.

3.1.5 Power States of Servers

Power management techniques that transfer the whole system into a low power state to save

energy are widely distributed in the area of notebook and desktop computers. One can mainly

distinguish between three low power states [54] that are supported by most common systems:

• ACPI S3 - Save to RAM(STR): The states of all periphery components and the CPU

are saved to RAM before they are switched off. Only the RAM and some components

that are needed to reactivate the system remain powered on. All hardware components

must be powered back on and their context must be restored from RAM to reactivate

the system. The operating system resumes in the same state, as it was before the low

power state was entered. The fast reactivation time (of typically a few seconds) is an

advantage of STR compared to other low power states.

• ACPI S4 - Save to Disk(STD): This low power state is similar to STR. The operating

system resumes in the same state, as it was before the low power state was entered. But

the context of the hardware components as well as the content of the RAM are stored

to hard disk in contrast. This allows the power management controller to power down

all hardware components. Any power supply could be disconnected in principal. The

transition times to the low power state and back to the active state are quite longer

compared to STR. The concrete times mainly depend on how fast the memory content

can be stored to disk and restored back.

• ACPI S5 - Complete Shutdown: The operating system completely shuts down and

switches off the whole hardware. Any power supply could be completely disconnected

similar to the STD state. The operating system must reboot for reactivation. Transition

times mainly depend on the operating system and the speed of the underlying hardware.

Common server virtualization environments such as VMware ESX Server and Citrix Xen

Server support only STR or a complete server shutdown. STR works not with all servers.

Only a complete server shutdown is feasible for them. In any case, all active VMs must be

removed from the server before the low power state is entered.

Several mechanism exist to remotely reactivate the server. The classical way is called Wake

on LAN (also known as WoL). The PCI subsystem and the network adapter in the server

21



3 Problem Statement

remain powered on while the server is in low power mode. Special network packets sent to the

network adapter of the server can remotely reactivate the whole system. Modern integrated

servers solutions, such as HP Blade Systems, have own management hardware that among

other things can controls the state of the servers included in the same enclosure. They provide

a standardized API to remotely control the server state.

3.2 Conceptual View

The concept for static and dynamic resource management can be divided into three phases.

The purpose of the first and second phase is to determine a static assignment of services to

servers. In the final third phase, services are also dynamically reassigned to servers according

to their current resource demand. Unused servers are powered down to save energy. An

overview of the three phases and the tasks that are performed within each phase is given in

Figure 3.3.

pessimistic static dynamicstatistic static

resource management

planning operating

p
es

si
m

is
ti

c 
st

at
ic

 

d
is

tr
ib

u
ti

o
n

o
p

ti
m

iz
ed

 s
ta

ti
c 

d
is

tr
ib

u
ti

o
n

• adapt models to 

changes by measured 

resource demand

• dynamically 

redistribute services to 

servers according to 

their demand

• power on and off 

servers

online optimization

• determine maximal 

required resources by 

performing 

benchmarks

• distribute services to 

servers guaranteeing 

maximal required 

resources all the time

offline characterization

• model the demand 

behavior of services 

using observed data

• create optimized static 

distribution of services 

to servers considering 

the demand behavior

online characterization

Figure 3.3: The three phases of the static and dynamic resource management concept and
tasks that are performed within. The black colored tasks are addressed within this
thesis. Tools and concepts already exist for performing the light gray task. Hence,
it is only shortly discussed.

Benchmarks must be performed during the first phase comparable to classical capacity

planning [8]. They are needed to determine the resources required by a service in case of the

maximal expected workload defined in the SLOs. An algorithm then determines a distribution

of the services to servers based on this information. The resulting distribution very pessimisti-

cally provides the maximally required resources to all services all the time. It will work without

violating any performance goals assuming that the maximal workload is not exceeded.

For the following second phase, services are deployed to servers according to that pessimistic

22



3.2 Conceptual View

distribution. Their resource demand behavior is observed while users are now doing their

normal work with them. Models are characterized that describe the resource demand behavior.

Finally, an optimized but also static distribution of services to servers is derived based on

these models. This new distribution can require less servers compared to the pessimistic one

depending on the workload behavior. This optimized static distribution will also work without

any SLO violations under the assumption that the workload behavior does not change with

respect to the observed one.

The third phase begins with the optimized static distribution. The data center now operates

in its normal mode. The services are redistributed to servers according to their current resource

demand using the models trained in phase two. Unused servers are switched off to save energy.

Furthermore, the models are adapted by ongoing measures of the resource demand to take

care of changed workload behavior.

The tasks to be performed within each phase will be worked out some more in the following

to extract challenges that need to be addressed.

3.2.1 Pessimistic Static Resource Management

Hardly something is known about the maximally required resources when new services should

be deployed in a data center. Nothing is known about the resource demand behavior at all.

But this information is required for proper resource management especially when different

service should share the same server as targeted in this thesis.

Hence, benchmarks are typically performed on the services in an isolated environment first.

The benchmarks simulate the workload that is maximally expected according to the SLOs.

The resource capacity provided to the service can then be adjusted so that the performance

goals defined by SLOs as well are achieved. This approach is already well known from ceiling

based capacity planning [8]. Hence, this task will not be detailed much deeper within this

thesis. Different concepts and tools [55, 122, 85] already exist for performing this tasks. A

good overview is presented in [135].

Once the maximal required resources are found for each service, there is still no informa-

tion present about the demand behavior at runtime. But this information is indispensable to

determine the optimized static distribution and especially to perform dynamic resource man-

agement. Hence, the services must be observed while users are doing their normal work with

them to learn about the demand behavior. Therefore, an algorithm is needed that distributes

services to servers in a way that none of the SLOs related to throughput constraints (cf. Sec-

tion 3.1.1) is violated. Any violation will lead to invalid resource demand values observed.

Such an algorithm can only draw on maximally required resources already determined. Hence,

only a pessimistic distribution of services to servers is possible. This distribution ensures the

maximal required resources to each service all over the time. An algorithm that finds such a

23



3 Problem Statement

distribution with a minimal number of required servers is presented in Chapter 4.

3.2.2 Optimized Static Resource Management

This phase aims to use knowledge about the demand behavior of the services to find a new

distribution of services to servers. This distribution should require less servers compared to

the pessimistic one in best case.

It was shown in [102, 117, 58] that typical services require their maximal resources only in

a very small fraction of time. Furthermore, different services rarely require their maximum

all at the same time. Regarding these facts, services can be assigned to less servers compared

to the pessimistic approach. So called statistical static resource management approaches are

based on this idea.

It is aimed to use such an approach within this second phase to reduce the overall number of

servers required for a given set of services. But it has to be noticed that such approaches are

overbooking hardware resources. This can lead to performance reductions caused by resource

shortages in some cases. It must be guaranteed that a certain probability as well as a certain

strength of performance reduction is not exceeded to use these approaches in real data centers.

Both parameters must be defined as SLOs in the SLA between the client and the Service

Provider.

Appropriate modeling the resource demand of the services is essential to apply statistical

approaches. Especially missing stationarity and possible correlations between the resource

demand of different services must be considered. Furthermore, SLOs are needed that describe

the performance goals in an appropriate way. Finally, an algorithm that based on the models

distributes the services to servers with respect to the SLOs is needed. These challenges are

addressed in this thesis in Chapter 5.

3.2.3 Dynamic Resource Management

The dynamic resource management phase starts with the optimized static distribution of

services to servers obtained at the end of phase two. It is assumed that all SLOs that concern

throughput constraints are satisfied at any time. Services do not have to be redistributed as

discussed before.

Services can be now consolidated to fewer servers in times of less overall resource demand.

Unused servers can be switched off to save energy. Servers must be reactivated and VMs must

be redistributed, when the resource demand increases to prevent resource shortages. The whole

static distribution must be restored in worst case.

The main challenge to be addressed is that redistributing services and powering up servers

takes time. The dynamic scheduling approach must ensure that the resource demand of the

24



3.3 System Description

services remains low for a while, before the safe static distribution is left. There must be

enough time to redistribute the services, to power down the servers, to save some energy, and

in worst case to power up all servers and to restore the whole static distribution.

This requires properly modeling the resource demand of the services. One must be able to

extrapolate the demand behavior of the services expected in the future based on these models.

The time dependence of the resource demand needs to be explicitly modeled in contrast to the

optimized static resources management. One can only take any advantage of varying resource

demand, if it is known when and how long this demand will be low.

A second big challenge to be addressed is the scheduling algorithms itself. It must ensure

that a way back to the safe static distribution exists at any time and that it can be performed

right in time before the resource demand increases.

And finally, a third challenge concerns possible forecasting errors caused by changed demand

behavior of the services. The models used to forecast the resource demand are characterized

by demand behavior observed in the past. Unexpected behavior can lead to resource shortages

resulting in a reduced service performance. The clients of a service must be able to define

the maximally allowed duration of possible performance problems as well as their maximally

allowed strength in the SLOs to accept these incidents. Furthermore, the models should adapt

changed demand behavior to prevent SLO violation in the future.

An approach for dynamic resource management that addresses these challenges will be

presented in Chapter 6.

3.3 System Description

The challenges and optimization problems of static and dynamic resource management are

derived from the conceptual view in a very abstract way until now. Hardly some technical

aspects are regarded. A closer look to the data center components that are mainly involved in

the concept will be provided within this section. Parameters and constraints are derived from

this analysis that must be additionally considered. Especially the terms resource demand and

SLA will be detailed some more with respect to the targeted virtualization based data center.

3.3.1 Involved Components

An overview of the data center components involved in the resource management concept is

presented in Figure 3.4. The main relevant hardware components are servers, the storage

system, and the network. The services to be deployed in the data center and a load and power

management (LPM) component are software components. And finally the behavior of clients

of the services plays a significant role.

25



3 Problem Statement

server1 server2 servern
…

VM1

VM2

VM3

VM4

VM5

VMm-1

VMm…
Resource demand

models of VMs

migration control

observed
resource demand

power control

central
storage ClientsIO / storage network

migration network

considered components load and power management

controller

time demand

SLA

Figure 3.4: Overview of data center components mainly involved in the resource management
concept and their dependencies on each other.

The relation between all three parties is quiet simple. Clients are sending requests through

the network to the services. The server must answer in a predefined time period according to a

SLA. A service allocates resource capacity of the server on which it runs to process a request.

Required data is retrieved from the storage system. Finally, the result is sent back to the client

through the network again. The load and power management component assigns services to

servers and powers servers up and down according to the expected resource demand. Parts of

this system will be regarded more detailed in the following.

Servers and Services

The resource management concept developed in this thesis targets small-scale request based IT

services as already outlined in Chapter 2. These services require the whole resource capacity

of one modern server at a maximum. Most of them require far less capacity most of the time

so that one server provides enough resource capacity for several services.

Hence, it is assumed that services are not deployed directly on hardware but implemented

in VMs to allow several of them to share the same server (cf. Section 3.1.2). This approach is

widely distributed in today’s data centers for better utilizing the server hardware.

It is further required that the underlying virtualization environment supports live migration

(cf. Section 3.1.3) to realize dynamic resource management. The LPM component must be

able to move VMs between servers at runtime without the need to stop the service.

And finally, the power management component must be able to remotely power up and

down servers. Respective mechanism have been presented in the background section as well.

Storage System

Most common virtualization environments such as VMware ESX, Citrix Xen Server, or Mi-

crosoft Hyper-V require a centralized storage system to support the live migration technique.

26



3.3 System Description

The storage is typically connected to the servers via the network system. The services can

access the file system from any server in the network. This approach prevents that the whole

storage content needed by a service must be copied through the network during the live mi-

gration process. Data is already often stored centralized in common medium and large data

centers for security and maintenance reasons.

Network

The servers, the storage, and the clients outside the data center are connected via a network.

Large network bandwidth should be provided while VMs are migrated between two servers

to minimize the duration of this process [30]. Hence, a dedicated network for migrating VMs

is recommended [127]. Many modern data centers already use the live migration technique

for administration, autonomous load management (e.g. supported by VMware DRS [123]), or

recovery solutions (such as e.g. [74]) so that the additional infrastructure is already present

very often. In data centers that require fast answers from the storage or that have high data

throughput even the storage and the user IO network are implemented in dedicated nets.

Load and Power Management

The LPM component implements the resource management concept. A controller assigns VMs

to servers based on the SLAs and the resource demand forecasted by the models. Additionally,

the controller powers up and down the servers. The resource demand models are characterized

using observed resource demand. Appropriate interfaces provided by most common virtual-

ization environments connect the LPM component to the virtualization environment for this

purpose.

3.3.2 Limited Resources

Resource demand of VMs was regarded in a very abstract way until now. A closer look to

the different resources types will be provided within this section to understand, which ones

need to be considered by the resource management concept. Generally, limited resources for

services in a data center are CPU time, network bandwidth, memory (RAM), and disk space.

In the following they will be discussed one by one.

CPU Time

CPU time provided to VMs is a resource that generally is limited by the capacity of the server

on which the VMs are running. All VMs placed on the same server must share its capacity as

discussed in Section 3.1.4. Hence, CPU time must be considered by the resource management

concept.

27



3 Problem Statement

It has been further detailed in Section 3.1.4 that the capacity of different CPUs contained in

one server can be handled like one big resource pool of CPU time. This means that one single

value can describe the CPU capacity of a whole server w.r.t. all contained CPUs and cores.

The CPU time consumed by a VM is varying over time and can be split between different

virtual CPUs assigned to the VM. One virtual CPU can completely consume the time of one

core of a hardware CPU at a maximum. The CPU time consumed by all virtual CPUs of one

VM can be summed up to get the overall CPU time taken from the servers capacity due to

the dynamic mapping of virtual CPUs to cores of real CPUs.

A VM takes exactly the part of CPU time it needs as long as enough CPU time capacity is

provided. This amount of taken CPU time will be denoted by CPU time demand of the VM

within this thesis. A service will typically not completely fail, when this demand exceeds the

CPU time actually provided by the virtualization environment. It will only get slower. Hence,

provided CPU time can be adjusted to the demand of a VM to trade off service performance

against resource capacity.

The CPU time required to meet a performance goal of a service can vary depending on

the CPU type and the main board architecture of the server. Hence, not only the resource

demand but also the server on which the VM is currently placed decide about the CPU time

needed to meet a certain SLO. Such heterogeneities are not addressed within this thesis. It is

assumed that providing a fixed amount of CPU time to a VM will lead to the same performance

independent from the server it is deployed on.

Network Bandwith

An overview of common network concepts that support server virtualization has been given

in Section 3.1.4. It has been pointed out that distributing VMs to servers only considering

their required bandwidth will fail in many cases. Additional information about the underlying

network (virtual as well as physical) and the source or destination of the traffic itself must be

taken into account.

In general, one would not place two VMs that require a bandwidth of 80MBit/s together on

a server that is physically connected to the network via a 100MBit/s network adapter. But

if the whole traffic is exclusively caused by communication between these two VMs, placing

them together at a server might be the best solution at all. The traffic is routed directly

through the local virtual net of the host, which is quiet faster and less expensive in terms of

required resources. Hence, a more detailed view into the services implemented in the VMs and

knowledge about the network concept behind are required.

It is expected that the administrator has completely worked out the network concept for

the VMs that are controlled by the LPM system. This concept defines restrictions for the

resource management concerning VMs that must, can, or must not be placed together on the

28



3.3 System Description

same server. Furthermore, a list of invalid hosts is defined for each VM on which they must

not be placed at all. The administrator can at least prevent that two traffic intensive VMs

are using the same physical network adapter this way. Furthermore, servers can be excluded

that do not provide appropriate network connections to a VM. It is assumed that no SLA

violation are caused by the network system, when these restrictions are considered by the

resource management.

Additional restrictions concerning the actual network traffic caused by the VMs might be

needed for resource management decisions as well. VMs that are connected to their clients via

a physical network adapter must share its bandwidth. This should be considered as well. But

a possible bottle-neck might not be the adapter itself but the network infrastructure behind.

Hence, the whole infrastructure must be regarded as well, which requires modeling the behavior

of all components involved and the traffic of the services implemented in the VMs.

This complex research area is not worked out any more within this thesis. It must be part

of required future work. It will be shortly outlined in the outlook section of the conclusion

chapter, how appropriate network models can be integrated into the resource management

concept presented in this thesis. An interface can connect a holistic concepts for network

management (such as provided by VMware vSphere 4.X ) with the LPM component to also

consider network aspects.

Memory (RAM)

The memory capacity is limited per server comparable to CPU time. Different servers can

have different memory capacities. All VMs placed on the same server must share its memory

capacity. Hence, memory must be considered by the resource management concept as well.

But in contrast to CPU time, the service implemented in a VM will completely fail, when

the memory demand exceeds the provided capacity4. Furthermore, memory demand of a VM

can either vary over time or can be a fixed value at runtime depending on the virtualization

environment as pointed out in Section 3.1.4.

Disk Space and Disc IO Operations

The storage system is centralized as discussed in the previous section. Hence, the disk space

provided to each VM is independent from the distribution of VMs. The number of active

servers does not influence disk space as well. Hence, this resource type does not have to be

considered by the resource management concept as limited resource.

4As discussed in 3.1.4, swapping techniques allow exceeding the capacity by swapping out parts of the memory
to disk. Because of hardly predictable performance loss when memory content must be restored, the concept
presented in this thesis will not draw on this technique.

29



3 Problem Statement

The maximal throughput of storage I/O operations is typically limited by the storage system

itself but not by the connection between the storage and the server. Hence, the distribution of

VMs to servers does not influence the response time and throughput of storage I/O operations.

Modern virtualization environments typically support storage I/O prioritization that based on

shares and limits handles I/O requests of different VMs [126]. This storage access management

works cluster-wide and hence is independent from the positions of VMs and the number of the

VMs placed on the same server.

3.3.3 Overhead and Prerequisites of Control Mechanisms

Some technical properties and constraints concerning the control mechanism must be consid-

ered by the resource management concept in addition to the limited resources of servers.

Migrating VMs

The whole memory (RAM) content as well as some additional informations about the hardware

context are copied through the network when a VM is moved from one to another server. This

additional traffic does not conflict with normal IO traffic of the VMs because of the dedicated

network for migrations.

Furthermore, no additional CPU time is required. The migration is processed by the VMM

itself, that typically owns its individual CPU core. It is suggested to individually reserve CPU

capacity for live migration on each server to prevent any interactions with the VMs, if none

of the CPU cores can be individually reserved for the VMM [83]. The resource management

concept does not have to take care of this kind of overhead. It can be simply regarded as a

constantly reduced amount of CPU capacity.

Potential slowdowns caused by concurrent accesses to memory or other hardware resources

contained in the server are not considered within this thesis. Such artifacts do not significantly

influence the response time or throughput of normal services even if they are heavily loaded

regarding analyses presented in [30, 83].

But the migration operation will take time that must be considered by the scheduling al-

gorithm in the LPM component as discussed in the concept section. It was found in [83, 89]

that this time mainly depends on the amount of memory to be copied and on the network

bandwidth. But the activity of the service implemented in the VM also slightly influences the

migration time[89, 30, 83]. High activity increases the probability for memory pages to get

invalid after they have already been copied. Hence, they must be copied again, which increases

the overall migration time. It is assumed within this thesis that the time for migrating a VM

can be safely overestimated, if the VM is the only one that is migrated in the whole data center

at a time. It is further assumed that this time is valid for the migration of the VM between

all possible combinations of source and destination server.

30



3.3 System Description

A second constraint concerns the limited resources CPU time and RAM. The complete

required memory (RAM) must be available for the VM at the destination server already at

the beginning of the migration process of a VM. The migration process will not start, if not

enough memory is present. Nearly the same is true for CPU time. Basically, the migration

process would start and CPU time of the destination server is not used until the migration

process is completely finished. But the scheduling algorithm does not know when exactly the

migration is finished, since the migration time of the VM is only overestimated. Thus it is

unclear when exactly the CPU time is needed. As a result, the required CPU time as well as

the memory capacity must be available at the source and destination server during the whole

migration process.

Powering Up and Down Servers

Powering up and down servers will take time comparable to the migration process of virtual

machines. It is assumed within this thesis that safe shutdown and resume delays can be

overestimated for each server in the data center.

In addition to the delays, the scheduling algorithm must also consider the fact that once

the server starts the shutdown or resume process, it cannot be stopped until it is completely

finished. Furthermore, no active VMs can be deployed on the server during the shutdown or

resume process. Especially the last point requires that the servers remains switched off for a

while to compensate the energy overhead caused by the shutdown and resume process.

Gathering Data and Managing the System

The concept that will be presented in this thesis requires monitoring the resource demand of

the VMs. Measured data will be used to train the models in the first and second phase of the

concept. The demand must be observed further in the third phase to detect changed demand

behavior and to adapt the models if necessary.

This monitoring task will require some additional resource capacity that needs to be pro-

vided by the servers besides the normal work. But in most common data centers, such data

(memory and CPU time demand) is already gathered for capacity planning and trouble shout-

ing reasons[9]. Hence, a fixed amount of resource capacity is already reserved on each server

for the virtualization environment to support this task.

Additionally, the LPM component itself needs some resource capacity in the data center

that must be provided by one single server or a single PC. Especially in virtualized data

centers, any kind of system management software is still running in most cases to observe and

maintain the data center. The LPM component should be designed in a way that it could be

deployed on such existing systems as well without increasing the overall resource demand for

the management software to much.

31



3 Problem Statement

3.3.4 Service Level Agreements

SLAs were introduced in Section 3.1.1 as a contract between the Service Provider and the

clients. SLOs are defined to ensure Quality of Service (QoS). It was pointed out that SLAs

can be additionally used as constraints for autonomous resource management tools. This thesis

focuses on the second aim.

It is presented in Figure 3.5 how resource management and SLAs depend on each other.

res. capacity

res. demand

serviceISP

w x

z y

request

answer

Clients

SLOs between
Clients and SP

server

conditions for

res. management

responsibility
of SP

derived

considered in this thesisknown and future work

Figure 3.5: Dependency between resource management tools and SLOs containted in SLAs to
ensure QoS

The SLOs between clients and the SP normally concern properties of requests (w) and

answers (z ). But the part of the system that the SP can control by own provisioning decisions

is limited to requests that already passed the network (x ) and to answers before they will pass

it (y). Hence, only this part can be used by resource management tools for service provisioning.

In general, processing requests requires hardware resources. The number of requests in a

time period is varying so that the amount of required resources is varying as well. The amount

of resource capacity provided to this demand decides about how fast requests are processed

or even if they can be processed at all as discussed before. Hence, constraints for the resource

management concerning the amount of required resource capacity for a given resource demand

must be derived from the SLOs of a SLA.

The SLOs the resource management concept is responsible for will be presented within the

chapters in which the individual phases of the concept are worked out.

3.4 Formal Definition

Modeling the resource demand of VMs, distributing the VMs to servers, and specifying appro-

priate SLOs turned out to be the main challenges of static and dynamic resource management

in the last two sections. These challenges as well as the extracted parameters and constraints

to be considered will be described more mathematically in this section to formally specify

the optimization problems behind. The main import terms are introduced first, before the

32



3.4 Formal Definition

optimization problems themselves are presented.

3.4.1 Terminology and Declarations

The terms, functions, and variables shortly introduced in the following are consistently used

throughout the whole thesis.

VMs and Servers

All VMs in a data center considered for resource management are indexed by an i. Variables

and functions that describe properties of VMs (e.g. the resource demand) are indexed by an i

as well to relate them to the respective VM. Servers, in contrast, to which these VMs can be

assigned, are indexed by an k as well as functions and variables that belong to properties of

the respective servers.

Mapping of VMs onto Servers

The mapping of VMs onto servers is expressed by a function B(i) : i 7→ k that associates one

server k to each VM i. This function is time independent in case of static resource management.

It turns into B(i, t) : i 7→ k(t) for dynamic resource management.

Restrictions of the Mapping

The administrator must be able to restrict the mapping of VMs onto servers to take care of

the network concept as discussed in Section 3.3.2. First, the administrator must be able to

define, if two VMs must, can, or must not be placed together at the same servers. Second, it

can be required to forbid the placement of VMs on certain servers at all.

A function VM VM allow(i1, i2) is introduced to realize the first of these restriction. This

function returns true, if two VMs i1 and i2 are allowed being placed on the same server. The

administrator can use this function to prevent that two VMs are placed together at the same

servers. No additional function is needed to force that VMs are always placed together. These

VMs can be simply treated like one single VM by the resource management. The resource

management can decide where to place them based on the joint resource demand of both.

The second restriction can be realized by implementing a function VM server allow(i, k).

This function returns true, if a VM i is allowed being placed on server k.

Resource Demand of VMs

The limiting resources that directly must be considered by the resource management are CPU

time and memory according to the outcomes of Section 3.3.2. The CPU time demand is time

33



3 Problem Statement

dependent in any case. The memory demand can be either a fixed value or varying over time

depending on the underlying virtualization environment.

Thus, the resource demand of a VM i can be expressed by a two dimensional vector ~ri(t)

that depends on time t. The elements of this vector are functions Ri(t) that describe the CPU

time and memory the VM takes at time t if available. Both resources types are handled nearly

the same way within this thesis. Hence, it is not required denoting the functions by different

names. Both resources types are meant, when it is talked about Ri(t) without an additional

note.

The function Ri(t) is limited by a maximal resource demand Rmaxi , which occurs in case

of the maximally expected workload specified in the SLOs. It is assumed that Ri(t) never

exceeds Rmaxi . A vector ~rmaxi describes the maximal resource demand of VM i with respect

to both resource types.

The amount of resources demanded by a VM is mainly defined by interactions between

the clients and the service implemented in the VM. Client interactions occur randomly from

the system’s perspective. Hence, the resource demand Ri(t) is not deterministic as well. A

discret-time stochastic process called Yi(t) is used within this thesis to model Ri(t). This

process is not necessarily stationary due to possible time dependent trends and a varying noise

performance.

Different VMs placed on the same server cause joint resource demand, which is simply the

sum of their individual resource demands. Hence, the joint resource demand is described by a

two dimensional vector as well. This vector is called
#»
jrk(t) and is formally defined by following

equation:

#»
jrk(t) =

∑
∀i:B(i)=k

~ri(t). (3.1)

Required Resource Capacity for VMs

~ai(t) is introduced in addition to the resource demand. This vector describes the amount of

resources needed to be reserved for a VM at time t to meet the SLOs the resource management

is responsible for. The elements Ai(t) of ~ai(t) are functions comparable to ~ri(t). But they are

deterministic and overestimate the trend and random noise of Ri(t) with respect to the SLOs

in contrast to Ri(t). In other words: The respective SLO of the service implemented in the

VM will be never violated, if the resource capacity ~ai(t) is provided to VM i at each time t.

An upper limit of resources a VM can take from a server can be specified in common

virtualization environments. No additional resources are provided even if the demand Ri(t)

exceeds this limit. Furthermore, a fixed amount of resources can be individually reserved for

each VM. Such reserved resources can not be provided to other VMs no matter if they are

34



3.4 Formal Definition

actually used or not. Both limits can be regarded as upper and lower bound of Ai(t). They

are denoted by Amini and Amaxi or ~amini and ~amaxi respectively within this thesis.

Furthermore, the server capacity required to satisfy all SLOs of the VMs placed on the same

server k is introduced and will be denoted by
#»
jak(t). The relation between ~ai(t) and

#»
jak(t) can

be expressed by following equation:

#»
jak(t) ≤

∑
∀i:B(i)=k

~ai(t). (3.2)

It will be shown later in this thesis that the required resources for a couple of VMs can be

lower than the sum of the resources individually required by them.

Resource Demand and Required Capacity Purged by a Long Term Trend

The model that will be presented in this thesis is split into two parts. One part models

possible seasonal trends and the noise while the other one adds the influence of possible long

term trends. The functions Ri(t), Ai(t), and Yi(t) refer to resource demand and required

capacity including the long term trend. These functions but purged by the long term trend

are needed from time to time to describe the concept. They will be marked by a star as follows:

R∗i (t), A
∗
i (t), and Y ∗i (t), to distinguish them from the initial ones.

Provided Resource Capacity of Servers

Servers provide resource capacity to the demand of the VMs. The resource capacity of a server

is time independent but different servers can have different resource capacities. The capacity

of server k is described by a two dimensional vector ~ck in this thesis comparable to the resource

demand. This vector contains individual resource capacities Ck each for one resource type.

Server and Migration Delays

The control mechanisms used by the LPM component consume time as discussed in Section

3.3.3. This time needs to be considered by the optimization algorithms. These delays will be

denoted by ∆tmigi (time for migrating VM i between two servers) , ∆tupk , and ∆tdownk (time for

powering up or down server k) within this thesis. In addition, servers need to stay switched

off for a while after they have been powered down to at least save some energy at all. This so

called break even time is denoted by ∆tbek . And finally, ∆tB(i,t1)→B(i,t2) is introduced as the

time needed to redistribute the mapping at time t1 to a new mapping at time t2.

35



3 Problem Statement

Starting Time and Duration of the Three Phases of the Concept

All three phases presented in the concept description in Section 3.2 are performed subsequently.

The starting times of the phases are denoted by tp1 , tp2 , and tp3 . Their respective durations

are described by ∆tp1 , ∆tp2 , and ∆tp3 . The duration of the first phase (pessimistic resource

management) is only listed for completeness and has no relevance to the resource management

concept. ∆tp2 defines the duration of the trainings phase. The data center performs normal

work during the third phase (dynamic resource management). Hence, this phase should last for

ever in best case. But in practice, possible long term trends prevent that the static distribution

of VMs to servers determined in phase two remains valid for unlimited time. Hence, the

duration of phase three is limited to ∆tp3 as well.

3.4.2 Problem Definition: Static Resource Management

The goal of static resource management is to find one fixed mapping B(i) : i 7→ k of VMs

onto servers as pointed out in Section 3.2. This mapping should require a minimal number

of servers. Hereby, the jointly required resources of all VMs placed on the same server must

not exceed its capacity to not violate any SLO. This condition must only be valid in the

predefined time interval [tp3 , tp3+∆tp3 ] (e.g. for one year in future), since possible long term

trends can continuously increase the resource demand. Static resource management should be

applied again after this period is expired to take care of changed demand behavior. The whole

condition can be formally expressed by following equation:

∀t ∈ [tp3 , tp3+∆tp3 ], k :
#»
jak(t) ≤ ~ck (3.3)

whereby the operator ≤ is defined as follows:(
u1

u2

)
≤

(
v1

v2

)
⇔ u1 ≤ v1 ∧ u2 ≤ v2. (3.4)

A second and third constraint concern the mapping restrictions that must be regarded as

well. The first one ensures that two VMs are not placed together at the same server if they

are not allowed to according to function VM VM allow(i1, i2). Following equation must hold

for the mapping B(i) to not violate this constraint:

∀k, i1, i2 : B(i1) = k ∧B(i2) = k ⇒ VM VM allow(i1, i2). (3.5)

The second one ensures that VMs are only placed on servers on which they are allowed to be

placed on according to VM server allow(i, k), which can be formally expressed by following

36



3.4 Formal Definition

equation:

∀k, i : B(i) = k ⇒ VM server allow(i, k). (3.6)

These constraints are valid for the pessimistic static resource management (cf. Section

3.2.1) as well as for the statistic static one (cf. Section 3.2.2). The only differences are

the characterization of the stochastic processes Yi(t) that model Ri(t) and the way the joint

resource demand JAk(t) to be reserved is derived from them. The first approach pessimistically

reserves the maximum required resources of all VMs all over the time. The optimized one uses

information about the demand behavior of the VMs to more optimistically derive JAk(t) from

the Yi(t)s as presented in Chapter 4 and Chapter 5 respectively.

As an outcome, the two challenges for static resource management can be now expressed

more detailed. First, the stochastic process Yi(t) that models the resource demand Ri(t) of VM

i must be characterized. Second, a way to determine resources required for a couple of VMs

that should be placed together at one server must be derived from the processes with respect

to appropriate SLOs. And finally, an optimal mapping B(i) must be found that minimizes the

overall number of required servers with respect to the Equations (3.3),(3.5), and (3.6).

3.4.3 Problem Definition: Dynamic Resource Management

The goal of dynamic resource management is to reduce the energy consumption in times of

low utilization by redistributing VMs at runtime and switching off unused servers according

to the concept described in Section 3.2. This leads to the need of a time dependent mapping

B(i, t) of VMs onto servers. Different conditions must be met that will be shortly presented

in the following.

Guaranteeing SLA

Equation (3.3) that was presented for static resource management before must hold for the

dynamic case as well to not violate any SLA. The only difference to the static case is that the

mapping B(i, t) : i 7→ k(t) of VMs onto servers can now change over time.

The second and third constraint worked out for the static resource management must be

extended a bit to consider the time dependent mapping. The first one can be expressed by

following equation:

∀t ∈ [tp3 , tp3+∆tp3 ], k, i1, i2 : B(i1, t) = k ∧B(i2, t) = k ⇒ VM VM allow(i1, i2). (3.7)

The second one respectively is extended to:

∀t ∈ [tp3 , tp3+∆tp3 ], k, i : B(i, t) = k ⇒ VM server allow(i, k). (3.8)

37



3 Problem Statement

Limited Number of Servers

A static safe distribution of VMs to servers is determined during phase two according to

the concept. This distribution defines the number of servers maximally required at all. The

dynamic scheduling algorithm must not exceed this maximal number of servers at any time.

Required Resources While VMs Are Moved

A third constraint of the resulting mapping function B(i, t) concerns the resources required

while VMs are moved between servers. The required resource capacity ~ai(t) (for CPU time

and memory) must be provided by a source server k1 and a destination server k2 during the

whole migration process of a VM i from k1 to k2 as discussed in Section 3.3.3. This results in

the following additional condition for the destination server k2:

∀t ∈ [t0, t0 + ∆tmigi [:
#»
jak2(t) + ~ai(t) ≤ #»c k2 . (3.9)

t0 is the starting time and ∆tmigi the duration of the migration phase.

Considering Delays

Powering up and down servers and moving VMs needs time as discussed earlier. The scheduling

algorithm must consider these delays, when it determines a mapping B(i, t) of VMs onto servers

that dynamically redistributes VMs and switches on and off servers. It must ensure that the

time period between two different subsequent distributions of VMs to servers is not lower than

the time the operations will take to switch between them. This constraint can be formally

expressed by following equation:

∀t ∈ [tp3 , tp3+∆tp3 ], s : ∆tB(i,t)→B(i,t+s) ≤ s. (3.10)

Challenges

The challenges for dynamic resources management worked out in Section 3.2.3 can be detailed

some more based on the formal descriptions provided in this section.

One big challenge is to model the resource demand ~ri(t) of the VMs to derive the resource

capacity
#»
jak(t) required by all VMs placed on server k comparable to static resource manage-

ment. The time dependence of
#»
jak(t) must be modeled explicitly in contrast to the static case

as discussed before. The model must be able to forecast
#»
jak(t) for a time period of up to a

few hours to take care of the delays caused when VMs are moved or servers are powered up

and down.

38



3.5 Summary

A second big challenge forms the scheduling algorithm that finds B(i, t). It must ensure at

any time that any kind of upcoming resource demand can be handled by redistributing VMs

to servers based on the forecasts provided by the models. The constraints worked out in this

section must be considered.

3.5 Summary

A concept for static and dynamic resource management has been worked out within this

chapter. This concept consists of three different phases and aims to reduce the overall energy

consumption in a data center. Service Level Agreements must be taken into account by the

resource management decisions. First, it is planned to statically assigned services to servers in a

way that the overall number of required servers is minimized. In a next step, services should be

dynamically reassigned at runtime according to their current resource demand. Unused servers

are switched off to save energy. In each of the three phases specifying appropriate Service Level

Objectives, modeling the resource demand, and distributing the services to servers turned out

to be the main challenges.

Server virtualization has been chosen as an appropriate technical platform to realize the

resource management concept. This technique allows placing different services with their

individual operating system at the same server. Furthermore, services can be moved between

servers at runtime without any significant interruption.

The concept of server virtualization and additional relevant components have been analyzed

within this chapter as well. CPU time, memory capacity, and network infrastructure turned out

to be shared resources that must be mainly considered by the resource management. Different

additional timing and resource constraints have been worked out as well. Finally, they all have

been translated into a mathematical representation from which formal optimization problems

have been derived.

The challenges and optimization problems worked out in this chapter will be individually

addressed for each phase in the next three chapters.

39





4 Pessimistic Static Resource

Management

The aim of pessimistic static resource management is to find a static distribution of VMs to a

minimal number of servers according to the concept worked out in previous chapter. All SLOs

of the services implemented in the VMs must be satisfied at any time. The algorithm that

finds the distribution has no information about any real life workload behavior, since none

of the services has been used by any client so far. Expected resource demand can be only

estimated using artificial benchmarks.

It will be shortly presented within this chapter how such a distribution can be determined

based on information about maximally expected workload. The method described is hardly

new. It is strongly related to common ceiling based off-line capacity planning approaches [8].

Nonetheless, it will be shortly described in this chapter since parts of this method serve as a

basis for the following phases of the concept. Especially the heuristic optimization algorithm

that finds the distribution of VMs to servers will be required in Chapter 5 again.

4.1 Service Level Objectives

Satisfying SLOs that define performance constraints mainly depends on resource management

as pointed out in Section 3.3.4. The amount of provided resource capacity decides if and how

fast requests are processed by a service. Hence, these SLOs can be directly used as a kind of

constraint for resource management considered while the resources required by the service are

determined.

Only a simple kind of SLO specification will be supported in this first phase of the concept.

One performance goal (throughput or response time) can be defined for each service. This

goal must be achieved, if a certain amount of workload (e.g. number of requests in a time

interval) also defined in the SLO is not exceeded. More complex SLO specifications will be

introduced later on in the following chapters. They will allow trading off provided resource

capacity against service performance based on observed workload behavior.

It is important to already consider possible long term changes, when the maximally expected

workload is specified. The resource management concept assumes that this maximum will be

41



4 Pessimistic Static Resource Management

never exceeded until the end of phase three is reached. Consequences when this assumption is

violated will be discussed in the sections about changed demand behavior in Chapter 5 and 6.

4.2 Modeling the Resource Demand

It was mentioned in the problem statement chapter that the resource demand of a VM will

be modeled by stochastic processes. But these processes can be hardly characterized without

knowing anything about the real life workload behavior. The only information the resource

management concept can draw on so far is a maximal resource demand ~rmaxi of the VMs,

which occurs in case of maximally expected workload. Such information can be determined

using appropriate benchmarks as already discussed in Section 3.2.1.

Furthermore, benchmarks can be used to determine a maximal amount of resource capacity

~amaxi that will be required by a VM to meet its performance goal. Starting with capacity

that satisfies ~rmaxi , the provided capacity ~amaxi can be simply adjusted downwards until the

performance goal is violated. Such an approach is known from classical ceiling based capacity

planning [8].

Once ~amaxi is determined for each VM i, a scheduling algorithm can now distribute the VMs

to servers. Appropriate algorithms will be described in the following section.

4.3 Static Scheduling

Three different constraints have been worked out in Section 3.4.2 (cf. Equation (3.3), (3.5),

and (3.6)). They must meet for a resulting distribution B(i) of VMs to servers to not violate

any SLO . The first one concerns the joint resources required by all VMs placed on the same

server. The second and third one restrict the mapping of VMs onto servers.

The jointly required resources
#»
jak(t) of all VMs placed on the same server can be overesti-

mated using the maximally required resources ~amaxi of the VMs. This turns the first condition

into:

∀t ∈ [tp3 , tp3+∆tp3 ], k :
#»
jak(t) ≤

∑
i:B(i)=k

~amaxi ≤ ~ck. (4.1)

The sum of the maximally required resources ~amaxi of all VMs i placed on the same server k

must be lower than the server’s resource capacity ~ck.

Finding an optimal mapping B(i) with respect to this constraint is a classical vector (or mul-

tidimensional) bin packing problem (off-line version), which is known to be NP-complete[69].

A set of given items each with an individual (multidimensional) size must be assigned to bins

with individual (multidimensional) capacities. The second and third constraint additionally

limit the solution space of feasible mappings B(i) of VMs on servers.

42



4.3 Static Scheduling

4.3.1 Known Approaches

Many heuristic solvers for the one-dimensional case (known as classical bin packing problem)

have already been presented. A good analysis of many of them can be found in [56]. The

presented approaches range from classical first-fit, next-fit, and best-fit heuristics to more

complex ones that allow rearrangements of already scheduled items.

The first- and best-fit heuristics have been extended to the multidimensional case in [69]. The

authors of [26] introduced an own heuristic solver and compared its efficiency to classical ones.

Different of these known heuristics have been applied for resource management in data centers

in [102]. A set of services has been assigned to servers with respect to their multidimensional

resource demand. The results have been compared and discussed as well.

The heuristics of all of these approaches are optimized for equally sized bins. In principal,

VMs can be distributed to a heterogeneous set of servers. There might exist different classes of

servers each with an individual capacity configuration from which a mixed set can be selected.

This generalized bin packing problem is known as variable size bin packing and has been

addressed for instance in[31, 65].

4.3.2 Vector Bin Packing and Resource Management

A multidimensional bin packing solver will be required for the pessimistic as well as for the

statistical static resource management concept presented in this thesis. This solver must

determine the mapping B(i) of VMs onto servers as initially discussed. In principal, any of

the known ones can be used by the concept since these algorithms typically need only little

information about the underlying system.

The easiest solver(that applies a first-fit heuristic) must only be able to decide whether or

not a certain combination of VMs will fits together on a certain servers. This can be done by

simply evaluating the three constraints worked out at the beginning of this chapter. It can

assign the VMs one by one to servers on which already VMs have been placed based on this

information. A new one is taken, if not enough resource capacity is left on any of these servers

to host the next VM. This method is repeated until all VMs are assigned to servers.

VMs can be sorted by their size first, before the first-fit strategy is applied to improve

the results. The largest VMs are assigned to servers first. The smaller ones can then fill up

remaining resource capacity. This strategy is known as first-fit decreasing and requires the

definition of a quasi order of the VMs with respect to required resource capacity. This order is

not unique, since two different resource types are involved (CPU time and memory). Different

ways to deal with such multidimensional sizes have been presented in [69, 102].

A further improvement promises the best-fit strategy. A VM is not placed on the first server

it would fit on but on the best one. This requires to rate the placement of a VM to a certain

43



4 Pessimistic Static Resource Management

server. Conventionally, the resource capacity is taken into account that would remain on a

server, if a VM is placed on it. The more capacity remains at a server, the more balanced

will be the resulting distribution of VMs to servers. All servers will have left more or less the

same amount of unused resource capacity that can serve as a buffer. This buffer accommodates

resource demand of VMs that slightly exceed their expected maximum and hence prevents SLO

violations in some cases. Again, additional heuristics are needed in case of multidimensional

resource demand. Different of them have been presented in [102] as well.

No further information about the VMs or services are required to support different capacity

configurations of servers using for instance the approaches presented in [31, 65]. Only costs

must be assigned to servers so that the approach can find the most efficient solution with

respect to these costs.

This thesis does not focus very much on improving the efficiency of bin packing approaches.

Much work has already been investigated in this area. The best-fit heuristic was applied

during the evaluation of the concept. One of the heuristics presented in [102] was used to

deal with multidimensional resource demand. The authors showed in an exhaustive analysis

that this heuristic already works very well with resource demand of typical services in data

centers. Furthermore, only servers with identical capacity configurations were used during the

evaluation.

44



5 Statistical Static Resource Management

Phase two of the concepts starts with the pessimistic distribution of VMs to servers derived

using the algorithm presented in Chapter 4. The runtime behavior of the resource demand of

the VMs is observed. Models are characterized and used to determine an improved distribution

that leads to less servers required compared to the pessimistic approach.

In principal, using observed demand behavior of the VMs can help to save required server

hardware in two ways. First, there can exist VMs that will never demand their maximally

required resources at the same time due to negatively correlated workload processed by them.

Less than the sum of their maximally required resources needs to be reserved for both, when

they are placed together at the same server. A second way is to trade off granted resources

against service performance. Service performance can be adjusted by CPU time provided to

a VM as pointed out in Section 3.3.2. Resources can be saved depending on the SLOs when

this opportunity is exploited.

Once the resource demand models of the VMs are characterized, a scheduling approach

heuristically assigns VMs to servers. The algorithm is similar to the one used to find the

pessimistic distribution. The differences are the models and the SLOs that are used to decide

whether a certain combination of VMs will fit together at the same server or not.

The main challenges addressed in this chapter are the SLOs for specifying the resource

performance trade-offs and the models that describe the demand behavior. Furthermore, a

way must be worked out to find an optimal distribution of VMs to servers based on the models

and the SLOs.

5.1 Mathematical Background

Different mathematical background mainly concerning random variables and stochastic pro-

cesses is required to understand the concepts that will be presented in this chapter. Such

background is provided in this section. Those who are familiar with the concept of random

variables, operations on random variables, and the concept of stochastic processes can easily

skip this section.

45



5 Statistical Static Resource Management

5.1.1 Discrete Random Variables

The concept of random variables has been widely presented in literature (e.g. in [97, 94]).

Typically, random variables are used to mathematically describe random experiments or ran-

dom behavior. Such variables are used in this thesis for the same purpose. They describe the

resource demand of a VM with respect to random noise.

Mathematically regarded, a random variable is a mapping from a probability space into

a measurable space. All possible random events are mapped onto real numbers out of the

domain of the random variable (e.g. out of R). Concrete value x of a random variable X (the

randomly generated real numbers) are called realizations.

It can be distinguished between discrete and continuous random variables. Discrete variables

map events to values of a countable set. Continuous ones have an uncountable number of

different events mapped onto an uncountable number of values. Discrete variables are used

within this thesis, since the resource demand of VMs is discrete1 as well.

A discrete random variable X is completely characterized by its probability distribution

function fX(x). This function returns the probability that a certain realization x ∈ X will

occur, which can be formally expressed by fX(x) = P (X = x).

An import property concerning random variables is statistical independence between differ-

ent of them. Events of different random variables that lead to concrete realizations can depend

on each other. The variables are correlated or not statistically independent. Statistical de-

pendence, in contrast, means that no dependency between all events of two different variables

exists. Events of one random variable are occurring completely randomly according to the

respective probability distribution not depending on concrete events of the other one and vise

versa.

This definition can be expressed more formally as follows. Two random variables M and N

are defined to be statistically independent, if following equation holds for the probabilities of

all possible realizations of both of them[49]:

∀m ∈M,n ∈ N : P (M = m ∧N = n) = P (M = m) · P (N = n). (5.1)

5.1.2 Operations on Discrete Random Variables

The concept presented in this chapter requires different operations to be performed on discrete

random variables. They will be introduced and described in the following.

1This fact will be discussed later.

46



5.1 Mathematical Background

Sum of Random Variables

Let N and M be two (not necessarily discrete) random variables with realizations out of a

subset of R. The sum Z = N + M of both is a random variable with realizations out of a

different subset of R as well. All possible pairs n ∈ N and m ∈ M of realizations lead to a

realization of z of Z as follows: z ∈ Z : z = n+m.

To describe how the probability distributions fZ(z) of Z can be calculated from the ones of

N and M , first an event EX(x) is introduced. It is defined that EX(x) occurs, when a random

variable X leads to a realization x ∈ R. Using this definition, fZ(z) can be determined as

follows:

fZ(z) =

∫ ∞
−∞

P (En(n) ∩ Em(z − n))dn (5.2)

The probability of all pairs of possible realizations of N and M that added up result to a

certain z are summed up to calculate the probability of getting z as a realization of Z.

P (En(n) ∩ Em(z − n)) can be replaced by P (En(n)) · P (Em(z − n)), if N and M are

statistically independent, which is equivalent to fN (n) · fM (z−n). Therewith, Equation (5.2)

turns into

fZ(z) =

∫ ∞
−∞

fN (n) · fM (z − n)dn, (5.3)

which corresponds to the definition of the convolution operation [50] applied on fN and fM .

Hence, the probability distribution of the sum of two statistical independent random vari-

ables can be determined by applying convolution on their individual distributions.

Applying Functions on Discrete Random Variables

Let M be a discrete random variable with realizations out of a subset of R. A function

h : R→ R applied on M will lead to another random variable N = h(M) that has realizations

out of R as well. Mapping M onto N by a function h simply means mapping all realizations

of M to the ones of N [22]. As a result, the dependence between the probability distributions

fM (m) and fN (n) of M and N respectively can be described as follows:

fN (n) =
∑

m:h(m)=n

fM (m) (5.4)

The probability fN (n) of a certain realization n ∈ N equals the sum of the probabilities fM (m)

of all realizations m ∈ M that will be mapped onto n by function h. Each n belongs to only

one m, if h is invertible. This simplifies the equation to:

fN (n) = fM (h−1(n)). (5.5)

47



5 Statistical Static Resource Management

Maximum of a Discrete Random Variable

Let Z be a discrete random variable. The maximum Zmax = max(Z) is defined as follows:

∀z ∈ Z : Zmax = max(Z)⇒ P (z > Zmax) = 0. (5.6)

Maximum of a Discrete Random Variable Scaled by a Constant Factor

Let Z be a discrete random variable. Scaling Z by a constant factor β means scaling all

realizations z ∈ Z as learned before. Hence, one can easily derive that following dependence

holds:

max(βZ) = βmax(Z), (5.7)

which will be needed later on.

5.1.3 Stochastic Processes

The idea of a stochastic process is to describe non deterministic behavior over time. In contrast

to deterministic models (such as e.g. differential equations), different concrete realizations

(concrete time series) of a stochastic process are possible, even if they would have been started

under the same initial condition. Some of these concrete time series are more likely than other

depending on the nature of the process.

One can distinguish between discrete-time and continuous stochastic processes. Continuous

processes describe a behavior at each possible point in a continuous time. Discrete-time pro-

cesses are limited to predefined time intervals. Time is discretized in most practical uses cases

of stochastic processes. The reason is that observations of behavior are performed in discrete

time steps as well in most cases. Outside temperature is measured in fixed time intervals for

instance. One sample represents the temperature of a complete time interval. The same is

true for prices of the stocks in a stock market.

The concept presented in this thesis describes the demand behavior of VMs using stochastic

processes. These processes are characterized by observed data as well. Resource demand can

be only sampled in discrete time steps comparable to temperature measures and stock prices.

Hence, discrete-time stochastic processes will be used to describe this behavior as well.

A discrete-time stochastic process extends the idea of a random variable by an additional

dimension: the time. One individual random variable describes the random behavior at each

discrete time step. Hence, the discrete-time stochastic process simply is a sequence of individual

random variables.

Stochastic processes are often characterized in conventional time series analysis using data

observed. Hence, they initially can only describe the behavior within the period in which the

characterization data was observed. Some assumptions concerning the modeled behavior are

48



5.1 Mathematical Background

made to use the processes for future extrapolation. One important of such assumptions is

stationarity of the behavior and hence stationarity of the resulting stochastic process.

According to [32], the basic idea of stationarity is that

... the probability laws that govern the behavior of the process do not change over

time. In a sense, the process is in statistical equilibrium. ...

They formally defined a stochastic process Y (t) (Yt in their notation) as strictly stationary, if

... the joint distribution of Yt1 , Yt2 , ..., Ytn is the same as the joint distribution of

Yt1−k, Yt2−k, ..., Ytn−k for all choices of time points t1, t2, ..., tn and all choices of

time lag k.

The authors of [32] derived from a special case of this definition (when n = 1) that all

random variables Ytx have the same univariate probability distribution fYt(y). This property

of stationary stochastic processes will be mainly required within this thesis.

5.1.4 Probabilities of Realizations of Stochastic Processes

The univariate probability distribution of a stochastic process X(t) at each time t is defined by

the respective random variable X. The probability distribution of concrete realizations (time

series) x(t) of the process in contrast can not be determined that easily.

Obviously, the probability distribution of x(t) depends on the distributions of the single

random variables involved. But even if all random variables have the same distribution, corre-

lations between them influence the resulting distribution of a concrete time series. All concrete

resulting time series would have a constant value, if all random variables are completely pos-

itively correlated2. Pairwise negatively correlated random variables would show a completely

different behavior.

The random variables of all stochastic processes used within this thesis are assumed to be

statistically independent. This assumption will be discussed later on individually for each

respective case. But it can not be guaranteed that all random variables will have the same

probability distribution because of missing stationarity.

The concept that will be presented in this chapter needs to calculate how many samples

of any concrete realization x(t) of such a stochastic process X(t) are expected to exceed a

certain threshold α within a certain time interval [t0, t1]. Formally expressed, the probability

P (x([t0, t1]) ≥ α) needs to be calculated.

All samples x in an interval [t0, t1] of any concrete realization x(t) of X(t) can be regarded as

a results of |[t0, t1]| independent experiments due to the statistical independence of the random

2Of course, different repetitions of the experiment must lead to different time series to fulfill the probability
distributions of the random variables. But all realizations would be constant time series because of the
correlations.

49



5 Statistical Static Resource Management

variables of X(t). Hence, they also could be a result of one single random variable X̂ [t0,t1] as

well. The realizations of X̂ [t0,t1] are generated by subsequently generating realizations of all

random variables X that belong to the process X(t) in the interval [t0, t1]. This means that

an infinite set of realizations of X̂ [t0,t1] contains equally sized shares of realizations out of each

random variable X involved.

Hence, the probability P (X̂ [t0,t1] ≥ α) can be calculated from the random variables X of

X(t) in the interval [t0, t1] as follows:

P (X̂ [t0,t1] ≥ α) =
1

|[t0, t1]|
∑

∀X∈X([t0,t1])

P (X ≥ α). (5.8)

For sufficiently long intervals [t0, t1], the probability that each possible realization x([t0, t1])

of X̂ [t0,t1] (and hence of the interval [t0, t1] of X(t) as well) exceeds α can be calculated the

same way:

P (x([t0, t1]) ≥ α) =
1

|[t0, t1]|
∑

∀X∈X([t0,t1])

P (X ≥ α) (5.9)

For short intervals [t0, t1], a correction term can be added to at least overestimate the

probability P (x([t0, t1]). This fact will be picked up again in the section in which the content

worked out here will be used.

5.2 Service Level Objectives

It has been shown in previous chapter how SLOs that define performance constraints can be

used as constraint for resource management. The SLOs supported so far are very simple. A

more complex SLO specification will be worked out within this section that additionally allows

trading off resource capacity against service performance.

Therefore, first a deeper insight into SLOs is given that specify performance constraints.

Known of these SLOs are presented as well. But it will be pointed out that the conventional

way of specifying SLOs is quite inflexible. It does not allow trading off between resources and

performance very well. Hence, a more fine grained way for ensuring QoS will be presented. It

will be further shown how constraints can be derived from the SLOs that are directly usable

for resource management.

5.2.1 Known Approaches

A common way for specifying SLOs is to define one performance goal in terms of e.g. through-

put or response time by a threshold. Exceeding (or deceeding) the limit is treated as violation.

50



5.2 Service Level Objectives

In general, such violations are accepted by users, if they are not happening very often, or

if some how any kind of compensation is payed in case of violations[117]. Hence, different

known resource management approaches try to take advantage of this fact by trading off

required resource capacity provided to services against service performance mainly following

two different ways.

For instance, it is suggested in [117, 102, 17, 66] that users can limit the amount of violations

allowed in a predefined time period by SLOs. Resource capacity is assigned to the service by

the resource management in a way that these limits are not exceeded using an appropriate

model that describes the demand behavior of the respective service. Less restrictive SLOs can

be provided cheaper by the SP this way because of a reduced amount of hardware resources

needed.

The second group of approaches [130, 106, 28] assigns (financial) penalties to possible vio-

lations in SLOs. The more violations occur the more penalties must be payed by the Service

Provider. Resource management concepts based on this kind of SLOs are trading off costs

caused by providing resource capacity to costs caused when violating SLOs to achieve an

economical optimum.

It is further suggested in [102] to limit the impact of violations by a threshold defined in a

SLO. Performance slowdowns below this threshold must not occur in any case. Their resource

management concept guarantees this SLO by exclusively reserving a fixed amount of resources

for each service.

One big disadvantage of all of these specifications is the fixed performance goal. Regardless

of how far away from the specified limit a performance slowdown is, it is treated as a violation

with all respective consequences. It is not possible to allow weak performance slowdowns

to occur more often while the occurrence of stronger ones is limited more restrictively. In

principal, common SLA languages such as WSLA[62] or SLAng[106] allow defining different

performance goals. But none of the known resources management approaches are taking any

advantage of this opportunity.

The work presented in this thesis focuses on limiting the occurrences of violations similar

to the first group of approaches. But a more flexible way for specifying performance goals will

be suggested in contrast to them. Furthermore, the resource management concept presented

in this chapter as well will be able to exploit this new specification for more efficient resource

usage.

5.2.2 Fine Grained SLO Specification

The fine grained SLO specification associates performance goals with probabilities comparable

to conventional SLOs. The probability states how often the goal must not be violated in a

predefined time period. But the fine grained specification provides the opportunity to define

51



5 Statistical Static Resource Management

not only one but different performance goals for a performance metric (e.g. response time)

in contrast to the conventional way. Each performance goal has an individual probability

assigned. Weak performance slowdowns can be accepted more often this way, while stronger

ones can be limited more restrictively.

In general, such SLOs can be expressed by a function Pminηi (η) that returns a probability for

each defined value η of the targeted performance metric. Hereby, each η represents an upper

(or lower3) limit which must not be exceeded (or deceeded) more often than specified by the

probability returned by the function.

An exemplary fine grained SLO is presented in Figure 5.1. The targeted performance metric

for the service is the response time in this case. The performance goals and the respective

probabilities are listed in Table a). Response times up to 1s must be achieved in 50% of time.

The response time must not exceed 2s in 80% of time. And in 90% the response time must

not pass the 3s limit. Finally, response times above 6s are not allowed at all.

)())((:],[,,)( 000

maxminmax

i

SLOminmax

ii
PtPtttttPdom ηηηη ηη ≥≤∆+∈∈∀

condition for meeting the SLO

a)

c) b)

1.0

0.0

0.5

max. response time ηmax [s]

m
in

. 
p

ro
b

.
P

 m
inη

Pηi
min

≤ 1.0s ≤ 2.0s ≤ 3.0s ≤ 6.0s

0.5 0.8 0.9 1.0

3.01.0 2.0 6.0

Pηi
min (ηmax)

Figure 5.1: Exemplary fine grained SLO for the response time η of a service implemented in
VM i. a) Probabilities are given that state how often different maximal response
times must not be exceeded. b) This kind of SLO can be expressed by a function
Pminηi (η) that assigns one probability to each defined response time. Condition c)
must hold to not violate the SLO. ηi(t) is the actual response time of the service
over time.

The respective function that belongs to this example is presented in Figure 5.1 b). The

condition that must be met to not violate the SLO can be described by an equation using this

function as presented in Figure 5.1 c). It must be ensured for each defined response time limit

ηmax that the actual response time ηi(t) in each time period ∆tSLOi does not exceed the limit

with a probability equal or greater than specified by Pminηi (ηmax).

5.2.3 Mapping Performance Metrics on Required Resource Capacity

Conventionally, SLOs do not directly refer to required resource capacity as the clients normally

do not know how much resources processing their requests will take. They especially cannot

3depends on the performance metric

52



5.2 Service Level Objectives

estimate, how much slower the service will get with less resource capacity provided. The

question about the required resources has already been answered after having passed the

benchmarks in phase one of the concept. But any kind of mapping is need to apply resource

performance trade-offs that describes the dependency between the difference of provided and

required resources and the resulting performance.

CPU time and memory are limited resources that are under direct control of the resource

management concept as pointed out in Section 3.3.2. It was mentioned that missing memory

capacity will directly lead to complete service failures. CPU time shortages, in contrast, will

only slow down the service. Hence, only CPU time can be used to trade off resource capacity

against service performance.

CPU time is traded off against service performance within this thesis by adjusting the ratio

between provided and required CPU time like the authors of [111, 18, 91] already suggested.

A new variable α is introduced that describe ratios that will lead to a performance slowdown.

Possible values of α are limited by the interval ]0, 1]. A value of 1 means that there is no

resource shortage at all, which occurs when the provided CPU time A is higher as or equal to

the demand R. If R exceeds A, α is the respective ratio of A and R. This dependence can be

formally expressed by a function g : R× R→ ]0, 1] as follows:

α = g(R,A) =

{
A
R for A < R

1 else
(5.10)

Finally, a way is needed that maps a resource shortage α onto a resulting value η of the

targeted performance metric. It is assumed that a function f(α) : α 7→ η can be characterized

for services implemented in a VM that returns a resulting η of the respective performance

metric for a certain α. Other known resource management approaches such as described in

[102, 117, 58] are based on the same assumption.

The modeling of this mapping itself is not part of this thesis since the modeling approach

strongly depends on the service implemented in a VM. Different known works in the field

of performance modeling already addressed this topic. This work can be split into different

categories. Black box models, for instance, describe the demand behavior of services without

knowing their internal behavior. They are typically characterized by observing the targeted

performance metrics and the respective resource demand while varying the kind and amount of

workload processed by them. Such a black box model based on fuzzy methods was presented

in [130] that is trained at runtime. In principal, this approach can deal with any kind of

service deployed in a VM. Different modeling approaches specialized to web service applications

were presented in [11, 1]. Models based on request queues were proposed in [79, 23]. Some

of these approaches are specialized to applications that directly run on hardware servers.

The additional overhead caused by the virtualization environment can be estimated using the

53



5 Statistical Static Resource Management

approach presented in [128].

5.2.4 Deriving Constraints for Autonomous Resource Management

Once having found f(α), a function Pminαi (α) can be derived from Pminηi (η) as follows:

Pminαi (αmin) = Pminηi (f(αmin)) (5.11)

This function states how often the ratio of provided and required CPU time must not fall

below a lower limit αmin to not violate the SLO defined by Pminηi (η).

A condition can be described by following equation comparable to Pminηi (η) that decides

whether or not providing resources Ai(t) to the resource demand Ri(t) of VM i will satisfy the

respective SLO.

∀αmin ∈ ]0, 1[ ∩ dom(Pminαi ), t0 : P (g(Ri(IV
SLO
t0 ), Ai(IV

SLO
t0 )) ≥ αmin) ≥ Pminαi (αmin)

with

IV SLOt0 = [t0, t0 + ∆tSLOi ] (5.12)

The ratio of provided and required CPU time4 must be equal or greater than the respective

αmin for each defined resource shortage αmin with a probability equal or greater than specified

by Pminαi (αmin) in each time interval IV SLOt0 = [t0, t0 + ∆tSLOi ] to not violate the SLO. The

SLO specification Pminηi (η) will not be defined for all possible values of η in most cases due to

practical reasons. Hence, Pminαi (α) is not necessarily defined for all α as well. As a consequence,

Equation 5.12 must be only evaluated for the subset of values of α, for which Pminαi (α) is

actually defined.

This equation will be used in conjunction with resource demand models to decide whether

or not a certain combination of VMs will fit together at the same server with respect to their

SLOs. The way this is done will be described in Section 5.4 in this chapter. The resource

demand models will be described in the following section first.

5.2.5 Discussion

In principal, resource management can be regarded as a feedback control system. The varying

amount of user requests to a service forms the disturbance variable. The resource management

tries to adjust CPU time capacity provided to the service with respect to this disturbance.

The goal is to keep a certain performance (e.g. the response time) constant or to at least

ensure a minimal performance.

4described by function g(Ri(IV
SLO
t0

), Ai(IV
SLO
t0

)) that has been defined in Equation (5.10)

54



5.3 Modeling the Resource Demand

Only small interfaces connect the service with the resource management to be independent

from the actual service implemented in a VM. The disturbance variable is not directly observed

this way. Required CPU time demandR is measured as an indicator for varying user interaction

with the service. Function f(α) : α 7→ η forms a second interface. This function must be

characterized individually for each service to describes its performance depending on the ratio

of CPU time demand R and provided capacity A.

These small interfaces can lead to problems for some services. First, function f(α) assumes

that a constant α leads to a constant performance η independent from values of R. This

might not be true for all services. Second, observing R can be a challenge in some cases

especially when performance goals must be guaranteed. Measured CPU time demand can be

strongly averaged depending on the sample rate. As a result, the measured value is often quite

lower than the actual one. Providing resource capacity A to this measured R can result in an

unexpected performance loss in this case.

A way out of this problem is a stronger connection between resource management and the

service. User interactions are directly observed to overcome the problems caused by indirect

measures. A more complex function must map the user interaction and provided CPU time

capacity onto a performance measure. This function can than be directly evaluated in the

condition presented in Figure 5.1 c) to decide whether or not a certain amount of CPU time

capacity will satisfy the SLO.

This way will not be followed any deeper within this thesis since especially the mapping

function typically strongly depends on the service implemented in the VM. Much work in the

area of performance modeling already addresses this topic as already mentioned before. Future

research can try to improve the work presented in this thesis for special classes of services.

5.3 Modeling the Resource Demand

A closer look into the characteristics of the resource demand behavior caused by a service

implemented in a VM is provided at the beginning of this section. Requirements on the

modeling approach are derived as well before the modeling approach itself will be presented.

Finally, assumptions and limitations of the models are discussed. The way, these models are

used for static resource management is not part of this section. Only the modeling approach

itself and the characterization process are described.

5.3.1 Requirements on the Model

Models must describe the demand behavior of the VMs in a way that resource demand required

in the future can be extrapolated from them as described in the problem statement chapter.

They are trained using data ~ri(t) observed in a characterization phase (between time tp2 and

55



5 Statistical Static Resource Management

tp3). VMs are then distributed to servers based on these models. The resulting distribution

will be fixed so that the resource capacity provided must meet the demand in the predefined

time interval [tp3 , tp3+∆tp3 ] in future. Hence, there is no need for explicitly modeling the time

dependence of the resource demand. It is only important to know how much resource capacity

is required at a maximum in future but not exactly when this maximum will be actually used.

One must carefully consider the characteristics of the underlying reality for an appropriate

modeling especially when extrapolation is required. Hence, the characteristics of a VM’s

typical resource demand will be shortly discussed in the following.

The resource demand of a VM can be split into a long term trend, a seasonal trend, and

random noise as suggested in classical time series analysis. The three components of an

exemplary resource demand time series are illustrated in Figure 5.2.

t

R
(t

) seasonal trend

one weekt

R
(t

) long term trend

two month
t

R
(t

) random noise

two hoursa) b) c)

Figure 5.2: A resource demand time series of an exemplary VM. a) A long term trend is
noticeable when a time periods of several month is regarded. b) A periodic seasonal
trend is caused by daytime dependent resource demand which c) is overlaid by
random noise.

The resource demand of many services shows a continuously increasing trend over time in

most cases due to an increasing number of clients using the service [10]. Daytime varying

workload causes a seasonal trend on top of the long term trend, which shows periodic behavior

very often [44, 104]. And finally, the trends are overlaid by random noise. It will be shown

later that this noise is not necessarily stationary.

An additional requirement on the models addresses the SLOs. The SLOs define different

performance goals annotated with probabilities that define how often they must be met as

described in previous section. Hence, one must be able to determine from the models how often

which amount of resources is demanded by the VM to use these SLOs for resource performance

trade-offs. This information is needed to determine the amount of resource capacity that must

be provided to the VMs to fulfill their SLOs.

5.3.2 Known Approaches

Known statistical resource management approaches have been presented for instance in [102,

117, 58, 17, 45]. They all suggest to model the demand behavior by discrete-time stochastic

processes. But different ways are suggested how to characterize them and how to use them for

56



5.3 Modeling the Resource Demand

resource demand prediction in the future. The authors of [117, 58, 45] simply model the demand

behavior by one single random variable assuming stationarity all the time. Furthermore,

statistical independence of the resource demand values along the time is assumed. Onces the

model is characterized, it is expected to be valid in the future as well under the assumption of

stationarity and statistical independence.

But resource demand behavior is not stationary because of time dependent workload varia-

tions. Hence, [102, 17] suggested dividing the time series into small slices (e.g. one hour) that

are assumed to be stationary. One discrete random variable is characterized for each slice.

Statistical independence of the demand behavior in each slice is assumed as well comparable

to the first two approaches. The modeling approach followed in this thesis is based on the

same assumptions. But in contrast to them one random variable is characterized for each time

step. The reasons are detailed some more later on in this chapter.

A second class of approaches performs trace based resource management as presented for

instance in [44, 43, 95]. Seasonal trends caused by daytime varying workload are used to

optimize the distribution of VMs to servers by taking advantage of negative correlations. VMs

that have contrary demand behavior over time are placed together at the same server. The

seasonal trends are found by applying moving averaging. But the remaining noise is neglected,

which can lead to unpredictable performance losses. The modeling approach presented in this

thesis takes care of both: the noise as well as the seasonal trends.

Finally, some general approaches for modeling time series [33] known from classical time

series analyses will be shortly discussed. A typical way is to split up the time series into three

parts: a long term trend, a seasonal trend, and the noise. Both trends are modeled simply by

deterministic functions. A challenge forms the random noise.

The classical way is to apply ARMA models that are a weighted combination of auto re-

gression and moving average time series. ARMA models require stationarity as discussed in

[34]. The authors of [104] found that this condition is not met by the usage behavior of typical

services because of local indeterministic trends. An extension called ARIMA that tries to

achieve stationarity through differencing can be applied to remove such trends.

But the resulting time series will still not be stationary because the noise performance is

varying over time as well as the trend. Classical time series analyses suggest performing a

logarithmic transformation in addition to differencing before the ARMA approach is applied.

The assumption behind this transformation is an exponential dependence between trend and

noise.

Indeed, in times of low utilization (resulting in a low mean value of the time series) the

noise is low as well because resource demand is bounded below to zero. Stronger noise must

lead to a higher mean value because the demand can not get negative. But the same is true

for very high resource demand because of limited resource capacity. A trend (mean value)

57



5 Statistical Static Resource Management

of the resource demand close to the capacity boundary of the server leads to low noise as

well. Otherwise the noise must exceed the capacity border, which is not possible. As a result,

the logarithmic transformation as well as any other transformation by a strictly monotonic

function will not work at all.

A completely different approach is followed by a further extension of the ARIMA model

that is called SARIMA (seasonal ARIMA) [35]. In contrast to ARIMA, stationarity is not

assumed along the time but along time points of instances of a period that is continuously

repeating. If for instance the period is a week, similar demand behavior is expected every

Monday morning at the same time only scattering around a fixed mean. Hence, each time

point within the period is modeled by an individual discrete random variable. Stationarity

and statistical independence is assumed over different instances of the period.

A disadvantage of the SARIMA model concerns the characterization process. The random

variables are characterized using different instances of the period observed in the past. But

the workload behavior of IT services is mainly dominated by weekly periods [44, 104]. Hence,

the workload behavior must be observed for many weeks to get appropriately characterized

models, which is quite impractical in data centers. The workload behavior can completely

change already after one year [8].

The model presented in this thesis is inspired by the SARIMA approach. Finding a non

linear transformation function to apply ARIMA seamed not to be a promising way regarding

the results of some experiments with resource demand time series of real services. But in

contrast to classical SARIMA, the random variables are characterized using data close to the

respective time point assuming stationarity and statistical independence in closest proximity

like also the authors of [102, 17] did.

5.3.3 Modeling Approach

The resource demand of a VM is modeled by a discrete-time stochastic process Yi(t) as men-

tioned in the problem statement chapter. This process is characterized using the resource

demand Ri(t) observed. The stochastic process consists of individual discrete random vari-

ables Yi to take care of missing stationarity. Each random variable is described by its own

probability distribution comparable to the SARIMA approach. Furthermore, the random

variables are discrete, since the observed resource demand that is used for characterization is

discrete as well. The resolution of memory demand is technically limited by one byte. Relative

CPU time could be a continuous measure but is discretized as well in all common virtualization

environments.

A probability distribution function completely describes a discrete random variable that

models the resource demand at a certain time t. Probabilities state how often a certain

demand is expected to occur. This information is exactly what is needed to support the SLO

58



5.3 Modeling the Resource Demand

specification worked out in the previous section. Resource capacity that must be provided to a

VM can be estimated based on this probability distribution and the SLO. It will be described

later on in Section 5.4 how this is done. This section is limited to the description of the model

and the respective characterization process.

The model is split into two parts comparable to the SARIMA approach. The first part

captures possible long term changes of the demand behavior. They are assumed to be strictly

monotonic increasing or decreasing over time. The second part models seasonal trends and

the noise behavior without any monotonic long term changes. Both parts of the model are

presented separately in the following.

Modeling the Long Term Trend

Conventionally, a long term trend of a time series is assumed to be an additive component

of the time series. This component is modeled by a polynomial that is fitted using linear

regression. This modeling does not capture the resource demand behavior of a VM very well

as can be seen in Figure 5.3.

0

50

time t

R
i(

t)

-20

50

time t

0

0

10

5

time t
a) b) c)

f 1
(R

i(
t)

)100

f 2
(R

i(
t)

)

Figure 5.3: a) An exemplary time series of seven month resource demand that has a long term
trend. b) The time series detrended the conventional way by subtracting a linear
trend function from it. c) The time series detrended by dividing it by a linear trend
function.

The seasonal trend as well as the noise performance seems not to be increased by an additive

component with increasing time but scaled by a factor. Hence, it was tried to divide the time

series by a linear function for detrending it as follows:

R∗i (t) = Ri(t) ·
1

at+ b
. (5.13)

The resulting time series is presented in Figure 5.3 c). The parameters a and b were found

conventionally using linear regression [51] as well. The idea behind this modeling is the as-

sumption that the number of clients that use the service increases over time. This means that

in times of high utilization an increased number of clients has to be served. The number of

clients increases also in times of low utilization but not by the same number but the same

59



5 Statistical Static Resource Management

factor.

Based on this idea, the resource demand model can now be detailed some more by following

equation:

Yi(t) = Y ∗i (t) · LTi(t). (5.14)

The function LTi(t) models the long term trend by a linear equation that is characterized using

linear regression. The stochastic process Y ∗i (t) captures the seasonal trend and the noise.

Modeling the Seasonal Trend and the Noise

Classical time series analysis suggests now splitting up the seasonal trend and the noise as

discussed before. This is done for an exemplary time series in Figure 5.4. One can clearly see

that the remaining residual εi(t) is not stationary which was also found in [104].

0

50

time t

Ri
*(t)

a) b)

100

0

50

100

time t c)
-30

0

20

time t

STi(t) εi(t)

= +

Figure 5.4: a) One day resource demand of an exemplary service. b) The seasonal trend derived
using moving averaging. c) The residual noise that remains when the seasonal trend
is removed from the time series.

As a result, splitting up the seasonal trend and the noise will not lead to any advantage.

Instead, it is required that each random variable Y ∗i of the process Y ∗i (t) is characterized indi-

vidually comparable to the SARIMA approach. This means that one probability distribution

for each variable must be derived from the data observed in history. Therefore, it is assumed

that within a small time interval (e.g. half an hour) denoted by ∆tavg the trend as well as the

noise performance is not significantly changing. Hence, small intervals [t− 1
2∆tavg, t+ 1

2∆tavg]

of the time series R∗i (t) can be treated as if the demand behavior within these intervals is

stationary. Furthermore, it is assumed that the resource demand values are statistically inde-

pendent in these intervals.

Based on these assumptions, the probability distribution of the random variable Y ∗i that

describes the resource demand at time t0 can be derived from the data R∗i ([t0 − 1
2∆tavg, t0 +

1
2∆tavg]) observed in this interval. This approach is illustrated in Figure 5.5 for clarification.

The validity of both assumptions will be discussed later on as well as the consequences for

resource management when they are violated.

Until now, the model only describes the demand behavior of a VM during the characteriza-

tion phase. In the following, it will be shown how the demand behavior expected in the future

60



5.3 Modeling the Resource Demand

R

P
(R

) Yi
*(t0+1)

P
(R

)

R

Yi
*(t0)

…

t0

∆tavg

t

R
i(

t)

t0+1

Figure 5.5: Each random variable Y ∗i of Y ∗i (t) must be individually characterized using the data
R∗i (t) observed in the past due to missing stationarity. Therefore, it is assumed that
within a small interval around a time t0 the demand behavior is nearly stationary
and statistically independent. Hence, the probability distribution that describes
the random variable Y ∗i at t0 can be derived from the data within this interval.

can be extrapolated from these models.

Extrapolating into the Future

The part of the model that captures the long term trend is described by a linear equation.

This model can be simply extrapolated into the future under the assumption that these long

term changes will go on in the future the same way like observed during the characterization

phase.

The part of the model that describes the seasonal trend and the noise should not show any

monotonic behavior, since a possible long term trend has been removed from the data used for

characterization. It should only describe changes in the demand behavior that are caused by

day time dependent workload variations. It is further assumed that during the characterization

phase of the models a time period with peak resource demand (e.g. at a Monday morning) was

observed that never will be exceeded by resource demand in future5, which can be formally

expressed as follows:

max
∀t∈[tp2 ,tp2+∆tp2 ]

(Y ∗i (t)) ≥ max
∀t∈[tp3 ,tp3+∆tp3 ]

(Y ∗i (t)). (5.15)

As a result, a discrete random variable Y maxi that describes the maximal resource demand

of VM i within the time interval [tp3 , tp3+∆tp3 ] in future w.r.t. trends and the noise can be

extracted from the model using following equation:

Y maxi = max
∀t∈[tp2 ,tp2+∆tp2 ]

(
Y ∗i (t) · max

∀tLT∈[tp3 ,tp3+∆tp3 ]
(LTi(tLT ))

)
. (5.16)

The part of the model that describes the seasonal trend and the noise is scaled by the influence

of the long term trend maximally expected in phase three. The random variable that describes

5after having purged a possible long term trend from it

61



5 Statistical Static Resource Management

the maximal resource demand is selected from the resulting stochastic process.

The definition of the outer function max depends on how the random variables are used for

resource management. This will be described in Section 5.4. Hence, some more details will be

presented to this function in this section as well.

5.3.4 Discussion

The modeling concept worked out in previous section is based on different assumptions. All

of them will be discussed in the following subsequently with respect to their validity. Possible

consequences for the resource management concept when they are violate will be discussed as

well.

Modeling of the Long Term Trend

The described method to model the long term trend fits very well for the exemplary time series

presented. This must not be true for any other time series of a VM’s resource demand as well.

It helps in any case to consider information about the reason of the trend to find the right

method for modeling the long term trend as also stated by the authors of [36].

A wide range of modeling approaches can be applied depending on this reason. The model

presented in this thesis is limited to long term trends that correspond to the assumption that

the number of clients continuously increases over time as discussed before. It is further assumed

that the resource demand of the service linearly depends on the number of clients that use

the service. The whole modeling approach will be assessed in Section 7.2 using the resource

demand traces of different services observed in real data centers. It will be shown how much

the accuracy of the models can be increased, when the long term trend is explicitly modeled

this way.

Stationarity and Statistical Independence of the Demand Behavior in Small Intervals

A critical point of the model is stationarity and statistical independence of the resource demand

assumed in small time intervals ∆tavg. Samples around a certain time t0 are treated as if

they were different concrete realizations of a random variable that describes the behavior at

t0. This requires statistical independence of the samples observed, since realizations of a

random variable are random as well and hence do not dependent on each other. Furthermore,

stationarity is required in this interval. The resource demand values measured around t0 must

be realizations of random variables that all have the same probability distribution. This is

required, since all realization of one and the same random variable are based on one fixed

distribution as well.

62



5.4 Static Scheduling

One must say that resource demand samples in a small time interval are strongly correlated,

if the resource demand is caused by one single request only. The same request repeated different

times will more or less lead to the same sequence of resource demand values. But however,

normally not only one but a plurality of requests is processed by a service. Hereby, the requests

do not necessarily occur all at the same time but are distributed more or less randomly over

time. Hence, the samples of the resulting overlay of the single resource demand sequences can

be regarded as statistically independent.

Time dependent resource demand variations are the reason for missing stationarity in most

cases. This concerns the seasonal trend but the noise performance as well. The stronger

the changes are in a certain time interval, the higher are the characterization errors when

stationarity is expected. Again, the plurality of clients of a service as well as their random

behavior will prevent any abrupt changes in the demand behavior in most cases6. Hence,

stationarity can be assumed in small intervals without leading to significant characterization

errors.

Both assumptions are important for the resource management. The resulting models are

used to find out how much resources must be provided to a VM to fulfill the respective SLO.

Inaccurately characterized random variables can lead to SLO violations caused by underesti-

mated resource demand. It will be shown in the evaluation chapter, if and how often these

violations will actually cause any SLO violations for typical services.

5.4 Static Scheduling

The purpose of a static scheduling algorithm is now to distribute the VMs to servers based on

the models worked out in the previous section. The aim is to minimize the number of required

servers without violating any SLOs. Respective constraints to be met have been formally

expressed by the Equations (3.3),(3.5), and (3.6) in Section 3.4.2.

In principal, the algorithm works the same way like the pessimistic one presented in the

previous chapter. The VMs are assigned to servers one by one. First, it is tried to place them

on servers to which other VMs have already been assigned before. If none of these servers has

enough resource capacity left, a new one is taken. Heuristics decide about the order the VMs

are assigned to servers. If more than one server can host a VM, again heuristics select the one

to take.

The difference to the pessimistic approach is the way the jointly required resources
#»
jak(t)

are derived from the resource demand models of the VMs with respect to their SLOs. Hence,

mainly this topic will be addressed within this section. Furthermore, a way for sorting VMs

6Except when the service processes single batch jobs subsequently. Such job based services are not in the
scope of this work. Completely other resource management strategies should be applied for them.

63



5 Statistical Static Resource Management

with respect to their resource demand is needed as well to support first-fit or best-fit bin

packing heuristics. Such a way will be also presented.

5.4.1 Known Approaches

Statistical static management approaches that are similar to the one presented in this thesis

have been suggested in [117, 58, 45]. They are all based on stochastic processes and perform

resource management nearly the same way. The main idea of them will be shortly presented

in the following as well as the main weaknesses.

These approaches model the resource demand of each VM by one single random variable

Y i for each resource type as mentioned in the modeling section. A random variable JYk that

describes the joint resource demand of the VMs is derived for each resource type as follows:

JYk =
∑

i:B(i)=k

Y i. (5.17)

This variable is used to decide whether or not a certain combination of VMs will fit together

on the same server k.

It has been shown in Section 5.1.2 that the probability distribution of the sum of statistically

independent random variables can be determined by applying convolution on their individual

distributions. The authors of [117, 58, 45] suggests to determine the probability distribution

that describes JYk exactly this way under the assumption of statistical independence of these

variables. The validity of this assumption will be discussed later in this section.

Once JYk is found, the jointly required resources JAk(t) to be provided to the VMs to fulfill

their SLOs must be derived. JAk(t) is a constant value JAk, since JYk is time independent.

A common way for specifying SLOs has been introduced in Section 5.2. A minimal required

probability Pmini defines how often a defined performance goal must be satisfied. Such SLOs

can be used to trade off resources against performance. The authors of [117, 58, 45] focused

on such a SLO specification as well. They suggest to determine the resource capacity JAk

provided to the joint resource demand JYk as follows:

P (JYk ≤ JAk) ≥ max
∀i:B(i)=k

(Pmini ). (5.18)

The resource capacity JAk provided to the VMs must satisfy the joint resource demand de-

scribed by JYk at least with the maximum of the required probabilities Pmini . The maximum

ensures that the most restrictive SLO of the VMs is satisfied. In principal, JAk is selected as

the Pmini th percentile of JYk using the most restrictive of the Pmini s.

According to the first constraint for static resource management expressed by Equation(3.3)

in the problem statement chapter, JAk = JAk(t) must be lower or equal to the server’s resource

64



5.4 Static Scheduling

capacity Ck to fulfill all SLOs.

Based on this condition, classical bin packing algorithms can now decide whether or not a

certain combination of VMs will fit together on the same server. But mainly two different

assumptions prevent this approach from directly being used in real data centers. They will be

discussed in the following.

Correlations

A major problem of this approach concerns the way the random variables JYk are derived from

the Y is of the VMs. The convolution operation performed requires statistical independence

which is not given in real data centers.

It can be mainly distinguished between two types of correlations. Structural correlations

occur, if services are distributed across different VMs. Handling one request involves differ-

ent VMs nearly at the same time in this case. Creating a dynamic web page, for instance,

typically requires the work of a web server, a data base, and in some cases a storage system.

Hence, the resource demands of the respective VMs are positively correlated. The second class

of correlations, temporal correlations, typically occurs in data centers that support business

activities at daytime. At night, most of the services lowly utilize hardware while they require

maximal resources by day. Hence, their demand behavior is positively correlated as well.

The joint resource demand of different VMs will be either under- or overestimated when

correlations are ignored depending on whether the random variables are positively or negatively

correlated. An example for each case is illustrated in Figure 5.6. The probability of the

highest resource demand is higher than the one that is calculated using convolution in case

of positively correlated workload. Negatively correlated workload, in contrast, reduces the

probability of high resource demand of different applications at the same time so that the

calculated distribution overestimates the real one.

As a result, either resource are wasted or even SLO violations can occur when correlations are

neglected while statistic resource management is performed. Two approaches will be presented

within this thesis that deal with correlations in different ways. The first one pessimistically

assumes completely positively correlated workload, which only leads to wasted resources but

not to any SLO violations. The second one uses negative correlations for a more optimistic

resource management, while it guarantees not to violate any SLO as well.

Interdependencies between Required and Provided Resource Capacity

Memory demand must be met by provided capacity at any time as discussed in Section 3.3.2.

Provided CPU time, in contrast, can be traded off against service performance by defining

appropriate SLOs. Resource shortages are tolerated as long as performance goals are not

violated more often than specified. The approaches presented in [117, 58, 45] try to ensure

65



5 Statistical Static Resource Management

0 100 R
P

(R
)

0.5

1.0

P
(R

)

0 100 R

0.5

1.0

Y
1

Y
2

a) d)

t

R1

R2

100 JR

P
(J

R
)

0.5

1.0

n
eg

a
tiv

ely
 co

rrela
ted

c)

t

R1

R2

0 200 JR

P
(J

R
)

0.5

1.0

u
n

co
rrela

ted

b)

t

R1

R2

0 200 JR

P
(J

R
)

0.5

1.0

p
o

sitiv
ely

 co
rrela

ted

Figure 5.6: Shows the influence of correlations when two exemplary random variables Y1 and
Y2 are added. Their respective probability distributions are presented in a). Three
cases are regarded in which the variables are either positively correlated b), un-
correlated c), or negatively correlated d). Exemplary time series were selected one
for each case. They fit to the variables and to the respective correlation as well.
One can see that summing up the time series will lead to different probability
distributions. Hence, the sum of different random variables depends on possible
correlations between them.

meeting this condition. The probability distribution of the joint CPU time demand JYk is

used to decide whether or not a certain combination of VMs will fit together on the same

server.

This method can only work, if JYk is not influenced by actually occurring resource shortages.

But this assumption is not true in most cases. An exemplary time series JRk(t) of the joint

CPU time demand of different VMs will be analyzed in the following to point out the reason

behind.

A certain amount of CPU time is needed by the VMs at each time step t. This demand can

exceed the servers capacity Ck as intended by the statistical resource management approach.

When the capacity is actually exceeded at t, a residual of the CPU time demand will remain.

Hence it is demanded at time t+ 1 further on in addition to the initial demand JRk(t+ 1).

It is now assumed that the initial CPU time demand stated by JRk(t) will not change due

to resources shortages as well. A second time series JR+
k (t, Ck) can be calculated from the

initial one based on this assumption as follows:

JR+
k (t, Ck) = JRk(t) + εk(t− 1, Ck)

with

εk(t, Ck) = max(εk(t− 1, Ck) + JRk(t)− Ck, 0)

and

εk(0, Ck) = 0.

(5.19)

This time series additionally considers the remaining residuals. The residual εk(t, Ck) at time

t is the sum of the residual remaining from time t− 1 and the difference between the resource

demand at t and the server’s capacity Ck. The max function ensures that residuals do not fall

66



5.4 Static Scheduling

below 0 because unused CPU time cannot be used later for compensation. Furthermore, no

residual can exist at time t = 0. The real CPU time demand JR+
k (t, Ck) at time t is now the

initial demand JRk(t) plus the residual εk(t− 1, Ck) that remains from time t− 1.

An exemplary initial time series JRk(t) of joint CPU time demand as well as the resulting

one JR+
k (t, Ck) are presented in Figure 5.7 a). One can clearly see that JR+

k (t, Ck) exceeds

JRk(t) when resource shortages occur. Hence, the real demand JR+
k (t, Ck) will exceed Ck

more often compared to the initial demand JRk(t), which results in an increased amount of

resource shortages.

t

re
so

u
rc

e
s Ck

a)

JR
k
(t)JRk(t)

b) R

P
(R

)

Ck

JYkJYk

%2.77)( =≤
+

kk CJYP

%1.85)( =≤ kk CJYP

+
+

Figure 5.7: a) Resource demand JRk(t) of an exemplary time series and the resulting real
resource demand JR+

k (t, Ck) when JRk(t) exceeds the server’s capacity at some
time. b) The respective probability distributions show that percentile based SLOs
can be violated when interdependencies between resource demand and provided
resources are neglected.

It is shown in Figure 5.7 b) that this changed demand behavior can lead to SLO violations.

The initial time series JRk(t) does not exceed the server’s capacity in 85.1% of time. The

resulting real one will only meet the demand in 77.2%. A SLO is violated, if the respective

Pmini is higher than 77.2%.

5.4.2 Pessimistic Statistical Scheduling

Statistical independence required between the resource demand of different VMs was pointed

out to be one of the major weaknesses of known approaches for statistical resource management.

An approach for statistical resource management will be presented within this section that

pessimistically deals with correlations. Later on, this approach will be extended to use negative

correlations for a more optimistic assignment of VMs to servers.

No resources can be shared between different VMs without any further information about

possible correlations. It is not clear, how often high resource demand of them will occur

at the same time. Resources must be individually reserved for each VM the same way the

pessimistic approach that has been described in Chapter 4 does. This way, even the worst case

is considered, in which all VMs will demand their maximally required resources at the same

67



5 Statistical Static Resource Management

time.

Hence, the resources Amaxi maximally required by VM i in the interval [tp3 , tp3+∆tp3 ] in

future must be determined for each resource type. It has been shown in the modeling section

how a random variable Y maxi can be derived from the resource demand model that describes

the maximally expected resource demand in the interval [tp3 , tp3+∆tp3 ]. Amaxi must be selected

in a way that it provides enough resources capacity to meet the demand behavior described

by exactly this random variable.

Y maxi is selected as the maximum of the model Y ∗i ([tp2 , tp2+∆tp2 ]) scaled by the influence of

a possible long term trend according to Equation (5.16). A size of the random variables Yi that

describe the resource demand of VMs must be defined to find this maximum. For the resource

management concept, this size is simply defined by the minimal resources Ai that must be

reserved to fulfill the SLO of the respective VM. A higher amount of required resources means

a larger Yi, which can be formally expressed as follows:

Yi(t0) > Yi(t1)⇐⇒ Ai(t0) > Ai(t1). (5.20)

Hence, a function q : Y (t) 7→ A(t) must be found that determines the resources A(t) required

to fulfill the SLO with respect to the demand described by Y (t). This function in conjunction

with the method for finding Y maxi (cf. Equation (5.16)) will result in following equation:

Amaxi = max
∀t∈[tp2 ,tp2+∆tp2 ]

(
q

(
Y ∗i (t) · max

∀tLT∈[tp3 ,tp3+∆tp3 ]
(LTi(tLT ))

))
. (5.21)

The resources Amaxi maximally required by VM i in the interval [tp3 , tp3+∆tp3 ] in the future

to fulfill their respective SLO can be directly calculated using this equation.

Different functions q must be applied to derive Ai(t) from Yi(t) depending on the resource

type. One function will be presented for memory and one for CPU time in the following.

Deriving Required Memory Capacity

The provided memory capacity Ai(t) must meet the demand Ri(t) all the time, since memory

shortages can lead to complete service failures as discussed in Section 3.3.2.

Given a random variable Yi that describes the memory demand at a certain time t, memory

capacity Ai must be provided at t in a way that P (Yi > Ai) = 0 holds. This leads to

Ai = max(Yi) (cf. Section 5.1.2). Applying this to a whole stochastic process Yi(t) results in

Ai(t) = max(Yi(t)) = q(Yi(t)). Hence, function q for memory determines simply the maximum

of each random variable Yi of the stochastic process Yi(t).

In principal, the resulting Amaxi should be the same like the maximal memory demand Rmaxi

determined using benchmarks in phase one of the concept. Hence, Rmaxi could be directly used

68



5.4 Static Scheduling

for resource management. Nevertheless, the way required memory capacity is determined from

the random variables that describe the memory demand behavior has been presented here.

This method will be needed later on, when correlations are used for more optimistic statistical

static resource management and for the dynamic resource management concept as well.

Deriving Required CPU Time

CPU time can be used to trade off provided capacity against service performance in contrast

to memory. Provided CPU time Ai can be lower than the maximum of the demand Yi, which

can lead to performance losses as intended. These performance losses must be limited by the

conditions derived from the SLOs.

A classical percentile based as well as a new more fine grained SLO specification have been

presented in Section 5.2. Both are suited to support resource performance trade-offs. The

resource management concept presented in this thesis can deal with both types of specifications.

But only the way how fine grained SLOs are supported will be presented, since any percentile

based SLO can be expressed by a fine grained one as well.

Fine grained SLOs can be defined by a function Pminηi (η) as presented in Section 5.2. This

function assigns a probability to each defined performance goal ηi stating how often this goal

must be achieved. Additionally, it has been shown how a function Pminαi (α) can be derived from

Pminηi (η) that defines how often a certain ratio α between provided resources Ai and resource

demand Ri must not be deceeded. Finally, following condition for resource management has

been derived in Section 5.2.4 that must be met to not violate the SLO:

∀αmin ∈ ]0, 1[ ∩ dom(Pminαi ), t0 : P (g(Ri(IV
SLO
t0 ), Ai(IV

SLO
t0 )) ≥ αmin) ≥ Pminαi (αmin)

with

IV SLOt0 = [t0, t0 + ∆tSLOi ]. (5.22)

This equation must hold for all possible realizations Ri(t) of the stochastic process Yi(t) that

describes the demand behavior of a VM. The major challenge is to calculate the probability

P (g(Ri(IV
SLO
t0 ), Ai(IV

SLO
t0 )) ≥ αmin), which is needed to determine appropriate values for

Ai(t) with respect to the underlying process Yi(t).

First, a method will be presented that allows determining minimal resource capacity Ai

required for demand described by Yi to address this challenge. Resulting resource shortages

must not exceed all possible values αmin ∈ ]0, 1[ ∩ dom(Pminαi ) more often than specified by a

certain function Pminαi (αmin). This condition can be formally expressed as follows:

∀αmin ∈ ]0, 1[ ∩ dom(Pminαi ) : P (g(Yi, Ai) ≥ αmin) ≥ Pminαi (αmin). (5.23)

69



5 Statistical Static Resource Management

The transformation of a discrete random variable by a function leads to another discrete

random variable [22]. Hence, the result Xi of the function Xi = g(Yi, Ai) is a discrete random

variable as well because of Yi. Yi describes the resource demand Ri with respect to the

noise. Xi describes the resulting resource shortages αi, when a certain resource capacity Ai is

provided to the resource demand Yi.

The probability P (g(Yi, Ai) ≥ αmin) can be calculated based on this dependence using the

probability distribution fXi(α) of the random variable Xi as follows:

P (g(Yi, Ai) ≥ αmin) = P (Xi ≥ αmin)

= 1− P (Xi < αmin)

= 1−
∫
α∈]0,αmin[

P (Xi = α)dα

= 1−
∫
α∈]0,αmin[

fXi(α)dα. (5.24)

The probability distribution fXi(α) is not known so far. It will be shown in a next step how

this probability distribution can be derived from the known one fYi(R) of Yi.

It has been shown in Section 5.1.2 how the probability distribution fN (n) of a discrete

random variable N that is a mapping of another discrete random variable M can be calculated

from Ms distribution fM (m). Applying the respective equation (Equation (5.4)) to the random

variables Yi and Xi that are mapped on each other by function g leads to:

fXi(α) =
∑

R:g(R,Ai)=α

fYi(R). (5.25)

One can derive from the definition of function g in Section 5.10 that g reduces to the invertible

function g(R,Ai) = Ai
R for α < 1. As a result, each value α ∈ ]0, 1[ will lead to exactly one

value R. Hence, R can be calculated from α using R = Ai
α , which will reduce Equation (5.25)

to:

fXi(α) = fYi(
Ai
α

) for α ∈ ]0, 1[. (5.26)

Inserting now Equation (5.26) into Equation (5.24) leads to following condition:

∀αmin ∈ ]0, 1[ ∩ dom(Pminαi ) :

∫
α∈]0,αmin[

fYi(
Ai
α

)dα < 1− Pminαi (αmin) (5.27)

that is equivalent to the one initially expressed by Equation (5.23). It can be now simply

tested if a certain value of Ai will violate the SLO or not based on this equation and the

probability distribution fYi(R) of the resource demand described by Yi. Starting with Rmaxi ,

possible values of Ai are iterated downwards to find the minimal Ai that barely will satisfy

70



5.4 Static Scheduling

the SLO.

In principal, this method can be applied individually for each time t to determine Ai(t)

from Yi(t). But it is not obvious that Ai(t) determined this way will satisfy the condition this

sections starts with (Equation (5.22)) as well. Determining Ai(t) individually for each time t

only ensures that the univariate probability distribution of the resource demand at each fixed

time t will satisfy the SLOs. But this does not necessarily implicate that the same is true for

all possible explicit time series Ri(t) in each interval IV SLOt0 as well (cf. Section 5.1.4). It will

be shown in the following that under the assumption of statistical independence of the random

variables of Yi(t) this implication is actually valid.

Proof. Formally expressed, it needs to be shown that if condition (5.23) meets for all

random variables Yi of the stochastic process Yi(t), the same will be true for any realization

Ri(t) in any interval IV SLOt0 as well, which can be expressed by following equation:

∀αmin ∈ ]0, 1[ ∩ dom(Pminαi ), t0, t ∈ IV SLOt0 , Yi = Yi(t), Ai = Ai(t) :

P (g(Yi, Ai) ≥ αmin) ≥ Pminαi (αmin)⇒

P (g(Ri(IV
SLO
t0 ), Ai(IV

SLO
t0 )) ≥ αmin) ≥ Pminαi (αmin)

with

IV SLOt0 = [t0, t0 + ∆tSLOi ]. (5.28)

First, each Yi is mapped on a random variable Xi by function g(Yi, Ai), which turns the left

part of the implication into P (Xi ≥ αmin) ≥ Pminαi (αmin). All Xi together form the stochastic

process Xi(t). Now, a lower bound of all Xi ∈ Xi(t) is defined by a new discrete random

variable X̃i as follows:

∀αmin ∈ ]0, 1[ ∩ dom(Pminαi ) : P (X̃i ≥ αmin) = min
∀Xi∈Xi(t)

(P (Xi ≥ αmin)). (5.29)

For this X̃i it holds that:

∀Xi∈Xi(t), α
min ∈ ]0, 1[ ∩ dom(Pminαi ) :

P (Xi ≥ αmin) ≥ Pminαi (αmin)⇔ P (X̃i ≥ αmin) ≥ Pminαi (αmin). (5.30)

Let now be xi(t) any possible realization of Xi(t). As shown in Section 5.1.4, the probability

that any xi(t) exceeds a certain threshold αmin in an interval IV SLOt0 can be calculated from

the individual statistically independent random variables involved as follows:

P (xi(IV
SLO
t0 ) ≥ αmin) =

1

|IV SLOt0 |
∑

Xi∈Xi(IV
SLO
t0

)

P (Xi ≥ αmin). (5.31)

71



5 Statistical Static Resource Management

With X̃i being a lower bound of all Xi (as defined by Equation (5.29)) it further holds that:

∀αmin ∈ ]0, 1[ ∩ dom(Pminαi ), Xi ∈ Xi(t) :

1

|IV SLOt0 |
∑

Xi∈Xi(IV
SLO
t0

)

P (Xi ≥ αmin) ≥ P (X̃i ≥ αmin). (5.32)

If now P (Xi ≥ αmin) ≥ Pminαi (αmin) holds for allXi ∈ Xi(t) and all αmin ∈ ]0, 1[ ∩ dom(Pminαi ),

P (X̃i ≥ αmin) ≥ Pminαi (αmin) will hold as well according to Equation (5.30). In this case, the

inequation P (xi(IV
SLO
t0 ) ≥ αmin) ≥ Pminαi (αmin) will also hold for any possible xi(t) and all

αmin ∈ ]0, 1[ ∩ dom(Pminαi ) because of Equation (5.31) and (5.32).

Let now be Ri(t) any concrete realization of the stochastic process Yi(t). Applying function

g on Ri(t) leads to a time series xi(t) that is a realization of Xi(t)
7. In a final step, it needs

to be shown that

∀αmin ∈ ]0, 1[ ∩ dom(Pminαi ) : P (xi(IV
SLO
t0 ) ≥ αmin) ≥ Pminαi (αmin)

⇔ P (g(Ri(IV
SLO
t0 ), Ai(IV

SLO
t0 )) ≥ αmin) ≥ Pminαi (αmin) (5.33)

holds, which is not obvious since function g is not invertible.

Therefore, one can first transform the left side as follows:

P (xi(IV
SLO
t0 ) ≥ αmin) = 1− P (xi(IV

SLO
t0 ) < αmin). (5.34)

Regarding the range of αmin in Equation (5.33) and the definition of g (cf. Equation (5.10) in

Section 5.2.3) one can derive that indeed

1− P (g(Ri(IV
SLO
t0 ), Ai(IV

SLO
t0 )) < αmin)

= 1− P (
Ai(IV

SLO
t0 )

Ri(IV SLOt0 )
< αmin)

= 1− P (xi(IV
SLO
t0 ) < αmin)

= P (xi(IV
SLO
t0 ) ≥ αmin) (5.35)

holds. The reason is that function g either returns the ratio between Ai and Ri or simply

1 depending on the parameters. A result of 1 will not influence the probability in Equation

(5.35) for all αmin ∈ ]0, 1[ ∩ dom(Pminαi ). Hence, only the invertible part of g needs to be

regarded.

7Xi(t) is a mapping of Yi(t) which means that all random variables Xi of Xi(t) are mappings of the respective
Yi of Yi(t). Mapping a random variable Yi on a variable Xi means mapping all possible realizations on each
other by the respective mapping function. Hence, if Xi(t) is a mapping of Yi(t), a mapping of a concrete
realization of Yi(t) is a concrete realization of Xi(t).

72



5.4 Static Scheduling

Please note that Equation (5.31) will be only valid for sufficiently long intervals IV SLOt0 as

discussed in Section 5.1.4. A correction term must be added to the probability P (g(Yi, Ai) ≥
αmin) in Equation (5.23) for shorter intervals to determine Ai(t). Such correction terms depend

on the number of concrete realizations (samples in the interval IV SLOt0 in this case) of a random

variable. They can be characterized using known approaches out of the field of the theory of

samples as presented for instance in [38]. This topic will not be detailed any deeper within

this thesis.

Finally, function q that determines CPU time capacity Ai(t) required to support the CPU

time demand Yi(t) with respect to a SLO can individually determine Ai at each time t as

described before.

Comparable to memory, Equation (5.21) can be used with function q to determine the

CPU time capacity Amaxi maximally required in the future. But Amaxi can be lower than the

maximally expected demand Rmaxi in contrast to memory depending on the demand behavior

of the VM and on how restrictive the SLO is.

Distributing VMs to Servers

Once the values Amaxi are found for each resource type of all VMs, the distribution of VMs to

servers can be determined the same way the pessimistic static approach presented in Chapter

4 does. But the maximal CPU time Amaxi provided to VM i can be lower compared to the

value found by the initial approach because of the resource performance trade-off.

Providing less CPU time than required can lead to resources shortages as intended, if the

overall CPU time demand of all VMs placed on the same server exceeds its capacity. But

it is important that required resource capacity Amaxi is individually reserved for each VM to

prevent SLO violations caused by these resource shortages. This way, the amount of provided

capacity never gets below a value that can lead to SLO violations. Common virtualization

environments allow reserving such fixed amount of resource capacity individually for each VM

as described in Section 3.4.1.

Finally, VMs need to be sorted to apply heuristics such as first-fit or best-fit, while the

distribution of VMs to servers is planned. This can be done by their Amaxi values the same

way the pessimistic approach does.

5.4.3 Interdependence between Required and Provided Resource Capacity

A method has been presented in previous section that allows trading off resources capacity

against performance by providing less CPU time Ai(t) than demanded. Resulting resources

shortages will lead to demand behavior that differs from the one initially observed as discussed

in Section 5.4.1.

73



5 Statistical Static Resource Management

Periods of the resource demand time series were modeled in previous work using one random

variable. Hence, the interdependence between required and provided resource capacity changes

the random variable itself. The concept introduced in this thesis models the demand behavior

by individual random variables each for one discrete time step t. Hence, resource shortages at

time t will not influence the random variable that describes the behavior at t but the one at

t+ 1.

To consider remaining CPU time demand, a function res : R+ × R+ → R+ is defined first

as follows:

εi = res(Ri, Ai) =

{
Ri −Ai for Ri > Ai

0 else
(5.36)

This function determines the remaining CPU time demand εi, when a certain amount of

resource capacity Ai is provided to a demand Ri. The residual is simply the difference between

Ri and Ai, when the demand is higher than the provided capacity. A demand lower than

the capacity leads to a residual of 0 because unused CPU time can not be used later for

compensation.

Function res can now be applied on the random variable Yi that describes the demand

behavior of VM i at a certain time t. A residual Ei = res(Yi, Ai) that is a random variable

as well will be the result. This resulting random variable describes the remaining CPU time

demand with respect to the random noise. The following equation can be used to determine

the respective probability distribution fEi(ε) from the distribution fYi(R) of Yi according to

the outcomes of Section 5.1.2:

fEi(ε) =
∑

R:res(R,Ai)=ε

fYi(R). (5.37)

Applying now function res on the whole stochastic process Yi(t) leads to the stochastic process

Ei(t) = res(Yi(t), Ai(t)). Ei(t) describes the CPU time demand that could not yet be satisfied

at each time t.

The remaining CPU time demand at time t increases the demand at time t + 1. Hence, a

stochastic process Y +
i (t) that describes the CPU time demand with respect to the initial as

well as to the additional demand can be calculated as follows:

Y +
i (t) = Yi(t) + Ei(t− 1). (5.38)

The probability distribution of each Y +
i of Y +

i (t) can be calculated using convolution (cf.

Section 5.1.2) assuming statistical independence of the random variables Yi of Yi(t).

Finally, the function q worked out for CPU time in Section 5.4.2 must not be applied directly

on Yi(t) to derive Ai(t) due to the interdependencies between them. Instead, it must be applied

74



5.4 Static Scheduling

on the process Y +
i (t). For the rest of this thesis, deriving Ai(t) from Yi(t) means that the step

over Y +
i (t) is included as well.

5.4.4 Separating Seasonal Trend and Noise from Long Term Trend

Until now, the model Y ∗i (t) was scaled by the influence of a possible long term trend first before

the required resources Ai(t) have been determined (cf. Equation (5.21) in Section 5.4.2). Later

on, it will be required that first the resources A∗i (t) required for the resource demand described

by Y ∗i (t) are determined. After that, the resulting time series A∗i (t) is scaled by the influence

of the long term trend, which finally leads to Ai(t). It is not obvious that both ways lead to

the same result especially with respect to the way, required CPU time is determined from the

models. Hence, it will be shown in the following that actually both ways will result in the

same.

Formally expressed, it needs to be shown that if a certain A∗i satisfies the demand described

by Y ∗i without any SLO violation, the same is true for LTi(tx) ·A∗i with respect to the resource

demand LTi(tx) · Y ∗i and vise versa. The implication from A∗i to LTi(tx) · A∗i ensures that

no SLO are violated, when the influence of the long term trend is scaled after the required

resources have been determined. The implication back ensures that if A∗i is the minimal

resource capacity required to support Y ∗i , the resulting capacity LTi(tx) · A∗i is the minimum

for LTi(tx) · Y ∗i as well.

It was pointed out in Section 5.4.2 that the condition P (Yi > Ai) = 0 must meet for memory

demand Yi and provided memory capacity Ai to not violate the SLO. Hence, it needs to be

shown that:

P (Y ∗i > A∗i ) = 0⇔ P (LTi(tx) · Y ∗i > LTi(tx) ·A∗i ) = 0, (5.39)

which is obviously true regarding the fact that max(LTi(tx) · Y ∗i ) = LTi(tx) · max(Y ∗i ) (cf.

Section 5.1.2).

According to the condition to be met for CPU time to not violate any SLO(Equation (5.23)

in Section 5.4.2), it must be shown that the following holds:

∀αmin ∈ ]0, 1[ ∩ dom(Pminαi ) : P (g(Y ∗i , A
∗
i ) < αmin) ≤ 1− Pminαi (αmin)⇔

P (g(LTi(tx) · Y ∗i , LTi(tx) ·A∗i ) < αmin) ≤ 1− Pminαi (αmin). (5.40)

Function g(Y ∗i , A
∗
i ) can be replace by

A∗i
Y ∗i

, if only results of g are required that are lower than

1 as already discussed in Section 5.4.2. This replacement leads to the following:

g(Y ∗i , A
∗
i ) =

A∗i
Y ∗i

=
LTi(tx) ·A∗i
LTi(tx) · Y ∗i

= g(LTi(tx) · Y ∗i , LTi(tx) ·A∗i ), (5.41)

75



5 Statistical Static Resource Management

which proofs that the equivalence stated in Equation (5.40) is actually given.

5.4.5 Using Correlations for Improved Statistical Scheduling

Until now, the statistical static resource management approach deals very pessimistically with

possible correlations. It reserves enough resource capacity to support the worst case (positively

correlated maximal resource demand of all VMs), even if this case will never occur. An example

of such a case is presented in Figure 5.8 a). Both VMs are never demanding their maximal

resources at the same time. Hence, individually reserving the maximum for each VM leads to

wasted resources in this case.

t

wasted

A
A1(t) A2(t) A1(t)+A2(t)

A1
max

A2
max

A1
max+A2

max

max(A1(t)+A2(t))

a) b)

kkppp CtJAtttt ≤∆+∈∀ )(:],[
333

condition for static r.m.

∑
=

≤

kiBi

ki CA
)(:

max

pessimistic way

∑
=

≤∆+∈∀

kiBi

kippp CtAtttt
)(:

)(:],[
333

optimistic way

Figure 5.8: a) Individually reserving maximally required resources for each VM can waste re-
sources. The overall required resource capacity can be reduced, if correlations are
taken into account. b) Two conditions are derived from the initial resource con-
straint (top) worked out in the problem statement chapter. They can be used
for resource management. The first one (left) pessimistically overestimates cor-
relations. The second one (right) allows more optimistically using them for an
improved assignment of VMs to servers.

Correlations can be taken into account, if the pessimistic condition (Figure 5.8 b), left side)

applied until now is relaxed a bit inspired by the idea of trace based resource management [43,

95]. An assignment of VMs to a server will be still valid, if the sum of the individual required

resource capacities Ai(t) of the VMs does not exceed the servers capacity Ck at any time t.

This leads to the condition presented at the right side of Figure 5.8 b). Negative correlations

are used for a more optimistic planning this way. This more optimistic condition does not

conflict with the initial one (Figure 5.8 b), top) worked out for static resource management

in the problem statement chapter. The sum of the individually required resource capacities

Ai(t) is higher as or equal to the jointly required resources JAk(t) in any case.

First, the influence of the long term trend must be separated from the time series Ai(t) to

use this relaxed condition for resource management. This leads to following condition:

∀t ∈ [tp3 , tp3+∆tp3 ] :
∑

i:Bi(t)=k

LTi(t) ·A∗i (t) ≤ Ck. (5.42)

76



5.4 Static Scheduling

It has been shown in previous section that this condition is equivalent to the initial one.

But resource management can still not directly use this condition. The resource demand

model Y ∗i (t) required to determine A∗i (t) describes the resource demand during the character-

ization phase (time interval [tp2 , tp2+∆tp2 ]) only. Hence, only the resources A∗i (t) that would

have been required during this phase can be determined but not the resources required in the

future.

An assumption already made in the modeling section is taken up again to solve this issue. It

has been assumed that the maximal resource demand detected during the observation phase

will not be exceeded by any demand behavior in the future (cf. Equation (5.15) in Section

5.3.3). Of course, the influence of the long term trend is excluded. This assumption is now

extended to the joint resource demand of all possible sets of VMs as follows:

max
∀t∈[tp2 ,tp2+∆tp2 ]

(
∑

i:B(i)=k

Y ∗i (t)) = max
∀t∈[tp3 ,tp3+∆tp3 ]

(
∑

i:B(i)=k

Y ∗i (t)). (5.43)

All trace based resource management approaches (e.g. [43, 95]) depend on this prerequisite as

well. It will be discussed later on under which conditions this is assumption is actually given.

The same dependence exists between the resources A∗i (t) required in phase two and three

under this assumption, which leads to following equation:

max
∀t∈[tp2 ,tp2+∆tp2 ]

(
∑

i:B(i)=k

A∗i (t)) = max
∀t∈[tp3 ,tp3+∆tp3 ]

(
∑

i:B(i)=k

A∗i (t)). (5.44)

The influence of the long term trend expected in phase three can be overestimated as follows:

∀t ∈ [tp3 , tp3+∆tp3 ] : LTi(t) ≤ max
∀tLT∈[tp3 ,tp3+∆tp3 ]

(LTi(tLT )). (5.45)

Both equations together can then be used to calculate the maximally required resources

expected in phase three from the demand behavior observed in phase two as follows:

max
∀t∈[tp3 ,tp3+∆tp3 ]

(
∑

i:B(i)=k

A∗i (t) · LTi(t))

≤ max
∀t∈[tp3 ,tp3+∆tp3 ]

 ∑
i:B(i)=k

A∗i (t) · max
∀tLT∈[tp3 ,tp3+∆tp3 ]

(LTi(tLT ))


= max

∀t∈[tp2 ,tp2+∆tp2 ]

 ∑
i:B(i)=k

A∗i (t) · max
∀tLT∈[tp3 ,tp3+∆tp3 ]

(LTi(tLT ))

 . (5.46)

The resources A∗i (t) that would have been required in phase two are derived from the model

77



5 Statistical Static Resource Management

Y ∗i (t) and scaled by the maximal influence of the long term trend expected in phase three.

Taken all together, the resource management concept must ensure that following equation

holds to not violate the relaxed condition presented in Figure 5.8 b):

max
∀t∈[tp2 ,tp2+∆tp2 ]

 ∑
i:B(i)=k

A∗i (t) · max
∀tLT∈[tp3 ,tp3+∆tp3 ]

(LTi(tLT ))

 ≤ Ck. (5.47)

In principal, bin packing can now directly be performed to find an optimal distribution of VMs

to servers. Equation (5.47) is evaluated for a certain set of VMs to decide whether or not they

will fit together on server k.

But performing bin packing this way can require much computational effort depending on

the sample rate and the duration of the observation phase. The algorithms must evaluate the

equation for different sets of VMs, which requires summing up the time series A∗i (t) of all VMs

in each set. The number of samples can be decreased before bin packing is performed to reduce

this effort. Equidistant intervals of samples of A∗i (t) can be replaced by their maximum. But

resource savings can get lost when required resources of different VMs are negatively correlated

within this intervals. As a result, the reduction of the sample count to reduce computational

effort required must be traded-off against achievable hardware savings.

5.4.6 Discussion

The approach for statistical static resource management presented in this section is mainly

based on three assumption. It will be discussed in the following, in which cases they meet and

how violations of them will affect the results.

Statistical Independent Random Variables of the Stochastic Process Yi

The assumption of statistical independence of the random variables Yi of Yi(t) has already

been discussed in Section 5.3.4. The same is assumed again two times within this section to

trade off CPU time against performance. The cases in which this assumption is actually valid

have been discussed before. Hence, it will be only pointed out in this section how missing

independence will impact the results.

First, statistical independence is required to ensure not to exceed the allowed probability of

performances losses specified in SLOs in a given time frame (cf. Section 5.4.2). The worst case

occurs, when all random variables that describe the demand behavior within the time frame

are completely positively correlated. If in this case performance losses occur, they will occur

during the whole time frame because of the positive correlations. The SLO will be violated.

Correlations must be explicitly modeled to deal with them in this case. These models must

be characterized using external knowledge. Simply observing resource demand will not provide

78



5.4 Static Scheduling

any information about correlations because at each time t only one sample can be observed.

This means that only one realization of each random variable can be observed, which is quite

not enough to derive any information about correlations between them.

In addition, statistical independence of two successive random variables of the stochastic

process Yi(t) is required to deal with interdependencies between resource demand and pro-

vided resource capacity (cf. Section 5.4.3). It was suggested to use convolution to derive the

probability distribution of the sum of the residual demand εi and the initial demand Yi. Incor-

rect probability distributions are calculated, if this assumption is violated. The real demand is

underestimated in case of positive correlations. Less resource capacity than actually required

is provided, which can lead to SLO violations.

A second option to deal with correlations is to pessimistically overestimate the resulting

probability distribution of two added random variables the way presented in [58]. This method

helps to prevent any underestimates, when the demand behavior model Y +
i (t) is derived from

the initial one Yi(t) as described in Section 5.4.3.

Interdependence between Performance Loss and User Interaction

It has been shown in Section 5.4.1 that the demand behavior of a VM is influenced by provided

resource capacity. Mainly residual resource demand that could not yet be satisfied by the

capacity at a certain time t remains and hence increases the demand at time t + 1. This

interdependence was addressed in Section 5.4.3.

The presented approach works only under the assumption that the initial resource demand

behavior described by Yi(t) does not depend on the provided resource capacity. This is actually

not true in any case because resource shortages will slow down the response time of requests.

A sequence of requests and answers is typically sent between a client and the service. An

increased response time of the service can delay the following requests of the client. This shifts

the respective resource demand caused by the sequence. Such shifts can lead to reduced but

also to increased resource demand in the future depending on the overall workload behavior.

Detailed information about the service deployed in the VM are required to analyzing this

kind of user influence. This interdependence is not pursued any deeper within this thesis, since

the scope of the thesis is limited to a black box view of the service only. Future work must

address this issue.

Using Negative Correlations Requires Periodic Demand Behavior

The idea of trace based resource management has been picked up in previous section to take

advantage of negatively correlated resource demand of the VMs. Resource savings are achieved

by putting VMs together at the same server that show complementary resource demand be-

havior caused by negative structural or temporal correlations.

79



5 Statistical Static Resource Management

Known approaches, such as presented in [43, 95], try to derive correlations from the demand

behavior of the VMs observed in the past. It has been simply implied that negatively correlated

resource demand observed in the past leads to negatively correlated resource demand in the

future as well. Real negative correlations (temporal or structural) are assumed behind the

observed ones. The concept presented in Section 5.4.5 is based on the same assumption as

well. Hence, in the following it will be discussed under which condition this assumption is

actually valid.

It has been distinguished between structural and temporal correlation earlier in this thesis.

Structural correlations are caused by dependencies between VMs. Temporal correlations are

caused by time depended workload variations.

Structural correlations mainly depend on the kind of requests processed by the VMs. Some

requests involve different servers others do not. Conventionally, this behavior does not change

over time. Requests that require the work of two different VMs will require the work of both

VMs in the future as well. Hence, possible structural correlations observed will be still valid in

the future, if during the characterization phase all possible requests and sequences of requests

ever expected in the future have been observed.

The situation is more difficult for temporal correlations since they depend on time. It has

been assumed that all kinds of requests that could possibly occur in the future have already

been observed in the past to deal with structural correlations. This is definitely not given for

the time and temporal correlations. One point in time observed in the past will never occur in

the future again. The same is true for intervals of time. Hence, one can not derive correlations

in the future from the ones observed in the past without any restriction.

An example can be simply constructed. Two VMs show strongly daytime dependent work-

load behavior. Over night both have nothing to do. At about noon both have their peak

resource demand. One of the VMs shows this behavior every day in a week. The demand

behavior of the second one differs during the weekend. After both VMs have been observed

for a few days, one would say that their workload is strongly positively correlated. But the

demand behavior turns out not to be that positively correlated, when the weekend is reached.

This fact has been completely neglected in [95]. The authors of [43] instead suggest to

perform trace based resource management only on VMs that show periodic resource demand

behavior. A period of the resource demand time series repeats over and over again in this case

(e.g. the resource demand during a week is repeating every week). Hence, different instances

of the period observed in the past can be used to predict the demand behavior expected in the

future. The same is true for possible correlations of the demand behavior of different VMs.

All VMs without any periodic behavior need to be treated pessimistically by the resource

management by reserving Amaxi all the time. It is unknown when in the future they will

demand their maximal required resources.

80



5.5 Changes in Demand Behavior

The model worked out for static resource management within this chapter will be extended

for dynamic resource management later on. It will be needed to determine whether the demand

behavior is periodic or not. Hence, a method for finding respective periods will be presented

that can also be used to decide whether or not the VMs can be used for the optimistic static

resource management approach.

One aspect not yet mentioned in [43] concerns the case when VMs with periodic demand

behavior have different periods. The instances of the periods of different VMs are shifted

against each other over time, which affects the observations. The characterization phase must

have at least a duration of the lowest common multiple of the periods of all VMs with periodic

behavior. This ensures that all possible cases that can ever occur have been observed. The

resource demand of a typical service shows periods of one day, two days, or one week. Hence,

a duration of the characterization phase of a view weeks is already enough in most cases. VMs

with absolute inappropriate periods should be treaded as non periodic ones. This allows taking

advantage of negatively correlated workload of the rest of the periodic VMs.

5.5 Changes in Demand Behavior

The resource management concept presented in this chapter imposes mainly two conditions

on the demand behavior of the VMs in the future. First, the long term trend observed during

the characterization phase will go on in the future as well. Second, the resource demand in

future purged by the long term trend will not exceed the maximal demand observed during the

characterization phase especially with respect to the noise performance. It will be shown in

the following how violations of these condition will affect the VMs, how they can be detected,

and what can be done to prevent negative impact of such violations.

5.5.1 Impact of Changed Demand Behavior

Changes of the seasonal trend or the noise performance can lead to increased resource capacity

required to not violate SLOs. Some capacity reserves are present most of the time when VMs

have an increasing long term trend. These reserves are needed to provide enough resources

capacity for some time in the future. Furthermore, unused capacity remains at a server in most

cases because no further VMs could be supported by this residual capacity. Hence, no SLO

violations will occur in most cases, if the resource demand only slightly exceeds the expected

one.

But an increased long term trend, in contrast, can lead to continuously occurring resource

shortages. Capacity reserves could be depleted before the end of phase three is reached de-

pending on how strong the actual trend exceeds the expected one. The data center must be

reconfigured earlier than expected.

81



5 Statistical Static Resource Management

5.5.2 Detecting Changed Demand Behavior

Both kinds of changes of the VMs’ demand behavior can be detected at runtime in most cases

before any resource shortage will occur. Respective procedures are illustrated in Figure 5.9.

b)a)

… …

t
3pt

33 pp tt ∆+

A
i
*

xt
(now)

avg

x tt ∆−

…

))((max)
2

1(
*

],[

*

333

tAttA i
tttt

avg

xi
ppp ∆+∈

>∆−

…

t
3pt

33 pp tt ∆+

A
i

xt
(now)

ii LTLT ≠

Figure 5.9: Procedures for detecting changes of a) the seasonal trend or the noise performance
and b) the long term trend of a VM’s demand behavior.

In principal, a new instance of the resource demand model is characterized using data

observed at runtime. This new model is compared to the one characterized during the char-

acterization phase.

Changes of the seasonal trend and the noise that occurred at a time tx − 1
2∆tavg can be

detected at time tx. The resource capacity A∗i that would have been required at tx − 1
2∆tavg

is determined from data observed in the interval [tx − ∆tavg, tx] the same way like used to

build the initial model (cf. Section 5.4.2). Changed demand behavior has been detected, if any

of these A∗i s exceeds the maximal required resources determined during the characterization

phase.

Nearly the same approach can be performed for the long term trend. A second function

L̂Ti is continuously characterized using data observed at runtime. The long term trend has

increased, if the slope of this function exceeds the one of the initial function LTi.

5.5.3 Preventing SLO Violations Caused by Changed Demand Behavior

Once changes have been detected that lead to increased resource demand, the operator of the

data center must react. He can determine how much earlier the reconfiguration of the data

center must be performed based on the models. Such an approach is a well known task of

classical capacity planning in data centers[10].

5.5.4 Discussion

SLOs have been worked out in Section 5.2 that mainly define a minimal quality of the service (in

terms of response time or throughput). The resource management decides about the resource

capacity assigned to the VMs based on these SLOs and on the user behavior observed.

82



5.6 Summary

The validity of the resulting distribution of VMs to severs can only be guaranteed, if the

demand behavior does not change with respect to the long term trend, the seasonal trend, and

the noise performance. But such a condition is conventionally not part of the SLO. Hence, the

clients can provoke SLO violations to obtain financial penalties from the Service Provider.

As a result, varying demand behavior can be only taken into account for resource manage-

ment, if additional conditions are integrated into the SLOs. These conditions must define, how

demand behavior (or service usage) will develop in the future. Such extended SLOs are not

worked out within this thesis any more. Ongoing future work must address this topic.

5.6 Summary

A new concept for statistical static resource management in virtualization based data center has

been presented within this chapter. This concept allows assigning a set of VMs to servers in a

way that the number of required servers is minimized. SLOs of the services are considered. This

approach additionally trades off resource capacity against service performance in contrast to

the pessimistic one presented Chapter 4. Furthermore, negatively correlated resource demand

of different VMs is used for a more optimized assignments of VMs to servers. It is expected that

these extensions can significantly reduce the number of servers required for a set of services

compared to the pessimistic approach. Less energy is required in a data center this way to

deploy the services. Investment costs can be saved as well.

This concept supports a new kind of SLO specification that allows trading off resource

capacity against service performance in a very fine grained way. Individual probabilities can

be specified for different performance goals. They state how often the respective goal must be

achieved to not violate the SLO.

Furthermore, a new kind of resource demand modeling has been developed for the concept.

The models are needed to determine resources required by a VM in a predefined time interval

in the future and are characterized using observed demand behavior. They consider long term

and seasonal trends and in contrast to previous work especially the non stationary random

noise as well.

Finally, a method has been introduced that based on the models and the SLO specification

can derive resource capacity required to meet the demand of a VM. This method considers

interdependencies between the resource demand and the provided capacity in contrast to pre-

vious work. Such interdependencies can occur, when resource capacity is traded off against

performance. Finally, it has been shown how conventional algorithms for heuristically solv-

ing vector bin backing problems can be applied to find an optimal assignments of VMs to

servers based on the determined resources capacity for each VM. Correlated demand behavior

of different VMs has been taken into account.

83



5 Statistical Static Resource Management

The presented approach can guarantee not to violate any SLO in a predefined time interval

in future based on different assumptions. These assumptions have been exhaustively discussed

within the respective sections in this chapter.

84



6 Dynamic Resource Management

The statistical static resource management worked out in previous chapter finds an optimal

static distribution of VMs to servers at the end of the characterization phase. The concept

tries to minimize the number of required servers to save hardware resources and energy.

Dynamic resource management can additionally draw on two further degrees of freedom that

can be used to further reduce the energy consumption. VMs can be moved at runtime between

different servers. Servers can be switched on and off. This way, active hardware resources can

be dynamically adjusted to the varying resource demand to save energy in times of low overall

resource demand.

The purpose of the dynamic resource management concept presented in this chapter is to

realize such a dynamic system. Since both control mechanism (VM migration and server acti-

vation) take time, a major challenge of the concept is to trigger them right in time. Upcoming

resource shortages must have been resolved right before they would actually occur to not

violate any SLOs.

For this, respective models must be developed that can be used to forecast the time depen-

dent demand behavior of VMs in the future. Furthermore, a scheduling algorithm is required

that dynamically redistributes VMs and switches servers on and off. Finally, the concept

must be able to deal with unexpected changes of the VMs’ resource demand behavior. These

challenges are addressed within this chapter.

6.1 Theoretical Background

It will be referred to some theoretical background while the dynamic resource management

approach is presented in this chapter. This background will be laid in this section.

The modeling part requires methods for finding periods in time series. They will be presented

in this section first. The dynamic scheduling approach ensures some constraints using a graphs.

Required algorithms known from classical graph theory are presented in a second part of this

section.

85



6 Dynamic Resource Management

6.1.1 Autocorrelation Analysis

Performing autocorrelation is a common way in classical time series analysis to find dependen-

cies between the individual samples of a time series [36]. A so called sample autocorrelation

function p(s) is derived from a time series R(t) with length ∆tR as follows:

p(s) =

∑∆tR−s
t=1 (R(t)− R̄)(R(t+ s)− R̄)∑∆tR

t=1 (R(t)− R̄)2
. (6.1)

The covariance of R(t) and R(t+ s) (R shifted by a lag of s) is calculated and normalized by

the variance of R(t).

In principal, this function is a measure for correlations between a time series and the time

series shifted by a certain lag. Values between −1 and 1 can be returned by p(s). 1 means a

complete positive correlation (e.g. in case of a lag of 0). A values of −1 indicates a negative

correlation (e.g. sin(t) shifted by a lag of π). A plot of p(s) versus lag s is called a correlogram

[36].

It will be suggested within this chapter to apply an autocorrelation analysis to find the

predominant period of a VM’s resource demand. More details about this purpose will be

presented in the respective section.

6.1.2 Testing Whether a Graph is Acyclic

Given a directed graph, two known approaches for finding out whether or not it remains acyclic

after an edge is added are presented in the following. The first one (taken from [4]) represents

the graph by a common adjacency matrix. An algorithm tries to topologically sort the nodes

to find cycles after an edge is added. The second one [14] in contrast represents the graph in

a way so that one can directly find out whether adding a certain edge will lead to any cycles

or not. Some more computational effort must be spent, when the edge is actually added to

adapt the representation.

Topology Sorting Based Test

The topology sorting based test searches for so called backward edges in a directed graph (or

directed multigraph) that indicate cycles. The two steps of this algorithm are illustrated in

Figure 6.1.

The algorithm starts with a classical depth first search to enumerate the nodes of the graph

in postorder [5]. It has been shown in [6] that a backward edge has been detected between

two nodes Sx and Sy, if Sy is an successor of Sx
1 but the post order of Sx is lower than the

1A successor of a node Sx is a node Sy that is the destination node of an directed edge from Sx to Sy .

86



6.1 Theoretical Background

S
2

S
4

S
1

S
3

S
2

S
4

S
1

S
3

4

3

2
1

S
2

S
4

S
1

S
3

4

3

2
1DFS Test

Figure 6.1: Overview of the algorithm that finds cycles in a directed (multi-)graph.

one of Sy. Hence, the algorithm tests in a second step, if all successors of all nodes have lower

postorder numbers than the nodes itself. A cycle has been detected, if this test fails.

The runtime complexity of the depth first search depends linearly on the number of edges

or nodes depending on which of the values is the higher one [5]. The complexity of the test

itself depends linearly on the number of nodes.

Matrix Based Test

The matrix based test represent the directed graph by a quadratic matrix M , from which one

can directly derive whether or not a certain operation will lead to cycles in the graph. The

rows of the matrix represent nodes, from which paths to other nodes start. The columns are

the destination nodes of possible paths. Each entry mi,j in the matrix contains the number of

paths that start at node i and end in node j. An example is presented in Figure 6.2.

S
1

S
2

S
3

S
4

S
1

S
2

S
3

S
4

0 0 0 1

2 0 1 3

2 0 0 3

0 0 0 0

S
2

S
4

S
1

S
3

Figure 6.2: Exemplary graph and its matrix representation. Each element mi,j in the matrix
contains the number of paths from node i to node j in the graph.

Adding now an edge to the graph from node Si to node Sj will only lead to a cycle, if already

a path from Sj to Si exists. This information can be directly figured out using the matrix.

The matrix needs to be adapted, when actually an edge is added. An respective algorithm is

presented in [14]. The worst case runtime complexity of this algorithm quadratically depends

on the number of nodes2.

2In [14], the complexity has been bounded some more to the number of nodes ending at incoming and outgoing
paths

87



6 Dynamic Resource Management

6.2 Service Level Objectives

First of all, the dynamic resource management concept should support the same SLOs like the

statistic static resource management does (cf. Section 5.2). A fine grained SLO specification

associates performance goals with probabilities that state how often the goal must be achieved.

These SLOs must be considered while the resource capacity Ai(t) required for a VM is derived

from the resource demand Yi(t) comparable to the static approach. The respective constraints

derived in Section 5.2.4 must meet for the dynamic resource management as well.

In addition, two further limits are needed as already discussed in Section 3.2.3. Resource

shortages can occur in case of unexpected demand behavior. But the client of a service must

be able to limit the duration as well as the strength of resulting performance slowdowns. For

this, two further parameters are introduced.

First, a client or Service Provider can define a maximal time period ∆tresolvei . Performance

problems of the service deployed in VM i must be resolved within this time period. Second,

a minimal amount of resource capacity Amini can be defined for each VM that is individ-

ually allocated. It must be guaranteed by the resource management that even in case of a

resource shortage the respective minimum is available for each VM. This guarantees a minimal

performance of the service in any case.

The fine grained SLOs are addressed by the concept already within the modeling section

in this chapter. The way, the concepts deals with the additional two parameters is described

later on in Section 5.5.3. First, it will be worked out how the dynamic resource management

deals with changed demand behavior at all.

6.3 Modeling the Resource Demand

The model required for dynamic resource management has nearly the same purpose like the

one for static resource management. The resource demand of VMs observed in a trainings

phase must be modelled in a way that the required resource capacity expected in the future

can be extrapolated from the models. In contrast to static case, the dynamic resource man-

agement obtains its energy saving potential from time dependent workload variations. Hence,

the models for dynamic resource management must be able to explicitly consider the time de-

pendence of the resource demand. The model must be able to forecast exactly when a certain

amount of resource capacity will be required in the future.

This section starts with a more detailed description of the requirements on the models. A

discussion of different known forecasting approaches follows. Finally, the modeling concept

developed for static resource management is extended in a way that it supports the require-

ments of dynamic resource management. Therefore, some ideas of known approaches will be

picked up again.

88



6.3 Modeling the Resource Demand

6.3.1 Requirements on the Model

In principal, the model for dynamic resource management must meet nearly the same re-

quirements like the one used for statistical static resource management. It must describe

the resource demand of VMs observed during the trainings phase in a way that the resource

capacity required in future to fulfill the SLOs of the VMs can be derived.

In contrast to the static case, not only the maximally required resource capacity expected in

the interval [tp3 , tp3+∆tp3 ] in the future needs to be forecasted. The goal of dynamic resource

management is to save energy by consolidating VMs to only a few servers in times of low overall

resource demand and switching off the unused servers. Hence, the algorithm that dynamically

redistributes VMs at runtime must be able to determined maximally required resource capacity

expected in different sub intervals of [tp3 , tp3+∆tp3 ] from the models. It can decide whether or

not a certain reassignment of VMs can be performed or not based on this information.

A basic approach to support such requirement is to use periodic behavior of the seasonal

trend and the noise. Similar sequences of demand behavior (for instance the ones of different

days) are assumed to repeat over and over again. A model characterized by some of them can

be used to forecast the following ones in the future as well. This idea is the basis of the model

presented in this thesis as well. Hence, the behavior of the resource demand of typical services

in a data center will be discussed some more concerning periodicity in the following. Further

requirements on the modeling approach are derived from this analysis.

Most services in a data center show typically periods of multiples of days or weeks [44, 104].

But other periods are possible as well [17]. Furthermore, different periods can overlay each

other. Typical daytime dependent demand behavior can be overlaid by a batch job that is

processed every 36 hours for instance. Finally, periods can be interrupted by single discontinues

such as bank holidays. The modeling approach must take care of these characteristics.

Finally, the dynamic resource management concept should support trade-offs between pro-

vided resource capacity and service performance like the statistical static one does. Hence, the

models should support the fine grained SLO specification introduced in the previous chapter

as well.

6.3.2 Known Approaches

Different models for extrapolating time series into the future have been presented for resource

management approaches and for several other application areas (e.g. weather forecast, fore-

casting stock prices, ...) as well. They are mainly based on the same principals known from

classical time series theory. These main principals will be presented and discussed in the

following.

The classical way separates the time series into a deterministic long term trend, a determin-

89



6 Dynamic Resource Management

istic or stochastic seasonal trend, and a random noise. Individual modeling approaches can be

applied for the different parts.

The long term trend is classically regarded as an additive strictly monotonic increasing or

decreasing component. It is typically modeled by a deterministic function (e.g. an polyno-

mial) that is fitted using regression methods. The influence of the long term trend can be

extrapolated for nearly an arbitrary time into the future due to the analytical form of the

models. The modeling approach developed within this thesis works nearly the same way. But

the long term trend is not regarded as an additive but as an scaling component in contrast to

the classical way. The reasons have already been discussed in Section 5.3.3.

The seasonal trend and the noise can be extrapolated by one of the following two principal

ideas. The first kind of approaches extrapolates the trends observed in closest proximity to the

current time to forecasts into the closest future. The random noise around this trend is assumed

to be stationary. Resource management approaches that follow this idea were presented for

instance in [23, 114, 72, 71, 15]. But such auto regression based methods can only safely forecast

the time series for a few sample into the future. Dynamic resource management approaches

require forecasts of at least half an hour. Hence, these kind of forecasting approaches are not

suited very well.

Most other approaches focus on periodic behavior similar to the approach developed for this

thesis. A model describes one (or more) periodic components that is(are) assumed to repeat

over and over again in the future. Different known approaches require a manually specified

predominant period (e.g. one week or one day) [27, 104, 102]. Others use an autocorrelation

analysis to automatically determine appropriate periods [44, 43]. The authors of [17] extends

such autocorrelation based approaches in a way that they can also deal with overlaid periodic

components in the time series by decomposing it. But it remains unclear how they deal with

periods that are not multiples of each other. The approach presented in this thesis also uses

an autocorrelation analysis to find one appropriate predominant period. It will be discussed

later on in this chapter how this approach can deal with overlaid periodic components of the

time series as well.

One can further distinguish between deterministic and stochastic seasonal models [36]. De-

terministic ones further split up the time series3 into a deterministic seasonal trend and a

residual random noise mostly performing moving averaging. Stochastic ones capture the trend

and the noise by one model.

Deterministic seasonal models were suggested in [17, 104, 43, 44]. The resulting model is

derived as an average of all instances of the period observed. Two kinds of random residuals

remain. The first one is formed by random noise around the seasonal trend. The second

kind of residual is caused by deviations of the single instances of the period. Both types of

3after a possible long term trend has been purged from them

90



6.3 Modeling the Resource Demand

residuals are treated as stationary statistically independent random noise in [43, 44]. But this

assumption is not valid because of local indeterministic trends and varying noise performance

as already discussed in Section 5.3.2. Especially the differences caused by deviations of the

instances of the period are strongly correlated. The authors of [17, 104] suggest performing

autoregression to remove such local trends. This approach is similar to the one used by trend

based approaches to forecast a seasonal trend. Hence, they share the same problem. Forecasts

into the future are only accurate in closest proximity to the current time. Furthermore, the

noise is still not stationary.

Stochastic seasonal models capture the seasonal trend and the noise in one model. A familiar

one is the SARIMA (seasonal ARIMA) approach[35] that has already been shortly discussed

in Section 5.3.2. A further extension has been presented in [27] that combines the local ARMA

approach with the idea of SARIMA. But both share the same problem that they can not be

characterized properly.

The approach presented in this thesis combines the ideas of deterministic and stochastic

seasonal models. A stochastic model has already been presented for static resource manage-

ment that captures the seasonal trend and the noise. A deterministic time series is derived

from this model that describes the required resource capacity. The idea now is to derive a

forecasting model from this deterministic time series using known methods for forecasting de-

terministic seasonal trends. Deviations between instances of a predominant period are handled

pessimistically.

6.3.3 Modeling Approach

The modeling approach for dynamic resource management is mainly an extension of the one

developed for static resource management (cf. Section 5.3). It is also based on the stochastic

process Yi(t) = Y ∗i (t) · LTi(t) that has been introduced before. A possible long term trend is

separately modeled by a linear function LTi(t), while a stochastic process Y ∗i (t) models the

seasonal trend and the random noise. The process and the function are characterized using

demand behavior observed during the trainings phase the same way like for static resource

management as well (cf. Section 5.3.3).

Only the maximal resource demand in the time interval [tp3 , tp3+∆tp3 ] needs to be determined

for static resource management. It does not matter when this maximum will be actually

required. Dynamic resource management in contrast needs to know the required resources at

any time t in this interval. The idea is to use periodic behavior of the seasonal trend and the

noise to support this requirement comparable to known approaches. The demand behavior

(w.r.t. the seasonal trend and the noise) is assumed to repeat over and over again after a

certain period. Hence, a model can be extracted from the resource demand observed during

the trainings phase that appropriately describes all instances of the period. This model can

91



6 Dynamic Resource Management

be used to extrapolate future resource demand as well under the assumption that upcoming

instances will behave like the ones observed.

Initially, the seasonal trend and the noise of the resource demand is described by the stochas-

tic process Y ∗i (t). But dynamic resource management does not need to know the resource de-

mand R∗i (t) (described by Y ∗i (t)) but the resource capacity A∗i (t) required to fulfill the SLOs.

Hence, resources capacity A∗i (t) required by a VM is derived from Y ∗i (t) first. For this, the

same method like presented in Section 5.4.2 is applied for both resource types: memory and

CPU time. Each of the resulting functions A∗i (t) describes now the resource capacity that

would have been required in the time interval [tp2 , tp2+∆tp2 ]. A model must be extracted in a

next step to extrapolate this function into the future. This model must represent all instance

of a period according to the idea presented just before.

In a first step, a predominant period ∆tÂ∗i
must be found in each time series A∗i (t). Once

this period is found, A∗i (t) is cut into pieces of this period. In a final step a representative

Â∗i (t) of all pieces is extracted as model. This model describes all instances of the period

during the characterization phase as well as all upcoming ones in the future. An overview of

this procedure is presented in Figure 6.3. All single steps contained will be detailed some more

time t

re
so

u
rc

e

…

lag s0

time t0

re
so

u
rc

e

smallest predominant periodsmallest predominant period

au
to

co
v
.

)(
*

tR
i

)(
*

tA
i

22 pp
tt ∆+2pt

2pt∆

*ˆ
iA

t∆

forecasting model )(ˆ *
tAi

a
u

to
c
o

r
r
e
la

ti
o

n

*ˆ
iA

t∆

max

st
e
p

 o
n

e
st

e
p

 t
w

o
st

e
p

 t
h

r
e
e

Figure 6.3: Overview of the method performed to derive a forecasting model from the resource
demand behavior of a VM observed during the trainings phase. First, the time
series A∗i (t) that describes the required resource capacity for a VM is derived from
the demand series R∗i (t) the same way like for static resource management. Next,
an autocorrelation analysis is performed on A∗i (t) to find a predominant. Once this
period is found, A∗i (t) is cut into single pieces of the length of this period. Finally,
the forecasting model is derived from all of these pieces.

92



6.3 Modeling the Resource Demand

in the following. Finally, the way how this model can be used for future extrapolation will be

presented in this section as well.

Finding a Predominant Period

A good way to find appropriate periods is performing an autocorrelation analysis the way

described in Section 6.1.1. The resulting correlogram of an exemplary time series and the time

series itself are presented in Figure 6.4 a). One can clearly see peaks repeating with a fixed

distance. This means that the time series shifted by each multiple of a certain lag strongly

correlates with itself. As a consequence, the time series must contain periodic behavior with a

dominating period that equals to the distance between two peaks or simply to the lag of the

first peak4.

0 13

re
so

u
rc

e

time [days]

au
to

co
v
.

0 6

re
so

u
rc

e

time [days]

0 6lag [days]a) 0 13

au
to

co
v
.

lag [days]b)

0 time [weeks] 5
re

so
u

rc
e

50

au
to

co
v
.

c)

one day one day one week

lag [weeks]

)(
*

tA
i

)(
*

tA
i

)(
*

tA
i

Figure 6.4: Exemplary time series A∗i (t) and respective correlograms. The lag with the highest
local maximum (despite the first one) is selected as predominant period. In case
of a weekly period overlaid by an intermittent daily period (like in b) and c)), the
length of the time series decides about whether the daily or the weekly period is
selected as the predominant one.

One can further see that the height of the peaks is continuously decreasing with increasing

lag. Increasing the lag decreases the overlapping region of the original time series and the time

series shifted by the lag. As a result, differences of the instances of the period are more and

more dominating the analysis. The autocovariance is decreasing.

It is a bit more complicated to determine an appropriate period for time series with different

overlaid periods. The selected one strongly decides about the quality of the model. One can

take an exemplary service that has very similar demand behavior every day for five days of a

week for instance. Both days of the weekend show strongly different demand behavior. One

could now decide to take one day as a period. Five of seven days would be described very well.

But the forecasts of the model might be very bad for the remaining two days. A better choice

would be a period of one week. The model would describes the sequence of five similar days

followed by the two days of the weekend this way.

4that has of course a lag different from zero

93



6 Dynamic Resource Management

An autocorrelation analysis was applied to such a case once with a 14 days time series

and once with a time series of 6 weeks. The time series and the respective correlograms are

presented in Figure 6.4 b) and c) respectively. Again, peaks (or local maxima) with a fixed

distance (one day in this case) could be observed. But the height is not continuously decreasing

with increasing lag in contrast to a). A lag of 1 still led to the strongest autocovariance, when

the 14 days time series was used. But the time series obviously autocorrelates stronger with a

lag of 7 days than with a lag of 5. This behavior is caused by the weekly period that overlays

the daily one. The peak at 7 days even exceeds the one at 1 day in case of the 6 weeks time

series.

As a result, not the lag of the first but of the highest local maximum (despite the one with

lag 0) should be used as predominant period. This approach deals very well with overlaid

periods, when the trainings phase is sufficiently long.

Extracting the Forecasting Model

Once a suitable period is found, the time series A∗i (t) is cut into subsequent parts each with

the length ∆tÂ∗i
of this period. Each part represents one instance of this period (e.g. one day).

A representative Â∗i (t) must then be extracted in a final step that appropriately describes all

of them and the ones expected in the future as well.

Different known approaches simply derive the model as an average of all instances [44, 17].

This implicates that variations around this mean are random noise that must be overestimated.

The problem of this approach is that naturally time intervals of this noise are strongly corre-

lated. A bank holiday in a normal working week for instance would lead to strong forecasting

errors. Whole intervals of the day would differ from the model, which could lead to bursts of

performance losses. Such correlations likely lead to SLO violations in many cases regarding

SLO specifications that define a minimal required percentage of satisfied performance goals in

a time interval.

Hence, the model must pessimistically describe the maximum of all instances taking care

of even the worst instance ever observed. An upper envelope of all instances is derived as a

model for this the following way:

∀t ∈ [0,∆tÂ∗i
[: Â∗i (t) = max

l=[0,...,
⌊
∆tp2/∆tÂ∗i

⌋
−1]

(A∗i (l ·∆tÂ∗i + t+ ∆tp2)) (6.2)

This approach was applied to an exemplary time series, which is presented at the lower side in

Figure 6.3. One can see that the model captures the worst case of all instances at any relative

time t.

The time series that represents the model can contain many samples depending on the period

and on the sampling rate of the resource demand. Slices of samples of A∗i (t) have nearly or

94



6.3 Modeling the Resource Demand

even exactly the same value. Discretization of the values of the time series in conjunction

with run length decoding can help to strongly reduce the memory complexity of the model.

The computational effort required to use the model to forecast the demand behavior can be

reduced this way as well.

Extrapolating into the Future

To extrapolate resource capacity required at a certain time t ∈ [tp3 , tp3+∆tp3 ] into the future,

the relative time in the period that belongs to the absolute time t must be found. Therefore,

a reference point is required that defines the start time of one of the instances of the period.

According to the characterization process of the model Â∗i (t), the first observed instance of

the period starts at the beginning of phase two. Hence, time tp2 can be used as a reference. A

fixed number of complete instances of the period fits in the time interval between any time t

and the reference point tp2 . The remaining part (an incomplete instance of the period) defines

the relative time in the period that belongs to the absolute time t.

Once this relative time is found, resource capacity required by a VM with respect to the

seasonal trend and the noise can be derived from Â∗i (t). The result can be finally scaled by the

influence of the long term trend to get the resource capacity required for the VM at t. This

method can be expressed more formally by following equation:

Ai(t) = A∗i ((t− tp2) mod ∆tÂ∗i
) · LTi(t). (6.3)

6.3.4 Discussion

Different assumptions and requirements on the demand behavior are decisive for the quality

of the forecasts. The three main important ones are discussed in the following.

Dependence between Observed and Future Resource Demand

The most important assumption concerns the dependence between observed and future demand

behavior very similar to the static case. In contrast to the static case, not only the maximal

demand but the demand behavior of whole intervals observed is assumed not to be exceeded

in the future.

This assumption can be violated in different cases. An adaption method to take care of

those cases was developed that will be presented in Section 6.5. Once changes are detected,

the model is adapted at runtime to consider the changed demand behavior in the following

instances of the period. The main reasons for changed demand behavior and the consequences

for the SLOs of the VMs will be discussed in this section as well. It will be further shown in

95



6 Dynamic Resource Management

the evaluation chapter how often such forecasting errors occur and how often they actually

lead to SLO violations.

Finding Exact Periods

The modeling approach presented in this section can lead to problems, when predominant

periods are determined that slightly miss the real existing one. Continuously repeating fore-

casting errors will occur because the forecasts of the model are slightly shifted against the real

behavior. This lag gets greater with each following instance of the period, which results in a

continuously increasing amount of forecasting errors. Hence, it is very import to determine

the exact period.

Mainly very strong noise can lead to wrong periods. The local maximum is not clearly

defined by one peak in the correlogram. Different lags in close proximity to the exact period

lead to similar autocovariance values. Noise can cause that the maximum of them belongs to

a lag that slightly misses the real period.

The modeling concept developed in this thesis needs to find periods in the time series A∗i (t)

that describe the resource capacity required for a VM. Different of such time series have been

derived from a wide variety of services. The resulting time series A∗i (t) did not contain much

noise any more mainly due to the overestimated random noise (cf. Section 5.4.2) of the real

demand behavior. Hence, real periods (days or weeks in most cases) could be determined

already very exactly. Different additional methods (presented for instance in [44]) can be

applied to better find the exact period. This further increases the robustness of the approach.

Lowest Common Multiple of Different Periods

An example of resource demand that consists of different overlaid periods was introduced, while

the modeling approach was presented. It was shown that the approach could find appropriate

periods even for those cases. A sequence of daily periods was overlaid by a weekly period in

the example. This exemplary case worked quite well because a period of one week is an exact

multiple of a period of one day. Selecting one week as a period will capture all daily periods

as well even if some days show differing behavior.

But this will not necessarily work that easy for periods that are not multiples of each other.

None of both periods would be a good choice for a time series with a daily period overlaid by

a period of 25 hours. All resulting instances would strongly differ from each other because the

individual periodic components of the time series are shifted against each other with increasing

time. These shifts will go on until both periods start again at the same time. As a result,

the most appropriate period for the model would be the lowest common multiple of all of the

overlaid periods.

96



6.4 Dynamic Scheduling

The resulting optimal period for the model can be a very long one depending on the indi-

vidual periods involved. Several instances of the period must be observed to automatically

find it the way described in this section. Hence, a very long trainings phase is required in bad

cases to find the optimal period for the model.

Trainings phases that are to short will lead to correlograms without any significant local

maxima. The extracted instances can strongly differ, when nevertheless one of them is selected.

The derived model will overestimate the real behavior in the future very often, since it is an

upper envelope of all instances. But strong underestimates are possible as well depending on

the number of instances the model is derived from.

As a result, a model should not be derived from the observed demand behavior, if the

respective correlogram does not indicate a significant predominant period. Only a static model

should be applied for the VM in those cases.

6.4 Dynamic Scheduling

The purpose of the dynamic scheduling approach is now to redistribute VMs at runtime and to

power up and down servers based on the forecasted resource demand. The goal is to minimize

the number of active servers at any time.

This section starts with an analysis of known approaches. Scheduling algorithms for dynamic

resource management but also for related application areas will be presented and discussed.

It will be pointed out that all share the same problem. They do not know how long resolving

an upcoming resource shortage will take. Hence, they can not guarantee resolving it right in

time. Some of them can not even guarantee resolving the problem at all because they require

operations that can not be performed in some cases without temporary resource shortages.

A new scheduling algorithm for dynamic resource management will be presented in the

following sections. Several restrictions have been worked out for this algorithm in the problem

statement chapter. It will be worked out one by one how they are addressed. The delays of

the operations will be taken into account in a next step. Finally, the results are put together

to get to the complete scheduling algorithm. A discussion of assumptions and some properties

of the new approach (such as stability) closes this section.

6.4.1 Known Approaches

A first class of dynamic resource management approaches [17, 90, 102] follows a simple idea.

They determine an appropriate distribution of VMs to servers based on the forecasted resource

demand. Classical vector bin packing algorithms are used. A new distribution is determined

the same way when the resource demand is expected to change.

97



6 Dynamic Resource Management

These approaches share mainly two different problems. First, it remains unclear how a

sequence of operations is found that redistributes a current distribution to the new one without

temporary resource shortages. Second, it is unclear whether or not a sequence exists at all

that redistributes VMs right in time to prevent upcoming resource shortages.

An extended approach [53] addresses the first of these issues. The authors try to find a

sequence with a minimal number of operations that redistributes the VMs without resource

shortages. But this approach requires additional servers in some cases to temporary host VMs

(e.g. for swapping operations). Furthermore, the time constraint has not been taken into

account yet.

Another class of approaches [12, 66, 129, 118, 15] follows a different idea. They do not target

to redistribute a current distribution to a predefined new one. Instead, it is tried to find a

sequence of feasible operations that resolves upcoming resource shortages or consolidate VMs

and shutdown servers respectively. Abstractly spoken: it is tried to sequentially improve the

situation as good as possible by applying feasible operations.

A problem of these approaches is that in some situations upcoming resource shortages cannot

be resolved at all without an additional server. Resource constraints prevent operations (such

as swapping) that are essential to resolve the problem. Such a case is exemplarily presented

in Figure 6.5.

1

S1 S2

VM1

VM2
VM3

VM4

VM5

S1 S2

VM1 VM2

VM3

VM4

VM5

S1 S2

VM1
VM2

VM3

VM4

VM5

S1 S2

VM1

VM2

VM3

VM4

VM5

S
ta

n
d

b
y 2 3

Figure 6.5: Exemplary redistributions that lead to a deadlock situation. This deadlock cannot
be resolved without an additional server.

Five VMs that currently require their maximal resources are distributed to two servers. The

resource demand of all decreases so that they can be consolidated to only one server. The

second one is switched off. Now, the resource demand of VM1 increases back to its maximum.

Server S2 is reactivated and any heuristic decides to remove VM2, VM3, and VM4 from server

S1 to solve the problem. The resource demand of all other VMs increases now back to their

respective maxima as well. A resource shortage develops at S2 that can not be resolved any

more. VM2 and VM5 must be swapped, which is not possible because of missing resources to

temporally move away one of both first.

The underlying problem that these algorithms try to solve can be generalized to the known

load rebalancing problem [2]. This NP hart problem belongs to the class of online optimization

98



6.4 Dynamic Scheduling

problems [19]. Different algorithms have been developed that aim to heuristically solve it. A

good overview is given in [2, 42].

Different problems in the area of dynamic task scheduling and rescheduling can be mapped

onto the load rebalancing problem. An overview of some of them is presented in [86]. Several

load management approaches that dynamically dispatch workload on different computation

nodes[101, 27, 67, 81] heuristically solve the problem as well.

But all of them are not directly applicable to the dynamic resource management concept

presented in this thesis. No resource constraints (like the ones worked out in Section 3.4.3) are

regarded in most cases. It is assumed that elements can be easily swapped. Other approaches

that consider such constraints can cause deadlock scenarios such as presented in Figure 6.5.

These deadlocks cannot be resolved without an additional server that temporarily hosts VMs.

The approach that will be presented in this chapter combines a solver for the load rebalancing

problem with a deadlock prevention strategy mainly inspired by ideas taken from [113, 14]. In

addition, this solver will be extended by mechanisms that also consider timing constraints (cf.

Section 3.4.3), which does none of the known approaches.

6.4.2 Basic Idea

The major challenge for the dynamic scheduling algorithm is to ensure that any upcoming

resource shortages can be resolved in time. There must exist a sequence of feasible operations

(moving VMs and powering up servers) at any time that resolves the problem. Additionally,

this sequence must resolve the problem right in time.

The basic idea is to distinguish between so called safe and unsafe distributions of VMs to

servers. By definition, a safe distribution provides enough resource capacity to each VM at

any time to support its demand without any redistribution. The static resource management

approaches presented in Chapter 4 and 5 determine such a safe distribution. A distribution

that can lead to resource shortages is called unsafe in contrast.

It is further distinguished between safe and unsafe VMs. VMs that are placed on servers

according to the initial safe distribution are safe or in a safe position. VMs become unsafe or

get into an unsafe position, when they are moved away from their initial server. They remain

unsafe until they are moved back.

Finally, the initial server on which a VM is placed according to the safe distribution will

be called home server of the VM. Moving home a VM means moving back the VM from any

unsafe position to its respective home server.

The scheduling algorithm starts with a safe distribution. VMs are only moved to an unsafe

position, if two conditions are met. First, there must exist a way back to the safe distribution,

on which all operations are feasible no matter how the demand behavior of the VMs develops.

Second, there exist enough time to in worst case completely restore the safe distribution before

99



6 Dynamic Resource Management

any possible upcoming resource shortage actually occurs.

A scheduling algorithm that is based on this idea was developed. It will be presented in the

following sections step by step.

Only the resource constraints worked out in the problem statement chapter (Section 3.4.3)

are considered first. Further conditions concerning the time constraint will be extracted in a

next step. Finally, the whole scheduling algorithm will be worked out.

6.4.3 Ensuring Resource Constraints

Several resource constraints have been worked out in the problem statement chapter in Section

3.4.2 and in Section 3.4.3. They will be shortly summarized in the following for clarity reasons.

Constraint One

The first constraint (Equation (3.3) in Section 3.4.2) ensures that enough resource capacity is

provided to the demand of the VMs to not violate any of their SLOs at any time. Therefore, the

jointly required resources of all VMs placed on the same server must not exceed its capacity.

The jointly required resources are overestimated by the sum of the resources individually

required by the VMs comparable to the static approach, which leads to following equation:

∀t ∈ [tp3 , tp3+∆tp3 ], k :
∑

i:B(i,t)=k

~ai(t) ≤ ~ck (6.4)

that describes constraint one. The sum of the resources ~ai(t) individually required by all VMs

placed on the same server must not exceed its capacity ~ck at any time5.

Constraint Two and Three

The second and third constraint ensure that the mapping restrictions concerning the distribu-

tion of VMs to servers are met. They are formally expressed by the Equations (3.7) and (3.8)

in Section 3.4.3.

Constraint Four

A further constraint concerns the resources required by a VM i while it is migrated from a

server k1 to a server k2. Both servers must provide the resource capacity (memory and CPU

time) required by the VM during the whole migration phase (cf. Equation (3.9) in Section

3.4.3). Overestimating again the jointly required resource
#»
jak(t) by the sum of the individually

5The operation ≤ in this equation has been defined by Equation (3.4) in Section 3.4.2.

100



6.4 Dynamic Scheduling

required resources ~ai(t) leads to following equation:

∀t ∈ [t0, t0 + ∆tmigi [: ~ai(t) +
∑

j:B(j,t)=k

~aj(t) ≤ #»c k2 (6.5)

that describes constraint four. The migration starts at t0 and has a duration of ∆tmigi .

Constraint Five

A last resource constraint worked out in Section 3.4.3 states that the number of servers required

by the initial safe distribution must not be exceeded by the dynamic scheduling algorithm at

any time.

A formal way will be presented in the following to decide, if possible operations prevent a

way back to the safe distribution or not with respect to all of these constraints.

For this, a formal description of the “state of safety” of a distribution is introduced. This

state is represented by a directed multigraph G = (N,E). The nodes N are the servers. An

edge E represent a way for an unsafe VM to become a safe one. Such a graph is presented for

an exemplary unsafe distribution in Figure 6.6 b). The edges in the graph point to servers to

which the respective VMs must be moved to become safe. Moving back all VMs to their safe

postions leads to a graph without any edges (cf. Figure 6.6 a)). Hence, a graph without any

edges describes a safe distribution while graphs that contain any edges represent unsafe ones.

b)
S3a)

VM1

VM2

VM3

VM4

VM5

VM9

S1 S2 S4

VM7

S1

S2

S4

S3

S3

VM1

VM2

VM3VM4

VM5VM9

S1 S2 S4

VM7

S2

S4S1

S3

Figure 6.6: a) An exemplary safe distribution of VMs to servers and the respective graph.
b) An exemplary unsafe distribution that belongs to the safe one of a) and the
respective graph. Edges point the way for unsafe VMs to become safe.

In principal, any redistribution can be performed as long as the first, second, and third

constraint are met. VMs can be consolidated to less servers in times of reduced resource

demand as long as Equation (6.4) holds and the mapping restrictions are not violated. The

way back for unsafe VMs is annotated in the graph by inserting respective edges. Unused

servers can be switched off. All inactive servers must be reactivated and all unsafe VMs must

be simply moved back to their initial server according to the edges in the graph to restore the

101



6 Dynamic Resource Management

safe distribution in worst case.

But the last two resource constraints prevent moving back the VMs in some cases because

of missing resource capacity on the destination server. Other VMs must be moved away from

this server first to free some resources for the VM. Moving away the other VMs requires free

resource capacity at their initial server as well. This can lead to situations in which cyclic

dependencies prevent that any of the VMs can be moved at all without an additional server.

An upcoming resource shortage can not be resolved.

This situation is strongly related to classical deadlock problems known from operating system

and data base theory [113, 3]. There exist mainly four different strategies to deal with deadlocks

[113]:

• Ignoring the problem (ostrich strategy),

• detecting and resolving the deadlocks,

• dynamically preventing deadlocks at runtime, or

• conceptually preventing deadlocks.

The first two options are not applicable in the given context. Applying the first one can not

guarantee to meet any SLOs. Resolving deadlocks is not possible without an additional server,

which is forbidden by one of the resource constraints. Hence, deadlocks must be prevented.

The scheduling algorithm developed within this thesis prevents deadlocks by avoiding cyclic

dependencies inspired by the idea presented in [14]. Such cyclic dependencies can be directly

detected in the graph introduced before. Each distribution of VMs to servers whose graph

contains any cycles can in principal cause such deadlocks. All servers with nodes in the graph

that belong to a cycle can contain unsafe VMs that could not be moved back home because of

other unsafe VMs allocating the resource capacity they require. Hence, no migration operation

must be performed that leads to a cycle in the graph to prevent such deadlock scenarios.

It will be shown in the following that indeed preventing cycles in the graph ensures a way

back to the safe distribution with respect to all resource constraints no matter how the resource

demand of the VMs develops. An algorithm will be presented that can resolve any upcoming

resource shortage assuming that the underlying graph of a current distribution is acyclic.

First, nodes without any outgoing edges are regarded (e.g. S4 in Figure 6.6 b) ). These

nodes represent servers that only contain safe or even no VMs. Hence, unsafe VMs that are

safe on these servers can be moved back in any case with respect to the resource constraints.

The initial safe distribution ensures that enough resources capacity is left for them to support

their maximal demand at any time. None of the mapping restrictions will be violated as well

in this case. The respective incoming edges are removed in the graph after the respective VMs

have been moved back.

102



6.4 Dynamic Scheduling

Now, an arbitrary unsafe distribution with an acyclic graph is regarded. All outgoing paths

from any node in the graph will end in nodes that have no more outgoing edges. The outgoing

path from S2 ends in S4 in the graph in Figure 6.6 b) for instance. All incoming edges of nodes

at the end of the paths can be removed by migrating back the respective VMs as described

before. This will lead to other nodes along the path that do not have any outgoing edges any

more so that their incoming ones can be removed as well. Finally, all edges to all nodes can

be removed by recursively removing edges from all paths starting at their respective ends. In

the example, first the edge from S1 to S4 is removed by migrating VM 9 back home before the

edges between S3 and S1 can be removed by moving VM 2 and 3. Finally, the edge between

S2 and S3 can be removed by moving VM 7, which will end up in the safe initial distribution.

Please note that VMs must be recursively migrated back only in worst case. In most case,

only a few VMs must be moved to solve an upcoming resource shortage. But before VMs are

moved, it has to be ensured that the graph remains acyclic. This ensures a way back to the

complete safe distribution at any time.

It will be presented in the following how a set of feasible operation can be extracted from a

current distribution that prevent cycles in the graph.

6.4.4 Extracting a Set of Feasible Operations

In principal, two different ways exist for finding operations that will not lead to any cycles

in the graph. First, one can define constraints on migration operations that must be met

to prevent cycles after they have been performed. The scheduling algorithm only selects

migration operations that meet these constraints. A second approach tests how a possible

migration operation changes the graph. The operation can be applied on the real VMs, if the

graph is still acyclic after the operation has been performed. Otherwise, the operation is not

feasible.

Both ways form a base for the scheduling algorithm developed within this thesis to find

feasible migration operations. Hence, they are worked out some more in the following.

Constraints for Feasible Operations

Three sorts of operations can be safely performed without getting cycles in the underlying

graph. They are illustrated in Figure 6.7.

An unsafe VM is represented by an edge that points to the server on which it is safe as

introduced before. A move of such a VM from one unsafe to another unsafe position only

changes the source node of the respective edge. Hence, such an operation can only lead to

cycles in the graph, if the node that represents the VM’s initial server has an outgoing path.

An inactive server cannot host any VM. Hence, the respective node has no outgoing edges. As

a consequence, VMs whose initial server is currently switched off can be moved anywhere.

103



6 Dynamic Resource Management

S4a)
S4S3

VM9

S1 S2 b)
S4S3

VM9

S1 S2 c)
S3

VM9

S1 S2

VM9 VM9

S1

S2

VM9

S1

S2

S4

S3

VM8

VM8

S3
S2

S4

S3

S4 S1

Figure 6.7: Three sorts of migration operations that can be performed without leading to any
cycles in the graph. a) VMs whose initial server is currently switched off can be
moved to any server. b) Moving VMs back to their initial servers will also not lead
to any cycles. c.) And finally, a VM can be moved to another server, if already
other VMs are placed on it that are safe on the same initial server like the one to
be moved.

Of course, VMs can be safely moved back to their initial servers. Moving back a VM means

bringing the VM in its safe position. The respective edge is removed in the graph which will

not lead to any cycles.

A third feasible operation is moving a VM to a server on which already another VM is

placed that belongs to the same initial server. Already an edge exists between the planned

destination server and the initial server of the VM in this case. This existing edge points into

the same direction like the one to be added. Hence, the new edge will not cause any additional

cycles.

Several migration operations will not satisfy any of these constraints in most cases. Nonethe-

less, not all of them will lead to cycles in the graph. An additional way will be presented in

the following to find out whether a certain operation will cause a cycle or not.

Examining Additional Operations

The scheduling algorithm is limited to a subset of operations until know. A second possible

way is to simply apply a certain operation to the graph and check, if it remains acyclic. Tests

for cycles in graphs are known from classical graph theory. Two of them have been presented

in Section 6.1.2.

A first approach topologically sorts the nodes in the graph to detect cycles. It has a lin-

ear runtime complexity. This kind of approaches can cause much computational effort. All

VMs must be removed from a server to switch it off. Different other servers can be suitable

destinations for the VMs. Hence, many possible operations must be tested depending on the

heuristics the scheduling algorithm uses to decide which server to choose.

A more efficient way for finding operations that will leave a graph acyclic has been suggest

in [14]. The main idea is to represent the graph by a matrix, from which one can directly

104



6.4 Dynamic Scheduling

derive whether or not a certain operation will lead to cycles in the graph. Feasible operations

can be found in constant runtime. Some more computational effort is only required when the

operation is actually performed to adapt the matrix. Some more details are provided to this

approach in the background section (Section 6.1.2).

6.4.5 Ensuring Time Constraints

VMs can now be redistributed without loosing a possible way back to the safe distribution

using operations out of a set of extracted feasible operations as described in previous section.

A sequence of feasible operations exists for any unsafe distribution of VMs to servers that

can restore the safe one. It must be now ensured in a next step that the unsafe distribution

remains valid6 at least for the time the sequence of operations needs to restore the safe one.

For this, the algorithm must first determine how long the redistribution to a targeted unsafe

distribution and back to the safe one will take. It can then evaluate whether or not this unsafe

distribution will remain valid long enough using the resource demand models. Finally, the

algorithm can redistribute the VMs and switch off servers, if the new distribution will be valid

for the required time period.

This time period is obviously not fixed but depends on the targeted unsafe distribution. It

will be shown in the following how this time period (formally called planning period ∆tftr

from now on) is calculated depending on a certain distribution and on sequences of operations

that are planned to be performed. In addition, constraints are derived that must be considered

by the scheduling algorithm to ensure not to violate the time constraint worked out in Section

3.10 at any time.

Planning Period ∆tftr in Steady State

First, ∆tftr is calculated assuming that currently an arbitrary (safe or unsafe) distribution of

VMs to servers is present. ∆tftr describes in this case, how long (if necessary) restoring the

safe distribution will take based on the current one.

A way has been presented at the end of Section 6.4.3 to get back from any possible unsafe

distribution to the safe one. Each unsafe VM is directly moved back to its safe position

according to the edges in the graph. Hence, each unsafe VM needs to be moved only once.

The overall migration time of all is thus simply the sum of their individual migration times

∆tmigi , if all VMs are migrated strictly one by one.

In principal, different VMs could be migrated in parallel as long as the respective edges

in the graph belong to paths that have disjunct node sets. No dependencies concerning the

allocated or required resource capacity exist between them in this case. But a fixed maximal

6w.r.t. the first resource constraint

105



6 Dynamic Resource Management

migration time ∆tmigi can only be guaranteed, if VM i is the only one that is migrated in

the whole data center at a time as discussed in the problem statement chapter. Migrating

different VMs in parallel can increase the migration time of them depending on the source and

destination server of the VMs and on the network. Hence, the scheduling algorithm will only

subsequently schedule the migration operations. Some ideas will be presented later on in the

discussion section to relax this pessimistic approach a bit.

The time that servers need to wake up from standby or to completely reboot is independent

from the number of servers that start up at the same time. Hence, in principal different

server could be reactivated at the same time. Nevertheless, each reactivation time must be

individually considered by ∆tftr. A case can be regarded in which the scheduling algorithm

needs to reactivate only one of two inactive servers to resolve an upcoming resource shortage.

It remains unclear so far, when the next one needs to be reactivated as well. There must still

exist enough time for powering up the second one as well to resolve an additional upcoming

resource problem. Some ideas will be presented in the discussion section that can be followed

by ongoing research to more parallelize server startups.

As a result, the planning period ∆tftr for an arbitrary distribution of VMs to servers can

be calculated as follows:

∆tftr =
∑

i:VM i is unsafe

∆tmigi +
∑

k:server k is off

∆tupk (6.6)

The scheduling algorithm must ensure that after a redistribution to a certain unsafe distri-

bution is finished, this new one remains valid for the time period ∆tftr calculated using this

equation to not violate the time constraint.

Onces the unsafe distribution is reached, the algorithm must further take care of possible

upcoming resources shortages in the future. It must evaluate at any time t, if the current

distribution will be still valid at time t+∆tftr+1 using the forecasting models. Redistributions

must be planned and initiated, if resource shortages are detected.

The whole safe distribution must be restored in worst case. All inactive servers are switched

on and VMs are migrated one by one according to the algorithm presented in Section 6.4.3. The

duration of the whole procedure will not exceed ∆tftr so that any possible resource shortage

can be resolved right in time.

Only a steady state has been regarded until now. It will be shown in the following how the

planning period ∆tftr is calculated that must be considered before operation are performed.

This planning period is a simple extension of the one that belongs to a current steady state in

many cases. The notation ∆tftrB(i,t) will be used in the following to describe ∆tftr of a certain

distribution B(i, t) in steady state at a time t for clarity reasons.

106



6.4 Dynamic Scheduling

Planning Period ∆tftr When Moving VMs from Safe to Unsafe Positions

The planning period ∆tftr is 0 for the initial safe distribution. To shut down any server, VMs

must be removed from it first. Hence, they are migrated into an unsafe position.

Time is needed to migrate VMs one by one from a safe into an unsafe position. Furthermore,

the same time is needed to move them back again when the safe distribution must be restored.

Hence, the planning period is simply two times the sum of the respective migration times.

Nearly the same is true, when already an unsafe distribution is present. Each additional

unsafe VM increases ∆tftr by its migration time. Furthermore, the time for migrating the VM

to its unsafe position must be considered as well. Hence, the planning period which needs to

be considered by the algorithm before any VM i is migrated at time t from a safe to an unsafe

position can be generally calculated as follows:

∆tftr = ∆tftrB(i,t) + 2 ·∆tmigi . (6.7)

The migration operations can be initiated, if the targeted distribution fits for the calculated

planning period. The demand behavior of the VMs in future needs not to be evaluated any

more, while the sequence of planned operations is performed. The planning period already

contains the time for the migrations. A steady state is reached after all migration operations

have been finished. This state must be handled like already described.

Planning Period ∆tftr When Moving VMs from Unsafe to Unsafe Positions

The situation only slightly differs, when VMs are already located in an unsafe position. In this

case, the planning period extends only by once the migration time of all VMs that are planned

to be moved. The time for migrating them back to their safe position is already contained in

the planning period of the steady state.

Hence, the scheduling algorithm must only ensure that the targeted distribution stays valid

for the planning period of the steady state plus the additional time needed to move the VMs.

The steady state is reached again after the migration process has been finished.

Planning Period ∆tftr When Moving VMs to Safe Position

Moving back VMs to their safe position does not extend the planing period any more. The

VM can be safely migrated, if enough resource capacity is left at its initial server for the

whole current planning period ∆tftr. No additional evaluations of future resource demands

are needed. The planning period in steady state is decreased by the duration of the migration

phase of the VM after the move. This VM is now in its safe position and hence must not be

moved again to restore the whole safe distribution.

107



6 Dynamic Resource Management

Planning Period ∆tftr When Powering Server Up or Down

The shutdown time ∆tdownk and the reactivation time ∆tupk must be considered, when a server

shutdown is planned. Once a shutdown process has been initiated, it can not be canceled any

more as discussed in Section 3.3.3. The scheduling algorithm must wait until the shutdown

process has been completely finished before the server can be reactivated again. Additionally,

the algorithm must take care of the break even time ∆tbek as well. The server needs to remain

switched off for a while to compensate additional energy overhead caused by the shutdown

and reactivation process.

Hence, the planning period must be calculated as follows before a single server k can be

switched off at a certain time t:

∆tftr = ∆tftrB(i,t) + ∆tdownk + ∆tbek + ∆tupk . (6.8)

All three delays of the server must be added to the planning period ∆tftr that belongs to the

steady state of the current distribution.

The server can be safely switched off, if the current distribution of VMs to servers remains

valid for this increased planning period. The steady state is reached after ∆tdownk and ∆tbek
have been expired. The planning period takes now care of the additional inactive server as

well.

An inactive server is switched back on nearly the same way like the VMs are moved to its

safe position. The startup process can be initiated at any time without extending the planning

period. The steady state is entered after the startup process is finished.

6.4.6 Scheduling Algorithm - Overview

The results of the previous sections can be put together now to get to a whole scheduling

algorithm. An overview of this algorithm is presented in Figure 6.8.

The system starts in a steady state at a certain time t. All VMs are placed on servers.

This placement is valid for the respective planning period ∆tftrB(i,t). The algorithm must first

evaluate, if the current distribution will be still valid at time t + ∆tftrB(i,t) + 1 as worked out

in Section 6.4.5. It must find and perform a sequence Sopres of operations that will resolve the

upcoming problem if resource shortages are detected. The system goes back to a steady state

after the required operations have been performed.

The algorithm can try to consolidate VMs and switch off unused servers, if no resource

problems need to be resolved. A respective sequence Sopcon of operations is extracted and

performed.

The system remains in steady state without any changes, if neither resource problems must

be resolved nor any consolidation operation can be performed. The algorithm needs to restart

108



6.4 Dynamic Scheduling

resolve resource 

shortage atsteady 

state at 

time t

perform 

operations

further 

consolidate VMs

max. once for

each timestep

max. once for

each timestep

{}=
op

resS

{}=
op

conS

{}≠
op

resS

{}≠
op

conS

1),( +∆+
ftr

tiBtt

Figure 6.8: Overview of the dynamic scheduling algorithm. The algorithm starts in a steady
state at a certain time t. It first looks for upcoming resource shortages at
t + ∆tftrB(i,t) + 1. If resource problems will occur, it performs a sequence Sopres of

operations that will resolve these problems. Otherwise it tries to consolidate VMs
and to switch off unused servers. The system remains in steady state for the rest
of the discrete time step, if no changes need to be performed at all. The evaluation
starts again in the next time step (t+ 1).

the evaluation again not before the next time step begins, since the demand behavior of the

VMs is described by the models in discrete time steps.

The ways for finding the sequences Sopcon and Sopres respectively will be detailed some more in

the following two sections.

6.4.7 Scheduling Algorithm - Consolidating VMs

VMs are only moved, if at least one server can be emptied and switched off to prevent unnec-

essary migrations. Hence, it must be checked for each server, if all VMs currently placed on it

can be moved away to other servers.

The algorithm must ensure that a targeted distribution remains valid long enough before

any VM is moved. It has been further discussed that the respective planning period ∆tftr

strongly depends on the targeted distribution. But one already needs to known the planning

period to find a new distribution in which the server is switched off. This period decides about

whether a VM will fit on a certain server or not.

To solve this cyclic dependency, the planning period is overestimated as follows:

• All VMs that are safe on the server to be switched off are moved to an unsafe position.

Hence, the current planning period must be extended by twice the sum of the VMs’

migration times (cf. Section 6.4.5).

• It is pessimistically assumed for all unsafe VMs placed on the server that they all will be

moved to a server on which they are unsafe as well. Hence, the planning period further

extends by the sum of the migration times of these VMs (cf. Section 6.4.5).

109



6 Dynamic Resource Management

• Finally, the three delays of the server to be switched off must be added to ∆tftr as well

(cf. Section 6.4.5).

Hence, to start a sequence Sopcon of operations at a certain time t that will lead to an inactive

server k, the targeted distribution of VMs to servers must at least fit for a planning period

∆tftr that can be calculated as follows:

∆tftr = ∆tftrB(i,t) + 2 ·
∑

∆tmigi

i:B(i)=k &&
i:B(i,t)=k

+
∑

∆tmigi

i:B(i)6=k &&
i:B(i,t)=k

+ ∆tdownk + ∆tbek + ∆tupk . (6.9)

Function B(i) represents the initial safe distribution of VMs to servers. VMs i to which

function B(i) assigns a certain server k are safe on k. Others are not.

One can now find appropriate destination servers for all VMs currently placed on server k

based on this planning period and on the models. Hereby, the resource constraint expressed

by Equation (6.4) in Section 6.4.3 must not be violated in the time interval [t, t + ∆tftr[.

Additionally, the migration operation must not lead to any cycles in the underlying graph of

the distribution (cf. Section 6.4.4). And finally, the mapping constraints expressed by the

Equations (3.7) and (3.8) must be considered as well. The sequence of migration operations

can be performed and the server can be switched off, if all VMs can be removed from the

server without violating these constraints.

In many cases, different target positions are possible for one VM. Preferably, VMs should

be moved back to their initial servers. Moving VMs home will remove edges in the graph,

which increases the flexibility for following operations. Furthermore, ∆tftr decreases with any

additional safe VM so that shorter phases of reduced overall resource demand can be used to

save energy. Conventional bin packing heuristics can select appropriate positions for a VM that

cannot be moved home. The heuristics should aim to evenly distribute the resource demand

to all active servers to delay possible upcoming resource shortage as long as possible7.

6.4.8 Scheduling Algorithm - Resolving Resource Shortages

The scheduling algorithm (in steady state) evaluates at any time t, whether or not the distri-

bution of VMs to servers will be still valid at t + ∆tftrB(i,t) + 1. The distribution is invalid, if

the first resource constraint expressed by Equation (6.4) in Section 6.4.3 is violated for one or

more servers. VMs must be removed from the affected servers to resolve this problem.

The way to find sequences Sopres that resolve upcoming resource shortages is a bit more

complicated compared to the consolidation part. Other servers must provide resource capacity

for VMs that must be removed from a server. Sometimes, other VMs must be moved away

7Selecting the host with most remaining resource capacity for each VM will evenly distribute the VMs to
servers. This heuristic is known as worst-fit strategy and has been extensively discussed in [56].

110



6.4 Dynamic Scheduling

first for this. Whole sequences of VMs must be moved in some cases to solve the problem.

Inactive servers must be reactivated, if active servers do not provide enough resource capacity.

An algorithm for resolving upcoming resource shortages was developed. An overview is

presented in Figure 6.9.

NN
res

⊆

{}=
op

resS

Step One

• schedule moves of 

unsafe VMs from 

all servers nkєN
res

to their safe 

position if possible

op

resS will solve 

all resource 

shortages

Step Two

• additionally schedule 

moves of unsafe VMs 

from all servers 

nkєN
res to unsafe 

positions if possible

will solve 

all resource 

shortages

op

resS

other-

wise

Step Three

• discard Step Two

• sort servers in Nres

according to the 

position in the graph

• select nkєN
res with 

deepest position

other-

wise

Step Four

• activate server with most 

incoming paths from nk

Step Five

• Force the move of one unsafe 

VM to its safe position

• Free space for the VM at its 

home server first

no

yes

has

nk unsafe

VMs with active

home ser-

vers

perform operation

sequence
op

resS

Figure 6.9: Overview of the algorithms that resolves upcoming resource shortages on servers.
A subset Nres ⊆ N of servers that will run into resource problems is given. A
sequence Sopres is extracted in five steps that resolves the problems.

This algorithm starts with a subset Nres ⊆ N of servers. Servers in this subset will get

resource problems at t+ ∆tftrB(i,t) + 1. The algorithm tries to find a sequence Sopres of operations

in five different steps that resolves the problems of all of theses servers. Once such a sequence

is found, it can be performed.

These five steps will be described more detailed in the following.

Step One - Move unsafe VMs home

It is tried first to resolve resources shortages by moving unsafe VMs from servers nk ∈ Nres

directly back into their safe position. The respective servers must run and must have enough

resource capacity left. It must be further ensured that the new position of each VM remains

valid for the whole planning period ∆tftrB(i,t) as pointed out in Section 6.4.5. And finally, none

of the mapping restrictions must be violated by the planned moves.

These operations should be preferred to resolve resource problems. They cause no additional

costs. Neither servers needs to be reactivated nor additional other VMs must be moved before.

111



6 Dynamic Resource Management

Additionally, moving VMs back home increases the flexibility for further operations.

Step Two - Additionally Move Unsafe VMs to Unsafe Positions

Additional VMs must be removed from servers nk ∈ Nres, if a sequence Sopres determined in

Step One does not completely resolve the resource problems of all servers. For this, it can be

tried to move unsafe VMs to other unsafe positions. These operations are useful, when servers

on which these VMs are safe, are currently switched off and other active servers have enough

resource capacity left to host them.

The planning period ∆tftr extends, when moves of VMs from an unsafe to another unsafe

position are planned as pointed out in Section 6.4.5. But it is unclear so far, how much the

planning period must be extended to resolve all upcoming resource shortages by moving VMs

this way.

In principal, the planning period can be extended continuously with each additionally sched-

uled VM move. But this way, previously scheduled VM moves can get invalid with an increased

∆tftr. These invalid moves must be removed from the schedule and the resources shortage of

the respective server must be resolved again using other VM moves.

It can cause much computational effort to find suitable operations this way because of the

invalid operations. It might be better to significantly extended ∆tftr directly at the beginning

of Step Two to reduces the probability of getting invalid moves. No operations will get invalid,

if the actual resulting period ∆tftr will not exceed the one overestimated at the beginning.

All unsafe VMs from all servers with resource problems are moved to other unsafe positions

in worst case. Hence, a maximal planning period that will be never exceeded in any case can

be overestimated as follows:

∆tftr = ∆tftrB(i,t) +
∑

nk∈Nres

∑
i:B(i)6=k &&
i:B(i,t)=k

∆tmigi . (6.10)

This pessimistic planning period will be quite too long in most cases because only a subset

of VMs must be actually moved. But nevertheless, this pessimistic planning period should be

selected. It additionally ensures that no resource shortages will come up for a longer time on

a possible destination server of the VMs.

Unsafe VMs can be now moved from servers nk ∈ Nres to other unsafe positions, if no

resource constraints are violated during the new planning period ∆tftr.

In a final step, it must be ensured that the untouched servers in the data center will not run

into any resource problems for the extended planning period as well. The extension of ∆tftr

can be determined exactly in this case (cf. Section 6.4.5), since the sequence of additional VM

moves is now known.

112



6.4 Dynamic Scheduling

But none of the operations determined in this step must be scheduled, if not all performance

problems can be resolved this way. The planning period of the steady state only ensures that

the safe distribution can be completely restored, when all unsafe VMs are moved directly

into their safe position. Hence, no moves of unsafe VMs to other unsafe positions must be

scheduled, until it is clear how all resource problems can be solved.

Step Three - Select Server for Forced VM Move

VMs must be recursively moved into safe positions, if no sequence Sopres can be found in Step

One and Step Two that completely resolves all upcoming resource shortages at t+∆tftrB(i,t) +1.

Servers must be reactivated in worst case as well.

The idea is now to free only space for one single unsafe VM of one server nk ∈ Nres first,

so that it can be moved back to its safe position. For this, either other VMs must be moved

away first (Step Four) or an inactive server must be reactivated (Step Five). The purpose of

Step Three is to select server nk and to decide whether a new server must be reactivated or

VMs are moved away (recursively, if necessary).

Each time, Step Three is entered, only space to move at least one VM home is freed. This

will not necessarily resolve all resource problems. But especially the reactivation of a server

can increase the flexibility for the scheduling algorithm to resolve other resource problems as

well. Hence, the algorithm starts again with Step One after space has been freed for one VM.

Step One and Step Two might now find a sequence of operations that resolves all resource

problems. If this is still not possible, space for other unsafe VMs is additionally freed the same

way, until all problems are completely resolved.

The selection of server nk ∈ Nres should consider the impact of the following steps. As much

potential as possible should be provided after Step Four or Step Five have been executed to

also resolve resource shortages of other servers out of Nres. This especially concerns a server

reactivation.

For this, a server should be reactivated that has as many incoming path as possible in the

underlying graph that start at servers out of Nres. This way, VMs can be moved either directly

or at least recursively from servers with resource problems to the reactivated one. Following

heuristic can be applied to find a suitable server nk.

All servers in Nres are sorted according to their topological order in the underlying graph

G of the current distribution. The server with the deepest position in the graph8 is selected

as nk. Servers that must be reactivated to remove one VM from nk are located even deeper in

the graph compared to nk itself. The deeper a server is located in the graph, the higher is the

chance that paths from other servers will lead to it. Hence, there is a good chance that other

8The server with the deepest position in the graph has the highest distance to nodes without any incoming
edges.

113



6 Dynamic Resource Management

resource problems can be solved using this reactivated server as well.

Two different ways exist to free space for an unsafe VM once a suitable server nk is found.

Either the home server of the unsafe VM is reactivated or space must be freed on it to host the

VM. It should be preferred to move VMs home, whose home server is already running for two

different reasons. First, recursively moving VMs home (see the description of Step Five) can

resolve resource problems without reactivating any additional server in some cases. Second,

moving home VMs removes edges in the graph, which increases the flexibility for following

operations.

Hence, as long as VMs with running home server are placed on nk, they should be moved

home first (Step Five is entered). Servers must be reactivated (Step Four is entered), if none

of these VMs exists any more on nk.

Step Four - Activate Server

Server nk only contains unsafe VMs with inactive home servers in Step Four due to the heuristic

just presented. One of these home servers must be selected for reactivation. The one with

most incoming edges from nk should be selected to maximize the chance that the resource

problem at nk can be completely resolved. The highest number of VMs can be moved home

this way. The one with the most overall incoming paths should be selected, if different servers

with the same number of incoming edges exist. This increases the chance that problems of

other servers can be resolved too.

Step Five - Forcing the Move of an Unsafe VM Home

The purpose of Step Five is to schedule operations that will force the move of a VM ei from

its current unsafe position at server nksrc to its safe position at server nkdst . Other VMs must

be removed first, if not enough resources are present at nkdst to host ei.

An overview of an algorithm that finds such a sequence of operations is presented in Figure

6.10. This algorithm works nearly the same way like the global one that resolves resource

shortages (cf. Figure 6.9). First, operations are scheduled that move unsafe VMs from nkdst
home to free resources for ei (Step 5.1). The move of ei itself from nksrc to nkdst is scheduled

(Step 5.4) as well, if enough resources can be freed this way. The algorithm ends. Otherwise,

additional operations are required.

No VMs can be moved from nkdst to other unsafe positions in contrast to the global algo-

rithm. Such operations can be only scheduled, if it is clear that the resources shortages of all

servers in Nres are completely resolved after they have been performed as discussed before.

But this guarantee can not be given at this point.

Hence, it is directly tried to force the move of an unsafe VM home similar to Step Three,

Step Four, and Step Five of the global algorithm. The inactive server with most incoming

114



6.4 Dynamic Scheduling

enough capacity 

freed for ei

VM: e
i src

k
nSource Server:

dst
k

nDestination Server:

has

enough

capacity

for ei

dst
k

n

Step 5.4

• schedule move of ei

from       to 
dstk

n
srck

n

Step 5.1

• schedule moves of 

unsafe VMs from

to their safe 

position if possible
dstk

n

has     

VMs with

active home

server

dst
k

n
Step 5.3

• activate server with 

most incoming

paths from
dstk

n

Step 5.2

• Force the move of one un-

safe VM to its safe position

• Free space for the VM at 

its home server first

other-

wise

return

yesyes

no no

Figure 6.10: Overview of an algorithm that schedules the move of a VM ei from a server nksrc
to a server nkdst . Operations are additionally scheduled that move (recursively
if necessary) other VMs away first to free resources at nkdst for ei. Additional
servers are reactivated as well if necessary.

edges from nkdst is reactivated, if no VMs with an running home server are present at nkdst .

Otherwise, the move of one unsafe VM currently placed on nkdst is forced by applying this

algorithm again to the unsafe VM to be moved home.

The algorithm starts again at the beginning after one VM move has been forced or one

server has been reactivated to find out if now ei can be moved. Step 5.2 or Step 5.3 must be

executed again, if this is still not possible. Otherwise, the move of ei is scheduled and the

algorithm ends.

Summary

It will be shortly shown in the following that the algorithm just presented can actually resolve

any possible upcoming resource shortage right in time. It will be shown first that the algorithm

can resolve any upcoming resource shortages at all. In a second step, it will be shown that the

algorithm resolves the problems right in time.

An arbitrary distribution B(i, t) of VMs to servers is assumed to have any kind of resource

problems at t+ ∆tftrB(i,t) + 1. All unsafe VMs must be removed from all servers in worst case to

resolve the resource problem. It is tried first to directly move away unsafe VMs either to safe

or to unsafe positions. The respective operations are performed, if they resolve all problems.

Otherwise, only the moves of VMs to safe positions are scheduled. In addition, moves of

VMs from servers with problems to their safe servers are forced until all problems are solved.

Forcing a VM move means that capacity for the VM is freed first by recursively migrating

115



6 Dynamic Resource Management

back home other VMs along outgoing paths from the respective servers. This is possible in

any case as long as the underlying graph is acyclic as shown in Section 6.4.3. Servers at the

end of these paths are reactivated as well if necessary.

The algorithm schedules the move of VMs only from unsafe to safe positions despite in Step

Two. Hence, each unsafe VM in a current distribution is only moved once. Additionally, all

inactive servers are reactivated as well in worst case. Hence, Step One, Step Three, Step Four,

and Step Five will resolve any upcoming resource shortage with a sequence of operations that

will not take longer than ∆tftrB(i,t).

Step Two schedules only operations (of unsafe VMs to other unsafe positions), if it is clear

that all resource problems can be resolved with the resulting schedule. It is further ensured

that the whole targeted distribution will be valid for the extended planning period ∆tftr as

well.

6.4.9 Discussion

Different properties such as stability, run time behavior, and scalability of the scheduling

algorithm will be discussed within this section. Furthermore, some ideas to improve the

efficiency of the algorithm will be shortly introduced as well. They can serve as a basis for

future work.

Stability of the Algorithm

The scheduling algorithm developed within this thesis redistributes VMs and switches on and

off servers based on forecasted resource demand. Operations are initiated, if certain lower

or upper thresholds are deceeded or exceeded9. Such threshold based algorithm can tend to

swing, especially when the varying value has a strong noisy part. It will be discussed in the

following how the scheduling algorithm will behave concerning this stability problem.

VMs are only moved, if either a resource problem will come up or at least one server can

be switched off as pointed out in Section 6.4.6 and 6.4.7. Before a server is switched off, the

scheduling algorithm ensures that a certain targeted distribution of VMs on servers remains

valid for a certain planning period ∆tftr. This ensures that no resource shortages come up until

the new distribution is reached and in worst case the complete safe distribution is restored.

Hence, normal noise that swings around a threshold within a time period shorter than ∆tftr

will not lead to any consolidation operation at all.

The shortest planning period ∆tftr ever possible occurs, when starting with the safe distri-

bution of VMs on servers one server k should be switched off. The respective planning period

9Thresholds are defined by the server capacities contained in the resource constraint

116



6.4 Dynamic Scheduling

can be calculated as follows as worked out in Section 6.4.7:

∆tftr = 2 ·
∑

i:B(i)=k

∆tmigi + ∆tdownk + ∆tbek + ∆tupk . (6.11)

The migration time of the VMs that are safe on this server must be considered twice, since

they are moved into an unsafe position. Furthermore, the planning period must take care of

the server’s deactivation, break even, and reactivation time.

As a result, the time interval between exceeding and deceeding the threshold must be larger

than the time needed to move the VMs of at least one server twice, switch off the server, save

some energy, and finally switch it back on. Otherwise, no operations will be performed at all.

Hence, the algorithm will not lead to any unwanted behavior. VMs are only moved, if any

server remains switched off for at least its break even time and thus saves energy.

The algorithm can be nonetheless modified in two different ways to artificially slow down

the reaction speed. First, the break even time of the servers can be increased. Servers can be

only powered down this way, if they remain switched off for a longer time. Of course, potential

energy savings are decreased as well this way. A second option is to implement hysteresis

[100]. The threshold is no longer a fixed value but an interval. Upper and lower thresholds are

different values, which can prevent resolve operations initiated by slightly increased resource

demand.

Runtime Behavior and Scalability

The algorithm must be able to test between two discrete time steps, if resource problems are

coming up. It must find a sequence of operations that will resolve the problems if necessary.

Otherwise, it tries to find a sequence of operations that consolidates VMs and switches off

servers. Hence, the runtime complexity of all three tasks is important and will be shortly

discussed in the following.

The resource demand of each VM must be determined at t+∆tftrB(i,t)+1 using the forecasting

models to test, whether a certain distribution of VMs to servers will be still valid at this time.

Hence, the runtime complexity depends linearly on the number of VMs. This step should not

be a problem for the number of VMs in a conventional data center since the evaluation of the

forecasting model is only a simple table lookup.

Each VM is maximally touched once in each time step to find a sequence of operations that

consolidates VMs to fewer servers. The algorithm tests, whether each VM fits on another

server or not. Hence, the resulting complexity is #servers ·#VMs. Furthermore, the sum of

the resource demands at the respective destination server must be evaluated for each time t

in the respective planning period ∆tftr for each VM. This further increases the complexity by

an additional dimension. But this complexity should not be a problem for normal numbers of

117



6 Dynamic Resource Management

servers and VMs and a time step larger than one 1min. Appropriately caching result can help

to nonetheless reduce the computational effort required.

The resolve part of the algorithm is more critical concerning the runtime complexity. VMs

are moved from an unsafe to their safe position in Step One and Step Five. Hence, the worst

case complexity in each of these steps depends linearly on the number of unsafe VMs, which

is not critical so far. Additionally, the whole planning period ∆tftrB(i,t) must be evaluated for

each VM, which spans again a new complexity dimension. The computational effort required

for sorting the set of servers with resource problems in Step Three can be neglected for normal

numbers of servers. Finally, all unsafe VMs are tried to be moved to other unsafe position in

Step Two . Hence, the complexity is #servers ·#VMs in this step. Again, not only one point

in time must be evaluated but the whole interval ∆tftr.

As a result, the overall runtime complexity of one loop of the resolve part is #servers ·
#VM · |∆tftr| comparable to the consolidation part10 . But the complexity further increases

due to the outer loop of the algorithm. This loop must be performed several times in some

cases to resolve all upcoming resource shortages. The number of iterations depends on the

number of performance problems and on the number of VMs that must be removed to resolve

the problems. Hence, the number of VMs will quadratically influence the runtime complexity,

which can lead to runtime problems.

Again, appropriately caching result can help to prevent unnecessary reevaluations. The

move of VMs in Step One and Step Two must be only reevaluated for servers, whose assigned

VMs have changed in the previous iteration.

The algorithm can fall back on a simple but suboptimal solution, if some resource problems

can not be resolved between two discrete time steps. Unsafe VMs can be simply forced to be

moved home by applying only Step Five to solve resource problems on the servers. Finding

such a solution has a runtime complexity that linearly depends on the number of VMs and

on the current planning period ∆tftrB(i,t) as discussed before. This should be feasible with

manageable computational effort.

Finally, one can conclude that the overall runtime complexity of the whole algorithm is

#servers·#VM2 ·|∆tftr|. Resource shortages can be suboptimally resolved with a complexity

of #VM · |∆tftr|. Some analyses concerning the runtime behavior will be discussed in the

evaluation chapter. The results will show whether or not runtime problems must be expected

in normal scenarios.

Some ideas to improve the efficiency of the algorithm are presented in the following. They

are not worked out any more within this thesis but can serve as a basis for future work.

10|∆tftr| represents the number of samples in the planning period ∆tftr

118



6.4 Dynamic Scheduling

Improving Heuristics

The first point concerns the heuristics applied to find sequences of operations that will either

consolidate VMs or resolve upcoming resource shortages.

The consolidation part of the algorithm tries to remove all VMs from a server to switch it

off. But this step only succeeds, if the VMs can be directly moved to other servers. Especially

VMs that require a significant part of a server’s capacity can prevent that a server can be

switched off. Sometimes it is hard to find servers that have enough free capacity to host them.

It can be tried in an additional step to free additional space by redistributing other VMs

first to overcome this issue. VMs with less required resource capacity can fill up servers that

have only little resource capacity left. Space is freed for bigger ones this way. This finally leads

to a denser distribution of VMs to servers. An additional empty servers that can be switched

off could be the result.

The heuristic applied in the resolve part of the scheduling algorithm can be improved the

same way. The algorithm presented until now performs suboptimal solutions to resolve resource

problems in some cases. More servers than actually required are reactivated in worst case. The

evaluation of different ways while the sequence of operations is searched could improve the

results. Especially the selection of a VM for a forced move can strongly influence the results.

The runtime complexity for both optimization is exponential. The optimum cannot be found

in most cases because of the time limit between two discrete time steps. Hence, a valid solution

should be determined first. The remaining time can then be used to improve the result.

Parallelize Migration Operations and Server Startups

One pessimistic restriction concerns the assumption that migrations can be only performed

strictly sequentially. The support of parallel migration operations can strongly decrease the

planning period ∆tftr. Therewith, the dynamic resource management can use shorter periods

of reduced resource demand to save energy.

Technically, different migrations could be performed at the same time, even if the the same

source or destination servers are involved. But the migration process can slow down depending

on the network and on the servers involved. This fact must be considered by the dynamic

resource management concept. Hence, a more complex modeling of the migration time of

a VM is required to exploit this opportunity. The scheduling algorithm needs to know how

long a migration will take depending on the source and destination server. Other migrations

performed at the same time must be taken into account as well.

A second way to decrease the planning period is to startup servers in parallel. Different

servers could be started at the same time in principal. Hence, only the start up time of the

slowest server needs to be regarded for the planning period. But parallel startups of servers

can cause problems as already discussed. It remains unclear during the startup process of

119



6 Dynamic Resource Management

one server, when an additional server must be reactivated. The algorithm can address this

issue by observing the demand behavior of the VMs in future further on, even if it is not in

steady state. The startup of an additional server must be directly initiated, if further resource

shortages come up.

Delaying Operations that Resolve Resource Shortages

Once a sequence of operations that resolves upcoming resource problems at t + ∆tftrB(i,t) + 1

is found, it is immediately executed by the scheduling algorithm. But the execution of the

operations is already finished long before the planning period ∆tftrB(i,t) is expired in most cases.

Hence, they could have been delayed for a while to leave servers switched off for a longer time.

But delaying these operations will delay other possible operations that consolidate VMs and

switch off servers as well. Hence, in some cases delaying resolve operations can increase the

time, a server is still running and hence can waste energy as well.

One should try to discard the strict separation of consolidation and resolve sequences to

address this problem. Resolve operations are scheduled at their latest possible time, consoli-

dation operations can fill empty slots. Mainly the interdependencies between the individually

scheduled operations must be considered to realize such an improved algorithm. Consolidation

operations must not invalidate the schedule that resolves the upcoming resource problems. Sec-

ond, one must consider the development of the resource demand in the future. The algorithm

must be able at any time to restore the safe distribution right in time.

Independent Clusters in Large Data Centers

A third possible improvement concerns the planning period ∆tftr. ∆tftr can quickly increase

with an increasing number of servers and VMs in times of reduced overall resource demand.

Strongly volatile resource demand behavior of VMs can not be used to save energy any more,

when the planning period gets too long.

It can be tried to divide large data centers into smaller clusters to overcome this drawback.

Each cluster is controlled individually by its own management system. VMs are not moved

beyond cluster borders. One advantage of this approach is a shorter planning period ∆tftr,

which increases the chance to use shorter periods of reduced resource demand to save energy.

Furthermore, VMs in different clusters can be migrated at the same time11. The disadvantage

of this approach is the reduced flexibility for operations. The more servers and VMs are present

in a data center, the higher is the chance to find appropriate destination servers for VMs that

must be removed from a server.

This trade-off will be analyzed in the evaluation section. It will be shown how large data

centers can get until the increasing ∆tftr significantly prevents additional energy savings.

11Each cluster is assumed to have its individual net for migrating VMs

120



6.5 Changes in Demand Behavior

6.5 Changes in Demand Behavior

The dynamic resource management approach assumes unchanged demand behavior of the VMs

concerning the long term trend, the seasonal trend, and the noise comparable to the static

one. Again, it will be discussed first how changed demand will impact the VMs and how such

changes can be detected. It can be useful to adapt the forecasting models at runtime to prevent

possible resource shortages in the future, since dynamic resource management can dynamically

change provisioning decision at runtime. Furthermore, an actually occurred resource shortage

should be resolved as fast as possible by redistributing VMs. Respective mechanisms will be

discussed in this section as well. Finally, a method will be introduced that allows limiting the

impact of possible resource shortages and the time required to resolve them.

6.5.1 Impact of Changed Demand Behavior

Changed demand behavior will lead to unexpected resource shortages much more likely com-

pared to the static approach, because dynamic resource management directly adjusts resource

capacity to the expected demand.

Reserve capacity required to support an increasing long term trend can prevent that tem-

porarily increased resource demand leads to actual resource shortages in the static case. These

reserves are not present in the dynamic case. The time dependent influence of the long term

trend is directly considered, when the resource capacity required by a VM at a certain time

is calculated. Only capacity reserves that are caused by discretization artifacts can buffer

resource demand of a VM that slightly exceeds the expect one. Remaining capacity of a server

cannot support the demand of any other VM in the system in many cases and hence is left

unused.

6.5.2 Detecting Changed Demand Behavior

Changes of the long term trend can be detected the same way like the static resource manage-

ment approach does (cf. Section 5.5.2). A second model is built up at runtime from observed

data and compared to the one created during the characterization phase.

Changes of the seasonal trend and the noise performance can not be detected that easy.

Actually required resource capacity can be calculated from the observed demand as long as

the overall resource demand of all VMs placed on the same server does not exceed the servers

capacity. The same method like presented for static resource management can be applied.

But if the demand exceeds the server’s capacity, one can only measure the actually provided

resource capacity but no longer the resource demand. Hence, the actual demand can not be

directly measured in all cases.

121



6 Dynamic Resource Management

A way out of this problem is to directly measure the targeted QoS attribute (e.g. response

time or throughput), for which a performance goal is defined in the SLO. In case of violations,

obviously a resource shortage has been detected that must be caused by incorrectly forecasted

resource demand. The respective service must support to measure such QoS attribute and to

send this information to the resource management to apply this technique.

An artificial resource buffer can be used, if a direct feedback from the service is not applicable.

Slightly less resource capacity than actually present can be defined for each server to generate

this buffer. Exceeding demand can be directly measured as long as this buffer is not depleted.

6.5.3 Adapting the Model

Adapting the models to changes at runtime can help to prevent unexpected resource shortages

in the future. Once the models are changed, the scheduling algorithms directly adapts these

changes, when it looks for upcoming resource shortages or when it tries to consolidate VMs.

Adapting the long term trend is quite simple. The parameters of the forecasting model

LTi(t) are continuously updated by new ones, which are determined using the demand behavior

observed at runtime.

The resources R∗i (t) that have actually been demanded by each VM i at runtime are required

to update the models that describe the seasonal trend and the noise. The resource capacity

A∗i (t) that should have been provided to the VM to not violate any SLO can be determined

from this resource demand the same way like used before to characterize the model Â∗i (t) itself.

The respective values in Â∗i (t) must be updated upwards, if the result exceeds the forecasts of

the model.

The actual resource demand can be determined either indirectly by getting feedback from

the service or directly using an artificial resource buffer as discussed in previous section.

A model similar to the one introduced in Section 5.2.3 is needed in the first case. This model

must map the difference between the required and the actual value of the targeted performance

metric onto the additionally required resource capacity. The actual resource demand can then

be determined from the measured value of the performance metric using this model.

In the second case, the actual resource demand can be directly measured from the virtual-

ization environment. The measures equal the demand as long as the demand does not exceed

the provided capacity including the additional buffer. Increased demand behavior has been

detected but cannot be quantified exactly, when the demand exceeds the capacity reserve. The

models are only adjusted upwards by the size of the buffer in this case. This can require to

update the model later again to capture the whole increase of the demand.

122



6.5 Changes in Demand Behavior

6.5.4 Resolving Resource Shortages

Slightly increasing the forecasted resource demand must not necessarily lead to resource short-

ages. Unused capacity caused by discretization effects can be used to compensate such ex-

ceedances as already discussed. This remaining capacity can be provided to all VMs currently

placed on a server as shared resources. Resource shortages will not occur this way before the

additional capacity is depleted by one or more VMs.

The dynamic resource management must react, if nonetheless resource shortages occur.

The models that describe the demand behavior of one or more VMs seem not to be valid any

longer. Hence, they should not be used for dynamic resource management any more. Instead,

the scheduling algorithm allocates the maximally required resource capacity Amaxi for the

affected VMs to not violate the respective SLOs any more. The resolve part of the dynamic

scheduling algorithm can be used to immediately free the additional resource capacity required.

Setting the required resources for a VM to the respective Amaxi informs the algorithm about

the resource shortage, which is then resolved by an appropriate sequence of redistribution

operations.

Time dependent resource demand variations of the VM are not considered for dynamic

resource management any more once the forecasting model of a VM has been disabled. The

achievable energy savings are reduced. The administrator must analyze the reason of the

deviation between the forecasts and the actual demand of a VM. The original model can be

reactivated again without any changes in case of an onetime event. Otherwise, the new demand

behavior must be observed and the whole characterization process (cf. Section 6.3.3) must be

repeated again.

6.5.5 Limiting the Impact of Changed Demand Behavior

Two additional parameters have been worked out in Section 6.2 that should be part of the

SLA, when dynamic resource management is applied. The purpose of both is to limit the

impact of resource shortages caused by unexpected demand behavior of VMs.

The first one, ∆tresolvei , defines the maximal duration of possible resource shortages of a

VM i. It must be ensured that any possible resource shortage can be resolved in a time period

shorter than ∆tresolvei to meet this constraint. In worst case, a resource shortages can be only

resolved by completely restoring the safe distribution of VMs to servers. This will not take

longer than specified by the actual planning period ∆tftr according to the dynamic scheduling

algorithm. Hence, the scheduling algorithm must ensure that the resulting planning period

∆tftr does never exceed the limit ∆tresolvei .

The second parameter Amini ensures a minimal QoS by reserving a fixed amount of resource

capacity at any time. The scheduling algorithm must consider following additional constraint

123



6 Dynamic Resource Management

to support this parameter:

∀k, t :
∑

i:B(i,t)=k

Amini ≤ Ck. (6.12)

The sum of resources Amini minimally required by all VMs i placed on the same server must not

exceed its capacity. Furthermore, the virtualization environment must ensure that independent

from Ai(t) the respective minimal amount of resource capacity Amini is reserved for each VM

at any time.

6.5.6 Discussion

The efficiency the dynamic resource management can deal with changed demand concerning

energy savings and occurring SLO violations strongly depends on the kind of changes. Hence,

different kinds of possible changes will be presented and discussed in the following. Further-

more, some questions are left open for ongoing research. They will be discussed in the following

as well.

Different Kinds of Changes

It can be distinguished mainly between three types of changed demand behavior.

First, unexpected demand behavior in an instance of the predominant period can occur that

has not yet been observed in the past (e.g. on a bank holiday during normal weekly work).

The model for the seasonal trend and the noise will be adapted as described in Section 6.5.3,

if the observed demand is higher than the expected one. The changes will take effect in the

next instance of the period.

The adapted models lead to wasted resources from now on, if the unexpected demand behav-

ior was an onetime event. More resources than actually required are allocated in some cases.

Additional occurrences of such onetime events at different times will more and more adapt the

model upwards. Finally, the forecasts will not vary any more. The resource management can

not use them to save energy. Hence, models should be completely recharacterized from time

to time using data observed in the closest past to prevent this case.

Second, the predominant period or the trend behavior within the period can significantly

change. Underestimates are corrected when they are detected, while overestimates are ignored

as described before. The models are adjusted upwards finally leading to a static model again,

which can not be used any more to save energy. Again, a complete recharacterization will be

required to create a new model that appropriately describes the changed behavior.

Third, the long term trend can change over time. Such changes are adapted by the part of

the model that described the long term trend. The scheduling algorithm directly considers such

changes for ongoing redistribution decisions. Hence, neither an increasing nor an decreasing

124



6.6 Summary

long term trend will negatively influence the work of the dynamic resource management.

Changed Demand Behavior and SLOs

The demand behavior can be intentionally changed by clients to provoke SLO violations as

already discussed in the static statistical resource management chapter. Such changes will

very likely lead to resource shortages because provided resource capacity is directly adjusted

to the expected demand by the dynamic resource management.

Time dependent usage behavior that causes time dependent resource variations must be

integrated into the SLA to prevent such infiltration. Such extensions are not part of this

thesis any more. Future research must address this question not only to improve the resource

management concept presented in this thesis. Any kind of dynamic provisioning in conjunction

with SLOs requires taking care of this issue.

Parallel Migrations While Resolving Resource Shortages

Finally, ongoing research can consider parallel migrations to resolve unexpected resource short-

ages. Depending on the situation, resource shortages of single VMs can be resolved significantly

faster than specified by the respective planning period ∆tftr. This will strongly loose the con-

straint concerning the SLO parameter ∆tresolvei . Much more potential can be used by the

resource management to save energy, if ∆tftr is allowed to exceed ∆tresolvei .

6.6 Summary

A new concept for dynamic resource management in virtualization based data centers has

been presented within this chapter. This concept extends the static approach by the use of

two additional degrees of freedom. VMs are moved between servers at runtime and servers can

be switched on and off. The goal is to save energy in times of low overall resource demand by

consolidating VMs to only a few servers and switching off unused ones.

This idea requires models that describe the resource demand of VMs expected in future.

They must overestimate this demand with respect to long term trends, seasonal trends, and

especially the random noise to not violate any SLOs. A weakness of known approaches is very

often the way, they deal with the noise. The approach presented in this chapter combined

the ideas of deterministic and stochastic seasonal models to overcome this drawback. The fine

grained SLOs developed for the statistic static resource management are supported as well.

A second challenge that has been addressed in this chapter is the scheduling approach that

dynamically redistributes VMs and switches on and off servers. None of the known ones can

guarantee to resolve upcoming resource shortages right in time before they actually occur.

Some of them can not even resolve them at all. The underlying problem has been decomposed

125



6 Dynamic Resource Management

into a classical load rebalancing and a deadlock problem. An algorithm has been presented

that resolves both at the same time also taking care of the delays of VM moves and server

reactivations.

The dynamic resource management concept can guarantee not to violate any SLOs at any

time based on some assumptions concerning the expected resource demand behavior. These

assumptions are not met in any case especially when the demand behavior changes. Resource

shortages can occur in some cases that can lead to SLO violations as a consequence. A method

has been further presented for detecting and adapting such changes and for resolving possible

resulting resource shortages. Furthermore, additional SLO parameters allow the clients to

limit the impact of resource shortages caused by changed demand behavior.

126



7 Experimental Assessment

A concept for static and dynamic resource management has been developed within this thesis.

Mainly three different challenges have been addressed. A new kind of SLO specification has

been worked out that allows trading off service performance against provided resource capacity.

In addition, the resource demand of VMs has been modeled in a way that resource capacity

required in future can be determined from the demand observed in a characterization phase.

Trade-offs between service performance and provided capacity defined in SLOs are supported.

Finally, scheduling algorithms have been developed that based on the models and the SLOs

can distribute VMs to a minimal number of active servers.

These main outcomes of this thesis will be evaluated and discussed within this chapter. First,

the novel SLO specification will be compared to known ones concerning additional resource

savings. The accuracy of the modeling approach will be evaluated in Section 7.2. Possible un-

derestimates that can lead to SLO violations as well as overestimates that are wasting resources

will be presented and discussed. Finally, the whole concept will be evaluated separately for

static and dynamic resource management in Section 7.3 and Section 7.4 respectively. Section

7.5 will shortly conclude the results at the end of this chapter.

7.1 Fine Grained QoS Specification

A new kind of SLO specification has been introduced in Section 5.2. It allows trading off

granted CPU time against service performance by defining performance goals and probabil-

ities. The probabilities state how often the respective performance goals must be achieved.

Different performance goals can be defined each with an individual probability in contrast to

known percentile based specifications. This way, strong performance slowdowns can be lim-

ited very restrictively while weaker ones can be allowed to occur more often, which increases

the flexibility for specifying SLOs. The advantages of such fine grained SLO specifications

compared to classical percentile bases ones will be evaluated within this section.

7.1.1 Methodology

The CPU time savings that are achievable by a fine grained SLOs were determined in different

analyses. They will be compared to the savings that can be achieved when classical percentile

127



7 Experimental Assessment

based SLOs are applied. Furthermore, it will be shown how the number of defined performance

goals will influences the savings. In both cases, the baseline forms the resource capacity that

would be required, if no resource performance trade-offs are applied at all.

These analyses were limited to only one single VM first to not influence the results by

unwanted side effects. It was determined how much CPU time must be provided to this VM

to not violate its SLO. In further analyses, resource and energy savings that are obtainable in

whole data centers when fine grained SLOs are applied were estimated as well. The results

will be presented later on in Section 7.3 and 7.4 respectively.

The evaluation criteria used to assess the new SLO specification will be defined more formally

in the following. The concrete evaluation scenario will be introduced as well.

Evaluation Criteria

Resource capacity Ai(t) required by VM i to fulfill its SLO is derived from observed resource

demand Ri(t) according to the concept presented in this thesis. One resource demand time

series Ri(t) can lead to different resulting time series Ai(t) depending on the SLO specification.

Hence, these resulting Ai(t)s can be compared to assess different SLO specifications concerning

resource savings.

Required resources capacity derived when fine grained SLOs were applied will be denoted

by AFG(t) in the following. The approach suggested in Section 5.4.2 to derive required CPU

time from the demand was used to determine AFG(t) from Ri(t). A set of classical percentile

based SLOs can be derived from each fine grained SLO. All of them can guarantee the same

service performance like the fine grained specification itself. Required resource capacity deter-

mined with them will be called APx(t) in the following. The index x enumerates the different

percentile based SLOs that belong to one fine grained specification. The common way to de-

rive APx(t) from Ri(t) has been presented in Section 5.4.1. Finally, Abase(t) is the resource

capacity that is required when no performance slowdowns must occur at all. The way to derive

memory capacity from the demand (presented in Section 5.4.2 as well) was applied to derive

Abase(t) from Ri(t).

The required resources Ai(t) determined for a VM are used in different ways depending on

whether static or dynamic resource management is performed. Maximally required resource

capacity Amaxi = max(Ai(t)) is reserved for the VM in the static case. Hence, the respective

maxima AmaxFG , AmaxPx
, and Amaxbase must be compared to assess the SLO specifications with

respect to static resource management. Abase(t) serves as a baseline as mentioned before so

that resource savings are the differences AmaxFG − Amaxbase and AmaxPx
− Amaxbase respectively. These

savings are additionally normalized by Rmaxi to describe them independent from the maximal

resource demand of a VM. As a result, resource savings that are obtainable for a VM by static

resource management when fine grained or percentile based SLOs are used can be expressed

128



7.1 Fine Grained QoS Specification

as follows:

ÃmaxFG =
AmaxFG −Amaxbase

Rmaxi

and ÃmaxPx =
AmaxPx

−Amaxbase

Rmaxi

. (7.1)

A model Â∗i (t) is derived from Ai(t) for dynamic resource management that describes re-

source capacity required at a certain time t. Hence, the complete time series AFG(t) or APx(t)

decide about achievable resource savings. Again, savings are the differences AFG(t)−Abase(t)
and APx(t)−Abase(t) respectively. Normalizing these differences by Rmaxi leads to the following

two functions:

ÃFG(t) =
AFG(t)−Abase(t)

Rmaxi

and ÃPx(t) =
APx(t)−Abase(t)

Rmaxi

(7.2)

that describe the obtainable resource savings when fine grained or percentile based SLOs are

used. The maximum, the mean, and the standard deviation of the respective functions ÃFG(t)

and ÃPx(t) will be compared to assess the two different SLO specifications.

Evaluation Scenario and Data Selection

The obtainable savings when service performance is traded off against resource capacity mainly

depend on two different parameters. First, the SLO specification itself is relevant for the

savings. Second, the demand behavior of the VM also strongly influences the results. A

simple web server scenario with one single page was created to find realistic values for them.

A realistic fine grained SLO specification with response time as metric for performance

goals was defined for this web page. The goals ηmax and respective probabilities Pminηi of this

specification are presented in Figure 7.1 a). Each probability states how often the respective

performance goal must be achieved.

][
max

smη

min

i

P
η

500 600 750 1000

0.9 0.97 0.99 1.0

500
0.9

1000

1.0

][
max

smη

min

i

P
η

a) b)

][
max

smη

min

i

P
η

600 750 1000

0.9 0.97 0.99
fine grained (FG)

P1 P2 P3

percentile bases (Px)

Figure 7.1: a) Fine grained SLO specification for an exemplary web server scenario. b) A set
of classical percentile based SLO specifications that guarantee the same service
performance like the fine grained one.

A set of three classical percentile based SLOs that guarantee the same service performance

was derived from this specification. The respective parameters are presented in Figure 7.1 b).

By definition, percentile based SLOs define one performance goal ηmax and one probability

Pminηi (cf. Section 5.2.1). But the performance goal defines the maximal allowed performance

slowdown in contrast to the fine grained specification. The probability states how often any

129



7 Experimental Assessment

performance slowdown down to this maximum is allowed. If for instance the targeted response

time is 450ms, the first SLO (P1 in Figure 7.1 b)) allows exceeding this response time goal up

to 600ms in 90% of time.

The fine grained SLO specification presented in Figure 7.1 served as a basis for all analyses.

Several more restrictive ones were derived and analyzed as well. The results will be presented

in the following section. The respective modification of the SLO will be explained in each case

and the consequences will be discussed.

A real web server was installed in a VM to get realistic resource demand values of a VM

and to characterize the mapping function f(α) : α 7→ η (cf. Section 5.2.3). Debian Linux with

paravirtualization support was selected as underlying operating system. The virtualization

environment was XenServer 3.0.3 1 installed on a desktop PC. The PC contained a single dual

core CPU. One of the cores was assigned to the VM. The other one was exclusively reserved

for the virtualization environment. A web page was created that consumes a fixed amount of

CPU time for each request (28ms) to keep the analyses simple.

A lookup table based function f(α) : α 7→ η was characterized for this environment using

synthetic load tests. This function returns the maximal response time η of the web server

expected in case of a certain ratio α between resource demand R and provided capacity A. A

wide range of values R and A has been evaluated for this characterization. All performance

goals ever used in any of the SLOs during the evaluation are listed in Figure 7.2 with their

respective α values. They were determined using this function f(α).

][
max

smη

min
α

500 550 600 700

0.9 0.82 0.75 0.64

750 1000

0.6 0.45

Figure 7.2: A set of response times and respective minimal values of α required to achieve
these response time goals in the web server scenario.

A realistic resource demand time series Ri(t) was determined in a next step using the web

server environment. Therefore, a time series of requests to a real web server(the one from

NASA Kennedy Space Center)[105] was selected. The corresponding log file contains time

stamps of all accesses to the server in Juli 1995 (31 days). Ri(t) was not directly determined

by observing the VM while the requests are simulated. A complete replay of the whole recorded

trace would have been required in real time. Instead, the resource demand of the VM was

only measured for different numbers of concurrent accesses to the web page. Ri(t) could then

be easily calculated from the log trace of the real web server.

The CPU time required to fulfill a certain SLO specification (AFG(t), APx(t), and Abase(t))

could then be determined using the time series Ri(t) and the function f(α). Different analyses

1This virtualization environment is contained as binary package in the current Debian Linux (Stable) operating
system.

130



7.1 Fine Grained QoS Specification

with different SLOs were performed. The respective SLO as well as the achieved savings will

be presented and discussed in the following.

7.1.2 Comparison to Known Approaches

First, the new fine grained SLO specification will be compared to the known percentile based

one. It will be worked out, how much and under which conditions the resource management

can benefit from a fine grained specifications.

Three different fine grained SLOs were used. The first one has been defined in the previous

section. The second and third SLO are modifications of the first one. More restrictive proba-

bilities were assigned to the performance goals as a first modification. The second modification

has a tighter range of the performance goals. The probabilities remained from the initial SLO

specification in this case.

ÃmaxFG and ÃFG(t) were determined for all of them. Furthermore, the percentile based SLOs

were derived from the fine grained ones like described in the previous section. The resource

savings ÃmaxPx
and ÃPx(t) achieved when they were used were determined as well. All results

and the respective SLO specifications are presented in Figure 7.3.

FG P1 P2 P3

max

Ø

std

0.1 0.1 0.0 0.0

0.1 0.1 0.0 0.0

0.04 0.04 0.0 0.0

0.02 0.02 0.0 0.0

FG P1 P2 P3

max

Ø

std

0.18 0.1 0.11 0.0

0.18 0.1 0.18 0.0

0.06 0.04 0.04 0.0

0.03 0.02 0.04 0.0

][
max

smη

min

i

P
η

500 600 750 1000

0.9 0.97 0.99 1.0

][
max

smη

min

i

P
η

500 600 750 1000

0.95 0.99 0.999 1.0

][
max

smη

min

i

P
η

500 550 600 700

0.9 0.97 0.99 1.0

FG P1 P2 P3

Ø

std

0.2 0.1 0.11 0.0

0.25 0.1 0.25 0.0

0.08 0.04 0.04 0.0

0.05 0.02 0.05 0.0a) b) c)

500

0.9

1000

1.0

][
max

smη

min

i

P
η

500

0.9

1000

1.0

][
max

smη

min

i

P
η

500

0.9

1000

1.0

][
max

smη

min

i

P
η

max~
A max~

A max~
A

max

Ã
(t

)

Ã
(t

)

Ã
(t

)

Figure 7.3: Normalized CPU time savings (bottom), when a fine grained SLO specifica-
tion(top) is applied to a web server compared to percentile based specifications. a)
the initial specification b) a modification with more restrictive probabilities c) a
modification with a tighter range of performance goals

One can clearly see in Figure 7.3 a) that the fine grained SLO specification outperforms the

percentile based one. None of the three classical SLOs was able to achieve the same savings like

the fine grained one. Static resource management could save 20% of CPU time capacity when

the fine grained SLO was applied to trade off resources capacity against service performance.

The best of the classic SLOs was able to save only 11%. Dynamic resource management could

131



7 Experimental Assessment

reserve 8% percent less CPU time capacity in average in the fine grained case. Only 4% could

be saved when the percentile based specification was used.

The SLO specification P3 was not able to provide any saving potential at all to the resource

management. Any amount of reserved resource capacity A that is lower than the demand R

will lead to performance slowdowns that occur more often than in one 1% of time. Due to

this fact, the second fine grained SLO presented in Figure 7.3 b) was not able to achieve any

additional savings compared to the percentile based one. The resource management could only

take an advantage of the first out of four performance goals. The probabilities of all others

are to restrictive.

The third case shows a different behavior (Figure 7.3 c)). The resource management can

benefit from fine grained SLOs even when performance goals are more restrictive. The savings

are slightly reduced compared to the initial specification but none of the percentile based SLOs

could gain the same savings like the whole fine grained one.

7.1.3 Influence of the Number of Defined Performance Goals

Six different fine grained SLO specifications have been derived from the one that has been

defined in Section 7.1.1 for a next analysis. All of them guarantee at least the same service

performance like the initial one but define less performance goals. The missing performance

goals are considered by restricting the actually defined ones some more. They are presented

in Table 7.1 a).

a) b)

max Ø std

FG 0.20 0.25 0.08 0.05

)(
~

tA
FG

max~
FG

A

FG1 0.10 0.10 0.03 0.03

FG2 0.10 0.10 0.04 0.02

FG3 0.20 0.25 0.08 0.05

FG4 0.00 0.00 0.00 0.00

FG5 0.10 0.10 0.03 0.03

FG6 0.10 0.10 0.04 0.02

FG 0.90 0.97 0.99 1.00

FG1 0.97 0.99 1.00

FG2 0.90 0.99 1.00

FG4 0.99 1.00

FG3 0.90 0.97 1.00

FG6 0.90 1.00

][
max

smη 500 600 750 1000

min

i

P
η

FG5 0.97 1.00

Table 7.1: Normalized CPU time savings with different numbers of defined performance goals
in a fine grained SLO specification. a) six different specifications that guarantee
all the same performance but with different numbers of defined performance goals
b) the resulting CPU time savings when they are applied in contrast to the initial
complete specification

One performance goal was removed in FG1, FG2, and FG3. The probability Pminηi of the

next lower performance goal ηmax was increased in each case to take care of the missing one.

The same was done in FG4, FG5, and FG5 but with two instead of one removed performance

132



7.1 Fine Grained QoS Specification

goals. The respective savings provided to the resource management are listed in Table 7.1 b).

It can be mainly recognized that removing any performance goal leads to strongly reduced

savings. Only FG3 could achieve the same results like the complete SLO specification, which

is not a big surprise in this case. Already earlier analyses showed that the last performance

goal has no influence to the savings at all. Hence, removing it like done in FG3 will not change

the results.

Furthermore, removing two out of four performance goals vanishes the whole saving potential

in this example, if none of both is the performance goal without any effect. Finally, the position

from which single goals are removed seems not to strongly influence the results.

7.1.4 Conclusion and Limits of the Analyses

Finally, it can be concluded that the flexibility provided by a fine grained SLO specification

can provide significant savings of CPU time that must be reserved for a VM. Static resource

management could save 20% in an exemplary scenario. Dynamic resource management could

benefit from 8% savings in average. None of the percentile based SLOs was able to exceeds

these savings. The same savings could be achieved in some cases. In most cases, they were

quite lower. Some of the percentile based SLOs were not able to achieve any savings at all.

Different further analyses showed that removing performance goals from the fine grained SLO

leads to strongly reduced savings. Defining only two out of four performance goals completely

vanished the saving potential in most cases in the analyzed example.

The analyses presented and discussed so far are limited at some points concerning the

assessment of the SLO specification. First, only CPU time savings obtainable for a single VM

have been determined. These savings do not state anything about actual resource and energy

savings in data centers. Furthermore, only one resource demand time series has been analyzed

so far. Results of additional analyzes will be presented later on in Section 7.3 and Section 7.4

that took care of these weaknesses.

Furthermore, none of the analyses has evaluated so far, whether providing the determined

resource capacity Ai(t) to the demand Ri(t) would actually satisfy the response time goals.

Mainly an incorrectly determined resource demand time series Ri(t), a wrongly characterized

function f(α), or additional side effects could lead to violated performance goals. The scope

of this thesis is limited to guarantees concerning the ratio between resource demand R and

provided resource capacity A as already discussed in Section 5.2. Hence, experiments concern-

ing the actual response time are out of scope. The web server scenario with response time as

performance metric has been only introduced to get realistic values for Ri(t) and the SLOs.

133



7 Experimental Assessment

7.2 Resource Demand Model

The static and dynamic resource management presented in this thesis mainly depends on accu-

rately forecasted resource demand of the VMs in the future. An appropriate modeling method

was developed for this purpose. It has been presented in Section 5.3 and 6.3 respectively.

This modeling method will be evaluated within this section. One can distinguish between

over- and underestimates concerning the forecasting accuracy. Underestimates can lead to SLO

violations. Overestimates waste resources that otherwise could have been used by the resource

management to save energy. Hence, the model will be mainly evaluated by forecasting accuracy

in terms of underestimates and saving potential provided to the resource management.

7.2.1 Methodology

Different analyses were performed to evaluate the modeling and forecasting method. Resource

demand time series of different real servers were used. Models were characterized using one

part of the time series (duration: ∆tp2) in all cases. The second part was compared to a

time series that was forecasted using the models (duration: ∆tp3). The assessment criteria

are accuracy of the forecasts and provided saving potential as mentioned before. Both will be

detailed some more in the following. The time series used for the evaluation will be shortly

presented as well.

Accuracy of the Forecasts

The accuracy simply was evaluated by comparing the difference of the forecasted and the

actually measured resources in relation to the maximal demand of the VM. One must dif-

ferentiate between static and dynamic resource management. Maximally required resources

Amax are extrapolated from the models in the first case. The time dependent function A(t)

is estimated for dynamic resource management based on the models. The accuracy can be

formally described by an equation in each of both cases as follows:

δstat(t) =
Amax −Ames(t)

Rmax
δdyn(t) =

Afor(t)−Ames(t)
Rmax

. (7.3)

Both functions return values between−1.0 and 1.0. A value below 0.0 indicates underestimates.

The model overestimated the real demand in case of δ above 0.0. Mainly the probabilities

P (δ < 0) and P (δ > 0) will be presented in the following to assess the modeling method

concerning accuracy. They point out how often the model underestimated or overestimated

the actually required resources. Additionally, the probability function will be presented in

some cases as well.

134



7.2 Resource Demand Model

Provided Saving Potential

To assess the saving potential provided by a forecasting method, resource savings were deter-

mined that an exact forecasting method could provide to the scheduling approach in case of a

certain demand time series A(t). These savings were compared to the ones that the analyzed

method actually provided.

Resource savings can be expressed as the ratio between required resources of a VM at time t

and its maximal demand Amax, which can be formally described by a function π(t) as follows:

π(t) = 1− A(t)

Amax
. (7.4)

Time intervals are needed in which a certain πmin is not deceeded to use these savings for

dynamic resource management. Furthermore, such intervals must have a minimal length ∆tmin

because VMs must be migrated and servers must be switched on and off. Such saving intervals

will be denoted by SI l in the following and are formally defined as follows:

∀t ∈ SI l : π(t) ≥ πmin ∧ |SI l| ≥ ∆tmin, (7.5)

whereas l enumerates different of such intervals along time t and |SI l| is the length of interval

l. Additionally, SIall is defined as a set of all disjoint saving intervals that all do not fall below

a minimal length of ∆tmin and have minimal savings of πmin during the whole interval. A

function ∆t̃sav(πmin,∆tmin) can be derived from such definitions as follows:

∆t̃sav(πmin,∆tmin) =

∑
∀SIl∈SIall

|SI l|

∆tp3
. (7.6)

This function describes the relative overall time, in which a forecasting method provides min-

imal saving potential of πmin to the scheduling approach. All considered saving intervals have

a duration longer than ∆tmin.

The relative maximal overall resource savings Πmax that are achievable for a given time

series of length ∆tp3 can be determined in addition to ∆t̃sav as follows:

Πmax =
1

∆tp3

∫ tp3+∆tp3

tp3

π(t)dt. (7.7)

Resource savings of Πmax can be achieved by a scheduling approach, if it would be able to use

the whole amount of resource savings π(t) at any time t.

Evaluation results concerning provided saving potential will be mainly represented by Πmax

in the following. Additionally, function ∆t̃sav(πmin,∆tmin) will be visualized in some cases to

135



7 Experimental Assessment

show how often which amount of savings could be provided in the analyzed case.

Data Selection

The resource demand time series used for evaluation were provided by a medium-sized Service

Provider located in Oldenburg(Germany)2. The company hosts different IT services for dif-

ferent SMEs. The services range from simple e-mail and web server to individual test systems

and whole ERP solutions. Different batch job based services such as backups or virus scans

are performed in the data center as well.

Time series of CPU time and memory demand of a subset of services have already been

recorded for capacity planning and observation reasons. These time series last up to one year

in the past and have a resolution of one sample per five minutes.

All analyses discussed within this section were performed with many of these time series.

But not all results will be presented for clarity reason. Only one appropriate representative

was selected for each analysis to discuss the respective results. Rough estimates of average

accuracy and saving potential will be presented at the end of this section for the whole set.

7.2.2 Comparison to Known Approaches

The modeling approach presented in this thesis was compared to known ones in a first analysis.

Two month of the resource demand time series were used to characterize the model (∆tp2 =

61 days). The remaining ten month were used to compare the forecasts to the actually required

resources (∆tp3 = 192 days).

Selected Approaches

A common approach known from classical time series analysis was applied for comparison.

The seasonal trend was modeled by a deterministic function derived using moving averaging.

The residuals were treated as random noise that was modeled using the ARIMA approach.

The noise was pessimistically overestimated in a first version of this approach to derive

required resources from the models the same way like suggested in [17, 129, 104]. This approach

will be called MA+ in the following. The saving potential the approach provides is expected

to be very low, since MA+ pessimistically overestimates the noise. Hence, a modified version

of this approach, called MA−, was additionally analyzed that (very optimistically) completely

ignores the noise. Only the trend function is used for forecasting, which is expected to result

in many and strong underestimates but also should strongly increase the saving potential.

Finally, the result achieved by MA− and MA+ can be regarded as upper and lower limits

for the approach presented in this thesis. The new approach should provide significantly higher

2NOWIS Nordwest-Informationssysteme GmbH & Co. KG

136



7.2 Resource Demand Model

saving potential compared to MA+, while the underestimates of MA− are not exceeded.

Discussion of Results

Accuracy and saving potential achieved by the different modeling approaches when they were

used for dynamic resource management are presented in Figure 7.4 and 7.5 once for CPU time

and once for memory. In both cases, the new model was analyzed once with and once without

performing error correction at runtime the way presented in Section 6.5.3. The respective

cases are annotated by EC and no EC respectively.

P(δdyn<0)=20.9%

P(δdyn>0)=34.6%M
A

-
n

e
w

 m
o

d
e
l

E
C

n
o

 E
C

-0.4 0 1.00.5
δdyn

0.5

0.2

0.2

0.5

0 1.00.5

1.0

1.0

1.0

1.0

M
A

+

πmin

usable: Πmax=91.0%

provided:Πmax=94.9%

usable potential provided potential)( dyn
P δ sav

t
~

P(δdyn<0)=2.6%

P(δdyn>0)=96.5%

P(δdyn<0)=0.9%

P(δdyn>0)=98.7%

P(δdyn<0)=0.1%

P(δdyn>0)=99.9%

usable: Πmax=86.3%

provided:Πmax=54.4%

usable: Πmax=86.3%

provided:Πmax=43.0%

usable: Πmax=91.0%

provided:Πmax=10.2%

CPU time

Figure 7.4: Accuracy and provided saving potential of different modeling approaches, when
they are applied to forecast required CPU time for dynamic resource management.

P(δdyn<0)=50.35%

P(δdyn>0)=46.5%M
A

-
n

e
w

 m
o

d
e
l

E
C

n
o

 E
C

-0.4 0 1.00.5

0.2

0.2

0.2

0.2

0 1.00.5

1.0

1.0

1.0

1.0

M
A

+

πmin

usable: Πmax=74.2%

provided:Πmax=76.3%

usable potential provided potential)( dyn
P δ sav

t
~

P(δdyn<0)=1.8%

P(δdyn>0)=98.1%

P(δdyn<0)=0.4%

P(δdyn>0)=99.5%

P(δdyn<0)=0.1%

P(δdyn>0)=99.9%

usable: Πmax=74.2%

provided:Πmax=39.2%

usable: Πmax=74.2%

provided:Πmax=36.1%

usable: Πmax=74.2%

provided:Πmax=18.2%

RAM

δdyn

Figure 7.5: Accuracy and provided saving potential of different modeling approaches when
they are applied to forecast required memory for dynamic resource management.

137



7 Experimental Assessment

A probability distribution of δdyn(t) is presented on the left side of both figures for each ap-

proach. The cumulated probabilities of over- and underestimates are given as well. The saving

potential determined the way introduced in previous section is presented for each approach

on the right side of the figures. The bar plots show the overall time period, in which savings

higher than a certain πmin could be provided to the scheduling approach related to the overall

simulation time. The yellow bars represent the savings that theoretically could be provided in

case of an exact forecasting method. The green ones are the savings that the analyzed methods

actually provided. Furthermore, the overall resource saving potentials Πmax provided by the

exact forecasting approach and by the real ones are presented as well.

One can clearly see that the forecasting accuracy is already very close to the one of MA+

even without error correction at runtime. The estimated resources were lower than the actual

ones only in up to 2.6% of time. Error correction performed at runtime can further reduce

underestimates to below 1.0%.

The new approach could significantly increase the savings potential of MA+. Only very low

savings π could be provided to the scheduling approach by MA+. A reason is that not the

trend of the resource demand time series but the noise performance is varying very strong over

time. MA+ assumes a constant noise performance and hence could not take any advantage

of varying noise performance. This fact becomes further apart with respect to the results of

MA−. Neglecting the noise leads to even more provided saving potential than actually present.

Underestimates in up to 50% of time are the consequence.

The forecasting accuracy of the models for static resource management was analyzed as well.

The results are presented in the table in Figure 7.6 a). Amax needs not to be estimated for

memory using the models, since Amax = Rmax is valid for memory capacity (cf. Section 5.4.2).

Rmax is determined in phase one of the concept using benchmarks and thus can be directly

used as Amax in phase two and three as well. Hence, only the accuracy of the forecasted Amax

for CPU time was analyzed.

)0( <
stat

P δ

MA- MA+new model

)min(
stat

δ

0.1%

-44.3%

0.2%

-37.9%

0.1%

-44.3%

CPU time

a) b)
tp2 tp3

time

C
P

U
 t

im
e

Amax A(t) (new model)

tp3+∆tp3

δstat ≈ -38%δstat ≈ -38%

Figure 7.6: a) Accuracy of the modeling approaches when they are applied for static resource
management b) An exemplary time series and the forecasted Amax

All three analyzed approaches underestimated the actually required CPU time in only up

to 0.2% of time. One can see in Figure 7.6 b) that only single spikes of the actually required

resources A(t) exceed the provided resource capacity Amax. But these spikes can be signifi-

138



7.2 Resource Demand Model

cantly higher than Amax, which can lead to strong performance slowdowns in these cases. The

reason for such violations is mainly a changed long term trend in phase three. The slope of

the trend slightly increases so that Amax was estimated to low.

7.2.3 Finding the Predominant Period

Finding a good predominant period to extract the forecasting model for dynamic resource

management from the observed demand behavior is very important. Provided saving potential

as well as the probability of underestimates are strongly influenced by the period found. The

length of the time period ∆tp2 used to train the models as well as the averaging interval ∆tavg

used to characterize the stationary processes are influencing the periods determined by the

modeling approach. The periods found for an exemplary VM are presented in Table 7.2 for

different combinations of ∆tp2 and ∆tavg. Each combination leads to two periods one for CPU

time and one for memory.

3 days 7 days 14 days 28 days 56 days

CPU RAM CPU RAM CPU RAM CPU RAM CPU RAM

30 min.

60 min.

120 min.

360 min.

0.0 0.0 1.0 1.0 1.0 7.00.92 1.0 7.0 7.0

0.0 0.0 1.0 1.0 1.0 7.00.92 1.0 7.0 7.0

1.25 0.0 1.0 1.0 7.0 7.00.92 1.0 7.0 7.0

1.08 0.0 1.0 1.0 7.0 7.00.92 1.0 7.0 7.0

avg
t∆

2p
t∆

Table 7.2: Predominant periods (in days) found by the modeling approach depending on the
duration ∆tp2 of the characterization phase and on the length of the averaging
interval ∆tavg.

The approach could find periods of exact one day for CPU time as well as for memory after a

characterization phase longer than 14 days. Periods of exact 7.0 days were found in some cases

with data observed longer then 4 weeks. It seems to help to increase the averaging interval

with increasing ∆tp2 . This smooths out differences of the different instances of the period,

which helps to find appropriate periods.

Saving potential and forecasting accuracy of the new modeling approach were analyzed for

three of the periods found. The results are presented in Table 7.3.

A period of 0.92 days obviously does not fit very well. The required CPU time has been

underestimated in 13.1% of time. Adapting the model to forecasting errors at runtime can

help to reduce the underestimates to 1.1%. But the saving potential is strongly reduced at the

same time as well from 45.4% down to only 5.8%.

A period of 1.0 day fits quite better. The approach underestimates in only 5.8% of time

without runtime error correction. Enabling error correction at runtime reduces the underes-

139



7 Experimental Assessment

R
A

M
C

P
U EC

no EC

EC

no EC

period of 0.92 period of 1.0 period of 7.0

)0( <
dynP δ max

Π )0( <
dynP δ max

Π )0( <
dynP δ max

Π

1.1% 5.8%

13.7% 45.4%

0.4% 4.3%

10.3% 33.7%

1.0% 39.8%

5.8% 56.8%

0.2% 34.0%

1.3% 36.7%

3.2% 62.6%

10.4% 74.6%

1.7% 55.8%

4.98% 59.8%

Table 7.3: Accuracy and saving potential in case of different predominant periods.

timates to 1.0%. But the saving potential additionally reduces as well by about 17%. The

reason is that there are a few days in the time series that have significant higher resource

demand compared to all others, which has been adapted by the model. The model strongly

overestimates parts of the following days after these discontinuities occurred.

Finally, a period of 7 days further increases the saving potential compared to an one day

period. But the underestimates are increased as well because not so many instances of the

period were used for characterization, which resulted in a worse model. Runtime error correc-

tion performs worse as well because adaptations of the model affect the forecasting not before

the following instance of the period (the following week). The instance repeats far less often

compared to a daily period.

7.2.4 Influence of Minimal Duration of Saving Intervals

Minimal time periods ∆tmin are required, in which the resources to be reserved for a VM

must remain below a certain threshold to allow the dynamic resource management to save any

energy at all. The theoretically usable saving potential, the actually provided potential, and

the ratio between both of them was calculated for different values of ∆tmin ones for CPU time

and ones for memory. The analyzed values of ∆tmin ranged from 5min up to 6h. A value below

5min can hardly be used to save energy since moving one VM between two servers already

takes between 30s and 60s. 6h is quiet a long time for redistributing VMs and switching of

some servers.

a) b)

5minCPU time 30min 120min 360min
max

Πusable
max

Πprovided
max

Πusable
max

Πprovided

87.8%

45.0%

51.3%

86.3%

43.0%

49.8%

82.1%

36.6%

44.6%

73.4%

32.3%

44.0%

5minRAM 30min 120min 360min
max

Πusable
max

Πprovided
max

Πusable
max

Πprovided

75.1%

37.2%

49.5%

74.1%

36.1%

48.7%

71.5%

32.3%

45.2%

65.4%

22.8%

34.9%

Table 7.4: Theoretically usable and actually provided saving potential depending on different
values of ∆tmin. a) for CPU time b) for memory capacity

140



7.2 Resource Demand Model

The results are presented in Table 7.4. One can see that the theoretically usable saving

potential as well as the potential actually provided by our approach only slightly decreases

with increasing ∆tmin. As a result, the modeling approach can provide significant saving

potential to the scheduling approach, even when longer saving intervals are required because

of many unsafe VMs or many inactive servers.

7.2.5 Influence of Long Term Trends

The influence of a long term trend to the saving potential and the accuracy was analyzed in a

next experiment. The CPU time and memory behavior of a VM with a significant long term

trend was modeled once with and once without explicitly modeling the trend. The results are

presented in Table 7.5.

a) b)

LT modeled
CPU time

EC

)0( <
dyn

P δ
max

Πprovided

4.3%

36.2%

LT not modeled

no EC ECno EC

)0( <
stat

P δ 0.0%

1.4%

31.5%

0.3%

5.0%

29.7%

0.6%

15.7%

LT modeled
RAM

EC

)0( <
dyn

P δ
max

Πprovided

0.0%

0.1%

14.4%

LT not modeled

no EC ECno EC

)0( <
stat

P δ

0.1%

14.2%

0.0%

13.8%

12.9%

3.2%

7.4%

Table 7.5: The influence of long term trends to accuracy and saving potential, when the long
term trend is either modeled explicitly or not. a) for CPU time b) for memory.

One can see that not explicitly modeling the long term trend can lead to many underesti-

mates (13.2% in case of memory). Performing error correction could reduce them to 3.2% but

also strongly reduced the provided saving potential.

7.2.6 Different VMs

A set of 23 different VMs was analyzed in a last analysis to get a more general impression of

accuracy and saving potential provided by the new modeling approach. Observed data of two

month (∆tp2 = 61 days) was selected for the characterization phase.

co
u

n
t

10

0
≈0.1 days≈1.0 1.0 7.0

2
4

11

6

co
u

n
t

10

0
≈0.1 days≈1.0 1.0 7.0

2

6

10CPU

4.0

1 1

≈7.0

3

RAM
74% exact

18% correctible

9% unusable

a)

52% exact

39% correctible

9% unusable

b)

Figure 7.7: Predominant periods determined for a set of 23 different VMs. a) for CPU time
b) for memory

141



7 Experimental Assessment

First, the predominant periods were determined. The results are presented in Figure 7.7.

An appropriate period could be found for memory as well as for CPU time for a significant

number of VMs. The determined period slightly missed the appropriate one for some VMs.

The method suggested in [44] was applied to fit them to the exact ones. Unusable periods were

found in four cases (two for CPU time and two for memory). The demand behavior can be

only statically modeled (cf. Section 5.3) in those cases because of missing periodic behavior.

Furthermore, the accuracy of the forecasts was determined for all VMs with respect to

static and dynamic resource management. The provided saving potential was calculated as

well. The results of all VMs were summarized and are represented in Table 7.6 by their mean,

their standard deviation, and their maximum.

RAM CPU (forecasted Amax)

max

)0( <
dyn

P δ
max

Πprovided

0.0%

2.7%

Ø

)0( <
stat

P δ 0.0%

2.9%

CPU (fixed Amax)

std

0.0%

10.0%

35.1% 20.0% 78.2%

max

1.3%

3.9%

Ø

3.0%

4.4%

std

13.0%

20.4%

25.6% 27.4% 82.4%

max

0.0%

2.3%

Ø

0.0%

2.6%

std

0.0%

9.0%

49.6% 21.1% 84.6%

Table 7.6: Accuracy and saving potential of a set of 23 VMs. The CPU time was analyzed
twice once with forecasted Amax and once with Amax = Rmax.

The left three columns contain the results for the memory demand of the VMs. Underes-

timates of A(t) occurred in less than 3% of time in most cases. Saving potential of up 78%

could be provided to the scheduling approach.

Only some VMs led to a significant larger amount of underestimates. Less resources than

actually required were forecasted in up to 10% of time in worst case. The respective time

series (forecasted and measured) is presented in Figure 7.8 b).

1260

Rmax

Amax

C
P

U
 t

im
e

time [month]a) 1260

Amax

R
A

M

time [month]b)

Afor Ames Afor Ames

Figure 7.8: Exemplary time series for CPU time and memory that led to a significant amount
of underestimates.

One can see that memory demand is hardly varying during the first two month(the ones

used for characterization). The variation is suddenly getting significantly stronger after the

third month. The forecasts are exceeded by the real demand very often and the model is

continuously adapted upwards. The resource management or the administrator must change

142



7.2 Resource Demand Model

to the static model and recharacterize the dynamic one again in such a case.

Results that belong to CPU time modeled the way presented in this thesis are presented in

the middle of Table 7.6. Again, in most cases the actual demand was underestimated in less

than 3% of time. Savings of up to 82.4% could be provided.

A few of the time series led to significant underestimates comparable to memory. The time

series (forecasted and measured) that belong to the worst case is presented in Figure 7.8 a).

Again, the resource demand behavior suddenly increased after about 6 month. Such changes

influence the resource management even worse in contrast to memory demand. The reason

is that the maximally required CPU time Amax is forecasted as well as the time dependent

function A(t) using the models. The value of Amax can not be changed at runtime in contrast

to A(t). There is no way to adapt to any changes. A complete recharacterization of the models

must be performed. Furthermore, a new static safe distribution of VMs to servers must be

found based on the new models.

Additional results of analyses with CPU time are presented at the right side of Table 7.6.

But Amax was not forecasted but set to Rmax in this case comparable to memory. One can

see that the underestimates of this worst case could be strongly reduced this way.

7.2.7 Conclusion and Limits of the Analyses

Most of the resource demand time series of VMs can be modeled very well with the modeling

approach that has been presented in this thesis. Underestimates typically occurred in less

than 3% of time regarding the simulations with demand time series of real VMs that last over

one year. Such an amount of underestimates is hardly larger than the one of a pessimistic

known approach. But the saving potential that the new modeling approach provides to the

resource management to save energy is significantly higher. Most of the saving intervals are

long enough to be used by dynamic resource management to save energy.

The found predominant period significantly influences the accuracy and saving potential.

An appropriate one can be found exactly for the most VMs. Some of them slightly missed the

exact one, which can be corrected using known methods. These methods mainly try to adapt

the incorrect period to time periods that are typical in data centers (multiples of hours, days,

or weeks).

Finally, changed demand behavior can lead to significant underestimates. They can be

adapted very well, if these changes do not exceed the respective Amax. Otherwise, phase two

of the resource management concept must be repeated because Amax can not be increased

without determining a complete new safe distribution of VMs to servers.

This requirement is a weakness of the resource management concept. Future research can

try to extend the concept by a method that allows rebuilding a new safe distribution of VMs

to servers at runtime to overcome this drawback. Amax could be automatically adapted at

143



7 Experimental Assessment

runtime with this extension in case of unexpectedly increased resource demand.

The evaluation of the modeling concept is limited at some points. First, only a limited

set of resource demand time series was available. This way, statements about the models

are limited to only the respective VMs. Furthermore, the resolution of 5min per sample is

quite too low to guarantee any performance goals at all. Providing CPU time that has been

measured as an average over 5min will probably violate the performance goal, if a response

times of a few seconds must be guaranteed. Therefore, measuring intervals of far below one

second are required. The gathered data can be directly summarized at runtime in a histogram

that describes the averaging interval ∆tavg to reduce the runtime complexity of the model

characterization. Such fine grained resource demand time series were not available for the

evaluation. Hence, respective analysis must be performed by future research as well.

7.3 Statistical Static Resource Management

The fine grained SLO specification and the modeling approach have been analyzed only for

single VMs concerning resource saving potential and accuracy until now. The whole resource

management concept will be assessed in the next two sections. First, statistic static resource

management (cf. Chapter 5) will be analyzed within this section. Dynamic resource manage-

ment (cf. Chapter 6) will be regarded later on in Section 7.4.

7.3.1 Methodology

Two different approaches for statistic static resource management have been developed within

this thesis. The first one denoted by NewStatPess in the following pessimistically assumes

positive correlations between the resource demand behavior of different VMs. The second one

called NewStatOpt uses actual correlations for a more optimistic resource management.

Both were implemented in a simulation environment. VMs were simulated using demand

time series observed from real services. Resource demand models were characterized using

the first part of each time series comparable to the model evaluation. The analyzed resource

management approach determined a distribution of VMs to servers based on these models.

The second part of the time series simulated the actual demand of the VM. The simulation

environment could determine the resource utilization of each server at each time step based

on this demand to detect possible resource shortages.

The number of required servers as well as the amount of resource shortages that occurred

was a result of each simulation run. The number of servers was related to the servers that

pessimistic static resource management (cf. Chapter 4) required to quantify resource saving.

This pessimistic approach served as the baseline and will be called KnownPess from now on.

144



7.3 Statistical Static Resource Management

KnownPess very pessimistically assigns VMs to servers without taking any information about

the actual resource demand behavior into account to prevent any resource shortages.

Both evaluation criteria will be detailed some more in the following comparable to the

previous sections. The resource demand time series used for the simulation will be shortly

described as well before the results of the analyses will be presented and discussed.

Evaluation Criteria

The resource management approaches are evaluated with respect to server savings and the

amount of possibly occurring resource shortages. Energy savings are not directly used as

measure. The relation between saved servers and saved energy will be shortly discussed in

Section 7.3.4 to give an impression about expected energy savings as well.

Server saving can be formally described by following equation:

∆#̃srv =
#srv
pess −#srv

stat

#srv
pess

. (7.8)

The number of servers required by KnownPess is denoted by #srv
pess. The resulting number

when one of the statistic approaches was used is called #srv
stat. Savings ∆#̃srv are simply the

difference between both in relation to the number of servers required by KnownPess.

Resource shortages that can lead to SLO violations of a VM will only occur, if two conditions

are met. First, the resource capacity required by the VM at a time t exceeds the expected

maximum Amaxi for at least one resource type. Second, the overall resource demand at t of all

VMs placed on the respective server exceeds the servers capacity of the same resource type.

Only exceeding Amaxi will not lead to any problems as long as enough resource capacity is left

at the server for the additional demand.

A relative frequency P rsi of resource shortages that occurred for a VM i during a simulation

run can be defined as follows based on these conditions:

P rsi = P (Amesi (t) > Amaxi ∧
∑

j:B(j)=k

Rmesj (t) > Ck) with k = B(i). (7.9)

Actually required resources Amesi (t) are determined from the simulated resource demand of

VM i. This resource capacity should have been allocated to prevent any SLO violations.

Resources Amaxi were determined by the resource management approach to find a suitable

distribution of VMs to servers.

P rsi was determined for all VMs in each simulation run. The results will be represented by

their maximum, their mean, and their standard deviation in the following sections.

145



7 Experimental Assessment

Evaluation Scenario and Data Selection

The same data set like already used to evaluate the resource demand models (cf. Section 7.2.1)

served as the basis for this part of the evaluation as well. This initial set consisted of resource

demand traces of 23 services observed in a real data center. A set of 50 VMs was created out

of the original data set to simulate at least a small data center with a realistic size.

The first two month of each time series were used to characterize the models (∆tp2 =

61 days). The rest simulated the actual resource demand (∆tp3 = 192 days).

All servers had the same configuration in each simulation. Four different server configura-

tions were used in different analyses. They are presented in Table 7.7.

32 GB

normal

memory cap.

CPU cores

srv

pess
#

low RAM low CPU low RAM & CPU

8 GB 32 GB 8 GB

4x 4x 2x 2x

12 17 24 25

Table 7.7: Four different server configurations were used to evaluate the concept for static
resource management presented in this thesis. The number of servers required by
KnownPess is contained in the table for each configuration as well.

KnownPess was performed using each of the four configurations to distribute the VMs

to servers. The resulting number of servers served as the base line for hardware savings as

mentioned before. The results are presented in the table as well.

7.3.2 Comparison to Known Approaches

The following four different static resource management approaches were compared against

each other concerning the required server count and the frequency of resource shortages in a

first analysis:

• KnownPess: Pessimistic not statistic resource management as described in Chapter 4

(baseline for savings),

• KnownStat : Classical statistic resource management as suggested in [117, 58, 45],

• NewStatPess: The new statistic resource management that pessimistically overestimates

correlations as described in Section 5.4.2, and

• NewStatOpt : The new statistic resource management that additionally uses correlations

for resource management as described in Chapter 5.4.5.

146



7.3 Statistical Static Resource Management

The first one distributes VMs to servers according to required resources that are determined

using benchmarks. Enough resources are reserved for each VM to meet its demand even in

case of the maximally expected workload. No SLO violations caused by resource shortages

will occur. The second one has been shortly described in Section 5.4.1. Resource demand

is modeled using one single random variable. Required resource capacity is determined as

percentile of this variable. The second and third one are the approaches that were developed

within this thesis. They have been presented in Chapter 5.

All four approaches were used to distribute the set of 50 VMs to servers. The same SLO was

assigned to all of them in each simulation run. The fine grained specification that has already

been introduced in Section 7.1.1 (Figure 7.1 a)) was selected for both of the new statistic

approaches. Three different percentile based SLO specifications (Figure 7.1 b)) were used with

KnownStat. All of them guarantee the same performance like the fine grained specification as

described in Section 7.1.1. The normal server configuration (4 cores, 32 GB) was used in all

simulation runs.

Discussion of Results

The results are presented in Figure 7.9. First of all, one can say that statistical resource

management can in general significantly reduce the number of required servers compared to

the pessimistic not statistic approach. Savings between 17% and 42% could be achieved.

NewStatOpt

KnownStat P3

∆
#

sr
v

[%
]

a)

50

0

25

25

42 42

33
17

NewStatPess

KnownStat P2

KnownStat P1

NewStat

server savings resource shortages

KnownStat

Pess Opt P1 P2 P3

max

Ø

std

0.15% 0.15%

0.02% 0.02%

0.05% 0.05%

0.00% 0.12%

0.00% 0.06%

0.00% 0.05%

0.90%

0.40%

0.27%
b)

~

rs

iP

Figure 7.9: a) Server savings of different statistical static resource management approaches.
b) The respective relative frequencies of resource shortages.

Not all percentile based SLOs led to the same savings comparable to the evaluation result

of the fine grained SLO specification. Mainly the minimal performance goals ηmax that must

be achieved in any case limited the savings in this evaluation scenario. The less restrictive this

performance goal was selected, the more savings could be achieved by KnownStat independent

from the assigned probabilities.

NewStatPess could not achieve the same savings like KnownStat in most cases. This result

was expected, since positively correlated resource demand behavior is pessimistically assumed

by NewStatPess. The same savings could be only achieved, when correlations are used for a

147



7 Experimental Assessment

more optimistic planning (NewStatOpt).

An interesting fact concerns the additional savings of NewStatOpt. Although most VMs

have more or less positively correlated workload (correlation coefficient: between 0.3 and

0.6), using correlations for resource management could increase the savings from 25% up to

42%. The reason is that mainly the lower resource demand values that are dominating the

time series are positively correlated. The high spikes of different VMs are often uncorrelated.

They are even negatively correlated in some cases. Hence, using correlations can in any case

significantly increase the savings, since only the higher resource demand values are relevant

for static resource management.

The resulting distribution of VMs to servers hardly led to actual resource shortages despite

the comparable large amount of underestimates of the models (cf. Section 7.2). The reason

mainly was unused resource capacity that remained at the servers. Most of the VM required far

more than 50% of CPU time (Amaxi > 0.5). Hence, a significant amount of CPU time capacity

remained unused, since only 400% of CPU capacity (4 cores) was available. The remaining

capacity could not satisfy the demand of one further VM in many cases. Furthermore, VMs

require their maximal resource demand rarely at the same time as discussed before. Hence,

such negative correlations can prevent resource shortages, even if one VM exceeds the expected

demand.

The disadvantages of KnownStat have been discussed in Section 5.4.1. The assumption

of uncorrelated resource demand behavior was pointed out as the major weakness. Such

weakness did not lead to significant resource shortages in this evaluation scenario. The reason

is that mainly the minimal performance goal ηmax that must be achieved in any case. This

performance goal determined the required resource capacity Amaxi . Providing such minimal

resource capacity Amaxi to a VM results in far less resource shortages than specified by the

limits Pminηi . Hence, the incorrectly calculated probability distribution of the overall resource

demand had no effect at all.

One could now believe that performing any statistics to ensure meeting Pminηi does not

make any sense at all for realistic values of Pminηi and ηmax and for realistic resource demand

behavior. But these result are again an artifact of the low sample interval of the resource

demand. Shorter resource demand time series (with a duration of 21 days) that had a sample

rate of one sample per minute were analyzed as well. These time series already showed quite

a stronger deviation of the noise performance. As a consequence, the resulting percentile is

much higher compared to the one obtained when the strongly averaged time series were used.

Analyses with such more fine sampled time series were presented in [58]. The authors showed

that indeed neglecting correlations can lead to significant SLO violations.

It has been already pointed out in the previous section that sample intervals of 5min are

far to long to guarantee any performance goal at all. A sample rate of several samples per

148



7.3 Statistical Static Resource Management

second would be more appropriate. Neglecting correlations between such fine sampled resource

demand time series are expected to lead to significant larger errors according to the results

presented in [58]. Such analysis could not be performed within this evaluation due to missing

data.

7.3.3 Influence of Server Configuration

Server savings and the frequency of resource shortages were determined in a second analy-

sis for different server configurations. Especially the differences between NewStatPess and

NewStatOpt were focused.

Both of the new statistic approaches were simulated with each of the four server configura-

tions presented in Section 7.3.1. The achieved server savings are presented in Figure 7.10.

server savings

optimistic

pessimistic

optimistic

pessimistic

optimistic

pessimistic

optimistic

pessimistic

2 cores 4 cores

32 GB

8 GB

∆
#

sr
v

[%
] 50

0

25
25

42

0
30

20

54

12
32~

Figure 7.10: Servers savings when NewStatPess and NewStatOpt are applied for resource man-
agement with different server configurations.

In case of 32GB memory, CPU time was the limiting resource type that mainly decides about

the number of required servers. NewStatPess could achieve slightly less savings with 2 cores

compared to a 4 cores machine. Mainly the different ratios between resource capacity required

by a VM and the overall capacity provided by a server are responsible for this result. Applying

resource performance trade-offs typically slightly reduces the resource capacity required by each

VM. The lower the required capacity is in contrast to the servers capacity, the higher is the

probability that slightly reducing the capacity can lead to actual server savings.

Applying NewStatOpt could strongly reduce the number of required servers in both cases

in contrast. Resource management could significantly benefit from additionally considering

correlations especially in case of 2 CPU cores.

Memory was the limiting resource type, when servers with only 8GB memory capacity were

used. Resource management could hardly take some advantage of applying NewStatPess, since

resource performance trade-offs can be only applied to CPU time. NewStatOpt in contrast

could achieve around 30% server saving. This result is not surprising since memory demand

is varying over time as well as CPU time. Hence, correlations between the memory demand

time series can be also used to more efficiently distribute VMs to servers.

The relative frequencies of resource shortages determined in each analysis are presented

149



7 Experimental Assessment

Table 7.8. The maximal amount of resource shortages measured for a VM was below 1% in

4 cores, 32 GB

pess. opt.

max

Ø

std

0.15% 0.15%

0.02% 0.02%

0.05% 0.05%

pess. opt.

0.00% 0.86%

0.00% 0.03%

0.00% 0.12%

pess. opt.

0.26% 0.56%

0.03% 0.08%

0.07% 0.14%

pess. opt.

0.15% 0.15%

0.01% 0.02%

0.04% 0.04%

4 cores, 8 GB 2 cores, 32 GB 2 cores, 8 GB

Table 7.8: Measured relative frequencies of resource shortages, when NewStatPess or New-
StatOpt are applied. Four different server configurations were used.

all cases. The worst case of 0.86% occurred when memory capacity was the limiting resource

type and correlations were used while performing resource management (NewStatOpt).

7.3.4 Expected Power Savings in Data Centers

Only server savings achievable by statistical static resource management have been presented

until now. Actually resulting energy savings depend on the infrastructure required to run

servers in a data center, since power consumed by servers forms only one part of the overall

power consumption.

10% server savings for instance reduce server power consumption by 10% as well3. Power

consumed by the infrastructure components scales down by the same factor in best case so

that 10% of infrastructure power consumption are saved as well. The 10% server savings would

thus lead to 10% savings of the overall power consumption. The ratio between overall power

consumption and IT power consumption (known as PUE - power usage efficiency) remains

constant.

Such assumption is too optimistic in most cases. In general, larger data centers have a

better PUE than smaller ones. Hence, less than 10% energy saving must be expected if

proper resource management leads to 10% less required servers even if the data center can be

dimensioned smaller.

Only the power consumed by the saved IT components (server + network) can be saved

in worst case. The infrastructure power consumption remains constant. Modern data centers

can easily achieve a PUE of 2.0 or bellow. Half of the overall power consumption is caused by

IT components and half by additional consumers in this case. If from such a data center 10%

of IT components can be removed, the overall power consumption will be reduced by 5%.

As a result, the 42% of hardware saving achieved by NewStatOpt in the evaluation scenario

can lead to overall power savings of between 21% and 42%.

3But only, if no dynamic resource management is performed that switches servers off from time to time

150



7.4 Dynamic Resource Management

7.3.5 Conclusion and Limits of the Analyses

The evaluation results show that performing statistical static resource management can lead

to significant server savings compared to a pessimistic approach. The approaches presented in

this thesis achieved between 25% and 42% of server savings in a data center simulated with

resource demand time series observed from real services. Such server savings can reduce the

overall power consumption in a data center by between 12.5% and 42%.

The models used to perform resource management underestimated the actually required

resources several times due to changed demand behavior over time. Nevertheless, such un-

derestimates hardly led to actual resource shortages mainly because of unused capacity that

remains on the servers.

As expected, the results further showed that resource management can only benefit from

resource performance trade-offs, if CPU time is the limiting resource type. Using correlations

improves the results in any case even if the workload behavior of the VMs is slightly positively

correlated.

Limits of the analyses concern the sample rate of the resource demand time series used for

the simulation again. Especially the actual server savings might deviate from the presented

ones, when sample rates are used that are more appropriate to guarantee QoS goals such as

response time.

7.4 Dynamic Resource Management

The dynamic part of the resource management concept (presented in Chapter 6) will be as-

sessed in this last section of the evaluation chapter. Evaluation criteria are achievable energy

savings compared to static resource management and the amount of possible resource shortages

caused by forecasting errors of the models.

7.4.1 Methodology

The same simulation environment that has already been shortly presented in Section 7.3.1 was

used to assess dynamic resource management as well. VMs were simulated using demand time

series observed in a real data center. An implementation of the dynamic resource management

concept redistributed the VMs dynamically during the simulation with respect to the expected

resource demand. The utilization of all required servers at each simulated time point was

measured to detect resource shortages and to determine the energy consumption of the data

center.

A static distribution of VMs to servers was determined first according to the resource man-

agement concept. The dynamic part of this concept assumes that no resource shortages will

151



7 Experimental Assessment

occur at any time, when VMs are distributed to servers according to this safe static distribu-

tion. Resources Amaxi maximally required by the VMs were determined based on the whole

resource demand time series used for the simulation to not influence the analyses by violations

of this assumption. Statistic static resource management as presented in Chapter 5 was ap-

plied to determined an optimal static distribution. Correlations between the demand behavior

of the VM were taken into account as well (NewStatOpt) to find this distribution.

The evaluation criteria will be described more concrete in the following comparable to the

previous sections. The used hardware configurations, assumed migration times, and different

other parameters will be introduced as well.

Evaluation Criteria

The advantage of dynamic resource management compared to a static approach is that energy

is saved in times of low workload by switching off unused servers. Hence, these energy savings

are a main measure to assess the dynamic approach.

Time series describe the utilization and power state (active or standby) of each server at

each simulated time step as an outcome of each simulation run. A model (taken from [82])

that calculates the power consumption in a data center depending on the number of servers,

their current utilizations, and their current power states was used to get corresponding power

consumption values. Besides the servers itself, this model takes care of additional components

required to run them such as cooling infrastructure and network components for instance.

Interactions between them are taken into account as well.

The resulting power time series could have been integrated over time to get the overall

energy consumption. But to be independent of the simulation time, not energy consumption

but the mean power consumption was used as measure.

Each simulation run was performed twice, since not the power consumption itself but power

savings compared to static resource management should be used as evaluation criteria. Once

dynamic resource management was enabled and once not. The resulting mean power con-

sumptions are denoted by PWDC
dyn and PWDC

stat respectively in the following. Savings ∆P̃W
DC

are simply the difference between both normalized by the power value of the static case, which

can be formally expressed by:

∆P̃W
DC

=
PWDC

stat − PWDC
dyn

PWDC
stat

. (7.10)

The dynamic resource management approach presented in this thesis can only cause resource

shortage, if the resource capacity required by the VMs at a certain time t deviates from the

forecasts. It has already been presented in section 7.2, how often such wrong forecasts actually

occur using the demand behavior of real services. It will be determined within this section, how

152



7.4 Dynamic Resource Management

often they will actually lead to resource problems that could cause SLO violations. Therefore,

the frequency of resource shortages was determined during the simulations as follows:

P rsi = P (Amesi (t) > Afori (t) ∧
∑

j:B(j,t)=k

Rmesj (t) > Ck) with k = B(i, t). (7.11)

This approach is similar to the one used to assess the static resource management approach

in previous section. The difference is that violations can already occur in case of dynamic

resource management, if a VM requires more resource capacity than expected at a time t

(Amesi (t) > Afori (t)). In the static case, they only occur when the maximum Amaxi is exceeded.

The maximal duration of all occurred resource shortages was determined in addition to the

frequency as well. This value indicates, how fast a dynamic resource management approach

can resolve the unexpected problem.

Evaluation Scenario and Data Selection

The same set of 50 VMs that has already been used to assess the static resource management

concept (cf. Section 7.3.1) was used again to evaluate the dynamic one. The same four server

configurations (concerning memory and CPU time capacity) were used as well.

A data center with a PUE of 2.0 was simulated to determine the mean overall power con-

sumption. The underlying power models can be configured using three different parameter

sets. The one that represents today’s modern data center components concerning energy ef-

ficiency was selected. Server power consumption slightly depends on CPU utilization4 in this

configuration. The cooling infrastructure also slightly adapts to the heat dissipation of the IT

components that are running in the data center.

In addition, dynamic resource management requires information about the duration of a

server startup and shutdown (∆tupk and ∆tdownk ), the servers break even time (∆tbek ), and the

migration time of a VM (∆tmigi ). The startup and shutdown time of a server was set to 1min

for the analyses, which is quite realistic when STR (Save to Ram) is supported. Already a break

even time of below 3min would be long enough to compensate the energy overhead caused

while shutting down and starting up a server. Despite this fact, a break even time of 15min

was selected to limit the number of server startups and shutdowns. A dedicated 100Mbit/s

network infrastructure was assumed to support live migration of the VMs between the servers

to determine the maximal migration times of the VMs. This network infrastructure should

achieve a throughput of around 10MBytes/s. A maximal migration time was determined for

all VMs based on this estimate and on the maximal memory demand Amaxi of the respective

VM.

4DVFS or other power management techniques are supported and enabled.

153



7 Experimental Assessment

7.4.2 Comparison to Known Approaches

The dynamic resource management concept presented in this thesis was compared to a known

approach in a first analysis. The known approach used a trend based forecasting method.

VMs are iteratively redistributed to servers based on the trend measured in the closest past.

No safe distributions of VMs to servers are considered. The scheduling algorithm left a certain

amount of reserve capacity on each server while planning the redistributions to take care of

the noise. Furthermore, hysteresis was implemented to prevent unnecessary VM moves.

The free parameters of this approach (capacity borders and hysteresis levels) were character-

ized in two version. A pessimistic one, called known pess., removed VMs from a server, when

the trend exceeded 40% of the servers capacity. The optimistic version, known opt., reacted,

when the trend exceeded 70%. All VMs must be moved to other servers to shutdown a server.

But VMs are only moved, if at none of the destination servers a second border (lower than

the first one to realize hysteresis) is exceeded due to these moves. 20% was selected as lower

border for the pessimistic approach. 40% was the lower border for the optimistic version.

Discussion of Results

The determined power savings as well as the measured frequency and maximal duration of

resource shortages are listed for all three analyzed approaches in Table 7.9.

power savings resource shortages

Ø

new

known pess.

known opt.

23.3 %

19.9 %

34.9 %

0.05% 0.02%

0.06% 0.02%

0.79% 0.57%

0.02%

0.02%

0.09%

max std max. duration

0:15h

2:05h

2:00h

Table 7.9: Power savings, frequency of resource shortages, and maximal duration of resource
shortages determined in simulations with three different dynamic resource manage-
ment approaches.

The approach presented in this thesis could reduce the power consumption in a data center

by about 23% in average in the simulated scenario. This would lead to overall energy savings

of about 23% as well. The frequency of measured resource shortages is far below the one

determined for the static resource management approach. The reason mainly is the ability

of the dynamic approach to adapt to changed demand behavior. Once underestimates were

detected, they never occurred again in following instances of the predominant period (typically

1 or 7 days in this scenario).

Resource demand suddenly strongly increased the expected one in seldom cases. The result-

ing resource shortages were detected at runtime and resolved by the approach. The maximal

154



7.4 Dynamic Resource Management

duration until a resource shortage was resolved was between 10min and 15min.

One can further see in the table that known pess. could achieve nearly the same power

savings like the new approach with nearly the same amount of occurred resource shortages.

But it took a significant longer time to resolve them. More than two hours were needed in

worst cases.

The approach known opt. could strongly increase the power savings by more than 10%.

But the frequency of measured resource shortages strongly increased at the same time as well.

Resource shortages occurred in more than 0.5% of time in average, which sounds not very much

so far. But the problem is that due to the reactive character of the approach, the resource

shortages occurred more or less regularly not only when the demand behavior unexpectedly

changed. A resource shortage occurred at some servers every two or three days in average that

typically last for 5min up to 40min. Such behavior is absolutely unacceptable for clients of

an IT service.

Approaches that work nearly the same way like the one analyzed in this section can be

currently bought as products (such as VMware DRS / DPM [123]). Different additional ones

known from research might exceed the achievable power savings. But none of them takes care

of migration and server reactivation time as exhaustively discussed in Section 6.4.1. Hence,

they are expected to even exceed the frequency of resource shortages as well as the duration

until resource shortages are resolved.

7.4.3 Influence of Server Configuration and Virtualization Environment

The dynamic resource management approach was analyzed with four different server config-

urations comparable to the static one. In addition, two different underlying virtualization

concept were used as well. Memory demand can be either fixed (e.g. when Xen Server is used)

or varying (e. g. in case of VMware ESX) depending on the virtualization environment as

described in Section 3.1.4. Such difference was expected to strongly influence the achievable

power savings and hence was analyzed additionally.

Discussion of Results

The results are presented in Table 7.10. One can clearly see that increasing the resource

capacity provided by a server increases the power savings achievable by dynamic resource

management as well. This result is mainly caused by additional flexibly the resource man-

agement can draw on, when the ratio between resource demand of VMs and server capacity

decreases. Unused capacity can be more easily filled up with smaller VMs than with larger

ones.

One can further see that limited memory capacity stronger reduces the savings than limited

CPU time capacity. The reason simply is an offset of memory demand that typically is not

155



7 Experimental Assessment

2 cores, 8GB

power savings resource shortages

Ø

15.8 %

14.9 %

0.03%

0.07%

max. duration

0:10h

0:15h

power savings resource shortages

Ø

6.9 %

14.9 %

0.01%

0.02%

max. duration

0:10h

0:20h2 cores, 32GB

9.7 % 0.06% 0:10h 0.0 % 0.00% 0:00h4 cores, 8GB

23.3 % 0.02% 0:15h 21.8 % 0.02% 0:15h4 cores, 32GB

varying memory demand (VMware) fixed memory demand (Xen Server)

Table 7.10: Power savings and resource shortage for four different server configurations and
two different virtualization concepts

deceeded by the VMs. CPU time demand very often decreases down to 0%. Memory demand

typically does not.

One must ensure in any case that not memory capacity is the limiting resource type, if

virtualization environments are used that only support fixed memory allocation. Otherwise,

the benefit one can take from dynamic resource management strongly reduces or completely

vanishes. The reason is simple again. Memory demand is not varying any longer, when such

virtualization environmentss are used. No redistributions that lead to unused servers are

possible at all without any variations.

Hardly some significant dependencies can be extracted from the results with respect to

the resource shortages. One can only say that using fixed allocated memory seems to slightly

reduce the amount of resource shortages in general. The reason might be that only the demand

of one resource type is forecasted in this case so that the amount of overall forecasting errors

is reduced this way.

7.4.4 Limiting the Impact of Forecasting Errors

A method has been presented in Section 6.5.5 to limit the impact of forecasting errors. There-

fore, two different parameters can be set by an administrator. First, the strength of possible

resource shortages can be limited per VM by allocating a fixed amount of resource capacity

Amini . This minimal amount of resources is guaranteed to the VM in any case. Second, a

maximal duration ∆tresolvei can be defined until which a possible resource shortage must be

resolved.

The selection of both parameters can influence possible resource savings. Hence, analyses

were performed for different values of them.

Discussion of Results

The results are presented in Figure 7.11. The left bar plot shows power savings achieved for

different values of ∆tresolvei . The right one presents the savings for different values of Amini .

156



7.4 Dynamic Resource Management

The same ∆tresolvei was selected for all of the 50 VMs. The value of Amini was selected as

relative share of the respective maximal resource demand Amaxi of the VMs.

0.0

15min

limited min

i
Alimited resolve

i
t∆

60min 120min30min
max

i
A0.75 ⋅

12.5

25

6.0 6.0

12.8

0.0

16.6

23.0

max

i
A0.5 ⋅

max

i
A520. ⋅

p
o

w
er

sa
v

in
g

s 
[%

]

Figure 7.11: Achieved power savings, when the impact of forecasting errors is limited. Different
values of the limiting parameters Amini and ∆tresolvei were selected.

Reserving fixed capacity Amini for a VM to prevent performance slowdowns below a certain

threshold does not influence the achievable savings that much. Reserving 25% of the maximally

required resources for a VM leads to nearly the same savings like without any limits.

Limiting ∆tftr by setting ∆tresolvei strongly influences the savings in contrast. Setting

∆tresolvei to 15min can not lead to any savings at all as expected, since the break even time of

a server is already 15min. Limiting ∆tftr to values up to 2h significantly reduced the achieved

savings in any case. ∆tftr grew up to 6h in the simulations without any limits. Hence, reduced

savings when limits are set are not unexpected.

The strategy that ensures to meet ∆tresolvei is very pessimistic. Resolving any of the resource

shortage did actually not exceed 20min in all of the analyses performed. Basically it could in

worst case. But the question is, if in such a case restoring the safe distribution will resolve the

problems at all. One must finally conclude that limiting the duration of possible performance

slowdowns this pessimistic way does not make any sense for realistic values of ∆tresolvei .

May be individually treating the respective ∆tresolvei of the VMs can help to improve the

efficiency. The algorithm can try to find a resolve schedule that first solves problems of VMs

with a more restricted value of ∆tresolvei . Problems of VMs with weaker restrictions or without

any restrictions at all can be resolved later.

Another option is to allow parallel migrations. ∆tftr itself will not grow that much in this

case as already discussed in Section 6.4.9.

7.4.5 Scalability

The dynamic resource management approach will be evaluated concerning scalability within

this last section. It will be mainly answered, how the approach behaves with an increasing

number of managed VMs. Mainly two aspects are important. First, it will be analyzed how

the achievable power savings develop with an increasing number of VMs. And second, the

computing power the algorithm needs to manage the VMs will be regarded.

157



7 Experimental Assessment

Energy Savings - Large Cluster vs. Smaller Independent Clusters

It has been already discussed in Section 6.4.9 that the planning period ∆tftr increases with

an increasing data center size (in terms of the number of managed VMs). It was shown in

the model evaluation section (Section 7.2.4) that the usable saving potential provided by the

models gets more and more lost with an increasing planning period. On the other hand,

the flexibility to manage VMs (statically as well as dynamically) increases with an increasing

number of VMs. Hence, it is expected that a certain number of VMs can be managed optimally

by the resource management. The VM set could be better split up into individually managed

pools, when this number is exceeded.

A set of 200 VMs was created out of the initial set to find this threshold. This set was

partitioned into equally sized clusters that were management individually by the dynamic

resource management approach. Four different cluster sizes with between 25 and 200 VMs

each were analyzed. The number of required servers and the average power consumption

was determined by simulations in each case. Once only static and once additionally dynamic

resource management was performed. The results are presented in Figure 7.12.

Ø
p

o
w

er
[k

W
]

40

20

0

23.9 25.125.4 23.7

38.2 34.4 32.6 32.6

1 x 200VMs

8 x 25VMs

4 x 50VMs

2 x 100VMs

# servers

41

36

34

34

dynamic static only

Figure 7.12: Overall power consumptions and the number of required servers in a data center
with 200 VMs. Equal sized clusters of VMs were individually managed by the
resource management approach. Four different cluster sizes were analyzed.

First, one can see that increasing the cluster size also increases the efficiency of static resource

management as expected. With an increasing number of managed VM the number of required

servers gets closer to the theoretical minimum. Hence, the overall power consumption of the

data center decreases as well.

The same can be observed for dynamically managed VMs until a cluster size of 50 VMs is

exceeded. The power savings that are achievable by dynamic resource management decrease to

strong with more than 50 VMs managed together. The overall power consumption increased

despite the fact that with a cluster size of 100 VMs two complete servers could be saved.

As a result, one can conclude that around 50 VMs can be optimally managed as a whole.

Sets with significantly more than 50 VMs should be better split up and managed individually.

But it has to be noticed that this result is only valid for the analyzed scenario. The opti-

mal cluster size will be much higher, if for instance a 1GBit migration network is used that

158



7.4 Dynamic Resource Management

significantly increases the migration speed. The same is true for lower break even or startup

and shutdown times of servers. Mainly the development of ∆tftr and the saving potential that

workload variations provide to the dynamic resource management decide about the optimal

cluster size.

Computational Effort Required to Manage the VMs

The worst case runtime complexity has already been discussed in Section 6.4.9. Some infor-

mation about the actually required computational effort will be provided within this section.

One can say that for a normal number of VMs no runtime problems are expected to occur

with respect to the duration of the simulation runs. A simulation run of one month with 200

VMs performed on a normal desktop PC lasted only about 15min. It is not expected that far

more than 200 VMs should be ever managed as a whole regarding the results concerning the

optimal cluster size.

A simulation step of 5min was used because of the sample rate of the used simulation data.

This means that the algorithm reevaluates the current distribution every 5min. Reducing this

interval size would increase the computational effort the algorithm requires because of the

increased numbers of samples to be evaluated.

But it is not expected that strongly reducing this interval size would lead to significant more

benefit. If for instance the algorithm would reevaluate the current distribution every minute,

a server is deactivated 4min earlier and can remain switched off for further 4min in best case.

The amount of possible resource shortages is not influenced by this reevaluation interval as

long as the forecasts do not deviate from the actual resource demand.

7.4.6 Conclusion and Limits of Analyses

One can conclude that dynamic resource management can strongly reduce the power consump-

tion in a data center compared to only performing static resource management. The approach

presented in this thesis could reduce the overall power consumption of a whole data center by

about 20% in a simulated scenario. Unexpectedly changed demand behavior led to resource

shortages in only a few cases that could be automatically resolved within maximally 20min.

A known trend based approach in contrast caused resource shortages that lasted significantly

longer. Furthermore, these resource shortages occurred very regularly every two or three days.

One should ensure that not memory is the limiting resource type, when dynamic resource

is applied. Otherwise, achievable energy savings are strongly limited especially if the virtual-

ization environment supports only fixed memory allocation. Limiting the impact of resource

shortages will lead to reduced energy savings as well. Especially a limit of the maximal du-

ration of a possible resource shortage can vanish any benefit at all. Finally, analyses showed

159



7 Experimental Assessment

that there exist an optimal number of VMs that can be managed by the resource management

approach as a whole. If this number is exceeded, more energy can be saved when VMs are

clustered into individually managed pools.

The analyses performed to evaluate the dynamic resource management are limited at some

points again. The strongly averaged sample interval of the used simulation data limits the

validity of the results comparable to previous analyses. It is expected that the actually re-

quired resource demand is varying stronger. The achieved energy savings might be lower than

determined as a consequence. The frequency of actual resource shortages might increase at

the same time.

A second limitation concerns the simulation data as well. Only resource demand time series

of 23 different services could be used for the evaluation. The same time series were used more

than once in one simulation run to get data centers with a realistic size. As a result, some of

the VMs had perfectly positively correlated resource demand behavior, which typically does

not occur in real data centers. It is expected that without this artifact actually more power

can be saved than determined. Furthermore, the frequency of resource shortages should be

lower without this artifact because the probability that uncorrelated resource demand exceeds

the capacity border is far lower than with correlated demand.

7.5 Summary

The advantages of statistic resource management compared to a pessimistic approach were

evaluated at the beginning of this chapter. CPU time savings of up to 20% could be achieved

by static resource management for an individual service. Dynamic resource management could

reduce the provided CPU time capacity by about 8% in average. It was further shown that

the new fine grained SLO specification is much more flexible compared to known percentile

based ones. At least the same or even more resource savings could be achieved, while the same

performance goals were guaranteed.

Statistic static and especially dynamic resource management relies on exact forecasts of the

demand behavior of the VMs in the future. Models that have been developed for this purpose

have been assessed in the second part of this chapter. The models typically underestimated

the actually required resources in less then 3% of time in the analyzed scenarios. Pessimistic

known modeling approaches could achieve nearly the same results. But they hardly provided

some potential for energy savings to the scheduling algorithm at the same time. A more

optimistic known approach provided far more potential but underestimated significantly more

often the actual demand.

Statistic static resource management as presented in this thesis was analyzed in the third

section of this chapter. The analyzed approach bases on the new models and supports the

160



7.5 Summary

new fine grained SLO specification to trade off resources against performance. The number of

required servers could be reduced by between 25% and 40% in a simulation of realistic services.

Respective energy savings in data center of between 12.5% and 42% could be achieved by these

server savings. Forecasting errors of the models hardly led to actual resource shortages of

VMs (in below 0.2% of the simulated time) mainly because of resource capacity that remained

unused on the servers. Considering correlations while performing static resource management

can strongly reduce the amount of resource shortages. A known approach that expected

uncorrelated demand behavior of the VMs achieved the same server savings like the new

approach but led to far more resource shortages.

The dynamic resource management approach presented in this thesis was assessed in the

last part of the evaluation. Energy saving of about 20% could be achieved compared to using

only statistic static resource management in simulations of a realistic data center scenario.

Known trend based approaches could achieve the same savings. But they led to far more

resource shortages that occurred every two or three days and lasted for up to two hours, which

is unacceptable for clients of the services. The new approach caused only resource shortages,

when the demand behavior of the VMs unexpectedly changed. It automatically resolved the

problem in less than 20 minutes in these cases.

The validity of the results is limited at mainly two points. First, only a limited set of real

resource time series could be used for the analyses. Hence, the results are limited to the

underlying services of these time series. A second limit concerns the sample rate of the time

series (5 min. per sample). More fine grained resource demand time series are needed to train

the models, when QoS attributes such as response time or throughput have to be guaranteed.

Such time series can currently not be captured due to missing technical prerequisites in all

available virtualization environments.

161





8 Summary and Conclusion

The continuously increasing energy consumption in data centers slowly becomes a serious

problems. Not only from an ecological but also from an economical and in the meantime a

technical view such increase in power demand is no longer feasible. Resource management can

help to reduce the power consumption by more efficiently using active server hardware.

A novel holistic concept for static and dynamic resource management that follows this idea

has been presented within this thesis. This concept consists of three phases and supports the

whole process needed to deploy services into an automatically managed data center.

The concept extends different known approaches by several ideas that improve the efficiency

of resource management and hence can save required hardware resources and energy. Different

weaknesses of the known approaches have been addressed as well. The following characteristics

distinguish the new concept from the state of the art:

• The introduced SLO specification allows trading off resource capacity against perfor-

mance in a flexible way.

• The modeling approach takes care of the special characteristics of the services’ demand

behavior (e.g. missing stationarity due to varying noise performance).

• Correlations between the resource demand of different services are regarded, which is

required to prevent SLO violations.

• Interdependencies between required and provided resource capacity are considered.

• The scheduling approach for dynamic resource management can resolve all upcoming

resource shortages right in time assuming that the forecasted resource demand meets

the actual one.

• The dynamic part of the resource management concept can adapt changed demand

behavior at runtime.

8.1 Conclusion

Reserving maximally required resources for a service all the time is a widely used approach for

static resource management at the moment. Applying statistic static resource management

163



8 Summary and Conclusion

as presented in this thesis can significantly reduce the number of required hardware servers

compared to the pessimistic approach. Simulations with resource demand time series of services

observed in a real data center could achieve server saving of between 25% and 42%. These

savings can result in energy savings of between 12.5% and 42% depending on the infrastructure

contained in the data center. Applying resource performance trade-offs and using correlations

while performing resource management mainly led to these savings. Resource shortages that

could lead to SLO violations occurred in less than 0.2% of the simulated time (ca. 1 year).

Additionally applying the dynamic part of the resource management concept can further

reduce the energy consumption. Savings of about 20% could be achieved in simulations of the

same data center scenario like used to assess the static part. The underlying server hardware

and data center infrastructure represents the state of the art. Hence, such savings could be

actually achieved in today’s data centers. The concept led to resource shortages in less than

0.06% of the simulated time mainly due to the ability of the models to adapt to changed

demand behavior.

Despite the comparable low frequency of resource shortages, one must conclude that they

basically can occur. Observing resource demand in the past to extrapolate demand behavior

expected in the future can result in forecasting errors in any case. Such errors can lead to

resource shortages and finally to SLO violations. Furthermore, the clients can provoke SLO

violations by changing the usage behavior to for instance get a financial penalty from the

Service Provider. Only the pessimistic approach that does not take any user behavior into

account for resource management decisions can completely exclude SLO violations caused by

resource shortages.

Finally, the validity of the evaluation results is limited at some points due to the limited

set of resource demand time series that was available. Especially the sample rate of 5 min.

per sample is far too low to guarantee most realistic performance goals (such as a response

time of a few seconds for instance). Using the models with a more realistic sample rate might

influence the achievable energy savings as well as the amount of occurring resource shortages.

8.2 Outlook

Ongoing research must further work out the concept at different points to be applicable in a

real data center. Some of them will be shortly summarized in the following to motivate some

future research.

• Include network resource management

Network resource management is only considered in a very static way not taking actual

network traffic into account. Models that describe the network system in the data center

and the network traffic of the services are needed to address this issue. Using these

164



8.2 Outlook

models, the resource management concept can decide where to place VMs taking network

as shared resource into account similar to memory and CPU time.

• Directly measure user interaction with services for resource management

It has been discussed in Section 5.2.5 that determining required resource capacity from

observed resource demand can be difficult. Especially if response time is the targeted

QoS attribute, a very high sample rate for CPU time might be necessary. It can be

easier to directly measure and model the user interactions with the service. In principal,

the same models like those presented in this thesis should work for the user behavior as

well, since resource demand is somehow only a mapping of the user behavior. Required

resource capacity can then be derived using special performance models of the service.

• Extend static resource management to adapt changed demand behavior

The concept until now assumes one static distribution of VMs to servers that never

changes at runtime. Changed demand behavior can not be adapted this way. Further-

more, increasing long term trends must be taken into account, which limits the saving

potential. Ongoing research can try to determine new static distributions at runtime that

consider changed demand behavior. A challenge is to change between them at runtime

while dynamic resource management is performed in parallel.

• Allow parallel scheduling of operations

The dynamic scheduling algorithm plans redistribution operations strongly sequentially.

In principal, the underlying virtualization environments supports parallel migrations and

server startups. Using this ability could further increase the energy savings. For this,

the scheduling algorithm must take care of the increased migration delay.

• Integrate infrastructure components into resource management decisions

Dynamic resource management leaves several degrees of freedom unused. Typically,

different servers can be reactivated to resolve a resource shortage. The same can be true

when the resource demand decreases. A subset of different servers can be emptied to be

shut down. These options can be used to take the state of the cooling infrastructure into

account. The heat dissipation in a data center can be equalized out this way, which can

help to save additional energy due to a more efficient cooling.

Finally, one can conclude that this thesis solved several open questions in the field of resource

management that can help to reduce the energy consumption in data centers. The concept

itself opens many new questions that provide much potential for ongoing research.

165





Glossary

home server A home server of a VM is the server on which the VM is placed according to a

safe distribution of VMs on servers.

Internet Service Provider A company that provides its customers access to the Internet.

ISP Abbreviation for Internet Service Provider, see: Internet Service Provider.

live migration The live migration technique enables the move of a virtual server between two

hardware servers without interrupting the service deployed on the virtual server.

LPM Abbreviation for Load and Power Management, see Section 3.3.1.

predominant period The dominating period in a time series with different overlaid periods.

QoS Abbreviation for Quality of Service, see: Quality of Service.

Quality of Service The quality of a service is typically defined by a set of service dependent

metrics such as response time or throughput that assess how good a client can use the

service at a time.

safe distribution A safe distribution of VMs to servers provides enough resource capacity to

all VMs all the time. No redistributions are necessary to prevent SLO violations.

server virtualization A techniques that allows different virtual servers to share one real hard-

ware server.

Service Level Agreement A contract between a client and a Service Provider that defines a

wanted Quality of Service.

Service Level Objective Service Level Objective are parts of a Service Level Agreement that

define an expected Quality of Service level.

Service Provider A provider of an IT service typically deployed in a data center.

SLA Abbreviation for Service Level Agreement, see: Service Level Agreement.

167



Glossary

SLO Abbreviation for Service Level Objective, see: Service Level Objective.

SP Abbreviation for Service Provider, see: Service Provider.

unsafe distribution An unsafe distribution of VMs to servers does not provide enough resource

capacity to all VMs all the time. Redistributions might be necessary to prevent SLO

violations.

Virtual Machine A virtual server on which a service and its operating system can be installed.

Different of these virtual servers can share the same real hardware server.

Virtual Machine Monitor The part of a virtualization environment that schedules the accesses

of different Virtual Machines to the real hardware server.

virtualization environment A hardware and software system that realizes server virtualiza-

tion. This technique is focused within this thesis to allow different services to share the

same hardware server.

VM Abbreviation for Virtual Machine, see: Virtual Machine.

VMM Abbreviation for Virtual Machine Monitor, see: Virtual Machine Monitor.

168



Bibliography

[1] T. F. Abdelzaher, K. G. Shin, and N. Bhatti. Performance guarantees for web server end-

systems: A control-theoretical approach. IEEE Transactions on Parallel and Distributed

Systems, 13:80–96, 2002.

[2] G. Aggarwal, R. Motwani, and A. Zhu. The load rebalancing problem. In SPAA ’03:

Proceedings of the fifteenth annual ACM symposium on Parallel algorithms and archi-

tectures, pages 258–265, New York, NY, USA, 2003. ACM.

[3] R. Agrawal, M. J. Carey, and L. W. Mcvoy. The performance of alternative strategies

for dealing with deadlocks in database management systems. IEEE Transactions on

Software Engineering, SE-13(12):1348–1363, 1987.

[4] A. V. Aho and J. D. Ullman. Foundations of Computer Science: C Edition. W. H.

Freeman, 1994.

[5] A. V. Aho and J. D. Ullman. Foundations of Computer Science: C Edition, chapter 9

The Graph Data Model, pages 484–495. W. H. Freeman, 1994.

[6] A. V. Aho and J. D. Ullman. Foundations of Computer Science: C Edition, chapter 9

The Graph Data Model, pages 495–497. W. H. Freeman, 1994.

[7] J. Allspaw. The Art of Capacity Planning, chapter 2 Setting Goals for Capacity. O’Reilly

Media, Inc., 2008.

[8] J. Allspaw. The Art of Capacity Planning, chapter 1 Goals, Issues, and Processes in

Capacity Planning. O’Reilly Media, Inc., 2008.

[9] J. Allspaw. The Art of Capacity Planning, chapter 3 Measurement: Units of Capacity.

O’Reilly Media, Inc., 2008.

[10] J. Allspaw. The Art of Capacity Planning, chapter 4 Predicting Trends. O’Reilly Media,

Inc., 2008.

[11] D. Ardagna, M. Tanelli, M. Lovera, and L. Zhang. Black-box performance models for

virtualized web service applications. In WOSP/SIPEW ’10: Proceedings of the first

169



Bibliography

joint WOSP/SIPEW international conference on Performance engineering, pages 153–

164, New York, NY, USA, 2010. ACM.

[12] E. Arzuaga and D.R. Kaeli. Quantifying load imbalance on virtualized enterprise servers.

In WOSP/SIPEW ’10: Proceedings of the first joint WOSP/SIPEW international con-

ference on Performance engineering, pages 235–242, New York, NY, USA, 2010. ACM.

[13] L. A. Barroso and U. Holzle. The case for energy-proportional computing. Computer,

40(12):33–37, 2007.

[14] F. Belik. An efficient deadlock avoidance technique. IEEE Transactions on Computers,

39(7):882–888, 1990.

[15] A. Beloglazov and R. Buyya. Adaptive threshold-based approach for energy-efficient

consolidation of virtual machines in cloud data centers. In Proceedings of the 8th In-

ternational Workshop on Middleware for Grids, Clouds and e-Science, MGC ’10, pages

4:1–4:6, New York, NY, USA, 2010. ACM.

[16] L. Benini, A. Bogliolo, G. A. Paleologo, and G. De Micheli. Policy optimization for dy-

namic power management. Computer-Aided Design of Integrated Circuits and Systems,

IEEE Transactions on, 18(6):813–833, 1999.

[17] N. Bobroff, A. Kochut, and K. Beaty. Dynamic placement of virtual machines for manag-

ing sla violations. In Proc. 10th IFIP/IEEE Int. Symp. Integrated Network Management

IM ’07, pages 119–128, 2007.

[18] D. Borgetto, G. Da Costa, J.-M. Pierson, and A. Sayah. Energy-aware resource alloca-

tion. In Proc. 10th IEEE/ACM Int Grid Computing Conf, pages 183–188, 2009.

[19] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis, chapter 1

Introduction to Competitive Analysis: The List Accessing Problem. Cambridge Univer-

sity Press, 1998.

[20] E.V. Carrera, E. Pinheiro, and R. Bianchini. Conserving disk energy in network servers.

In Proceedings of the 17th annual international conference on Supercomputing, ICS ’03,

pages 86–97, New York, NY, USA, 2003. ACM.

[21] J. Carter and K. Rajamani. Designing energy-efficient servers and data centers. Com-

puter, 43(7):76–78, 2010.

[22] G. Casella and R. L. Berger. Statistical Interference, chapter 2, pages 47–48. Duxbury

Press, 2nd edition, 2001.

170



Bibliography

[23] A. Chandra, W. Gong, and P. Shenoy. Dynamic resource allocation for shared data

centers using online measurements. In SIGMETRICS ’03: Proceedings of the 2003 ACM

SIGMETRICS international conference on Measurement and modeling of computer sys-

tems, pages 300–301, New York, NY, USA, 2003. ACM.

[24] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and R. P. Doyle. Managing

energy and server resources in hosting centers. In Proceedings of the eighteenth ACM

symposium on Operating systems principles, SOSP ’01, pages 103–116, New York, NY,

USA, 2001. ACM.

[25] J. S. Chase and R. P. Doyle. Balance of power: Energy management for server clusters.

In In Proceedings of the 8th Workshop on Hot Topics in Operating Systems (HotOS,

2001.

[26] C. Chekuri and S. Khanna. On multi-dimensional packing problems. In SODA ’99:

Proceedings of the tenth annual ACM-SIAM symposium on Discrete algorithms, pages

185–194, Philadelphia, PA, USA, 1999. Society for Industrial and Applied Mathematics.

[27] G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao, and F. Zhao. Energy-aware server

provisioning and load dispatching for connection-intensive internet services. In NSDI’08:

Proceedings of the 5th USENIX Symposium on Networked Systems Design and Imple-

mentation, pages 337–350, Berkeley, CA, USA, 2008. USENIX Association.

[28] Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q. Wang, and N. Gautam. Managing

server energy and operational costs in hosting centers. In SIGMETRICS ’05: Proceedings

of the 2005 ACM SIGMETRICS international conference on Measurement and modeling

of computer systems, pages 303–314, New York, NY, USA, 2005. ACM.

[29] Citrix Systems, Inc. XenServer - overview. http://www.citrix.com/English/ps2/

products/product.asp?contentID=683148.

[30] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and A. Warfield.

Live migration of virtual machines. In NSDI’05: Proceedings of the 2nd conference on

Symposium on Networked Systems Design & Implementation, pages 273–286, Berkeley,

CA, USA, 2005. USENIX Association.

[31] I. Correia, L. Gouveia, and F. Saldanha-da Gama. Solving the variable size bin packing

problem with discretized formulations. Comput. Oper. Res., 35(6):2103–2113, 2008.

[32] J. D. Cryer and K. Chan. Time Series Analysis With Applications in R, chapter 2

Fundamental Concepts. Statistics Texts in Statistics. Springer Science+Business Media,

LLC, 2nd edition, 2008.

171

http://www.citrix.com/English/ps2/products/product.asp?contentID=683148
http://www.citrix.com/English/ps2/products/product.asp?contentID=683148


Bibliography

[33] J. D. Cryer and K. Chan. Time Series Analysis With Applications in R. Statistics Texts

in Statistics. Springer Science+Business Media, LLC, 2nd edition, 2008.

[34] J. D. Cryer and K. Chan. Time Series Analysis With Applications in R, chapter 4 Models

For Stationary Time Series. Statistics Texts in Statistics. Springer Science+Business

Media, LLC, 2nd edition, 2008.

[35] J. D. Cryer and K. Chan. Time Series Analysis With Applications in R, chapter 10

Seasonal Models. Statistics Texts in Statistics. Springer Science+Business Media, LLC,

2nd edition, 2008.

[36] J. D. Cryer and K. Chan. Time Series Analysis With Applications in R, chapter 3 Trends.

Statistics Texts in Statistics. Springer Science+Business Media, LLC, 2nd edition, 2008.

[37] K. Dunlap and N. Rasmussen. The advantages of row and rack-oriented cooling archi-

tectures for data centers. Technical report, American Power Conversion Corp. (APC),

2006.

[38] H. Eckey, R. Kosfeld, and M. Türck. Wahrscheinlichkeitsrechnung und Induktive Statis-

tik: Grundlagen - Methoden - Beispiele (Probability theorie and inductive statistics:

basics - methods - examples), chapter Stichproben (Samples). Gabler, 2005.

[39] European Commission - DG JRC. Code of conduct on energy efficiency and qual-

ity of ac uninterruptible power systems. http://www.bfe.admin.ch/php/modules/

publikationen/stream.php?extlang=de&name=de_290024973.pdf, Dec 2006.

[40] K. Fichter, C. Clausen, and M. Eimertenbrink. Energieeffiziente Rechenzentren - Best-

Practice Beispiele aus Europa, USA und Asien (energy efficient data centers - best prac-

tice examples in europe, usa, and asia). http://www.borderstep.de/details.php?

menue=33&subid=101&le=de, 2009.

[41] R. J. Figueiredo, P. A. Dinda, and J. A. B. Fortes. A case for grid computing on virtual

machines. In Proceedings of the 23rd International Conference on Distributed Computing

Systems, ICDCS ’03, pages 550–, Washington, DC, USA, 2003. IEEE Computer Society.

[42] A. S. Fukunaga. Repairing bin packing constraints (extended abstract). In First Work-

shop on Bin Packing and Placement Constraints BPPC’08, 2008.

[43] D. Gmach, S. Krompass, A. Scholz, M. Wimmer, and A. Kemper. Adaptive quality of

service management for enterprise services. ACM Trans. Web, 2(1):1–46, 2008.

[44] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper. Workload analysis and demand pre-

diction of enterprise data center applications. In Proc. IEEE 10th Int. Symp. Workload

Characterization IISWC 2007, pages 171–180, 2007.

172

http://www.bfe.admin.ch/php/modules/ publikationen/stream.php?extlang=de&name=de_290024973.pdf
http://www.bfe.admin.ch/php/modules/ publikationen/stream.php?extlang=de&name=de_290024973.pdf
http://www.borderstep.de/details.php?menue=33&subid=101&le=de
http://www.borderstep.de/details.php?menue=33&subid=101&le=de


Bibliography

[45] A. Goel and P. Indyk. Stochastic load balancing and related problems. In Proc. 40th

Annual Symp. Foundations of Computer Science, pages 579–586, 1999.

[46] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, and H. Franke. Drpm: dynamic

speed control for power management in server class disks. SIGARCH Comput. Archit.

News, 31:169–181, May 2003.

[47] S. Gurumurthi, J. Zhang, A. Sivasubramaniam, M. Kandemir, H. Franke, N. Vijaykr-

ishnan, and M. J. Irwin. Interplay of energy and performance for disk arrays running

transaction processing workloads. In Proceedings of the 2003 IEEE International Sym-

posium on Performance Analysis of Systems and Software, pages 123–132, Washington,

DC, USA, 2003. IEEE Computer Society.

[48] P. Hannaford. Ten cooling solutions to support high-density server deployment. Technical

report, American Power Conversion Corp. (APC), 2010.

[49] M. Hazewinkel. Encyclopaedia of Mathematics, chapter Independence. Springer, 2007.

[50] M. Hazewinkel. Encyclopaedia of Mathematics, chapter Convolution of functions.

Springer, 2007.

[51] M. Hazewinkel. Encyclopaedia of Mathematics, chapter Linear regression. Springer,

2007.

[52] S. Henzler. Power Management of Digital Circuits in Deep Sub-Micron CMOS Tech-

nologies. Springer, 2007.

[53] F. Hermenier, X. Lorca, J. Menaud, G. Muller, and J. Lawall. Entropy: a consolidation

manager for clusters. In VEE ’09: Proceedings of the 2009 ACM SIGPLAN/SIGOPS

international conference on Virtual execution environments, pages 41–50, New York,

NY, USA, 2009. ACM.

[54] Hewlett-Packard Corporation, Intel Corporation, Microsoft Corporation, Phoenix Tech-

nologies Ltd., and Toshiba Corporation. Advanced configuration and power interface

specification. http://www.acpi.info/DOWNLOADS/ACPIspec30.pdf, 2004. section 2.4

sleeping state definitions.

[55] Hewlett-Packard Development. HP Insight Capacity Advisor 6.2 user guide. http://

h20000.www2.hp.com/bc/docs/support/SupportManual/c02536173/c02536173.pdf.

[56] Dorit S. Hochbaum, editor. Approximation Algorithms for NP-Hard Problems, chapter

2 Approximation Algorithms for Bin Packing: A Survey. PWS Publishing Company,

1997.

173

http://www.acpi.info/DOWNLOADS/ACPIspec30.pdf
http://h20000.www2.hp.com/bc/docs/support/SupportManual/c02536173/c02536173.pdf
http://h20000.www2.hp.com/bc/docs/support/SupportManual/c02536173/c02536173.pdf


Bibliography

[57] M. Hoyer, A. Baumgart, and W. Nebel. Adaptives Powermanagement für Desktop- und

Notebooksysteme (adaptive power management for desktop and notebook systems). PIK

- Praxis der Informationsverarbeitung und Kommunikation, 32-2:96–104, 2009.

[58] M. Hoyer, K. Schröder, and W. Nebel. Statistical static capacity management in virtu-

alized data centers supporting fine grained qos specification. In e-Energy ’10: Proceed-

ings of the 1st International Conference on Energy-Efficient Computing and Networking,

pages 51–60, New York, NY, USA, 2010. ACM.

[59] W. Huang, J. Liu, B. Abali, and D. K. Panda. A case for high performance computing

with virtual machines. In Proceedings of the 20th annual international conference on

Supercomputing, ICS ’06, pages 125–134, New York, NY, USA, 2006. ACM.

[60] IBM Tivoli Performance Analyzer. http://www.ibm.com/software/tivoli/products/

performance-analyzer/.

[61] IBM. z/VM - the newest VM hypervisor based on 64-bit z/Architecture. http://www.

vm.ibm.com/.

[62] IBM. Web Service Level Agreement (WSLA) language specification, version 1.0, revision:

wsla-2003/01/28. http://www.research.ibm.com/wsla/, January 2003.

[63] Intel Corporation. Power management in intel architecture servers.

http://download.intel.com/support/motherboards/server/sb/power_

management_of_intel_architecture_servers.pdf, April 2009.

[64] J.Niemann. Improved chilled water piping distribution methodology for data centers.

Technical report, American Power Conversion Corp. (APC), 2007.

[65] J. Kang and S. Park. Algorithms for the variable sized bin packing problem. European

Journal of Operational Research, volume 147, issue 2:365–372, June 2003.

[66] G. Khanna, K. Beaty, G. Kar, and A. Kochut. Application performance management

in virtualized server environments. In Proc. 10th IEEE/IFIP Network Operations and

Management Symp. NOMS 2006, pages 373–381, 2006.

[67] T. Kimbrel, M. Steinder, M. Sviridenko, and A. Tantawi. Dynamic application placement

under service and memory constraints. In WS on Experimental and Efficient Algorithms,

2005.

[68] M. Klobasa, F. Sensfuß, and M. Ragwitz. CO2-Minderung im Stromsektor durch den

Einsatz erneuerbarer Energien im Jahr 2006 und 2007 (CO2 reduction due to using

renewable energy sources in the years 2006 and 2007). http://www.bmu.de/files/

pdfs/allgemein/application/pdf/gutachten_isi_co2_bf.pdf, Feb. 2009.

174

http://www.ibm.com/software/tivoli/products/performance-analyzer/
http://www.ibm.com/software/tivoli/products/performance-analyzer/
http://www.vm.ibm.com/
http://www.vm.ibm.com/
http://www.research.ibm.com/wsla/
http://download.intel.com/support/motherboards/server/sb/power_management_of_intel_architecture_servers.pdf
http://download.intel.com/support/motherboards/server/sb/power_management_of_intel_architecture_servers.pdf
http://www.bmu.de/files/pdfs/allgemein/application/pdf/gutachten_isi_co2_bf.pdf
http://www.bmu.de/files/pdfs/allgemein/application/pdf/gutachten_isi_co2_bf.pdf


Bibliography

[69] L. T. Kou and G. Markowsky. Multidimensional bin packing algorithms. IBM Journal

of Research and Development, 21(5):443–448, 1977.

[70] M. Kozuch and M. Satyanarayanan. Internet suspend/resume. In Proc. Fourth IEEE

Workshop Mobile Computing Systems and Applications, pages 40–46, 2002.

[71] D. Kusic. Combined power and performance management of virtualized computing envi-

ronments using limited lookahead control. PhD thesis, Drexel University, 2009.

[72] D. Kusic, J. O. Kephart, J. E. Hanson, N. Kandasamy, and Guofei J. Power and

performance management of virtualized computing environments via lookahead control.

In Proc. Int. Conf. Autonomic Computing ICAC ’08, pages 3–12, 2008.

[73] B. Lubin, J. O. Kephart, R. Das, and D. C. Parkes. Expressive power-based resource

allocation for data centers. In Proceedings of the 21st international jont conference on

Artifical intelligence, pages 1451–1456, San Francisco, CA, USA, 2009. Morgan Kauf-

mann Publishers Inc.

[74] Microsoft Corporation. Hyper−V: Using Hyper−V and Failover Clustering. http://

technet.microsoft.com/en-us/library/cc732181(WS.10).aspx.

[75] Microsoft Corporation. Virtualization with Hyper-V. http://www.microsoft.com/

windowsserver2008/en/us/hyperv-main.aspx.

[76] Microsoft Corporation. Windows Virtual PC. http://www.microsoft.com/windows/

virtual-pc/default.aspx.

[77] J. Moore, J. Chase, P. Ranganathan, and R. Sharma. Making scheduling ”cool”:

temperature-aware workload placement in data centers. In Proceedings of the annual

conference on USENIX Annual Technical Conference, ATEC ’05, pages 5–5, Berkeley,

CA, USA, 2005. USENIX Association.

[78] Message passing interface (mpi). https://computing.llnl.gov/tutorials/mpi/.

[79] M. N. Bennani and D. A. Menasce. Resource allocation for autonomic data centers

using analytic performance models. In ICAC ’05: Proceedings of the Second International

Conference on Automatic Computing, pages 229–240, Washington, DC, USA, 2005. IEEE

Computer Society.

[80] A. B. Nagarajan, F. Mueller, C. Engelmann, and S. L. Scott. Proactive fault tolerance for

hpc with xen virtualization. In Proceedings of the 21st annual international conference

on Supercomputing, ICS ’07, pages 23–32, New York, NY, USA, 2007. ACM.

175

http://technet.microsoft.com/en-us/library/cc732181(WS.10).aspx
http://technet.microsoft.com/en-us/library/cc732181(WS.10).aspx
http://www.microsoft.com/windowsserver2008/en/us/hyperv-main.aspx
http://www.microsoft.com/windowsserver2008/en/us/hyperv-main.aspx
http://www.microsoft.com/windows/virtual-pc/default.aspx
http://www.microsoft.com/windows/virtual-pc/default.aspx
https://computing.llnl.gov/tutorials/mpi/


Bibliography

[81] R. Nathuji, C. Isci, and E. Gorbatov. Exploiting platform heterogeneity for power effi-

cient data centers. In Proc. Fourth Int. Conf. Autonomic Computing ICAC ’07, page 5,

2007.

[82] W. Nebel, M. Hoyer, K. Schröder, and D. Schlitt. Untersuchung des Potentials von

rechenzentrenübergreifendem Lastmanagement zur Reduzierung des Energieverbrauchs

in der IKT (analysis of potential energy consumption reduction in ICT by using data

center comprehensive load management). http://www.lastmanagement.offis.de/, 2009.

chapter 5.

[83] M. Nelson, B. Lim, and G. Hutchins. Fast transparent migration for virtual machines.

In Proceedings of USENIX 05: General Track, 2005.

[84] S. Niles. Virtualization: Optimized power and cooling to maximize benefits. Technical

report, American Power Conversion Corp. (APC), 2009.

[85] Novell GmbH. PlateSpin Recon 3.7. http://www.novell.com/products/recon/.

[86] M. Nuttall. A brief survey of systems providing process or object migration facilities.

SIGOPS Oper. Syst. Rev., 28(4):64–80, 1994.

[87] Open Grid Forum. Web Services Agreement Specification (WS-Agreement). www.ogf.

org/documents/GFD.107.pdf, March 2007.

[88] E. Pakbaznia, M. Ghasemazar, and M. Pedram. Temperature-aware dynamic resource

provisioning in a power-optimized datacenter. In Proceedings of the Conference on De-

sign, Automation and Test in Europe, DATE ’10, pages 124–129, 3001 Leuven, Belgium,

Belgium, 2010. European Design and Automation Association.

[89] P. Petliczew. Reduzierung des Energieverbrauchs von modernen Serverfarmen (reducing

the energy consumption of modern server farms). Master’s thesis, C.v.O. University of

Oldenburg, 2008.

[90] V. Petrucci, O. Loques, and D. Mossé. A dynamic optimization model for power and

performance management of virtualized clusters. In e-Energy ’10: Proceedings of the 1st

International Conference on Energy-Efficient Computing and Networking, pages 225–

233, New York, NY, USA, 2010. ACM.

[91] J. Pierson. Allocating resources greenly: reducing energy consumption or reducing eco-

logical impact? In e-Energy ’10: Proceedings of the 1st International Conference on

Energy-Efficient Computing and Networking, pages 127–130, New York, NY, USA, 2010.

ACM.

176

http://www.novell.com/products/recon/
www.ogf.org/documents/GFD.107.pdf
www.ogf.org/documents/GFD.107.pdf


Bibliography

[92] N. Rasmussen. A scalable,reconfigurable, and efficient data center power distribution

architecture. Technical report, American Power Conversion Corp. (APC), 2010.

[93] N. Rasmussen and J. Spitaels. A quantitative comparison of high efficiency ac vs. dc

power distribution for data centers. Technical report, American Power Conversion Corp.

(APC), 2007.

[94] J. A. Rice. Mathematical Statistics and Data Analysis, chapter 2. Duxbury Press, 1994.

[95] J. Rolia, L. Cherkasova, M. Arlitt, and A. Andrzejak. A capacity management service for

resource pools. In WOSP ’05: Proceedings of the 5th international workshop on Software

and performance, pages 229–237, New York, NY, USA, 2005. ACM.

[96] C. Rusu, A. Ferreira, C. Scordino, and A. Watson. Energy-efficient real-time heteroge-

neous server clusters. In Proceedings of the 12th IEEE Real-Time and Embedded Tech-

nology and Applications Symposium, pages 418–428, Washington, DC, USA, 2006. IEEE

Computer Society.

[97] L. Sachs and J. Hedderich. Angewandte Statistik - Methodensammlung mit R (Applied

Statics - methods in R), chapter 5 Zufallsvariablen, Verteilungen (random variables,

distributions). Springer, 2009.

[98] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S. Lam, and M. Rosenblum.

Optimizing the migration of virtual computers. SIGOPS Oper. Syst. Rev., 36(SI):377–

390, 2002.

[99] K. O. Schallaböck and C. Schneider. Im Steigflug in die Klimakatastrophe? (a study

about German aviation in 2007.). http://www.bund.net/fileadmin/bundnet/

publikationen/verkehr/20080409_verkehr_luftverkehr_2007_wuppertal_

studie.pdf, April 2008.

[100] G. Schulz. Regelungstechnik 1: Lineare und Nichtlineare Regelung, Rechnergestützter

Reglerentwurf (Feedback control systems 1: Linear and non Linear Feedback Control

Loops). OLDENBOURG, 2007.

[101] S. Seltzsam, D. Gmach, S. Krompass, and A. Kemper. Autoglobe: An automatic ad-

ministration concept for service-oriented database applications. In Proc. 22nd Int. Conf.

Data Engineering ICDE ’06, page 90, 2006.

[102] J. Shahabuddin, A. Chrungoo, V. Gupta, S. Juneja, S. Kapoor, and A. Kumar. Stream-

packing: Resource allocation in web server farms with a qos guarantee. In High Per-

formance Computing - HiPC 2001, volume Volume 2228/2001, pages 182–191. Springer

Berlin / Heidelberg, 2001.

177

http://www.bund.net/fileadmin/bundnet/publikationen/verkehr/20080409_verkehr_luftverkehr_2007_wuppertal_studie.pdf
http://www.bund.net/fileadmin/bundnet/publikationen/verkehr/20080409_verkehr_luftverkehr_2007_wuppertal_studie.pdf
http://www.bund.net/fileadmin/bundnet/publikationen/verkehr/20080409_verkehr_luftverkehr_2007_wuppertal_studie.pdf


Bibliography

[103] V. Sharma, A. Thomas, T. Abdelzaher, K. Skadron, and Z. Lu. Power-aware qos manage-

ment in web servers. In Proceedings of the 24th IEEE International Real-Time Systems

Symposium, RTSS ’03, pages 63–, Washington, DC, USA, 2003. IEEE Computer Society.

[104] D. Shen and J. L. Hellerstein. Predictive models for proactive network management:

application to a production web server. In Proc. IEEE/IFIP Network Operations and

Management Symp. NOMS 2000, pages 833–846, 2000.

[105] ACM SIGCOMM. The internet traffic archive. http://ita.ee.lbl.gov/. HTTP re-

quests to the NASA Kennedy Space Center WWW server (Jul/1995).

[106] J. Skene, F. Raimondi, and W. Emmerich. Service-level agreements for electronic ser-

vices. IEEE Transactions on Software Engineering, 99:288–304, 2009.

[107] H. Sprang, T. Benk, J. Zdrzalek, and R. Dehner. Xen, Virtualisierung unter Linux (Vir-

tualization using Linux), chapter 2 Einstieg in die Welt der Virtualisierung (Introduction

into the World of Virtualization). Open Source Press, 2007.

[108] H. Sprang, T. Benk, J. Zdrzalek, and R. Dehner. Xen, Virtualisierung unter Linux

(Virtualization using Linux), chapter 17 CPU-Time Scheduling. Open Source Press,

2007.

[109] H. Sprang, T. Benk, J. Zdrzalek, and R. Dehner. Xen, Virtualisierung unter Linux

(Virtualization using Linux), chapter 11 Speichermanagement (Memory Management).

Open Source Press, 2007.

[110] H. Sprang, T. Benk, J. Zdrzalek, and R. Dehner. Xen, Virtualisierung unter Linux

(Virtualization using Linux), chapter 9 Netzwerkkonzepte und -Konfiguration (Network

Configuration Concepts). Open Source Press, 2007.

[111] M. Stillwell, D. Schanzenbach, F. Vivien, and H. Casanova. Resource allocation using

virtual clusters. In CCGRID ’09: Proceedings of the 2009 9th IEEE/ACM International

Symposium on Cluster Computing and the Grid, pages 260–267, Washington, DC, USA,

2009. IEEE Computer Society.

[112] L. Stobbe, M. Nissen, N.F.and Proske, A. Middendorf, B. Schlomann, M. Friedewald,

P. Georgieff, and T. Leimbach. Abschätzung des energiebedarfs der weiteren entwick-

lung der informationsgesellschaft (assessment of the energy demand by the further de-

velopment of the information society). http://publica.fraunhofer.de/documents/

N-110231.html, 2009.

[113] A. S. Tanenbaum. Modern Operating Systems, chapter 3. Deadlocks. Prentice Hall

International, 2001.

178

http://ita.ee.lbl.gov/
http://publica.fraunhofer.de/documents/N-110231.html
http://publica.fraunhofer.de/documents/N-110231.html


Bibliography

[114] M. Thottan and C. Ji. Adaptive thresholding for proactive network problem detection.

In Proc. IEEE Third Int Systems Management Workshop, pages 108–116, 1998.

[115] W. Torell. Data center physical infrastructure: Optimizing business value. Technical

report, American Power Conversion (APC), 2010.

[116] V. Tosic. Service offerings for XML web services and their management applications.

PhD thesis, Carleton University, Ottawa, Ontario, Canada, 2004.

[117] B. Urgaonkar, P. Shenoy, and T. Roscoe. Resource overbooking and application profiling

in shared hosting platforms. SIGOPS Oper. Syst. Rev., 36(SI):239–254, 2002.

[118] A. Verma, P. Ahuja, and A. Neogi. pmapper: power and migration cost aware ap-

plication placement in virtualized systems. In Middleware ’08: Proceedings of the

9th ACM/IFIP/USENIX International Conference on Middleware, pages 243–264, New

York, NY, USA, 2008. Springer-Verlag New York, Inc.

[119] A. Verma, P. Ahuja, and A. Neogi. Power-aware dynamic placement of hpc applications.

In Proceedings of the 22nd annual international conference on Supercomputing, ICS ’08,

pages 175–184, New York, NY, USA, 2008. ACM.

[120] VMware, Inc. ESX configuration guide. http://www.vmware.com/pdf/vsphere4/r41/

vsp_41_esx_server_config.pdf. chapter 3 Basic networking with vNetwork standard

switches.

[121] VMware, Inc. ESX configuration guide. http://www.vmware.com/pdf/vsphere4/

r41/vsp_41_esx_server_config.pdf. chapter 4 Basic networking with vNetwork dis-

tributed switches.

[122] VMware, Inc. VMware Capacity Planner. http://www.vmware.com/files/de/pdf/

datasheet_capacity_planner_de.pdf.

[123] VMware, Inc. VMware Distributed Resource Scheduler (DRS). http://www.vmware.

com/products/drs/.

[124] VMware, Inc. VMware ESXi and ESX Info Center. http://www.vmware.com/products/

vsphere/esxi-and-esx/.

[125] VMware, Inc. VMware Server 2 - a risk-free way to get started with virtualization.

http://www.vmware.com/files/pdf/server_datasheet.pdf.

[126] VMware, Inc. vSphere resource management guide. http://www.vmware.com/pdf/

vsphere4/r41/vsp_41_resource_mgmt.pdf. chapter 4 Managing Storage I/O Re-

sources.

179

http://www.vmware.com/pdf/vsphere4/r41/vsp_41_esx_server_config.pdf
http://www.vmware.com/pdf/vsphere4/r41/vsp_41_esx_server_config.pdf
http://www.vmware.com/pdf/vsphere4/r41/vsp_41_esx_server_config.pdf
http://www.vmware.com/pdf/vsphere4/r41/vsp_41_esx_server_config.pdf
http://www.vmware.com/files/de/pdf/datasheet_capacity_planner_de.pdf
http://www.vmware.com/files/de/pdf/datasheet_capacity_planner_de.pdf
http://www.vmware.com/products/drs/
http://www.vmware.com/products/drs/
http://www.vmware.com/products/vsphere/esxi-and-esx/
http://www.vmware.com/products/vsphere/esxi-and-esx/
http://www.vmware.com/files/pdf/server_datasheet.pdf
http://www.vmware.com/pdf/vsphere4/r41/vsp_41_resource_mgmt.pdf
http://www.vmware.com/pdf/vsphere4/r41/vsp_41_resource_mgmt.pdf


Bibliography

[127] VMware, Inc. vSphere basic system administration. Technical report, VMware, Inc.,

2010. http://www.vmware.com/pdf/vsphere4/r40/vsp_40_admin_guide.pdf.

[128] T. Wood, L. Cherkasova, K. M. Ozonat, and P. J. Shenoy. Profiling and modeling

resource usage of virtualized applications. In Middleware, pages 366–387, 2008.

[129] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif. Black-box and gray-box strate-

gies for virtual machine migration. In NSDI’07: Proceedings of the 4th USENIX Sym-

posium on Networked Systems Design and Implementation, 2007.

[130] J. Xu, M. Zhao, J. Fortes, R. Carpenter, and M. Yousif. On the use of fuzzy modeling in

virtualized data center management. Autonomic Computing, International Conference

on, 0:25, 2007.

[131] E. R. Zayas. Attacking the process migration bottleneck. In In Proceedings of the

Eleventh ACM Symposium on Operating Systems Principles, pages 13–24, 1987.

[132] Q. Zhu, A. Shankar, and Y. Zhou. Pb-lru: a self-tuning power aware storage cache

replacement algorithm for conserving disk energy. In Proceedings of the 18th annual

international conference on Supercomputing, ICS ’04, pages 79–88, New York, NY, USA,

2004. ACM.

[133] Q. Zhu and Y. Zhou. Power-aware storage cache management. IEEE Trans. Comput.,

54:587–602, May 2005.

[134] D. Zimmer. VMware & Microsoft Virtual Server, chapter 1 Einführung (Introduction).

Galileo Press, 2005.

[135] D. Zimmer. VMware & Microsoft Virtual Server, chapter 4 Auswahl der möglichen

virtuellen Maschine (Selection of Appropriate Services for Virtualization). Galileo Press,

2005.

180

http://www.vmware.com/pdf/vsphere4/r40/vsp_40_admin_guide.pdf


Curriculum Vitae

Personal Data

Name: Marko Hoyer

Place and date of birth: January, 28th 1980, Burg

Address: Alexanderstraße 66

26121 Oldenburg

E-Mail: Marko.Hoyer@offis.de

Education

06/2000 Gymnasium Georgianum Lingen(Ems), Degree: general

university qualification

Alternative Public Service

09/2000 – 08/2001 German Red Cross

Academic Studies

10/2001 – 03/2006 Computer Science at Carl von Ossietzky University Ol-

denburg, Focus: Embedded Systems

10/2007 – 05/2011 PhD thesis: ”Resource Management in Virtualized Data

Centers Regarding Performance and Energy Aspects”,

Reviewers: Prof. Wolfgang Nebel (Univ. Oldenburg,

Germany) and Prof. Michael Sonnenschein (Univ. Old-

enburg, Germany)

Professional Career

since 04/2006 Research assistant at OFFIS e.V., devision energy

04/2006 – 07/2008 Employee, EC project CLEAN: Controlling Leakage In

Nanometer CMOS SoCs

08/2008 – 08/2010 Researcher in an internally funded project: Energy Ef-

ficiency in Data Centers (preliminary research, public

relations, establishment of this research topic at OFFIS)

since 09/2010 Researcher funded by an internal scholarship (for finish-

ing the PhD thesis)



Teaching

Bachelor’s thesis (supervisor and reviewer)

11/2008 – 02/2009 Development of an Evaluation Environment for the

Analysis of Correlated Resource Demand in Data Cen-

ters, Thomas Strathmann

Master’s thesis (supervisor and reviewer)

10/2007 – 04/2008 Development of a Software for Testing and Assessing

Power Management Strategies of Desktop and Notebook

PCs, Malte Viet

10/2007 – 03/2008 Extension of a PC Power Management Strategy by a

Learning Component, Andreas Baumgart

02/2008 – 07/2008 Reducing the Energy Consumption of Modern Server

Farms, Pierre Petliczew

11/2008 – 04/2009 Development of a Scheduling Algorithm to Realize Dy-

namic Virtualization, Daniel Schlitt

Student Project (supervisor)

10/2007 – 09/2008 Student project EyeFly - The Flying Eye, Department

Embedded Systems at C.v.O. University Oldenburg



Publications and Talks

Publications

[1] M. Hoyer, D. Schlitt, K. Schröder, and W. Nebel. Proactive Dynamic Resource Manage-

ment in Virtualized Data Centers. In e-Energy ’11: Proceedings of the 2nd International

Conference on Energy-Efficient Computing and Networking, 2011. ACM.

[2] M. Hoyer, K. Schröder, and W. Nebel. Statistical static capacity management in virtu-

alized data centers supporting fine grained qos specification. In e-Energy ’10: Proceed-

ings of the 1st International Conference on Energy-Efficient Computing and Networking,

pages 51–60, 2010. ACM.

[3] K. Schroeder, D. Schlitt, M. Hoyer and W. Nebel, Power and Cost Aware Distributed

Load Management. In e-Energy ’10: Proceedings of the 1st International Conference on

Energy-Efficient Computing and Networking, pages 123–126, 2010. ACM.

[4] D. Schlitt, M. Hoyer, K. Schröder, W. Nebel. Analysis of Attainable Energy Consump-

tion Reduction in ICT by Using Data Center Comprehensive Load Management (Ex-

tended Abstract). Workshop: The Economics of Green IT, ZEW, 2010

[5] D. Schlitt, K. Schröder, M. Hoyer, W. Nebel. Last- und Powermanagement bei Virtual-

isierung im Rechenzentrum. NTZ 7-8/2010, VDE

[6] W. Nebel, M. Hoyer, K. Schröder, and D. Schlitt. Untersuchung des Potentials von

rechenzentrenübergreifendem Lastmanagement zur Reduzierung des Energieverbrauchs

in der IKT (analysis of potential energy consumption reduction in ICT by using data cen-

ter comprehensive load management). http://www.lastmanagement.offis.de/, 2009.

[7] M. Hoyer, A. Baumgart, and W. Nebel. Adaptives Powermanagement für Desktop- und

Notebooksysteme (adaptive power management for desktop and notebook systems). In

PIK - Praxis der Informationsverarbeitung und Kommunikation, 32-2:96–104, 2009.

[8] M. Hoyer, D. Helms, W. Nebel. Modelling the impact of high level leakage optimization

techniques on the delay of RT-components. PATMOS’07, 2007.

[9] D. Helms, O. Meyer, M. Hoyer, W. Nebel. Voltage- and ABB-Island Optimization in

High Level Synthesis. ISLPED’07, 2007.

[10] D. Helms, M. Hoyer, W. Nebel. Accurate PTV, State, and ABB Aware RTL Blackbox

Modeling of Subthreshold, Gate, and PN-Junction Leakage. PATMOS’06, 2006.

http://www.lastmanagement.offis.de/


Patents

[1] M. Hoyer and D. Schlitt. Verfahren zur dynamischen Verteilung von einem oder mehreren

Diensten in einem Netz aus einer Vielzahl von Rechnern. 05/2010. state: filed.

[2] M. Hoyer and A. Baumgart. Verfahren zum Optimieren des elektrischen Energiever-

brauchs wenigstens einer Datenverarbeitungseinrichtung, insbesondere einer mobilen Da-

tenverarbeitungseinrichtung und elektronische Vorrichtung sowie Datenträger zur Real-

isierung des Verfahrens. DE102008036246B4. 08/2008. state: granted.

[3] D. Helms and M. Hoyer. Method for simulation of circuit, involves simulating refer-

ence basic circuits and scaling simulation results of preceding steps in circuit, where

step of scaling of reference basic circuits has scaling of channel width of transistors.

DE102006043805A1. 09/2006. state: granted.

Public Talks

[1] Proactive Dynamic Resource Management in Virtualized Data Centers. Talk at e-

Energy’11. Columbia University New York. 06/2011.

[2] Data Centers of The Future – Holistic System Management Solutions, Workshop: ITOP

– IT Operations Play. University Bern. 11/2010.

[3] Statistical static capacity management in virtualized data centers supporting fine grained

QoS specification. Talk at e-Energy’10. University Passau. 04/2010.

[4] Data Centers of The Future – Challenges and Perspectives. Labs Talks - ICT for a low

carbon society. Deutsche Telekom Laboratories Berlin. 10/2009.

[5] Final presentation: analysis of potential energy consumption reduction in ICT by using

data center comprehensive load management. Expert workshop Green IT. BMWi Berlin.

09/2009



Erklärung zur Dissertation

Oldenburg, den 18. Februar 2011

Ehrenwörtliche Erklärung zu meiner Dissertation mit dem Titel:
”
Resource Mana-

gement in Virtualized Data Centers Regarding Performance and Energy Aspects“

Sehr geehrte Damen und Herren,

hiermit erkläre ich, dass ich die beigefügte Dissertation selbstständig verfasst und keine ande-

ren als die angegebenen Hilfsmittel genutzt habe. Alle wörtlich oder inhaltlich übernommenen

Stellen habe ich als solche gekennzeichnet. Die Regeln guter wissenschaftlicher Praxis entspre-

chend der DFG-Richtlinien wurden eingehalten.

Ich versichere außerdem, dass ich die beigefügte Dissertation nur in diesem und keinem anderen

Promotionsverfahren eingereicht habe und, dass diesem Promotionsverfahren keine endgültig

gescheiterten Promotionsverfahren vorausgegangen sind. Ferner wurde der Inhalt dieser Dis-

sertation nicht schon für eine Diplom- oder ähnliche Prüfungsarbeit verwendet.

Marko Hoyer

185


	Title: Resource Management in Virtualized Data Centers Regarding Performance and Energy Aspects
	Acknowledgement
	Abstract
	Zusammenfassung
	1 Introduction
	1.1 Static Resource Management
	1.2 Dynamic Resource Management
	1.3 Contributions of this Work
	1.4 Document Overview

	2 Context and Related Work
	2.1 IT Components
	2.2 Data Center Infrastructure
	2.3 Operating Systems, IT Services, and Software
	2.3.1 Power Management
	2.3.2 Resource Management


	3 Problem Statement
	3.1 Technical Background
	3.1.1 Service Level Agreements
	3.1.2 Server Virtualization
	3.1.3 Server Virtualization and Live Migration
	3.1.4 Dealing with Shared Resources in Virtualized Data Centers
	3.1.5 Power States of Servers

	3.2 Conceptual View
	3.2.1 Pessimistic Static Resource Management
	3.2.2 Optimized Static Resource Management
	3.2.3 Dynamic Resource Management

	3.3 System Description
	3.3.1 Involved Components
	3.3.2 Limited Resources
	3.3.3 Overhead and Prerequisites of Control Mechanisms
	3.3.4 Service Level Agreements

	3.4 Formal Definition
	3.4.1 Terminology and Declarations
	3.4.2 Problem Definition: Static Resource Management
	3.4.3 Problem Definition: Dynamic Resource Management

	3.5 Summary

	4 Pessimistic Static Resource Management
	4.1 Service Level Objectives
	4.2 Modeling the Resource Demand
	4.3 Static Scheduling
	4.3.1 Known Approaches
	4.3.2 Vector Bin Packing and Resource Management


	5 Statistical Static Resource Management
	5.1 Mathematical Background
	5.1.1 Discrete Random Variables
	5.1.2 Operations on Discrete Random Variables
	5.1.3 Stochastic Processes
	5.1.4 Probabilities of Realizations of Stochastic Processes

	5.2 Service Level Objectives
	5.2.1 Known Approaches
	5.2.2 Fine Grained SLO Specification
	5.2.3 Mapping Performance Metrics on Required Resource Capacity
	5.2.4 Deriving Constraints for Autonomous Resource Management
	5.2.5 Discussion

	5.3 Modeling the Resource Demand
	5.3.1 Requirements on the Model
	5.3.2 Known Approaches
	5.3.3 Modeling Approach
	5.3.4 Discussion

	5.4 Static Scheduling
	5.4.1 Known Approaches
	5.4.2 Pessimistic Statistical Scheduling
	5.4.3 Interdependence between Required and Provided Resource Capacity
	5.4.4 Separating Seasonal Trend and Noise from Long Term Trend
	5.4.5 Using Correlations for Improved Statistical Scheduling
	5.4.6 Discussion

	5.5 Changes in Demand Behavior
	5.5.1 Impact of Changed Demand Behavior
	5.5.2 Detecting Changed Demand Behavior
	5.5.3 Preventing SLO Violations Caused by Changed Demand Behavior
	5.5.4 Discussion

	5.6 Summary

	6 Dynamic Resource Management
	6.1 Theoretical Background
	6.1.1 Autocorrelation Analysis
	6.1.2 Testing Whether a Graph is Acyclic

	6.2 Service Level Objectives
	6.3 Modeling the Resource Demand
	6.3.1 Requirements on the Model
	6.3.2 Known Approaches
	6.3.3 Modeling Approach
	6.3.4 Discussion

	6.4 Dynamic Scheduling
	6.4.1 Known Approaches
	6.4.2 Basic Idea
	6.4.3 Ensuring Resource Constraints
	6.4.4 Extracting a Set of Feasible Operations
	6.4.5 Ensuring Time Constraints
	6.4.6 Scheduling Algorithm - Overview
	6.4.7 Scheduling Algorithm - Consolidating VMs
	6.4.8 Scheduling Algorithm - Resolving Resource Shortages
	6.4.9 Discussion

	6.5 Changes in Demand Behavior
	6.5.1 Impact of Changed Demand Behavior
	6.5.2 Detecting Changed Demand Behavior
	6.5.3 Adapting the Model
	6.5.4 Resolving Resource Shortages
	6.5.5 Limiting the Impact of Changed Demand Behavior
	6.5.6 Discussion

	6.6 Summary 

	7 Experimental Assessment
	7.1 Fine Grained QoS Specification
	7.1.1 Methodology
	7.1.2 Comparison to Known Approaches
	7.1.3 Influence of the Number of Defined Performance Goals
	7.1.4 Conclusion and Limits of the Analyses

	7.2 Resource Demand Model
	7.2.1 Methodology
	7.2.2 Comparison to Known Approaches
	7.2.3 Finding the Predominant Period
	7.2.4 Influence of Minimal Duration of Saving Intervals
	7.2.5 Influence of Long Term Trends
	7.2.6 Different VMs
	7.2.7 Conclusion and Limits of the Analyses

	7.3 Statistical Static Resource Management
	7.3.1 Methodology
	7.3.2 Comparison to Known Approaches
	7.3.3 Influence of Server Configuration
	7.3.4 Expected Power Savings in Data Centers
	7.3.5 Conclusion and Limits of the Analyses

	7.4 Dynamic Resource Management
	7.4.1 Methodology
	7.4.2 Comparison to Known Approaches
	7.4.3 Influence of Server Configuration and Virtualization Environment
	7.4.4 Limiting the Impact of Forecasting Errors
	7.4.5 Scalability
	7.4.6 Conclusion and Limits of Analyses

	7.5 Summary

	8 Summary and Conclusion
	8.1 Conclusion
	8.2 Outlook

	Glossary
	Bibliography
	Curriculum Vitae
	Publications and Talks


