
Fakultät II – Informatik, Wirtschafts- und Rechtswissenschaften
Department für Informatik

Optimizing Development Processes

Dissertation zur Erlangung des Grades eines
Doktors der Ingenieurwissenschaften

vorgelegt von

Dipl.-Inform. Ralf Hermann Buschermöhle

17. November 2014

Gutachter: Prof. Dr. Werner Damm
Prof. Dr. Martin Törngren

Datum der Einreichung: 17. November 2014
Datum der Verteidigung: 13. März 2015

© 2014 by Ralf Hermann Buschermöhle

Author’s address:
Ralf Hermann Buschermöhle
Quellenweg 63a
D-26129 Oldenburg
Germany

E-Mail: ralf.buschermoehle@informatik.uni-oldenburg.de

ii

Erklärung

Hiermit erkläre ich, dass ich die vorliegende Doktorarbeit selbständig verfasst und
keine anderen als die angegebenen Hilfsmittel benutzt habe. Der Inhalt der Arbeit
wurde nicht bereits für eine Diplomarbeit- oder ähnliche Prüfungsarbeit verwendet.
Die Stellen der Doktorarbeit, die anderen Quellen im Wortlaut oder dem Sinn nach
entnommen wurden, sind durch Angaben der Herkunft kenntlich gemacht. Dies gilt
auch für Zeichnungen, Skizzen, bildliche Darstellungen sowie für Quellen aus dem In-
ternet.

Statement

I hereby declare that I have written this doctoral thesis independently and did not use
any other than the specified resources. The content was not used in a a diploma thesis
or a similar work. Text passages of the thesis taken from other sources in letter or
sense of are identified by details of the origin. This also applies to drawings, sketches,
pictorial representations, and for sources from the Internet.

iii

Abstract

Today, system engineering companies face the challenge to align their processes opti-
mally to the project goals to fulfill the project requirements. These requirements rise
continuously because the systems to be developed become more and more complex.
Due to globalization effects, having their origins often in the information technology
the cost pressure rises at the same time. However, the information technology is in
many cases also the solution to this dilemma by offering new, efficient methods and
techniques. But they are not a silver bullet and require the alignment to the project
goals and development processes.

Process optimization is done on development process models as planing abstraction.
Unfortunately the existing process models lack of guidance because of their inherently
high abstraction level. The process models tend to be complex and specific when the
abstraction level is low because the notations, methods and techniques used in the
development processes are often numerous. In order to get precise guidance a formal
process model would be required. Therefore it would be necessary to map all process
elements (including their static and (possible) dynamic dimension) onto elements of a
formal process modeling language. This is currently, with the existing process mod-
els and process modeling languages, not possible because the languages are not suitable.

Additionally, the question rises how processes and their models could be kept in sync
and what methods and techniques could be used to analyze the models appropriately.
Established statistical methods to (manually) survey and analyze the data will often
result in high effort in particular when the process elements have a dynamical dimen-
sion that needs to be covered. Unfortunately this is often the case because the system
under development will likely have a dynamical dimension that is relevant. Only very
few companies use established statistical methods and techniques on a level, which
would be necessary to answer at least some process questions appropriately. The prob-
lem, that the level of abstraction of a development process element likely changes over
the time and is often highly subjective makes the task even more complex. This leads
to the problem, that many development effects are not analyzed appropriately and not
well understood. Also this lack of understanding results in methods and techniques
that are not inline with the process targets and encourages a conservative attitude
towards new methods and techniques.

Development processes optimization is key to fulfill the current requirements effi-
ciently. This work presents a formal, yet flexible process modeling language that can
be used to capture development processes on arbitrary abstraction levels. This model-
ing language is complemented by analysis and synthesis methods and tools to optimize
process models appropriately and to bind process and process model tight together.

iv

The developed software environment was successfully evaluated with the help of in-
dustrial partners, complements the work and shows exemplarily optimization scenarios
and their effects. Finally, impacts of previously developed artifacts on the synthe-
sized process model activities are computed that can be used as guidance in preceding
process steps.

v

Zusammenfassung

Unternehmen der Systementwicklung stehen heutzutage vor der Aufgabe ihre Prozesse
optimal auf die jeweiligen Projektziele auszurichten, um den Projektanforderungen
gerecht zu werden. Die Projektanforderungen steigen kontinuierlich, da die zu en-
twickelnden Systeme immer komplexer werden. Gleichzeitig steigt der Kostendruck
aufgrund von Globalisierungseffekten, die oftmals ihre Ursache in der Information-
stechnik besitzen. Gleichermassen bietet jedoch gerade die Informationstechnik neue,
effiziente Methoden und Techniken zur Lösung dieses Dilemmas. Die Methoden und
Techniken sind allerdings kein Allheilmittel, sondern müssen immer wieder auf die Pro-
jektziele und damit auf die Prozesse ausgerichtet werden.

Die Optimierung der Prozesse geschieht dabei auf den Planungsabstraktionen der
Entwicklungsprozesse, der Entwicklungsprozessmodellebene. Leider helfen die existieren-
den Entwicklungsprozessmodelle, aufgrund ihres inhärent hohen Abstraktionsgrades,
dabei oft nicht ausreichend. Verringert man jedoch den Abstraktionsgrad werden die
Modelle schnell umfangreich und speziell, da die in der Entwicklung zum Einsatz kom-
menden Notationen, Methoden und Werkzeuge zahlreich sind. Zudem müssten die
Modelle formalisiert werden, damit sie entsprechend analysierbar sind und präzise
Antworten liefern können. Dies würde jedoch bedingen, dass die Prozesselemente -
wenn nötig - formal statisch wie dynamisch in dem Prozessmodell abgebildet werden
können. Die notwendige Formalität wie auch Flexibilität und Angemessenheit bringen
aktuell allerdings weder die Prozessmodelle noch entsprechende Prozessmodellsprachen
mit.

Zudem stellt sich die Frage wie Prozesse und ihre Modelle synchron gehalten werden
können, und mit welchen Methoden und Techniken selbige zu analysieren sind. Gängige
Methoden der Datenerhebung und statistische Methoden zur Analyse sind oftmals nur
mit großem Aufwand einsetzbar, insbesondere wenn die Prozesselemente eine inhärente
Dynamik aufweisen. Dies ist allerdings häufig der Fall, da das zu entwickelnde System
oftmals eine Dynamik hat, die es zu beachten gilt. Nur sehr wenige Unternehmen
setzen diese statistischen Methoden und Techniken in einem Maß ein, das notwendig
ist, um Antworten auf zumindest einige Prozessfragen zu erhalten. Hinzu kommt,
dass die jeweils relevanten Abstraktionsgrade der Entwicklungsprozessmodellelemente
über die Entwicklungszeit variieren und oftmals subjektiv sind. Dies führt dazu, dass
viele Effekte in der Entwicklung nicht ausreichend analysiert werden können und damit
nicht ausreichend verstanden werden. Dieses Nichtverständnis resultiert darin, dass die
Entwicklungsmethoden und -techniken nicht optimal auf die Projektziele ausgerichtet
werden können und fördert zudem eine eher konservative Einstellung, was den Einsatz
neuer Methoden und Techniken angeht.

vi

Die Optimierung der Entwicklungsprozesse ist der Schlüssel, um den aktuellen An-
forderungen effizient begegnen zu können. Dazu wird in dieser Arbeit eine formale
und gleichzeitig flexible Prozessmodellierungssprache entwickelt und vorgestellt, die
in der Lage ist, Entwicklungsprozesse in beliebigen Abstraktionen wider zu spiegeln.
Zudem wurden entsprechende Analyse- und Synthesemethoden implementiert, um die
Optimierung der Prozessmodelle zu unterstützen und Prozesse und Prozessmodelle eng
aneinander zu binden. Die erfolgreiche Evaluation der entwickelten Softwareumgebung
geschah mit Hilfe von Industriepartnern und komplementiert die Arbeit und zeigt ex-
emplarisch Optimierungsszenarien und ihre Effekte. Zudem wurden Einflüsse zuvor er-
stellter Artefakte auf das synthetisierte Prozessmodell berechnet, die zur Orientierung
in den vorgelagerten Prozessschritten genutzt werden können.

vii

Acknowledgements

First I want to thank my adviser Prof. Dr. Werner Damm. He always supported my
“stubborness” with his time, ideas, and absolute support. The enthusiasm he has for
his research was always contagious and motivational for me.

I like to thank the members of the OFFIS group transportation and the conjoint Uni-
versity department. They have been a source of friendships as well as good advice and
collaboration. Special thanks to Dr. Bernd Westphal for critical insights and moti-
vation and to Joerg Oelerink who developed some first RMOF prototypes as student
research assistant.

The evaluation would have been impossible without Dr. Tom Bienmueller of BTC-
Embedded Systems AG who connected RMOF to the real world of an industrial con-
text. I like to thank Prof. Dr. Achim Rettberg to support the development with code
generators.

Regarding the synthesis I need to thank Joerg Lehners, who is the perfect instance of
an administrator and it possible to “Hit it with iron”. Additionally in this context I
need to thank Dr. Oliver Melchert who made it possible to compute on the computer
cluster of the physics department.

Special thanks go to Prof. Dr. Liane Haak and Dr. Daniel Suepke who reviewed all
the writings and presentations and were always a source of inspiration and friendship.

Least no last I’d like to thank my girlfriend Hiemke Schmidt, friends and family for
their support and understanding in particular in difficult times.
Thank you. One long journey ends here.

Ralf Buschermöhle

Oldenburg, March 2015

ix

Contents

1 Introduction 1
1.1 Screenplay and Scenarios . 4
1.2 Process Modeling . 7
1.3 Methodology . 12
1.4 Problem and Related Work . 17

1.4.1 Process Modeling Languages . 20
1.4.2 Meta-Modeling Languages . 33
1.4.3 Process Optimization . 37
1.4.4 Linear and Non-Linear Optimization 45
1.4.5 Verification . 47
1.4.6 Stochastic Optimization and Metaheuristics 51

2 Rich Meta Object Facility 53
2.1 Data Structures . 55

2.1.1 Simple Types . 62
2.1.2 Complex Types . 65
2.1.3 Instances . 69
2.1.4 Information . 70
2.1.5 Structures . 71
2.1.6 Naming . 71
2.1.7 Core Meta Model and Configurations 73

2.2 Expressions . 76
2.3 Dynamics . 88

2.3.1 Core . 88
2.3.2 Formal Semantics . 91
2.3.3 Extended Core . 93
2.3.4 Derived Values . 101
2.3.5 Operations . 103

2.4 Observers . 106
2.5 Implementation . 108

3 Software Process Engineering Metamodel 115
3.1 Syntax . 115

xi

Contents

3.2 Semantics . 118

4 Synthesis and Analysis 135
4.1 Genetic Programming . 135

4.1.1 Complexity . 143
4.1.2 Algorithm . 144
4.1.3 Automatic Defined Functions . 146
4.1.4 Fitness Computation . 146
4.1.5 Concurrent Computing . 148

4.2 Genetic Programming and RMOF . 149
4.3 Genetic Programming Optimization . 153

4.3.1 Data Access and Precomputations 153
4.3.2 Caches . 155
4.3.3 Feedback Loops . 155

5 Evaluation 157
5.1 Interaction Tracking . 160
5.2 Corrections, Interpretations and Aggregations 161
5.3 Silnab Models . 162
5.4 Interaction Pattern Detection . 163
5.5 Optimization of Interaction Sequences 172
5.6 Process Model Analysis: Simulation . 180
5.7 Process Model Impacts: Guards . 186

6 Conclusion 195

Bibliography 197

List of Tables 209

List of Figures 211

xii

1 Introduction

“We measured ten times more errors
being caught with our verification
framework, compared to the
traditional approach (70 vs 7). We
also used ten times fewer people (2
instead of 20).”

Model Checking - Grundlagen und
Praxiserfahrungen [1]
Gerard Holzmann

All system engineering companies try to optimize their development process in terms
of goals like time, costs and product quality. Influence factors of such goals are often
numerous and include, e.g., tasks, resource usages, and products as well as the way
tools are embedded in the development process. Development process optimization
is based on an understanding between influence factors and goals. The degree of the
potential influence on a process goal is often proportionally related to the level of objec-
tivity, detail and precision that is required to adequately define and verify the related
hypothesis. To verify a hypothesis, appropriate data has to be surveyed, aggregated
and analyzed. Optimizations can be introduced into the development process based on
the results of the analysis. This is often an ongoing process because either the weights
of the process goals or their influence factors change over time.

Traditional methods to model and analyze hypotheses have inherent restrictions.
This is reflected in the methods and techniques companies use to plan and optimize
development steps and in the gap between planing and reality (see [2], subsections
3.5-3.9). This applies in particular for complex, behavior-related hypotheses that are
often required to describe software-driven activities and artifacts. A behavior-related
hypothesis describes, e.g., the interactions required to reach a certain test coverage of
the system tested. The required test interactions depend on, e.g., complexity of the
models describing the system, expertise of the tester and the tool environment that is
used to manage and specify the test cases.

Today, many activities of development processes are software driven - because they
are often more flexible, more powerful and more efficient than traditional engineering

1

1 Introduction

methods. Concerning the test process this is often represented in different abstractions
of the system under test ranging from model in the loop (system and environment are
simulated as models), over software in the loop (software for the target platform is gen-
erated and simulated on a virtual processor of the target platform), to processor in the
loop (generated code runs on a processor of the target platform). The last step in the
test process is often a hardware in the loop test. The more components are represented
in hardware the higher the precision of the results (if the system is implemented using
custom hardware we face often less failures, e.g., due to deviations between software
generation and hardware). But the more components are represented in software the
lower the costs and development time - in particular when changes need to be done.
Today, software is often key to influence the way systems are developed.

For this same reason, software often has a high impact on development process goals.
Influence factors include for example a significant but on the same time abstract and
minimal description of the software’s input and output artifacts. These descriptions
often change in their syntax and semantics when the system is developed over the
time. Traditional methods for optimizing development processes often lack the re-
quired flexibility, power and efficiency compared to the software driving the process.
Many companies presumably flinch from applying these traditional optimization meth-
ods because of the high effort required to use them. Less than 2% of the approx. 400
companies investigated in the SUCCESS [3, 4] study used standard maturity models to
improve their processes based on standardized statistical methods. If the methods are
not applied rigorously the relationships between goals and influence factors are often
not well understood (see [2], planning horizon of three month with a mean deviation
of 20%).

The results of process optimization activities must be reflected in the process model
to guide the development activities. Industrial development process models are often
informal as in the case of the V-Model XT [5], especially in regard to behavioral aspects.
The informality often increases their acceptance, yet makes it impossible to use them
precisely or analyze them appropriately to find potential optimizations. Many formal
process modeling languages exist, but they are not applied widely (see section 1.4.1).
Since most of these languages are Turing complete, their suitability is problematic - not
their expressiveness. Suitability is extremely important in terms of all kinds of model-
ing issues, especially when it comes to development process models. There are many
stakeholders, e.g., managers, developers, testers, with all kinds of views on the process,
such as work flow related views, schedule-related views and cost-related views. Some
of these views change over time, e.g., a function-related view of a developer changes in
its abstraction level over the time the system is developed. All views should interpret
its process model consistently. A low degree of suitability of a process modeling lan-
guage makes it difficult to interpret process related documents. In combination with

2

the (often very high) effort needed to capture the required hypotheses data, conduct
appropriate analyses, interpret their results correctly and support the processes with
appropriate methods and tools it comes as no surprise that only a very limited num-
ber of companies utilize their full potential in optimizing their development processes
(see [2]).

All existing process modeling languages are not widely accepted because they lack in
terms of unambiguousness, suitability and sustainability. Suitability and sustainability
in general can be achieved by using a meta-language approach because each language
layer introduces a kind of independence and flexibility to its derived child layers. On
the other hand a meta-language restricts the syntax and semantics used to interpret
derived child layer languages. The same idea has been used by the Object Management
Group (OMG) to define the so called Meta Object Facility (MOF), which is the base
for several modeling languages, including the Unified Modeling Language 2 (UML2),
the Common Warehouse Meta-Model (CWM), and the Software Process Engineering
Meta-Model (SPEM). All these specifications have in common that they are informal.

This thesis introduces a formal and complete variant of MOF, called Rich Meta Ob-
ject Facility (or RMOF in short), which is used to derive all kinds of formal MOF based
languages in a flexible way. RMOF is in particular extended (with respect to MOF) in
terms of behavior introducing a set of concurrent State Machines, method operation
calls and an action language. This core language is used to introduce semantically
different SPEM variants covering different aspects of a development process but can
be used for all kinds of languages required to capture different aspects of the process.

Since software-driven activities have often tremendous optimization potentials and
behavior-related hypotheses might be difficult to describe, the adequate hypothesis
verification results often in a high effort. This thesis focuses on the reduction of this
effort. The reduction will be realized by using precise and yet flexible languages de-
rived from RMOF to describe all hypothesis elements like products, activities and
tools appropriately. The appropriateness addresses the different viewpoints of different
stakeholders, e.g., designer, tester, manager including adequate - for example time de-
pendent - abstraction levels. The methodology includes the (semi-)automatic tracking
of all software-driven activities to build a detailed data base of artifacts and interac-
tions. The introduced modeling languages and the methodology to define, refine and
abstract model instances of these languages is complemented by optimization methods,
which will make it possible to synthesize and analyze RMOF (meta-)models.

In the following section, a screenplay will introduce the potentials of this approach
that allows the derivation of scenarios covering the thesis structure.

3

1 Introduction

1.1 Screenplay and Scenarios

Maya is a development process improvement specialist. She is contracted by a large
automotive system integrator to identify optimization potential in the company’s veri-
fication activities. In its recent projects, the company continuously required more and
more effort to achieve the specified verification goals. These were indirectly driven by
customers requesting new “x-by-wire” functions, e.g., traffic sign and obstacle recogni-
tion, car platooning, and automatic parking. All of these functions require very low
failure rates for their certification. Failure detection is done during the verification
activities. Since these are increasingly turning into a bottleneck for the tight time-to-
market schedules, management would like to have their efficiency improved.

To begin with, Maya downloads the relevant parts of the company’s development
process repository. This repository stores all kinds of tracked process information in-
cluding all kinds of artifacts, developer interactions and tools used in development
projects. All process stakeholders are connected to this repository with corresponding
views of the process, e.g., Gantt charts for the verification team manager visualizing
the development progress and upcoming activities, work flow views for members of the
verification crew and hardware utilization views for administrators. Maya synthesizes
a process model based on common activity patterns of the past development projects.
The process model has a coverage of 91% of all relevant projects stored in the compa-
nies process repository.

In the first analysis, Maya computes the probability of errors that induce deep pro-
cess iterations. The analysis reveals the manual implementation work between the
output of the code generators of the used modeling frameworks/languages, in particu-
lar Matlab Simulink, and the input of the testing environment as a main error source.
The required implementation work includes the integration and completion of different
code fragments of the code generators composing implementation and test cases. The
errors occurred during the certification activity and mainly violated the required state-
ment test case coverage. The required test case coverage specifications were violated
in that way, that the implemented test cases did not cover the required test cases,
or that syntax (e.g., the certification standards require a certain documentation style
at each criticality level) or semantics (e.g., pointers are forbidden to manage complex
data structures in components with a criticality level greater than 5) were violated.
Additional analyses show that relevant certification documents varied from project to
project, in one project for certain components and even for a certain component within
a project, e.g., due to the outcome of previously conducted risk assessment activities.
Since all activities can be conducted arbitrarily in a project, the outcome of previous
activities often changes in a project, inducing additional work in all dependent activi-
ties to achieve the certification goals. This is in particular the case when the process

4

1.1 Screenplay and Scenarios

iterations are deep. Maya therefore reconfigures the available code generation services
to avoid manual implementation work when possible. If it is not possible to avoid
manual implementation work, she adds additional checks that notify the developer
when relevant certification rules would be violated in the ensuing process steps. The
results of these checks are presented in additional views in the development environ-
ment, guiding on an adequate abstraction level through implementation, testing and
certification documents. She synthesizes several model abstractions for the verification
management to support the planing as well as the control phases with a significance
level of 63%. These models require only little input and are computed to guide the
development in the early stages regarding the required testing effort. Their significance
is determined by analyzing the process model after adding and filtering the activities
of the process model previously synthesized.

Next, an additional analysis reveals that the required time to conduct certain verifica-
tion activities depends significantly on the involved people. Maya refines her hypothesis
by adding the tool interaction protocols. With an additional analysis she is able to
classify the development team members into groups of different skill levels in terms
of tool handling. Based on this refined hypothesis, the significance of the impacts on
the process model increases to 72%. A lack of highly qualified employees, who are
required to conduct certain verification activities often leads to bottlenecks. Based on
this knowledge, she refines and optimizes the control flow of the currently running de-
velopment processes. Maya talks to the vendors developing the tools used to conduct
these verification activities and develops some abstractions, which can be used by em-
ployees with a lower skill level if the input fulfills certain (syntax and behavior-related)
properties and process activities requiring a low certification level. She develops suc-
cessive on-the-job training supported by the tools in order to gradually increase the
skill level of the employees.

Maya assumes that the complexity of the input models is a relevant input to increase
the significance level of the impact process model further. In this case the model
complexity depends in particular on the model dynamics. Therefore Maya computes
meta-semantics for all relevant models in relation to the testing effort based on the
complexity assumption and is able to increase the significance to 81%.

Finally, another analysis reveals that in cases where the complexity and size of the
input models are very high, the new verification goals of the certification agencies
cannot be reached efficiently by the current tool and method repertoire even if there
were enough highly qualified employees and no manual implementation work had to
be done. In addition, certification goals are becoming even more demanding in all
projects. Maya speaks with the corresponding verification tool vendors and pinpoints
a possible solution. There is a new tool that is very effective in solving several verifi-

5

1 Introduction

cation tasks, yet there are also some potential drawbacks. For example the employees
need to understand the complex tool handling and the tool requires much more com-
putational power than traditional tools. The computing time of the tool in particular
depends heavily on certain behavioral aspects of the input. Maya synthesizes a set of
patterns to identify tool inputs requiring presumably a high computation time. Based
on assumptions such as the learning curve of the employees, Maya calculates and opti-
mizes successively the possible impact ranges of the tool’s introduction. The analysis
reveals that after an introductory phase of several months, the tool would drastically
reduce the required verification time and would help to meet the certification goals
efficiently in the following years with a significant probability.

Based on the analysis’ results, Maya meets with all executives from the development
division to discuss the process optimization. After this meeting she refines her assump-
tions and computes the analyses again. She analyzes potential integration strategies
for all of the changes. Then Maya arranges a meeting with the management of the
automotive system integrator company and presents her results. Management votes for
a conservative integration strategy for some development projects currently running at
a high priority level, and for a less conservative strategy for the remaining projects.
Maya introduces the process changes and updates the company’s project database in
order to track the additional data. She continuously checks the data in order to react
to unpredictable situations. Some minor changes occur but after six months, manage-
ment decides to implement the process changes throughout the entire company.

The optimization approaches of the previous screenplay lead to the following three
scenarios:

(i) Development process (meta-)modeling is required as rich hypotheses based on
addressing the question as to what is required to understand the hypotheses cor-
rectly, e.g., activities, artifacts and tools. This includes in particular syntax and
semantics of all captured process elements. In addition, views are required pre-
senting the appropriate language in different perspectives, e.g., schedule, budget
or quality related aspects.

(ii) Development Process Methodology is used to track and enact on hypothetical
data directly from the software environment of all process stakeholders. Abstrac-
tions and refinements are used to map between different levels of languages and
their abstractions in the process, e.g., a concrete and complete implementation
of a component vs. all relevant time-related aspects of this component.

(iii) Methods and techniques to analyze and synthesize development process models.
Synthesis is used to generate (parts of) a process model that describes some real
world phenomena like a formula expressing mathematical relationships between

6

1.2 Process Modeling

the input of an activity and the required time to do that activity. Analysis is
used to check process model properties, e.g., whether or not a milestone can be
reached or to determine the significance of hypotheses like that the complexity of
the input model changes the behaviour of tester. Optimization targets questions
like if there is a (more) optimal process flow and is often a combination of analysis
and synthesis.

The structure of the thesis is derived in the next sections starting with a discussion
on process modeling.

1.2 Process Modeling

Traditionally, a process modeling language consists of elements like activities, roles
and milestones. When the process model acts as a hypothesis frame, it is necessary
to adequately express each hypothesis within the boundaries of the process modeling
language. Since the process modeling language should be able to describe all kinds
of processes these languages/language elements tend to be abstract. This applies in
particular when it comes to precise, formal semantics and even more when it comes
to dynamics. If, on the other side, the abstraction level of the described elements
is low it is inevitable to use a modeling language that matches the process elements
as close as possible. The introduction of the thesis structure is started by discussing
some (traditional) process modeling elements briefly to sketch a rough language scope.
Process elements include:

• Planning-related elements like activities, tasks and milestones can be described
statically in form of a set of achievable targets. The achievement of a target
is then controlled manually. On a more fine granular level it is also possible
to include dynamic-related elements, like available resources in terms of Petri-
Net based flows to support a (semi-)automated checking if an activity can be
executed. Figure 1.1 shows the mapping of a Software Process Engineering
Metamodel (SPEM [6]) based process model onto Place/Transition Petri Net
semantics, whereby the SPEM model is depicted on the left side and the Petri
Net on the right side. The activities “Component Implementation”, “Component
Testing”, and “Component Integration” are places in the Petri Net. An additional
place in the Petri Net represents resource synchronization between “Component
Testing” and “Component Integration”. There exist seven (hardware) tokens in
the Petri Net. The activities “Component Implementation” and “Component
Testing” require a single token. The activity “Component Integration” requires
two tokens. The Petri Net restricts the execution of the activities with respect
to the available tokens. Figure 1.2 shows nearly the same process model but

7

1 Introduction

Implementation Spec.

Requirements

Test Spec.

Component Testing

Component Implementation

Hardware
Hardware

2

2

Component Implementation

Component Testing

Component Integration
System Implementation

Component Integration

Figure 1.1: Control flow 1: hardware restrictions

with a restriction on human resources, i.e., “Tester” and “Developer”. In con-
trast to figure 1.1 the semantics of the SPEM model is mapped onto a Colored
Petri Net. The places on the Colored Petri Net are the same compared to the
Place Transition Petri Net but transition firing requires not only the availability
of tokens but also a minimal qualification of the colored token (representing a
human resource). The qualification of the human resource token rises after an

color Q (Qualification) = int; var q : Q; // qualification of the employee

Implementer

Implementation Spec.

Requirements

Component Implementation

Tester

I.q > 100

I.q += 50

I.q += 120

Component Implementation

Implementation Spec.

Test Spec.

Component Testing

Component Integration
System Implementation

1’q(250)

1’q(110)

I.q > 300

I.q += 100

I.q += 50

I.q > 200

Component Testing

Component Integration

Figure 1.2: Control flow 2: human resource restrictions and qualifications

8

1.2 Process Modeling

activity has been conducted. For example the “Component Integration” requires
two implementers/testers. One must have a qualification > 250 points, the other
one requires a qualification > 110 points. After the activity has been done the
qualification of both rises 120 points.

• Resource-related elements are for example hardware, software and humans. Hard-
ware can have a certain number of CPUs, an amount of RAM and a hard disk
speed. All these properties can vary over time, e.g., available CPUs in relation to
current workload, available RAM in relation of reserved memory and hard disk
speed in relation to storage allocation rate. These temporal properties could be
described in form of a function or a queuing model. Another example of resource
dynamics is time consumption of an algorithm representing the involved software.
Figure 1.3 maps the previous example and adds a “Test Software” element which
has a computation complexity/required time to process the test cases described
in the State Chart on the right side of the figure. The computation depends on

Compute

Computation Time

/do i = 0

[i <= 10 && i < # ARRAY] [i > 10 && i < #ARRAY]

Requirements

Component Implementation

Test Software

Time Consumption I

/do t += x[i]^2 + y

[i <= 10 && i < # ARRAY]

Time Consumption II

/do t += x[i]^4 + 5y

[i > 10 && i < #ARRAY]

Increase Array Counter

/do i = i + 1

[i >= #ARRAY]

[i >= #ARRAY]

[i < #ARRAY]

Implementation Spec.

Test Spec.

Component Testing

Component Integration
System Implementation

Test Software

Figure 1.3: Software model: computation complexity of test cases

the number of test vectors available. If there are less than ten test vectors (i
represents the number of test cases). the computation time equals x[i]2 + y. If
there are more than ten test vectors the computation time equals x[i]4 + 5y. x[i]
represents the test vector dependent computation part and y represents the test
vector independent computation part.

• Product-related elements are for example system architecture, implementation
and test cases. Products can be described statically, e.g., number of methods

9

1 Introduction

of an implementation file or dynamically to compute the achieved test coverage,
e.g., state or transition coverage of the implemented unit tests of a certain system
component.

• Psychological-related elements are for example motivation, team coherence and
social skills. These elements can be described statically, e.g., the motivation of
each team member is surveyed at the beginning and at the end of a project.
The motivation of a team member could also be described dynamically during
the whole project, e.g., based on financial incentives offered or the current team
stress level.

• Organizational-related elements are for example roles, number of employees at
a company and work constellations. A static description is obvious in this case
but roles could also change dynamically with respect to assigned tasks and work
constellations could base on the current psychological profile of the team mem-
bers.

• Analysis-related aspects like probabilism, different degrees of concurrency and in-
terleaving are required to apply analysis techniques. This also includes languages
for expressing temporal properties that should be verified, held or optimized dur-
ing an analysis.

All of these elements should be described with formally defined and suitable lan-
guages. The different languages and their semantic elements are combined in the
process model semantics. Other potential relevant semantic elements are, e.g., atom-
icity, concurrency and probabilism. Since every process stakeholder has different tasks
to fulfill in a process and to reach (possibly) different (sub-)goals, there exist also
different views on the process. Each view requires an adequate set of syntax and
semantics on an appropriate abstraction level. Figure 1.4 shows in the middle the
previous SPEM model, with refined syntax (left: “Data Structures”) and semantics
(right: “Algorithms”) covering test case data structures and algorithms. On the left
side the “Component Testing” activity is refined in terms of different implementation
tasks. The screenshot on the lower right side combines the models in the environment
of the developer.

There exist many formal process modeling languages, ranging from more general ones,
like Petri Nets [7], to specialized ones, like Merlin [8] for human resource management,
AND/OR graphs [9] for product/configuration management or SLANG [10] for activity
management. For a more complete list see 1.4.1. Since Petri Nets are already Turing
complete, later language approaches focus more on the suitability [11], taking aspects
like the modeling effort, comprehensibility of the models and aspects besides process
control (e.g., product management) into account. Later process modeling languages

10

1.2 Process Modeling

Implementation

(Test Case Init)

Component Testing

Test Init Implementation Spec.

Requirements

Component Implementation

OO-Based Implementation

Algorithms

{1: Operation Coverage,

2: State Coverage,

3:Transition Coverage}

Activities

Data Structures

Implementation

(Test Case Vector)

Implementation

(Test Target)

Test Init

Test Vector

Test Target

T2

Implementation Spec.

Test Spec.

Component Testing

Component Integration
System Implementation

Class

Variable

Method

T2: White-Box-Testing
- Depends on the criticality of the component {Level 1, Level 2, Level 3}
- L1: Operation Coverage, L2: State Coverage, L3: Transition Coverage
- Semantics A (Base) + B (Hardware) + C (Testers)

Environment

Test Model Implementation

Model

Tasks

Figure 1.4: Process view examples

try to combine different semantics or distinguish between micro and macro process
levels [12].

Nevertheless, no language is suitable in all contexts, simply because the process
elements or the process goals vary or, in other words, they are not sustainable. There-
fore general language frameworks are required, where it is possible to define arbitrary
languages syntactically and semantically. Graph transition systems [13] have a long
history in this field, but the suitability is also important regarding the meta-language
definition.

The approach introduced in this thesis targets the flexible creation and analysis of
process (meta-)modeling languages as instances of a language nucleus including differ-
ent views for all process stakeholders based on the idea presented in [14] on base of
the so called “Rich Meta Object Facility” [15]. This core language is used to embed
all kinds of languages and their abstractions including languages to describe processes,
artifacts (e.g., source code) or tools. The methodology (complementing the core lan-
guage) is introduced in the next section and complemented by appropriate synthesis
and analysis methods.

11

1 Introduction

1.3 Methodology

The methodology is driven by several aspects in this work. The first aspect focuses
on the data acquisition from the conducted development process. The second aspect
targets methods and techniques to synthesize models from the tracked data. The third
aspect concentrates on the analysis of the models. The (optional) fourth aspect ad-
dresses methods to propagate the results directly back to the development process.

Traditionally, data acquisition from a development process is done manually, which
has several drawbacks, mainly high resource consumption, errors or inaccuracy and
interference with development activities. An automatic approach requires to connect
the software used in the process with the process models in a rigorous way, or - in
other words - a seamless transition between models and the software environments.
This reflects the statement from Leon Osterweil from 1987 that “Software processes
are software too” [16].

In order to connect models and software this closely it is required to access the soft-
ware environment on a very fine granular level regarding available APIs, components
or source code itself. Since the effort to connect a software environment this close is
high, a software environment covering several development activities would require less
effort. Today, there are some open-source, component-based development frameworks
available, that address several kinds of development activities. The approach in this
thesis targets the enrichment of the Eclipse platform1, because it is by far the most
advanced open source and component based approach2 that is also widespread among
all kinds of developers and offers a rich set of so called plugins for different development
tasks3. The Eclipse platform was used to develop plugins to track information and to
introduce a flexible modeling approach with rich powerful graphical editors.

As mentioned previously, the first aspect of the methodology addresses the automatic
surveying of data directly from the software environment of the process stakeholder,
including interactions (e.g., mouse button pressed and GUI elements used) as well as
modified artifact (e.g., model inputs and test execution results). Figure 1.5 shows a
screenshot of the Testvector Editor of the BTC Embedded Systems augmented with
the tracking capabilities. Number one in figure 1.5 starts or stops the tracking.

1www.eclipse.org
2Open Standard Gateway initivative Platform - www.osgi.org
3More then 10 Mio. solutions (plugins and features) according to marketplace.eclipse.org, September
2014.

12

1.3 Methodology

5
1

3

4

6

2

Figure 1.5: Process information tracking

13

1 Introduction

After the tracking has been started (1) several actions of the Eclipse environment (2)
are automatically tracked (e.g., activation of plug-ins, switching of perspectives, screen
size changes). In particular the matrix to specify test vectors is parsed (3) including
the data changed (4) and Matlab Input Models or test execution results. In addition
to the automatic tracking the developer can introduce manual data (5). The track-
ing environment is complemented by preferences to specify where to store log files, to
define automatic splitting size, and to set options to encrypt the log files (6). This
preference dialog keeps also track of all created log files and can be used to compress
and delete transferred files. The tracked data consists mainly of interactions from the
developer, environmental settings and artifact data, e.g., the tests edited. The tracking
environment is introduced in more detail in section 5.1 on page 160.

Second, the methodology addresses the synthesis of models. The first step of the syn-
thesis is to identify unconditional behavioral patterns. An unconditional behavioral
pattern is a set of unconditionally linked (unique) interactions done by the developer.
Each interaction consists of all elements to “replay” the interaction, including the GUI
element where the interaction took place, the interaction kind (e.g., mouse button,
keyboard key and combinations like CTRL + mouse button) and the effects of the
interaction (e.g., a change in the test vector matrix, a test execution, a view change).
The idea of a behavioral pattern is visualized in figure 1.6. The left side of figure 1.6

tracking)

Keyboard)interac0on)

Mouse)interac0on)

GUI)element)

Interac0on)Logs)

C=40%)

Interac0on)pa@ern)matches)
all)interac0ons)two)0mes)in)
a)strong)bisimula0on)with)a)
coverage(of)40%)(=)6/15))

=)unique)interac0on)a@ributes)
K)GUI)element)ID)
K)Interac0on)kind)(mouse,)keyboard))
K)Interac0on)parameters)
(e.g.,)mouse)bu@on,)key,))
state)mask)(CTRL,)SHIFT,)…),)…))

Searching(uncondi/onal(
interac/on(sequences(

Figure 1.6: Behavioral pattern

14

1.3 Methodology

displays the two main interaction sources and an example GUI element. The inter-
action logs are visualized by a set of circles, whereby each circle represents a unique
interaction. The identified behavioral pattern on the right side of figure 1.6 presents a
sequence of interactions that covers 6 of the 15 interaction sequences tracked in the pre-
sented interaction logs (coverage = 40%). Figure 1.7 shows a simple interaction model
and the different pattern elements. The top of figure 1.7 is a graphical representation

Interaction Models v2 16

30/09/14

GUI element
(unique)

differentiation of interactions
(e.g., left mouse button,
middle mouse button,
right mouse button, mouse wheel,
keyboard interactions (ASCII-keys)
+ statemask (like CTRL, Shift, ...))

differentiation of
interaction results
(e.g., grid move,
grid change,
test(re-) executed)

Figure 1.7: Interaction model

of an interaction pattern. Top element is the start interaction. The bottom element
is the final interaction. The interaction in-between are differentiated in mouse and
keyboard interactions. Each interaction includes different states like pressed modifier
keys (e.g., CTRL). Blue transitions with probabilities represent interaction changes.
Black transitions represent fix interaction changes (with 100% probability). The higher
the transition probability the more interesting the interaction sequence for any kind of
optimization. Each interaction has a GUI element assigned where the interaction took
place (e.g., the test vector grid). The dashed arrows indicate interaction results, e.g.,
a test vector grid move, or adding, removing, and changing test vectors, as well as test
executions. Test executions and indirectly the interactions that took place before the
test execution needed to be differentiated into successful test executions and failures.

A second synthesis step generates conditions to distinguish behavior patterns. The
transitions of the models of the first analysis step are enriched by a set of conditions
to increase their probabilities if the conditions are evaluated to true. Each condition
is based on assumptions influencing the tracked interactions (e.g., complexity of the
input model). Figure 1.8 shows an example of this second analysis step. The model

15

1 Introduction

part in yellow shows interactions to implement test vectors. The model part in blue
shows interactions to execute tests. The black transitions represent the unconditional
transitions of the first model step. The dashed transitions in orange are substituted by
the dashed transitions in green in the second analysis step. In this case the cyclomatic
complexity of the input model guards the transition t. The results of the synthesis
of the evaluation are presented in section 5.4 on page 163 and the following sections
including some optimizations. Third, process analysis computes the probability dis-

Process Modeling::Optimization 33

01/09/14

Change Test Vector

Remove Test Vector

Copy Test Vector Visualize Signals

Filter Test Vectors

Scroll, Size, Position
Test Vector Views

Add Test Vector

Selecting MIL, PIL, SIL

Select Test Vectors

Execute Model and
Test Test Vectors

0.6
0.3

0.1

0.1

0.8

0.6

0.4

0.075

0.025

0.7

0.3

0.6

0.8

0.2

0.8

0.2

1 0.15

0.85

0.4

0.6

Execution Results
(specifying a or !a)

0.4*0.94 [b]

0.4*0.06 [!b]

0.6*0.95 [a]

0.6*0.05 [!a]

Test Vector Implementation Test Vector Execution

3

c=77,3%, l=3,6

t += 2.56 * cyclomaticComplexity(inputModel)

Figure 1.8: Interaction model with hypothesis enrichment

tributions of the interaction effects. This is done by simulating interaction sequences
up to a given minimal probability. The results of the analysis of the evaluation are
presented in section 5.6 on page 180.

Fourth, process enactment addresses the propagation of the analyzed process model
information back into the development environments of each process stakeholder, e.g.,
active tasks in workflows for the software architect, cumulated costs for the account
manager and Pert Diagrams with achievable milestones for the development manager.
Figure 1.9 depicts this process. Starting at the upper left corner, there exists a process
modeling environment where additional information (e.g., available and assigned re-
sources for each task) can be specified. This modeling environment is connected with
the process analysis environment to analyze all kinds of questions (including tracked
process informations). The Process Control Center is able to visualize process informa-

16

1.4 Problem and Related WorkOperative Process Planning & Controlling 11

Ralf Buschermöhle

Database and
Network Distribution

Process Modeling

Development Environments

30/09/14

Process Clients

Berechnung sinnvoller Prozessschritte aufgrund der aktuellen Daten

Workflow Engine Process Control
Center

Erfassung des nächsten Schritts & Erhebung von Daten (z.B. Dauer, Personen, …)

Process Analysis

Figure 1.9: Process information distribution

tion (e.g., history of person month occupied by a certain task) in statistical diagrams.
The workflow engine executes Process Models. A special network layer distributes all
kinds of process information over the network to special Process Clients (e.g., to select
the next task) or directly into the development environments (e.g., if design constraints
are not fulfilled). The workflow engine was developed in the projects “Speculative and
Exploratory Design in Systems Engineering” (SPEEDS1) and “Cost-Efficient Methods
and Processes for Safety Relevant Embedded Systems” (CESAR2) and successfully ap-
plied with the industrial partners.

The four elements tracking, synthesis, analysis, and distribution of process informa-
tion compose the methodology of this work. In combination with the flexibility to
create and analyze all kinds of models based on the so called Rich Meta Object Fa-
cility, which is described in chapter 2. The next sections introduce exemplary related
work starting with some process modeling languages that emerged over the years.

1.4 Problem and Related Work

A hypothesis identification in the context of process model optimization is the task of
finding a sustainable relationship between a set of independent effects on a (presum-

1http://www.speeds.eu.com
2http://www.cesarproject.eu

17

1 Introduction

ably) dependent effect. Figure 1.10 illustrates an example with two effects. In the lower

Testing

Approach::Adding Dynamics 3

01/09/14

= Measuring
 Points

User Interaktionen Input(s) Output(s)

Figure 1.10: Hypothesis verification

part of figure 1.10 are scatter plots depicted that are typically used to sketch surveyed
data. A scatter plot is a diagram using Cartesian coordinates to display values for
two variables for a set of data. The data is displayed as a collection of points. The
horizontal position of each point is determined by one variable, the vertical position of
another one. The two scatter plots are approximated by mathematical functions which
are widely applied to describe quantitative effects in development processes. Mathe-
matical functions in general are powerful enough to describe all kinds of relationships.
But the methods that compute the mathematical functions often have restrictive pre-
requisites and/or they limit the generated function classes very restrictively, e.g., a
multivariate regression analysis requires normal distributed data and calculates only
linear mathematical functions. But its not their expressiveness that lacks, its their
suitability. For the same reason e.g., C++ is used instead of Assembler to write soft-
ware and a set of multidimensional, linear functions is often an unsuitable abstraction
of the behavior of a software component. The suitability of a language addresses its
ability to easily model and interpret language instances with respect to the context of
the interpreter. Regarding a human interpreter the interpretation often depends on
the number and complexity of language constructs required to construct the model.
The suitability is context dependent, e.g., a task in a process context is often function,
goal and time dependent. The same applies for the C++ program in the implementa-
tion phase. Abstractions of this program are developed in the Design phase (e.g., with

18

1.4 Problem and Related Work

UML diagrams like Class Diagrams, State Charts or Sequence Diagrams).

The second crucial aspect of process models and process modeling languages is their
sustainability. The sustainability of a process model and process modeling language
is proportional related to the number of observations that can be explained over the
time. For example a spline is a smooth piecewise-polynomial function. The method
can easily explain a number of dots in a scatter plot. The sustainability is (nearly)
zero, because if another dot is introduced it is likely that the spline needs to be re-
computed and even worse, the spline does not “explain” anything (assuming that the
observations the previously sketched points are based on are not chosen as explication
itself). Figure 1.11 shows on the left side three scatter plots without an obvious math-
ematical relationship because they have a dynamic dimension which is not covered by
the mathematical functions. The middle shows a RMOF model defining meta-behavior
based on a previous analysis of artifacts and behavior restricting potential behavioral
semantics. The right side shows three different model instances explaining the dynam-
ics. The upper one includes probabilism, the middle one is a Matlab Simulink Stateflow
model and the last one is a Petri Net based model.

Figure 1.11: Sustainability and suitability

In order to achieve both suitability and sustainability, a certain (controllable) degree
of flexibility is required. The next section introduces process modeling languages to
describe (different aspects of) process models.

19

1 Introduction

1.4.1 Process Modeling Languages

The idea of process development languages and their execution started with the paper
“Software Processes are Software too” by Osterweil [16]. Over the years several process
modeling languages have been developed, but none has been widely accepted. If the
language is not able to cover the complete process, it is often classified into the cat-
egories “Process Specification Languages”, “Process Design Languages”, and “Process
Implementation Languages”. The languages range from informal ones to formal ones
and ones with an enactment environment1. The next enumeration shows developed
process modeling languages prefixed by the year of their introduction.

1962 Petri Nets [17] were introduced to model chemical processes and are widely used
to define semantics of process modeling languages. Over the time a lot of variants

 thread 2 after
critical section

thread1 after
critical section

thread 2 before
critical section

thread 1 before
critical section

thread 2
critical section semaphore

thread 1
critical section

p1 p2

p4

p3 p5

p6 p7

t1 t2

t3 t4

Petri&Netze::Kri+sche&Sek+onen&

Figure 1.12: Petri Net example with critical section

appeared with a higher abstraction level [7], to express time [18], or self modi-
fications [19]. All variants can be expressed as standard place/transition Petri
Net. Figure 1.12 shows a critical section modelled in a Petri Net model.

1981 IDEF0 [20] Functional Modeling method is designed to model the decisions, ac-
tions, and activities of an organization or system and was derived from the graphic
modeling language Structured Analysis and Design Technique. The notation is
informally specified and can be used to describe data flows, system controls, and

1The short descriptions rely often heavily on abstracts and chapters referenced by the process mod-
eling language

20

1.4 Problem and Related Work

Figure 1.13: IDEF0 example (see [20], page 24)

the functional flow of life cycle processes. An output arrow may provide data or
objects to several boxes via the forking mechanism, as shown in figure 1.13.

1988 Grapple [21] defines processes in a hierarchy using so called plan operators with
multiple levels of abstraction. Each operator has some precondition defining the

Since the roles and interrelationships of actions are
explicitly represented in plans, agendas (what needs doing)
and status reports (what has been done) can be generated at
multiple levels of abstraction. A plan can be constructed for
any agenda item, and the rationale provided for any
completed activity. In contrast, the DSEE task management
facilities [16] allow users to associate actions performed
with a task/subtask structure, but any intelligent processing
of stored task information must be provided by the
programmer.

Three additional recognition examples are:

(1) If no return privileges exist for C, then the
interpretation of unit-check-in of C is not valid due to
an unsatisfied precondition at level 3. Plan generation
can be invoked to satisfy the precondition, thereby
making the interpretation valid.

(2) If the programmer had issued a command for unit-
check-in on module B, this action would be recognized
as superfluous-its goal is already true (presumably, B
was not modified to make Sl).

(3) If the programmer had attempted to relinquish the
return privileges on C (perhaps meaning to do a check-
in but garbling the parameters on the command), the

action could be “doubly” an error. Return privileges
on C are necessary to doing unit-check-in of C, which
is necessary to completing the build of S1. Since he
proposed action interferes with other actions, the
programmer is asked to confum it before execution
(assuming the interpretation is otherwise valid).
However, there may be no valid interpretation for this
action (e.g., no “reason” to do a relinquish); then an
error would be reported.

As an example of how planning and plan recognition are
complementary, consider the request achieve built(Sl). The
goal is that of the partially completed build plan, so the
request equates to completing that plan. If this happens
after unit-testing is complete, there will be one remaining
subgoal in build to satisfy. The system-check-in operator
(level 2) will be chosen to satisfy it, and unit-check-in
(level 3) will be chosen to expand two subgoals in system-
check-in: since B is already checked-in, the third subgoal is
vacuously satisfied. Because the programmer does not have
return privileges for A, a further expansion of the
precondition in unit-check-in for A will have to be done.
The final plan consists of three actions: two unit-check-ins.
one of which is preceded by a dummy check-out to acquire
the return privilege.

Modulm 0 LSystem Sl
Controlled A Archived

I

Figure 6: A Plan in Progress

102 Figure 1.14: Grapple example (see [21], page 102)

state that must hold in order for action to be legal, and a set of effects which

21

1 Introduction

defines the state changes resulting from performing the action. A plan places
stress more on goals rather than activities. Grapple combines plan generation
with plan recognition. Plan generation automatically executes process steps to
achieve a goal while plan recognition attaches steps executed by the process
performer to the current set of plans. Figure 1.14 shows a subset of a system
development process on the left side and the process states on the right side.

1988 Marvel Strategy Language (MSL) is the process modeling language for the pro-
cess centered software engineering environment Marvel [22]. The software process
model in Marvel is an extensible collection of rules for the process steps with pre-
conditions and post conditions. Figure 1.15 shows an example MSL model for a
programming team where multiple developers are not permitted to change the
same module at the same time but need to reserve a module before changing it.
Marvel interprets its rules using forward and backward chaining. Forward chain-

Figure 1.15: MSL example (see [22], page 11)

ing is letting Marvel perform opportunistic execution of process steps as soon
as their precondition is satisfied as a result of prior steps performed. Backward
chaining helps Marvel find the process steps whose post-conditions satisfy the
pre-condition of other process steps that have been activated.

1989 In Hierarchical and Functional Software Process (HFSP [23]) software processes
are described as a collection of activities, which are characterized by their in-
put and output relationship and defined as mathematical functions. Complex
relationships can be decomposed into sub-activities together with the definition
of their input and output. Figures 1.16,1.17 show two different ways of repre-
senting the same activity composition. The first one of figure 1.16 is suitable
for understanding hierarchical structure of activity decomposition. The second
figure 1.17 is suitable to identify attribute dependency. The enactment mecha-
nism in HFSP provides activity scheduling, activity execution management, tool

22

1.4 Problem and Related Work

Figure 1.16: HFSP example 1 (see [23], page 346)

Figure 1.17: HFSP example 2 (see [23], page 346)

invocation, access to input and output of the software process model, and user in-
teraction. Activity scheduling allows concurrent activities to execute when their
input becomes available.

Figure 1.18: MELMAC example (see [24], page 4)

23

1 Introduction

1990 Melmac [24] is the predecessor of the so called FUNSOFT Nets, defined as a
Petri Net extension with additional views like Object Type and Activity View,
Process View, and Project Management View. Figure 1.18 shows a partial soft-
ware process model. This model was used to motivate different firing behaviors.
t1 has an object flow based firing behavior (s6 stores the number of identified
modules the designed system will contain) whereas t3 has a so called complex
output firing behavior depending on the successful compilation of the module. If
a module cannot be compiled it must be re-edited.

Figure 1.19: MVPL example (see [25], page 13)

1991 MVP-L [26] is an informal language designed to model processes, products, re-
sources, and quality attributes and support their instantiation in project plans.
Figure 1.19 shows a fragment of the resource model ’Designer’. The effort as-
signed to this resource states the effort available to this resource for executing
some process in the context of a project plan.

Figure 1.20: E3 example (see [27], page 11)

1993 E3 [27] is an informal, object-oriented software process modeling language con-
sisting of four views: inheritance view, task view, functional decomposition view
and informational perspective view. Figure 1.20 describes a user view on the

24

1.4 Problem and Related Work

product configuration schema, relations are differentiated into several categories
and read from bottom to top.

1993 EPOS [28] is based on configuration management capturing the evolution of
systems. A process is the total set of engineering activities to produce and evolve

Figure 1.21: EPOS example (see [28], page 5)

these systems. Therefore process modeling and configuration management are
strongly connected. EPOS uses configuration management techniques to model
the evolution of systems, introduces rule based techniques in the process models,
graph/net based techniques for enactment and process programming to express
basic activity steps. EPOS supports meta-modeling as visualized in figure 1.21,
shows meta-typing, types and instances in EPOS.

1994 Process modeling in Merlin [8] is done in the two levels process design and process
enactment. Process design is supported using a graphical notation called Entity
Relationship Models and State Charts. State Charts are used to specify the
behavior of the process models. Figure 1.22 presents two role specifications of a
quality assurance engineer and a programmer and a finite-state machine for the
attribute state of the document c-module during an step implementation.

1994 PADM [29] is based on the so called formal “Base Model” (BM [30]). The se-

25

1 Introduction

Figure 1.22: Merlin example (see [8], page 5, 14)

mantics of BM constructs are defined using a linear time temporal logic. In BM,
a system is considered to be composed of components which may be executed
in parallel. Each component provides a number of operations and contains state
variables which can only be accessed by the operations. An operation may call
other operations in other components. All components of PADM are specified in
BM. Figure 1.23 shows a so called Role Activity Diagram defining a role behav-
ior. They specify the different activities (of a person with this role) which can
take place and dependencies which exist between them.

26

1.4 Problem and Related Work

Figure 1.23: PADM example (see [29], page 20)

27

1 Introduction

1994 The Model for Assisted Software Process Description Language (MASP/DL) is
the process modeling language for the framework ALF to build process-centered
software engineering environments [31]. A MASP software process model is com-

Figure 1.24: ALF example (see [31], page 21)

posed of software process fragments consisting of an Entity Relationship At-
tribute to describe data, a set of operator types to allow abstractions of tools
and pre/post conditions, a set of rules of type event-condition-action, a set of
ordering constraints and characteristics. Figure 1.24 shows an audit action spec-
ification.

1994 Slang is a process modeling language for SPADE [10]. Like Melmac, Slang uses

Figure 1.25: SPADE example (see [10], page 12,13)

28

1.4 Problem and Related Work

a Petri Net extension as its base. A Slang process model can be hierarchically
structured as a set of activities, each is described by a net that may include
invocation of other (sub) activities. Like in high-level Petri Nets, process data
are represented as tokens in Slang. Figure 1.25 presents a test phase model using
Kernel Slang on the left side. Additional guards and actions are presented on
the right side.

1995 FUNSOFT Nets [32] are high level Petri nets for software process modeling.
Figure 1.26 shows a waterfall driven software process modeled with FUNSOFT

Figure 1.26: FUNSOFT example (see [32], page 9)

nets. Some nodes have additional semantics, e.g., an Decision Node (DEC) man-
ages resources/persons executing the task.

1997 JIL [33] text based process modeling language based on the programming lan-
guage ADA [34] developed by a team led by Jean Ichbiah of CII Honeywell Bull.
JIL differences so called proactive and reactive controls. Pro active controls are
executed imperatively, whereby reactive controls react autonomically, e.g., on
events like product states. Figure 1.27 shows a reactive control specification de-
scribing in the upper part that the object identification in the object analysis and
design based on the Booch method should be revisited if the class identification
is not completed yet. There exists a subset of JIL called Little-JIL which comes
with a graphical editor. Figure 1.28 shows the data flow of a flight reservation
process.

1997 The Concurrent Software Process Language (CSPL [36]) shares most of its syntax

29

1 Introduction

Figure 1.27: JIL example (see [33], page 8)

Figure 1.28: Little JIL example (see [35], page 7)

with ADA95 and adds special language constructs to model software processes
consisting of work assignment statements, communication-related statements to
synchronize tasks, role unit statements to define mappings between roles and
developers, tool unit statements to specify tools that are required to complete
a task and relation unit work assignment statements allowing the assignments
of work units to multiple developers. Figure 1.29 shows the information of the
modification of a test plan "ModifyTestPlan" and the modification of the unit

30

1.4 Problem and Related Work

Figure 1.29: CSPL example (see [36], page 6)

test package "Modify Unit TestPackage".

1997 APEL [37] is a visual, formal process modeling language. In APEL, a software
process is described using Object Modeling Technology diagrams, data flows,
control flows, workspaces and cooperation, roles, and state transition diagrams.
Figure 1.30 shows some concurrent states (with dashed lines) and local state

Figure 1.30: APEL example (see [37], page 27)

31

1 Introduction

diagrams. Leaving the dashed area forces a re-synchronization. APEL provides
additional support for the Goal Question Metric (GQM [38]) model.

2000 PROMENADE [39] is the Process Oriented Modeling and Enactment of Software
Development. It is a UML meta-model extension. PROMENADE supports
active and pro-active controls (see JIL). Figure 1.31 shows a refinement hierarchy

Task

TestComponent

GenerateTestPlans

WhiteBTestComponent

GenerateWhiteBTestPlans

BlackBTestComponent

GenerateBlackBTestPlans

<<refinementDep>>

<<refinementDep>>

Figure 1.31: PROMENADE example (see [39], page 165)

for the task "TestComponent" and "GenerateTestPlans" in UML syntax.

2007 The Executable Process Modeling Language [40] is a formal, extensible Process
Modeling Language based on some kind of Petri Nets semantics. Figure 1.32

Figure 1.32: EPML example (see [40], page 13)

shows a travel reservation process.

32

1.4 Problem and Related Work

2008 SPEM [6]: The Software & Systems Process Engineering Metamodel Specifica-
tion is a MOF [41] instance developed by the Object Management Group (OMG).
SPEM supports several diagram types. For details see 3.1.

This list of process modeling languages makes no claims of being complete but should
give an impression of the diversity of process modeling languages that were defined.
Several of these languages emerged and disappeared already. But none is widely ac-
cepted. A subset of these languages has formal defined semantics and is Turing com-
plete. This stresses the argument that the expression power is not the critical issue to
establish a process modeling language. If the language is Turing complete, has formal
semantics (can be executed and analyzed) and has appropriate tool support the only
reason not to use the language is a lack of sustainability and suitability (given a certain
abstraction level) - in particular over time. This is in particular the case when only
an abstraction of the language is relevant to describe an effect (e.g., an impact from
one process element on another process element). This obviously includes the relevant
meta-model of the language that defines syntax and semantics of the modeling lan-
guage.

All these languages might be appropriate to describe some process elements but the
chance is high that they are not appropriate over time and on a low abstraction level.
Therefore these process modeling languages are not used directly in this approach.
Instead a meta-modeling language is the key to include all these process modeling
languages and all other potentially relevant languages on significant abstraction levels.
Related meta-modeling approaches are introduced in the next section.

1.4.2 Meta-Modeling Languages

This section starts by introducing the meta-modeling approaches of the Generic Mod-
eling Environment, Kermeta and Viatra. All approaches can handle a single meta-
modelling layer. This means that the language to specify the semantics of the meta-
model is fix. All approaches come with implementations to build and simulate the
models.
The Generic Modeling Environment (GME 5) is a domain-specific, model-integrated

program synthesis tool for creating and evolving domain-specific, multi-aspect models
of large-scale engineering systems. Figure 1.33 shows screenshots of GME. The mod-
els take the form of graphical, multi-aspect, attributed entity-relationship diagrams.
The techniques to build these models are (so called) hierarchy, multiple aspects, sets,
references, and explicit constraints techniques [42]. The environment only focuses
on building the models - or TestExecutedValueRofDifferencesMIL:more precise - their
syntax/type/static aspect. Then so called model interpreters map the models to an
implementation language to enrich them with some behavior. In later extensions a

33

1 Introduction

 9

Figure 4 HFSM metamodel

Figure 5 Example HFSM model

 10

The metamodeling environment has a good example for an add-on. OCL syntax checking
is a very specific functionality that is not part of the baseline GME program. However, its
function is very important to metamodeling; the user does not want to wait to catch syntax errors
in her constraints until a constraint is checked in the target environment. Therefore, we provide
an add-on to the metamodeling environment that checks the OCL syntax of the constraint that is
currently being edited. The OCL expression is a textual attribute of the constraint object. The
OCL syntax checker add-on is registered to catch attribute change events. Whenever it is fired it
parses the OCL expression and provides immediate feedback to the user.

As most meaningful modeling paradigms, the metamodeling environment has its own
interpreter. It parses all the class diagrams (in the HFSM case there is only a single one) and
generates an XML representation of the modeling language. GME can read this file and
configure itself to support the new language. Figure 5 shows an example model captured in the
resulting HFSM modeling environment.

The name of the modeling language is shown in the lower right corner again. Notice that
the only part shown in the part browser is State and the only aspect is Main. The attribute
window shows the GuardCondition attribute of one of the transitions. Our simple HFSM
environment uses the standard, built-in decorator that is able to display boxes, icons, names etc.
Notice that the state Second has two substates with the same name “A”. When trying to close the
model or explicitly requesting constraint checking, the violation is caught by the constraint
manager. The error message displayed is shown in Figure 6.

Figure 6 Constraint violation

PRACTICAL APPLICATIONS
Three practical applications of GME are presented below:

MILAN, the Model-based Integrated simuLAtioN framework, is a GME-based extensible

environment that facilitates rapid evaluation of different performance metrics, such as power,
latency and throughput, at multiple levels of granularity, of a large class of embedded systems by
seamlessly integrating different widely-used simulators into a unified environment (Ledeczi,
Davis, Neema & Agrawal, 2003). The MILAN framework is aimed at the design of embedded
high-performance computing platforms, of System-on-Chip (SoC) architectures for embedded
systems, and for the hardware/software co-design of heterogeneous systems.

Figure 1.33: Generic modeling environment

graph transformation language is used to define semantics based on a language called
“GReAT” (Graph Rewriting And Transformation [43]).

Kermeta [44] is a Mermaid-modeling approach dedicated to describe domain specific
models emerging in a product design process in order to use model transformations
to automate process activities/steps. Kermeta is an Essential MOF [41] compliant,
can describe data types and comes with an own textual language to describe behavior.
Listing 1.1 shows some example Kermeta code.

Listing 1.1: Example Code Kermeta
do // a loop f o r g e t t i n g a t e x t from an user
var s : kermeta : : standard : : S t r ing
from var found : kermeta : : standard : : Boolean i n i t fa l se
un t i l found
loop
s := s td i o . read ("Enter ␣a␣ text : \ n␣−−>␣")
i f s . s i z e > 0 then found := true
else s t d i o . w r i t e l n ("ERROR␣−␣Empty␣ text ! ")
end

34

1.4 Problem and Related Work

end
s t d i o . w r i t e l n ("\n␣You␣ entered : ␣" + s)

end

The source code shows some object oriented language relationships. Another approach
has been realized in the framework called Viatra [45], which is the abbreviation of “Vi-
sual Automated Transformations for Formal Verification and Validation of UML Mod-
els”. In this framework textual graph transformations (based on GReAT) and abstract
state machines are used to carry out graph transformations. Listing 1.2 shows some
example code modifying a Petri Net. In this code a precondition (or Left-HandSite
(LHS) pattern) and a post condition or (Right-HandSite (RHS) pattern) is presented
concluded by an action sequence that is responsible for naming a place (in a Petri Net)
in the same way as the control flow element was named. This name copying is defined
in an imperative ASM rule called copyName, that is simply invoked here. It is worth
pointing out that the LHS and RHS share the ControlFlow variable, therefore it will
mean the same model element in both cases.

Listing 1.2: Example Code GReAT

g t ru l e transformCtr lFlw (out ControlFlow , in Petr iNet)
= { precond i t i on pattern unmappedCtrlFlw (ControlFlow)
= { ’ ControlFlow ’ (ControlFlow) ; neg f i nd act_EdgeMap

(ControlFlow , NoPetr iPlace) ; }
po s t cond i t i on pattern mappedCtrlFlw
(ControlFlow , Petr iP lace , Petr iNet) = {
’ ControlFlow ’ (ControlFlow) ;
f i nd activityEdgeMapping (ControlFlow , Pe t r iP la c e) ;
f i nd placeOfNet (Petr iP lace , Petr iNet) ; }

ac t i on { c a l l copyName(ControlFlow , Pe t r iP lac e) ; } }

The action sequence has access to the value of PetriPlace, which is the place created
by the RHS (or more precisely, by applying the declarative part of the rule). The pa-
rameters of the graph transformation rule are the variables ControlFlow and PetriNet
which are assigned in the pre- and post-conditions.

Besides these single layer meta-modeling approaches there exists a multiple layer
meta-modeling approach defined by the OMG in form of the “Meta Object Facility”.
Figure 1.34 shows the Essential MOF (meta-)class definition, i.e., a class has a set of
(ordered) attributes. This meta-model is the core meta-model for several OMG spec-
ifications like the Common Warehouse Meta-Model, the Unified Modeling Language,
or the Software & Systems Engineering Meta-Model. The specification defines more or
less in natural language the syntax of the language but gives a hint on the idea behind

35

1 Introduction

Figure 1.34: MOF

the approach how to define and relate multiple language layers.

The meta-modeling approaches define frameworks to define syntax and semantics for
a single language including textual behavior for example in form of graph transforma-
tions. Additionally the MOF specification defines informally syntax and semantics of
a multiple layer meta-modeling approach.

None of the previous approaches combines a rich, formal, and strongly typed but
flexible meta-modeling language. Flexible in a way that the meta-modeling language
can also be strongly typed on base of another meta-modeling language e.g., to synthe-
size meta-modeling elements. This is only possible with a multi-layer meta-modeling
approach. Regarding the implementation of the approach it should base on standards
whenever possible to ensure a maximal dissemination und support an arbitrary com-
bination of textual and/or graphical representations (for all layers).

36

1.4 Problem and Related Work

The next section discusses methods and techniques in the context of process opti-
mzation complementing the approach.

1.4.3 Process Optimization

Synthesis1 is the combination of elements to a new element. Model synthesis is required
to build models or model parts automatically based on syntactical and behavioral
requirements, e.g., resource consumption in relation to planned activities, tools and
resources.
The counterpart of the synthesis is the analysis. Analysis is the systematical investi-

gation of an element by dividing the element into its sub-elements without neglecting
the sub-elements connecting/interlinking as a whole. Model verification is an analysis
method to check (syntactical and) behavioral requirements of models and/or (meta-
)models, e.g., possibility/probability to miss deadlines in relation to a set of planned
activities, tools and resources. The process model optimization is often a combination
of analysis and synthesis techniques.

There are four important questions when applying a method all focusing the single
aspect of the method’s suitability. First, the input prerequisites that must be ful-
filled in order to apply the method. Prerequisites are, e.g., required model properties
like relationships between variables must be linear, or normally distributed dependent
variables. The required model properties often affect the model sustainability. Sec-
ond, theoretical and practical limitations of the method, e.g., computation boundaries.
Third, the effort that is required to interpret the results. Fourth, the precision of the
results regarding the analysis question. The next sections introduce methods and tech-
niques to synthesize, verify and optimize models shortly in relation to their suitability.

Synthesis

According to the definition above, model synthesis is the combination of model elements
to construct a new model element. This can be for example a mathematical formula,
tokens in a Petri Net, the synthesis of the net itself or the (meta-model) net semantics
to explain certain aspects/effects in other models (often on base of surveyed data in the
context of processes). The next section introduces several statistical methods which
are widely applied in practice. The list of methods is not complete but covers the most
applied methods and method categories.

Statistics Statistical methods and techniques often have strict prerequisites, e.g.,
regarding the variables’ scales (nominal, ordinal, ratio), probability distributions or

1Defined by Hermann Kolbe to describe the combination of chemical substances to build a new
substance.

37

1 Introduction

dependencies (e.g., linear) between variables. So called “parameter free statistics” are
used to keep these prerequisites as low as possible. Albeit the name might suggest that
these methods have no prerequisites at all, they actually have prerequisites but not as
strict as non free methods. Parameter free statistics don’t restrict the statistical model
structure but might be able to reveal some from the given data. Non parameter free
statistics require a certain model structure, probability distribution, often a normal
distribution.

There exist several parameter free statistics like median dividing the area of a distri-
bution function into two equal parts, Kernel Density Estimation method to estimate
the probability distribution of a variable and Cluster Analysis methods reveal potential
clusters in a variable distribution. The next sections introduce exemplarily different
statistical methods to compute relationships between variables. All examples in this
sections are fictionalized simplifications for expository purposes and should not be
taken as being realistic. The so called χ2 independence test is introduced in the next
section because it is the only test of this category to apply for any kind of relationship
between two variables.

The χ2 Independence Test The χ2 test does not require any specific variable scale
and is considered to be a parameter free test. A cross tabular is created in the first
step of a χ2 independence test. A cross tabular presents relationships between two
nominal scaled variables. The total number of observations of a certain characteris-
tic combination of the first variable (horizontally depicted in the cross tabulation) is
mapped to the total number of observations of a certain characteristic of the second
variable (vertically depicted in the cross tabulation) [46]. In the second step the ex-
pected values are computed assuming that the variables are independent and the values
are equally distributed. The expected value is computed by multiplying the row sum
with the column sum divided by the total number of observations. Figure 1.35 shows
an example cross tabulation of the study [4] presenting the two variables “SUCCESS
points” and “Number of employees”. The cross tabulation of figure 1.35 shows that
41,1% of all projects have been conducted in companies with employees between 10
and 49. Assuming an independence of SUCCESS points and company size, 41.1% of
the projects rated with 100 SUCCESS points should have been conducted in this com-
pany size class which equals 74 projects. The surveyed value is 89 projects. The χ2

independence test utilizes these differences between expected and surveyed values. The
smaller the difference the more likely is an independence, the larger the more unlikely.
Whereby χ2 is computed as follows:

χ2 =

I∑
i=1

J∑
j=1

(nij − eij)2

eij
with i, j, I, J ∈ IN

38

1.4 Problem and Related Work

SUCCESS%Points
100 90$99 68$89 <68 Total

Number3of3employees3 >3249 Number 8 12 2 6 28
Expected3Value 14.28 7.85 2.78 3.09 28
Percentage 28.57% 42.86% 7.14% 21.43% 100.00%

50$249 Number 28 26 13 9 76
Expected3Value 38.75 21.31 7.54 8.40 76
Percentage 36.84% 34.21% 17.11% 11.84% 100.00%

10$49 Number 89 31 11 14 145
Expected3Value 73.94 40.67 14.38 16.02 145
Percentage 61.38% 21.38% 7.59% 9.66% 100.00%

<310 Number 55 30 9 10 104
Expected3Value 53.03 29.17 10.31 11.49 104
Percentage 52.88% 28.85% 8.65% 9.62% 100.00%

Total Number 180 99 35 39 353
Expected3Value 180 99 35 39 353
Percentage 50.99% 28.05% 9.92% 11.05% 100.00%

Figure 1.35: Cross tabulation SUCCESS points and number of employees

With i = cross tabulation column, j = cross tabulation row, e = expected value, n
= surveyed value. The difference between surveyed and expected values is squared to
avoid adding up of positive and negative values. The division by the expected values is
done to normalize the values and to weight differences in relation to the total numbers.
Hypothesis verification includes always the risk of errors. One distinguishes first kind
errors (α-errors) and second kind errors (β-errors). If the so called null hypothesis
(defined as contradiction to the working hypothesis) is rejected although the hypothesis
is correct, it is called α-error. The significance level α describes the limit of first kind
errors. Is a null hypothesis accepted although it is incorrect, it is called β-error. The
interval of the χ2 - distribution function has the value one. The α-error describes the
relative size of the right part of the interval. If the computed χ2 value matches the left
part of this interval, the working hypothesis is rejected, otherwise it is accepted. This
so called critical value is based on the so called freedom degree of the cross tabulation
computed as follows: f = (number of rows− 1) ∗ (number of columns− 1). χ2 is null,
if the two variables are completely independent. If χ2 rises, the dependence is more
likely. Figure 1.36 shows some χ2 distribution functions with independent freedom
degrees and α = 5%, a critical value, and acceptation and rejection areas. The higher
the freedom degree the more moves the mode of the distribution to the right. Only
20% of the expected values should be less or equal 5 and all expected values should
be greater or equal 1 [47]. The main problem of the χ2 independence test is already
affected by this application recommendation. The classes of the cross tabulation are
more or less (if the application recommendations are met) arbitrarily chosen - which
is one important drawback. The second drawback is that the described relationship is
weak, because the method simply states that the probability of a relationship is high

39

1 Introduction

Cri$cal(Value(=(16,92&(α=5%)&

Rejec$on(Area(
Null(hypothesis((5%)(

Chi-Square
0 5 10 15 20

0,1

0,2

Accep$on(Area(
Null(hypothesis((95%)(D

is
tr

ib
ut

io
n

D
en

si
ty

Legend(
((
((
((

Freedom(Degree(=((5(
Freedom(Degree(=(10(
Freedom(Degree(=(20(

Figure 1.36: χ2 - distribution function example

(or low). But it does not say anything else about the relationship. The next section
introduces a method that computes the (linear) relationship strength of two variables.

Spearman Rho Spearman Rho is a parameter free association measurement for
ordinal variables. The calculation of Spearman Rho is based on the so called rank
correlation coefficient. Let there be two variables a, b with 9 observations that have
been surveyed. Variable a is a software component complexity indicator. Variable b is
the time required for testing activities for each software component. Table 1.1 shows
the observations of a, b. The first step is done by computing their rank. Table 1.2

i 1 2 3 4 5 6 7 8 9
ai 1 2,3 6,1 3 3 1 5 5 9,5
bi 2 2,7 11,3 5 5,5 1,5 9,5 10 21

Table 1.1: Two example variables a,b and their observations

shows the rank computation of variable a. Table 1.3 shows the rank computation of
Variable b. Several observations with the same value have a rank equal to the mean
of the sum of their unnormalized ranks. The rank computation sorts the input values
and assigns a rank according to the sort index. If multiple observations have the same

40

1.4 Problem and Related Work

Index Value Rank Normalized Rank
1 1 1 (1 + 2)/2 = 1.5
6 1 2 (1 + 2)/2 = 1.5

2 2,3 3 3
4 3 4 (4 + 5)/2 = 4.5
5 3 5 (4 + 5)/2 = 4.5

7 5 6 (6 + 7)/2 = 6.5
8 5 7 (6 + 7)/2 = 6.5
3 6,1 8 8
9 9,5 9 9

Table 1.2: Computing the rank of variable a

Index Value Rank Normalized Rank
6 1,5 1 1
1 2 2 2
2 2,7 3 3
4 5 4 4
5 5,5 5 5
7 9,5 6 6
8 10 7 7
3 11,3 8 8
9 21 9 9

Table 1.3: Computing the rank of variable b

value, the rank is the division of the sum of the sorted indexes. The next step computes
the differences between the ranks as presented in table 1.4. The third step computes
the rank difference as follows:

γs
df
= 1− 6

∑
i d

2
i

n ∗ (n2 − 1)
with di = Rg(xi)−Rg(yi), with

di = rank difference
n = number of values

Using the concrete observations we have γs = 1 − 6∗1,5
9∗(92−1)

= 0.012346. The values
ranges from [0, 1], whereby 0 indicates the strongest correlation and 1 the weakest. In
the example case there is a strong relationship between the ranks of variable a and b,
meaning that the ordering between observations of a and b is highly related.

41

1 Introduction

Index d = Rg(a)−Rg(b) d2

1 -0.5 0.25
2 0.5 0.25
3 0.0 0.00
4 -0.5 0.25
5 0.5 0.25
6 -0.5 0.25
7 0.5 0.25
8 0.0 0.00
9 0.0 0.00

Table 1.4: Computing differences between a and b

Regression Analysis The goal of the regression analysis [46] is the quantitative
description of a relationship between a single independent variable and a set of de-
pendent variables. Mathematically formulated: Let y be the dependent variable and
x1, x2, . . . , xn be a set of independent variables. The regression analysis tries to deter-
mine the function that describes:

y = f(x1, x2, . . . , xn) + e where
e is the error (or residual)

There are different forms of regressions that can be applied according to the parameters
of the function f and prerequisites for x1, . . . , xn that must be fulfilled. X is the matrix
consisting of the data values of x1, . . . , xn. The linear regression analysis computes a
linear function f to describe the relationship between the dependent variable and the
set of independent variables. The surveyed data describes n equations of the following
form:

yi = β0 + β1xi + εi with i = 1, . . . , n

The goal of the linear regression analysis is to determine β0, β1 and has the following
assumptions:

• The random vector ε = (ε1, . . . , εn) has an expected value of zero, i.e., E(ε) = 0.

• All εi are stochastically independent to avoid any relationship to Y .

• X is constant and has a rank of n+ 1 which is required for a unique solution of
the regression problem.

The computation of f is (normally) done by using the method of “least squares” that
minimizes the squared sum of the residuals. The minimization of “least squares” is

42

1.4 Problem and Related Work

i ai bi b a
1 1 2 1.88 0.12
2 2.3 2.7 2.91 -3.99
3 6.1 11.3 1.75 0.64
4 3 5 2.64 -2.92
5 3 5.5 2.13 -0.90
6 1 1.5 2.04 -0.54
7 5 9.5 1.87 0.16
8 5 10 2.36 -1.81
9 9.5 21 2.43 -2.08
Sum 35.9 68.5 2.25 -1.36

Table 1.5: Computation of a and b for example observations 1.1

computed as follows:

RSS =
n∑
i=1

e2
i =

n∑
i=1

(yi − (a+ bxi))
2 → min!

The set of given formulas determined byX can be transformed by partial differentiation
into a set of normal equations. Then the searched so called regression coefficients a, b
are:

b =

∑n
i=1(xi − x)(yi − y)∑n

i=1(xi − x)2

a = y − bx

Let’s take the example data of tabular 1.5 and determine a,b. Figure 1.37 shows a line
plot (in blue) of the observations and the computed linear function y = −1.36 + 2.25x
(in black). The regression analysis is the first precise model that can be used for pre-
dictions. Normally one would compute a coefficient of determination (like R2) showing
how good the approximation is. There exist other regression variants like kernel re-
gression (as a weighted form) up to spline functions. Nevertheless the prerequisites are
high in all three statistical methods and they cannot be used on dynamic systems.

Factor Analysis The Factor Analysis tries to find a set of unobserved, uncorrelated
variables in terms of linear combinations of a set of observed (presumably) correlated
variables. Let x1, . . . , xn be a set of observable variables with means µ1, . . . , µn. Let’s
further assume we have factors f1, . . . , fm that describe the observations of x1, . . . , xn

43

1 Introduction

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30 32.5 35 37.5

5

10

15

20

25

30

35

40

x

y

Figure 1.37: Linear regression analysis example

in the following way:

xi − µi =li,1f1 + · · ·+ li,kfk + εi, with
i ∈ 1, · · · , n
k ∈ 1, · · · ,m
li,k are some unknown constants
εi are independently distributed error terms.
V ariance(εi) = ψi

Co− variance(ε) = Ψ

and E(ε) = 0

In matrix terms it is written as x− µ = LF + ε. Any solution of the set of equations
is defined as “factors” and L = l1,1, . . . , ln,m as so called “loading matrix”. There exist
different types of factoring approaches like the “Principal component analysis”, which
successively searches linear combinations of variables such that the maximum variance
is extracted, the “Common factor analysis”, which seeks the least number of factors,
or the “Factor regression model”, which is a combinatorial model of factor model and
regression model. After the relationships between the variables have been computed
they are often optimized. This is exemplarily shown in the next section.

44

1.4 Problem and Related Work

1.4.4 Linear and Non-Linear Optimization

Linear and non-linear Optimization [48] tries to maximize (or minimize) a variable in
a system of interrelated variables in relation to a given set of constraints.

Linear Programming and Nonlinear Programming

Linear programming requires that all relationships between the variables are linear.
A linear program (LP) is a matrix A ∈ Rm,n with two vectors b ∈ Rm and c ∈ Rn.
A solution of LP is a vector x ∈ Rn with non-negative entries that follows the linear
constraints:

a11x1 + . . .+ a1nxn ≤ b1
a21x1 + . . .+ a2nxn ≤ b2
...

...
...

am1x1 + . . .+ amnxn ≤ bm

The goal is to find the maximum of the scalar product cTx = c1x1 + . . . + cnxn. As-
suming that the linear constraints are consistent there exist infinite possible solutions
or at least one optimal solution.

A popular algorithm for numerical solutions of linear programming problems is the
Simplex algorithm developed by George Bernhard Dantzig. The Simplex algorithm is
done in two phases. Phase one tries to determine an initial solution or determines that
the problem has no solution. One solution for this task is to introduce a variable zi for
every row i:

min

{
m∑
i=1

zi

∣∣∣∣∣Ax+ z = b, x, z1, . . . , zm ≥ 0

}

The problem has the simple solution (x, z) = (0, b) if b ≥ 0. Furthermore is the target
function restricted by z ≤ b. Phase two tries to compute a better target function value
by solving the linear equation system by applying the Gaussian elimination method
iteratively. The following section sketches a small example:

Let’s assume there are three employees, a developer, a tester, and a deployer e1, e2, e3

who can be assigned in two projects p1, p2. All employees have a time frame to conduct
their activities. The developer e1 has 50 hours left, tester e2 has 40 hours left, deployer
e3 has 60 hours left. To develop, test and deploy a function in project p1 3, 2, and
2 hours are required. To develop, test and deploy a function in project p2 4, 5, and
9 hours are required. A function of project A costs the client 400 Euros. A function

45

1 Introduction

of project B costs the client 800 Euros. It is possible to construct the following linear
constraints:

3p1 + 4p2 ≤ 50 (developer)
2p1 + 5p2 ≤ 40 (tester)

2p1 + 9p2 ≤ 60 (deployer)
p1 ≥ 0, p2 ≥ 0

We would like to maximize the revenues z: max z = 400p1 + 800p2. This results in the
Simplex Tableau 1.6: In the head are the non-basis variables (p1, p2) presented. The

p1 p2

-z 400 800 0
yA 3 4 50
yB 2 5 40
yC 2 9 60

Table 1.6: Simplex tableau phase 1

basis variables (slack variables) yA, yB, yC are presented in the first column. Phase 1
is done by setting the independent variables to zero (nothing is developed). In phase
2 a non-basis variable with positive target value is selected.

p1 ≤ min
{

50

3
,
40

2
,
60

2

}
=

50

3
, p2 ≤ min

{
50

4
,
40

5
,
60

9

}
=

60

9

The value of the target function would be z = 6666.67 (p1) or z = 5333.34 (p2).
Therefore p1 is selected. Now, yA is exchanged with p1, whereby yA = 50− 3p1 − 4p2

with p1 = 50/3−yA/3−4/3p2. Then x1 is substituted in the other equations resulting
in a new Simplex Tableau 1.7. In the second step the final non-basis variable with

yA p2

-z -400/3 800/3 -20000/3
p1 3 4 50
yB -2/3 7/3 20/3
yC -2/3 31/3 80/3

Table 1.7: Simplex tableau phase 2

positive target value is selected.

p2 ≤ min
{

50

4
,
20

7
,
80

31

}
=

80

31

46

1.4 Problem and Related Work

This results in a target function value of max z = 6666.67 + 2064.52 = 8731.17. The
simplex algorithm has polynomial-time average-case complexity under various proba-
bility distributions, even though it has exponential worst-case complexity. Khachiyan
introduced 1979 an algorithm which solves LP in polynomial time (Khachiyans Theo-
rem).

Nonlinear programming includes (as the name indicates) at least one non-linear func-
tion. Special variants are objective functions that are non-linear. If the objective func-
tion is concave, it a maximization problem, if it is convex it is a minimization problem.
There exist several methods for solving non-linear problems, e.g., “branch and bound”
tries to divide the non-linear problem space into linear approximations. Besides opti-
mization it is often required to verify if a system (of variables and relationships) fulfills
certain properties. This is exemplarily introduced in the next section.

1.4.5 Verification

Verification describes the task to determine if a given system has certain properties.
Normally these properties are behavioral properties based on system snapshots. A
system snapshot is a valuation of all variables for a given system state, e.g., after 5
steps. In order to determine a system state the model as well as the properties to be
checked, must be formally defined.

Model Checking [1] relies on a formal system model. Initially this was a so called
“Kripke-Structure”, a minimal representation of the (reactive) system. Currently other
representations are used (at least internally) that can be analyzed faster with a com-
puter, but Kripke Structures are easier to understand and thus used for the example.
Kripke Structures consist of a set of states and a set of transitions including a function
that assigns each state a set of true statements. A calculation in the Kripke Structure
is described by a transition path.

Definition Kripke-Structure: Let AP be a set of atomic assumptions. The Kripke-
Structure M over AP is a tuple M = (S, S0, R, L) with:

(i) S is a finite set of states.

(ii) S0 ⊆ S is the set of initial states.

(iii) R ⊆ SχS is a total transition relation, i.e., for all states s ∈ S there is a successor
state s′ in S with R(s, s′).

(iv) L : S → 2AP is a function that maps every state to a set of atomic assumptions.

47

1 Introduction

A path π is represented by an infinite sequence of states s0s1s2 . . . of the Kripke
Structure with π = s0s1s2 . . . and si ∈ S connected by transitions.

To describe system states first order logic formulas are used and map every system
variable V = {v1, ..., vn} to a value of their domain. All mappings are elements of Ω. A
system state s is represented by s : V → D). Every Ω can be described by a formula,
for example:

• V = {v1, v2, v3}

• Ω: 〈v1 ← 2, v2 ← 3, v3 ← 5〉

• Some (true) formulas: (v1 = 2) ∧ (v2 = 3) ∧ (v3 = 5), (v1 = 2),
(v1 > 0) ∧ (v1 < 4)

Figure 1.38 shows an example of a Kripke Structure. All formulas describe only true

s0

s1 s2

v1=2,
v2=3,
v3=5

v1=2 v1>0,
v2<4

Figure 1.38: Kripke structure example

statements of Ω. We use the formulas to describe system states or sets of system
states. Analog it is possible to describe transition sets. A transition switches between
two states, the present state and the next state (V = present state and V ′ = next
state). All variables of V, V ′ can be described with a formula, i.e., every variable v in
V has a successor variable v′ in V ′. All transitions are captured by a transition relation
R(V, V ′), e.g., x′ = x+ 1. These kind of first order formulas are now transferred into a
Kripke Structure inductively on the structure. Exemplary the formulas S0 and R are
used as follows:

• S0(x, y) ≡ x = 1 ∧ y = 1

• and R(x, y, x′, y′) ≡ x′ = (x+ y) mod 2 ∧ y′ = y.

Let D = {0, 1}. Then a Kripke Structure M = (S, S0, R, L) is derived with:

48

1.4 Problem and Related Work

• The set of states S is equivalent to the set of Ω in V , which is an equivalent
of the Cartesian product of the domain variables D = {0, 1} → S = D × D =
{(0, 0), (0, 1), (1, 0), (1, 1)}.

• The set of initial states Ω of V that fulfill S0 is S0(x, y) ≡ x = 1 ∧ y = 1→ S =
{(1, 1)}.

• Let s and s′ be two states, then valuations of D are in the set R(s, s′), if R
is evaluated to true R(x, y, x′, y′) ≡ x′ = (x + y) mod 2 ∧ y′ = y is R =
{((1, 1), (0, 1)), ((0, 1), (1, 1)), ((1, 0), (1, 0)), ((0, 0), (0, 0))}.

• “Labeling function”: L : S → 2AP is defined so that L(s) consists of the atomic
assumptions that evaluate s to true
R = {((1, 1), (0, 1)), ((0, 1), (1, 1)), ((1, 0), (1, 0)), ((0, 0), (0, 0))→ L((1, 1)) = {x =
1, y = 1}, L((0, 1)) = {x = 0, y = 1}, L((1, 0)) = {x = 1, y = 0}, L((0, 0)) = {x =
0, y = 0}.

The only path (the only computation) in the Kripke Structure is
(1, 1)(0, 1)(1, 1)(0, 1) . . .

Temporal logics are used to describe behavioral properties that should be verified.
There exist two basic qualitative approaches of temporal logics according to their time
representation. The first one is “Linear Temporal Logics” (LTL [49]) which has (as
the name indicates) a linear understanding of time. The second one is “Computation
Tree Logic” (CTL [50]) which is in contrast to LTL able to formulate statements on
branching time. The third one is CTL* which is a super-set of LTL and CTL combining
path quantifiers of LTL and temporal operators of CTL. These three temporal logics
have a qualitative notion of time. Quantitative statements, e.g., “in 2 seconds”, are not
possible. Quantitative statements are possible with special logics like Timed CTL and
Duration Calculus. There exist also more user-friendly temporal logics like symbolic
timing diagrams or life sequence charts. Nevertheless for a basic understanding of
model checking LTL is sufficient. LTL combines classic logical statements with the
following temporal operators:

Next: ©(a > 1): a has a value > 1 in the next step. The LTL formula is true for a
given path (s0, s1, . . .) if and only if a > 1 is true for s1.

Always: 2(a): a is always true. The LTL formula is true for a given path (s0, s1, . . .)
if and only if a is true for all (s0, s1, . . .).

Eventually: 3(a): a is eventually true (in the following (possible infinite) states). The
LTL formula is true for a given path (s0, s1, . . .) if and only if a is true at least
for one si with i ∈ N0.

49

1 Introduction

Until: (a)U(b): a is true until b is true. The LTL formula is true for a given path
(s0, s1, . . .) if and only if there exists a i ∈ N0 that b is true in (si, si+1, . . .) and
for all j ∈ {0, . . . , i− 1} a is true for the path (s0, s1, . . . , sj).

The semantic of LTL operators is presented in figure 1.39. Model Checking tries to

f1 f1

f1 ©f1

f1 f1 f1 f1 f1 f1 f1

2f1 3f1

f1 f1 f1 f1 f2

f1Uf2

Figure 1.39: LTL formulas and their semantics in the calculation tree

identify the set of initial states s ∈ S0 that are true for a given temporal formula f or
differently formulated {s ∈ S0|M, s |= f}y marking the sets in the Kripke Structure.
In the last years Kripke Structures have often been substituted by Ordered Binary
Decision Diagrams that can often be computed faster by a computer. The Model
Checking process is simple in general. Unfortunately one will often face the so called
“State Explosion Problem”, because the computation tree or similar representations
are too large to be computed. The current research tries to reduce the computation
effort by using partial order, abstractions or symmetries of the model [51].

Satisfiability solvers try to determine, if the variables of a given (temporal) Boolean
formula can be assigned in such a way that the formula can be evaluated to true. This
is normally done by a backtracking algorithm which chooses a literal, assigns a truth
value, then simplifies the formula and checks the satisfiability. If the simplified formula
is satisfiable, the original formula is also satisfiable. If the simplified formula is not
satisfiable the opposite truth value is assumed.

Theorem Proving in general tries to prove mathematical theorems by applying rules
of a given calculus for example first order logics. (Semi-)Automatic approaches are

50

1.4 Problem and Related Work

supported by a computer by using term rewriting engines and tableaux provers as well
as various decision procedures. The methods that were previously introduced were all
“complete”. They had several prerequisites to be applied (e.g., a normal distribution)
and also their results are often restricted (e.g., they can only describe linear rela-
tionships). Additionally some had severe computation boundaries. The next section
introduces an approximative and “incomplete” method (more or less) without these
restrictions.

1.4.6 Stochastic Optimization and Metaheuristics

The analysis should cover static as well as dynamic model aspects. Traditionally, statis-
tics are used to describe relationship between variables, formal verification methods are
used to check model properties (over the time) and linear and non-linear programming
methods are used to compute optimizations. All these methods have in common, that
they can not be applied in general. The reasons are manifold, like normal distribution of
the variables as prerequisite, linear relationships between independent and dependant
variables without a temporal dimension as result constraint, and only non-concurrent
computations.

Van der Aals et. al. have used different algorithms to mine process descriptions from
event logs in form of business process models, like α algorithms [52]. Development
process models require more flexibility. The first and most important analysis task
is the synthesis. The synthesis should in particular cover the generation of complete
models. The models should be build as explicit extraction of experiences/surveyed
data. This targets the area of genetic programming which was left out on intention
previously, because it will be covered in detail in section 1.4.3. Genetic programming
focuses inherently on emphasizing the most significant data. It is possible to guide the
search very flexible and a “warm start” of the algorithms is possible (i.e., intermediate
results can be stored and used in new computations). The computation can be done
distributed on a set of computers including a flexible memory footprint. Last not least
the other approaches can be easily embedded into genetic programming.

The optimization approach in this thesis focuses on a general (meta-)model’s heuris-
tic exploration with genetic algorithms and genetic programming techniques. It’s the
first step (towards more specialized algorithms) to explain the unexplained, has no
restrictions, is flexible and robust. The focus lies on a flexible process model opti-
mization to explore process models. The other interesting aspect is a kind of symbiotic
relationship between metaheuristics and RMOF, whereby RMOF guides effectively the
learning process of the metaheuristics by e.g., model fitting (=what parts of the models
where significant with respect to RMOF semantics). The same flexibility is required for
the models itself to capture all activities and artifacts of development processes in dif-

51

1 Introduction

ferent abstractions and viewpoints. The core of the models is RMOF as meta-language
nucleus, which is defined in the next chapter.

52

2 Rich Meta Object Facility

“The most evident difference springs
from the important part which is
played in man by a relatively strong
power of imagination and by the
capacity to think, aided as it is by
language and other symbolically
devices.”

Albert Einstein

A process model is an abstraction of a development process. The language used to
describe the process model must be precise enough to address all development ques-
tions to achieve the defined process goals. The language needs to be as minimal in their
syntax and as abstract in their semantics as possible that it covers only the syntax and
semantics required to understand the implications on the process goals and to use it
efficiently as planing instrument to guide/optimize the development. Available process
modeling languages often lack the required flexibility, suitability and sustainability.
This is the case because their syntax and semantics is inherently subjective and will
likely even change over time (e.g., due to new members, tools and methods, or even
development languages). This applies in particular for their adequate abstraction level
during the development (a design artifact looks different in different development steps
and different from different perspectives e.g., a designer perspective or a tester perspec-
tive). Last not least the process goals often change over the time, e.g., the statement
coverage in the testing phase should be increased. This raises the question up to which
level it is required to “understand” (=model and analyse) all test inputs and interac-
tions (e.g., requirements, models to be tested and their generated source code, test tool
interactions) including their syntactical and semantical dimensions. Therefore instead
of a single process modeling language meta-process modeling languages were discussed
in section 1.4.2.

This chapter defines a formal enrichment of the Meta Object Facility meta-modeling
language/system to instantiate formal MOF based specifications. The meta-modeling
approach is summarized in figure 2.1. The first language layer (L0) consists of the
meta-modeling approach of the Object Management Group complemented by UML2
dynamics (presented in green, describing the syntactical part of RMOF) and is com-

53

2 Rich Meta Object Facility

9/23%

Approach::Process,(Meta0)Modeling,,
with,RMOF,

 (Process)

Meta-model

Process
model

Meta meta-model
= RMOF

L0%

L1%

L2%

MOF%%
%meta%modeling%

UML2%
Dynamics%%

SPEM%

=% +%

%krtUML%
2.3 Dynamics

Definition 25 (System Semantics) Let

M be a system. The semantics of

M is

defined as:

STS(

M) = (V,⇥, ⇢), where

System Variables: V := {sconf : Tsconf(

M),

m.c :}Q, sysfail : IB}.

Initial condition: ⇥ :=

m.c = q0 ^ sysfail = false

Transition relation: The intermediate predicate ⇢0 composes the above introduced
sub-predicates and additional conditions on their application within objects’ life-cycle
as follows:

⇢0 :=(¬sysfail ^ 9(q, �, q0) 2
m.tr :

m.c = q ^ m.c0 := q0

^ (assign(�) _ guard(�)) ^ q 6= qx) _ q = qx

The final transition relation ⇢ is obtained from ⇢0 by adding a frame axiom which
requires that only those places of s are allowed to change in the transition to s0, which
get new values by an assignment “:=” in ⇢0, and changing the assignments to “=”.
The semantics of a System S is given as the set runs(STS(S)) of all computations
in S (starting at ⇥). ⌅

A single State Machine can be executed with this semantics. The next section
extends these definitions and specifies the Extended Dynamical Core of RMOF.

2.3.3 Extended Dynamical Core

The Extended Dynamical Core inherits everything of core RMOF and adds a so
called “Global State Machine” supporting, e.g., different interleavings and atomici-
ties, Operations, and Observers including the required data structures.

The Global State Machine handles primarily the determination of the execution
context to identify the next effect to be executed. The determination is based on the
interleaving of all active State Machines, the atomicity of the current State Machine,
it’s current State and all enabled transitions based on the current valuations of all
relevant attributes. If multiple transitions are enabled one is non-deterministically
chosen.

The extended Dynamical Core introduces also Operations as dynamic abstraction
mechanism. An Operation consists mainly of a set of parameters to exchange values
with the calling State Machine and a State Machine defining the behavior of the
Operation itself. The State Machine of an Operation is initially suspended. When
called, the Parameters of the Operation are assigned, the calling State Machine is

75

+%

Matlab
Simulink
model%

Interaction
model%

Figure 2.1: RMOF meta-modeling

plemented by krtUML (presented in red, describing the formal semantics) formalizing
both. The MOF relevant data structures are described in section 2.1 with references
to the origin OMG specifications. These data structures are complemented by expres-
sions 2.2 and algorithms 2.3. The second language layer (L1) describes the process
modeling language as instance of the first language layer. The Software Process Engi-
neering Meta-Model (SPEM see section 3.1) is partially instantiated and extended in
this section to described tool interaction models and Matlab Simulink Models. This
section concludes with a set of requirements of meta languages that no introduced meta
language is able to fulfill and will introduce a meta-language that fulfills the require-
ments in the next sections.

The OMG provides an informal, incomplete language framework with the Meta Ob-
ject Facility (MOF [41]). By formalizing and complementing MOF, a formal integration
platform is available to formalize MOF based specifications successively based on step-
by-step consolidated language elements and to define, synthesize and analyze process
modeling languages as required.

Specifications of the Object Management Group (OMG) are often widely applied
e.g., the Common Warehouse Meta-model(CWM [53]), the Software Process Engineer-
ing Meta-model(SPEM [6]), and the Unified Modeling Language(UML [54, 55]). All of
these languages are incomplete and informal leading to interpretation gaps. Formal pa-

54

2.1 Data Structures

pers bridge these interpretation gaps like [56, 57, 58]. The papers often concentrate on
a subset of the original specification and use different notations to formalize the subset.
This makes it often difficult to combine papers to form a complete and consistent yet
formal language which would be necessary to apply the specifications appropriately.
Therefore a language is required to combine different formal methodologies. This is
not a trivial task, because there exist often good reasons to use a certain formalism,
like intuitive descriptions, e.g., Petri Nets describing Activity Charts. The identified
integration language must be powerful enough to describe required syntax and seman-
tic (e.g., in UML it is necessary to express constraints, compute derived values, and
operations). The language should be minimal to support interpretation and simplify
mappings to other formal languages or implementations (e.g., a model checker input
language).

In contrast to map informal specification elements onto a formal language, Damm
and Pnueli et. al. define in [59] discrete-time UML semantics for concurrency and
communication in safety-critical applications, (e.g., typing, events, triggered operation
calls). The semantics of all UML languages can be mapped to this language. This
chapter introduces an extension of MOF called Rich Essential Meta Object Facility
(RMOF). Compared to other approaches like [60, 61, 62], relevant parts of the MOF
and UML2 specifications are modified and extended in a conservative way supporting
the knowledge transfer between researchers and users. The (core) formal semantics of
RMOF is an extension and adaptation of krtUML complemented with a flexible map-
ping framework embedded into MOF to define syntax, semantics of different languages
and specify relationships among them.

The chapter starts in section 2.1 with an introduction of the data structures covering
simple and complex types as well as mechanisms to structure and instantiate them.
The second section 2.2 introduces operations covering, e.g., arithmetic, collection type
management, and layer management. The third section 2.3 introduces the definition
of algorithms, e.g., states, transitions, and effects using the defined expressions of 2.2.
Elements of MOF [41], the UML Infrastructure specification [54] and the UML Super-
structure specification [55] are introduced by their specification number. Section 2.4
introduces so called “observer” to define and check temporal properties and section 2.5
concludes this chapter with an introduction of the implemented RMOF environment.

2.1 Data Structures

This section introduces the data structures of the RMOF core meta model 	m as subset
of MOF [41] (compliant to “Essential MOF”), the kernel package, the behavior package
and state machine package of the UML2 Super Structure [55]. The UML2 and MOF

55

2 Rich Meta Object Facility

classes are prefixed in the RMOF specification by their UML2/MOF ID. MOF and
UML2 are formalized using krtUML approach and complemented mainly regarding be-
havior. Figure 2.2 shows an overview on the data structures. Green classes refer to data
structures relevant class parts, red classes refer to algorithm relevant class parts. Each
class is separated into three segments. The class name is written in the first segment.
If the class is abstract, the class name is written italic. Inheritance between classes is
depicted by an arrow with an unfilled head, whereby the inheriting class points to the
class it inherits from. The second segment contains the class attributes. The prefix
“< s >” stands for “shared”, “/” stands for derived. If an attribute has a complex
type (referring to a set of other objects) and is not shared, it is “owned” by the object.
Owned objects are destroyed when the owning object is destroyed. Shared objects are
not destroyed. A derived object value is computed by a State Machine. After the
optional prefix the attribute name is specified, with an optional multiplicity in squared
brackets (the default is “[1..1]”), a optional comment in round brackets separated with
“:” from the attribute type. The attribute name can be a simple type or a class name
(of the same layer). The attribute type can be suffixed by an initial default value which
is an element of the specified type. The third segment specifies class operations with
their State Machines. Each operation can have multiple arguments with a direction,
i.e., in, out, inout, and return.

Motivation to minimize the data structures is to reduce the effort that is required
to map RMOF to a platform (like Java or Objective C). The data structures must
be powerful enough to express everything that is necessary to describe the intended
semantics. All classes are introduced by their identification number corresponding
to the ID of the UML superstructure specification [55]. The ID is followed by the
instantiated class name and set of attribute valuation pairs (attribute name, attribute
value). The specification is complemented by a short description.

56

2.1 Data Structures

Figure 2.2: Data structures (green = static, red = dynamic)

57

2 Rich Meta Object Facility

Besides simple types RMOF introduces the following collection types:

Collection
Type

Written as isOrdered isUnique

set {. . .} false true
ordered set [. . .] true true
bag {{. . .}} false false
sequence [[. . .]] true false

All constructs are specified as meta model instances to show their reflectiveness based
on the following EBNF syntax:

DigitNotZero ::= ’1’|’2’|’3’|’4’|’5’|’6’|’7’|’8’|’9’;
Digit ::= ’0’ | DigitNotZero;
NatNum ::= Digit | (DigitNonZero {Digit});
Letter ::= ’a’ | ... | ’Z’;
String ::= Letter {Letter};
Reference ::= NatNum {’.’ NatNum} (’-’ NatNum)

| (’[P’ NatNum ’]’);
Identifier ::= String {’::’ String};
Value ::= (’"’ String ’"’) | NatNum;
Values ::= (’[’ Value {’,’ Value} ’]’)

| (’[[’ Value {’,’ Value} ’]]’)
| (’(’ Value {’,’ Value} ’)’)
| (’((’ Value {’,’ Value} ’))’)
| (’{’ Value {’,’ Value} ’}’);

Attribute ::= ’(’ String ’,’ Values ’)’;
Attributes ::= Attribute {’,’ Attribute};
InstanceValues ::= ’=’ (Identifier, {Attributes})’;
Description ::= String {’(’ | ’)’ | ’_’ | ’,_’ | String

| ’.’};
Instance ::= Reference Identifier InstanceValues

Description;
Model ::= Instance { Instance };

A specification access is realized by using the introduced non-terminals of the EBNF,
e.g., “Description” provides a set of all descriptions. In the following text the data
structures of RMOF are specified with respect to this EBNF.

RMOF is a framework to define multiple languages. Each language is contained in an
RMOF layer. A layer consists of a name, a meta layer reference, a set of instances, a set

58

2.1 Data Structures

of primitive types, a mapping of instances to primitive types, and a set of operations.
Layers are connected via meta layer references. Each instance (of the layer instances)
refers to the meta-instance of the meta-layer and a set of attribute, value pairs, formally
defined:

Definition 1 (Layer) Let N = {a, . . . , Z, 0, . . . , 9, ::}∗ be a set of names/IDs. A layer
l is a tuple (l.n, l̂.n, l.I, l.T, l.A, l.O), with

• l.n ∈ N : A layer name.

• l̂.n ∈ N : A reference to the (meta-)layer.

• l.I: A set of instances. Each (i.n, i.n̂, i.A) ∈ l.I consists of

- i.n ∈ N : An instance name, whereby all names of a layer are pairwise
disjoint, ∀(i1.n, i1.n̂, i1.A), (i2.n, i2.n̂, i2.A) ∈ l.I : i1.n̂ = i2.n̂ ∧ i1.A =
i2.A⇒ i1.n = i2.n.

- î.n ∈ N : A (meta-)instance reference.

- i.A : A finite, non-empty set of attribute, value pairs. Each (a.n, a.v) ∈ i.A
is a pair, with a.n ∈ N , and a.v is build upon N in the way that a.v is an
element of N indirectly typed by the meta layer platform types or a.v is a so
called multivalued attribute formed on N as set {}, ordered set {{}}, bag[],
or sequence[[]], e.g., ’a’, ’{a,b1::a}, ’[{a,b1::a},{a,b1::a},{b2,c}]’.

• l.T: A set of platform types (e.g., Boolean, Integer, Float) with appropriate do-
main definitions (e.g., B,Z,R).

• l.A ⊆ {i.n|(i.n, î.n, i.A) ∈ l.I} → l.T : A set of type assignments.

• l.O: A set of platform operations (see Def. 14 - Def. 22).

�

Layers and layer elements are connected via instances. Layers are described as collec-
tion of instances of a meta-layer. All instances base on type instantiations (of so called
“platform types”, i.e., types like Boolean with type domain definitions like {false, true}).
All attributes can have values that are instances of their meta-instances instantiating
types and thus elements of their value domains.

Definition 2 (Instance) Let l1 = (l1.n, l̂1.n, l1.I, l1.T, l1.A, l1.O),
l2 = (l2.n, l̂2.n, l2.I, l2.T, l2.A, l2.O) be two layers. Layer l1 is instance of l2 (written
l1 99K l2), iff

• The meta-layer of l1 is referencing l2, i.e., l̂1.n = l2.n.

59

2 Rich Meta Object Facility

• All instances are instantiated as follows:
∀(i1.n, î1.n, i1.A) ∈ l1.I ∃(i.n2, î2.n, i2.A) ∈ l2.I:

- The meta-instance of i1 is referencing i2, i.e., î1.n = i2.n.

- All attribute value pairs of i1 are instances of type introducing elements of
i2, i.e., ∀(a1.n, a1.v) ∈ i1.A ∃(a2.n, a2.v) : a1.n = a2.n ∧ . . .
(i) ∧ (a2.v, t) ∈ l1.A⇒ a1.v ∈ t, instance of a platform type.

(ii) ∧ (a2.v, ct) and ct is a collection type {} . . . [[]]⇒ a1.v is element of this
collection type domain (see Def. 18 - Def. 21).

(iii) ∧ a2.v ∈ î ∧ î = {i2.n|(i2.n, î2.n, i2.A) ∈ l2.I} ⇒ a1.v ∈
{i1,1.n|(i1.n, î1.n, i1.A) ∈ l1.I ∧ (i1,1.n, a2.v) ∈ i1.A}, instance of a class
type, if the transitive closure of i2 has at least one element that is an
instance of a platform type (1) or collection type (2).

�

Each layer is a snapshot of its meta layer. A core layer is a special variant of a layer
reflexively instantiating itself.

Definition 3 (Core Layer) Let l be a layer. l is called a core layer iff ∃l′ ∈ L : l′ 99K

l∧ l′ = l, meaning all instances of l are described as instances of l itself (written
	
l). �

Each layer can be identified as Meta Model, Model, or Object Model according to the
number of supported instantiations.

Definition 4 (Meta Model, Model, and Object Model) Let L be a set of layers.
Layer l ∈ L is called

• Meta Model Layer, if the layer can be instantiated at least twice with different
layers (if ∃l2, l3 ∈ L : l3 99K l2 99K l ∧ l 6= l2 ∧ l2 6= l3 ∧ l 6= l3).

• Model Layer, if the layer can be instantiated once with a different layer and l is
not a core layer (if ∃l2 ∈ L : l2 99K l ∧ l 6= l2).

• Object Layer, if the layer cannot be further instantiated and l is not a core layer
(if 6 ∃l2 ∈ L : l2 99K l).

�

A set of layers forms a so called “System”. A System consists of a core layer, (possibly)
multiple meta-layers and one object layer.

60

2.1 Data Structures

Definition 5 (System) Let M be a finite set of layers. M is called a System, if
all layers in M are linked, meaning ∀l ∈ M ∃l̂ ∈ M : l 99K l̂ and M consists of
one core layer, arbitrary meta models, a model and an object model (M is written
	
m). M is well-formed, iff there exists maximal one instance layer of each layer i.e.
∀l, l2, l3 ∈M : l2 99K l ∧ l3 99K l⇒ l2 = l3. �

Each layer can introduce (platform-)types and all layer elements are strictly typed with
respect to its meta layers.

Definition 6 (Layer Instance Typing) Each layer l = (l.n, l̂.n, l.I, l.T,
l.A, l.O) defines the following types

T (l) := l.T ∪ {ti.n,c|(i.n, î.n, i.A) ∈ l.I ∧ c ∈ {p, s, oS, b, q, S,OS,B,Q}}

�

Index p indicates a platform type value (e.g., Boolean with domain B). Index of
collection types (and their domains) are written as follows:

• ’s’ for set: {c, a, b}

• ’oS’ for ordered set: {{a, b, c}} including some kind of ordering relation R that
is reflexive, transitive, and anti-symmetric.

• ’b’ for bag: [a, a, b, d, d, . . .] as folded multi-set variant.

• ’q’ for sequence: [[a, a, b, b, b,]] as ordered bag.

Every collection type can be instantiated by building (a set of) a set, ordered set, bag,
or sequence of the corresponding primitive type. The domain of the type equals, e.g.,
2tc,S , if c is the non-collection type and the collection type is a set. Capital letters {S,
OS, B, Q} are permutation sets of the collection types.

Definition 7 (Primitive Operation Typing) For each o ∈ l.O,
typepar(o) = T1 × . . . × Tn denotes the parameter type where Ti ∈ T (l) is the type of
the i-th parameter and typeτ (o) denotes the value of f . The type of o is type(o) =
typepar(o) 7→ type(o)τ . �

Definition 8 (Expression Typing) Expressions are inductively defined as follows:

• Navigation expression: expr ::= τ.a, where τ ∈ ⋃
a∈i.A,(i.n,i.n̂,i.A)∈l.I

with type(τ) =

Tc0 and a ∈ c0.attr, with type(expr) := type(a).

61

2 Rich Meta Object Facility

• Primitive operation application: expr ::= o(expr1, . . . , exprn), where
expr1, . . . , exprn are expressions, o ∈ l.O, and type(expri) matches the type of
the i-th parameter of o, 0 < i ≤ n, with type(expr) := typeτ (f).

�

Definition 9 (Guard Typing) A guard [expr] type is defined as
type(expr) = B. �

Definition 10 (Instance Typing) ‘type’ is used to denote the type of instances de-
fined as follows:

• the type of all instances is the meta-instance
∀i = (i.n, î.n, i.A) ∈ l.I : type(i) := î.n

• the type of all instance attributes is a value of type
∀ia = (a.n, a.v) ∈ i.A : type(i.a) :=

t if {(a.n, t), (upperValue, 1)} ⊆ î.n
ts if {(upperValue, ∗), (isOrdered, false), (isUnique, true)} ⊆ î.n
tb if {(upperValue, ∗), (isOrdered, false), (isUnique, false)} ⊆ î.n
toS if {(upperValue, ∗), (isOrdered, true), (isUnique, true)} ⊆ î.n
tq if {(upperValue, ∗), (isOrdered, true), (isUnique, false)} ⊆ î.n

�

For each type t ∈ T (l), there exists a designated element nil ∈ t as default value and
⊥ as error value. Based on the definitions 1-10 the core meta model 	m is introduced.
The data structures of 	m mainly introduce types, structuring, and instantiation mech-
anisms. The chapter starts with simple types in section 2.1.1, followed by complex
types in section 2.1.2 and instance specifications in section 2.1.3. In order to manage
the introduced data types the definitions are complemented by additional informations
in section 2.1.4 like comments (and especially naming mechanisms in section 2.1.6),
structuring informations in section 2.1.5, and naming in section 2.1.6. The section is
complementd by the definition of the core meta model and the introduction of config-
urations (variable snapshots) in section 2.1.7.

2.1.1 Simple Types

Elements that can only be instantiated by a single value are considered simple types.
This includes for example primitive types like Boolean and user defined types in form
of enumerations. Figure 2.3 presents all simple types including their generalization hi-
erarchy. Aggregations and relations are additionally presented besides their attributes.

62

2.1 Data Structures

Figure 2.3: Class diagram of simple types

Enumerations are user-defined data types of a set of valid so called “enumeration
literals”. A variable of Enumeration X has a value of x1, . . . , xn if x1, . . . , xn are
EnumerationLiterals of X.

7.3.16 Enumeration = (Class,{(ownedAttribute, (ownedLiteral)), (generalization, {Da-
tatype})}) is a data type whose values are enumerated in the model as enumer-
ation literals. Enumeration is a kind of data type, whose instances may be any

63

2 Rich Meta Object Facility

of a number of user-defined enumeration literals.
- ownedLiteral = (Property,{ (aggregation, composite), (subsettedProperty,
{Element::ownedMember}), (type, EnumerationLiteral), (upperValue, *)})
specifies the ordered set of literals for this enumeration.

7.3.17 EnumerationLiteral = (Class,{ (ownedAttribute, (enumeration)), (generalizati-
on, {NamedElement})}) is a user-defined data value for an enumeration.

- enumeration = (Property,{(aggregation, shared), (subsettedProperty, {Na-
medElement::namespace}), (type, Enumeration)}) specifies the ordered set
of literals for this enumeration.

Primitive types consist of a set of common mathematical data types, like boolean,
integer, and real as well as strings to store text, which have their origin in the computer
sciences. The implementation of these types (section 2.5) resulted in several types
according to the bytes reserved for each data type e.g., integer is implemented as
“normal” integer ranging from −231 to 231 − 1, up to a type called “BigInteger” that is
mainly restricted by the hardware that is used.

7.3.43 PrimitiveType = (Class,{ (generalization, {Datatype})}) defines a predefined
data type, without any relevant substructure (i.e., it has no parts). Instances of
primitive types do not have identity. If two instances have the same representa-
tion, then they are indistinguishable.

17.4.1 Boolean = (Class,{ (generalization, {PackageableElement, TypedElement})})
The boolean type is used for logical expression, consisting of the predefined values
true and false.

17.4.2 Integer = (Class,{(generalization, {PackageableElement, TypedElement})}) An
instance of Integer is an element of the (theoretically infinite) set of integers {-2,
-1, 0, 1, 2}. Possibly platform dependent variants are integer and long (with
different, non-infinite platform realizations).

Double = (Class,{(generalization, {PackageableElement, TypedElement})}) An
instance of Double is a (theoretically infinite) floating point value. Possibly
platform dependent variants are float and double (with different, non-infinite
platform realizations).

17.4.3 String = (Class,{ (generalization, {PackageableElement, TypedElement})}) A
String is a sequence of characters in a suitable character set used to display
information about the model. Character sets may include non-roman alphabets
and characters.

In contrast to simple types complex types can introduce a set of simple types/and
other complex types.

64

2.1 Data Structures

2.1.2 Complex Types

A complex type consists of additional elements to construct compositions of simple
types in form of classes, collection types, and their relationships. Figure 2.4 presents
the introduced complex type classes. The definition of complex types is based on
the “Class” element that contains a set of attributes. A class introduces a set of
attributes. Each attribute specifies the relationship between class and attribute by the
AggregationKind. AggregationKind is an Enumeration Instance specified as follows:

7.3.2 AggregationKind = (Enumeration,{ (ownedLiteral, (’none’, ’shared’, ’compos-
ite’))}) is an enumeration type that specifies the literals for defining the kind of
aggregation of a property.

• ’none’: indicates that the property has no aggregation (association).

• ’shared’: indicates that the property has a shared aggregation (composition
target).

• ’composite’: indicates that the property is aggregated compositely, i.e., the
composite object has responsibility for the existence and storage of the com-
posed objects (parts) (composition source).

Class is the core element to define complex types. A Class holds owned attributes
and operations and has a reference to its superclass.

7.3.7 Class = (Class,{ (ownedAttribute, (ownedAttribute, ownedOperation, super-
Class)), (generalization, {Classifier})}) describes a set of objects that share the
same specifications of features, constraints, and semantics.

- ownedAttribute = (Property,{(aggregation, composite), (subsettedProper-
ty, {Classifier::a,Namespace::ownedMember}), (type,
Property), (isOrdered, true), (lowerValue, 0), (upperValue, *)}) specifies
the attributes owned by the class.

- ownedOperation = (Property,{(aggregation, composite), (subsettedProper-
ty, {Classifier::feature,Namespace::ownedMember}), (type, Operation), (isOr-
dered, true), (lowerValue, 0), (upperValue, *)}) specifies the operations
owned by the class.

- superClass = (Property,{(type, Class), (lowerValue, 0), (upperValue, *)})
specifies the superclasses of a class.

A “Classifier” is a super class of a Class. A Classifier introduces additional attributes
to specify for example if it is possible to instantiate the class or not, the list of not
contained attributes, or the containing package.

65

2 Rich Meta Object Facility

Figure 2.4: Class diagram of complex types

66

2.1 Data Structures

7.3.8 Classifier = (Class,{(ownedAttribute, (isAbstract, attribute, feature, general, in-
heritedmember, package)), (isAbstract, true), (generalization, {Namespace, Ty-
pe})}) is a name space whose members can include features.

- isAbstract = (Property,{(defaultValue, false), (type, Boolean)}) specifies if
the classifier does provide a complete declaration and can be instantiated.

- attribute = (Property,{(isDerivedUnion, true), (subsettedProperty, {Clas-
sifier::feature}), (type, Property), (lowerValue, 0), (upperValue, *)}) refers
to all of the properties that are direct (i.e., not inherited or imported) at-
tributes of the classifier.

- feature = (Property,{ (isDerivedUnion, true), (subsettedProperty, {Name-
space::member}), (opposite, Feature::featuredClassifier), (type, Feature),
(lowerValue, 0), (upperValue, *)}) specifies each feature defined in the clas-
sifier.

- general = (Property,{(type, Classifier), (lowerValue, 0), (upperValue, *)})
specifies the general classifiers for this classifier.

- inheritedMember = (Property,{(isDerived, gen(this) - see Def. 22), (subset-
tedProperty, {Namespace::member}), (type, NamedElement), (lowerValue,
0), (upperValue, *)}) specifies all elements inherited by this classifier from
the general classifiers.

- package = (Property,{ (subsettedProperty, {NamedElement::namespace}),
(type, NamedElement), (lowerValue, 0)}) specifies the owning package of
this classifier, if any.

7.3.11 DataType = (Class,{(isAbstract, true), (generalization, {Classifier})}) is a type
whose instances are identified only by their value. DataType may contain at-
tributes to support the modeling of structured data types.

“MultiplicityElement” defines the container attributes (e.g., the container is ordered)
for a set of instances and values.

7.3.32 MultiplicityElement = (Class,{ (ownedAttribute, (isOrdered, isUnique, . . . , up-
perValue)), (isAbstract, true), (generalization, {Element})}) is a definition of
an inclusive interval of non-negative integers beginning with a lower bound and
ending with a (possibly infinite) upper bound. A multiplicity element embeds
this information to specify the allowable cardinalities for an instantiation of this
element.

- isOrdered = (Property,{ (defaultValue, false), (type, Boolean)}) specifies
whether the values in an instantiation of this element are sequentially or-
dered.

67

2 Rich Meta Object Facility

- isUnique = (Property,{ (defaultValue, true), (type, Boolean)}) specifies
whether the values in an instantiation of this element are unique.

- lowerValue = (Property,{ (subsettedProperty, {Element::ownedElement}),
(type, ValueSpecification)}) specifies the lower bound for this multiplicity.

- upperValue = (Property,{(subsettedProperty, {Element::ownedElement}),
(type, ValueSpecification)}) specifies the upper bound for this multiplicity.

“Features” and “Properties” are used to aggregate type definitions. Property at-
tributes are, e.g., derivations to subset/superset other type definitions, default value,
and bidirectional opposite properties.

7.3.19 Feature = (Class,{(ownedAttribute, (isStatic, featuringClassifier)), (isAbstract,
true), (opposite, Classifier::feature), (generalization, {NamedElement})}) declares
a behavioral or structural characteristic of instances of classifiers.

- featuringClassifier = (Property,{(isDerivedUnion, true), (type, Classifier),
(upperValue, *)}) specifies classifiers that have this Feature as a feature.

7.3.44 Property = (Class,{(ownedAttribute, (aggregation, isDerived, isDerivedUnion,
defaultValue, subsettedProperty, opposite, class)), (generalization, {Structural-
feature})}) is a structural feature. A Property related to a classifier by owne-
dAttribute represents an attribute.

- aggregation = (Property,{(defaultValue, none), (type, Aggregationkind)})
specifies the kind of aggregation that applies to the property.

- isDerived = (Property,{ (aggregation, composite), (type, Operation), (lo-
werValue, 0)}) specifies whether the property is derived (i.e., whether its
value or values can be computed from other information and it is derived).

- isDerivedUnion = (Property,{(defaultValue, false), (type, Boolean),}) spec-
ifies whether the property is derived as the union of all of the properties that
are constrained to subset it.

- defaultValue = (Property,{(aggregation, composite), (type, ValueSpecifica-
tion), (lowerValue, 0)}) is evaluated to give a default value for the property,
when an object of the owning classifier is instantiated.

- subsettedProperty = (Property,{(type, Property), (lowerValue, 0), (upper-
Value, *)}) references the properties of which this property is constrained
to be a subset.

- opposite = (Property,{(type, Property), (lowerValue, 0)}) gives the other
end of a binary relationship in the case where the property is navigable.

68

2.1 Data Structures

- class = (Property,{(aggregation, shared), (type, Class),}) specifies the class
of the property.

7.3.49 StructuralFeature = (Class,{(isAbstract, true), (generalization, {Feature, Multi-
plicityElement, TypedElement})}) is a typed feature of a classifier that specifies
the structure of instances of the classifier.

Types are assigned via the abstract class “TypedElement” and summarized in the
meta class “Type”.

7.3.51 Type = (Class,{ (isAbstract, true), (generalization, {PackageableElement})})
serves as a constraint on the range of values represented by a typed element.

7.3.52 TypedElement = (Class,{(ownedAttribute, (type)), (isAbstract, true), (generali-
zation, {NamedElement})}) A TypedElement is an Element, which has a type
that serves as a constraint on the range of values the Element can represent.

- type = (Property,{(type, Type)}) specifies the type of the Element.

Type definitions are followed by the definition of instances to clarify the (valid)
instantiation of the type domains.

2.1.3 Instances

This section introduces “Specification” and “Slots” as basic mechanism to instantiate
objects. Specification refers the instantiated classifiers and a set of Slots holding the
instance values. Each Slot refers the feature defining the “type” of the Slot and refers
back to the Specification.

7.3.22 InstanceSpecification = (Class,{ (ownedAttribute, (classifier, slot)), (generali-
zation, {PackageableElement})}) specifies existence of an entity in a modeled
system and completely or partially describes the entity.

- classifier = (Property,{(type, Classifier),}) or classifiers of the represented
instance. If multiple classifiers are specified, the instance is classified by all
of them.

- slot = (Property,{(aggregation, shared), (subsettedProperty, {Element::ow-
nedElement}), (type, Slot), (lowerValue, 0), (upperValue, *)}) giving the
value or values of a structural feature of the instance.

7.3.48 Slot = (Class,{(ownedAttribute, (definingFeature, owningInstance, value)), (ge-
neralization, {Element})}) specifies that an entity modeled by an instance spec-
ification has a value or values for a specific structural feature.

69

2 Rich Meta Object Facility

- definingFeature = (Property,{(type, Structuralfeature)}) specifies the val-
ues that may be held by the slot.

- owningInstance = (Property,{(aggregation, composite), (type, Instancespe-
cification), (subsettedProperty, {Element::owner}), (upperValue, *)}) spec-
ifies the instance specification that owns this slot.

- value = (Property,{ (aggregation, composite), (subsettedProperty, {Ele-
ment::ownedElement}), (type, String)}) corresponding to the defining fea-
ture for the owning instance specification (e.g., "{first, second, third}").

Besides the object data there exist additional information storage for comments and
so called tags.

2.1.4 Information

Additional information for each element is stored in special elements, which are intro-
duced in this section. All elements can be annotated with “Comments” and “Tags”.

7.3.9 Comment = (Class,{(ownedAttribute, (body, annotatedElement)), (generaliza-
tion, {Element})}) gives the ability to attach various remarks to elements.

- body = (Property,{(type, String)}) specifies a string that is the comment.

- annotatedElement = (Property,{(type, Element), (lowerValue, 0), (upper-
Value, *)}) references the Element(s) being commented.

Tags are pairs of arbitrary names and values that can be assigned to all elements.

10.1(MOF) Tag = (Class,{(ownedAttribute, (name, value, elements)), (generalization, {Ob-
ject})}) represents a single piece of information that can be associated with any
number of model elements. A model element can be associated with many tags,
and the same tag can be associated with many model elements.

- name = (Property,{(type, String)}) the name to distinguish Tags associated
with a model element.

- value = (Property,{(type, String)}) the value of the Tag. MOF places no
meaning on these values.

- elements = (Property,{(type, Element), (lowerValue, 0), (upperValue, *)})
the value of the Tag. MOF places no meaning on these values.

Tags are often used to extend semantics in a “light way”, e.g., the implementation
generates different source code for classes with certain tags. Tagged Values, Constraints
and Stereotypes are used to build so called “UML Profiles” to extend or restrict the
original syntax in a conservative way.

70

2.1 Data Structures

2.1.5 Structures

This section introduces abstract structure related elements and mechanisms to import
a set of elements into a different name space.

9.3(MOF) Object = (Class,{ (isAbstract, true)}) Object is introduced as super-type of
Element in order to be able to have a type that represents both elements and
data values. Objects represent ’any’ value.

7.3.14 Element = (Class,{(ownedAttribute, (ownedComment, ownedElement, owner)),
(isAbstract, true), (generalization, {Object})}) is a constituent of a Model. As
such, it has the capability of owning other elements.

- ownedComment = (Property,{(aggregation, composite), (subsettedProper-
ty, {Element::ownedMember}), (type, Comment), (lowerValue, 0), (upper-
Value, *)}) specifies the comments owned by this element.

- ownedElement = (Property,{ (aggregation, composite), (isDerivedUnion,
true), (type, Element), (lowerValue, 0), (upperValue, *)}) specifies the ele-
ments owned by this element.

- owner = (Property,{ (aggregation, shared), (isDerivedUnion, true), (type,
Element), (lowerValue, 0)}) specifies the element owning this element.

Imported elements can be accesses without a namespace reference.

7.3.15 ElementImport = (Class,{(ownedAttribute, (importedElement, importingNames-
pace)), (generalization, {Element})}) An element import adds the name of a
packageable element from a package to the importing namespace.

- importedElement = (Property,{(aggregation, none), (type, PackageableEle-
ment), (lowerValue, 1), (upperValue, 1)}) specifies the PackageableElement
whose name is to be added to the namespace.

- importingNamespace = (Property,{ (aggregation, none), (type, Namespa-
ce), (lowerValue, 1), (upperValue, 1)}) specifies the namespace that imports
PackageableElements from other packages.

2.1.6 Naming

The last section of the data structures covers naming related classes regarding definition
(named element), structuring of named elements (in form of packages), and importing
of named elements.

71

2 Rich Meta Object Facility

7.3.33 NamedElement = (Class,{(ownedAttribute, (name, qualifiedName,
namespace)), (isAbstract, true), (generalization, {Element})}) is an element in
a model that may have a name.

- name = (Property,{(type, String)}) of the NamedElement.

- qualifiedName = (Property,{ (isDerived, derivedValueQualifiedName - see
figure 2.11), (type, String)}) allows the NamedElement to be identified
within a hierarchy of nested namespaces.

- namespace = (Property,{ (aggregation, shared), (subsettedProperty, {Ele-
ment::owner}), (type, Namespace) (lowerValue, 0)}) specifies the namespace
that owns the NamedElement.

7.3.34 Namespace = (Class,{(ownedAttribute, (elementImport, importedMember, mem-
ber, ownedMember, ownedRole, packageImport)), (isAbstract, true), (generali-
zation, {NamedElement})}) is an element in a model that contains a set of named
elements that can be identified by name.

- elementImport = (Property,{(aggregation, composite), (subsettedProperty,
{Element::ownedElement}), (type, PackageableElement), (lowerValue, 0),
(upperValue, *)}) references the
ElementImports owned by the namespace.

- importedMember = (Property,{(subsettedProperty, {Namespace::member}),
(type, PackageableElement), (isDerived, derivedValueImportedMember - see
figure 2.12), (lowerValue, 0), (upperValue, *)}) references the Package-
ableElements that are members of this namespace as a result of either Pack-
ageImports or ElementImports.

- member = (Property,{(isDerivedUnion, true), (type, NamedElement), (lo-
werValue, 0), (upperValue, *)}) specifies a collection of NamedElements
identifiable within the namespace, either by being owned or by being intro-
duced by importing or inheritance.

- ownedMember = (Property,{ (aggregation, composite), (isDerivedUnion,
true), (type, NamedElement), (subsettedProperty, {Element::ownedElement,
Namespace::member}), (lowerValue, 0), (upperValue, *)}) specifies a collec-
tion of NamedElements owned by the namespace.

- ownedRule = (Property,{(aggregation, composite), (isDerivedUnion, true),
(type, Constraint) (lowerValue, 0), (upperValue, *)}) specifies a set of con-
straints owned by this namespace.

72

2.1 Data Structures

- packageImport = (Property,{(aggregation, composite), (subsettedProperty,
{Element::ownedElement}), (type, PackageableElement), (lowerValue, 0),
(upperValue, *)}) references the PackageImports owned by the namespace.

Package group and bind elements to a namespace. Access from other packages can
be done via the “.” operator for Sup-Packages and “..” for Super-Packages.

7.3.37 Package = (Class,{(ownedAttribute, (ownedMember, package)), (generalization,
{Namespace, PackageableElement})}) A package is used to group elements and
provides a namespace for the grouped elements.

- ownedMember = (Property,{ (aggregation, composite), (subsettedProper-
ty, {Namespace::ownedElement}), (type, PackageableElement), (lowerVa-
lue, 0), (upperValue, *)}) specifies the members owned by the package.

- package = (Property,{(aggregation, shared), (type, Package), (lowerValue,
0), (upperValue, 1)}) references the owning package of a package.

7.3.38 PackageableElement = (Class,{ (isAbstract, true), (generalization, {NamedEle-
ment})}) indicates a named element that may be owned directly by a package.

7.3.39 PackageImport = (Class,{(ownedAttribute, (importedPackage, importingNames-
pace)), (generalization, {Element})}) A package import is a relationship between
an importing namespace and a package, indicating that the importing namespace
adds the names of the members of the package to its own namespace. Conceptu-
ally, a package import is equivalent to having an element import to each individual
member of the imported namespace, unless there is already a separately-defined
element import.

- importedPackage = (Property,{ (aggregation, none), (type, Package), (lo-
werValue, 1), (upperValue, 1)}) Specifies the package whose members are
imported into a namespace.

- importingNamespace = (Property,{(aggregation, none), (type, Namespace),
(lowerValue, 1), (upperValue, 1)}) Specifies the namespace that imports a
PackageableElement from another package.

The static aspects of RMOF were introduced in the previous pages. The behavioral
elements will follow in the next sections.

2.1.7 Core Meta Model and Configurations

Each language layer can contain arbitrary variables that are instantiated during a
simulation run fired by the transitions of the symbolic transition system STS. It is

73

2 Rich Meta Object Facility

required to define variable snapshots of such a language system means, which is done
in the following definitions. The Core Meta Model (based on the previously introduced
and enriched class descriptions of the UML and MOF specifications) is defined in this
section.

Definition 11 (Core Meta Model
	
m) The core meta model

	
m is defined on base

of the introduced EBNF. Let ci ∈ <Model.ClassInst> be the class instance description
of the RMOF data structures.

	
m =(

	
m.n,

	
m.n,

	
m.I,

	
m.T,

	
m.A,

	
m.O) is defined as

follows:

• All classes are build as follows ∀i = (i.n, î.n, i.A) ∈ 	m.I:

- class name setting: i.n= <ci.InstanceName>.

- meta class setting: î.n= <ci.InstanceValues.Identifier>.

- attribute value setting: i.A= <ci.InstanceValues.Attributes>

• The set of basic types corresponds to the used types of the data structures,
	
m.T = {B,Z, S∗}, with S = {a, . . . , Z}.

• The set of pairs of type assignments is
	
m.A = {(Kernel :: Boolean,B),

(Kernel :: Integer,Z), (Kernel :: String, S∗)}.

•
	
m.O is the set of (primitive) operations, starting at definition 14, ending at def-
inition 22.

�

All specified instance descriptions are complemented according to their meta instances.
A global step executes a single effect on all active State Charts. This is done as long as
at least a single active State Chart is available. Each effect is assigned to a transition. A
transition is selected depending on a (positive) guard evaluation non-deterministically,
if several possible transitions can be executed. Effects can invoke predefined simple
operations.

Let ci ∈ <Model.ClassInst> be a class instance description of this section and 	
m is

the corresponding core meta model. The following abbreviations for the access elements
of 	m are used:

• Q is the set of states of 	m, where <ci.InstanceValues.Identifier> = State. There
is one State Chart in 	

m.

74

2.1 Data Structures

• q0 ∈ Q, where q0 is the initial state = <ci.InstanceValues.Identifier> = Pseu-
doState.

• qx ∈ Q, where qx is the end state = <ci.InstanceValues.Identifier> and Identifier
= FinalState.

• tr ⊆ Q× ({γ | γ is a guard or an effect})× c.Q is the transition relation.

∀(q1, γ, q2) ∃ci ∈ <Model.ClassInst> :

q1 = <ci.InstanceValues.Attributes.source>
∧ q2 = <ci.InstanceValues.Attributes.target>
∧ γ = <ci.InstanceValues.Attributes.guard> ∧ guard 6= ””

∨ γ = <ci.InstanceValues.Attributes.effect>

For each type Tc ∈ TC , Oc denotes the corresponding semantic type and DOc := c×N
defines the domain. OC with domain

⋃
c∈C DOc is called the object reference domain.

A snapshot of all variables of a language layer is called Layer Configuration.

Definition 12 (Layer Configuration) Let
∑ 	
M be the set of all

	
M layers, l =

(l.n, l̂.n, l.I, l.T, l.A, l.O) ∈∑ 	
M . A layer configuration consists of an attribute configuration

‘ac’ of type

Tac :=
⋃

i=(i.n,̂i.n,i.A)∈l.I, a=(a.n,a.v)∈i.A

(a.n→ TT(l))

The type of the layer configuration of l is Tlc(l) := Tac �

A System Configuration is a snapshot of all variables of all layers the system consists
of.

Definition 13 (System Configuration) Let
∑ 	
M be the set of all

	
M layers,

	
M be

a system, l be a layer of
	
M . The system configuration is defined as:

Tsconf(
	
M) :=

⋃
l∈

	
M

Tlc(l)

The next section introduces expressions to change and query configurations.

75

2 Rich Meta Object Facility

2.2 Expressions

The system can execute an action or pass a guard if the current transition (q, γ, q′) is
enabled (meaning the source state is active) and annotated with one of the following:

The predicate guard :
∑ 	
M × Expr → B processes guards on transitions:

guard 	
M

(“[expr]′′) := expr = true ∧ sysfail′ := (sysfail ∨ expr = ⊥).

The predicate assign :
∑ 	
M × Expr → B assigns a new value to an instance:

assign 	
M

(“τ.a := expr′′) := expr 6= sysfail⇒ τ.a′ := expr

∧ sysfail′ := (sysfail ∨ expr = ⊥).

A sequence of assignments can be defined by using the sequence operator “;”. This
section introduces the expressions available in RMOF. Starting with a representation
of relevant classes and refined in terms of formal expression syntax and semantics.

7.3.54 ValueSpecification = (Class,{(ownedAttribute, (expression)), (generalization, {Pa-
ckageableElement, TypedElement})}) specifies a (possibly empty) set of instances,
including both objects and data values.

- expression = (Property,{ (subsettedProperty, {Element::owner}), (type,
String), (lowerValue, 0)}) specifies the owning expression if this value spec-
ification is an operand.

The OMG specifications avoid a (detailed) expression syntax definition. This work
elaborates the expression language, starting by the differentiation of guards and actions.

a.2 GuardValueSpecification = (Class,{(ownedAttribute, (expression)), (generaliza-
tion, {PackageableElement, TypedElement})}) specifies a (possibly empty) set
of instances, including both objects and data values.

- expression = (Property,{(subsettedProperty, {Element::owner}), (type, Guard-
Expression), (lowerValue, 0)}) specifies the owning expression if this value
specification is an operand.

a.3 ActionLanguageOperation = (Class,{(ownedAttribute, (symbol,
operand)), (generalization, {ValueSpecification})}) is a structured tree of primi-
tive operations that denotes a (possibly empty) set of values when evaluated in
a context.

- symbol = (Property,{(type, PrimitiveOperation)}) specifies the Primitive-
Operation associated with the node in the expression tree.

76

2.2 Expressions

This section is concluded with primitive operations. Primitive operations are defined
as mathematical functions (and should be supported by the platform that implements
RMOF). In contrast to complex operations, which are defined in terms of behavior
models, i.e., state machines of operations.

Definition 14 (Binary Arithmetic Operations) The arithmetic operations with
two operands comprise {+,−, ∗, /,÷,mod}, (÷ is a whole number division) where,
e.g, + : N0 × N0 → N0, with

+(a, b) :=

{
⊥ if a ∈ {⊥, nil} ∨ b ∈ {⊥, nil}
a+ b else

Analog defined for the rest of the operations and the domains N,Z,R. The operation
is written in infix notation and a+ = 1 is syntactic sugar for a = a+ 1.

Definition 15 (Unary Arithmetic Operations) The arithmetic operations with a
single operand comprise {++,−−, !}, where e.g, ! : B→ B, with

!(a) :=


⊥ if a ∈ {⊥, nil}
true if a ∈ {true}
false else

Whereby a+ + and b−− are shortcuts for a = a+ 1 respectively b = b− 1.

Definition 16 (Comparison Operations) The comparison operations comprise {==
, ! =, <=, >=}, where e.g, ==: N0 × N0 → B, with

== (a, b) :=


⊥ if a ∈ {⊥, nil} ∨ b ∈ {⊥, nil}
true a = b

false else

Analog defined for the rest of the operations and the for domains N,Z,R. The operation
is written in infix notation.

Definition 17 (Type Conversion Operations) The conversion operations comprise
{toBoolean, toInteger, toDouble, toString}, where e.g, toInteger : S∗× → N0, with

toInteger(a) :=

{
n ∃n ∈ N0 with a == ”n”

⊥ else

Analog defined for all primitive types N,Z,R, S∗ (if there exists at least one instance
of the first type that can be conversed into the the second type. �

77

2 Rich Meta Object Facility

Primitive operations cover also so called “Multi-Valued Types” like sets, bags and their
ordered variants ordered sets and sequences, including membership relationships, sub
setting, and conversion operations. The permutation set of a given set including error
values is defined as e := 2s

∗ ∪ {⊥, nil}, with s = {a, b, . . . , Z, 0, . . . , 9} as “constructing
syntax core”.

Definition 18 (Set Operations) Let
∑
S be the set of all sets of elements, tuples,

sets, ordered sets, bags, and sequences that may be build (reflexively) of e,
∑
E ⊆∑S,

E ∈∑S. The set functions comprise at least:

• "flat" is element of containss :
∑
S × E → B is defined

containss(S, e) :=



true if e ∈ S
∧¬containsOneds(adds(S, e), {⊥, nil})

false if e 6∈ S
∧¬containsOneds(adds(S, e), {⊥, nil})

⊥ else

• "deep" is element of containsds :
∑
S × E → B is defined

containsds(S, e) :=



true if contains(S, e) ∨ ∃s ∈ S :

containsds(s, e)

false if ¬contains(S, e)∧ 6 ∃s ∈ S :

containsds(s, e))

⊥ else

• "flat" at least one is element of containsOnes :
∑
S ×∑E → B is defined

containsOnes(S,E) :=


true if ∃e ∈ E : containss(S, e)

false if 6 ∃e ∈ E : containss(S, e)

⊥ else

• "deep" at least one is element of containsOneds :
∑
S ×∑E → B is defined

containsOneds(S,E) :=



true if containsOne(S,E) ∨ ∃s ∈ S :

containsOneds(s, e)

false if ¬containsOne(S,E) ∧ 6 ∃s ∈ S :

containsOneds(s, e)

⊥ else

• "flat" subset of subset subsets :
∑
S ×∑E → B is defined

78

2.2 Expressions

subsets(S,E) :=


true if ∀e ∈ E : containss(S, e)

false if ∃e ∈ E : ¬containss(S, e)
⊥ else

• "deep" subset of subset subsetds :
∑
S ×∑E → B is defined

subsetds(S,E) :=



true if ∀e ∈ E : containss(S, e) ∨ ∃e ∈ E :

isInds(S, e)

false if ∃e ∈ E : ¬containss(S, e) ∧ ∀e ∈ E :

negisInds(S, e)

⊥ else

• join set and element adds :
∑
S × E →∑

S is defined

adds(S, e) :=

{
S ∪ {e} if ¬containsOneds(adds(S, e), {⊥, nil})
⊥ else

• join two sets adds :
∑
S ×∑S →∑

S is defined

adds(S, S
′) :=

{
adds(. . . (adds(S, s1), . . .), sn) if S′ = {s1, . . . , sn}
⊥ else

• remove an element from a set rms :
∑
S × E →∑

S is defined

rms(S, e) :=

{
S \ {e} if ¬containsOneds(adds(S, e), {⊥, nil})
⊥ else

• remove a set from a set rms :
∑
S ×∑S →∑

S is defined

rms(S, S
′) :=

{
rms(. . . (rms(S, s1), . . .), sn) if S′ = {s1, . . . , sn}
⊥ else

• count all set elements sizes :
∑
S → N0 is defined

sizes(S) :=

{
|s| if ¬containsOneds(adds(S, e), {⊥, nil})
⊥ else

• remove all elements from a set clears :
∑
S →∑

S is defined:
clears(S) := {}

�

In contrast to sets an ordered set is totally ordered. Since the operations for sets also
apply for ordered sets mapping operations between sets and ordered sets are defined
instead of redefining all set operations for ordered sets. Additional operations are
required to obey the ordering of an ordered set ,e.g., when introducing new elements
to the ordered set.

79

2 Rich Meta Object Facility

Definition 19 (Ordered Set Operations) An ordered set is a set, that is totally
ordered, written [o1, . . . , on]. Let

∑
O be the set of all ordered sets of all elements,

tuples, sets, ordered sets, bags, and sequences that may be build (reflexively) of e,
∑
E ⊆∑

O, E ∈∑O. The variables n, i ∈ N0. The ordered set functions comprise at least:

• make a set of an ordered set os→
s

:
∑
O →∑

S is defined:

os→
s

(O) := {o1, . . . , on} with O = [o1, . . . , on]

All defined set functions are accessible by previously using os→
s

to transform the

ordered set into a set. counto(O) is written for counts(
os→
s

(O)). If the set function
returns a set as result a corresponding ordered set including a random ordering.
Therefore making an ordered set of a set s→

os
:
∑
S →∑

O is defined:

s→
os

(S) := [o1, . . . , on] with S = {o1, . . . , on}

If functions change (e.g., counto) is "overwritten", the new definition is used.

• make an ordered set of a set s→
os

:
∑
S →∑

O is defined:

s→
os

(S) := [o1, . . . , on] with S = {o1, . . . , on}

The ordering is arbitrarily chosen, but after the operation application there exists
one.

• get position of an element of an ordered set getPoso :
∑
O×E → N0 is defined:

getPoso(O, oi) :=


i if isIno(O, oi) ∧O = [o1, . . . , oi, . . . , on]

nil if ¬isIno(O, oi)
⊥ else

• get element on a position of an ordered set getElemo :
∑
O×N0 → E is defined:

getElemo(O, i) :=


oi if isIno(O, oi) ∧O = [o1, . . . , oi, . . . , on]

nil if sizeo(O) = 0 ∨ i 6∈ {o1, . . . , sizeo(O)}
⊥ else

• add an element at a certain position in an ordered set addAto :
∑
O ×N×E →∑

O is defined: addAto(O, i, e) :=
[o1, . . . , oi−1, e, oi, . . . , on] if O = [o1, . . . , on] ∧ ¬isIno(O, e)
nil if isIno(O, e) ∨ i > sizeo(O) + 2

⊥ else

80

2.2 Expressions

• remove an element at a certain position in an ordered set rmAto :
∑
O × N →∑

O is defined: rmAto(O, i) :=
[o1, . . . , oi−1, oi+1, . . . , on] if O = [o1, . . . , oi, . . . , on]

∧getPos(O, i) = oi

getPoso(O, i) else

�

In the following a so-called “bag” as folded variant of a multi-set is introduced. A
multi-set is a set with multiple occurrences of one element. A bag folds the occurrences
by introducing pairs of elements with natural numbers, whereby the natural number
corresponds to the number of occurrences of the element in the multi-set. Since set
operations apply also for bags, mapping operations between bags and sets as well as
additional operations required to manage bags are introduced.

Definition 20 (Bag) Let S be a set. BS = {(s1, n1), . . . , (sm, nm)} ∈ 2S×N is called
bag of S iff ∀i, j ∈ {1, . . . ,m} : si 6= sj

1. The set of all bags B of S is defined as∑
BS := {BS ∈ 2S×N|BS is a bag}. Each bag BS = {(s1, n1), . . . , (sm, nm)} can also

be written as multi-set in the form
{{s1, . . . , s1, . . . , sm, . . . , sm}}, whereby each si occurs ni times in the multi-set. For
all bag related sub-definitions of predicates and functions S,T are sets and BS ∈∑

BS ,BT ∈
∑

BT are corresponding elements of their sets of all bags of S and T.
Further is s ∈ S, t ∈ T, n,m ∈ N. The bag predicates and functions are defined as
follows:

• create a set of a bag is not required regarding the folded set variant. Nevertheless
it is possible to write sizeb(BS) instead of sizes(BS).

• bag element with minimal occurrences minb :
∑

BS × BT → B is defined as
follows:

minInb(BS , (s,m)) :=


true if ∃!n ∈ N : isInb(BS , (s, n)) ∧m ≤ n
false if ∃!n ∈ N : isInb(BS , (s, n)) ∧m > n

⊥ else

• subset with minimal occurrences subsetb :
∑

BS ×
∑

BT → B is defined as
follows:

subsetb(BS ,BT) :=


true if ∀b ∈ BS : minb(BT , b)

false if ∃b ∈ BS : ¬minb(BT , b))

⊥ else

1Especially S can be a Cartesian product of other sets.

81

2 Rich Meta Object Facility

• adding a bag element to a bag addb : (
∑

BS × BT) → ∑
BS∪{t} is defined as

follows: add(BS , (s,m)) :=
addb(rmb(BS , (s, n)), (s,m+ n)) if ∃!n ∈ N : isInb(BS(s, n))

addb(BS , (s,m)) if 6 ∃!n ∈ N : isInb(BS(s, n))

⊥ else

Adding up two bags is analogously defined as joining to sets (based on addb).

• subtracting a bag element from a bag rmb : (
∑

BS ×BT)→∑
BS∪{t} is defined

as follows: rmb(BS , (s,m)) :=
addb(rmb(BS , (s, n)), (s, n−m)) if ∃!n ∈ N : minb(BS , (s, n))

nil if 6 ∃!n ∈ N : minb(BS(s, n))

⊥ else

Subtraction of one bag from another is defined as removing a set from a set (based
in rmb).

• count the number of a specific bag elements of a bag sizeElementsb :
∑

BS×E →
N0 is defined as follows:

sizeElementsb(BS , e) :=


i if ∃!i ∈ N : isInb(BS , (e, i))

0 if 6 ∃!i ∈ N : isInb(BS , (e, i))

⊥ else

• count the number of all bag elements of a bag sizeb :
∑

BS → N0 is defined as
follows:

sizeb(BS) :=


∑
e∈BS

sizeElementsb(e) if

¬containsOneds(BS , {⊥, nil})
⊥ else

• remove all elements from a bag clearb :
∑

BS →
∑

BS is defined: clearbBS) :=
{{}}

�

Sequences are multi-sets with an ordering in contrast to bags. Therefore mapping
operations between bags and sequences as well as additional operations to handle
ordering information are introduced.

82

2.2 Expressions

Definition 21 (Sequence Operations) Let S = {s1, . . . , sn} be a set (constructed
like in "Primitive Set Operations"). S∗ = QS = si, . . . , sk = [[si, . . . , sk]]S is called a
sequence of S, if all si, sk ∈ S. All sequences of S are written as

∑
QS. The variables

n, i ∈ N0. The sequence functions comprise at least:

• make a bag of a sequence q→
b

:
∑

QS →
∑

BS is defined:

q→
b

(Q) := addq(. . . (addq({(q1, n1)}, (q2, n2), . . . , (qn,mn))

with Q = [[q1, . . . , qn]]

where q1 occurs n1 times, . . ., qn occurs mn times in sequence Q. All defined set
functions are accessible by previously using q→

b
to transform a sequence into a set.

countq(Q) is written for counts(
q→
b

(Q)). Functions If functions change (e.g.,

countq) is "overwritten", the new definition is used instead.

• get position of an element of a sequence getPosq :
∑

QS × N→ E, with

getPosq(QS , (si)) :=



i if QS = [[s1, . . . , si, . . . , sm]]S

∧¬containsOneds(adds(QS , si), {⊥, nil})
nil if QS = [[s1, . . . , sm]]S ∧ i > m

∧¬containsOneds(QS , {⊥, nil})
⊥ else

• get element on a certain position of a sequence getElemq :
∑

QS ×N→ E, with

getElemq(QS , i) :=



si if QS = [[s1, . . . , si, . . . , sm]]S

∧¬containsOnedq(adds(QS , si), {⊥, nil})
nil if QS = [[s1, . . . , sm]]S ∧ i > m

∧¬containsOnedq(QS , {⊥, nil})
⊥ else

• add an element at a certain position in a sequence addAtq :
∑

QS × N × E →∑
QS is defined: addAtq(Q, i, e) :=

[q1, . . . , qi−1, e, qi, . . . , qn] if O = [o1, . . . , on]

∧¬containsOnedq(addq(QS , e), {⊥, nil})
nil i > countq(O) + 2

⊥ else

83

2 Rich Meta Object Facility

If i is not specified, countq(Q) is used instead. Adding up two sequences is anal-
ogously defined as joining to sets
(based on addAtq(Q, e, countq(Q)).

• remove an element at a certain position in a sequence rmAtq :
∑

QS×N→
∑

QS

is defined: rmAtq(Q, i) :=
[q1, . . . , qi−1, qi+1, . . . , qn] if Q = [q1, . . . , qi, . . . , qn]

∧getPos(Q, i) = qi

getPosq(Q, i) else

Subtracting two sequences is analogously defined as removing a set from a set
(based on rmAtq).

• remove all elements from a sequence clearq :
∑

QS →
∑

QS is defined: clearq(Q) :=
[]

�

The defined operations so far support arithmetics and management of multi-valued
types. Since languages can be defined on different language layers operations bridging
the gap between two layers, e.g., to read of attributes, change layers, as well as create,
remove, and filter instances in order to manage (in particular execute) languages are
introduced.

Definition 22 (Layer Operations) Let
∑ 	
M be the set of all

	
M systems,

	
M ∈∑ 	

M ,
	
M I be the set of all instances of

	
M , and N = {a, . . . , Z, 0, . . . , 9}∗ is the ID

construction set. The following set of helping operations is defined:

• up :
∑ 	
M×

	
M×N → N determining the meta ID of an ID is defined as follows:

up 	
M,l.n

(n) :=



i2.n if j ∈ {1, 2} ∧ ∃ij = (ij .n, îj .n, ij .A) ∈
	
M I

∃lj = (lj .n, lj .n̂, lj .I, lj .T, lj .A, lj .O) ∈
	
M :

ij ∈ lj .I ∧ n = i1.n ∧ î1.n = i2.n

∧ l.n = l.n1 ∧ l1 99K l2
⊥ else

The parameters
	
M, l.n are written as index indicating that they are normally set

by the system. When up is applied on itself (e.g., up(up(∗))) then each application

84

2.2 Expressions

of up changes the current layer to its meta layer reference. A slightly different
operation is executed when n=’*’

(with up :
∑ 	
M ×

	
M × {∗} → 2N)

up 	
M,l.n

(n) :=
⋃
{up(n)}

n∈{i.n|(i.n,̂i.n,i.A)∈l.n}

• down :
∑ 	
M ×

	
M × 2N → 2N determining the instance IDs of a set of IDs is

defined as follows:

down 	
M,l.n

(N) :=


⋃{n.i}
n.i∈l.ni

if ∃l.ni ∈
	
M : l.ni 99K l.n

∧ ⋃
n.i∈l.ni

{up(n.i)} = N

⊥ else

When down is applied on itself (e.g., down(up(down(i1)))) each application of
down changes the current layer to its instance layer reference. A slightly different
operation is executed when n=’*’

(with down :
∑ 	
M ×

	
M × {∗} → 2N)

down 	
M,l.n

(n) := down 	
M,l.n

⋃
{i.n}

(i.n,̂i.n,i.A)∈l.I∧(l.n,l.n̂,l.I,l.T,l.A,l.O)∈
	
M

• read :
∑ 	
M ×

	
M ×N ×N → N reading an attribute value is defined as follows

read 	
M,l.n

(i.n, a.n) :=


a.v if ∃(a.n2, a.v) ∈ I.A ∃(i.n2, î.n, i.A) ∈ l.I

∃(l.n2, l.n̂, l.I, l.T, l.A, l.O) ∈
	
M :

i.n = i.n2 ∧ l.n = l.n2 ∧ a.n = a.n2

⊥ else

• reads :
∑ 	
M ×

	
M × 2N ×N → 2N reading attribute values is defined as follows:

reads 	
M,l.n

(i.N, a.n) :=
⋃

i.n∈i.N
read 	

M,l.n
(i.n, a.n)

85

2 Rich Meta Object Facility

• write :
∑ 	
M ×

	
M ×N ×N → B writing an attribute value is defined as follows

write 	
M,l.n

(i.n, a.n, a.v) :=



true if ∃(a.n2, a.v) ∈ I.A ∃(i.n2, î.n, i.A) ∈ l.I
∃(l.n2, l.n̂, l.I, l.T, l.A, l.O) ∈

	
M :

i.n = i.n2 ∧ l.n = l.n2 ∧ a.n = a.n2

∧ a.v′ := a.v

false else

• Let p = {′{′,′ }′,′ {{′,′ }}′,′ [′,′]′,′ [[′,′]]′, a, . . . , Z, 0, . . . , 9,′ ::′}∗, P ⊆ 2p×p filter a
set of instances on base of a set of attribute value pairs,

filter :
∑ 	
M ×

	
M × 2N × 2P → 2N defined as follows:

filter 	
M,l.n

(N,A) := {n ∈ N |∀(a.n, a.v) ∈ A : read 	
M,l.n

(n, a.n) = a.v}

• Let p = {′{′,′ }′,′ {{′,′ }}′,′ [′,′]′,′ [[′,′]]′, a, . . . , Z, 0, . . . , 9,′ ::′}∗, P ⊆ 2p×2p×p filter a
set of instances on base of a set of attribute value pairs with set values, filters :∑ 	
M ×

	
M × 2N × 2P → 2N defined as follows:

filters 	
M,l.n

(N,A) := {n ∈ N |∀(a.n,A.v) ∈A ∃a.v ∈ A.v :

read 	
M,l.n

(n, a.n) = a.v}

• rmI :
∑ 	
M ×

	
M ×N → B remove an instance is defined as follows:

rmI 	
M,l.n

(n) :=



true if ∃(i.n2, î.n, i.A) ∈ l.I
∃(l2.n, l2.n̂, l.I, l.T, l.A, l.O) ∈

	
M :

i.n = i2.n ∧ l.n = l2.n

⇒ l.I ′ := removes(l.I, (i.n, î.n, i.A))

false else

• addI :
∑ 	
M ×

	
M ×N ×N × 2N×N → B add an instance is defined as follows:

addI 	
M,l.n

(i.n, î.n, i.A) :=



true if ¬(∃(i2.n, î.n, i.A) ∈ l.I
∃(l2.n, l.n̂, l.I, l.T, l.A, l.O) ∈

	
M :

i.n = i2.n ∧ l.n = l2.n)

⇒ l.I ′ := adds(l.I, (i.n, î.n, i.A))

false else

86

2.2 Expressions

• rmA :
∑ 	
M ×

	
M × N × N → B remove an attribute is defined as follows:

rmA 	
M,l.n

(i.n, a.n) :=

true if (a2.n, a.v) ∈ i.A∃(i2.n, î.n, i.A) ∈ l.I
∃(l2.n, l.n̂, l.I, l.T, l.A, l.O) ∈

	
M :

a.n = a2.n ∧ i.n = i2.n ∧ l.n = l2.n

⇒ i.A′ := removems(i.A, (a.n, a.v))

false else

• addA :
∑ 	
M ×

	
M × N × N × N → B add an attribute is defined as follows:

addA 	
M,l.n

(i.n, a.n, a.v) :=

false if ¬((a2.n, a2.v) ∈ i.A∃(i2.n, î.n, i.A) ∈ l.I
∃(l2.n, l.n̂, l.I, l.T, l.A, l.O) ∈

	
M :

a.n = a2.n ∧ i.n = i2.n ∧ l.n = l2.n)

⇒ i.A′ := adds(i.A, (a.n, a.v))

false else

• checks if type of an attribute is of a given class isTypeOf :
∑ 	
M×

	
M×N×N →

B, is defined as follows: isTypeOf 	
M,l.n

(a.n, i.n) :={
true if type(a.n) ∈ typehierarchy(i.n)

false else

The typehierarchy is a set containing all super classes of the given class.

• up and down can be added as suffix, e.g., createInstance_down_down(. . .),
short createInstance_d_d(. . .), or createInstance_d2(. . .). Then the given
layer is increased (up) or decreased (down) for the operation.

�

’.’ can be used to access instance attributes instead of read/write. Let i = (i.n, î.n, i.A)
with (a.n, a.v) ∈ i.A then i.n.a.n =̂ read(i.n, a.n) and i.n.a.n = 42 =̂ write(i.n, a.n).
A synonym for a size operator is # which is frequently used in the RMOF models.

The expression definitions are complemented with the interpretation ordering that is
applied for all kinds of expression composition.

87

2 Rich Meta Object Facility

Definition 23 (Interpretation Ordering) The interpretation ordering is normally
from left to right, e.g., x := y / 0 + 1 would result in an error. The operations have
the following ranking regarding their interpretation.

Operation Rank
++,−−, ! 1
∗, /,÷ 2
+,− 3
==, ! =, <=, >= 5
Rest of the operations (e.g., adds) 4

Brackets can be used to change the ordering, e.g., x := y / (0 + 1). �

The implemented action language differs sometimes from the specified one due to the
platform mapping. This is in particular the case when predefined platform operations
exist, e.g., “.size()”.

2.3 Dynamics

This section introduces algorithms, meaning the syntax and semantics to describe and
execute the previously introduced expressions. Syntax is introduced in form of a state
machine in section 2.3.1. Formal semantics is defined as a symbolic transition system
in section 2.3.2. Syntax and semantics are reflexively defined. This concludes the first
step of the semantic definition and introduces the dynamical core of RMOF. This layer
is extended towards a set of concurrent state machines with several forms of interleaving
and atomicity, operations, and observers in the extended variant of the core layer (see
sections 2.3.3 - 2.3.5).

2.3.1 Core

The identified and introduced state machine subset corresponds to finite automata
derived from UML2. Differences are, e.g., multiple actions on transitions in contrast
to states and guards and effects based on the previously described action language (see
section 2.2). Differences compared to UML2 state machines are, e.g., the definition of
a formal action language and the omitting of state machine regions and events. The
removal of regions and events was done to keep the language core to a minimum and
postpone the definition/trigger the discussion of different variants in derived language
layers. The behavior class and features and conclude by introducing the ingredients of
a state machine defining behavior are introduced initially.

13.3.2 Behavior = (Class,{ (ownedAttribute, (specification, context, ownedParameter,
context)), (isAbstract, true), (generalization, {Class})}) is a specification of how

88

2.3 Dynamics

its context classifier changes state over time. A classifier Behavior describes the
sequence of state changes an instance of a classifier may undergo in the course of
its lifetime. When a Behavior instance is associated as the method of a behavioral
feature, it defines the implementation of that feature.

- ownedParameter = (Property,{ (aggregation, shared), (type, Parameter),
(lowerValue, 0), (upperValue, *)}) references a list of parameters to the
behavior that describes the order and type of arguments that can be given
when the behavior is invoked and of the values that will be returned when
the behavior completes its execution.

13.3.3 BehavioralFeature = (Class,{ (ownedAttribute, (ownedParameter)), (generali-
zation, {Feature, Namespace})}) specifies that an instance of a classifier will
respond to a designated request by invoking a behavior. BehavioralFeature is
an abstract metaclass specializing Feature and Namespace. Kinds of behavioral
aspects are modeled by sub-classes of BehavioralFeature.

- ownedParameter = (Property,{(subsettedProperty, {Namespace::ownedMem-
ber}), (type, Parameter), (upperValue, *)}) specifies the ordered set of for-
mal parameters owned by this BehavioralFeature.

- method = (Property,{ (type, Behavior), (lowerValue, 0)}) is a behavioral
description that implements the behavioral feature. There may be at most
one behavior for a particular pairing of a classifier (as owner of the behavior)
and a behavioral feature (as specification of the behavior).

There are three types of states available in RMOF, corresponding to start, normal,
and end states.

15.3.2 FinalState = (Class,{(generalization, {Vertex})}) A special kind of state signi-
fying that the enclosing state machine is completed.

15.3.8 Pseudostate = (Class,{(ownedAttribute, (stateMachine)), (generalization, {Ver-
tex})}) An abstraction that encompasses different types of transient vertexes in
the state machine graph according to the UML2 specifications. In RMOF this
state is only the entry state of a state machine.

- stateMachine = (Property,{(subsettedProperty, {Element::ownedMember}),
(type, State Machine)}) references the state machine in which this Pseu-
dostate is defined. This only applies to Pseudostates of the kind entryPoint
or exitPoint.

15.3.11 State = (Class,{ (generalization, {Namespace, Vertex})}) in contrast to Pseu-
dostate and Finalstate these define “normal” states in between.

89

2 Rich Meta Object Facility

A state machine holds the complete behavior consisting of states and transitions.

15.3.12 StateMachine = (Class,{(generalization, {Behavior})}) can be used to express
the behavior of a part of a system.

- transition = (Property,{(aggregation, composite), (subsettedProperty, {ow-
nedMember}), (type, Transition), (opposite, Transition.container), (lower-
Value, 0), (upperValue, *)}) references the set of transitions owned by this
state machine.

- subvertex = (Property,{(aggregation, composite), (subsettedProperty, {ow-
nedMember}), (type, Vertex), (opposite, Vertex.container), (lowerValue, 0),
(upperValue, *)}) references the set of vertexes that are owned by this state
machine.

In contrast to UML2 where states can execute actions (e.g., as entry actions), RMOF
supports only actions (and guards) on transitions. This has been done for two reasons.
First, this approach is powerful enough and minimal according to finite automata.
Second, some aspects of these UML inner state actions are not clear, e.g., atomicity.

15.3.14 Transition = (Class,{(ownedAttribute, (guard, effect, target, source, container)),
(generalization, {NamedElement})}) A directed relationship between a source
vertex and a target vertex.

- guard = (Property,{(aggregation, composite), (subsettedProperty, {owned-
Element}), (type, String), (lowerValue, 0)}) is a constraint that provides a
fine-grained control over the firing of the transition.

- effect = (Property,{(aggregation, composite), (subsettedProperty, {owned-
Element}), (type, String), (lowerValue, 0), (upperValue, *)}) specifies an
optional behavior to be performed when the transition fires.

- source = (Property,{ (type, Vertex), (opposite, Vertex.outgoing)}) desig-
nates the originating vertex (state or pseudostate) of the transition.

- target = (Property,{ (type, Vertex), (opposite, Vertex.incoming)}) desig-
nates the target vertex that is reached when the transition is taken.

- container = (Property,{(aggregation, shared), (subsettedProperty, {name-
space}), (type, State Machine), (opposite, State Machine.transition)}) des-
ignates the region that owns this transition.

15.3.16 Vertex = (Class,{(ownedAttribute, (outgoing, incoming, container)), (isAbstract,
true), (generalization, {NamedElement})}) An abstraction of a node in a state
machine graph. In general, it can be the source or destination of any number of
transitions.

90

2.3 Dynamics

- outgoing = (Property,{(type, Transition), (opposite, Transition.source), (lo-
werValue, 0), (upperValue, *)}) specifies the transitions departing from this
vertex.

- incoming = (Property,{(type, Transition), (opposite, Transition.target), (lo-
werValue, 0), (upperValue, *)}) specifies the transitions entering this vertex.

- container = (Property,{(aggregation, shared), (subsettedProperty, {name-
space}), (type, State Machine),}) references the region that contains this
vertex.

2.3.2 Formal Semantics

The RMOF behavior relies on the definition of a so called “Symbolic Transition System”
(STS) which is defined (including its runs) in the following two definitions.

Definition 24 (STS) A symbolic transition system (STS) S = (V,Θ, ρ) consists of
V, a finite set of typed system variables, Θ, a first-order predicate over variables in
V characterizing the initial states, and ρ, a transition predicate, that is a first-order
predicate over V, V ′, referring to both primed and unprimed versions of the system
variables (their current and next states). �

The STS induces a transition system on the set of interpretations of its variables as
follows.

Definition 25 (Runs of an STS) Let S = (V,Θ, ρ) be an STS and T the set of
types of variables in V. Let Dτ be a semantic domain for each τ ∈ T.

(i) A snapshot
s : V →

⋃
τ∈T
Dτ

of S is a type-consistent interpretation of V, assigning to each variable v ∈ V a
value s(v) over its domain. Σ denotes the set of snapshots of S.

(ii) A snapshot s ∈ Σ inductively defines the value [[expr]](s) for first-order predi-
cates ‘expr’ over V and the value [[expr]](s, s′) for first-order predicates ‘expr’ over
V, V ′, where s provides the interpretation of unprimed and s′ the interpretation
of primed variables in ‘expr’.

(iii) A snapshot s ∈ Σ is called initial, iff [[Θ]](s) = true.

(iv) Let s, s′ ∈ Σ be snapshots of S. Snapshot s′ is called S-successor of s, iff
[[ρ]](s, s′) = true.

91

2 Rich Meta Object Facility

(v) A computation, or run, of S is an infinite sequence of snapshots
r = s0 s1 s2 . . . , satisfying the following requirements:
• Initiation: s0 is initial.
• Consecution: Snapshot sj+1 is an S-successor of sj, for each j ∈ N0.

(vi) The set of all computations of S is denoted as runs(S). r(i) is used to denote the
i-th snapshot of a run r ∈ runs(S) and

r/i := r(i) r(i+ 1) r(i+ 2) . . .

to denote the infinite suffix starting at r(i), i ∈ N0. �

The set of all transitions TrC of all classes c ∈ C is defined as follows: TrC
df
=
⋃
c∈C

c.Tr.

Analogous is the set of all objects OC
df
=
⋃
c∈C

Oc.

The boolean flag sysfail is introduced to indicate an undefined state of the system.
Normally this flag is set to false and if e.g., an expression is evaluated to ⊥ then sysfail
is set to true1.

Definition 26 (System Semantics) Let
	
M be a system. The semantics of

	
M is

defined as:

STS(
	
M) = (V,Θ, ρ), where

System variables: V := {sconf : Tsconf(
	
M),

	
m.c :}Q, sysfail : IB}.

Initial condition: Θ :=
	
m.c = q0 ∧ sysfail = false

Transition relation: The intermediate predicate ρ0 composes the above introduced
sub-predicates and additional conditions on their application within object’s life-cycle
as follows:

ρ0 :=(¬sysfail ∧ ∃(q, γ, q′) ∈ 	m.tr :
	
m.c = q ∧ 	m.c′ := q′

∧ (assign(γ) ∨ guard(γ)) ∧ q 6= qx) ∨ q = qx

The final transition relation ρ is obtained from ρ0 by adding a frame axiom which
requires that only those places of s are allowed to change in the transition to s′, which
get new values by an assignment “:=” in ρ0, and changing the assignments to “=”.
The semantics of a System S is given as the set runs(STS(S)) of all computations in
S (starting at Θ). �

A single state machine can be executed with this semantics. The next section extends
these definitions and specifies the extended dynamical core of RMOF.

1And remains true for the rest of the execution.

92

2.3 Dynamics

2.3.3 Extended Core

The extended dynamical core inherits the RMOF core and adds the so called “global
state machine”. The global state machine supports, e.g., different interleavings and
atomicities, operations, and observers.

The global state machine handles primarily the determination of the execution con-
text to identify the next effect to be executed. The determination is based on the
interleaving of all active state machines, the atomicity of the current state machine,
it’s current state and enabled transitions. The enabled state of a transition is based on
the current valuations of relevant attributes. If multiple transitions are enabled one is
non-deterministically chosen.

The extended dynamical core introduces operations. An operation consists of a set
of attributes/parameters to exchange values with the calling state machine, a state
machine defining the behavior of the operation itself, and a state machine handler
managing the execution of the state machine. All operation state machines are initially
suspended. When called, the parameters of the operation are assigned, the calling
state machine is suspended and the called state machine of the operation executed
(more precise: it is included in the set of all active state machines by setting it from
“suspended” to “active”). After the state machine of an operation reached the final state,
the “inout” parameters and the “return” parameter are set, the called state machine
is reset, suspended and calling state machine is continued. In the following text two
additional classes covering behavior in general are introduced.

13.3.2 Behavior-Extended = (Class,{ (ownedAttribute, (specification, context, owned-
Parameter, context)), (isAbstract, true), (generalization, {
}) Class}) is a specification of how its context classifier changes state over time.
A classifier behavior describes the sequence of state changes an instance of a clas-
sifier may undergo in the course of its lifetime. When a behavior is associated as
the method of a behavioral feature, it defines the implementation of that feature.

- ownedParameter = (Property,{ (aggregation, shared), (type, Parameter),
(lowerValue, 0), (upperValue, *)}) references a list of parameters to the
behavior that describes the order and type of arguments that can be given
when the behavior is invoked and of the values that will be returned when
the behavior completes its execution.

13.3.3 BehavioralFeature-Extended = (Class,{ (ownedAttribute, (ownedParameter)),
(generalization, {Feature, Namespace})}) specifies that an instance of a classifier
will respond to a designated request by invoking a behavior. BehavioralFeature is
an abstract meta-class specializing Feature and Namespace. Kinds of behavioral
aspects are modeled by sub-classes of BehavioralFeature.

93

2 Rich Meta Object Facility

- ownedParameter = (Property,{(subsettedProperty, {Namespace::ownedMem-
ber}), (type, Parameter), (upperValue, *)}) specifies the ordered set of for-
mal parameters owned by this BehavioralFeature.

- method = (Property,{(type, Behavior), (lowerValue, 0)}) defines a behav-
ioral description that implements the behavioral feature. There may be at
most one behavior for a particular pairing of a classifier (as owner of the
behavior) and a behavioral feature (as specification of the behavior).

The next subsection defines operations as a specialization of these general behavior
elements.

Operations and Constraints

All operations can use parameters to communicate with the calling context. All param-
eters are defined with ParameterDirectionKind. The ParameterDirectionKind specifies
if the parameter is read, written, or both when the operation is invoked and when the
state machine of the operation finished the execution and returns the control to the
state machine that invoked the operation.

7.3.36 Operation = (Class,{(ownedAttribute, (bodyCondition, ownedParameter, post-
Condition, preCondition, stateMachine, calledFromStateMachine)), (generaliza-
tion, {Behavioralfeature})}) is a behavioral feature of a classifier that specifies
the name, type, parameters, and constraints for invoking an associated behavior.

- ownedParameter = (Property,{ (aggregation, composite), (type, Parame-
ter), (upperValue, *)}) specifies the parameters owned by this operation.

- postCondition = (Property,{ (aggregation, composite), (type, Constraint),
(subsettedProperty, {Namespace::ownedRule}), (lowerValue, 0) (upperVa-
lue, *)}) specifies an optional set of constraints specifying the state of the
system when the operation is completed.

- preCondition = (Property,{ (aggregation, composite), (type, Constraint),
(subsettedProperty, {Namespace::ownedRule}), (lowerValue, 0) (upperVa-
lue, *)}) specifies an optional set of constraints specifying the state of the
system when the operation is invoked.

- stateMachine = (Property,{ (aggregation, composite), (type, State Machi-
ne), (lowerValue, 0), (upperValue, 1)}) specifies the state maschine of the
operation.

- calledFromStateMachine = (Property,{(type, State Machine), (lowerValue,
0), (upperValue, 1)}) stores the state maschine that called the operation.

94

2.3 Dynamics

7.3.41 Parameter = (Class,{ (ownedAttribute, (default, direction, operation, default-
Value)), (generalization, {MultiplicityElement, TypedElement})}) is a specifica-
tion of an argument used to pass information into or out of an invocation of a
behavioral feature.

- direction = (Property,{(defaultValue, in), (type, ParameterDirectionkind)})
indicates whether a parameter is being sent into or out of a behavioral ele-
ment.

- operation = (Property,{ (aggregation, shared), (subsettedProperty, {Na-
medElement::namespace}), (type, Operation)}) references the operation own-
ing this parameter.

- defaultValue = (Property,{(subsettedProperty, {Element::ownedElement}),
(type, String), (lowerValue, 0)}) specifies a string that represents a value
(computation description) to be used when no argument is supplied for the
parameter.

7.3.42 ParameterDirectionKind = (Enumeration,{ (ownedLiteral, (’in’, ’inout’, ’out’,
’return’))}) Parameter direction kind is an enumeration type defining the follow-
ing literals used to specify direction of parameters:

in indicates that parameter values are passed into the behavioral element by
the caller.

inout indicates that parameter values are passed into a behavioral element by the
caller and then back out to the caller from the behavioral element.

out indicates that parameter values are passed from a behavioral element out
to the caller.

return indicates that parameter values are passed as return values from a behavioral
element back to the caller. In contrast to out parameters the operation call
is substituted with the return value.

Constraints are introduced in this section because they are specified as operation
with a fix return type mapped on B. Constraints constraint elements by evaluating
boolean expressions assigned to an element.

7.3.10 Constraint = (Class,{ (ownedAttribute, (constrainedElement, context, specifi-
cation)), (generalization, {PackageableElement})}) is a condition (a boolean ex-
pression) that restricts the extension of the associated element beyond what is
imposed by the other language constructs applied to the element.

- constrainedElement = (Property,{(type, Element), (upperValue, *)}) spec-
ifies a set of Elements referenced by this constraint.

95

2 Rich Meta Object Facility

- context = (Property,{ (isDerivedUnion, true), (type, Namespace), (lower-
Value, 0)}) specifies the namespace that is the context for evaluating this
constraint.

- specification = (Property,{ (aggregation, composite), (subsettedProperty,
{Element::ownedElement}), (type, Operation)}) must be true when evalu-
ated in order for the constraint to be satisfied.

The global state machine supports a set of concurrently executed state machines.
Each can have its own level of atomicity defined by the so called “run-to-completion”
(RTC) level of the state machine. RTC=“statemachine” fires transitions as long as
possible. RTC=“transition” stops after a single transition was fired. After each stop
the next execution context is evaluated. RTC=“effect” stops after a single sub effect
was fired. No executable effects (meaning all relevant transition guards are evaluated
to “false”) results in an execution error. A “global step” is done if all active state ma-
chines have been triggered by the global state machine.

All state machines are managed in so called “state machine handlers”. A state ma-
chine handler is an object of the class shown in figure 2.5. State machine handlers

Figure 2.5: State machine handler

store, e.g., if the state machine is executed and if it is executed the current state,
transition effect etc.

A special variant of a state machine is an observer. Observers are used to check
behavior (described in detail in section 2.4) of other state machines instead of speci-

96

2.3 Dynamics

fying behavior itself. An observer has an RTC=“observer” firing transitions as long as
the final state is not reached. If no transition can be fired and the final state is not
reached the observer is suspended. All defined observers are executed initially before
all state machines switched and after all other state machines switched (according to
their atomicity). In order to handle concurrent state machines the global state machine
instantiates state machine handlers handling all execution related / dynamic variables
of a state machine like the current transition or current set of transitions.

The initial state is represented by a black filled circle. The final state is represented
by a black filled circle surrounded by a white circle with a black border line. Each
transition can have a transition attachment consisting of a guard written in squared
brackets and a set of effects prefixed by a gearwheel and suffixed/separated by a semi-
colon. A set of effects prefixed by a gearwheel is the minimal atomic unit on all RTC
levels.

The global state machine starts by instantiating a state machine handler for all ini-
tially active state machines. A state machine handler covers all dynamic aspects of a
state machine, e.g., to store the active state, transition, and effect. This enables the
concurrent execution of the same state machine by multiple state machine handlers.
The execution of the global state machine stops if no state machine handler is active.
Figure 2.6 shows the initialization phase of the global state machine. All observers are

Figure 2.6: Initialization of the global state machine

executed before the state machines are executed in all execution steps. An observer
runs as long as an effect is executable. If no effect is executable, an observer is sus-

97

2 Rich Meta Object Facility

Figure 2.7: Observer check of the global state machine

pended until the next global step is executed. Figure 2.7 shows the observer checking if
only observers are left in the execution pipeline. If this is the case the execution stops
because observers don’t change attribute values. The checking takes place after the
observers have been executed. After the current set of active state machines has been
identified all observers are executed followed by all active state machines. All state
machines are executed by determining the current state first. If the current state of the
state handler is null, the current state is the initial state otherwise the state handler
points to the current state from the last step. If the current state is the final state,
the execution is done and the state machine is suspended. If the state machine was
part of an operation, the operation call part in the calling state machine is substituted
by the return value and the assigned attributes of the out and inout parameters are
set. If the current state is not the final state, the enabled (outgoing) transitions are
determined and the first one that is evaluated to true (non-deterministically chosen)
is set to be the current transition. If there are sub effects from a previous execution
that need to be processed, the transition determination is skipped. If a new transition
has been determined, the first sub effect is identified and the transition is colored (in
a simulation run). Figure 2.8 shows the determination of the next sub effect to be
executed. Figure 2.9 shows the effect handling. After the sub effect is identified it is
(colored in the graphical environment and) executed. If there exist more sub effects

98

2.3 Dynamics

Figure 2.8: Sub effect identification of the global state machine

on the current transition it depends on the atomicity of the state machine, if the next
sub effect is executed or not. If all sub effects have been executed (the current effect

99

2 Rich Meta Object Facility

Figure 2.9: Global state machine executions

counter is larger than the number of the available effects), the current state is set on to
the transition target (and colored) and the effect counters are reset. A state machine
changes its state from active to inactive when it has reached its final state. When no
active state machines are available the execution of the global state machine stops.

The global state machine supports breakpoints, e.g., to investigate information during
a debugging session, it handles the coloring of graphical elements, and is able to wait
a predefined time (for demonstration purposes). The following section defines the
computation of some predefined operations in RMOF, e.g., to compute derived values

100

2.3 Dynamics

or derived union sets. In contrast to the primitive operations that have been directly
defined mathematically, complex operations are represented as state machines.

2.3.4 Derived Values

Derived attributes are derived/computed from other attributes. The OMG specifica-
tions do not define how to compute them.

instancesWithDerivedAttributes (iwda) [0..*] {ordered Set} : String = NULL
...Counter (iwdac) : Integer = 0
propertyInstances (pi) [0..*] {ordered Set} : String = NULL
propertyInstancesCounter (pic) : Integer = 0
propertyNames (pn) [0..*] {ordered Set} : String = NULL
propertyNamesCounter (pnc) : Integer = 0
instanceNavigations (in) [0..*] {ordered Set} : String = NULL
instanceNavigationCounter (inc) : Integer = 0
dvOps : Operation [0..*] = NULL
parameterCount (pc) : Integer = 0
propertyName (p) : String = NULL

derivedValuesComputation
direction = inout
type = StateMachine
lowerValue = 0
upperValue = *
{ordered Set}

stateMachines (sm)
direction = in
type = Boolean
lowerValue = 1
upperValue = 1

preComputation (pre)

Return
Parameter
determined

[pre == false]
inc = 0; pc = 0

State Machines
& Navigations

determined

direction = return
type = String
lowerValue = 1
upperValue = 1

errorMessage

[iwdac >= #iwda]

[pre == true]
iwda = filter(up(*), {(name, Class)}); // determine all class instances
pi = filter(up(*),{(name, Property)}); // determine all property instances
pi = filter(down(pi), {(isDerived, !NULL)}) // filter all property instances with derived values
iwda = down(filters(iwda, {(name, reads(pi))})) // determine all instances of classes with derived values
iwdac = 0; pnc = 0; inc = 0; pic = 0
pi = filters(c, {(name, up(iwda[iwdac]).ownedAttributes)}; // determine property descriptions

[pic < #pi]
dvOps += addInstance_down(gUID(),
pi[pic[.isDerived)
// create Operation Instance
sm += dvOps[inc].stateMachine;
// store State Machine Pointer for global State Chart
in += iwda[iwdac].name "." + pi[pic].name;
// store Navigation expression
inc++; pic++

[pic > pi]
iwdac++;
pi = filters(c, {(name, up(iwda[iwdac]).ownedAttributes)};
// determine property descriptions
pic = 0

[pc < #dvOps[inc]stateMachine.parameter &&
 #dvOps[inc]stateMachine.parameter[pc].direction == return]
p = dvOps[inc]stateMachine.parameter[pc].name;
// store parameter name
assign(in[inc],down(p.operation).p);
// assign return value
removeInstance_down(down(p.operation));
// remove operation instance
inc++; pc = 0

[pc < #dvOps[inc]stateMachine.parameter &&
 #dvOps[inc]stateMachine.parameter[pc].direction != return]
pc++

[inc >= #in]

[pc >= #dvOps[inc]stateMachine.parameter]
errorMessage = "Could not find return parameter"

Figure 2.10: Derived values computation

In RMOF the value of a derived attribute is the result of the execution of an assigned
operation and computed after a global step has taken place and before observers are
executed. Figure 2.10 defines the state machine to compute derived values. The speci-
fied attributes and their classes are depicted in the top of the figure. The state machine
starts by identifying all derived value attributes. The corresponding state machines
of the assigned operations of the derived values are invoked and their return value is
assigned to the derived value attribute. The computation order of derived values is
non-deterministically chosen in the current semantics. This could be changed towards
a partial ordering defined by computation dependencies.

An example of a derived value is the qualified name of an attribute. Qualified names

101

2 Rich Meta Object Facility

are prefixed with all namespace names that contain (transitively) the NamedElement.
The state machine is presented in figure 2.11. The qualified name of a NamedElement

[]
return = this.name;
currentNameSpace = this.namespace

direction = in
type = NameElement
lowerValue = 1
upperValue = 1

this
direction = out
type = String
lowerValue = 1
upperValue = 1

return

currentNamespace : Namespace = NULL

Derived Value
Qualified Name

Object
Name

Set

[currentNamespace == NULL]

[currentNamespace != NULL]
this.name = currentNamespace.name + "::" + this.name;
currentNamespace = currentNamespace.namespace;

Figure 2.11: Derived value - qualified name

is build successively by concatenating all namespace names, separated by “::” and
appendixed by the element name itself. Another predefined variant of a derived value

direction = in
type = Namespace
lowerValue = 1
upperValue = 1

this

direction = out
type = PackageableElement
lowerValue = 0
upperValue = *

return

elementImport : PackageableElement [0...*] = null
int e = 0 // element counter
int p = 0 // package counter

Derived Value
Imported Member

[this.elementImport == null && this.packageImport == null]

[e < #elementImport && !isElement(elementImport[e].name)]
 add(return, elementImport[e++].name)

Found Import
Elements

[this.elementImport != null]
elementImport = this.elementImport;

[e < #elementImport &&
 isElement(elementImport[e].name)]
errorMessage = "Element Name exists twice!"

direction = out
type = String
lowerValue = 1
upperValue = 1

errorMessage

[this.elementImport == null
 && this.packageImport != null]
elementImport =
 this.packageImport [p++]

[e >= #elementImport && this.packageImport != null && p < #this.packageImport]
 elementImport = this.packageImport [p++];
e = 0

[(e >= #elementImport && this.packageImport
 == null) || p > #this.packageImport

Figure 2.12: Derived value - ImportedMember

are member imports. PackageableElements can be imported into another package by so
called package/member imports. Whereby the imported element is a reference to the
source element, not a copy of the element. Figure 2.12 shows the corresponding state
machine importing namespace elements. Elements are neglected during an import if
already an element with such a name exists in the importing namespace. In contrast
to derived values derived unions form a kind of superset. Based on [63] the semantics
of derived unions is defined as superset of all sub-setting variables. Figure 2.13 shows
the corresponding state machine. The domain of a derived union attribute is defined
as subset of the domains of all sub-setting attributes. The current value of a derived

102

2.3 Dynamics

DerivedUnion
Properties
determined

[dupc < dup]
sp = filters(reads(down(filter(up(*),
 {(name, Property)})), subsettedProperties, dup[dupc].name)
spc = 0

Subsetting
Properties
determined [spc < #sp]

dupi = down(dup[dupc].class)
dupic = 0

DerivedUnion
Instances

determined

[dupic < #dupi]
spi = down(sp[spc].class)
spic = 0

Subsetting
Instances

determined

[spic < #spi]
nav(dupi.(dup.name)) += read(spi.(sp.name));
spic++

[spic > spi]
spic = 0; dupic++

derivedUnionProperties (dup) [0..*] {ordered Set} : String = NULL
derivedUnionPropertiesInstances (dupi) [0..*] {ordered Set} : String = NULL
derivedUnionPropertiesCounter (dupc) : Integer = 0
derivedUnionPropertiesInstancesCounter (dupic) : Integer = 0
subsettingProperties (sp) [0..*] {ordered Set} : String = NULL
subsettingPropertiesInstances (spi) [0..*] {ordered Set} : String = NULL
subsettingPropertiesCounter (spc) : Integer = 0
subsettingPropertiesInstancesCounter (spic) : Integer = 0

derivedUnionsComputation

[spc > #sp]
dupc++; spc = 0

[dupc > dup]

[]
dup = filter(down(filter(up(*), {(name, Property)})), {(derivedUnion, true)});
dupc = 0

Figure 2.13: Derived unions

union attribute equals the current values of all sub-setting attributes. The next section
introduces the predefined state machines handling operation calls.

2.3.5 Operations

The invocation of an operation is done in several steps. The first step determines the
so called “inner most” complex operation. During an invocation of a (possibly) nested
operation call the “inner most” complex operation is determined, executed, and sub-
stituted by the result of the operation. The determination of the inner most complex

103

2 Rich Meta Object Facility

direction = return
type = String
lowerValue = 0
upperValue = 1

innerMostComplexOperationCall
(imcoc)

complexOperationNames (con) : String
[0..*] = NULL
complexOperationNamesLevel (conl) :
UnlimitedNatural [0..*] = NULL
returnLevel (rl) : UnlimitedNatural = 0
compexOperationNamesIndex (coni) :
UnlimitedNatural [0..*] = NULL
complexOperationNamesIndexIndex
(conii) : UnlimitedNatural [0..*] = 0
stringPosition (sp) : UnlimitedNatural =
0
stringPositionOperation (spo) :
UnlimitedNatural = 0
layerCounter (lc) : Integer = 0

getInnerMostComplexOperationCall

direction = in
type = String
lowerValue = 1
upperValue = 1

operationCall (oc)

[conii < #coni &&
con[coni[conii]] != oc[sp]]
conii++

[conii >= #coni]
conii = 0

[]
con = reads(filter(down(filter(up(*),
 {(name, Operation)}), {(stateMachine, !NULL)}), name)

All Complex
Operation

names
determined

[#con == 0]

[#con != 0]
sp = 0

Parse

[sp < #oc && oc[sp] == ')']
lc++; sp++

[sp < #oc && oc[sp] == '(']
lc--; sp++

[sp < #oc && oc[sp] != '('
 && oc[sp] != ')']
sp++; conii = 0

(Re-set
Operation

Names
Indexes)

[conii < #coni]
coni[conii++] = 0

Increase Operation
Names Index of matching

Operation Names

[conii >= #coni]
conii = 0;
spo = 0

[conii < #coni
 && con[coni[conii]] == oc[sp]]
coni[conii++]++;

[oc[sp] == '(' || oc[sp] == ')'
 || sp >= #oc]

[sp >= #oc]
conii = 0; rl = 0

Was any Operation Name
successfully parsed?

[conii < #coni &&
 #con[conii] != coni[conii]
conii++;

[conii < #coni &&
 #con[conii] == coni[conii]
conl = lc

[conii >= #coni]
conii = 0;
sp++;
spo++

Set Return
Value to

InnerMost
Operation

Call

[conii < #con
&& rl >=
conl[conii]]
conii++[conii < #con && rl <

conl[conii]]
rl = conl[coni]
lmcoc = con[coni]
conii++

[conii >= #con]

Figure 2.14: GetInnerMostOperationCall

operation is presented in figure 2.14. The inner most complex operation is the complex
operation that can be executed first of a nested operation call because it does not
call another complex operation. By successively evaluating the inner most complex
operations and substituting the operations calls with their return values an executable
evaluation is guaranteed. In order to find the inner most complex operation the op-
eration call string is disassembled into (valid) operation names and parameters. The
inner most complex operation is the one with the first closing brackets.

After the inner most complex operation has been identified, the operation parameters

104

2.3 Dynamics

direction = return
type = String
lowerValue = 1
upperValue = 1

returnParam (rp)

stringPosition (sp) : UnlimitedNatural = 0
countedParameter (cp) : UnlimitedNatural = 0

getParam

sp = 0;
rp = ""

Find first
Bracket

direction = in
type = String
lowerValue = 1
upperValue = 1

operationCall (oc)

[sp > #oc]

[oc[sp] != '(']
sp++

[oc[sp] == '(']
sp++; cp++

Find
Parameter

[sp > #oc || oc[sp] == ')']

[oc[sp] != ',' && cp != pn]
sp++

[oc[sp] == ',']
sp++;
cp++

direction = in
type = UnlimitedNatural
lowerValue = 1
upperValue = 1

paramNumber (pn)

[oc[sp] != ',' && cp == pn]
sp++;
rp += oc[sp]

Figure 2.15: GetParam

are parsed and assigned to the operation parameters via “getParam” and “setParam”
operations. Figure 2.15 presents the state machine to get parameters. Getting param-
eters is done during the invocation of an operation to assign the local attributes of
the operation that can be used by the state machine. Figure 2.16 presents the state
machine to set parameters. The next section addresses aspects of temporal logics that

direction = in
type = String
lowerValue = 1
upperValue = 1

param (p)

stringPosition (sp) : UnlimitedNatural = 0
countedParameter (cp) : UnlimitedNatural = 0
paramPosition (pp) : UnlimitedNatural = 0

setParam

sp = 0

Find first
Bracket

direction = inout
type = String
lowerValue = 1
upperValue = 1

operationCall (oc)

[sp > #oc][oc[sp] != '(']
sp++

[oc[sp] == '(']
sp++; cp++

Find
Parameter

[sp > #oc || oc[sp] == ')']
[oc[sp] != ','
 && cp != pn]
sp++

[oc[sp] == ',']
sp++;
cp++

direction = in
type = UnlimitedNatural
lowerValue = 1
upperValue = 1

paramNumber (pn)

[oc[sp] != ',' && cp == pn]
rm_q(oc,sp)

delete old
Parameter

[oc[sp] != ',']
rm_q(oc,sp)

[oc[sp] == ',']
pp = 0

add new
Parameter

[pp < #p]
add_q(oc,p[pp])

[oc[sp] == ',']
pp = 0

Figure 2.16: SetParam

are used to specify a special type of state machine called observer.

105

2 Rich Meta Object Facility

2.4 Observers

The RMOF extended dynamical core supports discrete time in terms of a (global)
step counter. But each instance layer can define own timing models, in particular
ones that base on continuous time. In this sections some observers defining discrete
Linear Temporal Logic operators are presented. In the examples a variable t is used to
represent the current time and t+ i a time in the future. The variable r represents the
return value of the observer evaluation. The following temporal operations introduced:

• neXt ϕ : ϕ has to hold at the next state/interval. Figure 2.17 represents the
corresponding observer state machine.

Evaluation

[t+1 && phi]
r = true

[t]

[t+1 && !phi]
r = false

Figure 2.17: Temporal observer realizing “next”

• Globally ϕ : ϕ has to hold on the entire subsequent execution path. Figure 2.18
represents the corresponding observer state machine.

Evaluation [isInstanceOf(FinalState,
 stateMachineHandlers[stateMachineHandlerCount.state)
 && phi]
r = true

[t]

[isInstanceOf(FinalState,
 stateMachineHandlers[stateMachineHandlerCount.state)
 && !phi]
r = false

[!isInstanceOf(FinalState,
 stateMachineHandlers[stateMachineHandlerCount.state)
 && phi]

Figure 2.18: Temporal observer realizing “globally”

• Eventually in the future ϕ : ϕ has to hold somewhere on the subsequent execution
path. Figure 2.19 represents the corresponding observer state machine.

106

2.4 Observers

Evaluation

[phi]
r = true[t]

[isInstanceOf(FinalState,
 stateMachineHandlers[stateMachineHandlerCount.state)
 && !phi]
r = false

[!isInstanceOf(FinalState,
 stateMachineHandlers[stateMachineHandlerCount.state)
 && !phi]

Figure 2.19: Temporal observer realizing “eventually in the future”

• υ Until ϕ: υ has to hold at least until ϕ, which holds at the current or a future
position on the subsequent execution path. Figure 2.20 represents the corre-
sponding observer state machine.

Evaluation

[veeSeen && !phi]
r = false[t && !veeSeen]

[veeSeen && phi]
r = true

[!isInstanceOf(FinalState,
 stateMachineHandlers[stateMachineHandlerCount.state)
 && vee]
veeSeen = true [isInstanceOf(FinalState, stateMachineHandlers

 [stateMachineHandlerCount.state) && !veeSeen]
r = true

[veeSeen && !vee]
r = false

Figure 2.20: Temporal Observer realizing “until”

• υ Release ϕ: At the first position in which υ is true, ϕ ceases to be true and
is to be required to be true until release occurs. Figure 2.21 represents the
corresponding observer state machine.

Evaluation

[!phi]
r = false[t]

[isInstanceOf(FinalState, stateMachineHandlers
 [stateMachineHandlerCount].state) && vee]

[!isInstanceOf(FinalState, stateMachineHandlers[stateMachineHandlerCount.state) && phi && !vee]

[isInstanceOf(FinalState, stateMachineHandlers
 [stateMachineHandlerCount.state) && phi && !vee]
r = true

Figure 2.21: Temporal observer realizing “release”

107

2 Rich Meta Object Facility

The next section shows an implementation of this language frame allowing for ex-
ample the graphical specification of modeling layers, debugging, and platform binding
to explore all kinds of models and languages to form a process modeling framework
with the required flexibility to realize suitability and sustainability of derived process
models.

2.5 Implementation

There are several challenges that must be faced when implementing RMOF. The Eclipse
platform 1 has been identified to meet these challenges. The Eclipse platform offers a
flexible plugin concept based on the Open Service Gateway initiative (OSGi 2) spec-
ification, which is intensely used in the prospering Eclipse community offering more
or less all ingredients to implement RMOF. The following challenges/requirements are
addressed in the implementation:

• Domain model creation for arbitrary models is realized on base of the Eclipse
Modeling Framework (EMF [64, 65]). EMF supports the creation of domain
models on base of a syntax comparable to the Meta Object Facility of the OMG.
Models can be created from scratch or by using import functions that are able
to parse Rational Rose models 3, XML schema, and annotated Java. EMF and
additional plugins offer:

- XMI [66] support, which is important to support in particular all OMG
specification (like UML2 [54, 55]), is directly offered by the EMF Framework.

- Models to text/code generation by so called Java Emitting Templates (JET
[67]). JET supports JSP-like template files that can be edited and trans-
formed into any kind of source artifact including Java, HTML, properties or
XML files. There exist additional “model2text” frameworks like Acceleo [68]
which is an implementation of the Object Management Group (OMG) MOF
Model to Text Language (MTL [69]) standard or Xpand [70], a statically-
typed template language. The first and the last project even offer particular
editor environments to support the editing of the generator files.

- The retrieval of model information comparable to SQL (Structured Query
Language) statements with the Model Query Project [71].

- Model compare and merge can be done with the Model Compare Project [72].
In the first step called “matching” similar model parts are identified, in the
second step called “differencing” the delta between the models is identified.

1www.eclipse.org
2www.osgi.org
3http://www-01.ibm.com/software/rational

108

2.5 Implementation

- The definition of constraints is possible in form of Java and OCL, model
validation, and validation support of event listeners is offered by the Model
Validation Project [73].

• The creation of user-defined graphical editors on base of EMF Models is sup-
ported by the Graphical Modeling Framework (GMF [74, 75]). With GMF it is
possible to define geometric objects and images, Tool palettes and map them to
defined EMF models to generate editor source code in form of an Eclipse plugin.
There exist other projects building GMF based editors for graphical oriented
languages like UML2 [76], BPMN [77] (Business Process Model and Notation),
or the IMM [78] (Information Management Meta-model).

• Model transformation is supported by ATL (Atlas Transformation Language [79])
including editor and debugging facilities. The projects Declarative QVT [80] and
Operational QVT [81] support Model Transformation on base of the Query/View/-
Transformation Specification [82] of the OMG. Operational QVT supports a kind
of imperative language to specify explicit steps to execute on order to describe
transformations in contrast to the Declarative QVT that assumes a direct corre-
spondence between source and target model parts.

• Model versioning is supported by the Teneo Project [83]. Teneo is a database
persistency solution for EMF. It supports automatic creation of EMF to relational
mappings.

• IDE support of all editor instances is fulfilled because all generated editor sources
(of EMF and GMF as main source) are Eclipse plugins itself. Thus other Eclipse
plugins e.g., to support version control, can also be used in these editors.

• Distribution and collection of process information is realizable via Net4J [84] and
CDO [85]. Net4J is an extensible client-server system based on the Eclipse and
the Spring framework. It is possible to extend the protocol stack with Eclipse
plugins that provide new transport or application protocols. CDO is both a tech-
nology for distributed shared EMF models and a fast server-based O/R mapping
solution. With CDO it is possible to enhance existing models in such a way
that saving a resource transparently commits the applied changes to a relational
database with Net4J over the network. Optionally other connected clients are
actively notified about these changes so that their model copies get partially
invalidated and all user interfaces reflect the current state at once.

• (Semi-) Automatic retrieval and postulation/enactment of process information
in connected development environments. Due to the wide range of development
activities covered by Eclipse and its plugins it is possible to connect a single

109

2 Rich Meta Object Facility

environment to retrieve and postulate process information directly for all these
process steps.

RMOF is realized on base of Eclipse including mainly EMF, GMF, and CDO. Fig-
ure 2.22 shows the approach on an abstract level. Each meta-modeling layer in RMOF
is mapped on an Ecore meta-model which is an instance of Ecore. Such a mapping can
be done in two ways, statically and dynamically. During a static model creation the
Ecore is created in a manual domain model creation process in the Eclipse framework
and code generators synthesize the editor and simulation source code (e.g., factories,
notification mechanisms, and XML based persistence mechanisms). All GMF based
elements require a static mapping because their representation must be (pre-)defined.
A dynamic mapping is supported by designated EMF APIs to create a meta-model
from source code.

Figure 2.22: RMOF concept vs. implementation

RMOF uses a hybrid approach. All GMF mapped elements must be statically
mapped, the rest can be dynamically instantiated and the required source code is
generated and merged with the static source code during run time. This requires some
implementation twists because all objects should be able to “see” each other regardless
if based on a statically mapped part or a dynamically mapped part of the meta-model.
All effects are mapped (currently) onto Java code, compiled together with the EMF
classes and executed directly by a Java Virtual Machine to ensure maximal perfor-
mance in the editor environment. The simulation environment of RMOF supports a
composition of different meta-model layers, their execution/simulation and in particu-
lar their debugging. Figure 2.23 shows a screenshot during a debug run of the RMOF

110

2.5 Implementation

Figure 2.23: RMOF environment screenshot

111

2 Rich Meta Object Facility

environment. Sub-Figure 1 shows a SPEM Editor executing different methods in a
process model. Sub-Figure 2 shows an observer checking if the final node of the SPEM
model is already reached. Sub-figure 3 shows an RMOF model editor in which the
SPEM semantic has been described in terms of an RMOF State Machine. Sub-figure
4 shows the layer view that can be used to compose language layers. Additionally this
layer is able, e.g., to execute step-wise for all modeling layers, color a model layer, and
wait (a certain amount of milliseconds on a wait point). Sub-figure 5 shows the console
view of RMOF that can postulate all kinds of log information - if required separated
for each language layer. Sub-figure 6 shows the variable view of the debug views of
RMOF that can be used to retrieve all variable valuations during run time. Sub-figure
7 shows the debug view that can also be used to restrict the variables shown in the
variable view regarding the layer that is chosen in the debug view.

The RMOF environment is able to access all EMF based editors, e.g., to highlight
the current state of a state chart during a simulation. All constructs supported by
RMOF based on Java are compiled before a simulation starts and invoked by using
Java reflections to ensure maximal performance. During the compilation additional
actions ensure that, e.g., the variables of the different language layers are defined and
getter/setter of the variable are used during an assignment in the action language. The
RMOF environment allows a distribution of the models over the network to distribute
(and collect) live process information.

The implementation of RMOF is done completely in Java for the simulation/editor
environment, but can be easily changed towards other platforms, e.g., to support ad-
ditional data types or operations with a higher precision or other analysis methods
(e.g. model checking). There are powerful code generation facilities for this purposes
available.

The Software Process Engineering Metamodel (SPEM) will be instantiated as RMOF
instance and complemented in the next chapter and will constitude a process frame to
embed the synthesize process interactions/models introduced in the following chapters.
Figure 2.24 shows an example RMOF instance and a run of the symbolic transition
system describing the semantics of the instances. Figure 2.24 shows from left to right
the data structures in terms of a class diagram, the behavior in terms of an RMOF
State Machine, and the semantics in terms of the corresponding run of the underlying
symbolic transition system. The class diagram specifies a “Test Class” with an attribute
i of type Integer and and initial value of 0 and a “Test Operation” with a “Test Chart”.
The “Test Chart” is represented in the “State Machine”. The “State Machine” increases
i initially and continues while i is below 5. The “Run of an STS” shows all variables
including i, a variable end - indicating if the final transition was reached and a variable
fail - indicating a failure state (e.g., a division by 0).

112

2.5 Implementation

39/23%

Meta%Modeling::RMOF::Single%Chart%

i%:%Integer%=%0%

Test%Opera5on%

Test%Chart%

Test%Class%

Data%Structures%

Run%of%an%STS%

[0]%i%=%0,%!end,%!fail%

[1]%i%=%1,%!end,%!fail%
[2]%i%=%2,%!end,%!fail%
[3]%i%=%3,%!end,%!fail%
[4]%i%=%4,%!end,%!fail%
[5]%i%=%5,%!end,%!fail%
%
[6]%i%=%5,%%end,%!fail%

Some%State%

[%]%
i%=%i%+%1%

State%Machine%

[%i%<%5%]%

i%+=%1%

[%i%>=%5%]%

Figure 2.24: RMOF instance example with STS semantics

The syntax and semantics of SPEM as RMOF instance is described in the next
chapter.

113

3 Software Process Engineering
Metamodel

“Design is the method of putting
form and content together.”

Paul Rand

This chapter introduces the Software Process Engineering Metamodel as RMOF in-
stance. The syntax is presented in the next section 3.1. Since all specifications of
the Object Management Group are informal the approach is complemented by adding
semantical building blocks for a Petri Net based semantic in terms of RMOF instances
in section 3.2. These semantical building blocks are used in section 5.6 on page 180 to
analyze the impacts of process model changes.

3.1 Syntax

The OMG defines the Software & Systems Process Engineering Meta-model Specifi-
cation 2.0 (SPEM [6]) as a Meta-Model to describe Software and System Engineering
Processes on a general level focusing on the compliance to various kinds of existing
process modeling languages and process models. SPEM separates strictly between
definition and application of process models as presented in figure 3.1, supporting a
maximal reuse of defined process elements. An example for this separation are, e.g.,
Role Uses as instances of Role Definitions bound together in the so called “Guidance”.
SPEM 2.0 has been designed in different packages, namely:

• Core: Defines abstract common classes, e.g., “Class”, “Association”, and “Ac-
tion” including the ability to create user-defined qualifications to for example
distinguish different ’kinds’ of SPEM 2.0 class instances.

• Process Structure: Defines basic structural elements for defining develop-
ment processes, e.g., “BreakdownElement” with children like “Milestone” and
“WorkProductUse”.

• Process Behavior: Since SPEM does not provide its own behavior modeling
concept this package is used to introduce links to UML2 Superstructure behavior
related elements like State Charts and Activity Charts.

115

3 Software Process Engineering Metamodel

Figure 3.1: SPEM 2.0 method framework

• Managed Content: Defines fundamental concepts for managing of textual de-
scriptions for process and method content elements, e.g., “Guidance” and “Met-
ric”.

• Method Content: Defines core elements of every method such as “Roles”,
“Tasks”, and “Work Product” definitions.

• Processes with Methods: separates the reusable core method content from
its application in processes this package binds both together again, e.g., “Task
Definitions” and “Task Uses”.

• Method Plugin: defines capabilities to manage libraries of Method Content
and Processes.

Figure 3.2 presents the behavioral links of package “Process Behavior”. These links
will be extended and filled with appropriate RMOF semantics.
SPEM links State Machines and Activity Charts as behavior UML elements. State

Machines are used for Work Product Definitions, Activity Charts for Work Definitions.
Formalization of State Charts and Activity Charts often assign some kind of finite
Automata semantics to State Charts and some kind of Petri Nets for Activity Charts.
The Eclipse Process Framework (EPF [86]) is the reference implementation of SPEM
2.0. The modeling framework has been used to describe some example processes such
as Open Unified Process (an Open Source Variant of the Rational Unified Process),

116

3.1 Syntax

Figure 3.2: Process behavior package of SPEM

Scrum [87], and eXtreme Programming [88]. EPF can mainly be used to publish these
processes in form of a web page as illustrated in figure 3.3.

Such a web page is mainly used to describe process elements, e.g., what has to be
done in “Requirements Evaluation Step”, what Roles are involved or what are prede-
cessors and successors of an activity. But no behavior is executed. The name indicates,
that EPF is based on Eclipse and the data model is based on the Eclipse Modeling
Framework (see 2.22). The EMF models used in this thesis are based on the EPF
implementation. This ensures a syntactical compliance between EPF and the RMOF
SPEM instance. More precisely the RMOF SPEM instance is a superset of EPF be-
cause extended in several ways e.g., to cover tool interactions or concrete artifacts like
Matlab Simulink Models.

SPEM behavior points to Activity Diagrams of UML2, which also do not define for-
mal semantics, but give some hints in the intended semantic direction e.g., to “use a
Petri-like semantics instead of State Machines”. Nevertheless there exist several sci-
entific papers bridging this gap and a mapping is defined in a more or less straight
forward way (compare 3.2). A little bit more complex are additional “features” like
(sub-) activity calls, inhibitor and weighted arcs, priorities, self modifying nets, data
flows, events, probabilism and time. Instead of defining a single concrete semantics
(like in the so called “executable SPEM” approach - defining the semantics of SPEM
in terms of Prioritized Time Petri Nets) formal semantic building blocks expressed in
RMOF are introduced in the next section. These building blocks are composed and
used to simulate the previously identified interaction sequences.

117

3 Software Process Engineering Metamodel

Figure 3.3: Eclipse Process Framework screenshot

3.2 Semantics

Carl Adam Petri invented his Petri Nets at the age of thirteen to describe chemi-
cal processes and documented them as part of his dissertation “Communication with
Automata”. Petri Nets are widely used in Theory and Practice [89, 90]. They are
a very effective way to illustrate concurrency. Standard Place/Transition Petri Nets
as RMOF instance are introduced in this section and extended in a so called ’weakly
colored’ variant to distinguish different tokens sets running on the same Petri net. The
tokens can represent objects and have additional properties like probability and inter-
action effects (e.g., manually edited test vectors).

Petri Nets [91] can switch concurrently a set of (enabled) transitions in contrast to
State Machines. The level of concurrency depends on the number of so called “Tokens”

118

3.2 Semantics

on each Place (which is equal to State in State Machines). A firing transition consumes
tokens on source places and produces tokens on target places. Petri Nets are defined
formally:

Definition 27 (Petri Net) A Petri Net, N is a tuple (P, T,F,B) with

• a finite, ordered set P = {p1, . . . , p|P |} of Places,

• a finite, ordered set T = {t1, . . . , t|T |} of Transitions,

• with P ∩ T = ∅

• a |P | × |T |-matrix F over N (called forward matrix), and

• a |T | × |P |-matrix B over N (called backward matrix).

�

On base of the forward and backward matrices we can define edges.

Definition 28 (Petri Net::Edges) Let (P, T,F,B) be a Petri Net. Then F : P ×
T ∪ T × P 7→ N is the edge function, defined as ∀x, y ∈ P ∪ T :

F (x, y) :=

{
Fi,j , if x = pi ∧ y = ti

Bi,j , if x = ti ∧ y = pi

�

The state space of a Petri Net consists of all possible markings (= number of tokens on
the places). Mathematically formulated let N = (P, T,F,B) be a Petri Net, the state
space of N = NP . A mapping s : P 7→ N is called state or marking of the Petri Net
denoting the number of tokens on a place.

Definition 29 (Petri Net::Firing) Let N = (P, T,F,B) be a Petri Net, s ∈ NP a
state of N and t ∈ T . t is enabled in s if s ≥ F(t). t fires from s to s′, if t is enabled
in s and s′ = s− F(t) + B(t). �

Figure 3.4 shows an example Petri Net. According to the number of tokens t1 and t2
are able to switch concurrently, non-deterministically, and arbitrarily often during a
single step. The transition sets {{}, {t1}, {t2}, {t1, t1}, {t1, t2}, {t2, t2}} can fire in the
Petri Net of figure 3.4. Petri Nets of the definitions 27-29 are called Place/Transition
or Standard Petri Nets.

Place/Transition Petri Nets are extended by using so called “Weak Colors” differ-
entiating several Place/Transition Petri Nets, e.g., to distinguish different resource

119

3 Software Process Engineering Metamodel

s2

s1
t1

t2

s3

Figure 3.4: Petri Net Example

categories represented by each token set. The following instances are used to instanti-
ate a P/T-Petri Net based switching behavior in RMOF. First, the data structures to
handle the different colored token sets are described.

30.1 TokenLibrary = (Class,{(ownedAttribute, (weaklyColoredBags)), (generalizati-
on, {Object})}) holds all Petri Net based tokens for a specific context, e.g., an
Activity Chart.

- weaklyColoredBags = (Property,{(aggregation, composite), (type, Weakly-
ColoredBag), (isOrdered, false), (lowerValue, 0), (upperValue, *)}) holds
all weakly colored bags.

- i = (Property,{(type, Integer) }) counter variable.

- getWeaklyColoredBag = (Operation,{(ownedParameter, (weakColor, weak-
lyColoredBag)),})

- weakColor = (Parameter,{(type, Integer)})

- weaklyColoredBag = (Parameter,{ (direction, return) (type, Weakly-
ColoredBag)})

gets a (weakly) colored bag. If the bag exists in the library it is returned,
otherwise a new bag is created. The corresponding RMOF State Machine
is presented in figure 3.5.

30.2 WeaklyColoredBag = (Class,{(ownedAttribute, (weakColor, bag)), (generaliza-
tion, {Object})}) holds a single weakly colored bag.

- weakColor = (Property,{(aggregation, composite), (type, Integer), (lower-
Value, 1), (upperValue, 1)}) defines the (weak) color of the weakly colored
bag. This corresponds to the type of the objects this bag can hold.

- bag = (Property,{(aggregation, composite), (type, Marking), (lowerValue,
0), (upperValue, *)}) holds a set of marking for the bag.

120

3.2 Semantics

weaklyColoredBags [0..*] : WeaklyColoredBag
i : Integer = 0
paramPosition (pp) : UnlimitedNatural = 0

TokenLibrary

getWeaklyColoredBag
getWeaklyColoredBag
<i> weakColor : Integer
<r> weaklyColoredBag : WeaklyColoredBag
 getWeaklyColoredBag

i < #weaklyColoredBags && weaklyColoredBags[i].weakColor != weakColor
i++;

Search

[i >= #weaklyColoredBags]
weaklyColoredBag = (WeaklyColoredBag) createInstance(WeaklyColoredBag);
weaklyColoredBags.add(weaklyColoredBag);

[]
i = 0;

[i < #weaklyColoredBags] weaklyColoredBags[i].weakColor == weakColor
weaklyColoredBag = weaklyColoredBags[i];

Figure 3.5: getWeaklyColoredBag of class TokenLibrary

- i = (Property,{(type, Integer) }) counter variable.

- getMarking = (Operation,{(ownedParameter, (place, marking)),})

- place = (Parameter,{(type, Integer)})

- marking = (Parameter,{(direction, return) (type, Marking)})

gets a marking of a (weakly) colored bag. If the marking exists in the bag it
is returned, otherwise a new marking is created. The corresponding RMOF
State Machine is presented in figure 3.6.

30.3 Marking = (Class,{(ownedAttribute, (place, token)), (ownedOperation, (changeNum-
berOfTokens)), (generalization, {Object})}) holds a marking.)

- place = (Property,{(aggregation, composite), (type, ObjectID)}) refers to
the ObjectID of the place that is holding the tokens.

- token = (Property,{(aggregation, composite), (type, Integer)}) number of
tokens available in the place.

- change = (Operation,{(ownedParameter, (tokenDelta)),})

- tokenDelta = (Parameter,{(type, Integer)})

121

3 Software Process Engineering Metamodel

weakColor : Integer = 0
bag [0..*] : Marking = NULL
i [0..1] : Integer = 0

WeaklyColoredBag

getMarking
<i> place : Integer
<r> marking : Marking
 getMarking

i < #bag && bag[i].place != place
i++;

Search

[i >= #bag]
marking = (Marking) createInstance(Marking);
bag.add(marking);

[]
i = 0;

[i < #bags] && bag[i].place == place
marking = bag[i];

Figure 3.6: getMarking of class WeaklyColoredBag

adds and removes tokens on the place (if possible) The corresponding RMOF
State Machine is presented in figure 3.7.

place : Integer = 0
token : Integer = 0

Marking

change
<i> tokenDelta : Integer
 change

[token += tokenDelta >= 0]
token += tokenDelta;

[token += tokenDelta < 0]
token = 0;

Figure 3.7: change of class Marking

After the required sources and sinks for tokens were introduced, the required firing
behavior of Petri Nets is added.

(ii) Relevant - determines how many times a transition could switch (locally) - in re-
lation to a subset of weakly colored markings. It is further required to distinguish
different (weak) token colors.

31.1 TransitionLibrary = (Class,{(ownedAttribute, (weaklyColoredTransitions)), (ge-
neralization, {Object})}) holds all Petri Net based transitions for a specific con-
text (e.g., activity chart).

122

3.2 Semantics

- weaklyColoredTransitions = (Property,{ (aggregation, composite), (type,
WeaklyColoredTransitions), (lowerValue, 0), (upperValue, *)}) holds all
weakly colored bags.

- i = (Property,{(type, Integer) }) counter variable.

- switchingTogether = (Property,{ (aggregation, composite), (type, Switch-
ingTogether), (lowerValue, 0), (upperValue, *)}) holds a set of all sets (of
colors) that switch together.

- computeSwitchingTogether = (Operation,{ (ownedParameter, ()),}) Com-
putes the colored set that switch together. The corresponding RMOF State
Machine is presented in figure 3.8.

31.2 SwitchingTogether = (Class,{(ownedAttribute, (together)), (generalization, {Ob-
ject})}) defines a set of colors that is switched together.).

- switchingTogether = (Property,{(aggregation, composite), (type, Integer),
(lowerValue, 0), (upperValue, *)}) holds a set of colors.

31.3 WeaklyColoredTransitions = (Class,{ (ownedAttribute, (i, weakColor, weakly-
ColoredTransition)), (generalization, {Object})}) holds a single weakly colored
set of transitions.)

- i = (Property,{(type, Integer) }) counter variable.

- weakColor = (Property,{(aggregation, composite), (type, Integer), (lower-
Value, 1), (upperValue, 1)}) defines the (weak) color of the weakly colored
set of transitions.

- transitions = (Property,{(aggregation, composite), (type, WeaklyColored-
Transition), (isOrdered, true), (lowerValue, 0), (upperValue, *)}) holds a
set of transitions.

- relevances = (Property,{ (aggregation, composite), (type, Integer), (isOr-
dered, true), (lowerValue, 0), (upperValue, *)}) holds a set of transitions.

- getPNTransition = (Operation,{(ownedParameter, (id, pnTransition)),})

- place = (Parameter,{(type, Integer)})

- marking = (Parameter,{(direction, return) (type, PNTransition)})

gets a Petri Net transition of a (weakly) colored set of transitions. If the
transition with the object ID exists in the set of transitions it is returned,
otherwise a transition.

- computeRelevance = (Operation,{(ownedParameter, (weakColor, relevance)),})

123

3 Software Process Engineering Metamodel

weaklyColoredBags [0..*] : WeaklyColoredBag
i : Integer = 0
paramPosition (pp) : UnlimitedNatural = 0

TokenLibrary

getWeaklyColoredBag
getWeaklyColoredBag
<i> weakColor : Integer
<r> weaklyColoredBag : WeaklyColoredBag
 getWeaklyColoredBag

Iterate over all
switchingTogether sets

[i >= #switchTogether]

[i2 < #switchTogether[i]]
i3 = switchTogether[i][i2];
entries = #weaklyColoredTransitions[i3];
i4 = 0;
relevance = weaklyColoredTransitions[i3][i4++];

Iterate over all
switchingTogether

elements

[i2 >= #switchTogether[i]]
i++;

[i2 < #switchTogether[i]]
i2 = 0;

Iterate over all
entries

Set all relevance number

[i4 >= entries]
i2++;

[i4 < entries]
relevance =
 min(weaklyColoredTransitions[i3][i4],
 relevance);

[i4 < entries]
weaklyColoredTransitions[i3][i4]
 = relevance;

[i4 >= entries]
i4 = 0;

Figure 3.8: computeSwitchingTogether of class TransitionLibrary

124

3.2 Semantics

computeRelevance
<i> weakColor : Integer
<r> relevance : Integer
 computeRelevance

i >= #transitions
relevances.add(relevance);

Search

[i < #transitions]
relevance = min(relevance, transitions[i++].computeRelevance(weakColor));

[]
relevances.clear();

Figure 3.9: computeRelevance of class WeaklyColoredTransitions

- weakColor = (Parameter,{(type, Integer)})

- relevance = (Parameter,{(direction, return) (type, Integer)})

Computes the relevance of a weakly colored set of transitions with respect
to a (weak) color. The corresponding RMOF State Machine is presented in
figure 3.9.

- computeRequiredTokens = (Operation,{(ownedParameter, (weaklyColored-
TransitionInput, weaklyColoredBag)),})

- weaklyColoredBag = (Parameter,{ (direction, return) (type, Weakly-
ColoredBag)})

Computes the required tokens of a weakly colored bag. The corresponding
RMOF State Machine is presented in figure 3.10.

- computeAvailableTokens = (Operation,{(ownedParameter, (weaklyColored-
Bag)),})

- weaklyColoredBag = (Parameter,{ (direction, return) (type, Weakly-
ColoredBag)})

Computes the available tokens of a weakly colored bag. The corresponding
RMOF State Machine is presented in figure 3.11.

- computeSubBagOf = (Operation,{(ownedParameter, (weaklyColoredTran-
sitionsInput, weaklyColoredTransitions)),})

- weaklyColoredTransitionsInput = (Parameter,{(direction, input) (type,
WeaklyColoredTransitions)})

- weaklyColoredTransitions = (Parameter,{(direction, return) (type, Weak-
lyColoredTransitions)})

125

3 Software Process Engineering Metamodel

computeRequiredTokens
<i> weakColor : Integer
<r> relevance : Integer
...
 computeRequiredTokens

i >= #transitionsProcess
Transitions

[i < #transitions && relevances[i] > 0]
i2 = 0;

[]
weaklyColoredBag.weakColor = weakColor;

Process
Transitions

[i2 < #transitions[i].sources]
weaklyColoredBag.getBag.getMarking(weakColor,
 transition.sources[i2].change(relevances[i]
 * transition[i].consumedToken);

[i2 >= #transitions[i].sources]
i++

Figure 3.10: computeRequiredTokens of class WeaklyColoredTransitions

Computes a subbag of weakly colored Transitions. The corresponding RMOF
State Machine is presented in figure 3.12.

- computerMaximality = (Operation,{(ownedParameter, (weaklyColoredTran-
sitionsInput, weaklyColoredTransitionsMax)),})

- weaklyColoredTransitionsInput = (Parameter,{(direction, inout) (type,
WeaklyColoredTransitions)})

- weaklyColoredTransitions = (Parameter,{(direction, input) (type, Weak-
lyColoredTransitions)})

Computes maximal subbag of weakly colored Transitions. The correspond-
ing RMOF State Machine is presented in figure 3.13.

126

3.2 Semantics

computeAvailableTokens
<i> weakColor : Integer
<r> relevance : Integer
...
 computeAvailableTokens

i >= #transitionsProcess
Transitions

[i < #transitions && relevances[i] > 0]
i2 = 0;

[]
weaklyColoredBag.weakColor = weakColor;

Process
Transitions

[i2 < #transitions[i].sources]
weaklyColoredBag.getBag.getMarking(
TokenLibrary.getWeaklyColoredBag().getMarking());

[i2 >= #transitions[i].sources]
i++

Figure 3.11: computeAvailableTokens of class WeaklyColoredTransitions

31.4 PetriNetTransition = (Class,{(ownedAttribute, (i, localRelevance, sources, tar-
gets, consumingToken, producingTokens)), (ownedOperation, (computeRelevance)),
(generalization, {Object})}) holds the dynamic related aspects of a Petri Net
based transition.

- i = (Property,{(aggregation, composite), (type, Integer)}) counter variable.

- localRelevance = (Property,{ (aggregation, composite), (type, Integer)})
stores a computed relevance.

- sources = (Property,{ (aggregation, composite), (upperValue, *), (type,
Marking)}) refers to sources of the transition.

- targets = (Property,{(aggregation, composite), (upperValue, *), (type, Mark-
ing)}) refers to the targets of the transition.

- consumingTokens = (Property,{(aggregation, composite), (type, Integer)})

127

3 Software Process Engineering Metamodel

computeSubBagOf
<i> weakColor : Integer
<r> relevance : Integer
...
 computeSubBagOf

Process
Relevances

[i >= #weaklyColoredTransitionsInput.relevances]

[]
weaklyColoredTransitions.weakColor = weaklyColoredTransitionsInput.weakColor;

[i < #weaklyColoredTransitionsInput.relevances]
weaklyColoredTransitions.relevances.add(
 randomInteger(weaklyColoredTransitionsInput.relevances[i]));
weaklyColoredTransitions.transitions.add(
 weaklyColoredTransitionsInput.transition[i]);

Figure 3.12: computeSubBagOf of class WeaklyColoredTransitions

the transition consumes this number of tokens on all sources when it fires.

- producingTokens = (Property,{(aggregation, composite), (type, Integer)})
the transition produces this number of tokens on all targets when it files.

- computeRelevance = (Operation,{(ownedParameter, (weakColor, relevance)),})

- weakColor = (Parameter,{(type, Integer)})

- relevance = (Parameter,{(direction, return) (type, Integer)})

Computes the relevance with respect to a (weak) color. The corresponding
RMOF State Machine is presented in figure 3.14.

(iii) Enabled - determining if the transition is enabled. In a first approach this equals
to a transition guard that is evaluated to true. The enabled frame operation is
introduced in the class

31.1-1 TransitionLibrary2 = (Class,{ (ownedAttribute, (weaklyColoredTransitions)),
(ownedOperation, (computeEnabledTransitions)), (generalization, {Object})})
holds all Petri Net based transitions for a specific context (e.g., activity chart).

- computeEnabledTransitions = (Operation,{}) Invokes all filters of not en-
abled transitions. The corresponding RMOF State Machine is presented in

128

3.2 Semantics

computeMaximality
<i> weakColor : Integer
<r> relevance : Integer
...
 computeSubBagOf

Is maximal?
[i >= #wctl.transitions]

[i < #wctl.transitions]
d = wctim.relevances[i] = wcti.relevances[i];
i2 = 0;

Not maximal

[i2 < d && consistencyChecked]
wcti.relevances[i] += 1;
consistencyChecked = false;

[checkConsistency(computedRequiredTokens(wcti),
computeAvaiableTokens()) && !consistencyChecked]
consistencyChecked = true;
i2++;

[!checkConsistency(computedRequiredTokens(wcti),
computeAvaiableTokens()) && !consistencyChecked]
wcti.relevances[i] -= 1;
i++;

Figure 3.13: computeMaximality of class WeaklyColoredTransitions

figure 3.15. Since there might be arbitrary conditions that describe what is
enabled and what not there is an extensible enable filter pipeline (concate-
nated in form of a conjunction). All filter classes names contain “enable-
Filter” and are applied if they have a property “isActive” of type “Boolean”
that evaluates to true.

The first class simply checks, if the transition guard evaluates to true.

31.5 enableFilter-Guards = (Class,{(ownedAttribute, (isActive)), (ownedOperation,
(filter)), (generalization, {Object})})

- isActive = (Property,{(aggregation, composite), (type, Boolean)}) specifies
if the filter is active or not.

- filter = (Operation,{ (ownedParameter, (transitionsInput, transitionsOut-

129

3 Software Process Engineering Metamodel

[i < #sources]
relevanceLocal = tokenLibrary.
 getWeaklyColoredBag().
 getMarking(source[i])
 div consumedTokens;

[i >= #sources]Iterate all
Sources

Compute
relevance

[relevanceLocal < relevance]
relevance = relevanceLocal;
i++;

[relevanceLocal >= relevance]
i++;

Figure 3.14: computeRelevance of class PetriNetTransition

applyFilter
<i> weakColor : Integer
<r> relevance : Integer
...
 applyFilter

Check
enable
filters

[i < #enableFilterClasses]
i2 = 0;

Apply Filter

[i2 < #weaklyColoredTransitions && enableFilterClasses[i].isActive]
weaklyColoredTransitions[i2] =
callOP(enableFilterClass[i].filter(weaklyColoredTransitions[i2++]));

[[i2 < #weaklyColoredTransitions && !enableFilterClasses[i].isActive]
i2++;

[i => #enableFilterClasses]

[]
i = 0;
enableFilterClasses = filter (down(up()), name.contains, "enableFilter");

[i2 >= #weaklyColoredTransitions]
i = ++;

Figure 3.15: computeEnabledTransitions of class TransitionLibrary

put)),})

- transitionsInput = (Parameter,{(isUnique, false), (upperValue, *), (ty-
pe, weaklyColoredTransition)})

130

3.2 Semantics

- transitionsOutput = (Parameter,{ (isUnique, false), (upperValue, *),
(direction, return) (type, weaklyColoredTransition)})

filters all transitions whose guard evaluates to true. The corresponding
RMOF State Machine is presented in figure 3.16.

checkEnabledGuards
<i> weakColor : Integer
<r> relevance : Integer
...
 checkEnabledGuards

Check
transitions

[i2 < #inputTransitions && inputTransitions[i].guard == true]
i++;

[i => #inputTransitions]

[i2 < #inputTransitions && inputTransitions[i].guard == true]
outputTransitions.add(inputTransitions[i]);
i++;

Figure 3.16: filter of class enableF ilter −Guards

(iv) Consistent - determining a subbag of transitions that can switch concurrently.
This is simply realized by computing a (randomized) subbag and checking the
subbag relationships.

(v) (Maximal) - ensuring that the (non-deterministically) subset is maximal. This is
realized by adding as many transitions to the bag of transitions that defines the
firing as possible (staying consistent).

In order to map objects to tokens it is necessary to introduce an additional attribute
in each object “isWeaklyColoredToken” of type “Boolean”. This can be used for the

[!o.isWeaklyColoredToken]
o.isWeaklyColoredToken = true;
tokenLibrary.getWeaklyColoredBag(weakColor).getMarking(place).change(1);

[o.isWeaklyColoredToken]

Figure 3.17: Introduce objects as tokens

transfer as presented in figure 3.17. o is the object that should be presented as token
with the weak color weakColor on the marking with the place place.

131

3 Software Process Engineering Metamodel

Figure 3.18: Classes of weakly colored, object-based Petri Net library

132

3.2 Semantics

Figure 3.18 shows a class diagram of the previously defined semantical building blocks
to define a weakly colored, object-based Petri Net based transition library. The anal-
ysis and in particular the synthesis of RMOF based models is presented in the next
chapter based on metaheuristics as discussed in section 1.4.3 exploiting the symbiotic
relationship between RMOF and metaheuristics and avoiding the restrictions of other
methods.

133

4 Synthesis and Analysis

“The purpose of computing is
insight, not numbers.”

R. Hamming

This chapter focusses on the synthesis of RMOF based models including some syn-
thesis dependent analysis tasks e.g., to evaluate the synthesized models. Another
(application depended) analysis is presented in section 5.6 of the evaluation. The ap-
proach is based on Genetic Programming which is introduced in section 4.1 including
a short discussion of the computation complexity in general in section 4.1.1, which is
one reason to apply these methods and techniques. The second reason is that Genetic
Programming matches very well the RMOF language pyramid. This aspect is dicussed
in section 4.2 and concluded with introduced optimizations in section 4.3.

4.1 Genetic Programming

Process model optimization includes two tasks: synthesis of process model (parts) and
process model analysis. As discussed in section 1.4 for both problems methods exist
that can be classified in different categories [92]:

(i) Enumerate methods search the complete problem space successively. This is often
not possible when facing hard complexity problems. An enumerate method is e.g.,
Model Checking [51]. There was considerable progress in the last years regarding
the problem space that can be checked with Model Checking by using efficient
representations, abstractions and over-approximations [1]. A naive application is
still often not possible in particular when the problem space is not well known /
understood. It should always be possible to define a termination criteria before
the complete space is checked but the search ordering is often not optimized to
find (good) approximates.

(ii) Calculus-based methods apply mathematical functions and algorithms in a de-
terministic way. This requires that the calculus matches relevant properties of
the search space appropriately. In contrast figure 4.1 shows a scatter plot of data
without a linear, obvious mathematical structure. A naive application is often
inefficient in particular when the problem space is not well known / understood.

135

4 Synthesis and Analysis

(iii) Random methods apply stochastic optimization methods. A stochastic optimiza-
tion can be effective if the problem space is unknown or not well understood to
efficiently find sub optimal / partial solutions. The prerequisite of this method
is a kind of continuous evaluation of partial solutions meaning that a small input
change will likely produce a small effect evaluation.

The three different method categories are inversely sorted by the degree of knowledge
of the problem space and in relation to their computation complexity. If the problem
space is well understood including the effects of the algorithms to solve the problem it
is possible to use a previous method category. In this thesis a hybrid approach is used

-­‐80.00	

-­‐60.00	

-­‐40.00	

-­‐20.00	

0.00	

20.00	

40.00	

60.00	

80.00	

100.00	

120.00	

0	
 10	
 20	
 30	
 40	
 50	
 60	

Figure 4.1: Scatter plot without (obvious) mathematical structure

to optimize process models. Methods and techniques from the field of stochastic opti-
mization are used to synthesize process models because the methods can be applied to
a wide range of problems, they fit the problem space (learning relationships, models,
meta-models) and the problem space is inherently unrestricted. This approach also
matches the RMOF meta language approach with its flexibility to cover all kinds of
language elements. The long term goal is to move to calculus or enumerative methods
when the problem space is well understood. The analysis of the models is enumerative
e.g., to check the quality of a synthesized process model. Fortunately the problem
space can be reduced to tracked interaction sequences as shown in the evaluation sec-
tion 5 instead of facing all possible interaction sequences. In this section the synthesis
of process models (or RMOF instances in general) with stochastic optimization, meta-

136

4.1 Genetic Programming

heuristics, and in particular genetic programming will be discussed.

“Stochastic optimization is the general class of algorithms and techniques which em-
ploy some degree of randomness to find optimal (or as optimal as possible) solutions
to hard problems. Metaheuristics are the most general of these kinds of algorithms,
and are applied to a very wide range of problems. [...] Metaheuristics are applied to ’I
know it when I see’ it problems. The algorithms used to find answers to problems when
you have very little to help you: you do know what the optimal solution looks like, you
don’t know how to go about finding it in a principled way, you have very little heuristic
information to go on, and brute-force search is out of the question because the space
is too large. But if you’re given a candidate solution to your problem, you can test it
and assess how good it is. That is, you know a good one when you see it.” ([93], page 9)

Metaheuristics is the primary subfield of stochastic optimization that is used in this
thesis. A general assumption in this field is that similar solutions tend to behave simi-
larly (and tend to have similar quality), so small modifications will generally result in
small, well-behaved changes in quality, allowing us to “climb the hill” of quality up to
good solutions. A genetic algorithm (GA) is a metaheuristic that mimics the process
of natural evolution. A natural evolution is conducted by a Darwinian evolutionary
system. Such a system embodies at least one population of individuals competing for
limited resources, the concept of birth and death of individuals, a concept of fitness
which reflects the ability to survive and reproduce, and a concept of variational inheri-
tance meaning that offspring closely resembles their parents but are not identical [94].

In 1960 Ingo Rechenberg developed a set of algorithms known as the Evolution Strate-
gies (ES [95]). The simplest ES algorithm is the (µ, λ) algorithm. λ is the number of
random individuals constituting the initial population (and the number of individuals
in total of every evolution step). In each evolution step the complete population is
deleted but the µ fittest ones. The remaining µ individuals are used to produce new
λ individuals, whereby the children substitute their parents. The production is done
by using mutation and crossover operations. The different ES strategies vary mainly
in the production rules, e.g., in another strategy, called µ + λ, the parents are only
substituted by their offspring if the offspring is fitter than the parents. Fogel [96] devel-
oped so called Evolutionary Programming (EP) by extending the strategies to different
representations, in particular finite state automata. Thus, he changed the production
rules to add, change, delete nodes and/or transitions.

Holland was the first who introduced a formal framework 1975 [97] describing Genetic
Algorithms consisting of the following elements:

• A = {A1, A2, · · · } : the structures/system undergoing the adaptation.

137

4 Synthesis and Analysis

• E : an environment which sends (on a discrete time scale t) input signals to the
system. The input history is written as < I(1), I(2), · · · , I(t− 1) >.

• M : a memory storing parts of the input history.

• λ : the adaptive plan which determines successive structural modifications in
response to the environment, defined µ : I× (a×M) 7→ (a×M). Often adaptive
plan applies operators Ω = {ω : A 7→ P}, where P is a probability distribution.

• µ : a measure of performance of the system(s) defined as µE : A 7→ R.

Holland defines a cumulative payoff function Uλ,E(T) =
∑T

t=1 µE(A(λ, t)). The per-
formance target can be formulated in terms of the greatest possible cumulative payoff
in the first T time-steps:

U∗E(T) = lubλ∈ΛUλ,E(T)

The mean fitness is defined as

µ(τ, t) =

∑
A∈aτ (t)µE(A)

P (τ, t)

P (τ, t) is the number of individuals in aτ (t). A robustness criteria defined as

glb
E∈ε

glb
t
glb
λ′∈J

µE(λ, t)/µE(λ′, t)

Holland divides A into subsets to discuss the optimal allocation of trials based on
the total expected loss of fitness for any allocation of n trials. Figure 4.2 visualizes
the idea (compare [97], page 67, figure 9). The subsets base on so called schemata
(or similarity template). Each schema (V 1, V 2) is specified as a kind of template with
“don’t care” positions. For example: Let Ai ∈ {0, 1}, n ∈ IN. Then V1 could be defined
as “0010010201020 . . .”, with 2 indicating “don’t care” values. An optimal allocation
of trials based on the expected loss of fitness (of n trials) is then based on the possible
sources of loss. Assuming there are two schemata V 1, V 2 and the algorithm has to
decide where to locate new trials two possible sources of loss are faced:

• The observed best V 1 is really second best, whence N − n trials given V 1 incur
an (expected) individual loss of |µV 1 − µV 2| which occurs with a probability
q(N − n, n).

• The observed best is in fact the best, where the n trials given V 2 incur the same
individual loss |µV 1 − µV 2| with a probability 1− q(N − n, n).

138

4.1 Genetic Programming

A

Subset of a
designated by schema V2

Subset of a designated
by schema V1

Figure 4.2: GP schemata

Holland defines the total loss for any allocation of n trials to V 2 and N − n trials to
V 1 as:

L(N − n, n) = [q(N − n, n) ∗ (N − n) + (1− q(N − n, n)) ∗ n] ∗ |µV 1 − µV 2|
The schema theorem works for fixed length GA and says that good schemata tend to
assist in solving the problem because they will tend to multiply exponentially as the
genetic process progresses. Koza [98] adopted the schemata for trees in the subfield
Genetic Programming by defining a set of sub-trees as schema. Genetic Programming
is a specialization of Genetic Algorithms used to find computer programs. He claimed
that the schema theorem also works for variable length GP. O’Reilly and Oppacher
added Hollands “don’t care” operator to Koza schemata adaptation and investigated
the probability of disruption formally. They showed that the maximum probability of
disruption varies with size and this is a problem because of the variable length of the
GP representation. Altenberg [99] says that crossover was the result of the evolution
of evolvability and Banzhaf et al. [100] compares crossover of natural processes with
crossover of Genetic Programming with the following differences:

• Function: In biology, the different alleles of swapped genes make only minor
changes in the same basic functions. In GP any sub-tree can be changed with
another sub-tree (of the same type if strongly typed).

139

4 Synthesis and Analysis

• Context: In GP the context is irrelevant in biology not.

• Disruption: Disruption is prevented in biological systems and increases with the
size in GP.

Disruption is prevented when using strong Genetic Types. Banzhaf et al. suggest to
improve the crossover operation on base of the measurement of structural and func-
tional similarities. The structural measurement is done by using so called “edit” dis-
tances [101] and minimizing these distances during the crossover. The functional mea-
surement is done by evaluating the fitness of the sub-trees.

Genetic Programming uses trees as representation form. The variables and constants
in the program are leaves of the tree. In GP they are called terminals, whilst the arith-
metic operations are internal nodes called functions. The sets of allowed functions and
terminals together form the primitive set of a GP system. The general idea of a GP
process is presented in the following listing:

“Steepest Ascent Hill-Climbing With Replacement”

n := number o f tweaks de s i r ed to sample the g rad i en t
S := some i n i t i a l candidate s o l u t i o n
repeat

R := Tweak(Copy(S))
for n−1 t imes do
W := Tweak(Copy(S))
i f Qual i ty (W) > Qual i ty (R) then
R := W

i f Qual i ty (S) > Qual i ty (Best) then
S := R

un t i l S i s the i d e a l s o l u t i o n or we have run out o f time
return S

In particular the “Tweaking”/“Copying” and the “Quality” assessment are of interest.
In general Tweaking is done in several forms [100]. “Blind Search” neglects the infor-
mation about previous search results. “Hill Climbing” takes only a new solution as
base if the solution is better than the previous found. A special variant is the so called
“Simulated Annealing” [102], which is based on an analogy with the cooling of metal in
a process of annealing. But this variant is only possible if the optimal fitness is known.
The tweaking distance between two GP steps is proportional related to the distance
of the optimal solution. “Beam Search” investigates previous promising search points
and generates and evaluation metric upon it for new candidates.

140

4.1 Genetic Programming

Genetic Programming mainly uses lists and trees (as a basic form) to represent in-
dividuals (compare [103], [98]). There exist other forms e.g., cellular encoding [104]
using a tree to structure operations applied to the genetic program. A simple tree
example of the formula cos(x− sin(x)) is presented in figure 4.3. In a tree, all non-leaf

cos

-

x sin

x

Figure 4.3: GP tree of formula cos(x− sin(x))

nodes are non-terminals (i.e. functions) and all leaf nodes are terminals (i.e. values or
variables). GP can also be used on forest (= set of trees). It is often required that Ge-
netic Programming is strongly typed [105], meaning that all nodes have types assigned.
Types are implemented as atomic types (two types match if they refer the same static
unique element), set types (two types match if their static subsets are not-empty), and
polymorphic types (two types match if their dynamic subsets are not-empty). Dy-
namic elements can be created during run-time (of the fitness evaluation) in contrast
to static elements. Since GP is per se unrestricted it is often useful to introduce a
maximal depth as in the following listing illustrated:

“GP Node growing algorithm”

procedure DoGrow(depth , max , Functions)
i f depth >= max then
return Copy(randomly−chosen l e a f node from Functions)

else
n := Copy(randomly−chosen node from the Functions)
l := number o f c h i l d nodes expected for n
for i from 1 to l do

Child i o f n DoGrow(depth + 1 , max , Functions)
return n

Growing of non-maximal nodes often copies only from non-leaf nodes to ensure grow-
ing. Values are often built using so called Ephemeral Random Constants (ERC). ERCs
are nodes with GP functions for efficient mutation. Normally the computation of the
constants is done in the last possible step of the Breeding (see 4.1.2, page 144) phase
because of the computational complexity. The missing parts of Genetic Programming
(GP) are now the Breeding step including mutation and crossover as well as the fitness

141

4 Synthesis and Analysis

evaluation.

Before a node is mutated or two nodes are crossed over they are selected. The selection
can be done in several ways. An individual i is selected with the probability pi =
fi∑
i fi

, where fi is the fitness of individual i in a “Fitness-Proportional” selection. This
selection was applied a long time in the Genetic Algorithm community [97]. Two simple
restrictions to µ parents and λ children were introduced by Schwefel 1995 [106] (called
(µ, λ) selection), whereby the new µ parents are a subset of the previous λ children.
“Ranking Selection” [107] is based on the fitness rank, into which the individuals can
be sorted. For a linear ranking

pi =
1

N
[p− + (p+p−)

i− 1

N − 1
]

where p−

N is the probability of the worst individual being selected, and p+

N is the
probability of the best individual being selected. “Tournament” selection is based on a
subset of the population. The size of this subset is called tournament size and defines
the selection pressure. The subset is randomly selected. Then a competition takes
place, whereby the better individuals replace the worse individuals with their children.
Tournament selection has become popular recently because it does not require a fitness
comparison between all individuals.

Mutation can be done in several ways, e.g., sub-tree mutation with the algorithm
above or mutate an ERC of a random node that has/is an ERC. A special mutation
variant is a copying or swapping of sub-tree nodes. If there are two nodes involved
this is called crossover. Often the last two choices are preferred because the results are
more homologous. When sub-trees are replicated modularity is exploited. This effect
perpetuated by so called “Automatic Defined Functions” [108].

In both cases, mutation and crossover, there might be some changes that are not
allowed due to constraints regarding syntax or semantics of the final genetic program.
All constraints can be implemented as “hard” restrictions directly in the breeding pro-
cess or as soft restrictions indirectly by reducing the evaluated fitness of the individual.
In particular dynamic restrictions are often “soft” to avoid redundant computations in
the breeding stage.

The key issue of a GA/GP optimization is to identify and capture computationally
useful aspects of evolutionary processes. As a consequence most GA utilize what appear
to be rather simplistic assumptions, e.g., a fixed size population, random mating, and
static fitness landscapes [94]. The next section discusses the computation complexity
of model synthesis in general and in special relationship to some application data.

142

4.1 Genetic Programming

4.1.1 Complexity

“The only way of discovering the
limits of the possible is to venture a
little way past them into the
impossible.”

A.C. Clarke

The primary reason to use stochastic optimization and in particular Genetic Pro-
gramming (instead of enumerative methods) concerns the computational complexity
which is directly related to the size of the search space. Combinatorics is the mathe-
matical basis for calculating the search space size. Combinatorics define in how many
different ways a set of discrete elements can be ordered with respect to arbitrary or
ordered selections or repetition of elements. Let s be a set with n elements.

Definition 30 The permutations of s is a sequence containing all possible, unique
subsets of s. The number of permutations of s is defined P (s)

df
= n! := n ∗ (n − 1) ∗

(n− 2) . . . 1.

A combination of order k is considered as a subset of k elements of s.

Definition 31 The number of different combinations without replacement and order
of selection is considered

Ckn =

(
n

k

)
df
=

n!

(n− k)!k!

called the binomial coefficient.

A variation of order k is considered as a sequence of k elements of s.

Definition 32 No repetitions allowed:

V k
n

df
=

n!

(n− k)!

Repetitions allowed:

C
k
n

df
=

(
n+ k − 1

k

)
The probability pA of an event A as outcome of a random experiment is pA

df
=

limN 7→∞
K
N . Additionally the expectation value is defined as follows:

E(A) =
∑∞

y=0 pAA as well as the variance var(A) =
∑∞

y=0 pA(A− E(A))2

The GP complexity has several dimensions:

143

4 Synthesis and Analysis

• GP algorithm complexity to generate random numbers

• Static complexity to generate the structure (e.g., number of nodes) which is a
spacial complexity

• Dynamic complexity during fitness evaluation by executing the generated pro-
gram (often problem depend).

The elements of the GP algorithm are introduced in more detail in the next section.

4.1.2 Algorithm

This section sketches exemplary different elements of a Genetic Programming algorithm
described in [93] and implemented in ECJ1.

Breeding

The initial population and new (sub-)elements of the GP individual are build with
the presented grown algorithm (see page 141). A variant of this algorithm builds only
full grown individuals (individuals with maximal depth) or switches between the two
variants with a certain probability.

Parameters of all variants are the number of retries to avoid redundancies, the mini-
mal and maximal grow depth. Common parameters of the breeding algorithms handle
the probabilities to select nodes. For example the probabilities to select terminals
(leaves in the GP tree), non-terminals and root nodes. Other probabilities optimize
with respect to the evaluation data. For example the breeding algorithm selects nodes
with a probability reflecting the relative probability of this node category in the track-
ing database or selects nodes according to feedback information of the GP evaluation
(see section 4.3).

Selection

The simplest form of selection is the random selection, which picks - hence the name
- individuals randomly of the previous generation. It is likely that fitter individuals
produce fitter off-springs. The Truncation Selection discards all but the best µ indi-
viduals. This is similar to the Roulette Selection, where individuals are selected in
proportion to their fitness. A problem of these two selection variants is that, they
tend to converge to a random selection if the fitness values are close. This problem is
avoided in the Tournament selection [109], which select the fittest individual of some

1A Java-based Evolutionary Computation Research System - http://cs.gmu.edu/ eclab/projects/ecj/

144

4.1 Genetic Programming

t individuals picked randomly.

“Tournament Selection”

P := populat ion
t := tournament s i z e

bes t := i nd i v i dua l p icked at random from P
for i from 2 to t do

next := i nd i v i dua l p icked at random from P
i f Fi tne s s (next) > F i tne s s (bes t) then
best := next

return best

More exploitative (i.e., parents stay longer in the population and compete with their
children) selection algorithms like Elitism directly inject some fittest individuals into
the next generation [109]. Other variants are steady-state approaches where succes-
sively a small part of the population is substituted [110] or a tree-style genetic pro-
gramming approach. The first one iteratively breeds one or two children, accesses their
fitness and reintroduces them into the population by killing some existing individu-
als. The second one is a special breeding technique developed by Koza [98] where a
non-terminals of the individual are selected with a certain probability and a crossover
is performed. These methods are often combined with single-state methods like hill-
climbing, simulated annealing or iterated local search in hybrid selection methods.
Therefore flexible GP pipelines are key to an easy configuration. All variants support
probabilities to select terminals, non-terminals and root nodes.

Mutation

GP mutation picks a node or edge with a certain probability and tries to add, delete or
change a node or edge. If the GP is strongly typed only type matching nodes should
mutate (see section 4.2). The selection of nodes is handled like in 4.1.2. Mutation
can mutate subtrees with randomly-generated subtrees, swap with (type compliant)
subtrees and put constraints mutation like no subtree to be introduced should be
contained in the existing one. Ephemeral random constants are mutated with some
noise - often in relation to additional parameters like fitness.

Crossover

GP crossover swaps sub-trees and nodes with a certain probability. In GP crossover is
a subset of mutation. Other representations (e.g., bit vectors in Genetic Algorithms)

145

4 Synthesis and Analysis

often distinguish crossovers by the number of crossover points. A one point crossover
exchanges all subnodes of the identified crossover point. A two point crossover limits
the exchange to an identified sub-node of the crossover point. A third variant, the so
called "Uniform Crossover" crosses a number of single nodes (without sub-trees) of the
two individuals. In general crossover - as mutation subset - combines (only) existing
nodes but does not produce new nodes.

4.1.3 Automatic Defined Functions

Automatic Defined Functions (ADF [108]) exploit the symmetry of GP solutions by
mapping sub-trees to an ADF, which can be used like a normal node. The modularity
exploits the heuristic that good (partial) solutions tend to be repetitive. ADFs were
introduced and discussed in great detail in [108]. ADFs can speed up the convergence
of the GP algorithm in two ways. The first exploits symmetries in the evaluation of
GP nodes. The second one targets the modularity of the solution and their higher
probability to describe the solution compared to GP types not using ADFs as a kind
of macro context.

4.1.4 Fitness Computation

The fitness computation determines the quality of the individual and depends highly
on the application context, see section 5.4, page 163. Nevertheless there exist different
fitness representations for different problem categories, which are described shortly in
this section.

Co-evolution refers to the aspect that the fitness of individuals is mutually dependent,
in a positive (cooperative co-evolution, e.g., different soccer players in a team, whereby
each team member is represented as an individual) or negative way (competitive co-
evolution, e.g., two soccer teams, whereby each team is represented as an individual).
In contrast to the previous approaches there exist not an absolute fitness but a relative
one. But this reveals a (complexity) problem for example regarding the question how
the (relative) fitness is computed used in the breeding step. This problem is solved
by test computations against the relative fitness, thus the fitness of one member of
population P is evaluated against some members k instead of all members |P |×|P |−1

2 .

Multi-objective optimization tries to identify a “Pareto Front” in the space of candi-
date solutions of a fitness function set. The Pareto Front is the area of solutions where
no fitness function dominates another fitness function. The “Pareto Front Rank” de-
fines a qualitative value how far the individual is from the Pareto Front. Individuals
of Rank 1 are the Pareto Front. Individuals of Rank 2 are the new Pareto Front that
is computed after all individuals of Rank 1 are removed. The Pareto Front Rank is

146

4.1 Genetic Programming

equal to the fitness of the individual. Additionally “sparsity” is used to distribute the
individuals of a Pareto Front Rank equidistant across the Front. Another idea of fitness
computation is to use the individuals “weakness”. The weakness of an individuals is
proportional related to the number of individuals that dominate the individual. An
algorithm implementing the Pareto Front members around this “weakness” concept is
the “Strength Pareto Evolutionary Algorithm” (SPEA) [111].

Combinatorial optimization tries to solve problems like the “Knapsack” or “Traveling
salesman” problem, where the combination of several unique components forms the
problem solution. The problem solution has additionally hard constraints (e.g., in the
knapsack problem the maximal height). This hard constraints should be taken into
consideration in early stages of the GP algorithm. There exist different approaches to
reward (Ant Colony Optimization) or punish components (Guided Local Search) that
had a (presumable) influence on keeping the constraints.

Model Fitting tries to generate a model to find new individuals. Model Fitting by
Classification tries to solve a binary classification problem by dividing the population
into “fitter” and “unfitter” regions. There exist several of binary classification algo-
rithms in the machine learning world like Decision Trees, Support Vector Machines,
k-Nearest-Neighbor. Normally these classification algorithms produce models that can
describe but not generate new individuals. A possibility to create algorithms that are
able to generate new individuals are algorithms using a mathematical function to de-
scribe the distribution of an infinite-sized population called “Estimation of Distribution
Algorithms” (EDAs). Figure 4.4 visualizes the idea exemplarily of population candi-

Figure 4.4: Distribution of population candidate solutions using samples 5, 20, 75

date solutions, using samples 5, 20, and 75 plus and infinite distribution (compare [93],
p. 158). There exist different representations to describe the population. Examples
are shown in figure 4.5 approximating the distribution of figure 4.4 with a histogram

147

4 Synthesis and Analysis

three multivariate Gaussian curves and a marginalized version (compare [93], p.159
and p.160). The different approaches mainly influence the computational effort that

Figure 4.5: Approximating the distribution of candidate solutions with a histogram
three multivariate Gaussian curves and a marginalized version

is required to compute the representations and (of course) the precision of the repre-
sentation towards the real population. There exist several EDA variants for different
domains, e.g., Population-Based Incremental Learning [112], Uni-variate Marginal Dis-
tribution Algorithm [113], or the Compact Genetic Algorithm [114].

As mentioned in the introduction the evaluation targets a hybrid approach. The eval-
uation is enumerative, which is possible because "real world data" is used to compute
the fitness and restricting possible interactions to interactions tracked. The implemen-
tation uses a lightweight Model Fitting implementation to distinguish "fitter" from
"unfitter" model parts. This information is used to optimize the GP algorithm.

4.1.5 Concurrent Computing

There are different ways to speed up Genetic Programming with concurrent computa-
tions. An obvious parallel granularity is an individual or a set of individuals that can
be bred or evaluated concurrently. The computation can be done in multiple threads
on multiple systems. The possible speedup with concurrent computation below this
level depends - obviously - on the algorithm to compute the fitness and to breed new
individuals. This is often application specific and not discussed in this section.

When the fitness evaluation is done by a set of machines it is called “Master-Slave
Fitness Assessment”. When the breeding takes place on multiple machines it is called
“Island Model”. Each island sends and receives a subset of the complete population
and computes their fitness. This can also be combined, where an Island Model breeds

148

4.2 Genetic Programming and RMOF

the individual and each island distributes the fitness computation in a “Master-Slave”
configuration. Usually the best individuals are shared between the islands. Therefore
one interesting aspect is the question of the optimal exchange ratio between a set of
machines implementing the Island Model. Skolicki [115] identified fitness functions in
his Phd thesis [116] suggesting that there exists an interval size of interchanged indi-
viduals increasing the solving capabilities of the GP algorithm. This effect is presented
in figure 4.6. The Island Model is the only kind of parallelism that distributes the

too uniform

good
solutions

too isolated

Cooperation

Heterogenity

Problem
difficulty

Cooperation

good
solutions

too little
individuality

too little
cooperation

Figure 4.6: Hypothetical relations between cooperation and heterogeneity level and
heterogeneity and solving capability

population. Another concurrent computation variant is the asynchronous computa-
tion, i.e., instead of waiting that the computation of all nodes has been done like in
a Master-Slave scenario, the computation continues directly when nodes return their
results. Another special variant is a so called “Spatially Embedded Model”, where the
physical location of the individual is embedded in the population and individuals are
only allowed to breed with “nearby” individuals, so a good individual cannot spread
as fast in a population as it could without this breeding constraint. The next section
discusses the relationship between RMOF and Genetic Computation.

4.2 Genetic Programming and RMOF

The RMOF environment supports the generation of strongly typed parameter files for
the ECJ algorithm. For this purpose a graph rewriting approach is used. First the layer
file is loaded into the editing environment. Then the classes and objects are specified
to be matched (left-hand site or in the EBNF LeftHandSite). Then the classes to set

149

4 Synthesis and Analysis

(fix) or to generate are specified. Figure 4.7 shows an RMOF screenshot. Number 1 in

1

2

Figure 4.7: RMOF Screen with loaded models and RMOF editor

the screenshot presents the RMOF editor to specify the generation rules and number
2 the layer composition view. The editor supports the following syntax to generate the
ECJ parameter files.

DigitNotZero ::= ’1’|’2’|’3’|’4’|’5’|’6’|’7’|’8’|’9’;
Digit ::= ’0’ | DigitNotZero;
NatNum ::= Digit | (DigitNonZero { Digit });
RealNum ::= Digit { Digit } ’.’ { Digit }
Letter ::= ’a’ | ... | ’Z’
String ::= Letter { Letter | Digit }
Class ::= String { ’::’ String }
Reference ::= String
ObjectInstances ::= NatNum | { NatNum } | NatNum ’-’ NatNum
Attribute ::= Class ’.’ String { ’.’ String }

[ObjectInstance]
[’/’ Reference]

Value ::= ’"’ String ’"’ | NatNum | RealNum

150

4.2 Genetic Programming and RMOF

Values ::= ’<’ Value { ’,’ Value} ’>’
AttributesValues ::= ’{’ Attribute ’=’ Values

{ Attribute ’=’ Values } ’}’
AssignPart ::= ’!’ AttributeValue
GeneratePart ::= ’+’ Attribute ClassesOpt [Values]
ClassesOpt ::= ’[’ {Class} ’]’
Layer ::= NatNum
LeftHandSite ::= Layer ’?’ Class ClassesOpt AttributeValue
RightHandSite ::= AssignPart GeneratePart
GenerateCommand ::= ’generate’ LeftHandSite RightHandSite

{ LeftHandSite RightHandSite }

The LeftHandSite of the EBNF matches the classes and attribute for the assignments
(fix values) and generations of the RightHandSite. RMOF makes sure that the types of
the attributes match and generates a strongly typed parameter file for ECJ. Strongly
typed genetic programming [117] assigns type constraints and differentiates between
so called atomic and set types. A value of an atomic type is a symbol or integer.
A value of a set type is a set of atomic types. RMOF generates the type hierarchy
according to the models loaded and the generation command specified. The following
is an extraction of a generated parameter file.

atomic types subpopulation 0
gp.type.a.0.name = NIL_0
gp.type.a.1.name = ROOT_0
gp.type.a.2.name = InteractionPattern_0
gp.type.a.3.name = LeftButtonMouseInteraction_0
...

set types subpopulation 0
gp.type.s.0.name = Interaction_Set_0
gp.type.s.0.size = 6
gp.type.s.0.member.0 = LeftButtonMouseInteraction_0
gp.type.s.0.member.1 = MiddleButtonMouseInteraction_0
...

constraint Interaction_Container_0
gp.nc.0 = ec.gp.GPNodeConstraints
gp.nc.0.name = ncInteraction_Container_0
gp.nc.0.returns = Interaction_Container_0
gp.nc.0.size = 2
gp.nc.0.child.0 = Interaction_Set_0

151

4 Synthesis and Analysis

gp.nc.0.child.1 = Interaction_Container_Set_0

Instances Function Sets
gp.fs.0.func.0 = ec.rmof.analysis.Instance
gp.fs.0.func.0.nc = ncInteractionPattern_0
gp.fs.0.func.0 = ec.rmof.analysis.Instance
gp.fs.0.func.0.nc = ncLeftButtonMouseInteraction_0

The extraction of the generated parameter file starts with some atomic types. Then
a set types with six members is presented. Two members are specified. The set type
Interaction_Set_0 can be instantiated with a
LeftButtonMouseInteraction_0 or MiddleButtonMouseInteraction_0. The third
block describes the constraint Interaction_Container_0 that specifies the number of
children. In this case Interaction_Container_0 has two children an
Interaction_Set_0 and an Interaction_Container_Set_0. After the constraints
have been specified they are mapped to functions that need to be implemented. In this
case the constraints ncInteractionPattern_0 and
ncLeftButtonMouseInteraction_0 are mapped onto the class
ec.rmof.analysis.Instance.

The previous extraction of a generated parameter file shows the mapping between
RMOF and the ECJ framework. Besides these parameters there exist others to spec-
ify the concurrency level (see 4.1.5), checkpointing, statistics, breeding pipelines and
various RMOF dependent problem parameters (e.g., path of the tracking database).

An analysis run uses the RMOF environment in the following way.

(i) (The existing RMOF layer models are loaded initially.)

(ii) The GP algorithm computes GP instances of the models elements to be gener-
ated.

(iii) The GP instances are mapped onto RMOF models. The object cache stores all
model changes and results before they are actually written into the corresponding
EMF model. The cache differentiates two kinds of resets. The first one, a hard
reset, switches back to a defined state where no model change took place. The
other one, a soft reset, stores (with the Least Recently Used (LRU) tactic) all
newly created models to speed up the creation process if possible.

(iv) The simulation source code of all RMOF layers is generated, compiled, and exe-
cuted.

152

4.3 Genetic Programming Optimization

(v) Fitness values (and additional feedback information) is extracted from the RMOF
models or the environment. The environment gathered the information from all
evaluation instances. In a Master-Slave configuration this is constantly trans-
ferred over the network (e.g., cache statistics and feedback information). The
fitness information is directly encoded in model elements on all RMOF layers.

(vi) RMOF models are reset to the state of step (i).

(vii) (Continue with step (ii) until the fitness is high enough.)

(viii) If the fitness value is high enough or the maximum number of generations has
been processed a last model is evaluated and additional model informations are
introduced (e.g., computation of coverage values) and stored into a specified
model file of the ECJ parameters.

The next section discusses GP optimizations, which are often RMOF related.

4.3 Genetic Programming Optimization

The GP optimization described in this section discusses optimization techniques that
are all RMOF related but model independent.

4.3.1 Data Access and Precomputations

The tracking database is technically an API providing access to all relevant tracking in-
formations. The tracking information is stored in XML files. An online parsing during
an analysis run would take too much time. The tracking database stores all information
in a compact form that can be used fast and with low memory consumption. Addi-
tionally several precomputations are done e.g., to find valid GUI abstractions. Which
information is relevant can be configured in parameter files. The computation of the
tracking database is done concurrently and also includes a detection and reduction of
temporal gaps. A temporal gap is the time between interactions considered to be too
long for a non activity. The following log extract shows some parsing logs without and
with a time gap.

...
20. Parsing output_xml file "/Users/lobe/Trackings/12080809123

+0200/trace120808091236795+0200.output_xml.annotated"
19. Time (tracked - no gap detected) : 1m:12s:332ms
21. Parsing output_xml file "/Users/lobe/Trackings/12080810521

+0200/trace120808105210459+0200.output_xml.annotated"
7. Time (tracked - no gap detected) : 5m:34s:128ms

153

4 Synthesis and Analysis

22. Parsing output_xml file "/Users/lobe/Trackings/12080909132
+0200/trace120809091323676+0200.output_xml.annotated"

18. Time (tracked - no gap detected) : 1m:44s:773ms
23. Parsing output_xml file "/Users/lobe/Trackings/12081012530

+0200/trace120810125302370+0200.output_xml.annotated"
23. Time gap detected of length: 2d:19h:39m:11s:736ms,

reduced to: 10m:0ms
23. Time (tracked - with gaps) : 2d:19h:41m:19s:839ms -

(detected gaps) : 2d:19h:29m:11s:736ms
= (tracked - gaps removed) : 12m:8s:103ms

24. Parsing output_xml file "/Users/lobe/Trackings/12081308443
+0200/trace120813084437939+0200.output_xml.annotated"

2. Time (tracked - no gap detected) : 7m:50s:191ms
...

After the initial parsing the tracking database creation computes valid, unique values
and abstractions of all GUI elements. GUI elements refer a complete path of composed
GUI parent element to identify the GUI element. This is required because Eclipse
assigns new IDs to all GUI elements after a restart of the environment. These GUI
paths include the concrete position of the child GUI elements in the parent. The GUI
abstractions abstract from these position information and aggregate effectively GUI
classes. The GP algorithm chooses between abstractions and unique GUI IDs. The
following log extract shows some computation logs entries during the computation of
abstractions of some few tracking files.

Find abstract Mouse Widgets
0.000% done. Interactions required to be an abstraction: 10
0.5882% - Time required = 2ms - Time TBD = 338ms

- abstractions found : 0 - coverage : 0.0000%
3.5294% - Time required = 5ms - Time TBD = 136ms

- abstractions found : 1 - coverage : 1.9286%
...
98.2353% - Time required = 1s:322ms - Time TBD = 23ms
- abstractions found : 22 - coverage : 95.9988%

99.4118% - Time required = 1s:323ms - Time TBD = 7ms
- abstractions found : 22 - coverage : 95.9988%

100%.

Abstract widget IDs :
7 (Keyboard, unique: 181, coverage: 99.3225 %),
22 (Mouse, unique: 170, coverage: 95.9988 %)

154

4.3 Genetic Programming Optimization

= 29 (Total, coverage: 97.66065 % (mean))
Unique/abstract IDs (bef.merge) : 351 + 29 = 380

The main purpose of the tracking database besides the temporal corrections and the
computation of abstractions is the fast access to the data itself. There adequate data
structures with a low memory consumption are used to map the relevant data of all
tracking files. No need to say that the database itself is thread-safe.

4.3.2 Caches

Caching is done on several layers in RMOF. There is a model element caching of
introduced GP elements. Once a GP element has been introduced to RMOF on one
computation node it’s reused if it’s still in the cache and not recreated. Fitness compu-
tation caching is done during the behavioral pattern recognition analysis. The fitness
of a sequence correspond to the number of successful mappings on the tracked data.
The 1st level sequences cache caches the sequence fitness of independent interaction
sequences. The independent fitness points are used to filter sequences with zero fitness
points. The 2nd level sequences caches the sequence points of the merged interaction
sequences. All cache sizes can be configured in the GP parameter files and are based
on LRU. The following log extract shows additional efficiency stats of the caches used:

Thread : 42, ’42’ = 46.54%, ’58’ = 4.41%, ’74’ = 0.98%,
’90’ = 0.73%

Thread : 43, ’43’ = 39.95%, ’91’ = 5.85%, ’59’ = 4.83%,
’75’ = 1.53%, ’107’ = 0.51%

Thread : 40, ’40’ = 42.08%, ’56’ = 4.28%, ’88’ = 4.03%,
’72’ = 1.76%, ’104’ = 0.50%

...

These values are cumulated from all evaluating threads respectively nodes (in Master-
Slave configurations) in the GP run statistics. The next log entries show some overall
cache stats.

1st Level Cache Hit Rate=53.79% {27.30%} (27.30%) [27.30%]
2nd Level Cache Hit Rate=52.67% {27.00%} (27.00%) [27.00%]

The first entries are the cache hit rates of the current GP generation, the next of the
last 10, 100, and all previous computed GP generations.

4.3.3 Feedback Loops

The feedback loops influence the probabilities of the GP algorithm to select, brew, mu-
tate, and crossover (if parameterized). If a sub-model respectively subset of GP nodes

155

4 Synthesis and Analysis

of an individual has no positive fitness it is changed with a high probability. Character-
istica of model parts that are changed with a high probability are successively filtered
and chosen with a low probability resulting in a light weight Model Fitting approach
(see 4.1.4, page 146).

The next chapter introduces the evaluation of RMOF and the analysis and synthesis
methods and techniques developed in this thesis.

156

5 Evaluation

This chapter describes the evaluation of RMOF and the implemented methods and
techniques to synthesize, analyze and optimize abstractions of development processes.
The evaluation goal was to apply the developed methods and techniques in an indus-
trial context including a relevant size of models and interactions. This context can
be easily changed to different scenarios to optimize different development activities
like requirements engineering, design, or implementation. For all these scenarios it is
important to understand the limitations of the developed approach. These limitations
are part of the evaluation not the results or the result validation including in particular
the evaluation of the suggested optimizations by changing the test tool. This should
be topic of additional controlled experiments where these methods and techniques are
applied. Nevertheless the validation of the method itself is relevant because of the
meta-heuristic components of the approach and is discussed at the end of this chapter.

A development process and its activities and artifacts to be optimized were auto-
matically tracked by software components developed in this work (see 5.1) and was
introduced into the testing activities and environment of an industrial partner. Inter-
action patterns were synthesized on the tracked data. The patterns were embedded
into a process model, analyzed and the sequences were optimized with respect to their
impacts on the interaction effects (an interaction effect being for example a manual
and successful test vector change of a software in the loop test activity). Model char-
acteristics and semantics with an impact on the interaction patterns were identified to
prognose testing efforts based on model characteristics developed in previous develop-
ment steps.

The chapter starts by introducing the industrial partner and the software that was
enriched to support the automatic data acquisition. Section 5.1 presents the software
that was developed to track the data automatically. Section 5.2 briefly sketches cor-
rection and enhancement of the tracking files, e.g., to detect abstract interactions (like
copy and paste of test vectors) or the detection of test successes and failures for each
test execution. Section 5.3 presents an abstraction of Matlab Simulink Stateflow mod-
els used to meet confidentiality agreements with the industrial partner. Section 5.4
introduces the interaction pattern detection algorithm that was used and the result-
ing interaction sequences found. The found interaction sequences are investigated in
section 5.5 and some (long) sequences with a high impact are optimized. Impacts are

157

5 Evaluation

computed by simulating the interaction sequences, which is topic of section 5.6 before
section 5.7 concludes by introducing properties (e.g., a kind of complexity idea of input
models) to guide the process models discovered further.

The data collection took place at BTC Embedded Systems AG1 between 03/2012 and
02/2013. BTC Embedded Systems AG with offices in Oldenburg, Munich, Berlin and
Tokyo is part of BTC Business Technology Consulting AG – one of the top 20 IT soft-
ware companies in Germany. They have been successfully involved in the automotive
industry on an international level for more than ten years, and have been instrumental
in the success of well-known manufacturers and suppliers. BTC Embedded Systems
AG developed several products like BTC EmbeddedSpecifier, BTC EmbeddedValida-
tor, BTC EmbeddedTester and BTC Testvector Editor. BTC Testvector Editor (TVE)
is an Eclipse based environment used to specify test vectors and test Matlab Simulink
models. Model in the Loop testing triggers a Matlab Simulink Simulation. Software
in the Loop testing can use DSpace TargetLink as code generator. The results of a
test execution are presented in the environment after the test execution took place.
TVE supports several XML based test vector formats, including cell highlighting and
special views to filter signals or display value changes over time. Figure 5.1 shows a
TVE screenshot. Number 1 in the screenshot represents an editor for the test vectors.
The selection of test steps and the simulation mode is done in view number 5. The
results of the test execution are presented in additional TVE editors (number 2 in the
screenshot) with used-defined colors to differentiate successful and failed test cases.
The additional view 3 show test signal propagation, 4 test vector filtering, and 6/7 test
specifications. Parts of the screenshot are intentionally blurred because of intellectual
property reasons (e.g., signal names).

The tracking of the test activities was done in approx. 400 sessions. Each session is
recorded in a XML tracking file. All tracking have a total volume of approx. 25 GB
data. During the tracking 60 different Matlab model files have been tested. The model
files are parsed and serialized in so called “Silnab” model files (see 5.3, page 162), an
EMF based Matlab Simulink abstraction file format preserving intellectual property
rights. Time gaps (pauses in the tracking of more than five minutes) were reduced
to five minutes. The total tracking time was 62 days and 22 hours non-stop testing
activities after reduction. This corresponds approx. to one person year2 with an
average session time of approx. 1,5 hours. The next section presents the software that
was used to collect the data automatically.

1http://www.btc-es.de
2http://www.tagesspiegel.de/wirtschaft/arbeitszeit-1650-stunden-arbeit-pro-jahr/1834390.html

158

1
2

3
4

5

67

Figure 5.1: BTC Testvector Editor screenshot

159

5 Evaluation

5.1 Interaction Tracking

TVE is based on Eclipse and GUI elements of Eclipse base on the Standard Widget
Toolkit (SWT [118]). The SWT is a native interface to the underlying graphical user
interface of the platform e.g., Windows, Cocoa, or Motif. SWT GUIs provide maximal
performance and native application look and feel.

SWT has a special thread dealing with all kinds of GUI events called “SWTDis-
playListenerThread”. This thread can be extended with listeners for different kinds of
SWT Events. With such an extension it is possible to capture mouse and keyboard
events. The “event” class includes attributes like mouse button, relative X position,
or state mask (e.g., when a control button is pressed during the interaction). The
“event” also refers to the GUI widget that has been used during the interaction. The
GUI elements need to be parsed to retrieve additional information. The GUI elements
range from buttons, over menus to complete TVE test grids. A TVE grid is a kind
of Excel sheet to edit test vectors and display test execution results (numbers 1 and 2
in figure 5.1). The SWT tracking software built to track user interactions is comple-
mented by the Usage Data Project [119] to capture bundles (also known as plug-ins)
that are started by the system, commands accessed via keyboard shortcuts, actions
invoked via menus or toolbars, perspective changes, view and editor open, close, and
activation events (activations occur when a view or editor is given focus).

Besides GUI interactions all Matlab files that are tested during the tracking are stored
in Silnab models (see 5.3, page 162). The tracking software can be configured in its
preferences. Figure 5.2 shows a screenshot of the tracking preferences.
The preferences allow the specification of the tracking directory, encryption and zip-

ping of tracked files, or the setting of the log level. The log level influences the console
output and acts as filter to the tracked information and was mainly used for debug
purposes. The preferences allow the management of all tracking files to view, manually
zip, encrypt, delete or clear the files from the log.

The tracking is simply started by pressing the tracking button in the Eclipse en-
vironment (number 1 in screenshot 1.5 on page 13). Additional (manual, arbitrary)
information can be introduced into the logs by using the survey dialog elements.

The tracked data shows that approx. 2.000 views were opened and closed, approx.
500.000 mouse interactions and approx. 350.000 keyboard interactions took place, and
precisely 3.364 test executions were detected. Besides these interaction trackings the
changes in the TVE editing grid were continuously parsed and added in the logs e.g.,
with over 35 Mio. changes in TVE cells (changes due to test executions or TVE editing
operations) with approx. 350.000 view changes of the TVE Grid (scrolling or re-sizing).

160

5.2 Corrections, Interpretations and Aggregations

Figure 5.2: Process information tracking preferences

The content of the next section is the correction and first processing of the log files.

5.2 Corrections, Interpretations and Aggregations

First, the XML tracking files needed to be corrected because of malformed XML and
incomplete parsed TVE grids. This can occur when the tracking software was shut
down due to an exception. When an exception occurs the plugin disables itself and
dumps a trace to the interaction log/console. The main target was not to interfere
with the testing activities.

Second, TVE grid change blocks are numbered uniquely. A block is a consecutive
number of changes in the log entries. This is done to identify results of TVE grid edit
operations. For example a copy and paste operation or a test execution can change a
set of test vectors.

161

5 Evaluation

Third, copy/cut, paste, and highlight operations are detected. For this purpose the
TVE grid is reconstructed inline with the log entries. The log entries capture only
the delta between the previous and the current TVE grid content. The detection also
parses grid switches (switching from one TVE grid to another). There are manual
grid switches and automatic ones e.g., when the test results are presented in an addi-
tional result TVE grid. The test results are parsed regarding compliance (successful
test cases) and deviations (unsuccessful test cases) and differentiated into Model in the
Loop (MIL), Software in the Loop (SIL), Processor in the Loop (PIL) tests. The edit-
ing operations that took place before each test execution are classified (e.g., manual,
copy and paste changes or highlight operations) and assigned to the corresponding test
execution. They are used as a filter when successful and unsuccessful tests are parsed.

Fourth, model files are associated to tracking files. The association is required to
add missing model files for each tracking if no test execution took place. This is done
by matching the content and time differences of the TVE grids edited with model
files assigned and assigning the model files to TVE grids with no model file assigned.
The Matlab Simulink files that are tested during a tracking session are abstracted and
stored in Silnab Models. These models are described in the next section.

Fifth, interactions are related to model files. The association is required to connect
(the influence of) model files to the interactions. During this step other information
like currently open views is also added to the interactions.

5.3 Silnab Models

Silnab models are partially abstracted, scrambled and anonymized Matlab Simulink
models. To create these models, the Matlab Simulink model used during a test execu-
tion is parsed and mapped to a Silnab EMF instance. Silnab models were implemented
to meet confidentiality agreements of the involved industrial partners (e.g., omitting
the engineers name). The scrambling clouds, e.g., the concrete block function and
the abstraction is used to identify variables involved in comparisons. The abstraction
allows a data flow reconstruction but hides the concrete function of the model as well
as personal/company information. Figure 5.3 shows a screenshot of a Silnab editor.
Number 1 shows a graphical (GMF based) editor presenting Matlab blocks and con-
nections. Number 2 presents detailled information of a single Matlab Simulink block,
e.g., Data-, Signal-type and Port. Number 3 shows the block-type in a property view.
This information is scrambled with an appropriate hash function as shown in Number
4. Other information scrambled is e.g., the identification of the engineer who devel-
oped the model. The interaction tracking logs provide the base to compute interaction
sequences. The detection of these sequences is discussed in the next section.

162

5.4 Interaction Pattern Detection

1

2

3

4

Figure 5.3: Screenshot Silnab editors

5.4 Interaction Pattern Detection

The pattern detection is done on base of Genetic Computation using a fitness function
with a modified version of the Knuth-Morris-Pratt (KMP [120]) algorithm described
in [121]. Before the KMP algorithm checks a pattern in a text it pre-computes prefix-
sub-pattern of the pattern. If the pattern matching fails, it tries to match valid prefix-
sub-pattern without the necessity to compare the previous text again - saving (some)
comparisons. Figure 5.4 shows an example illustrating the idea of the KMP algorithm.
Red indicates a failed comparison (at position i+1), blue the current position checked
(where ’A’, ’B’ is not checked again). The KMP algorithm is O(n) in the worst and
average case for the searching phase. The pre-computation is also done with the KMP
algorithm.

The algorithm is applicable for all kinds of patterns. It was extended to match inter-
action types (e.g., keyboard, mouse, wheel, and special void interactions = unknown
interaction type) state-mask keys (e.g., CTRL pressed) and additional attributes (e.g.,
if a keyboard action takes place, what key was pressed) and in particular the (unique)
GUI element where the interaction took place.

163

5 Evaluation

A B A B

Text

A B

Pattern

Forward search
i i+1

Figure 5.4: Idea of the KMP algorithm

The complexity of the algorithm is mainly driven by the possible permutations of
the pattern length. Let’s assume there are m unique interactions and l is the pattern
length. The resulting permutation set has the size s = ml. l should be less or equal m.
If l (or m) is not limited, the problem is NP-complete. But if l is limited, the problem
is P-complete, which is assumed to calculate some application numbers. The time
required to identify sequences of a given length l can be computed by some profiling
and application data. Every computation of the KMP algorithm takes approx. one
second (which holds for patterns of size three). Let’s assume there are 1.000 parallel
nodes available and the possible parallel speedup scales. The tracking database shows
6.000 unique operations. The computation of all patterns of length two would require
6.0002/1.000 seconds = ten hours. A pattern of length three would require nearly
eight years with 1.000 computing nodes. With genetic computations it was possible
to find sequences of length nine and above with a coverage of 98% with some hundred
computation nodes in less than a day.

The implemented fitness includes a disjunctive pre-evaluation phase of all patterns,
a combined evaluation phase for all pattern, and the final computation phase of the
winning sequences including the removal of not-winning interaction pattern in the
complete mapped sequences. Fitness points are graduated (element matching points,
disjunctive sequence matching points, joint sequence matching points) and weighted
according to the sequence length. As already mentioned in 4.3, two caches were used
to cache previous mapping results of single sequences and combined sequences. The
following console snapshot shows the output of an example computation with 5 threads
(evaluation and breeding) on a local host.

| RMOF-ECJ
| Evolutionary based analysis system for RMOF 1.41
| By Ralf Buschermoehle (RMOF), Sean Luke et al. (ECJ 21)

164

5.4 Interaction Pattern Detection

| URL: http://cs.gmu.edu/~eclab/projects/ecj/
| Mail: buschermoehle@demand2offer.de
| Date: August 22, 2014
| Current Java: 1.6.0_32 / OpenJDK 64-Bit Server VM-23.25-b01
| Required Minimum Java: 1.6

Threads: breed/5 eval/5
Seed: 1699690226 1699690227 1699690228 1699690229 1699690230
Job: 0
Setting up
Processing GP Types
Processing GP Node Constraints
Processing GP Function Sets
Deserializing tracking database (in thread 1) ... in 19s:784ms
Processing GP Tree Constraints
Setting RMOF Models Path: ~/Temp
Setting RMOF Layers File: ~/Temp/Evaluation/UT1.lay
Setting RMOF Parameter: 1?InteractionPattern{ia=objectID;
guiElements=objectIDsFromGUIIDs}+{interactions;
interactions.next; interactions.guiElement;
interactions.stateMask; interactions.asciikeys}
Setting Tracking DB: ~/Temp/trackingCache.ser
Initializing thread 1/5, ID 34 done.
Initializing thread 2/5, ID 35 done.
Initializing thread 3/5, ID 32 done.
Initializing thread 4/5, ID 33 done.
Initializing thread 5/5, ID 38 done.
Thread34,’1’ = 1.76 %,’2’ = 0.06 %,’3’ = 0.02 %,’4’ = 0.02 %
Thread35,’1’ = 1.73 %,’2’ = 0.04 %,’3’ = 0.03 %,’4’ = 0.02 %
Thread32,’1’ = 1.62 %,’2’ = 0.12 %,’3’ = 0.05 %,’4’ = 0.04 %
Thread33,’1’ = 1.74 %,’2’ = 0.05 %,’3’ = 0.04 %,’4’ = 0.02 %
Thread38,’1’ = 1.81 %,’2’ = 0.02 %,’3’ = 0.01 %

Subpop 0 best Fitness: Standardized=629072.06 Adj.=1.5896404E-6
Hits=0 SeqCov=11.5469% ElemCovAllSeq=31.0432%
ElemCovSingleSeq=60.7606% ElemCov=60.9731%
LongestSL=2 MeanSL=1.2143 MedianSL=1.0000
s[1]=11,SC=10.8703%|74184,EC=55.7212%
s[2]=3,SC=0.6766%|4617,EC=5.2520%
GPSize=47, Individuals evaluated (gen/all): 4096/4096,

165

5 Evaluation

1st Level Cache =2.07%, 2nd Level Cache =1.85%
Individual successfully written to file "~/Temp/g.0.bI.ind".
Model written to file "~/Temp/g.0.bm-l1.uma", obj 238
Breeding: 828ms, Evaluation: 4m 08s 133ms (/I: 60ms),
Time passed : 4m 08s 961ms (/I: 30ms),
TTF (all): 14d 09h 42m 31s 40ms [14d 09h 46m 40s 1ms],
TTF (last): 28d 19h 25m 12s 78ms [28d 19h 29m 21s 39ms]

Each thread uses a seed to configure the random number generator. The seed can be
set to ’time’ (=random initialization) or to a fix number (e.g., to recompute a previous
run). This is followed by parameter files processing (e.g., parsing attributes to gener-
ate GP nodes “Setting RMOF Parameter”), setup operations (e.g., reading the tracking
database) concluded by the thread inititalization. Then the fitness evaluation starts
and ends with cache statistics followed up by a short description of the best individual
of the population (including e.g., sequential coverage of the different sequences and
their length). Finally, an overall cache efficiency, serialization information and timings
are written to the log. Each evaluation breeds the GP nodes, introduces the nodes as
RMOF instances, triggers an RMOF simulation evaluating the fitness, reads and sets
the fitness of the GP nodes and handles GP feedbacks, e.g., to mutate some nodes with
a higher probability and/or larger “steps”.

The computation was mainly done with a master/slave configuration. In contrast
to a single computation node the thread sends the individual over the network to a
slave, the slave evaluates the individual and returns fitness, individual and additional
information related to caching and optimization back to the master node. The master
node scheduled max. 500 computation slaves. Each slave normally controlled a single
CPU, whereby some nodes controlled a set of computation slaves. The CPU cores used
include AMD Opterons, Intel Xeons and Intel i7s with large performance differences.
A fine granular scheduling mechanism on the master was required to use the nodes
optimally. The master node was a 16 core Xeon distributing jobs and collecting the re-
sults from the slave nodes concurrently. Several modifications were introduced into the
ECJ framework to optimize the computations including a flexible rescheduling mecha-
nism if computation nodes are introduced and removed arbitrarily. This was necessary
because the supercomputer nodes used predefined job wall times. Figure 5.5 shows two
pictures of the High Performance Cluster ’Hero’ in Oldenburg 1 where computations
took place. The initial computations in 2013 required months (prognosis) to find pat-
terns with a interaction coverage of > 90%. After introducing several optimizations
the computation times were reduced to six hours on 300 cores with a coverage of > 90%.

1http://www.uni-oldenburg.de/fk5/wissenschaftliches-rechnen/hpc-facilities/hero/

166

5.4 Interaction Pattern Detection

Figure 5.5: High Performance Cluster “Hero” in Oldenburg

A final interaction pattern model often tends to be complex in its completeness and
in its graphical dimensions. It consists of several hundred different interactions (on
different GUI elements) and some thousand interaction connections between them.
Figure 5.6 shows a complete interaction pattern model with 95% coverage. However,
the representation makes it difficult to identify useful information. The RMOF envi-
ronment can filter interactions and transitions in relation to their probability, compute
abstractions and extract single sequences to visualize them appropriately. Figure 5.7
shows a single interaction sequence. The start interaction (black filled circle with a
rectangle) is not connected, this means that the interaction sequence was not triggered
initially in a session. Blue interaction transitions connect conditional interactions with
a probability <= 100% (all). Black interaction transitions connect only unconditional
interactions with a probability of exactly 100%. Two kinds of interactions are found in
the model of figure 5.7, a left mouse button interaction and mouse wheel interaction.
There are four interaction effects shown in the model. First, a scrolling depicted by the
cross icon. Second, a scrolling in the TVE Grid visualized by an icon with a cross over
some boxes. Third, a resize in the TVE grid presented by magnifier glasses. Fourth,
a menu invocation presented as the blue icon. The interaction effect value describes
a single effect (e.g., scrolling effect - mean pixels scrolled of all mapped interaction
effect). In figure 5.7 all interactions refer to the same GUI element (connect with a
dashed line). The connected GUI element is identified by the GUI path. The referred

167

5 Evaluation

Figure 5.6: Partial interaction pattern model with 95% coverage

GUI element can be identified with another RMOF plugin that highlights GUI elements
of a given GUI tracking path when the mouse cursor hovers a subpath. A screenshot
of the GUI element identification tool is shown in figure 5.8 with a highlighted TVE
grid in red. The GUI element of the interaction sequence points to a TVEGrid where
nearly 30% of the interactions took place.

The patterns identified covered all interactions done with 96.6823%. The computa-
tion required roughly 17 hours with 300 cores. Table 5.1 shows the number of sequences,
their lengths and and their sequence probabilities that were found:

The element probabilities are computed for each element of the sequence individu-
ally, neglecting that there can only be one sequence winning. This is represented in
the sequence probability. There were approx. 4.3 Mio. individuals evaluated. The
cache hit rate of the disjunctive sequences was 5%, and the combined sequences cache
was 75%. The target sequence length was 9 (the fitness evaluation should evaluate
sequences of length 9∗2−1 = 17 better then separate sequences). Figure 5.9 shows an
overview on single interaction sequences with a coverage > 0.5%. The sequences are
ordered in clusters of the captured sequence length. In particular long sequences are
interesting and sequences with a high temporal impact. These sequences offer simple
and high optimization potentials. These optimizations are discussed in the following
sub-sections.

168

5.4 Interaction Pattern Detection

Figure 5.7: Single interaction sequence

169

5 Evaluation

Figure 5.8: GUI element identification

Length Occurrences Sequence probability Element probability
1 179 34.7505% 1697.8621%
2 39 13.4086% 1117.3066%
3 26 5.3556% 1122.3924%
4 18 3.8186% 1106.2849%
5 17 4.0384% 1483.3112%
6 6 2.0916% 598.1072%
7 4 0.7806% 663.0602%
8 4 0.7233% 761.152%
9 6 31.7091% 1240.0467%
10 2 0.0059% 441.502%

Table 5.1: Sequence length, occurences and their probabilities

170

5.4 Interaction Pattern Detection

Figure 5.9: Single sequences > 0.5% overview

171

5 Evaluation

5.5 Optimization of Interaction Sequences

This section sketches optimization potentials of single interaction sequences that are
extracted from all found interaction sequences of the process model. Figure 5.11 shows
the single interaction sequence navigating test specifications in the Eclipse web browser.
The complete interaction sequence consists of nine mouse wheel interactions. The
probability of a mouse wheel interaction on the browser is 20.88% (of all interactions),
whereby the browser is used with a probability of 23.69%. The sequence is not con-
nected with the start interaction but with four other sequences. Interestingly the
last interaction has a 80.94% chance to return to the first wheel interaction of the
sequence. The complete sequence takes six seconds and has a high relevance. The
sequence switches with 82.78% to another sequence and with a probability of 0.37%
leaves the session.

The four input sequences are mainly triggered by the sequence itself, a ’click’ sequence
on the browser and two sequences with a high probability to be executed after a test
execution took place. Figure 5.10 shows one of the two interaction sequences triggering
the test spec review of figure 5.11. The colored element with a graph picture in the

Sequences (mean): 2.993636%, times: 22.0 Sequences (sum): 65.86 %

Figure 5.10: Test review as main external input sequence

top and in the bottom of figure 5.10 is an aggregation of 25 sequences (each time).
The inputs have a probability of 3.66% each to start the interaction sequence and a

172

5.5 Optimization of Interaction Sequences

probability of 2.922% of leaving to other sequences in the mean. The number 163.92
describes one effect of the test review results. In this case its the average number of
no value differences (successful - previously edited - test cells) during a MIL test.

Figure 5.11: Navigation: test specification browser

173

5 Evaluation

64,67%, mt: 11,040.343, vt: 3,153.366

Output Sequences (mean): 0,687978%, times: 94.0 Sequences (sum): 64,67%

Figure 5.12: Navigation: test vectors

Figure 5.12 shows a similar navigation sequence on the test vectors. The average
time spent to navigate in the test vectors is low compared to the test specifications
and the significance of the sequences is less than 50% of the significance of the TVE

174

5.5 Optimization of Interaction Sequences

specifications. Both sequences have a high significance (spec browsing 80.94%, test
vectors 35.18%) to be triggered recursively.

A software optimization regarding the navigation activities could be realized by a
linkage between test vectors and test specifications. This linkage (possibly 1-n, hope-
fully 1-1) could be introduced in previous development steps or during the testing
activity. The linkage should be changeable by the tester but is likely to be fix. Fig-
ure 5.13 shows the idea graphically. A reduction of the navigation interactions of

Figure 5.13: Optimization TVE navigation

sequence 5.11 (by re-linking input and output of the sequence) could reduce the time
required for re-testing by approx. 1%. The effects increase at non re-testing interac-
tions to approx. 2,2%. One obvious cause is that the specifications are new to the
tester thus the navigation interactions are increased the first time. The sequence of
figure 5.11 is often triggered by sequence of figure 5.12. It will likely be useful to reflect
a scrolling in the test specifications in the test cases if the links between test specifi-
cations and test vectors exist. The question is what causes the scrollings in the test
vectors. Figure 5.14 shows all input sequences with > 0.5% coverage. The major input
sequence “125” with a coverage of 2.13% triggers the navigation sequence in the TVE
grid with 7.64%. Figure 5.15 shows sequence “125” which is mainly conducted after a
test execution took place. The scrolling operations could be avoided by an automatic

175

5 Evaluation

Figure 5.14: Input sequences of TVE grid navigation

43,34%, mt: 7,602.2, vt: 1,044.756

Figure 5.15: Input sequence ’125’ of TVE grid navigation

scrolling to the test results after a test execution was conducted. A linkage between
test results and original vectors (like proposed for the test specifications) will likely
reduce the required scrollings (at least when the results are represented in additional

176

5.5 Optimization of Interaction Sequences

result grids). A reduction of the TVE grid scrolling interactions of sequence 5.12 re-
vealed approx. 10% time reduction for testing and re-testing interactions and there are
other sequences showing additional potentials like single_24, single_59 single_85,
single_86, single_90. These are click sequences on the test vectors to scroll after a
test execution took place - (presumably) to review the test results. The 10% is realized
by removed the long scrolling sequence of 5.12. There exist shorter partial scrolling
sequences with additional optimization potential. Another simple modification in this
context would be “next/previous deviation in step/vector” macros to jump from one
deviation to the next in the grid. Finally a linkage between test specifications and
test vectors could also speed up the (correct) identification of the test vectors to be
changed in the current testing activity.

The possible impacts were computed by simulation runs described in the following
section 5.6. The reduction skips only navigation interaction of this sequence. It is
assumed that after the specification part has been found the investigation takes place
- not during the navigation. This can be assumed because the temporal deviations
between the scrolling events of the sequence are below 0.5 seconds which is considered
to be too short for an investigation of the test specification. Nevertheless only this
(long) sequence was skipped. There are shorter scrolling sequences in the TVE se-
quence navigations and the optimization potential is large - in particular when errors
are avoided that are introduced because the wrong specification section was chosen and
other follow ups. Sequence single_87 presented in figure 5.16 shows the (partial) dele-

53.02%, mt:7,722.243, vt: 2,550.15

Output Sequences (mean): 1.514857%, times: 35.0 Sequences (sum): 53.02%

Figure 5.16: Delete value(s) sequence ’87’

177

5 Evaluation

tion of test values. If the complete cell is deleted this could be optimized with a macro
function. The remaining sequences that are found are of short length and equally low
distributed regarding their coverage. The next optimization investigates probabilities
between interaction sequences as shown in figure 5.17. Nearly all sequence transition

Figure 5.17: Probabilities between sequences

probabilities are low or the sequences itself have a low probability. Figure 5.18 shows
three interaction sequence with a probability >= 1% and a transition probability >=
50%. The first sequence is a scrolling sequence on the sub-data view. The sub-data

Figure 5.18: Three reflexive interaction sequences with a probability >= 1% and a
transition probability >= 50%

view is an expansion of values of the TVE grid. One value of the TVE grid (presented
as “...”) is an array of values in the sub-data view. The handling of TVE grid and
sub-data view is the same. The sequence is presented in figure 5.19. This is similar
to the TVE Grid sequences and should be optimizable in the same way. The second

178

5.5 Optimization of Interaction Sequences

5.17%, mt: 11,040.343, vt: 3,153.366

Output Sequences (mean): 0.056%, times: 93.0 Sequences (sum): 5.17%

Figure 5.19: Sequence 43: scrolling sub-data view

sequence is key press “0” on the test vector grid inside a cell. A macro function to
insert “0” could speed up this sequence. The last sequence is a backspace sequence
shown in figure 5.20. This sequence can be optimized with a macro function like 5.16.

In addition to fix macro sequences the Test Vector Editor should support the creation
and assignment of user-dependend keyboard macros to efficiently handle user-related
and task-related editing operations effectively. In addition, some used-related macros
could be computed by RMOF and to configure the Test Vector Editor before a test
session.

179

5 Evaluation

Figure 5.20: Sequence 87: backspaces in TVE Grid

The interaction sequence simulation is described in the next section.

5.6 Process Model Analysis: Simulation

The process simulation is realized as a concurrent Petri Net with probabilistic tokens
based on section 3.18, page 132. Interactions are modeled as places, can have interac-
tion effects and are related to GUI elements. Transitions have a probability in relation
to the mean transition probabilities of all covered elements of the tracking database.
Interaction effects are cumulated during a simulation run in the tokens with their prob-
ability. A simulation step concurrently switches a maximal subset of enabled tokens.
The probability of each token is multiplied with the transition probability, if the token
switches. If a token reaches a defined minimal probability, it is removed (’retained’)
from the interaction model. The token switching and the computation of the effects
is done concurrently in the implementation. Figure 5.21 shows an example illustrating
the simulation approach. Initially a green token is placed on the initial place (presented
as a black filled circle). All outgoing transitions (with transition probabilities of 40%,

180

5.6 Process Model Analysis: Simulation

31/23%

Process'Model'Simulation::Example'
5.5 Optimization of Interaction Sequences

and a probability of 2.922% of leaving to other sequences in the mean. The number
163.92 describes one effect of the test review results. In this case its the average number
of no value differences (successful - previously edited - test cells) during a MIL test.

Figure 5.11: Navigation: test specification browser

171

A:%Scroll%Test%Specifica5on%
Effect%“Scrolling”:%4%
Time:%10%seconds%

C:%Execu5ng%MIL%Test%
“Successful”:%1.2%
“Unsuccessful”:%0.8%
Time:%20%seconds%

B:%Edit%Test%Vectors%
“Manual%change”:%3%

“Copy%&%paste%change”%:%2%
Time:%2%seconds%

%

0.4%
0.3%

0.3%

0.5%

0.5%

0.1%

0.75%

0.1%

0.6%

0.3%

0.15%

p%=%1%

p%=%0.4%
Scrolling:%4%
Time:%10s%

p%=%0.3%
Mchange:%3%
CPChange:%2%
Time:%2s%

p%=%0.3%
SuccessT:%1.2%
USuccess:%0.8%
Time:%20s%

%threshold%=%0.04%

Figure 5.21: Simulation approach example

30%, and 30%) are enabled and fire once resulting in three tokens on the places A,B,
and C respresenting different unconditional sequences. A presents a scrolling in the test
specifications. B presents test vector editing operations. C represents the execution
of a MIL test. The attributes of the tokens after the first switch are presented at the
bottom of figure 5.21. including all seen interaction effects of the interaction sequences
(e.g., a manual change of test vectors). Part of the blue token of step 2 in the simula-
tion would not switch because the token probability if 30% and if multiplied with the
transition probability of 10% (going to B) this would result in a token probability if
3% which is below the threshold probability of 4%. In this case a blue token “freezes”
on C with a probability of 3%.

The ratio of the simulation approach is to execute all identified interaction sequences
with their discovered probabilities as long as the probability of the sequence described
by the token path is above a defined threshold. This results in a complete probabilistic
approximation of all sequences seen in the tracking down to a certain minimal proba-
bility.

The expected values and the standard deviation of all retained tokens are computed
in each simulation step until all token are retained. Expected value and standard devi-
ation are the values in the first line. The second line sets the expected value in relation
to the time and computes how much the value changes in 60s and how much time is
required to change the value by one. The results were simulated on interaction pattern

181

5 Evaluation

with a coverage of 97.4831%. First, the unmodified interaction model was simulated,
then the optimized interaction model was simulated to compute the effects of the op-
timizations.

The result discussion starts with detected scrollings. The expected time between
scrollings is approx. four minutes. This is indirectly reflected in the view changes of
the visible TVE grid. The visible TVE grid view changes approx. once every minute
due to move and resize operations:

TVEGridVisible: 61.431058, std: 16.123318
[in 60s: 0.772253057725615, o: 01m 17s 694ms]
MoveX: 43.801703, std: 9.510480
[in 60s: 0.5506335159211536, o: 01m 48s 965ms]
MoveY: 27.758492, std: 7.324738
[in 60s: 0.34895345996474625, o: 02m 51s 942ms]
ResizeX: 33.408033, std: 9.133302
[in 60s: 0.4199741430423046, o: 02m 22s 865ms]
ResizeY: 16.350475, std: 5.024496
[in 60s: 0.20554268598278513, o: 04m 51s 910ms]

It will be interesting to investigate if a larger screen size (multiple screens) change
this behavior. In particular regarding resize operations. The suggested scrolling opti-
mization of section 5.5, page 172 will also be reflected here.

Every 18 minutes a menu is used. The concrete interaction sequences inform about
the menu, that is was used, e.g., a rename, move, or import operation. The effects are
additionally tracked for example in TVE grid changes or additional views opened.

The main (and rather abstract) information concerns the number of tests executions.
Every 1 hours 40 minutes a test was executed in the sequences, whereby a re-test takes
place in a similar time period. The tester can conduct three kinds of test variants
(MIL, SIL, PIL) together in one test execution. The results are differentiated in result
columns.

TestExecuted: 0.788331, std: 0.222333
[in 60s: 0.00991014794545417, o: 01h 40m 54s 400ms]
TestExecuted-TestREExecuted: 0.804766, std: 0.205024
[in 60s: 0.010116754652864606, o: 01h 38m 50s 755ms]

The Test Vector Editor is able to conduct MIL, SIL, PIL tests. The tracked informa-
tion contains only MIL and SIL tests. The interactions done before a test execution

182

5.6 Process Model Analysis: Simulation

was computed, are summarized and classified into e.g., manual change operations (val-
ues are directly changed with keyboard interactions in the TVE grid), copy & paste
operations or color changes. A color change can be done by the user to highlight cells
or can be part of a test execution to visualize (dependent) tested test vectors/steps.

All changes are differentiated into RowsColumns or Rows. The first one represents
single cells, the last one complete rows. Sometimes blocks are added representing a
consecutive number of test rows.

changedBlocksBeforeMIL: 0.599558, std: 0.160439
[in 60s: 0.0075370705031842225, o: 02h 12m 40s 652ms]
changedRowsBeforeMIL: 4.570666, std: 1.258517
[in 60s: 0.05745808580920809, o: 17m 24s 239ms]
changedRowsColumnsBeforeMIL: 14.913078, std: 3.950378
[in 60s: 0.1874730940145881, o: 05m 20s 45ms]

In relation to the previous test execution values, it shows that a single MIL test
normally tests approx. 15 new/changed values in approx. five rows in the average.
Now the interactions are classified into manual editing interactions and aggregated
copy/paste operations. A copy/paste operation is a copy and paste of a complete row
in one operation to replicate one row into the next one.

copyAndPasteChangedRowsColumnsBeforeMIL: 0.227189, std: 0.060751
[in 60s: 0.002856002735193893, o: 05h 50m 08s 383ms]
copyAndPasteChangedRowsBeforeMIL: 0.093960, std: 0.025213
[in 60s: 0.0011811809832712142, o: 14h 06m 36s 618ms]
copyStepChangedRowsColumnsBeforeMIL: 5.589963, std: 1.480830
[in 60s: 0.07027172058595166, o: 14m 13s 828ms]
copyStepChangedRowsBeforeMIL: 0.806943, std: 0.214252
[in 60s: 0.010144122656024601, o: 01h 38m 34s 754ms]
deleteStepChangedRowsColumnsBeforeMIL: 1.723281, std: 0.460876
[in 60s: 0.02166345484892456, o: 46m 09s 641ms]
deleteStepChangedRowsBeforeMIL: 0.334686, std: 0.089814
[in 60s: 0.004207357230474926, o: 03h 57m 40s 733ms]
insertStepChangedRowsColumnsBeforeMIL: 6.111888, std: 1.619725
[in 60s: 0.07683286520900655, o: 13m 915ms]
insertStepChangedRowsBeforeMIL: 0.875479, std: 0.232058
[in 60s: 0.011005690427698528, o: 01h 30m 51s 725ms]
manualChangedRowsColumnsBeforeMIL: 0.285885, std: 0.075737
[in 60s: 0.003593873557278108, o: 04h 38m 15s 78ms]
manualChangedRowsBeforeMIL: 0.188524, std: 0.050532

183

5 Evaluation

[in 60s: 0.00236994550936315, o: 07h 01m 57s 37ms]
manualDeleteChangedRowsColumnsBeforeMIL: 0.186340, std: 0.052923
[in 60s: 0.002342486775172783, o: 07h 06m 53s 805ms]
manualDeleteChangedRowsBeforeMIL: 0.893187, std: 0.253930
[in 60s: 0.01122830367255548, o: 01h 29m 03s 638ms]
pasteStepChangedRowsColumnsBeforeMIL: 0.891480, std: 0.236453
[in 60s: 0.011206845693713692, o: 01h 29m 13s 870ms]
pasteStepChangedRowsBeforeMIL: 0.155885, std: 0.041294
[in 60s: 0.001959641781044828, o: 08h 30m 17s 840ms]
unknownBlocksChangedBeforeMIL: 0.026663, std: 0.007538
[in 60s: 3.351820878816066E-4, o: ---]

The most likely interaction is a copy/insert interaction followed by manual editing
operations. The same information are summarized and analyzed for Software in the
Loop test executions.

changedBlocksBeforeSIL: 0.511297, std: 0.136515
[in 60s: 0.006427535317477127, o: 02h 35m 34s 837ms]
changedRowsColumnsBeforeSIL: 15.330471, std: 4.060610
[in 60s: 0.1927201542737282, o: 05m 11s 332ms]
changedRowsBeforeSIL: 2.076008, std: 0.549927
[in 60s: 0.026097600015880757, o: 38m 19s 61ms]

It demonstrates that it’s less likely to change complete blocks before a SIL test is
done compared to a MIL test. The rest of the values is quite similar.

copyAndPasteChangedRowsColumnsBeforeSIL: 0.112735, std: 0.030486
[in 60s: 0.0014171956368078512, o: 11h 45m 37s 132ms]
copyAndPasteChangedRowsBeforeSIL: 0.053761, std: 0.014247
[in 60s: 6.758332462035221E-4, o: ---]
copyStepChangedRowsColumnsBeforeSIL: 2.929287, std: 0.777290
[in 60s: 0.03682421672827174, o: 27m 09s 362ms]
copyStepChangedRowsBeforeSIL: 2.008050, std: 0.563057
[in 60s: 0.02524330426118349, o: 39m 36s 867ms]
deleteStepChangedRowsColumnsBeforeSIL: 2.805823, std: 0.750421
[in 60s: 0.03527215263210606, o: 28m 21s 58ms]
deleteStepChangedRowsBeforeSIL: 0.863389, std: 0.234668
[in 60s: 0.010853704271705665, o: 01h 32m 08s 66ms]
insertStepChangedRowsColumnsBeforeSIL: 8.289486, std: 2.195662
[in 60s: 0.10420756000324001, o: 09m 35s 773ms]
insertStepChangedRowsBeforeSIL: 0.970736, std: 0.257596

184

5.6 Process Model Analysis: Simulation

[in 60s: 0.012203169800670254, o: 01h 21m 56s 755ms]
manualChangedRowsColumnsBeforeSIL: 0.254820, std: 0.067656
[in 60s: 0.003203351924356871, o: 05h 12m 10s 380ms]
manualChangedRowsBeforeSIL: 0.330646, std: 0.090991
[in 60s: 0.004156566490145358, o: 04h 34s 991ms]
manualDeleteChangedRowsColumnsBeforeSIL: 0.100721, std: 0.028509
[in 60s: 0.0012661723631193467, o: 13h 09m 46s 913ms]
manualDeleteChangedRowsBeforeSIL: 0.094624, std: 0.026775
[in 60s: 0.0011895176279797539, o: 14h 40s 614ms]
pasteStepChangedRowsColumnsBeforeSIL: 0.824555, std: 0.218529
[in 60s: 0.010365520150300934, o: 01h 36m 28s 421ms]
pasteStepChangedRowsBeforeSIL: 0.121194, std: 0.032515
[in 60s: 0.0015235369605064847, o: 10h 56m 22s 44ms]
unknownBlocksChangedBeforeSIL: 0.003774, std: 0.001007
[in 60s: 4.7444005093178736E-5, o: 13ms]

The largest difference shows a deviation to use copy/paste operations. In SIL testing
the operation is only rarely used. After a test execution took place the results are
parsed. The parsing takes into consideration what was changed on the test grid before
a test was executed and differentiates direct changes and indirect (a change in a de-
pendent test cell that was not changed before the test execution but changed by the
test execution). NoValue differences indicate that the output vector of a previously
changed input vector matches the test results.

noValueDifferencesMIL: 455.774487, std: 118.398683
[in 60s: 5.7295650707449255, o: 10s 471ms]
noValueDifferencesDependentMIL: 25.253322, std: 6.416270
[in 60s: 0.31746083924276813, o: 03m 08s 999ms]

noValueRowDifferencesMIL: 10.227078, std: 2.731456
[in 60s: 0.12856513777975806, o: 07m 46s 689ms]
noValueRowDifferencesDependentMIL: 0.707969, std: 0.190550
[in 60s: 0.008899910408887832, o: 01h 52m 21s 640ms]

valueDifferencesMIL: 34.633886, std: 9.075570
[in 60s: 0.43538440236808285, o: 02m 17s 809ms]
valueDifferencesDependentMIL: 2.347846, std: 0.606019
[in 60s: 0.029514889708611852, o: 33m 52s 872ms]

valueRowDifferencesMIL: 2.407073, std: 0.613960
[in 60s: 0.030259442644822394, o: 33m 02s 852ms]

185

5 Evaluation

valueRowDifferencesDependentMIL: 4.026180, std: 0.992508
[in 60s: 0.05061332491896774, o: 19m 45s 458ms]

Every 7m 46s a MIL vector is tested successfully. Every 33m 2s a MIL vector test
fails.

noValueDifferencesSIL: 169.394603, std: 43.910020
[in 60s: 2.129468465625207, o: 28s 176ms]
noValueDifferencesDependentSIL: 5.645568, std: 1.456639
[in 60s: 0.07097073474133643, o: 14m 05s 418ms]

noValueRowDifferencesSIL: 3.802279, std: 0.987206
[in 60s: 0.04779864589605562, o: 20m 55s 265ms]
noValueRowDifferencesDependentSIL: 0.249593, std: 0.069415
[in 60s: 0.0031376423902990743, o: 05h 18m 42s 638ms]

valueDifferencesSIL: 41.374312, std: 10.707748
[in 60s: 0.520118657244326, o: 01m 55s 358ms]
valueDifferencesDependentSIL: 3.414305, std: 0.889456
[in 60s: 0.04292140769733019, o: 23m 17s 903ms]

valueRowDifferencesSIL: 3.961081, std: 1.024616
[in 60s: 0.04979496016522125, o: 20m 04s 941ms]
valueRowDifferencesDependentSIL: 0.760739, std: 0.191042
[in 60s: 0.009563295617400368, o: 01h 44m 33s 987ms]

Every 20m 55s a SIL vector is tested successfully. Every 20m 04s a SIL vector test
fails. MIL tests happen more frequently. MIL testing is faster and therefore presumably
chosen more often. It is more likely, that a (more precise) SIL test is executed if the
MIL test failed. The maximal time duration of the longest sequence was 01h 19m
which matches the average session duration of 1h 30m quite good. The question is if
there are conditions that change the interaction sequences reflected in the simulation
results. The next section will discuss this question by introducing a first idea of model
complexity.

5.7 Process Model Impacts: Guards

The process models contain two ’types’ of transitions. Unconditional ones with a prob-
ability of 100% and conditional ones with a probability <100%. By adding transition
guards the uncertainty is further reduced. Guard sources are e.g., environment at-
tributes (like display size), the behavior of the tester (like views opened and closed),

186

5.7 Process Model Impacts: Guards

inputs (like Matlab Simulink models) or outputs (like test vectors). The usefulness of
a guard source is related to its ability to prognosticate development activities/interac-
tions. Therefore activity outputs are ignored.

Matlab Simulink models are developed before they are tested. A significant rela-
tionship of the models to the conducted test interactions would be useful to predict
test interactions. The hypothesis is that the complexity of the Matlab Simulink model
has an influence on the required test interactions. Silnab Models were introduced in
section 5.1. They are an abstraction of Matlab Simulink models without concrete
functions. Metrics and partial computations (simulating data flows) were used to for-
mulate different ideas of testing complexity. The (assumed) reason is that the testing
complexity is related to the different blocks building the system and the transitions
between those components. The tester needs to control/understand the overall func-
tion composed by the blocks realizing the system including their temporal dimension.
Therefore reflexive transitions are often of particular interest. The hypothesis is that
this kind of complexity metric has an influence on the interaction sequences the tester
uses.

Halstead metrics [122] were applied to count different Simulink blocks, inputs and out-
puts, or vocabularies (different Simulink blocks). These metrics are refined by adding
some simulation semantics describing the relationships/data flows between Simulink
blocks to compute, e.g., the cohesion of Simulink blocks. The models are (discretely)

Figure 5.22: TVEChart / signal propagation view

executed. Silnab models abstract from the concrete function, therefore this kind of
over-approximation gives an idea on how many functions and blocks are involved to
compute the overall block function. Additionally, the screen size can be used by a

187

5 Evaluation

guard and the currently open views like a TVE signal view as presented in figure 5.22.
In both cases the hypothesis is, that the screen size and the opened views have an effect
on the interactions required. The display sizes used (in the guards) were “1280x1024”,
“1562x922”, “1680x1050”.

The guards are generated by the GP framework and describe (an abstraction of)
Silnab semantics. Basic block of each guard filter Silnab blocks by using attribute/value
pairs. The filter can be easily extended and currently used the following attributes:

• type: the Simulink block type like Inport, Constant, Reference, Terminator,
Ground, OR_STATE, ...

• subsystemlevel: if the system is composed of sub-systems, this variable shows the
level of the sub-system of the Simulink block

• inputs, outputs: number of inputs and outputs. Input range is 0-32, output range
is 0-92

• variable characteristics: type (e.g., double), scope (e.g., INPUT_DATA), and
default value together with a scrambled ID

• expressions: number of comparisons, conjunctions, disjunctions is counted

• expressions-events: events produced and consumed is counted

• expressions-variables: variables assigned and referenced is counted

• values of the so-called property array: like OpenFunction, CopyFunction, Delete-
Function (in scrambled form)

The filter computes the number of blocks for each file matching the attribute/value
pairs. The maximum number of Simulink blocks in one file was 3500. The blocks can
be combined by applying the set operations join, cut, and complement. After the set
operations were applied, the block filtering is complete. Additional guard components
allow the computation of transitions between blocks to compute (transitively) reach-
able components including a cycle detection.

A final guard consists of a set of basic blocks and a relation specifying thresholds as
upper or lower limit of the blocks counted. The blocks are previously computed for all
Silnab files and the results are stored in a metrics database. The composed guards are
evaluated with the enriched process models (see 5.2, page 161) .

The fitness function initially determines the set of conditional transitions and then
tries to distinguish these transitions by applying the generated guards. Each guard

188

5.7 Process Model Impacts: Guards

is applied to all interactions in the model and assigned
1

(mapped transitions)2
fitness

points. The guard with the highest fitness points wins an interaction. The winning
guard of an interaction is removed from the set of competing guards. A removed guard
is not longer considered in the fitness evaluation for the interaction won. The overall
fitness value equals to the sum of all winning guards for all interactions.

The interactions model of section 5.6 was used to add guards. The model contained
9416 conditional transitions with a mean probability of 2.49%. The theoretical opti-
mum of transitions that could be distinguished with assigned model files was approx.
50% which is equal to 4757 transitions. The GP algorithm required approx. three days
with 300 nodes to find a fitness of 4606.9844 covering all transitions (by additionally
using the display size and the open views). Table 5.2 shows the guard distribution of
70 guards.

Transitions covered size Number of transitions probability
1 4123 123.64%
2 897 37.67%
3 322 18.96%
4 151 10.55%
5 102 10.88%
6 41 6.48%
7 33 5.42%
8 25 4.16%
9 18 2.59%
10 6 0.775%
11 11 4.51%
12 5 1.70%
13 3 1.48%
14 1 0.52%
15 7 1.89%
16 3 0.82%
17 1 0.81%
19 1 0.06%
20 1 0.61%
23 1 0.38%
25 1 0.41%
29 1 0.67%

Table 5.2: Distribution of transitions with guards

189

5 Evaluation

Six guards with the highest impacts were extracted and simulated to determine the
effects mainly regarding the time required to conduct a (re-)test and the time to test
a vector or test step successful or unsuccessful. Four guards showed positive effects
(the required times were reduced) when models with the matching criteria are avoided.
The comparison with section 5.6 shows significant effects. First of all, all scrollings are
avoided by 25%, whereby scrolling effects emerge more drastically in the TVE Grid.
These operations less often conducted.

moveX: 12.865223, std: 3.389716
[in 60s: 0.17570412980451214, o: 05m 41s 483ms]
-moveY: 16.675269, std: 3.836564
[in 60s: 0.22773904484846708, o: 04m 23s 459ms]
resizeX: 12.113256, std: 3.543305
[in 60s: 0.1654342980932856, o: 06m 02s 681ms]
resizeY: 11.335867, std: 3.048035
[in 60s: 0.15481726308213106, o: 06m 27s 553ms]

The scrollings are reduced up to 25%. This has a significant effect on the time
required to conduct re-tests.

TestExecuted-TestREExecuted: 1.543419, std: 0.431370
[in 60s: 0.021078928570989364, o: 47m 26s 444ms]

The time required to re-test is reduced to approx. 47%. Initial tests require approx.
the same period of time. The changes done before testing are done faster and in larger
units.

changedBlocksBeforeMIL: 0.621282, std: 0.170153
[in 60s: 0.008485034116115925, o: 01h 57m 51s 273ms]
changedBlocksBeforeSIL: 0.548754, std: 0.150289
[in 60s: 0.0074944904858203175, o: 02h 13m 25s 881ms]
changedRowsColumnsBeforeMIL: 17.943288, std: 4.914191
[in 60s: 0.24505675623463855, o: 04m 04s 841ms]
changedRowsColumnsBeforeSIL: 18.466041, std: 5.057359
[in 60s: 0.25219614617372743, o: 03m 57s 910ms]
changedRowsBeforeMIL: 6.53321, std: 1.32334
[in 60s: 0.05745808580920809, o: 13m 24s 239ms]
changedRowsBeforeSIL: 2.497445, std: 0.683984
[in 60s: 0.034108341986590275, o: 29m 19s 100ms]

190

5.7 Process Model Impacts: Guards

The MIL test results show all a temporal reduction. This includes the required time
resulting in a row difference, albeit the row differences on dependent MIL rows is
significantly increased.

noValueDifferencesMIL: 710.034635, std: 199.159452
[in 60s: 9.69715135755854, o: 06s 187ms]
noValueDifferencesDependentMIL: 30.489574, std: 8.368531
[in 60s: 0.4164050568944878, o: 02m 24s 90ms]

noValueRowDifferencesMIL: 16.131863, std: 4.565161
[in 60s: 0.2203175805588982, o: 04m 32s 334ms]
noValueRowDifferencesDependentMIL: 0.729045, std: 0.199523
[in 60s: 0.009956786436760083, o: 01h 40m 26s 40ms]

valueDifferencesMIL: 53.825487, std: 14.813534
[in 60s: 0.7351104729642756, o: 01m 21s 620ms]
valueDifferencesDependentMIL: 3.858975, std: 1.051179
[in 60s: 0.05270315234713727, o: 18m 58s 451ms]

valueRowDifferencesMIL: 3.945968, std: 1.080907
[in 60s: 0.053891240792271825, o: 18m 33s 353ms]
valueRowDifferencesDependentMIL: 0.249024, std: 0.066724
[in 60s: 0.003400988568134905, o: 04h 54m 01s 929ms]

Every 4m 32s a MIL vector is tested successfully (58.3% of the time previously re-
quired). Every 18m 2s a MIL vector test fails (54,6% of the time previously required).

noValueDifferencesSIL: 248.177132, std: 69.031191
[in 60s: 3.3894279232596696, o: 17s 702ms]
noValueDifferencesDependentSIL: 8.079400, std: 2.194429
[in 60s: 0.11034274258561193, o: 09m 03s 760ms]

noValueRowDifferencesSIL: 5.338710, std: 1.435640
[in 60s: 0.07291232850197123, o: 13m 42s 906ms]
noValueRowDifferencesDependentSIL: 0.123306, std: 0.033239
[in 60s: 0.0016840236660742626, o: 09h 53m 48s 952ms]

valueDifferencesSIL: 72.996585, std: 20.181075
[in 60s: 0.996935775434972, o: 01m 184ms]
valueDifferencesDependentSIL: 4.537232, std: 1.244025
[in 60s: 0.061966303313006794, o: 16m 08s 268ms]

191

5 Evaluation

valueRowDifferencesSIL: 5.002094, std: 1.372367
[in 60s: 0.06831506834632936, o: 14m 38s 283ms]
valueRowDifferencesDependentSIL: 0.319025, std: 0.086354
[in 60s: 0.004357012383423392, o: 03h 49m 30s 904ms]

Every 13m 42s a SIL vector is tested successfully (65,49%). Every 14m 38s a SIL
vector test fails (72,92%). The four guards contain only scrambled functions, which is
interesting because there exist various attributes like subsystem level, variables types,
number of comparisons that are not used by the GP algorithm to generate the guards.

#[PreSaveFcn = c9a1ae815ea1853d48a49be852f488b42b34cf8351c7]
#[InitFcn = 90ba0d13369e9aae16f9d2c5972983734916926e075d509]
#[PostLoadFcn = 416c6ea0b101b39afe389622a980c1cad5fe7964cf8]

These components and their connections (input, output, and cyclomatic complexity)
are computed transitively and build the guards. Each of the four guards filters approx.
20 of the 60 model files. The testing complexity comes mainly from certain Simulink
block functions and the dataflows between components. Three guards compute a cyclic
complexity of some previously filtered components (filtered by their function) and then
compute all input or output transitions (over x components) to the (transitive) reflexive
components.

<=(#it[#cc[#[LoadFcn =], 9], 777)

The remaining guard components filter different Simulink blocks. The guards cur-
rently used to distinguish interaction sequences have a high impact on the conducted
interactions and are composed of some Matlab metrics, display properties and open
views. The last two had no significant impact on the simulation results. Open views
used in the guard with a negative effect were the “PackageExplorer”, “TaskList”, or
“ConsoleView”. But these are common views - not special views of the Test Vector
Editor - therefore ignored.

The tracking sequences were filtered regarding the model files the guards covered.
Then the tracking database and the interaction sequences were recomputed. Fig-
ure 5.23 presents the single sequences overview.

The coverage computed of the interaction sequences model was >99%. The two long
scrolling sequences are still found (compare figure 5.9, page 171) but their coverage
is changed. The browser specification navigation coverage of all scrollings in the test
specifications increases slightly from 20.88% to 21.07%. The TVE specification cover-
age of all scrollings in the test vectors decreases significantly from 8.95% to 7.01%. The

192

5.7 Process Model Impacts: Guards

Figure 5.23: Single interaction sequences (without guard(ed) Silnab files)

last sequence has a high impact on the interaction effects and an obvious explanation
is that the reduced model “complexity” results in less scrolling operations. The results
reveal that there were optimization potentials even for a well understood, small testing
context and a highly optimized tool that supports the testing activities very well.

193

5 Evaluation

The synthesis approach uses heuristics. Hence the question of the method validity
should be addressed (asking the question if the same results are found when the method
is reapplied). In this case the method validity is related to the coverage of all found
interaction sequences. The error probability or the chance of sequence deviations is
therefore 100% - the computed coverage. In other words by increasing the coverage the
deviation probability is reduced. Therefore the coverage was increased to 99% in the
last computation run to decrease the chance that the optimized sequence still exists
but is not found by the heuristics. In the worst case the sequence is found with 1% less
coverage. Although this is inlikely due to deterministic components in the evaluation
(e.g., that prefer always longer sequences). Another simple solution would be to set
all random numbers seeds to the same numbers of the previous computation run or
simply to search for the optimized pattern determistically in the tracked data.

194

6 Conclusion

RMOF was developed as a flexible process meta-modeling language to describe, synthe-
size and analyze process models with all their artifacts and activities including their
dynamical dimensions. Such a language is required because existing languages and
optimization methods are often not suitable and sustainable. In particular the data
required to achieve this task needs to be tracked manually, often resulting in high effort
and errors. This thesis addresses both aspects to establish formal but flexible process
models including methods and techniques to synthesize and analyse them appropri-
ately. These process models are precise enough to answer all kinds of development
questions and to optimize activities and tools to guide the creation of artifacts opti-
mally in relation to the defined process goals.

The evaluation demonstrated that it is possible to synthesize a process model as
an abstraction of real testing tool interactions within an industrial context. The in-
teractions were automatically tracked by additional software components that were
introduced into the development environments of the tester. The tester only needed to
start the tracking, which itself is completely automatic. Although the tracking com-
ponents were enrichments of the testing software they are developed as general Eclipse
plugins and are only very loosely coupled with the test software plugins. The exten-
sion of the tracking towards other Eclipse/Java based environments is an easy task and
opens a wide range of data sources to be tracked automatically.

The evaluation revealed optimization potentials in the interaction sequences of the
tester that can be utilized by changes in the test tool software and reduce the required
test effort effectively. It revealed impacts on the computed process model in terms of
the input model semantics. The input model semantics were based on the usage of cer-
tain functions in Simulink blocks and the data flow between some of the components.
If these functions are used and the blocks are connected transitively with a certain
amount of other blocks, the interactions of the tester change including their outcome,
and the test effort increases. This information can be used to guide testing activities
and optimize the testing tool further.

The synthesized process model, its optimization and possible impacts are shown ex-
emplarily. Other hypotheses can be checked with RMOF and different models and
viewpoints can be computed (e.g., a click model to optimize mouse interactions or

195

6 Conclusion

model semantics that induce test errors with a high(er) probability). The current
optimizations focus the software (GUI layout, macros, (additional) views) and the se-
mantics of the models but can be easily extended towards, e.g., developer dependend
attributes like tool knowledge or environment attributes like noise level.

The approach was evaluated with an industrial partner and tracked data based on
real testing activities of several months with a group of different testers. It required
various optimizations to synthesize matching interaction models with a significant cov-
erage but then the tracking data of one person year was analyzed with a few hundred
computing nodes in some hours. Nevertheless the degree of freedom of a tester con-
ducting the testing activities is limited compared to other development tasks (e.g.,
debugging of the Matlab Input models when a model error was detected). It can be
assumed that the methods and techniques developed in this thesis have the potential
to investigate all kinds of development activities and artifacts. This includes methods
(e.g., test-driven development), techniques (e.g., refactorings), development languages
(e.g., Java) and additional information sources (e.g., user eye tracking to analyze focus
patterns). This will offer the possibility to understand, control and optimize methods
and techniques on a new level. The RMOF implementation allows the formal synthesis,
visualization and analysis of significant process elements in relation to defined process
goals.

Currently, the process synthesis is done with Genetic Programming. Concerning
the inherently unbounded model space that needs to be explored this will likely not
change. Nevertheless there are promising optimizations regarding for example the
preanalysis/computation of the tracking database. Some general optimizations like
caching are already implemented, others will likely improve the convergence of the GP
computations further e.g., model fitting with RMOF. The model fitting will presum-
ably benefit from a co-evolutionary GP approach that exploits the flexibility of RMOF
to formulate model classification/fitting criteria. The process analysis is currently done
with a simulation based approach. There exist various formal methods and techniques
(e.g., probabilistic model checking) that will likely increase the precision and might
have the possibility to offer additional insights into the data.

This work is a first step towards a new kind of process modeling and optimization
targeting an industrial context. It holds the promise to introduce methods and tech-
niques into the development of computer systems that have the same level of maturity
as methods and techniques of traditional engineering disciplines while still providing
the suitability and sustainability that is required to apply and optimize them in a
controlled way.

196

Bibliography

[1] R. Buschermöhle, M. Brörkens, I. Brückner, W. Damm, W. Hasselbring,
B. Josko, C. Schulte, and T. Wolf, “Model Checking (Grundlagen und Praxiser-
fahrungen).,” Informatik Spektrum, vol. 27, no. 2, pp. 146–158, 2004.

[2] R. Koppe, A. Koppe, and R. Buschermöhle, “Ergebnisse der Studie CONTROL,”
tech. rep., OFFIS - Institut für Informatik, Oldenburg, Germany, 2011.

[3] R. Buschermöhle, H. Eekhoff, H. Frommhold, B. Josko, and M. Schiller,
SUCCESS - Erfolgs- und Misserfolgsfaktoren bei der Durchführung von Hard-
und Softwareentwicklungsprojekten in Deutschland. Oldenburg, Germany: BIS-
Verlag der Carl von Ossietzky Universität, 2011.

[4] R. Buschermöhle, H. Eekhoff, H. Frommhold, B. Josko, and M. Schiller, “SUC-
CESS - Erfolgs- und Misserfolgsfaktoren bei der Durchführung von Hard- und
Softwareentwicklungsprojekten in Deutschland - erweiterte Analyse -,” tech. rep.,
OFFIS - Institut für Informatik, Oldenburg, Germany, 2011.

[5] V-Modell XT v1.4, 2012. Available online at http://www.v-modell-xt.de last
visited on 11-11-2014.

[6] Object Management Group, SPEM - Software Process Engineering Metamodel
v2.0, 2008. Available online at http://www.omg.org/spec/SPEM/ last visited on
11-11-2014.

[7] K. Jensen, Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. Volume 1, Basic Concepts. Berlin, Germany: Springer-Verlag, 1997.

[8] G. Junkermann, B. Peuschel, and W. Schaefer, “Merlin: Supporting cooper-
ation in software development through a knowledge-based environment,” in
Proceedings of Software Process Modelling and Technology (J. Kramer and
B. Nuseibeh, eds.), (New York City, New York, United States), pp. 103–129,
John Wiley & Sons, Inc., 1994.

[9] W. F. Tichy, “A data model for programming support environments and its
application,” in Trends in Information Systems (B. Langefors, A. A. Verrijn-
Stuart, and G. Bracchi, eds.), pp. 219–236, Amsterdam, The Netherlands: North-
Holland Publishing Co., 1986.

197

http://www.v-modell-xt.de
http://www.omg.org/spec/SPEM/

Bibliography

[10] S. Bandinelli, C. Ghezzi, A. Fuggetta, and L. Lavazza, “Spade: An environment
for software process analysis, design, and enactment,” in Proceedings of Software
Process Modeling and Technology, (New York City, New York, United States),
pp. 223–248, John Wiley & Sons, Inc., 1994.

[11] B. Kiepuszewski, Expressiveness and Suitability of Languages for Control Flow
Modelling in Workflows. PhD thesis, Queensland University of Technology, Bris-
bane, Australia, 2003.

[12] H. Zhang, B. Kitchenham, and D. Pfahl, “Reflections on 10 years of soft-
ware process simulation modelling: A systematic review,” in Proceedings of
the International Conference on Software Process, (Leipzig, Germany), Springer-
Verlag, 2008.

[13] G. Rozenberg, ed., Handbook of Graph Grammars and Computing by Graph
Transformations, Volume 1: Foundations, (River Edge, NJ, USA), World Scien-
tific Publishing Co., Inc., 1997.

[14] S. J. Mellor and M. Balcer, Executable UML: A Foundation for Model-Driven
Architectures. Boston, Massachusetts, USA: Addison-Wesley Longman Publish-
ing Co., Inc., 2002.

[15] R. Buschermöhle and J. Oelerink, “Rich meta object facility as formal integration
platform: Syntax, Semantics, and Implementation,” Innovations in Systems and
Software Engineering, vol. 4, no. 3, pp. 249–257, 2008.

[16] L. Osterweil, “Software processes are software too,” in Proceedings of the 9th
international conference on Software Engineering, ICSE ’87, (Los Alamitos, CA,
USA), pp. 2–13, IEEE Computer Society Press, 1987.

[17] C. A. Petri, Kommunikation mit Automaten. PhD thesis, Bonn: Institut für
Instrumentelle Mathematik, 1962. Schriften des IIM Nr. 2, 68 pages.

[18] W. M. Zuberek, “Performance evaluation of concurrent systems using timed petri
nets,” in Proceedings of the 1985 ACM thirteenth annual conference on Computer
Science, (New York, New York, USA), pp. 326–329, ACM, 1985.

[19] R. Valk, “Self-modifying nets, a natural extension of petri nets.,” Lecture Notes
in Computer Science: Automata, Languages and Programming, vol. 62, pp. 464–
476, 1978.

[20] “Integrated DEFinition for function modeling (IFDEF0),” 1993. Available online
at http://www.idef.com/pdf/idef0.pdf last visited on 11-11-2014.

198

http://www.idef.com/pdf/idef0.pdf

Bibliography

[21] K. E. Huff and V. R. Lesser, “A plan-based intelligent assistant that
supports the software development,” in Proceedings of the third ACM
SIGSOFT/SIGPLAN software engineering symposium on Practical software
development environments, SDE 3, (New York, New York, USA), pp. 97–106,
ACM, 1988.

[22] G. E. Kaiser, P. H. Feiler, and S. S. Popovich, “Intelligent assistance for software
development and maintenance,” IEEE Software, vol. 5, pp. 40–49, May 1988.

[23] T. Katayama, “A hierarchical and functional software process description and
its enaction,” in Proceedings of the 11th international conference on Software
engineering, ICSE ’89, (New York, New York, USA), pp. 343–352, ACM, 1989.

[24] W. Deiters and V. Gruhn, “Managing software processes in the environment
MELMAC.,” SIGSOFT Software Engineering Notes, vol. 15, pp. 193–205, Dec.
1990.

[25] A. Bröckers, M. C. Lott, H. D. Rombach, and M. Verlage, “MVP-L: Language
report version 2,” tech. rep., AG Software Engineering, Kaiserslautern, Germany,
1995.

[26] H. D. Rombach, “MVP-L: A language for process modeling in-the-large,” tech.
rep., University of Maryland at College Park, College Park, MD, USA, 1991.

[27] M. Baldi, S. Gai, M. L. Jaccheri, and P. Lago, “Object Oriented Software Pro-
cess Model Design in E3,” Software Process Modelling and Technology, Research
Studies Press, pp. 279–290, 1994.

[28] M. Jaccheri and R. Conradi, “Techniques for process model evolution in epos,”
in Proceedings of IEEE Transactions on Software Engineering, vol. 19, pp. 1145
– 1156, 1993.

[29] R. Greenwood, I. Robertson, J. Sa, B. Warboys, R. A. Snowdon, and R. F.
Bruynooghe, “PADM: Towards a Total Process Modelling System,” Software
Process Modelling and Technology, 1994.

[30] J. Sa and B. Warboys, Specifying Concurrent Object-based Systems Using
Combined Specification Notations. Manchester UMCS, University of Manch-
ester, Department of Computer Science, 1991.

[31] G. Canals, N. Boudjlida, D. Jean-Claude, C. Godart, and J. Lonchamp, ALF:
a framework for building process-centred software engineering environments,
pp. 153–185. Taunton, UK: Research Studies Press Ltd., 1994.

199

Bibliography

[32] W. Emmerich and V. Gruhn, “Funsoft nets: A petri-net based software pro-
cess modeling language,” in Proceedings of the sixth international workshop on
software specification and design, pp. 175–184, IEEE Computer Society Press,
1996.

[33] S. M. Sutton, Jr., and L. J. Osterweil, “The design of a next-generation process
language,” in Proceedings of 6TH European Software Engineering Conference
and the 5th ACM Sigsoft Symp. on the foundations of Software Engineering,
(Berlin, Germany), pp. 142–158, Springer-Verlag, 1997.

[34] S. Taft, R. Duff, R. Brukardt, E. Ploedereder, P. Leroy, and E. Schonberg,
Ada 2012 Reference Manual. Language and Standard Libraries: International
Standard ISO/IEC 8652/2012 (E). Lecture Notes in Computer Science / Pro-
gramming and Software Engineering, Berlin, Germany: Springer-Verlag, 2014.

[35] A. Wise, A. G. Cass, B. S. Lerner, E. K. McCall, L. J. Osterweil, and J. Stan-
ley M. Sutton, “Using Little-JIL to Coordinate Agents in Software Engineer-
ing,” in Proceedings of Automated Software Engineering Conference (ASE 2000),
Grenoble, France, pp. 155–163, IEEE, 2000.

[36] J.-Y. J. Chen, “CSPL: An Ada95-Like, Unix-Based Process Environment,” IEEE
Transactions Software Engineering, vol. 23, pp. 171–184, March 1997.

[37] S. Dami, J. Estublier, and M. Amiour, “APEL: a Graphical Yet Executable For-
malism for Process Modeling,” Automated Software Engineering, vol. 5, pp. 61–
96, 1997.

[38] R. Solingen and E. Berghout, The Goal/Question/Metric method: a practical
guide for quality improvement of software development. New York, New York,
USA: McGraw-Hill, 1999.

[39] J. M. Ribó and X. Franch, “Building Expressive and Flexible Process Models Us-
ing a UML-Based Approach,” in Proceedings of Software Process Technology: 8th
European Workshop, EWSPT 2001, (Witten, Germany), pp. 152–172, Springer-
Verlag, 2000.

[40] D. Rossi and E. Turrini, “EPML : Executable Process Modeling Language -
UBLCS-2007-22,” tech. rep., Department of Computer Science, University of
Bologna, 2007.

[41] Object Management Group, MOF - Meta Object Facility Core Specification
Version 2.0, 2011. Available online at http://www.omg.org/cgi-bin/doc?
formal/2006-01-01 last visited on 11-11-2014.

200

http://www.omg.org/cgi-bin/doc?formal/2006-01-01
http://www.omg.org/cgi-bin/doc?formal/2006-01-01

Bibliography

[42] Object Management Group, Object Constraint Language v2.4, 2014. Available
online at http://www.omg.org/spec/OCL/ last visited on 11-11-2014.

[43] A. Agrawal, “Metamodel based model transformation language to facilitate do-
main specific model driven architecture,” in Proceedings of the 18th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2003, October 26-30, (Anaheim, CA, USA), pp. 118–
119, ACM, 2003.

[44] E. C. Kabore, Contribution à l’automatisation d’un processus de construction
d’abstractions de communication par transformations successives de modèles.
PhD thesis, Université Rennes 1, 2008.

[45] G. Csertán, G. Huszerl, I. Majzik, Z. Pap, A. Pataricza, and D. Varró, “VIA-
TRA: Visual automated transformations for formal verification and validation
of UML models,” in Proceedings of the 17th IEEE International Conference on
Automated Software Engineering (J. Richardson, W. Emmerich, and D. Wile,
eds.), (Edinburgh, UK), pp. 267–270, IEEE Press, September 23–27 2002.

[46] K. Backhaus, B. Erichson, W. Plinke, and W. Weiber,
Multivariate Analysemethoden. Eine anwendungsbezogene Einführung. Berlin,
Germany: Springer-Verlag, 2006.

[47] P. P. Eckstein, Angewandte Statistik mit SPSS. Praktische Einführung für
Wirtschaftswissenschaftler. Wiesbaden, Germany: Gabler Verlag, 2004.

[48] D. Luenberger and Ye, Linear and Nonlinear Programming. Berlin, Germany:
Springer-Verlag, third ed., 2008.

[49] A. Pnueli, “The temporal logic of programs,” in Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, SFCS ’77, (Washington, DC,
USA), pp. 46–57, IEEE Computer Society, 1977.

[50] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic verification of finite-
state concurrent systems using temporal logic specifications,” ACM Transactions
on Programming Languages and Systems, vol. 8, pp. 244–263, Apr. 1986.

[51] E. M. C. Jr., O. Grumberg, and D. A. Peled, Model Checking. The MIT Press,
1999.

[52] W. van der Aalst, A. Weijter, and L. Maruster, “Workflow mining: Discovering
process models from event logs,” IEEE Transactions on Knowledge and Data
Engineering, vol. 16, pp. 1128–1142, 2003.

201

http://www.omg.org/spec/OCL/

Bibliography

[53] Object Management Group, CWM - CommonWarehouse Metamodel v1.1, 2003.
Available online at http://www.omg.org/spec/CWM/ last visited on 11-11-2014.

[54] Object Management Group, Unified Modeling Language 2.0 Infrastructure
Specification, 2007. Available online at http://www.omg.org/spec/UML/2.0/
Infrastructure/PDF/ last visited on 11-11-2014.

[55] Object Management Group, Unified Modeling Language 2.0 Superstructure
Specification, 2007. Available online at http://www.omg.org/spec/UML/2.0/
Superstructure/PDF/ last visited on 11-11-2014.

[56] R. Eshuis and R. Wieringa, “A Formal Semantics for UML Activity Diagrams
- Formalising Workflow Models,” Tech. Rep. TR-CTIT-01-04, University of
Twente, Centre for Telematics and Information Technology, Enschede, The
Netherlands, 2001.

[57] H. Störrle, “Semantics and Verification of Data Flow in UML 2.0 Activities,”
Electronic Notes in Theoretical Computer Science, vol. 127, pp. 35–52, Apr.
2005.

[58] H. Störrle, “Semantics of UML 2.0 Activities,” in Proceedings of the IEEE
Symposium on Visual Languages and Human-Centric Computing, (Piscataway,
NJ, USA), IEEE Press, 2004.

[59] W. Damm, B. Josko, A. Pnueli, and A. Votintseva, “A discrete-time UML se-
mantics for concurrency and communication in safety-critical applications,” in
Proceedings of Science of Computer Programming, vol. 55, (Amsterdam, The
Netherlands), pp. 81–115, Elsevier Science Publishers B. V., 2005.

[60] D. Akehurst and S. Kent, “A relational approach to defining transformations in
a metamodel,” in UML 2002 - The Unified Modeling Language (J.-M. Jézéquel,
H. Hussmann, and S. Cook, eds.), vol. 2460 of Lecture Notes in Computer Science,
pp. 243–258, Berlin, Germany: Springer-Verlag, 2002.

[61] G. Engels, R. Heckel, and J. M. Küster, “Rule-Based Specification of Behav-
ioral Consistency Based on the UML Meta-model,” Lecture Notes in Computer
Science, vol. 2185, p. 272ff., 2001.

[62] D. Varró and A. Pataricza, “VPM: Mathematics of metamodeling is metamodel-
ing mathematics,” Journal of Software and Systems Modeling, vol. 1, pp. 1–24,
2003.

[63] M. Alanen and I. Porres, “Subset and Union Properties in Modeling Languages,”
tech. rep., Abo Akademi University Department of Information Technologies,
Turku, Finland, 2005.

202

http://www.omg.org/spec/CWM/
http://www.omg.org/spec/UML/2.0/Infrastructure/PDF/
http://www.omg.org/spec/UML/2.0/Infrastructure/PDF/
http://www.omg.org/spec/UML/2.0/Superstructure/PDF/
http://www.omg.org/spec/UML/2.0/Superstructure/PDF/

Bibliography

[64] “The Eclipse Modeling framework.” Available online at http://www.eclipse.
org/modeling/emf last visited on 11-11-2014.

[65] D. Steinberg, F. Budinski, M. Paternostro, and E. Merks, EMF: Eclipse Modeling
Framework. Eclipse Series, Boston, Massachusetts, USA: Addison-Wesley Long-
man Publishing Co., Inc., v2 ed., 2008.

[66] XMI - XML Metadata Interchange Specification v1.2, 2002. Available online at
http://www.omg.org/cgi-bin/doc?formal/2002-01-01 last visited on 11-11-
2014.

[67] “Java Emitting Templates.” Available online at http://www.eclipse.org/
modeling/m2t/downloads/?project=jet last visited on 08-13-2009.

[68] “Acceleo - a pragmatic implementation of the Object Management Group (OMG)
MOF Model to Text Language (MTL) standard.” Available online at https:
//eclipse.org/acceleo/ last visited on 11-11-2014.

[69] “MOF Model to Text Transformation language (MOFM2T) v1.0,” 2008. Avail-
able online at http://www.omg.org/spec/MOFM2T/1.0/ last visited on 11-11-
2014.

[70] “Xpand - a statically-typed template language.” Available online at http://
wiki.eclipse.org/Xpand last visited on 11-11-2014.

[71] “EMF Model Query Project.” Available online at http://www.eclipse.org/
modeling/emf/downloads/?project=query last visited on 11-11-2014.

[72] “EMF Model Compare Project - compare and model EMF models.” Available
online at https://www.eclipse.org/emf/compare/ last visited on 11-11-2014.

[73] “EMF Model Validation Project - checking constraints.” Available online
at http://eclipse.org/modeling/emf/downloads/?project=validation last
visited on 11-11-2014.

[74] “Graphical Model Framework / Project.” Available online at http://www.
eclipse.org/modeling/gmp/ last visited on 11-11-2014.

[75] R. C. Gronback, Eclipse Modeling Project : A Domain-Specific Language (DSL)
Toolkit. Eclipse Series, Boston, Massachusetts, USA: Addison-Wesley Longman
Publishing Co., Inc., 2009.

[76] “EMF UML2 project.” Available online at http://www.eclipse.org/modeling/
mdt/?project=uml2 last visited on 11-11-2014.

203

http://www.eclipse.org/modeling/emf
http://www.eclipse.org/modeling/emf
http://www.omg.org/cgi-bin/doc?formal/2002-01-01
http://www.eclipse.org/modeling/m2t/downloads/?project=jet
http://www.eclipse.org/modeling/m2t/downloads/?project=jet
https://eclipse.org/acceleo/
https://eclipse.org/acceleo/
http://www.omg.org/spec/MOFM2T/1.0/
http://wiki.eclipse.org/Xpand
http://wiki.eclipse.org/Xpand
http://www.eclipse.org/modeling/emf/downloads/?project=query
http://www.eclipse.org/modeling/emf/downloads/?project=query
https://www.eclipse.org/emf/compare/
http://eclipse.org/modeling/emf/downloads/?project=validation
http://www.eclipse.org/modeling/gmp/
http://www.eclipse.org/modeling/gmp/
http://www.eclipse.org/modeling/mdt/?project=uml2
http://www.eclipse.org/modeling/mdt/?project=uml2

Bibliography

[77] “BPMN2 Business Process Model and Notation 2.0 project.” Available online
at http://www.eclipse.org/modeling/mdt/?project=bpmn2 last visited on 11-
11-2014.

[78] “IMM Information Metamodel project - provide metamodel/profile implemen-
tations based on the information management metamodel omg specification.”
Available online at http://www.eclipse.org/modeling/mdt/?project=imm last
visited on 11-11-2014.

[79] “ATL - model transformation technology.” Available online at https://eclipse.
org/atl/ last visited on 11-11-2014.

[80] “Declarative QVT.” Available online at http://www.eclipse.org/mmt/
?project=qvto last visited on 11-11-2014.

[81] “Operational QVT.” Available online at http://www.eclipse.org/modeling/
m2m/downloads/index.php?project=qvtoml last visited on 11-11-2014.

[82] “The Meta Object Facility (MOF) Query/View/Transformation language v2.0.”
Available online at http://www.omg.org/cgi-bin/doc?ptc/2007-07-07 last
visited on 11-11-2014.

[83] “Teneo project - a database persistency solution for EMF using Hibernate or
EclipseLink.” Available online at http://www.eclipse.org/modeling/emft/
?project=teneo last visited on 11-11-2014.

[84] “Net4J - extensible client-server system based on the Eclipse Runtime and the
Spring framework.” Available online at http://eclipse.org/modeling/emft/
?project=net4j last visited on 11-11-2014.

[85] “CDO - Connected Data Objects.” Available online at https://eclipse.org/
cdo/ last visited on 11-11-2014.

[86] “Eclipse Process Framework.” Available online at http://www.eclipse.org/
epf/ last visited on 11-11-2014.

[87] K. Schwaber, Agile Project Management with Scrum. Redmond, WA, USA:
Microsoft Press, 2004.

[88] K. Beck and C. Andres, Extreme Programming Explained: Embrace Change
(2nd Edition). Boston, Massachusetts, USA: Addison-Wesley Longman Publish-
ing Co., Inc., 2004.

[89] W. M. P. van der Aalst, J. Desel, and A. Oberweis, eds., Proceedings of Business
Process Management, Models, Techniques, and Empirical Studies, vol. 1806 of
Lecture Notes in Computer Science, (Berlin, Germany), Springer-Verlag, 2000.

204

http://www.eclipse.org/modeling/mdt/?project=bpmn2
http://www.eclipse.org/modeling/mdt/?project=imm
https://eclipse.org/atl/
https://eclipse.org/atl/
http://www.eclipse.org/mmt/?project=qvto
http://www.eclipse.org/mmt/?project=qvto
http://www.eclipse.org/modeling/m2m/downloads/index.php?project=qvtoml
http://www.eclipse.org/modeling/m2m/downloads/index.php?project=qvtoml
http://www.omg.org/cgi-bin/doc?ptc/2007-07-07
http://www.eclipse.org/modeling/emft/?project=teneo
http://www.eclipse.org/modeling/emft/?project=teneo
http://eclipse.org/modeling/emft/?project=net4j
http://eclipse.org/modeling/emft/?project=net4j
https://eclipse.org/cdo/
https://eclipse.org/cdo/
http://www.eclipse.org/epf/
http://www.eclipse.org/epf/

Bibliography

[90] A. Yakovlev, L. Gomes, and L. Lavagno, Hardware Design and Petri Nets. Berlin,
Germany: Springer-Verlag, 2000.

[91] P. Lutz and W. Harro, Theoretische Informatik: Petri Netze. Berlin, Germany:
Springer-Verlag, 2002.

[92] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Learning. Boston, Massachusetts, USA: Addison-Wesley Longman Publishing
Co., Inc., 1st ed., 1989.

[93] S. Luke, Essentials of Metaheuristics. Department of Computer Sci-
ence, George Mason University: Lulu, 2.0 ed., 2013. Available at
http://cs.gmu.edu/∼sean/book/metaheuristics/.

[94] K. De Jong, “Evolutionary computation: A unified approach,” in Proceedings
of the 10th Annual Conference Companion on Genetic and Evolutionary
Computation, GECCO ’08, (New York, New York, USA), pp. 2245–2258, ACM,
2008.

[95] H.-G. Beyer and H.-P. Schwefel, “Evolution strategies: A comprehensive intro-
duction,” Natural Computing, vol. 1, pp. 3–52, May 2002.

[96] L. J. Fogel, Intelligence Through Simulated Evolution: Forty Years of
Evolutionary Programming. New York City, New York, United States: John
Wiley & Sons, Inc., 1999.

[97] J. H. Holland, Adaptation in Natural and Artificial Systems : An Introductory
Analysis with Applications to Biology, Control, and Artificial Intelligence. Cam-
bridge, Massachusetts, USA: MIT Press, 1975.

[98] J. R. Koza, Genetic Programming: On the Programming of Computers by Means
of Natural Selection (Complex Adaptive Systems). Cambridge, Massachusetts,
USA: A Bradford Book, 1 ed., Dec. 1992.

[99] L. Altenberg, “The evolution of evolvability in genetic programming,” in Advances
in Genetic Programming (K. E. Kinnear, ed.), pp. 47–74, Cambridge, Mas-
sachusetts, USA: MIT Press, 1994.

[100] W. Banzhaf, F. D. Francone, R. E. Keller, and P. Nordin, Genetic programming:
an introduction: on the automatic evolution of computer programs and its
applications. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1998.

[101] D. Sankoff and J. B. Kruskal, Time warps, string edits, and macromolecules.
Cambridge, England: Cambridge University Press, 2000.

205

Bibliography

[102] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated
annealing,” Science, vol. 220, pp. 671–680, 1983.

[103] N. L. Cramer, “A representation for the adaptive generation of simple sequen-
tial programs,” in Proceedings of the 1st International Conference on Genetic
Algorithms, (Hillsdale, NJ, USA), pp. 183–187, L. Erlbaum Associates Inc., 1985.

[104] F. Gruau, “Genetic synthesis of boolean neural networks with a cell rewriting
developmental process,” in Proceedings of the Workshop on Combinations of
Genetic Algorithms and Neural Networks (COGANN92) (J. D. Schaffer and
D. Whitley, eds.), pp. 55–74, IEEE Computer Society Press, 1992.

[105] D. J. Montana, “Strongly typed genetic programming,” Evolutionary
Computation, vol. 3, pp. 199–230, 1994.

[106] H.-P. Schwefel and G. Rudolph, “Contemporary evolution strategies,” in
Proceedings of the Third European Conference on Advances in Artificial Life,
(London, UK), pp. 893–907, Springer-Verlag, 1995.

[107] D. Whitley, “The genitor algorithm and selection pressure: Why rank-based al-
location of reproductive trials is best,” in Proceedings of the Third International
Conference on Genetic Algorithms, pp. 116–121, Morgan Kaufmann, 1989.

[108] J. R. Koza, Genetic Programming II: Automatic Discovery of Reusable Programs.
Cambridge, Massachusetts, USA: MIT Press, 1994.

[109] A. Brindle and U. of Alberta. Department of Computing Science, Genetic
Algorithms for Function Optimization. Technical report (University of Alberta.
Department of Computing Science), University of Alberta, 1981.

[110] D. Whitley, J. Kauth, and C. S. U. D. of Computer Science, GENITOR: A
Different Genetic Algorithm. Technical report (Colorado State University. De-
partment of Computer Science), Colorado State University, Department of Com-
puter Science, 1988.

[111] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: A compar-
ative case study and the strength pareto approach,” IEEE Transactions on
Evolutionary Computations, vol. 3, pp. 257–271, Nov. 1999.

[112] S. Baluja, “Population-based incremental learning: A method for integrating
genetic search based function optimization and competitive learning,” tech. rep.,
Carnegie Mellon University, Pittsburgh, PA, USA, 1994.

[113] H. Mühlenbein, “The equation for response to selection and its use for prediction,”
Evol. Comput., vol. 5, pp. 303–346, Sept. 1997.

206

Bibliography

[114] G. Harik, F. G. Lobo, and D. E. Goldberg, “The compact genetic algorithm,” in
Proceedings of IEEE Transactions on Evolutionary Computation, pp. 523–528,
IEEE Computer Society Press, 1998.

[115] Z. Skolicki, “An analysis of island models in evolutionary computation,” in
Proceedings of the 2005 workshop on Genetic and evolutionary computation,
GECCO ’05, (New York, New York, USA), pp. 386–389, ACM, 2005.

[116] Z. Skolicki, "An Analysis of Island Models in Evolutionary Computation". PhD
Dissertation, George Mason University, 2007, 2007.

[117] D. J. Montana, “Strongly typed genetic programming,” Evolutionary
Computation, vol. 3, pp. 199–230, June 1995.

[118] “SWT: Standard Widget Toolkit.” Available online at http://www.eclipse.
org/swt/ last visited on 11-11-2014.

[119] “Usage Data Collector.” Available online at http://www.eclipse.org/epp/
usagedata/ last visited on 09-14-2009.

[120] J. J.H. Morris and V. Pratt., “A linear pattern-matching algorithm,” tech. rep.,
University of California, Berkeley, California, USA, 1970.

[121] G. Navarro and M. Raffinot, Flexible Pattern Matching in Strings: Practical
On-line Search Algorithms for Texts and Biological Sequences. New York, New
York, USA: Cambridge University Press, 2002.

[122] M. H. Halstead, Elements of Software Science (Operating and Programming
Systems Series). New York, New York, USA: Elsevier Science Inc., 1977.

207

http://www.eclipse.org/swt/
http://www.eclipse.org/swt/
http://www.eclipse.org/epp/usagedata/
http://www.eclipse.org/epp/usagedata/

List of Tables

1.1 Two example variables a,b and their observations 40
1.2 Computing the rank of variable a . 41
1.3 Computing the rank of variable b . 41
1.4 Computing differences between a and b 42
1.5 Computation of a and b for example observations 1.1 43
1.6 Simplex tableau phase 1 . 46
1.7 Simplex tableau phase 2 . 46

5.1 Sequence length, occurences and their probabilities 170
5.2 Distribution of transitions with guards 189

209

List of Figures

1.1 Control flow 1: hardware restrictions . 8
1.2 Control flow 2: human resource restrictions and qualifications 8
1.3 Software model: computation complexity of test cases 9
1.4 Process view examples . 11
1.5 Process information tracking . 13
1.6 Behavioral pattern . 14
1.7 Interaction model . 15
1.8 Interaction model with hypothesis enrichment 16
1.9 Process information distribution . 17
1.10 Hypothesis verification . 18
1.11 Sustainability and suitability . 19
1.12 Petri Net example with critical section 20
1.13 IDEF0 example (see [20], page 24) . 21
1.14 Grapple example (see [21], page 102) . 21
1.15 MSL example (see [22], page 11) . 22
1.16 HFSP example 1 (see [23], page 346) . 23
1.17 HFSP example 2 (see [23], page 346) . 23
1.18 MELMAC example (see [24], page 4) . 23
1.19 MVPL example (see [25], page 13) . 24
1.20 E3 example (see [27], page 11) . 24
1.21 EPOS example (see [28], page 5) . 25
1.22 Merlin example (see [8], page 5, 14) . 26
1.23 PADM example (see [29], page 20) . 27
1.24 ALF example (see [31], page 21) . 28
1.25 SPADE example (see [10], page 12,13) 28
1.26 FUNSOFT example (see [32], page 9) 29
1.27 JIL example (see [33], page 8) . 30
1.28 Little JIL example (see [35], page 7) . 30
1.29 CSPL example (see [36], page 6) . 31
1.30 APEL example (see [37], page 27) . 31
1.31 PROMENADE example (see [39], page 165) 32
1.32 EPML example (see [40], page 13) . 32
1.33 Generic modeling environment . 34

211

List of Figures

1.34 MOF . 36
1.35 Cross tabulation SUCCESS points and number of employees 39
1.36 χ2 - distribution function example . 40
1.37 Linear regression analysis example . 44
1.38 Kripke structure example . 48
1.39 LTL formulas and their semantics in the calculation tree 50

2.1 RMOF meta-modeling . 54
2.2 Data structures (green = static, red = dynamic) 57
2.3 Class diagram of simple types . 63
2.4 Class diagram of complex types . 66
2.5 State machine handler . 96
2.6 Initialization of the global state machine 97
2.7 Observer check of the global state machine 98
2.8 Sub effect identification of the global state machine 99
2.9 Global state machine executions . 100
2.10 Derived values computation . 101
2.11 Derived value - qualified name . 102
2.12 Derived value - ImportedMember . 102
2.13 Derived unions . 103
2.14 GetInnerMostOperationCall . 104
2.15 GetParam . 105
2.16 SetParam . 105
2.17 Temporal observer realizing “next” . 106
2.18 Temporal observer realizing “globally” 106
2.19 Temporal observer realizing “eventually in the future” 107
2.20 Temporal Observer realizing “until” . 107
2.21 Temporal observer realizing “release” . 107
2.22 RMOF concept vs. implementation . 110
2.23 RMOF environment screenshot . 111
2.24 RMOF instance example with STS semantics 113

3.1 SPEM 2.0 method framework . 116
3.2 Process behavior package of SPEM . 117
3.3 Eclipse Process Framework screenshot 118
3.4 Petri Net Example . 120
3.5 getWeaklyColoredBag of class TokenLibrary 121
3.6 getMarking of class WeaklyColoredBag 122
3.7 change of class Marking . 122
3.8 computeSwitchingTogether of class TransitionLibrary 124
3.9 computeRelevance of class WeaklyColoredTransitions 125

212

List of Figures

3.10 computeRequiredTokens of class WeaklyColoredTransitions 126
3.11 computeAvailableTokens of class WeaklyColoredTransitions 127
3.12 computeSubBagOf of class WeaklyColoredTransitions 128
3.13 computeMaximality of class WeaklyColoredTransitions 129
3.14 computeRelevance of class PetriNetTransition 130
3.15 computeEnabledTransitions of class TransitionLibrary 130
3.16 filter of class enableF ilter −Guards 131
3.17 Introduce objects as tokens . 131
3.18 Classes of weakly colored, object-based Petri Net library 132

4.1 Scatter plot without (obvious) mathematical structure 136
4.2 GP schemata . 139
4.3 GP tree of formula cos(x− sin(x)) . 141
4.4 Distribution of population candidate solutions using samples 5, 20, 75 . 147
4.5 Approximating the distribution of candidate solutions with a histogram

three multivariate Gaussian curves and a marginalized version 148
4.6 Hypothetical relations between cooperation and heterogeneity level and

heterogeneity and solving capability . 149
4.7 RMOF Screen with loaded models and RMOF editor 150

5.1 BTC Testvector Editor screenshot . 159
5.2 Process information tracking preferences 161
5.3 Screenshot Silnab editors . 163
5.4 Idea of the KMP algorithm . 164
5.5 High Performance Cluster “Hero” in Oldenburg 167
5.6 Partial interaction pattern model with 95% coverage 168
5.7 Single interaction sequence . 169
5.8 GUI element identification . 170
5.9 Single sequences > 0.5% overview . 171
5.10 Test review as main external input sequence 172
5.11 Navigation: test specification browser . 173
5.12 Navigation: test vectors . 174
5.13 Optimization TVE navigation . 175
5.14 Input sequences of TVE grid navigation 176
5.15 Input sequence ’125’ of TVE grid navigation 176
5.16 Delete value(s) sequence ’87’ . 177
5.17 Probabilities between sequences . 178
5.18 Three reflexive interaction sequences with a probability >= 1% and a

transition probability >= 50% . 178
5.19 Sequence 43: scrolling sub-data view . 179
5.20 Sequence 87: backspaces in TVE Grid 180

213

List of Figures

5.21 Simulation approach example . 181
5.22 TVEChart / signal propagation view . 187
5.23 Single interaction sequences (without guard(ed) Silnab files) 193

214

	Title Page
	Erklärung / Statement
	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	Introduction
	Screenplay and Scenarios
	Process Modeling
	Methodology
	Problem and Related Work
	Process Modeling Languages
	Meta-Modeling Languages
	Process Optimization
	Linear and Non-Linear Optimization
	Verification
	Stochastic Optimization and Metaheuristics

	Rich Meta Object Facility
	Data Structures
	Simple Types
	Complex Types
	Instances
	Information
	Structures
	Naming
	Core Meta Model and Configurations

	Expressions
	Dynamics
	Core
	Formal Semantics
	Extended Core
	Derived Values
	Operations

	Observers
	Implementation

	Software Process Engineering Metamodel
	Syntax
	Semantics

	Synthesis and Analysis
	Genetic Programming
	Complexity
	Algorithm
	Automatic Defined Functions
	Fitness Computation
	Concurrent Computing

	Genetic Programming and RMOF
	Genetic Programming Optimization
	Data Access and Precomputations
	Caches
	Feedback Loops

	Evaluation
	Interaction Tracking
	Corrections, Interpretations and Aggregations
	Silnab Models
	Interaction Pattern Detection
	Optimization of Interaction Sequences
	Process Model Analysis: Simulation
	Process Model Impacts: Guards

	Conclusion
	Bibliography
	List of Tables
	List of Figures

