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Abstract: Nowadays, power generation is mostly regulated by the temporal varying power demand. The increasing 
importance of regenerative, unregulated and fluctuating power stations intensifies the temporal divergence of power 
supply and power demand and therefore complicates the control of the power supply [6]. As there are many current 
consuming tasks, which are not bound to be performed at a fixed point of time, but only during a certain time interval, 
we introduce the problem how to schedule such adaptive power consuming jobs to a given, temporal varying power 
supply. After a formalisation of the problem, the performances of ten different instantiations of the meta-heuristic 
Tabu Search are compared regarding the best choice of parameters.   
 
 
1. Introduction 

 
Conventional methods for producing electrical energy from fossil fuels or nuclear energy depend on limited resources. 
Experts expect that the peak in world oil production will be reached in the near future and recommend economies to 
decrease their dependencies on fossil energy resources [3]. Renewable energy sources i.e. wind, waterpower, and 
biomass, mostly are attributable to solar radiation and hence will be available nearly for ever. It is assessed that the 
solar energy which daily reaches the earth is about 15.000 times the energy which is actually consumed by all 6 billion 
people [2]. The solar radiation can be absorbed directly through collectors, wind through rotors, and waterpower 
through current or tidal power stations; biomass energy is made available through burning (wood) or fermentation as 
well as gasification (silage, liquid manure) [9].  

One mayor drawback of most of these renewable energy sources is their temporal availability: Energy availability 
from renewable resources usually depends on weather conditions that affect e.g. the effectiveness of solar energy 
electric power stations and windmills. So, there is no guarantee that renewable energy converters produce the amount 
of electrical energy which is needed at a certain time. The storage of electrical energy, which would overcome this 
problem, is yet not sufficiently feasible.  

Therefore, short time power supply management (24 h in advance) including renewable energy sources depends on 
detailed demand estimation and on an estimation of the supply of wind or solar energy converters. For stability control 
of energy supply on this time scale on one hand the supplier can affect i.e. the output of hydraulic power plant or gas 
turbines, or buy and sell electricity at the energy exchange market [4]. On the other hand, it is also reasonable to con-
trol power consumers in their temporal demand to reduce peaks in power demand, compensate temporal losses in 
power supply, or generally ‘shape’ load curves corresponding to supply curves [1].  

 

2.  Intention of this paper 
Our approach addressed in this paper is to explore the possibilities of shifting the consumption of electrical energy 
with respect to a prognosis of energy availability for a fixed time interval. This approach seems to be worth to be in-
vestigated for several reasons: 

• There are energy consuming tasks which need not to be started at a fixed point of time but have to be performed 
in a certain time interval. Examples of such tasks are found in industrial processes (e.g. paper mills) as well as in 
the private area (e.g. dish washing).  

• The availability of energy from renewable sources, e.g. wind energy, can be predicted with sufficient precision, 
see e.g. [7].  

• The infrastructure which allows the communication between consumers and suppliers is enhancing and is becom-
ing available for a distributed supply site/demand site management [12, 14]. Intelligent home systems are already 
built, which will allow a simple and convenient control of the entire technology within a building, e.g. the visio-
matic® home system. So, the adaptation of tasks to the fluctuating energy supply can be automated and does not 
need steady human interaction.  
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For this kind of demand site management (DSM) in power supply networks two alternatives can be examined. On one 
hand, consumers can control their energy demand ‘autonomously’ by reacting on ‘real-time’ signals of the energy 
supplier (see e.g. [15]). On the other hand, the supplier can directly control energy consumers by shifting their power 
demand on a given time scale. In this paper we investigate an optimisation method for the second alternative. 
 
First we will introduce a formal model of the optimisation problem (TJAP), which is obviously NP-hard. As this 
model restricts to schedule only a subset of jobs, we proceed to a more realistic model (JAP), which schedules all jobs 
and tries to minimise the temporal difference between power demand and supply.  The meta-heuristic Tabu Search 
will be used for the search for an optimal schedule: so, we present the various instantiations of Tabu Search and ana-
lyse which of these instantiations is most appropriate for solving the problem.  
 
 
3. The Model 
 
3.1 Adaptive consumers 
 
Many energy consuming tasks are not bound to be started at a certain point of time. Often it is sufficient, if these tasks 
are fulfilled in a given time interval. So, throughout this paper, we will consider such tasks as “jobs” j = (a(j), e(j), d(j), 
m(j)), which are characterized by  
 
• an earliest starting time a(j)∈T, 
• a latest due time e(j)∈ T,  a(j) ≤ e(j), 
• a duration d(j)∈T, where d(j) ≤ e(j) - a(j), 
• a demand m(j)∈IR of energy that must be supplied for the duration of the job. 
 
We regard time as a discrete set T = {0,..,Tmax} of points in time and a(j), e(j), d(j) ∈ T. 
 
Let J ⊂ T x T x T x IR the finite set of all jobs which have to be scheduled in order to find an optimal match to the 
given power supply in the interval T. 
 
3.2 Power supply model 
 
As we have noted above, the power supply can be predicted with acceptable precision for time intervals of about 24 h 
in advance. So, for a time interval T we assume that the energy supply is a known function C: T  IR. 
 
This single, temporal varying resource is a very important aspect, which we have not found to be addressed in related 
problems.  
 
3.2 The theoretical optimisation problem 
 
Given the set of Jobs J, and the current supply C: T  IR, an optimal adaptation of jobs to the predicted electrical sup-
ply means to find mappings 
 
• x : J  {0, 1}, where x(j) = 1 indicates the job j has been chosen, and   
• s : J  T, where a(j) ≤ s(j) ≤ e(j) – d(j) holds for each chosen job, 

 
so that the demand never exceeds the supply: 
 
(1) ∀t ∈ T:  ∑s(j) ≤t≤s(j) + d(j)  m(j) ⋅ x(j) ≤ C(t) 
 
and the overall amount of energy granted to jobs is maximised:  
 
(2) f(x) = ∑j∈J  d(j) ⋅ m(j) ⋅ x(j)   max. 
 
In the following, we will refer to this problem as Theoretical Job Adaptation Problem (TJAP). 
 
The well known NP-hard knapsack problem is special case of the TJAP problem. The knapsack problem consists of a 
knapsack, characterised by a maximum capacity K, and a set O of n objects o = (wo, po), where po is the profit and wo 
is the (positive) weight of object o.  The goal is to find a vector x=(xo)o∈O , xo ∈{0,1} that guarantees ∑o∈Owoxo ≤  K, 
and that maximises the profit ∑o∈O po xo.  



With the settings  

• T = {0,.., Tmax} and Tmax = max{ p(o)/ w(o) | o∈O} 

• ∀t ∈ T:   C(t) = K 

• ∀o=(w(o), p(o)) ∈ O:  jo =(a(jo), e(jo), d(jo), m(jo)) with 
o earliest starting time  a(jo) = 0 = s(jo),  
o latest due time  e(jo) = p(o) / w(o), 
o demand for energy  m(jo) =  w(o)         and  
o duration of the job  d(jo) = p(o) / w(o), 

 
it follows: if x is the mapping of an optimal solution of the TJAP, then (xo)o∈O = (x(jo))o∈O  describes an optimal solu-
tion of the knapsack problem.    
 
3.3  The (more) realistic optimisation problem 
 
In the formalisation TJAP of the job adaptation problem jobs j with x(j)=0 are not scheduled: hence, there is no energy 
supplied for these jobs and they will never be executed. In a realistic scenario this situation is not acceptable: If the 
demand exceeds the energy supply, additional energy is bought on the energy market at high costs or produced by 
expensive, short-term reactive power stations, e.g. gas turbines or reservoir power stations.  
 
To model this situation in our optimisation we scheduled all jobs j∈J and chose as goal function f a measure ||.|| of the 
distance between energy supply and energy demand:  
we introduce an energy demand function BJ,s : T  IR   with  BJ,s (t) = ∑j∈J, s(j) ≤ t ≤s(j) + d(j) m(j) for all t ∈T 
 
Instead of determining a subset of jobs and optimal starting times, now only optimal starting times for all jobs have to 
be found in order to minimise the distance between supply and demand.   
 

(1’)  x(j) =1 

(2’)  ∑t ∈ T || BJ,s (t)–C(t) ||   min.  
 

We choose this formulation of the job adaptation problem (JAP) for further research. Figure 1 shows exemplarily the 
energy supply curve C(t) (red, square markers), the initial solution B0(t) (green, triangular markers), and the solution 
Bk(t) after optimisation (blue, circles). 
 
 
4. Job Adaptation Problem vs. Scheduling Problems 
 
The Job Adaptation Problem (JAP) means to schedule all jobs for being provided with energy power. Hence, it seems 
natural to interpret the problem as a scheduling problem.  
 
Scheduling problems are well researched in process planning, e.g. in production planning [5], where a fixed number of 
resources (machines) can be used for fulfilling a given number of production jobs. Such a job is characterized by its 
earliest starting time, its duration and its latest due time and its resource demand. Hard constraints describe restrictions 
which have to be included in a solution schedule while soft constraints may be violated by a solution schedule. The 
objective is to find an optimal schedule, which fulfils all hard constraints and most soft constraint. Often, the goal 
function which has to be maximised in order to assess the optimality of a solution is the number of products which can 
be produced following the given schedule in a given time period. Refined online-scheduling algorithms also handle 
changes in the planning environment, e.g. they update the number and characteristics of jobs and resources during the 
execution time of a schedule plan. Many scheduling problems are known for being NP-hard [13]. 
 
Although the jobs in the JAP and in scheduling problems are characterized by the same parameters, the JAP cannot be 
solved in an obvious manner by known scheduling algorithms, as the resource set of scheduling algorithms is always a 
discrete number of items (i.e. of machines) and the assignment of each job to a resource set is fixed, while the resource 
set of the JAP is a time-varying amount of energy shared by all scheduled jobs.  
 
Furthermore, we allow that the demand for energy BJ,s(t) at time t exceeds the available energy C(t) and focus to mini-
mise the difference between BJ,s (t) and C(t), whereas common scheduling algorithms don’t allow to exceed the maxi-
mum number of available resources. 
 



5. Tabu Search 
 
As a first approach for determining a solution of the given optimisation problem, the well-known ‘Tabu Search’ was 
investigated: Tabu Search (see e.g. [8]) is a meta-heuristic: it is superimposed on another heuristic and improves the 
underlying heuristic for an optimisation problem by allowing temporarily worse solutions on the one hand and inhibit-
ing cycles in the search process on the other hand. The overall idea is to complement the basic heuristic, a local search 
algorithm, by a so called Tabu List, which stores moves which lead to already inspected solutions. So, if the algorithm 
starts, the Tabu List is empty and an arbitrary solution, which is probably not optimal, is chosen as current solution. 
Starting from the current solution, the possible moves to neighboured solutions are evaluated by an objective function. 
From all moves which are not stored in the Tabu List, the move, which leads to the best solution, is chosen to become 
the new current solution. So, Tabu Search enforces that local minima of the objective function can be left by means of 
the Tabu List. 
Tabu Search has been adapted for a lot of problems. It has been instantiated with the following settings: 
 

 Neighbourhood generator: 
Depending on the given problem, the neighbourhood of the current solution s must be determined. A solution 
belongs to the neighbourhood, if it differs only slightly, i.e. by a single move, from the current solution.  
In our scenario, a neighbour differs from the current solution only by the shift of a single job j, i.e. the actual 
starting time s(j) in the current solution is increased or decreased by a fixed time unit.     
 

 Objective function: 
The objective function or goal function assesses the quality of solutions in the neighbourhood. 
Let Bk: T  IR the demand of solution k. We compared the performance of the following goal functions:  

• City-Block metric: CB(k) = ∑t∈T |Bk(t) – C(t)|   
• Euclidean distance: ED(k) = ( ∑t∈T (Bk(t) – C(t))2 )½   
• As a consequence of results from first experiments, the variant “Euclidean distance with penalty factor 

f” was added as a third goal function: 
EDP(k, f)  = ( ∑t∈T, Bk(t) ≥ C(t) f⋅(Bk(t) – C(t)) 2 + ∑t∈T, Bk(t) < C(t) (Bk(t) – C(t)) 2  )½   

 
 Content of the Tabu List: 

As a move is defined by shifting the starting time of one job, we investigated the consequences of storing the 
job identifier vs. the resulting solution in the Tabu List. The first alternative has the advantage of low storage, 
but inhibits neighbours which result from further moves of a job. The second alternative needs more storage and 
effort for comparisons, but inhibits fewer neighbours. We compared the differences between these two alterna-
tives by some experiments.    

 
 Length of the Tabu List (TL): 

Each chosen move or solution is stored in the Tabu List, which has a given maximum length TL. So, when stor-
ing the TL+1st solution, the first solution is deleted from the Tabu List and can be chosen again.   

  We experimented with different Tabu List length and tried to estimate a good relation between the Tabu List 
length and the number of jobs. 
 

 Aspiration criterion 
The intention of the Tabu List is to inhibit cycles in the search path by preventing the choice of a move which 
has been chosen before. Unfortunately, it is possible that the Tabu Lists impedes moves to the best neighbour. 
In this situation, the aspiration criterion allows to accept neighbours as new current solution if they are better 
than the best known solution. In our experiments, we tested the use of the aspiration criterion when storing just 
job identifiers in the Tabu List.    
 

 Number of iterations 
With an increased number of iterations, Tabu Search will find improved solutions. As the globally best solution 
is not known, we analysed the relation between the number of iterations and the quality of the solution.   

 
 
6. Experiments 
 
In [11], we set up experiments for assessing the suitability of Tabu Search for determining solutions of the JAP. This 
means on the one hand to evaluate the various possibilities to instantiate Tabu Search. On the other hand, some test 
cases had to be generated for benchmarking the different Tabu Search instantiations.  



6.1 Instantiation of Tabu Search 
 
Table 1a) shows an overview of the eight different variations of Tabu Search, which we primarily evaluated in order to 
find the appropriate set up for the job adaptation problem:  
 

Abbreviation Tabu List Content Goal function Aspiration Criterion 
JID,CB,+Asp (JID) Job ID (CB) City-Block yes 
JID,CB,-Asp (JID) Job ID (CB) City-Block no 
JID,ED,+Asp (JID) Job ID (ED) Euclidean Distance yes 
JID,ED,-Asp (JID) Job ID (ED) Euclidean Distance no 
SID,CB,-Asp (SID) Solution ID (CB) City-Block no 
SID,ED,-Asp (SID) Solution ID (ED) Euclidean Distance no 

Table 1a: Different instantiations of the Tabu Search method 
 
Taking into account that there are theoretically 2*2*2 = 8 possible combinations, we ruled out all combinations of 
storing solution identifiers (SID) and using the aspiration criterion. As the storage of solution IDs in the Tabu List 
means that this solution has once been chosen as new current solution, this solution can never be better than the best 
solution. Hence the aspiration criterion will not achieve any advancement.  
 
As mentioned before, the Euclidean distance with penalty factors has also been investigated as a goal function. Since 
in all primary tests job IDs as Tabu List content had a better performance than solution IDs and the City Block metric 
performed better Euclidean Distance, we restricted to the cases in Table 1b).   
 

JID,EDP,+Asp (JID) Job ID (EDP) Euclidean Distance with penalty factors yes 
JID,EDP,-Asp (JID) Job ID (EDP) Euclidean Distance with penalty factors no 

Table 1b: Different Instantiations of the Tabu Search method with EDP 
 
We evaluated both instantiation of Tabu Search with two different penalty factors f. So, in summary, we analysed ten 
different instantiations of Tabu Search. 
 
6.2 Generation of Test Cases 
 
Each instantiation of Tabu Search has been tested in experiments using five test cases which have been generated 
randomly: Each test case TC consists of tuples (J#t,z,1, .., J#t,z,5, Cz), where  J#t,z,v  is a set of  Jobs, |J#t,z,v | = #t, and Cz a 
possible energy supply over a time interval [0,z]. As these scenarios are randomly generated, we generated five differ-
ent job sets with parameters #t and z, i.e. J#t,z,1, .., J#t,z,5. When comparing the quality of solutions, the average result for 
these job sets was taken into account.   
 
Table 2 shows the set of parameters which have been used to set up the five test cases and the parameters of Tabu 
Search which have been used in the optimisation process: 
 

Parameters for test case
generation 

Parameters used in the Tabu Search optimisation Test 
case 

#t length of time interval, 
z ∈ 

# of iterations Tabu List length  penalities for 
EDP, f ∈ 

TC1 20 {30, 40, 60, 70, 80, 90, 
100, 110, 120, 130, 150} 

{20*i | i=1,..,14} {5*i | i=1,..,7} {2,  3} 

TC2 30 {20, 30, 40, 60, 80, 100, 
120, 140, 160, 180} 

{30*i | i=1,..,26} {5*i | i=1,..,11} {2,  5} 

TC3 40 {30, 50, 60, 80, 90, 100} {30*i | i=1,..,39} {5*i | i=1,..,13} {2,  5} 
TC4 60 {30, 40, 60, 80, 100} {30*i | i=1,..,26} {5*i | i=1,..,15} {2,  5} 
TC5 60 {120, 150, 200, 250} {30*i | i=1,..,49} {5*i | i=1,..,15} {2,  5} 

Table 2: Overview over the parameters of the test cases 
 
The energy supply function Cz was also generated randomly by determining a time point for the change in the energy 
supply and the altered amount of supplied energy. 
 
The Tabu Search heuristic was implemented using the Java Tabu Search framework OpenTS [10] which is available 
under the Common Public License (CPL v0.5). OpenTS allows generic elements for the Tabu List content, for the goal 
function, the neighbourhood and move definition.  
 



 
 

Figure 1: Energy supply and energy demand before (B0(t)) and after optimisation (Bk(t)) 
 
 
7. Results 
 
We evaluated the given test cases for all instantiations of Tabu Search shown in Table 1a) and 1b) [11]. 
As a criterion for comparing different instantiations, the relative improvement of the solution was used. If different 
instantiations did not sufficiently differ regarding this primary criterion, the number of iterations for achieving this 
improvement was taken into account as secondary criterion. 
 
For determining of the best instantiation of Tabu Search for the job adaptation problem we analyzed the influence of 
the following aspects: 
 

1. content of the Tabu List, 
2. application of the aspiration criterion, 
3. choice of goal function, 
4. usage of penalty factors. 

 
In each step, we compared experiments which only differed in the chosen aspect of consideration. The results gave 
cause to the following ratings: 
 
• Tabu Search instantiations using job identifiers as Tabu List’s content perform better than those using solutions. 
• The application of the aspiration criterion leads to better solutions. 
• The City Block-metric (CB) as goal function performs slightly better than the Euclidean distance.   
• The usage of Euclidean distance (ED) vs. Euclidean distance with penalties (EDP) as goal function leads to solu-

tions of similar quality, but higher penalty factors speed up the convergence to good solutions. 
 
Hence, according to the experiments, the best instantiation of Tabu Search seems to be (CB, JID, +Asp), i.e. using the 
City Block metric, storage of job IDs in the Tabu List, and using the aspiration criterion.  
 
This instantiation of Tabu Search was additionally assessed regarding the relation between Tabu List length on the one 
hand, and quality of the solutions depending of the number of iterations on the other hand. Figure 2 shows the experi-
mental results for the test cases TC2 with 30 jobs (left diagram) and TC4 with 60 jobs (right diagram).  The diagrams 
show the development of the solutions’ quality depending on the number of iterations. The different curves show the 
performance of the Tabu List length, which is varying between 5 and 65 in TC2 and between 5 and 75 in TC4. The 
comparison shows that solutions reach highest quality, if the Tabu List length is about ½ to ⅔ of the number of jobs. 
Higher Tabu List lengths are not advantageous, as the corresponding experiments do not lead to solutions with better 
quality. 
 



  
 
Figure 2: Relation between no. of iterations and quality of a solution for different values of the Tabu List length. 
(Left diagram: Test case TC2, right diagram: TC4) 
 
 
8. Conclusion and further work 
 
In this paper, we presented our first approach to the adaptation of a set of energy consuming jobs to a given, time vary-
ing energy supply curve. We introduced a simplified formal model to this problem which is NP hard. The more refined 
model was built and the performance of different instantiations of the Tabu Search optimisation method were ana-
lysed.  The research on Tabu Search has resulted in first insights how to instantiate this heuristic for smaller numbers 
of jobs.  
 
However, this approach has some drawbacks which we will try to overcome in our further work. First of all, the im-
plemented method was not able to schedule an appropriate number of tasks. We assessed job sets of 20-60 jobs which 
correspond to the control of some large-scale current consumers. Scenarios which also take the control of households 
into account address job sets of much higher cardinality. 
 
Further research will mainly focus on two aspects: On the one hand, other heuristics for optimisation, e.g. genetic 
algorithms, ant colony algorithms, simulated annealing, and the combination of these heuristics, as well as hierarchical 
approaches acting on successively refined time scales will be applied to the problem. On the other hand, we assume 
that the optimisation process could profit if the power supply curve is analysed beforehand, so that knowledge about 
the characteristics of the curve can be used in setting up the optimisation algorithms.  
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