
Approaching Decentralized Demand Side Management via
Self-Organizing Agents

Christian Hinrichs Ute Vogel Michael Sonnenschein
Dept. of Environmental Computer Science, C.v.O. University of Oldenburg, Germany

{hinrichs,vogel,sonnenschein}@informatik.uni-oldenburg.de

ABSTRACT
This paper provides an introduction to self-organizing mech-
anisms in the domain of energy systems. We motivate the
use of such mechanisms by outlining the drawbacks of present
control systems and providing some advantageous proper-
ties of self-organizing systems. We address the problem of
a supply and demand matching of a large number of dis-
tributed actors and give a mathematical formalisation of
this optimization problem. Based on that we propose the
algorithm DSS which uses the stigmergy paradigm to form
a distributed search heuristic. Afterwards the DSS-T is in-
troduced, a refinement of the DSS algorithm which incor-
porates mechanisms from the tabu search. To examine the
performance of the algorithms, we implemented a simulation
framework which lead us to the problem of local mutual ex-
clusion with fairness. Therefore we describe this problem
and its origin and then propose the ARP, a protocol which
guarantees local mutual exclusion, fairness and starvation
freedom.

Finally, we give some first insights into the performance
of the DSS and DSS-T algorithms by examining a single
simulation scenario for reference.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Distributed Artificial Intelli-
gence

General Terms
Algorithms

Keywords
self-organization, emergence, distributed heuristics, demand
side management, supply and demand matching

1. INTRODUCTION
The term Demand-Side Management (DSM) [4] appeared

in the last third of the past century. First research focused
on manually controlling large electrical loads (like industrial
plants) in order to compensate stress in the power grid. On

Cite as: Approaching Decentralized Demand Side Management via
Self-Organizing Agents, C. Hinrichs, U. Vogel and M. Sonnenschein, 2nd
International Workshop on Agent Technologies for Energy
Systems (ATES 2011), 10th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2011), Rogers,
Decker and Kok (eds.), May, 2, 2011, Taipei, Taiwan.

the one hand, these methods incorporated direct control sig-
nals which allowed immediate control over the loads. On the
other hand, indirect signals (i.e. dynamic pricing) have been
studied. These form incentives for appliance owners to regu-
late their energy use. This was followed by methods to sense
and react to stress situations in the grid automatically. For
an overview of these strategies the reader may refer to [5, 2,
8]. However, these approaches were centrally organized and
not suitable for a large amount of individually controllable
units.

Therefore, strategies of decentralized control have been in-
vestigated. Intelligent appliances which autonomously mon-
itor properties of the power grid (i.e. frequency or voltage)
and independently react to stress situations have been pro-
posed and tested [19, 6, 17]. In these approaches however,
the lack of coordination lead to oscillation effects due to syn-
chronization of appliance reactions. So there is a need for
communication to allow for intelligent coordination. Some
work has been done to address the oscillation problem [9].
Though this – to a certain extent – can be done in a cen-
tralized fashion, a more scalable and elegant way would be
given by a completely decentralized control and coordina-
tion scheme. This requires the appliances being able to au-
tonomously act in a system-stabilizing way.

But how can we design such a distributed artificial intel-
ligence? We investigated this question from a nature-driven
perspective. In nature there are many systems that fulfill
a specific task without central coordination (e.g. the for-
aging of ants). Those systems reveal a number of advan-
tageous properties like adaptivity, self-healing, scalability,
redundancy and more [16]. If we now examine the above
question from a more abstract point of view, we come to the
following conclusion: In a decentralized DSM-enabled sys-
tem, a large number of agents perform autonomous actions
and form a collective behaviour to fulfill a global objective.
Such a system is called self-organizing.

In this paper, we present our ongoing work on self-orga-
nization and emergence in energy systems. We believe that
such nature-inspired algorithms and models can effectively
be applied to the task of stabilizing the electricity grid, i.e.
by providing balancing power to compensate fluctuating en-
ergy resources. The paper is organized as follows: Section
2 describes the concept of self-organizing systems in detail.
In section 3 we present related attempts (own and other)
in this area. Section 4 then formalizes the addressed op-
timization problem of a supply and demand matching and
proposes DSS and DSS-T, first approaches to self-organizing
algorithms for this problem which form distributed search

heuristics based on the stigmergy paradigm. Afterwards,
in section 5 the simulation framework and the activity re-
striction protocol ARP are introduced before finally some
tentative interpretations of the performance of the proposed
algorithms are given.

2. SELF-ORGANIZATION AND
EMERGENCE

There is no common definition of self-organization. In bi-
ology, a self-organizing process produces a global pattern
purely on a basis of local actions, without knowledge of
the global pattern or system [1]. In the field of multiagent
systems there is a distinction between self-organization and
emergence. In [16] the former is defined as a mechanism or
process which allows a system to (re)organize during runtime
without explicit external instruction. The latter is described
as a phenomenon that becomes visible at the global (macro)
level of the system through interactions of elements at the
local (micro) level. This phenomenon can be a structure, be-
haviour or functionality of the system. Note that emergence
is not an essential property of self-organizing systems. How-
ever, engineering such systems often aims at the emergence
of specific properties, leaving self-organization being a tool
to make emergence possible. In the following, we will use
the term self-organization synonymously for self-organizing
systems that exhibit emergent properties.

Derived from the definitions above, self-organizing sys-
tems consist of at least two distinct activity levels. There is
the macro level, which is an observation of the system from
an external point of view. The individual system elements
may be visible, but their internal processes are unknown.
Observing a school of fish, for example, one can perceive
the overall structure of the system, as well as its behaviour.
That is, it forms a swarm which consists of several fishes.
The swarm moves around, with no identifiable central leader
to coordinate the movement. It is able to evade obstacles
and enemies and may even split up into multiple parts with-
out losing its abilities. These observable characteristics are
the emergent properties of the system. To understand the
origin of those, we must take a view into the system and in-
spect the micro level. That consists of fishes with individual
properties (i.e. position, direction, velocity) and behaviours.
Regarding the fishes as agents, the behaviours are expressed
as rules which modify the agent’s properties. The rules are
local : they consider only the properties of the agent itself,
and those of nearby agents. That is important, because it
implies that no agent is able to perceive the whole system
(and therefore: the macro level). The term ”nearby”, how-
ever, has to be defined specifically for each system. The
behaviour of swarming animals like fishes, birds and gregar-
ious land animals has been studied in [15]. The author has
identified three principal rules that, when simulated in an
artificial system, lead to the formation of swarms:

1. Collision Avoidance: avoid collisions with nearby ob-
jects.

2. Velocity Matching: attempt to match velocity and
movement direction with nearby individuals.

3. Swarm Centering: attempt to stay close to nearby in-
dividuals.

Applying these simple behavioral rules (with descending pri-
ority) to a number of simulated fishes in parallel, they will

Figure 1: Equilibrium condition of the centered in-
dividual in a school of fish. Arrows represent direc-
tion/velocity vectors.

form a swarm with the above characteristics. Note that
none of these rules takes the whole system into account.
But since the action of any indivdual triggers reactions of
other individuals, a global behaviour emerges. So there is a
mechanism of self-organization: every single individual acts
on behalf of its rules, aiming for a local equilibrium (the
fulfillment of a local goal, here rather: of all its rules). In
a school of fish, an individual reaches its equilibrium condi-
tion if all its neighbours are equally far away positioned and
have all the same movement direction and velocity as itself
(see figure 1). In the next timestep however, this condition
will be broken, because due to the third rule the outer fishes
will try to move towards the swarm center, disturbing the
equilibrium of the centered fish.

The example ”school of fish” shows the following: There
are individuals at the micro level of the system, acting upon
simple local rules and each striving after an equilibrium (ful-
fillment of the local goal). If all individuals were in equilib-
rium condition, the system would have organized itself. But
as soon as an external disturbance occurs, the individuals
would try to fulfill their local goals again, effectively reor-
ganizing the system. Since this reorganization occurs with-
out external guidance, it is called self-organization. The
emergent properties of the system are either produced by
the reorganization process itself (as in the school of fish),
or by reaching the equilibrium state. An example for the
latter would be the termite nest-building. Here, the emer-
gent property is the optimal protection of the termite queen.
This is reached by building the nest equally around the spa-
tial position of the queen. If the queen moves its permanent
residence, the worker termites start to rebuild the nest so
that the queen will afterwards again be positioned centrally
in the nest. Upon reaching this goal, the system has reor-
ganized and will again optimally protect the queen. This
example shows an additional aspect: An internal central en-
tity in a self-organizing system is allowed, as long as this
entity only triggers the self-organization process but does
not control the individual actions.

Self-organizing systems can be applied to a number of
tasks, especially optimization problems. For a classification
of self-organization mechanisms and possible applications,
the interested reader may refer to [7, 12].

3. RELATED WORK
In the domain of energy systems, the concept of virtual

market places has intensively been discussed in recent years.
In those systems, electrical loads (consumers) as well as en-
ergy resources (producers) are actors at a virtual market
place. There they offer or demand blocks of electrical power.
The market clearing is reached by adjusting prices and there-
fore matching the offered and demanded amounts. Because

the actors react differently and autonomously to price ad-
justments, the system is partly self-organized. The emer-
gent property is a supply and demand matching of electrical
power. Two of such systems are described in [10] and [20].
Because of their statical hierarchical design however, market
place systems are also centrally organized.

Another partly self-organized approach has been proposed
in [11]. There, communication is carried out indirectly via
a global black board. A central broker agent publishes the
global optimization goal, while each other participating agent
(producers and consumers) publishes its predicted opera-
tional mode (amount of electrical power demanded/supplied).
These agents will then iteratively modify and publish their
operational modes according to the global goal, published
information from other agents and local degrees of freedom,
until the system converges or is stopped by a special condi-
tion. The modification of local operational modes is carried
out via a genetic algorithm.

In [14], a system based on overlay trees has been pro-
posed. In such a system, the agents organize themselves in
a virtual tree structure and perform an iterative bottom-
up supply and demand matching. For that task, each agent
sends its degrees of freedom (in terms of possible operational
modes) to its parent node in the tree. The parent node then
selects the locally optimal operational modes and sends the
selection back to the children, who have to adhere to the
selected modes. These actions are performed at each level
of the tree, until the root node has been reached. Coupled
with a dynamically built tree structure, this system could
be able to emerge an optimal global solution.

In [18] the concept of holonic virtual power plants has
been studied. The idea is somehow related to the virtual
tree structures. A holon can be composed of a single or more
agents and even other holons. To the outside, the holon acts
like a single agent. Therefore, the terms ”agent” and ”holon”
can be used synonymously here. Additionally, a holon can
be part of several holons at the same time. The structure is
hierarchical, but overlapping and highly dynamic. In con-
junction with distributed scheduling mechanisms, the author
proposed a holonic system which is able to fulfill a global
optimization goal (i.e. building a virtual power plant) in a
self-organizing way.

4. APPROACHING
SELF-ORGANIZATION

Most of the presented work in the previous section in-
corporated some kind of centrality or static organization. In
this paper we propose a completely decentralized, highly dy-
namic and self-organized system of autonomous agents who
work cooperatively on local goals in order to emerge a so-
lution to a global optimization goal. For that objective, we
presume that the monetary outcome of the system will be
distributed equally among the agents. Hence, we are mod-
elling agents which have no interest in competing with each
other. Instead, they try to maximize their profit by cooper-
ation. In the following section, we construct a formal model
of the considered problem.

4.1 Formalisation

4.1.1 The optimization problem
Let g : T → R be a timeseries of amounts of electrical

power. Time is discretized into time slots t ∈ T . The set

of agents can be described by A = {ai | 0 ≤ i < n} with n
being the number of agents. Each agent represents an actor
which has the ability to adapt its mode of operation for each
time slot. These operational modes therefore describe an ei-
ther positive (producer) or negative (consumer) amount of
electrical power. Additionally, they are rated by the agent
with respect to how beneficial it is to choose the specific
mode. For example, a CHP might rate its possible oper-
ational modes with respect to their efficiency. According
to these ratings, the agents cannot be purely altruistic, but
rather benevolent while being constrained by their device
specific properties. So the set of rated operational modes
for an agent ai for a time slot t is defined as

Pi(t) = {(p, r)k | 0 ≤ k < mi} (1)

where p = pi,k(t) is an operational mode, r = r(pi,k(t)) is
the rating for this mode and mi is the number of possible
modes for this agent in the given time slot.

The global goal of the system now is to select an oper-
ational mode for each agent for each time step so that a
given load profile g is approximated as closely as possible.
For the time being, we will neglect any constraints between
operational modes.

A vector s(t) of operational modes (one for each agent)
with associated ratings for a time slot t is called a solution
vector and is defined as

s(t) = (y0, . . . , yn) , yi ∈ Pi(t) (2)

The matrix s(T) then aggregates s(t) for all t ∈ T and is
called a solution. Now assume a rating function f which
rates a solution vector s(t) of selected operational modes
for a specific time slot, and a second rating function F that
aggregates the ratings given by f over time, effectively rating
the solution s(T). An example for f could be

f (g(t), s(t)) = rs(t) ·

∣∣∣∣∣∣
 ∑

p∈s(t)

p

− g(t)

∣∣∣∣∣∣ (3)

where

rs(t) =

∑
r∈s(t) r

n
(4)

is the mean of all ratings in s(t). So f computes the absolute
value of the difference between the superimposed operational
modes and the load profile at the given time slot, and mul-
tiplies that with the overall rating. Then an example for F
could be

F (g, s) =
∑
t∈T

f (g(t), s(t)) (5)

so that F provides the sum of the ratings of f over time.
To find an optimal set of operational modes for a given

load profile g, a solution sopt has to be identified that mini-
mizes F :

sopt = argmin
s

(F (g, s)) . (6)

The solution space to this problem is given as

S =×
t∈T
×
i∈A
Pi(t) (7)

yielding

|S| = mn·|T | (8)

if we assume m = mi ∀i ∈ A.

repeat:

if local environment changes:

for each considered time slot:

adapt own selection

if selection has changed:

publish new selection

Figure 2: DSS – A distributed search algorithm
based on the stigmergy paradigm.

4.1.2 Communication
In a self-organizing system, agents act upon their local

perception. In the present case, we model this perception via
communication between agents. Hence, agents can be con-
nected to other agents, which means they know each other
and can communicate. Agents without a direct connection
cannot communicate with each other. So the communica-
tion subsystem can be expressed as an undirected graph

G = (A, E) (9)

where the set of vertices is the set of agents A and the edges
E are communication links. Now, as suggested in section 2,
we may define the term ”nearby” as a kind of locality : Each
agent ai has a defined limited neighbourhood Ni of other
agents with whom it can communicate. So Ni is defined by

∀ai ∈ A ∀aj ∈ Ni : (ai, aj) ∈ E , Ni ⊆ A, ai 6= aj . (10)

Additionally

(ai, aj) ∈ E ⇒ (aj ∈ Ni ∧ ai ∈ Nj) (11)

guarantees that communication links are bidirectional.
Considering locality, we may introduce the local solution vec-
tor si(t) of an agent ai which reflects the local view of the
agent at the system for a specific time slot t. It is defined as

si(t) = (yi0 , . . . , yil) , yij ∈ Pj(t) , aj ∈ Ni ∪ {ai} (12)

and is the subset of s(t) which is currently visible to ai with
respect to its neighbourhood (including its own selection).
Accordingly, si(T) is the local solution visible to ai.

4.2 Self-organizating algorithms

4.2.1 A first approach
As a first attempt to a completely distributed and self-

organizing solution for the given problem, we have designed
an algorithm which incorporates the stigmergy paradigm.
In this paradigm, coordination is carried out via monitoring
and modifying the environment rather than direct agree-
ments between agents [12]. For the given case, we let each
agent follow the Distributed Stigmergy Search (DSS) algo-
rithm shown in figure 2. The local environment of an agent
ai here corresponds to the local solution without its own se-
lection: si(T) \ Pi(T). So if any of the neighbours changes
any of its selected operational modes, the agent ai will adapt
its own selection to the new circumstances. To accomplish
that, ai selects those own operational modes (one for each
time slot) which yield the best rating for the current local
solution. This corresponds to a local search which yields

sopti = argmin
si

(F (g, si))

repeat:

if local environment changes:

for each considered time slot:

sort op-modes by estimated improvement

find first element s in the sorted list

which is not in the tabu list

select s and add to tabu list

if size of tabu list > l:
remove oldest element from tabu list

if selection has changed:

publish new selection

Figure 3: DSS-T – Including tabu search in DSS.

(cmp. eq. 6), where only the components of si which belong
to ai are modified. If the new selection differs from the
former, the agent then publishes that new selection, thus
triggering activity in its neighbours.

In this mechanism, agents are in equilibrium condition if
they are not able to improve the local solution by selecting
other operational modes. If the whole system is in equilib-
rium condition, each agent has reached a pareto optimum
in its local search space. Unfortunately this doesn’t mean
that the global solution s(T) is a pareto optimal solution,
too. For example consider a system A consisting of three
agents connected in a row so that a0 ∈ N1, a1 ∈ N2 but
a2 /∈ N0. Let A be in equilibrium condition, so no agent
may choose an operational mode which improves its local
solution. However, as a0 and a2 are not connected, there
might be operational modes which would in fact improve
the global solution of the system while impairing the local
solution. Hence, the attraction of these local pareto optima
of each agent rapidly leads to global equilibium condition
and therefore a termination of the algorithm in a subopti-
mal state.

4.2.2 Including tabu search
Therefore, our work aims at providing a distributed heuris-

tic that is able to generate ”good”solutions in a short amount
of time, providing all advantages of self-organizing systems
but without guaranteeing a specific solution quality. Such
a mechanism should in the long term converge to an opti-
mal solution sopt, while allowing temporary deteriorations
like the famous tabu search algorithm in order to explore
the whole search space. We incorporated the ideas of tabu
search into the algorithm DSS-T by providing each agent
with a local tabu list with a maximum length li (see figure 3).
In this algorithm, for each time slot t an agent first calcu-
lates a list of its possible operational modes, sorted by their
estimated improvement. It then selects the first element of
this list which is not contained in the tabu list. Thus, the
best operational mode which is not currently marked ”tabu”
is selected. Upon selection, the operational mode is added
to the tabu list. As the size of this list is bounded by li and
in each iteration it is truncated to this size, the re-selection
of the currently added operational mode is effectively ex-
cluded from the next li iterations. After performing this
procedure for all considered time slots, the new selection is
published just like in the DSS algorithm, triggering activity
in the neighbourhood of the agent.

The tabu list mechanism enables the agent to select op-
erational modes which impair its local solution but might
possibly lead to a global optimum. In contrast to the DSS
algorithm, the DSS-T will not rapidly terminate. As every
agent definitely will make a new selection when triggered by
the environment, the system will never reach a global equi-
librium condition (unless we set li ≥ mi, in that case every
operational mode would be chosen exactly once before the
algorithm terminates). This effect introduces the problem
of termination: How can agents decide not to make a new
selection but instead stick to the current one? And what
kind of mechanism can guarantee that all agents make this
choice when the system currently exhibits a near-optimal
global solution? These questions cannot be answered yet,
but will be addressed in our future work.

5. EVALUATION

5.1 Simulation framework
To evaluate the proposed (and prospective) self-organized

algorithms for solving the given optimization problem, a
simulation framework has been implemented. The frame-
work is written in the Python programming language and
is able to simulate an arbitrary number of autonomous soft-
ware agents as defined in section 4.1. Each of these work-
ers is identified by an URI of the form (host:port) and has
the ability to send and receive messages to and from other
agents. The messages are sent as network packages, so that
the whole simulation can be carried out either locally or dis-
tributed. As stated in section 4.1.2, local perception of the
workers is carried out via communication with their neigh-
bours. We make the following assumptions about commu-
nication:

Assumption 1. Identity
All nodes have unique IDs.

Assumption 2. No lost messages
All sent messages will eventually be received.

Assumption 3. Message travelling time
The message travelling time is constant so all messages are
received in the order they have been sent.1

5.2 Activity restriction protocol
In the so far outlined paradigm however, conflict situ-

ations could arise if two neighbouring workers sense each
other and act upon this perception simultaneously, effec-
tively hindering each other’s goal achievement. For example,
let a system A consist of two agents a0, a1 with T = {t0}
and g(t0) = 0. Each agent has the same two equal rated
possible modes of operation so that

P0(t0) = {(−1.0, 1.0)0, (1.0, 1.0)1},
P1(t0) = {(−1.0, 1.0)0, (1.0, 1.0)1}.

Now let an initial solution be

sinit = ((−1.0, 1.0), (−1.0, 1.0))

so that a0 as well as a1 have their first operational mode
selected. The rating for this solution is F (g, sinit) = 2. Now

1This is a quite restrictive assumption which will very likely
become a topic in our future work.

both agents get active simultaneously. According to DSS or
DSS-T, they will now both perform a local search and select
an operational mode which improves the current solution.
In their local view, the second operational mode (1.0, 1.0)1
would reduce the rating to 0. Therefore, both agents choose
their second mode so that afterwards

spost = ((1.0, 1.0), (1.0, 1.0))

which still yields F (g, spost) = 2. This procedure is then re-
versed in the next iteration and the system will begin to os-
cillate: sinit, spost, sinit, spost, . . . while the rating constantly
remains at F (g, s) = 2.

Therefore an activity restriction protocol has been de-
signed which prevents such conflicts. Given a set of in-
terconnected agents expressed as a graph G as defined in
section 4.1.2, the activity restriction protocol prevents the
simultaneous action execution of neighbouring agents. A
related problem is known as mutual exclusion in networks.
However, in the given case we aim at mutual exclusion only
between neighbouring agents. So any number of nodes in the
graph is allowed to be active at the same time, as long as
they are not directly connected. This is similar to the gener-
alized dining philosophers problem. In the following solution
we included fairness so as to when a set of neighbouring
nodes repeatedly and simultaneously request activity, it is
granted rotatory to the involved nodes so that all nodes will
equally often become active in the long term. To accom-
plish that, we have assigned each node ai a state variable
sti ∈ {I, R,A} where I := inactive, R := requesting and
A := active, and an activity value acti ∈ N. All nodes start
with sti = R and acti = 0. A node ai may at any time
change its state from I to R, signaling an activity request.
Upon changing the state from R to A however, the activity
value of the node is incremented by 1. Additionally, this
transition is bounded by the condition

∀aj ∈ Ni : fmutex(i, j) > 0 (13)

where

fmutex(i, j) =

1 if stj = I,

2 if stj = R ∧ fact(i, j) > 0,

0 else,

(14)

and

fact(i, j) =

{
j − i if acti = actj ,

actj − acti else.
(15)

This condition ensures that no neighbouring node is already
active or is requesting with a lower activity value. In case of
equal activity values, the node id is crucial. So the transition
R to A can be expressed as

R
∀aj∈Ni: fmutex(i,j)>0
−−−−−−−−−−−−−−−→

acti=acti+1
A (16)

where the condition is placed above the transition arrow,
and the required action which has to be taken below.

A node may stay arbitrary but finitely long in the active
state so that we assume the following:

Assumption 4. Finiteness
A node in the active state will eventually become inactive.

The possible state transitions are shown altogether in fig-
ure 4.

I R A
∀aj ∈ Ni : fmutex(i, j) > 0

acti = acti + 1

Figure 4: State transition diagram with condition
action

an-
notation for the activity restriction protocol.

Figure 5: Connection graph of the examined sce-
nario.

The correctness of the activity restriction protocol is shown
in appendix A.

5.3 Simulation results
As this is a report on ongoing work, we will only examine

a simplistic scenario here. We consider just one time slot

T = {t0}

where the global optimization goal is zero:

g(t0) = 0.

There are ten agents (n = 10) with each four random modes
of operation (m = 4) in the range [-1000,1000] so that

pi,k = random(−1000, 1000), 0 ≤ i < n, 0 ≤ k < m.

Furthermore, all mode ratings are equal:

∀pi,k : r(pi,k) = 1.

The connection graph is randomized and is shown in figure 5.
And finally, as we use the DSS-T algorithm, the tabu list
length is

∀ai : li =
mi

2
= 2.

According to eq. 8 there are 1.048.576 possible solutions in
this scenario. We calculated these with a brute force algo-
rithm for reference.

Figure 6 shows the progress of the simulation of the sce-
nario. The y-axis denotes the rating value while the x-axis
displays the iterations of the simulation. An iteration is

Figure 6: Exemplary simulation run.

defined as a selection of an operational mode of any single
agent. So after each of the ten agents has chosen its ini-
tial operational mode, the simulation would have proceeded
at least ten iterations. Note that because the agents start
without a selected operational mode, each agent must make
its initial choice before the solution vector is called valid (see
eq. 2). This point in time tinit, where all agents have chosen
their initial solution, is marked by the vertical bar in the
diagram. In the present case tinit = 14 because some agents
became active more than once before all agents did their
initial choice. The straight horizontal lines indicate ratings
for the best (lower) and worst (upper) reference solutions.
The optimal solution in this case has a rating of zero. In
between, the progress of the algorithm is visible.

It is noticeable that the system oscillates between excel-
lent and average solutions, which is due to the tabu list.
The algorithm seems to be able to generate near-optimal
solutions in a very short amount of time in comparison to
the size of the search space. However, this is based on a
very few experiments done so far and therefore quite specu-
lative. We are presently conducting a more formal analysis
of a large number of simulation runs with varying random
seeds and also different scenarios.

6. CONCLUSIONS
In this paper we have motivated the use of self-organizing

mechanisms in the domain of energy systems. We provided
an introduction to some relevant topics in this area: emer-
gence, disturbance, equilibrium condition, cooperation, lo-
cality. The addressed optimization problem has been formal-
ized in mathematical terms. We proposed the distributed
search algorithms DSS and DSS-T which are based on the
stigmergy mechanism in combination with a local search. A
protocol for local mutual exclusion with fairness in a net-
work of distributed processes has been proposed in order to
avoid oscillations of suboptimal solutions. We proved the
correctness of this protocol. Finally we gave some tentative
interpretations of the performance of the algorithms.

In our future work we will address the formal analysis of
the proposed algorithms. We will examine the reduction of
problem difficulty which is given by distributing the calcula-
tions. Furthermore, we will compare the proposed approach
to the well known Adopt algorithm [13] from the field of
Distributed Constraint Optimization as well as to the Max-

Sum algorithm which has been proposed in [3]. Besides that,
we will develop other self-organizing algorithms for the pre-
sented problem.

7. ACKNOWLEDGMENTS
We would like to thank the Universitätsgesellschaft Olden-

burg e.V. (UGO) for supporting this work. Furthermore, we
thank the reviewers of this paper for their very constructive
contributions.

8. REFERENCES
[1] S. Camazine, J.-L. Deneubourg, N. R. Franks,

J. Sneyd, G. Theraulaz, and E. Bonabeau.
Self-Organization in Biological Systems. Princeton
University Press, 2001.

[2] J. Eto. The past, present, and future of U.S. utility
demand-side management programs. Technical Report

LBNL-39931, Lawrence Berkeley National Laboratory,
1996.

[3] A. Farinelli, A. Rogers, A. Petcu, and N. R. Jennings.
Decentralizsed coordination of low-power embedded
devices using the max-sum algorithm. In Padgham,
Parkes, Müller, and Parsons, editors, Proc. of 7th In.
Conf. on Autonomous Agents and Multiagent Systems
(AAMAS 2008), pages 639–646, 2008.

[4] C. Gellings and J. Chamberlin. Demand-Side
Management: Concepts And Methods. The Fairmont
Press, Inc., 1988.

[5] C. Goldman and M. Kito. Review of demand-side
bidding programs: Impacts, costs, and
cost-effectiveness. Technical Report LBL-35021,
Lawrence Berkeley National Laboratory, 1994.

[6] D. J. Hammerstrom, J. Brous, D. P. Chassin, G. R.
Horst, R. Kajfasz, P. Michie, T. V. Oliver, T. A.
Carlon, C. Eustis, O. M. Jarvegren, W. Marek, R. L.
Munson, and R. G. Pratt. Pacific Northwest
GridWise(tm) Testbed Demonstration Projects: Part
II. Grid Friendly(tm) Appliance Project. Technical
Report PNNL-17079, Pacific Northwest National
Laboratory, Richland, WA, 2007.

[7] L. Hassas, G. Serugendo, A. Karageorgos, and
C. Castelfranchi. On self-organising mechanisms from
social, business and economic domains. Informatica,
30:63–71, 2006.

[8] G. Heffner. Configuring load as a resource for
competitive electricity markets - review of demand
response programs in the U.S. and around the world.
Technical Report LBNL-51496, Lawrence Berkeley
National Laboratory, 2002.

[9] C. Hinrichs, U. Vogel, and M. Sonnenschein.
Modelling and evaluation of desynchronization
strategies for controllable cooling devices. In I. Troch
and F. Breitenecker, editors, Proc. Mathmod 2009 -
6th Vienna International Conference on Mathematical
Modelling, number 35 in Argesim Report, Vienna,
Austria, 2009.

[10] K. Kok, M. Scheepers, and R. Kamphuis. Intelligent
Infrastructures, chapter Intelligence in electricity
networks for embedding renewables and distributed
generation, pages 179–209. Intelligent Systems,
Control and Automation: Science and Engineering
Series. Springer, 2009.

[11] J. Li, G. James, and G. Poulton. Set-points based
optimal multi-agent coordination for controlling
distributed energy loads. In Proceedings of the Third
IEEE International Conference on Self-Adaptive and
Self-Organizing Systems (SASO’09), San Francisco,
California, USA, 2009.

[12] J.-P. Mano, C. Bourjot, L. Gabriel, and P. Glize.
Bio-inspired mechanisms for artificial self-organised
systems. Informatica, 30:55–62, 2006.

[13] P. Modi, W. Shen, M. Tambe, and M. Yokoo. Adopt:
Asynchronous distributed constraint optimization
with quality guarantees. Artificial Intelligence Journal
(AIJ), 161:148–180, 2005.

[14] E. Pournaras, M. Warnier, and F. Brazier. Local
agent-based self-stabilisation in global resource
utilisation. International Journal of Autonomic
Computing, 1(4):350–373, 2010.

[15] C. W. Reynolds. Flocks, herds and schools: A
distributed behavioral model. SIGGRAPH Comput.
Graph., 21:25–34, August 1987.

[16] G. Serugendo, M.-P. Gleizes, and A. Karageorgos.
Self-organisation in multi-agent systems. The
Knowledge Engineering Review, 20(2):65–189, 2005.

[17] J. Short, D. Infeld, and L. Freris. Stabilization of grid
frequency through dynamic demand control. IEEE
Transactions on Power Systems, 22(3):1284–1293,
2007.

[18] M. Tröschel. Aktive Einsatzplanung in holonischen
Virtuellen Kraftwerken. PhD thesis, Universität
Oldenburg, 2010.

[19] D. Trudnowski, M. Donnelly, and E. Lightner.
Power-system frequency and stability control using
decentralized intelligent loads. In Proceedings of the
2005/2006 IEEE PES T&D Conference and
Exposition, Dallas, TX, 2006.

[20] H. Wedde, S. Lehnhoff, C. Rehtanz, and O. Krause.
Bottom-up self-organization of unpredictable demand
and supply under decentralized power management. In
Proceedings of the 2nd IEEE International Conference
on Self-Adaptation and Self-Organization (SASO’08),
Venice, Italy, 2008. IEEE Press.

APPENDIX
A. CORRECTNESS OF ARP

A.1 Local mutual exclusion

Theorem 1. The action restriction protocol guarantees
that no two neighbouring nodes are in the active state at the
same time, so that

∀(ai, aj) ∈ E : (sti = A⇒ stj 6= A) ∧ (stj = A⇒ sti 6= A).

Proof. Assume two connected nodes are simultaneously
in the active state, so that

∃(ai, aj) ∈ E : sti = stj = A.

As all nodes initially started in the inactive state, the nodes
ai, aj had each to perform the transitions I → R → A at
least once, both conforming to the condition of R → A.
Then there are two possible cases:

1. The transitions R → A were performed sequentially,
so that after the first transition sti = A 6= stj . Then
because of fmutex(j, i) = 0 the transition R → A of aj

cannot be performed, contradicting our assumption.

2. The transitions R → A of both nodes were performed
simultaneously. This implies sti = stj = R at the time
of the transition. Then according to eq. 14:

fact(i, j) > 0 ∧ fact(j, i) > 0

and because of eq. 15:

(acti = actj ⇒ i > j ∧ j > i)

∨
(acti 6= actj ⇒ acti > actj ∧ actj > acti)

which contradicts our assumption.

Therefore @(ai, aj) ∈ E : sti = stj = A.

A.2 Progress

Theorem 2. The action restriction protocol is deadlock
free.

Proof. Assume a deadlock where an arbitrary number
of nodes (at least one) are in the requesting state but none
of them is able to perform the R→ A transition, so that

∃R ⊆ A, |R| > 0 : ∀ai ∈ R : sti = R ∧
∀aj ∈ Ni : fmutex(i, j) ≤ 0.

Let ai be a node which has no neighbour with a smaller actj
so that

∃ai ∈ R : ∀aj ∈ Ni : acti ≤ actj .

There are two cases to be considered:

1. ∃aj ∈ Ni : acti = actj , then

fmutex(i, j) > 0 iff i < j

and

fmutex(j, i) > 0 iff j < i.

2. ∀aj ∈ Ni : acti < actj , then

fmutex(i, j) > 0.

Both cases lead to

∃ak, al ∈ {ai, aj} : fmutex(k, l) > 0 , k 6= l

which contradicts the assumption.

A.3 Starvation freedom

Theorem 3. Any node in the requesting state will even-
tually become active.

Proof. Let ai be a node in the requesting state which
cannot become active so that

∃aj ∈ Ni : actj ≤ actj .

Considering the progress property (theorem 2) and the fact
that every node must increase its activity value upon enter-
ing the active state, all neighbouring nodes will eventually
get a higher activity value than ai, enabling ai to become
active.

