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Abstract. Power grid stability is currently maintained by the grid operators through the use of stand-
by generators. Another approach to this task is demand side management. There, devices with load
shedding capabilities are used to support balancing the grid. This paper adresses the use of refrigera-
tors in private households as controllable thermal storage. Recent simulations have demonstrated that
controlling a great number of cooling devices can be used for short time reserves. However, the control
signals lead to a synchronization of the simulated devices, which in turn was followed by a periodic
oscillation of the overall load of the population. In this paper we discuss and compare two strategies to
desynchronise a population of cooling devices in order to damp the oscillation. For this objective, we
extend the simulation model by algorithms to restore a particular distribution of fridge states after the
impacts of a control signal. We will show that both signals lead to a complete desynchronisation of the
devices, but differ in their implementation and operation complexity.

1 Introduction
Due to the time-varying availability of energy from renewable resources like sunlight or wind and their increasing
use, the development of new load balancing mechanisms becomes a major task of grid operators. The storage of
large quantities of electrical energy is very difficult. So ”spinning reserve” generators, which are inefficient and
expensive, are used to ensure stability of the grid frequency. An approach to reduce the use of such generators can
be found in demand side management [3], where load balancing occurs on customer side by the use of intelligent
devices. Possible types of such devices differ in their complexity, requirements for operation and location of
control:

1. Stress in the grid can be sensed by monitoring the AC frequency. So a device may react on frequency
changes by adapting its power consumption to reduce the stress. Such devices act autonomously and no
further communication infrastructure is required. Neither the grid operator nor the consumer have the ability
to control these devices.

2. A more complex approach is the use of dynamic price information from the utility in order to schedule
devices. Here the grid operator will have to predict the working load in the grid over a period of time.
According to this prediction, dynamic price information will be generated and announced. Consumers may
now schedule their devices to operate in time intervals of low cost and low stress in the grid. This approach
requires a communication infrastructure between utilities and households, and some kind of a set-top box
plus communication interface between the box and the devices for automating the scheduling. The ability to
control devices is shared between the grid operator (who may manipulate the price information to his needs)
and the consumers (who can decide how to react to the price information).

3. A third approach moves the ability to control devices completely to the grid operator by using control signals.
Such signals require a communication infrastructure between utilities and devices. Here the grid operators
may send control signals in order to influence the devices’ behaviours.

Here, we follow the third approach. We analyze the collective behaviour of a great number of devices after
processing a control signal and investigate some of the emerging problems.

Related work and arising problems. Hammerstrom et al. [4] explored a controller which deactivates appli-
ances, mainly water heaters and clothes dryers, whenever the grid frequency falls below 59.95 Hz. The authors
recognized that a broad variety of geographically spreaded appliances is needful to achieve the desired effects,
and that mechanisms have to be included which ”re-create load diversity in the populations of appliances” after
an occured event. Short et al. [7] investigated the effects of dynamically adjusting the allowed temperature range
of refrigerators. The adjustment was performed autonomously by the devices as a response to a frequency-fall
caused by ”sudden increase in demand (or loss of generation)”. Eto et al. [2] demonstrated the use of customer’s
air-conditioning units as spinning reserve by demand response mechanisms. Finally, Stadler et al. [8] adressed the
use of refrigerators in private households as controllable thermal storage. The authors explored different control
signals for a simulation model of a great number of cooling devices. They concluded, that control signals to these
devices can be used for short time reserves. However, like in some of the above publications, the signals lead to a
synchronization of the simulated devices, which in turn was followed by a periodic oscillation of the overall load
of the population.
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Objective. Based on the simulation model by Stadler et al. [8] and the findings from Hinrichs in the Master’s
thesis [6], we discuss and compare in this paper two strategies to desynchronise a population of cooling devices
in order to damp an oscillation resulting from a control signal to the device. For this objective, we extend the
simulation model by algorithms to restore a particular distribution of fridge states after the impacts of a control
signal. We will show that both algorithms lead to a complete desynchronisation of the devices, but differ in their
implementation and operation complexity.

2 Prerequisutes
First, we will describe the underlying model of Stadler et al. This model is based on an equation originally
assembled by Constantopoulos et al. in [1]. It calculates the inner temperature of a cooling device at a particular
point in time ti , using the temperature Ti−1 of the previous time step:

Ti = ε ·Ti−1 +(1− ε) ·
(

T O −η · qi−1

A

)
where ε = e−

τ
60 · A

mc (1)

In this equation, T O describes the (constant) surrounding temperature. ε defines the system inertia, which depends
on the insulation A, thermal mass mc and the parameter τ , which specifies the amount of time between ti−1 and ti
in minutes. The coefficient η describes the efficiency of the device, and qi−1 depicts the electrical load (in watts)
in the timespan [ti−1, ti]. The electrical load of the cooling aggregate has the value qcooling if it is active, and else
qwarming. The other parameters are assumed to be constant during the simulation. Therefore, the state of a device
can be defined as the tuple (temperature, phase). Phase defines whether the device currently operates in cooling
(qi = qcooling) or warming (qi = qwarming) mode. In the simulation model from Stadler et al., a device’s temperature
oscillates in the temperature range [Tmin,Tmax]. The corresponding load curve will be a rectangular wave with lower
and upper bounds qcooling and qwarming. In a large population of devices with uniformly distributed states, the sum
of all load curves will produce a nearly constant overall energy demand qall over time.
By evaluating formula (1), the duration of the warming phase (with qi = qwarming = 0) and of the cooling phase
can be calculated as τwarming and τcooling. So, an undisturbed device repeats its behaviour in a cycle of length
τcycle = τwarming +τcooling. As the temperature progress in the temperature range ist nearly linear with an coefficient
of determination greater that 0.9998 and a standard error less than 0.007, we assume initially the linear model for
the temperature development in order to keep the necessary device controller simple:

T (t) = Ti +a · t with

{
a = acooling = (Tmin−Tmax)

τcooling
< 0, if the device has mode cooling,

a = awarming = (Tmax−Tmin)
τwarming

> 0, if the device has mode warming.
(2)

3 Desynchronization
Stadler et al. explored two types of control signals, Direct Storage Control (DSC) and Timed Load Reduction
(TLR). The DSC signal leads to an immediate warmup or alternatively cooldown of all devices. The TLR signal
allows more detailed control over the device by parameters tactiv and τreduce. Let tnoti f y be the point in time at which
the signal was sent. Then the parameter tactiv defines the point in time, at which the load reduction should occur.
Hence, each device can use the lead time τpreload = tactiv − tnoti f y to fill its thermal storage. A second parameter
τreduce specifies the requested length of the load reduction, which can be used to influence the resulting load curve
further on. Stadler shows that such control signals can be used to affect the overall energy demand. Both of
these signal types are disadvantageous by inducing a synchronization of the population, because they generate
synchronous phase shifts in the devices. If we assume a uniform distribution of the devices’ states in advance to a
control signal, each control signal leads to an accumulation of the devices’ states in a smaller state space: So, if for
example a TLR signal is sent at time tnoti f y ordering the devices to reduce their energy demand at time tactiv for a
duration of length treduce, all devices react by filling their thermal storage in the time span [tnoti f y, tactiv]. So, nearly
all devices will be in mode cooling. At time tactiv, the mode of all devices is set to ”off”, that means all devices
are in mode warming. Hence, the devices’ temperatures are not uniformly distributed in the temperature range
anymore but accumulate at lower temperatures. Although the heterogeneity of the single devices’ parameters lead
to individual lengths of cooling and warming phases, and therefore to a reduction of the resulting oscillation, this
oscillation tends to be long lasting: devices with the same parameters which are in the same state after a control
signal are diversified if and only if some individual random influences effect their parameters. So, the distribution
of the devices’ states would be different, when a second control signal is sent, and hence, the system would react
differently.
Thus, a strategy for reconstructing the previous distribution of states seems to be essential for an improved load
management. In this paper, we will present an approach to desynchronizing a population of cooling devices based
on the distribution of the devices’ states. The following sections will first describe the used simulation environment
and then present two strategies to achieve a state distribution equivalent to the situation before an occured control
signal.
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3.1 Simulation environment

In a first step, we implemented an individual-based, discrete-event simulation environment which is able to simu-
late the linear model described above. The extendable design of this environment allows the development of any
modification to the control signals proposed by Stadler et al. To be able to evaluate the simulation results, we per-
formed a statistical analysis of preliminary simulation output. We identified two degrees of freedom: (1) population
size, and (2) number of simulation runs. These characteristics were investigated by confidence interval estimations
with the goal to allow a maximum deviation of 1% of the estimated mean load throughout the simulation. The
confidence level was set to 99%. Detailed calculations can be found in [5], the results were as follows:

Population size. Stadler et al. used a population size of 5000 devices. Our investigation showed that this value
is sufficient: calculating a 99% confidence interval for the mean load resulted in a half-width h0 ≈ 0.016W , which
describes a maximal deviation of 0.105% from the mean load given by the simulation.

Number of simulation runs. Because the simulations start with random device parameters, each simulation
run produces slightly different results. To obtain reliable simulation output, each simulation has to be performed
several times. Afterwards, a mean of the results of the different simulation runs has to be used for further exami-
nation. Stadler et al. used 100 repetitions for each experiment. Our investigation showed that with 5000 devices,
five already repititions satisfy the aimed maximum deviation of 1%. The resulting half-width after five repetitions
is h0 ≈ 0.042W , which describes a maximal deviation of 0.273%.
Therefore, the following simulations have been performed with a population size of 5000 devices and five repeti-
tions for each experiment.

In a second step, we converted the developed simulation models (see the following sections) to statecharts accord-
ing to the definition of D. Harel (1987, [5]). These statecharts allowed us to survey the models on a hardware
abstraction level which would allow a straightforward realization in controller hardware.
The base model by Constantopoulos et al. (see section 2) requires knowledge about specific device parameters.
The linear model in constrast needs only Tmin, Tmax, τcooling and τwarming for operation, which can easily be captured
by a temperature sensor and a real time clock. To keep the controller logic simple and to avoid complex additional
sensors, the following damping strategies use the linear model for their calculations. The simulations in step one
use the linear model as well to analyze the essential behaviour of the strategies. The statecharts (step two) were
then simulated using the base model in order to validate the outcome of the linear calculations in a non-linear
context and to predict the controller’s behaviour in a hardware environment.

3.2 State recovery

As mentioned before, the temperature trajectory of a modelled cooling device oscillates between temperature bor-
ders Tmin and Tmax. The device nearly linearly warms up to the maximum temperature, before cooling down to the
minimum temperature and so on. It approximately describes an irregular periodic triangle wave with an amplitude
of Trange = (Tmax −Tmin)/2.
Let now trestore be a point in time at which the former state distribution should be restored after a control signal
has been sent. Given a device’s state snoti f y previous to the modification in tnoti f y, the virtual, i.e. unmodified
temperature progress, as well as the actual, modified temperature progress of the device can be calculated. Let
tcross be the point in time at which the actual temperature trajectory crosses the virtual progress for the first time.
At this time, two device states exist: the actual device state scross and for the virtual device state s′cross. These states
only differ in their phases. By programming the actual device controller to simply switch the phase in tcross, it will
subsequently follow the original temperature progress. This procedure is illustrated in figure (1).
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Figure 1: Temperature progress with state recovery – the device controller calculates the point in time tcross, at wich the
actual temperature trajectory crosses the virtual progress for the first time, and then switches the phase.
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So, given that a device controller knows its specific time spans τwarming and τcooling, it computes the first time of

intersection between its original and its new trajectory simply by tcross =
(
Tmax −Tnoti f y

)
/awarming, when switch-

ing its mode at time tnoti f y. For a timed load reduction signal, this time might be during the requested reduce-

intervall. As another intersection occures at tnoti f y +τcycle, and generally at
(
Tmax −Tnoti f y

)
/awarming +k ·τcycle and

at tnoti f y + k · τcycle, the controller simply chooses the minimal point in time which is larger as time trestore. So, it
can be guaranteed, that after time trestore +τcycle with τcycle the maximum cycle time of all devices, all devices have
reached their former trajectory, and hence rebuilt the former distribution of states. Figure (2) shows the results of
a simulation of 5000 devices with TLR control signal with and without state recovery.

Figure 2: Simulation results which demonstrate the state recovery strategy – the TLR parameters were tnoti f y = 1h30m,
tactiv = 2h00m and τreduce = 2h00m.

The blue trajectory (TLR) shows the mean progress of devices without state recovery while the red trajectory (TLR
+ state recovery) shows the progress with state recovery enabled. The figure includes both the temperature and
load progress. The simulation has been run with heterogeneous devices (independently distributed device parame-
ters). It is clearly to see that the state recovery performs well, and that the oscillation could easily be damped. The
differing behaviour of the devices with state recovery in the interval [3h15m,4h00m[ (thus inside of the reduction
interval) is a side effect of the strategy implementation: normally, the devices should start with the state recovery
immediately after the reduction interval. The current implementation, however, lets devices start the recovery as
soon as they have to restart cooling due to Tmax, even if they are at that point still inside of the reduction intervall.
As a result, this behaviour enhances the overall load curve by reducing the rise of the load just before the end of
the reduction intervall.

However, a disadvantage of this strategy is its sensitivity to deviations in the computed time spans, due to the lin-
earization of the underlying model. By simulating this strategy on the statechart abstraction level (see section 3.1),
we find that the strategy underestimates the duration for warming up and produces significant errors in calculating
tcross. In a great number of devices, this error results in a slight remaining oscillation of the overall load with a
starting amplitude of qosc = 3W . Therefore, we investigated another strategy that doesn’t rely as heavily on the
computed time spans.

3.3 Randomization

Another possibility to spread device states after a sent control signal randomizes the states explicitly after the
control signal. By analyzing the state distribution which holds before a control signal, it is possible to produce a
similar distribution afterwards by spreading phase shift temperatures. In a large population of heterogeneous de-
vices, the temperatures of devices can be assumed to be uniformly distributed in the interval [Tmin,Tmax], before the
first control signal is received. In the randomization strategy, each device chooses a uniformly distributed random
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temperature Trnd ∈ [Tmin,Tmax], when receiving a control signal. When the device reaches this temperature after
the reaction to a control signal has been completed, its controller immediately switches its operating phase. This
action is illustrated in figure (3).
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Figure 3: Temperature progress with randomization – the device controller chooses a random temperature Trnd and
switches the phase when the device reaches this temperature after the reaction to the TLR signal, resulting in a random
offset.

The figure shows a situation where a TLR control signal has been sent at tnoti f y = 1h30m with tactiv = 2h00m
and τreduce = 2h00m. The reaction to the signal is completed in t = 4h00m. The controller chooses Trnd ≈ 4.1◦C
and switches the phase as soon as the device reaches this temperature. Thus the following phase shift points are
moved by an offset which depends on the chosen random temperature. Applied to a great number of devices, this
action leads to a uniformly distributed set of phase shift points. Figure (4) shows the results of a simulation of
5000 devices with TLR control signal with randomization.

Figure 4: Simulation results which demonstrate the randomization strategy – the TLR parameters were again tnoti f y =
1h30m, tactiv = 2h00m and τreduce = 2h00m.

The blue trajectory shows the mean progress of devices without damping while the red trajectory shows the
progress with randomization enabled. It is again clearly to see that the strategy performs well with the linear
model. However, simulations on the statechart abstraction level show that there are still some remaining oscil-
lations of the overall load. Figure (5) contrasts a simulation using the linear model (blue) with a simulation on
the statechart abstraction level (red, labeled with ”base model”). The remaining oscillation after the desynchro-
nization in the base model simulation is still visible. But it is far less distinctive (±3W ) than the oscillation of a
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Figure 5: Comparison of simulations of the randomization strategy based on different models – the ”base model”
simulation represents the statechart abstraction level which still contains a slight oscillation after the desynchronization.

fully synchronized population (±13W , e.g. figure (4)). So, the randomization strategy can still be classified as
effective.

4 Conclusion
The presented strategies for desynchronizing an oscillating population of cooling devices differ in their method of
operation and therefore in the requirements on an implementation. The state recovery strategy needs device con-
trollers which are able to compute the intersection between the modified and the unmodified temperature trajectory.
In order to do this, it has to know the basic device characteristics and it needs a certain amount of computing power
plus some storage requirements. The randomization strategy in contrast needs a controller which possesses a ran-
dom number generator and some storage as well. Compared to the requirements of the device controllers for the
signals DSC and TLR introduced by Stadler et al., the two extensions proposed in this paper do not add any signifi-
cant new requirements. Overall, the strategies provide an elegant way to damp an oscillating population of cooling
devices. However, the deviations in the computed time spans due to the linearization of the underlying model give
reason to optimize the strategies on a hardware abstraction level.

5 Current and future work
As mentioned above, the desynchronization strategies perform perfectly well in a context of a linear model. The
performance on a hardware abstraction level is still acceptable but can surely be optimized. Current work covers
the realization of the control signals DSC and TLR and the proposed strategies in this paper in a hardware controller
which can then be examined in a field test.
Future work may include the development of additional, optimized control signals. Furthermore, grouping of
cooling devices and sending cascades of control signals to these groups may be investigated. Thereby it should be
possible to compose a desired overall load curve (e.g. to compensate small-scale oscillations or lows in the grid)
without the drawbacks of unwanted peaks and other irregularities.
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