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Abstract—The increasing pervasion of information and com-
munication technology (ICT) in the power grid motivates innova-
tive research towards intelligent system control. Especially against
the background of the growing share of renewable generation,
novel approaches that mitigate e. g. grid expansion costs are
of great interest. In this paper, the self-organized and thus
completely distributed control concept COHDA for the online
scheduling of responsive loads is employed as an alternative to the
traditional centralized control. By distributing the decision mak-
ing process, no global state information about the participating
devices has to be gathered beforehand. The proposed approach is
applied to the mitigation of wind power fluctuations on a minute
basis by controllable heat pumps. Simulation results indicate
that even in the presence of moderate time delays between wind
power measurements and the resulting control action from the
responsive population (i. e. including the distributed scheduling
process), a significant reduction of fluctuations can be achieved.

I. INTRODUCTION

In many countries, the electrical power system is cur-
rently undergoing a fundamental transition from hierarchical
top-down supply towards a decentralized structure based on
small scale renewable energy generation, such as wind energy
converter systems. The integration of such intermittent energy
resources poses several challenges. For instance, as the grid
itself is not capable of storing energy, supply and demand
must be balanced at all times to ensure the safe operation
of connected appliances. Traditionally, supply was scheduled
with respect to predicted demand. The volatility of renewable
energy generation, however, adds an increased supply-side
uncertainty. Demand response (DR) is a possibility to mitigate
this problem. DR has been discussed in the scientific literature
and in field projects for several decades now, originally focus-
ing on economic benefits [1]. With the increasing pervasion
of renewable generation, research on DR for environmental as
well as technical benefits has gained momentum, see e. g. [2].

This paper focuses on short term fluctuations of wind
power supply, i. e. the reduction of variability in the residual
load on a time scale of 1 minute. Due to the natural variance
of wind speeds, the feed-in of wind turbines is unpredictable
on this scale. Moreover, it has been shown that wind power
variability extends to whole wind farms as well: based on long-
range correlations observed in winds, wind farm variability
effects do not average out, but persist up to several kilometers
[3]. As explained above, DR can mitigate this problem. But
appropriate controllable loads with sufficient ramping capabil-

ities are required in order to achieve the desired counter effects
on the relevant time scale.

Thermostatically controlled loads (TCL) have been iden-
tified as suitable appliances for this task [4]. The operation
of such devices rely on the thermal energy stored in the
system. Due to thermal inertia, the system can be seen as
a buffer store, effectively decoupling the actual operation of
the device from its designed effects (i. e. heating or cooling).
This inherent flexibility allows for using such appliances as
regulation resources. In [5], a control strategy for heat pumps
with programmable communicating thermostats is proposed.
The strategy incorporates both system-level objectives and
customer-level comfort constraints in the decision making pro-
cess. Based on power density distribution functions calculated
by a system-level central controller, the heat pumps’ thermal
trajectories are modified in such a way that global as well
as local goals are met. For this, state information from each
participating load is transferred to the central controller prior
to calculating the control signals.

Against this background, the paper at hand focuses on
two objectives: First, the self-organized and thus completely
distributed scheduling heuristic COHDA [6] is employed as an
alternative control strategy. While originally being designed for
the predictive scheduling of decentralized energy resources in
power markets, see [7], the approach is applied to the online-
scheduling of controllable loads here. Compared to the afore-
mentioned centralized controller, the participating appliances
adapt their thermal trajectories autonomously based on limited
exchanged information. This increased autonomy on the cus-
tomer side can increase the willingness to participate in DR
programs. The transfer of complete state space data is avoided,
thus more privacy is given. Finally, self-organizing approaches
can offer increased robustness over centralized methods, e. g.
by healing regional outages autonomously. However, these
benefits of the approach come at the expense of being an
iterative heuristic despite being able to solve the problem
optimally in constant time. While the effectiveness of the
heuristic in terms of solution quality as well as its robustness
against different sources of variation (e. g. communication
network latency) have already been shown elsewhere [8], its
varying run-time may pose significant problems in an online-
scheduling context. Therefore, the second objective of this
paper is to evaluate the effects of different time delays between
wind fluctuation and the actual regulation response from the
load population.
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In Section II, the formal model of the proposed system
is specified. This includes the heat pump control concept, the
generation model for wind power as well as an overview on
the COHDA scheduling approach. Subsequently, Section III
presents the evaluation of the system. This comprises simu-
lation setup, formulation of objective functions, results and
discussion. Finally, Section IV concludes the paper.

II. FORMAL MODEL

As a prerequisite for the evaluation in Section III, the
formal model of the proposed system is described in the
following.

A. Heat Pump Model

To be consistent with the centralized control approach
proposed in [5], the same heat pump model is employed in this
paper. Thus, a one-dimensional equivalent thermal parameter
(ETP) model as described in [9] is used to simulate the building
heat dynamics with respect to the heat input q̇ versus the
outdoor temperature θo. While θo is taken from environmental
data, the heat input is determined by the operational heating
power q̇op of the heat pump: q̇ = n · q̇op with n ∈ {0, 1} as
operational state. We consider air-source heat pumps only, thus
the value of q̇op in turn depends on the outdoor temperature
and is estimated using third order polynomials based on
manufacturer’s data sheets. For further implementation details,
we kindly refer the reader to [10].

In [5], this model is then equipped with the method from
[11] as a means for controlling heat pump operation. Accord-
ingly, systematic deviations u to the nominal temperature set-
points θs of the heat pumps are used to partially synchronize
the operational states of a load population. For a single heat
pump, the operational state n in the next time step k + 1 is
then determined as follows:

n(k + 1) =


1 for θa(k) ≤ θs − δ

2 + u(k),

0 for θa(k) ≥ θs + δ
2 + u(k),

n(k) otherwise

(1)

where θa(k) depicts the measured indoor air temperature at
the conclusion of interval k and δ constitutes the allowed
temperature deadband. The operational state n = 1 refers to
active (i. e. heating), while n = 0 refers to inactive. To prevent
customer-side disruption as well as rapid-cycling of operational
states (which impacts the service life of the devices), the
deviations u are constrained to the quarter deadband width:

|u(k)| ≤ δ

4
(2)

With this method, appropriate control signals u can effi-
ciently be calculated and communicated in large populations
by a central controller. As the paper at hand focuses on a
self-organized scheduling heuristic, where every heat pump
controller decides autonomously about its subsequent oper-
ational state (cf. Section II-C), a control signal based on u
is not used directly. Instead, by calculating the possible state
space of (1) for each heat pump with respect to the boundary
conditions given by (2), the allowed control actions for the
COHDA heuristic are determined by the respective device
controller autonomously, in every time step. This way, the same
operational constraints as in [5] can be maintained.

B. Wind Power Model

High-resolution wind power data is difficult to obtain. On
the other hand, environmental data on this scale is easily
available. Therefore, wind power time series are calculated
synthetically in this paper by simulating a wind turbine model
based on a transfer function between the wind speed input
and power output. The following formulation is directly taken
from [10]: First, the mechanical power Pm extracted by a wind
turbine is derived from a given wind speed uw as:

Pm =
1

8
CpρπD

2u3w (3)

where D is the rotor diameter, ρ the air density, and Cp the
turbine’s coefficient of performance. For simplification, the
latter is approximated using cut-in and cut-out wind speeds
uci and uco as follows:

Cp =


0, uw < uci,

Cm
(
1− F1U

2 − F2U
3
)
, uci ≤ uw ≤ ur,

Cr

(
ur

uw

)3
, ur ≤ uw ≤ uco,

0, uw > uco

(4)

where Cm and Cr are the maximum and rated coefficients of
performance, respectively, while um and ur are the according
wind speeds at Cm and Cr. With U =

(
um

uw
− 1
)

, the empir-
ical coefficients F1, F2 were determined using the boundary
conditions Cp = 0 at uw = uci and Cp = Cr at uw = ur.

Second, the system is equipped with a 3-stage gearbox
that is modeled as an inefficiency factor depending on the
mechanical input, cf. [12]:

ηg =

{
0.1 for Pm ≤ 3·Prt

90 ,

1− 0.01·3·Prt

Pm
otherwise

(5)

where Prt is the rated power of the turbine.

With a final inefficiency factor ηe for the electrical losses
in the whole system, the total wind power is then given as:

Pw = ηeηgPm (6)

C. COHDA

As an alternative to a centralized DR controller, a com-
pletely distributed and asynchronous approach is given with the
Combinatorial Optimization Heuristic for Distributed Agents
(COHDA), see [6], [8]. Therein, each participating DR re-
source (i. e. heat pump) is equipped with a software agent.
Compared to a simple communicating device controller, an
agent is capable of autonomously deciding upon control ac-
tions, while taking arbitrary data such as user preferences
or messages from other agents into account. Based on this,
the key concept of COHDA is an asynchronous iterative
approximate best-response behavior, where each agent reacts
to updated information from other agents by adapting the
operational state of its controlled device with respect to the
global target aggregate load for the population. For a time
step k, let P (target)

l (k) be this target, e. g. announced by the
grid operator, and let ai ∈ A be the set of agents. Further, let
Si(k) ⊆ {P (active)

l,i (k), P
(inactive)
l,i (k)} be the set of feasible

load values resulting from the possible operational states ni(k)
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in this time step, calculated as described in Section II-A,
for each device. Then the task is to find a combination
γ(k) = {Pl,1(k), . . . , Pl,|A|(k)} of feasible load values in such
a way, that the resulting aggregate load from γ(k) matches
P

(target)
l (k) as close as possible. To simplify the presentation,

we use the terms operational state and load value for a heat
pump synonymously in the following.

For solving this combinatorial optimization problem effi-
ciently, the agents are placed in an artificial communication
topology (e. g. a small world topology), such that each agent is
connected to a non-empty subset of other agents. To compen-
sate for the resulting non-global view on the system, each agent
ai collects two distinct sets of information: on the one hand
the believed current configuration γi(k) of the system (that is,
the believed set of currently selected operational states of all
agents), and on the other hand the best known combination
γ∗i (k) of operational states with respect to P (target)

l (k) it has
encountered so far. All agents ai ∈ A initially only know their
own respective set of feasible operational states Si(k), and
the difficulty of the problem is given by the distributed nature
of the system in contrast to the task of finding a common
allocation of operational states. Thus, the agents coordinate via
message exchange. Beginning with an arbitrarily chosen agent
(by announcing the global target), each agent ai executes the
following three steps:

1) (update) When an agent ai receives information
from one of its neighbors (say, aj), it imports this in-
formation (γj(k) and γ∗j (k)) into its own knowledge
base by updating γi(k) and, if better, replacing γ∗i (k)
with γ∗j (k).

2) (choose) The agent now adapts its own operational
state according to the newly received information. If
it is not able to improve the believed current system
configuration γi(k), the agent reverts its current oper-
ational state to the one stored in γ∗i (k), thus following
the best solution it is aware of up until now.

3) (publish) If γi(k) or γ∗i (k) has been modified in
one of the previous steps, the agent finally publishes
its knowledge base (γi(k), including its own selected
operational state, and γ∗i (k)) to its neighbors.

The heuristic terminates when for all agents γ(k) and γ∗(k)
are identical. At this point, γ∗(k) is the final solution of the
heuristic and contains exactly one operational state for each
agent.

Please note that this procedure constitutes a planning
phase. Consequently, the agents do not actually configure their
controlled device with each execution of the choose step, as
this would lead to rapidly switching operational states within
the planning phase. Instead, the agents wait for the process to
terminate, until the heat pump is configured with the finally
selected operational state. However, as termination detection in
a distributed setting is a nontrivial task, termination is detected
and announced centrally by the simulation environment in the
present case. This is fair, as it does not impact the results
of our study. For real-world scenarios, established Distributed
Termination Detection (DTD) algorithms can easily be em-
ployed. For instance, the approach in [13] has successfully
been implemented for the COHDA heuristic [14].

Originally, this heuristic was designed for the predictive
scheduling of decentralized energy resources in power markets
[7]. In such scenarios, sequences of operational states for the
units are determined over whole planning horizons in advance,
which allows for incorporating state dependencies between
time steps quite easily, such as e. g. minimal running times
to prevent rapid-cycling. In the centralized approach [5], the
control signal u just shifts the state space boundaries, which
then yields slightly early or delayed state switches compared
to the original progress. This way, rapid cycling is naturally
prevented because a device has to traverse a large part of its
temperature deadband before becoming responsive to a control
signal u again. For the COHDA approach, the extension of the
deadband width induced by u is used directly for the calcu-
lation of feasible operational states, cf. Section II-A, thereby
dropping the rapid cycling prevention mechanism. To restore
this property, a secondary objective has been incorporated
into the COHDA approach as follows: whenever an agent
during the choose step is about to choose an operational
state that deviates from the currently configured one (i. e.
n(k) 6= n(k − 1)), this choice will be discarded with a
predefined propability Pd. Because of the iterative nature of
the approach, an agent will likely be asked several times to
change its operational state, thus allowing for intermediate
state switches nevertheless, if required for the global target.
If Pd is chosen appropriately (e. g. Pd = 0.5), this effectively
prevents rapid cycling again.

III. EVALUATION

For the evaluation study in this paper, wind speed and
temperature data from spring 2014 with a resolution of 1
minute was obtained from the NREL NWTC M2 Tower [15].
From this, wind power data was generated using the simulation
model in Section II-B, configured to represent a single 1.5 MW
wind turbine. Similarly, a population of 1000 heterogeneous
houses equipped with air-source heat pumps was generated
by drawing normally distributed parameter values for the the
model outlined in Section II-A, with averages as given in
[10]. For each of the experiments in the following sections,
the simulation models were initially run for 1440 time steps
to ensure steady-state conditions. The experiments themselves
also comprise a simulation horizon of 1440 time steps, i. e. one
simulated day with a resolution of 1 minute. While present
power markets usually operate on a coarser scale (e. g. 5
minutes or 15 minutes), we assume a power market operating
on 1 minute here in order to meet the fluctuations on this scale.
For the simulation horizon, both an uncontrolled reference
simulation as well as a simulation with the COHDA scheduling
approach were performed. Regarding the latter, in each time
step the global target aggregate load was determined first
(based on the current wind power, see below), which was
subsequently fed into the COHDA heuristic. After termination
of the heuristic, the house simulation models were executed for
one time step, incorporating the control actions determined by
COHDA.

In the following sections, positive power is always depicted
positive, while load is represented as negative power.
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A. General Effectiveness

Referring to the first objective of this paper, the general
effectiveness of the proposed control concept is evaluated. Ac-
cording to [16], ancillary service types can be subdivided into
load-following and regulation. The former usually addresses
power balancing tasks on a scale of 5 to 30 minutes, while
the latter responds to rapid fluctuations on a minute scale.
By separating the power profile into base-load, load-following
and regulation components, respective objective functions can
be defined independently for each ancillary service type.
According to the considered time scale of 1 minute in this
paper, we focus on the regulation aspect in the following. By
assuming that base-load and load-following components are
properly optimized and provided elsewhere, this allows us to
formulate the regulation objective function based on ramp-rate
only, which is defined as the change of load over time. So
instead of tracking the actual power profile to achieve a supply-
demand matching, we neglect the base-load and load-following
aspects and configure the control strategy to minimize the
power gradients of the residual load. For each time step k,
given the the current wind power Pw(k) as well as the wind
power Pw(k − 1) and the aggregate load of the heat pump
population Pl(k − 1) at the previous time step, the target
aggregate load for the current time step is calculated as:

P
(target)
l (k) = Pl(k − 1)− (Pw(k)− Pw(k − 1)) (7)

Consequently, we used the following metric to measure the
performance of the simulations based on residual gradients.
Given the residual load of both the reference case and the
controlled case as resr = Pw + P

(reference)
l and resc =

Pw+P
(controlled)
l , respectively, the performance of the control

strategy for a time span [i, j] is calculated as:

ROF =

(∑j
k=i|resc(k)− resc(k − 1)|

)
· 100∑j

k=i|resr(k)− resr(k − 1)|
− 100 (8)

This way, ROF can be interpreted as percentage reduction
of fluctuation in resc with respect to resr and thus gives us
an easily understandable performance measure. Moreover, the
metric allows for comparing different scenario configurations,
which will be important in the evaluation of the time lag in
Section III-B.

Figure 1 shows the results for an exemplary simulation
run (the delay between wind power measurements and the
response from the load population was set to 10 seconds here,
cf. Section III-B). The visualization comprises three parts,
each focusing on a different aspect: The upper chart depicts
both wind power (dashed line) and the dispatched heat pump
power (solid line). Furthermore, the maximal possible ramp-
rate (both up and down) of the load population is shown
for each time step as shaded area surrounding the solid line.
But as wind power and dispatched heat pump power are
almost indistinguishable in this representation, the middle chart
emphasizes the difference between those two time series.
This can be interpreted as remaining objective error of the
optimization in the controlled case. Finally, the lower chart
depicts the actual residual load, i. e. the difference between
wind power and heat pump load, and thus the remaining stress
on the grid. This is shown for both the reference case and the
controlled case.

In this simulation run, a performance of ROF = 45.79
was achieved, meaning that the fluctuations in the uncontrolled
reference case could be mitigated by 45.79% by applying the
control strategy in this scenario. Interestingly, several rather
large spikes are present in the visualization of the objective
error (middle chart). These are almost evenly distributed during
time intervals with no wind power (for instance in the morning
and evening hours), and vanish in times with considerably fluc-
tuating wind power. This effect can be explained as follows:
As the control strategy defines the target load based on the
gradient of the wind power, the heat pump population tries to
keep its aggregate load constant during times with no wind
fluctuation. In combination with the secondary optimization
objective of the control strategy (minimizing the amount of
state changes), each heat pump will try to stay in its current
operational state during such intervals as long as possible.
Naturally, the temperature trajectory of the heat pumps will
eventually cross the temperature dead band boundary, forcing
the device to switch its operational state. Moreover, as the
employed control method tends to synchronize devices [11],
these state switches occur in a synchronized manner as well.
The visualized ramp capacity in the upper chart as well as the
sudden drops of the residual load in the lower chart support
this hypothesis. On the other hand, during intervals with con-
siderably fluctuating wind power, the control strategy performs
exceptionally well. For a closer look, a magnified part of the
simulation (time steps 800–1200) is shown in Figure 2. Here,
the described effects are visible in detail. During intervals with
highly fluctuating wind power, the dispatched load follows the
target very closely. Further, even in the presence of a constant
wind power, the dispatched load is generally able to follow
the target, but is regularly interrupted by synchronized forced
state switches.

In summary, the results indicate that an accurate online
scheduling of responsive loads without a centralized controller
is possible. In its current state, the approach performs well for
highly fluctuating target trajectories, but does not cope well
with constant targets. However, simple extensions to the ob-
jective function should be able to overcome this problem, e. g.
by simply disabling the control approach during such intervals,
or by desynchronizing the load population continuously as
proposed in [17].

B. Effects of Time Delays

In this paper, short term fluctuations on a time scale of 1
minute are considered. As wind is highly variable on this scale,
wind power supply fluctuates unpredictable even in whole
wind farms on this scale as well [3]. For a DR approach
to be effective, this requires the response from a controlled
load population to be as quick as possible. With a central
controller such as [5], response times primarily depend on the
technical setup and thus can be estimated quite precisely. For a
heuristic like COHDA, this is rather difficult, as the approach
is designed to terminate autonomously in a self-organized
manner, yielding varying run-times without any timeliness
guarantees. While this is acceptable in the originally targeted
predictive scheduling use case, it poses a significant problem in
the present online scheduling use case. Therefore, the second
objective of this paper is to evaluate the effects of different
time delays between wind fluctuation and the actual regulation
response from the load population.
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Fig. 1. Results of a single simulation run: wind power, dispatched heat pump power and ramp-rate (upper chart), objective error (middle chart), residual load
(reference and controlled, lower chart).
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Fig. 2. Results of a single simulation run, magnified part (time steps 800–1200): wind power, dispatched heat pump power and ramp-rate (upper chart), objective
error (middle chart), residual load (reference and controlled, lower chart).
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First of all, we artificially assume that the COHDA schedul-
ing process will complete instantly, i. e. that it consumes no
time at all. Then the simulation proceeds as follows: For
each time step k, a wind power value Pw(k) is measured
(i. e. calculated from the wind power model). Based on this,
the target aggregate load is determined according to (7), and
COHDA is executed. The resulting heat pump operational
states ni(k) are then fed into the heat pump model, which
then yields the according response from the load population
in the form of the aggregate load Pl(k) for the current time
step. Pw(k) and Pl(k) can then be evaluated directly using (8).
However, as it is technically impossible for the scheduling to
complete in zero time, this only serves as a reference case
in our study. Now, to evaluate the effects of different time
delays, we simply shift the time series Pl by fractions of
minutes with respect to Pw. This is done by upsampling Pl
to a resolution of 1 second, shifting it for a defined number
of seconds and finally downsampling it again by averaging
over every 60 intervals. This way, we can simulate arbitrary
delays between wind power measurements and the according
response from the load population, thus being able to analyze
the effects of such delays on the quality of the response from
the viewpoint of the power market.

Figure 3 shows the results of a series of experiments
with increasing time delays, ranging from 0 seconds up to a
maximum of 60 seconds with a step size of 1 second between
the experiments. Each experiment was repeated ten times using
the same environmental data (wind/temperature) and the same
population characteristics, but with varied seeds for the random
number generators in the simulation models and the heuristic.
This leads to slightly different usage characteristics of the heat
pumps as well as varying progress of the scheduling heuristic.
In the artificial case of no delay at all, the achieved reduction
of fluctuations is larger than 50% (median = 57.57%), but
drops almost linearly in the crucial range of up to 30 seconds.
At this point, a reduction of less than 20% is achieved
(median = 16.85%). Starting with a delay of 37 seconds, the
effects from the control actions significantly interfere with the
ongoing fluctuations in wind power supply, actually leading
to increased fluctuations in the residual load. With a delay of
52 seconds and more, no single simulation run was able to
achieve a positive effect any more.

As a consequence, for the considered scenario the system
should be designed in such a way that a control response can
be expected after 30 seconds at the latest. Depending on the
time required to obtain wind power measurements, this leaves
even considerably less time for the scheduling process. The
experiments in this paper have been performed in an artificial
environment using a simulated communication infrastructure,
therefore actual time measurements would not be meaningful.
Instead, the number of sequential message exchanges (i. e. the
amount of simulated time steps in the artificial communication
backend) can be taken as an indicator for the total run-time.
Due to the rather small solution space (the considered device
models can either be switched on or off, thus having only two
alternatives per time step), only 8 of these time steps were
necessary on average until termination in our scenario. If we
assume that a single message is transferred in at most 100 mil-
liseconds, and add a rather large amount of 900 milliseconds
of computational time per agent per time step, this still leads
to a total scheduling time of less than 10 seconds. As shown

in [18], scheduling time increases logarithmically with larger
population sizes. But the COHDA heuristic can be augmented
with an early termination mechanism quite easily: If the agents
are configured to stop creating new solution candidates after
a predefined amount of time, the process terminates naturally
after a few time steps from this point on.

In this consideration, potential communication link failures
are not accounted for. For the centralized control method in
[5], packet loss has been evaluated with respect to DR control
accuracy [19]. Such an evaluation is not possible for the
COHDA approach, as convergence in distributed algorithms
cannot be guaranteed in the presence of packet loss (cf. the
FLP impossibility proof by Fischer et al. [20]). Therefore, the
task of handling link failures has to be deferred to the control
layer of the communication protocol (e. g. as in [21]). While
we do not consider packet loss in our study for this reason, we
believe the heuristic would be able to self-heal automatically in
many cases, e. g. due to redundant paths in the communication
topology, or if the failure is only temporary.

IV. CONCLUSION

In this paper, the self-organized and thus completely dis-
tributed scheduling heuristic COHDA was employed as an
alternative to traditional centralized control concepts in the
Smart Grid. Originally designed for the predictive scheduling
of energy resources with respect to market integration, the
approach was applied to the online scheduling of responsive
loads here, targeting the mitigation of wind power fluctuations
on a minute-by-minute basis. After a recapitulation of the
underlying simulation models, the results of a simulation study
for this task have been discussed. Being a proof of concept, the
study focused on a single type of deferrable load only. Thus,
the integration of further models as well as other device classes
such as electric vehicles is subject to future work. Moreover,
while the approach performed exceptionally well for periods
with highly variable wind power, performance significantly
deteriorated for intervals of constant wind power. Thus the
objective function in the COHDA process has to be revised
in order to improve the decision making process towards such
periods.

The second objective of this paper focused on the effects
of time delays between announcing a control signal (i. e. the
target aggregate load in the considered use case) and the actual
response from the load community. Results indicate that, even
with moderate delays, reasonable response effects can still be
observed. As the employed COHDA heuristic constitutes an
iterative approach, extensively based on communication, this
is especially encouraging for this type of control method.

In summary, this paper demonstrated the application of the
distributed scheduling heuristic COHDA in an online schedul-
ing context. But the outlined approach is not restricted to
this use case. As COHDA essentially constitutes a distributed
combinatorial optimization heuristic, applications regarding
this class of problems are generally possible. For example, in
[7] the approach is employed in a predictive scheduling context
within virtual power plants. On the other hand, the approach
is employed in a reactive scheduling use case in [22, pp. 69–
76], i. e. compensating for incidents during the operation of a
virtual power plant.
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Fig. 3. Reduction of fluctuation (ROF ) for increasing delays, visualized as boxplots for 10 simulations each, with additional star markers for the averages.

A trend towards decentralized control in the power grid
as well as an increased autonomy of the involved agents
is discussed for several year now, cf. [23], [24], [25], [26],
[27]. As a result, the traditional static grid evolves to an
“open system of systems” [28], shaped by a large number
of dynamically interacting self-interested parties. Self-x prop-
erties such as self-configuration, self-healing, self-protection
and more [29], [30] are of particular interest here, in order
to facilitate the maintainability of a complex system like this.
We believe that self-organized approaches like COHDA, which
allow preservation of autonomy as well as data privacy of
the participating agents, will play an important role in the
transition towards a sustainable, stable future energy grid.
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