
Paving the Royal Road for Complex Systems:
On the Influence of Memory on Adaptivity

Christian Hinrichs1, Sebastian Lehnhoff2, and Michael Sonnenschein1

1 University of Oldenburg, Germany,
christian.hinrichs@uni-oldenburg.de

sonnenschein@informatik.uni-oldenburg.de
2 OFFIS Institute for Information Technology, Oldenburg, Germany,

sebastian.lehnhoff@offis.de

Abstract. The ”Royal Road” objective function was proposed by J. H.
Holland in 1993 as a very hard benchmark problem for evolutionary algo-
rithms. Generally, it belongs to the class of combinatorial optimization
problems. In our work, we solve the problem in a distributed way by
assigning each decision variable to an autonomous agent. The resulting
multi-agent system ”COHDA” forms a self-organizing complex system,
where the global solution emerges from local interactions. By apply-
ing the XOR instance generator introduced by S. Yang in 2003, we are
able to pertubate the system during runtime by modifying the objective
function. This allows us to examine the robustness of COHDA against
dynamic objectives. Here, we focus on the influence of runtime memory,
which comprises the beliefs of each agent, on the adaptivity capabilities
of the agents after an occured pertubation. We show that the final fitness
values produced by the system do not suffer from a dynamic objective
function, and are not influenced by the availability of an agents’ runtime
memory. The time needed by the system to adapt to such a pertubation,
however, significantly increases if the agents’ beliefs are being distorted.
We conclude that, in terms of solution quality, COHDA is very robust
against dynamic objective functions. With respect to adaptation speed,
the heuristic benefits from the availability of runtime memory.

Keywords: Combinatorial Optimization, Self-Organization, Coopera-
tion, Multi-Agent System

1 Introduction

In a general way, an optimization problem can be characterized as follows [1]:
Given a set S of feasible solutions and an objective function f : S → IR, one
tries to find those elements s ∈ S which maximize (or minimize) f . Typically,
the elements in S are tuples comprising values for a set of decision variables
v0 . . . vn. If the feasible values for these variables are discrete rather than con-
tinuous, this is called a combinatorial optimization problem. Instances of this
family of problems are usually hard to solve, since their structure is less ex-
ploitable than in the continuous case. Even more, many of such problems are

A. Pelster and G. Wunner (Eds.): International Symposium Selforganization in Complex Systems:
The Past, Present, and Future of Synergetics, DOI: 10.1007/978-3-319-27635-9 21, pp. 313–318.
c© Springer-Verlag Berlin Heidelberg 2016

314 Christian Hinrichs, Sebastian Lehnhoff, and Michael Sonnenschein

computationally intractable, so that exact solution methods are not appropri-
ate [2]. Hence, a number of approaches have been proposed, which aim at finding
a quite good solution in a reasonably short amount of time, but without guaran-
teeing any particular solution quality with respect to f . These approaches are
called heuristics.

A special form of combinatorial optimization problem arises, if each variable
v0 . . . vn is controlled by an autonomous decision maker a0 . . . an, respectively.
Example applications for this kind of problem include distributed resource al-
location, logistics and decentralized energy management. In such distributed
systems, the decision makers (in the following simply denoted as agents) have
to coordinate their decisions in order to jointly optimize the objective function
f . Hence, when designing efficient solution strategies for such systems, not only
computational complexity as well as memory complexity, but also communica-
tion complexity (information exchange between agents) has to be regarded.

Recently, the ”COHDA” heuristic has been proposed, which utilizes a self-
organization strategy in order to solve distributed combinatorial optimization
problems efficiently in a completely decentralized and asynchronous way, and
thus forms a nonlinear complex system, where the global solution emerges from
local interactions [3, 4]. In the contribution at hand, we focus on the adaptivity
capabilities of COHDA with respect to the amount of runtime memory of the
underlying agents, using the example of a dynamic variant of the ”Royal Road”
benchmark problem.

2 The Dynamic Royal Road Benchmark Problem

The ”Royal Road” objective function was proposed by J. H. Holland in 1993
as a very hard combinatorial optimization problem. The function takes a tuple
s = v0 . . . v(2k)·(b+g)−1 of binary values as input, such that vi ∈ {0, 1}, and
produces a fitness value f(s) ∈ IR. The goal is to maximize f . The numbers
k, b, g are predefined integer parameters, such that the tuple s comprises 2k

contiguous regions, each containing b values forming a block, and g values forming
a gap. The evaluation criteria of f are designed such that each region contributes
a higher fitness to the resulting global fitness value, the more 1’s are contained
in its block part, but only up to a certain threshold m∗ < b. For amounts of
1’s in the range [m∗ + 1, b − 1], a region would yield a negative fitness, and
thus contribute a penalty to the global fitness value of the function. Finally, for
a block full of 1’s (this is then called a complete block), a region would again
yield a large positive value. Furthermore, series of regions with complete blocks
each would produce extra bonus values to the global fitness. In this whole fitness
evaluation, the gaps do not have any influence on the resulting value. Hence, the
optimal global fitness value will be reached if every block is ”complete”, and the
worst solution (with a negative global fitness value) will be produced if every
block contains exactly b− 1 ones.

In an iterative search process, most optimization algorithms would add more
and more 1’s to each block, until eventually each block comprises m∗ ones. Since

Paving the Royal Road for Complex Systems 315

block0 block1 block2 block3

f(00000000000000000000000000000000) = 0.00

f(10000000000000000000000000000000) = 0.02

f(11000000000000000000000000000000) = 0.04

f(11100000000000000000000000000000) = 0.06

f(11110000000000000000000000000000) = -0.02

f(11111000000000000000000000000000) = 1.00

f(11111000111110000000000000000000) = 2.30

f(11111000111110001111100000000000) = 2.60

f(11111000111110001111100011111000) = 4.20

f(11110000111100001111000011110000) = -0.08

gap gap gap gap

PROFIT for each 1 in a block

PENALTY for too many 1‘s in a block

BONUS value for complete block
+ BONUS for series of complete blocks

best solution & worst solution

gaps have no influence on fitness

Fig. 1. Example of a ”Royal Road” objective function (k = 2, b = 5, g = 3, m∗ = 3).

adding more 1’s would introduce penalties and thus decrease the global fitness
value, this poses a local optimum. But in order to reach the global optimum,
an optimization procedure would have to pass the areas with very low fitness
values in the solution landscape. Because of this property, the function is called
deceptive. Figure 1 shows an example configuration. A more detailed description
of Holland’s ”Royal Road” function can be found in [5].

Since the contribution at hand targets the adaptivity capabilities of the CO-
HDA heuristic, the ”Royal Road” objective function had to be converted to a
dynamic variant. This can be done using the XOR instance generator introduced
by S. Yang in 2003 [6]. For this purpose, a randomly chosen binary tuple T with
a predefined Hamming weight HW(T) is chosen, and the objective function f is
replaced by a function g, which is defined as g(s) = f(s⊗T). Here, the operator
⊗ is a component-wise XOR operation, thus changing the ”meaning” of every
value in s, where the corresponding value in T equals to 1. This transforms the
solution landscape of the objective function without affecting its basic structure
(i.e. number of optima). The Hamming weight determines the severity of the

transformation: sev(T) = HW(T)
len(T) . By applying such randomly chosen transfor-

mations at arbitrary time steps t during the optimization procedure, this allows
us to analyze the behavior of the COHDA heuristic in a perturbed system.

3 COHDA

As stated in the introduction, COHDA is a heuristic for solving distributed
combinatorial optimization problems. Basically, each decision variable of a given
problem is controlled by an autonomous decision maker, implemented as a soft-
ware agent in a multi-agent system. The agents are allowed to communicate
through a communication network, whose topology forms a partially connected,
undirected graph. Figure 2 shows an example of such a system. In COHDA, a
global solution emerges from local interaction between agents. Each agent fol-
lows the same simple behavioral rules: 1) Upon an incoming information from
a neighbor, the local knowledge base of the agent is updated. 2) Afterwards,
the agent chooses the value for its controlled decision variable, that suites the

316 Christian Hinrichs, Sebastian Lehnhoff, and Michael Sonnenschein

𝑣5

𝑣3

𝑣2

𝑣4

𝑣0

𝑣1

solution
𝑎0

𝑎1 𝑎3

𝑎5

𝑎4

𝑎2

Fig. 2. Visualization of an exemplary communication topology used by COHDA.

currently believed system state the best. 3) The agent publishes its local knowl-
edge base to the neighborhood. Following these three steps, the system will first
asynchronously explore the solution space, before converging to the best solution
found by an agent. More details on the heuristic can be found in [3, 4].

4 Evaluation

Our evaluation focuses on the adaptivity capabilities of COHDA in a dynamic,
perturbed environment. The pertubations are modeled by a dynamic objective
function as described in Sect. 2. In more detail, we analyzed the influence of an
agent’s runtime memory on the efficiency of the heuristic to converge after an
occured pertubation. A simulation study has been performed using a royal road
function with k = 3, b = 5, g = 3, m∗ = 3. We compared different pertubation
severities sev(T) ∈ {None, 0.0, 0.1, 0.2, 0.5} against a number of configurations
of runtime memory:

– No memory. Whenever a pertubation occured, the knowledge bases of all
agents are completely erased, and each agent is re-initialized with a random
value for its decision value.

– Limited memory. Same as above, except that the currently selected value
for the decision variables are kept.

– Full memory. Knowledge bases are kept intact upon system pertubation.

Additionally, we included for reference an evolutionary algorithm with one par-
ent, offspring of size 1 and adaptive mutation rate ((1+1)-ES, c.f. [7]). Each
configuration was simulated 100 times, the results are summarized in Fig. 3,
showing mean values and standard deviations. The upper chart presents the fit-
ness of the solution produced by the algorithms, normalized to [0, 1], whereas
the lower chart depicts the number of iterations until convergence, as a measure
of the time needed to converge. Concerning fitness, the COHDA heuristic pro-
duces significantly better results than the reference algorithm in all cases. Also,
COHDA is unaffected by objective pertubations during runtime. With respect
to the number of iterations until convergence, however, the results show that
the heuristic benefits from the existence of runtime memory when a pertubation
occurs, especially with low pertubation severities. Obviously, the agents make
use of their existing memory in order to adapt to a changing objective function
as fast as possible.

Paving the Royal Road for Complex Systems 317

0.0

0.2

0.4

0.6

0.8

1.0

fit
ne

ss

(1+1)-ES
no memory

limited memory
full memory

None 0.0 0.1 0.2 0.5
pertubation severity

0

50

100

150

200

ite
ra

tio
ns

Fig. 3. Evaluation results: Pertubation severities compared against different levels of
runtime memory, (1+1)-ES included for reference.

5 Application

The primary use case of the COHDA heuristic lies in the domain of decentralized
energy management systems, as it is envisioned for example in the Smart Nord
research project [8]. Here, coalitions of intelligent generators, loads and storages
are formed in order to provide active power as well as ancillary services in the
power grid. Within this research project, the goal of a coalition is to provide a
product of either active power or ancillary services. This product can then be
placed at a market (see Fig. 4). However, in the case of an active power product,
the selection of an active power profile for each agent in the coalition, in order to
jointly produce the desired product, forms a combinatorial optimization problem
as described in the introduction. The COHDA heuristic can be used to solve this
problem efficiently in a distributed way.

However, the COHDA heuristic relies on cooperative agents in principle.
In our future work, we will study the influence of non-cooperative (i.e. self-
interested) agents on COHDA. How many private constraints (with respect to
an agent’s interests) can the heuristic cope with? Up to which amount of non-
cooperative agents is the heuristic still effective?

6 Conclusion

Our world gets more and more connected, evolving to an internet of things,
where the interconnected entities get smarter every day. In our research, we
focus on decentralized energy management systems. We believe that in such

318 Christian Hinrichs, Sebastian Lehnhoff, and Michael Sonnenschein

$

Fig. 4. Coalition Formation in the Smart Nord research project.

systems, self-organization is a promising way for providing coordination, and
in turn to fulfill system-critical tasks. The self-organizing heuristic COHDA for
solving combinatorial optimization problems is a building block in this vision.

References

1. Talbi, E.G.: Metaheuristics. John Wiley & Sons Inc., Hoboken, NJ, USA (2009)
2. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization. ACM Comput-

ing Surveys 35, 268–308 (2003)
3. Hinrichs, C., Lehnhoff, S., Sonnenschein, M.: A Decentralized Heuristic for

Multiple-Choice Combinatorial Optimization Problems. In: Operations Research
Proceedings 2012. Springer (2012), http://www.springer.com/series/722 (to
appear)

4. Hinrichs, C., Sonnenschein, M., Lehnhoff, S.: Evaluation of a Self-Organizing
Heuristic for Interdependent Distributed Search Spaces. In: Filipe, J., Fred,
A.L.N. (eds) ICAART 2013 - Proceedings of the 5th International Conference
on Agents and Artificial Intelligence, Volume 1 - Agents, Barcelona, Spain, 15-18
February, 2013. SciTePress (2013), (accepted)

5. Jones, T.: A Description of Holland’s Royal Road Function. Evolutionary Com-
putation 2, 409–415 (1994)

6. Yang, S., Kingdom, U., Section, F.: Non-stationary problem optimization using
the primal-dual genetic algorithm. In: The 2003 Congress on Evolutionary Com-
putation, 2003. CEC ’03. vol. 3, pp. 2246–2253. IEEE Press, New York (2003)

7. Rechenberg, I.: Evolutionsstrategie – Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. Fommann-Holzboog, Stuttgart (1973)

8. Smart Nord (2012), http://www.smartnord.de

