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Abstract: Metapopulations are a popular way to gain an abstract model of a cer-
tain species in a scattered landscape. These models can be used for analytical
questions concerning the viability of the modeled species. Several applications ex-
ist that evaluate metapopulations concerning their persistence, e.g. Meta-X. 
There is a strong interest in discovering modifications of the environment, that
have a positive influence in the survivability of the population. Recommendations
for those modifications, that can be evaluated by tools like Meta-X, are mainly
given from experts. Automatically generated recommendations were hardly avail-
able mainly because of the high complexity of the problem. 
This paper shows the results of an implementation of an optimization algorithm
for methods to increase viability of metapopulations.  It uses a metamodel of a
metapopulation model for accomplishing the needed performance.
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1 Introduction
This work is based on the metapopulation model provided by Meta-X, which is a
tool for metapopulation viability analysis [Frank+03]. This metapopulation model
is used for creating an ecological model of a certain landscape that can be simu-
lated and analysed regarding its viability. A metapopulation consists of patches
possibly colonized by a population of a specific species. Patches can be linked to
each other  so  that  individuals  can  leave  one  patch and  arrive  at  another  one.
Patches can be recolonized through this process if they have gone extinct due to
environmental or demographic reasons.
For the protection of species it may become necessary to improve the environ-
mental characteristics of the modelled environment. To use the available resources
optimally an algorithm is designed that calculates a distribution of costs that leads
to a high viability.
Some characteristics of the metapopulation may be changed by human efforts to
increase the metapopulation's viability. In that case, a certain amount of costs is
applied to those characteristics with intend to maximize the viability. It is a diffi-
cult task to provide the best allocation of the costs, which is taken over by the op-
timization algorithm proposed in this paper. This algorithm is an intelligent search
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method for optimal allocation of costs to specific metapopulation's characteristics.
Because of the high complexity of the optimization problem, runtime is a crucial
factor. To compute the desired allocation as fast as possible, the most time con-
suming aspect is by-passed by optimizing a functional metamodel of the metapop-
ulation model instead of the simulation model itself.
Without this procedure, the optimization process would not be practicable. Fur-
thermore, the generation of the metamodel is implemented parallely for another
speed up.

The optimization process to maximize a metapopulation's viability with respect to
cost restrictions is split up into three tasks, which will be explained in detail below:

1. generating a training set of metamodel's configurations and their viability from
the Meta-X simulation model,

2. training of a metamodel that maps metamodel's configurations onto their viab-
ility using support vector machines,

3. optimizing the metamodel by applying a certain amount of costs to its charac-
teristics so that the viability reaches its maximum.

The implementation takes a metapopulation model designed and exported  from
Meta-X as input and produces an optimized model in a Meta-X importable format.
As Meta-X provides a simple point-and-click interface for generating metapopula-
tion models, these two programs complement one another when it comes to auto-
matic optimization of the specified metapopulations.

Other approaches for  optimizing metapopulation models  can be  found in  [Ca-
Mo03],  [MoCa02]  and  [Cabeza+04].  These  approaches  can  also  be  used  for
planning concrete modifications in the environment for the protection of species,
but they differ regarding to the way they optimize a given metapopulation: They
find a set of reserves that provide a high rate of biodiversity, especially taking in
consideration the loss of the unselected reserves. These algorithms make use of
different techniques to gain their results than the method described in this paper
and do not use a metamodel.

2 The metapopulation
This is a very short introduction of the metapopulation model of Meta-X, that is
described in greater detail in [Frank+03]. The topics that are covered here are the
ones that are needed for understanding the optimization algorithm but not the who-
le metamodel.
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2.1 The metamodel

A  metapopulation consists of several patches that have a position in space, can be
occupied or empty and may have connections to other patches. Additionally patch

i has

• a local rate of extinction vi

• an amount of individuals leaving the patch in a time period E i

• a needed amount of individuals for recolonization of  the patch in case the
patch has gone extinct I i

After a short amount of time  t , one of three possible events changes the state

of the metapopulation. These events can be

• Local extinction: Every patch i has a short term probabilty to go extinct due
to intrinsic patch dynamics,

• Correlated extinction: Two patches may become extinct at the same time be-
cause of regional changes of the environment,

• Recolonization: If a patch j is currently empty and a patch i is colonized
and those two patches are connected to each other, patch j may get reco-
lonized due to individuals that populate the empty patch.

The metapopulation becomes extinct, if  the last patch is empty and lasted for the
sum of the  t s that passed by.

2.2 Cost functions

Many of the parameters the metapopulation model consists of cannot be altered,
because they are inherent to the examined population or environment. However,
two parameters can be improved by applying costs to them (see below).
There has to be a function that maps the costs applied to the parameters of the me-
tapopulation model in a way, that the parameter settings cannot become invalid in-
dependent from the amount of costs applied to them. Furthermore it is welcomed,
that the marginal productivity is decreasing, i.e. further costs applied to a parame-
ter have less effect.
The  cost  functions  given  below  satisfy  these  requirements  and  are  therefor
considered to be adequate. As there are no possibilities for an empirical verificati-
on of these functions they remain artificially chosen.

2.2.1 Modifiable parameters

The following two parameters can be improved by changing environmental con-
ditions. These changings can be expressed by applying costs to the parameters of
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the metapopulation, that have their counterparts in reality in building fences, relo-
cating streets, etc.

• vi is the local rate of extinction that can be decreased by improvements of

the patches characteristics that are important for the examined population.

• d ij cannot directly be manipulated as the patches have a certain positi-

on in space. But as the recolonization is strongly connected to the distance bet-
ween two patches, it can be shortened for the individuals of the examined po-
pulation by carrying out modifications to the environment, that ease the moving
for the individuals from patch i to patch j so that more empty patches
can be recolonized.

2.2.2 Sigmoid Optimization

vi is, as the local extinction rate, a probability and is therefor valid in [0;1].

The cS  x  is the cost function that is used to apply costs to the local extinction

rates in order to improve the survival rate of the population in patch i .

cS  x=1−2⋅ 1
1exp−ax 

−1
2
 (6)

It is important to mention that the survival rate increases when the rate of extincti-
on decreases.
In (6) is x the sum of the value of the inverse function of cS  x  of the old

value for the local extinction rate and the costs that are applied to it. Then the va-
lue of (6) is the new local extinction rate.  
The coefficient a is used to assess the applied costs to the local extinction rate
in reference to the costs applied to the distances of the patches (see (7)).

2.2.3 Exponential Optimization

The distance between the patches i and j can be decreased in the sense that
the examined individuals have less difficulties to move from one to the other. As
valid values for the distances between patches are in ℝ , cE x  is used to

apply costs to the distances of the patches in order to decrease them.

cE x ={expbx −1 if expbx −10
x  else } (7)

The value for the new patch distance is calculated in the same way as the value for
the local extinction rate in 2.2.2, but the costs are negative because lower distances
mean better reachability.
The coefficient b is the counterpart to the coefficient a in (6). These coeffi-
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cients can be used to control the intensity of the effects the applied costs have on
their respective values.

3 Simulation algorithm
The simulation algorithm is used to compute the viability of a modeled metapopu-
lation. To measure the viability the mean time to extinction is used. The higher the
value the longer the metapopulation will last.
This value is an artificial value calculated from the extinction times of a number of
concrete simulations of the given metapopulation model. It can only be used to
compare two metapopulations and to bring them into a sequence. With this tool,
one can evaluate the efficiency of two different distributions of costs applied to the
metapopulation model's parameters according to the survival rate of the populati-
on.
The Meta-X model uses stochastic time steps, which means that the time between
every two events is not uniform. Two actions determine a changing in the model's
state:

1. determination  of  the  transition time the metapopulation lasts  in  the  current
state,

2. determination of the transition event that takes place.

Again, the complete algorithm can be found in [Frank+03].

3.1 Calculating the mean time to extinction

The mean time to extinction can now be calculated from many extinction times.
The procedure is a modified version of [Stelter+97, pp. 508] that allows to use con-
tinuous time. We utilize that the extinction times P 0 , that are gained

from the simulations and calculated by the sum of the  t s that passed by un-

til the population dies (see chapter 2.1), are exponentially distributed:

P 0T =1−exp−T /T m , (10)

where T is the simulation time and T m is the mean time to extinction that

we are looking for. With (10) we can formulate the linear equation

−log 1− P 0T = 1
T m

T , (11)

which can be identified through linear regression. After that,  the mean time to
extinction is calculated by the reciprocal value of the gradient of (11).
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3.2 Performance issues

The mean time to extinction of a metapopulation is calculated using the extinction
times from the metapopulations simulations. For statistical reasons, a lot of simu-
lations,  e.g.  1000,  have  to  be  executed,  which  is  quite  a  high  requirement  of
computational power. Therefor the simulations should be executed parallely on a
multi-processor machine or in a network of independent machines so that every
processor or machine calculates one simulation at a time. The increase of speed is
nearly linear regarding the attached machines so this is a good way to speed up the
process. As this is the most critical part  in the process regarding computational
power, it is recommended to use as many machines as possible.

4 The metamodel
The metamodel is used to speed up the optimization process. Instead of optimizing
a metapopulation by its Meta-X model directly, a metamodel is built and used for
optimization instead.
As shown in chapter 3, the process to gain the mean time to extinction from a me-
tapopulation model is a time consuming computation. As the optimization algo-
rithm needs the resulting mean time to extinction for many configurations of the
metapopulation, it is cheaper, regarding computational time, to build a training set
of randomly improved metapopulation models and their mean time to extinctions
and to train a metamodel by using that training set, than to run the algorithm for
computing  the  mean  time  to  extinction  every  time  the  optimization  algorithm
needs the result.
The results of the metamodel are not exactly the same as for Meta-X models, be-
cause the algorithm approximates the desired value. However, as alone through the
remarkable gain of speed by using the metamodel makes the computation of the
optimized metapopulation possible,  the loss of precision is  acceptable and tests
show, that the results of the optimization process are very good[Grüning05].
The concrete implementation uses an API from [ChLi01] for building the meta-
model.

4.1 Support vector machines

Support vector machines are used to produce a metamodel from a training set of
example mappings of an unknown function. In this case the metapopulation's con-
figuration,  which parameters  got  randomly improved by applying costs,  is  the
domain and the resulting mean time to extinction is the range of the function. The
function, which maps the improved metapopulations to their mean time to extincti-
on, is unknown, but the algorithm will provide an approximation of the function
through adaptation of the examples in the training set. By using this technique, the
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values for the mean time to extinction will be delivered much faster than by using
the simulation algorithm (see chapter 3).
An example, taken from [RuNo03, pp.749], will show how the support vector ma-
chines work. This is not an exhaustive discussion of this technique, but it will give
an impression of how support vector machines work. More about support vector
machines can be found at [Sc+00; Sc98, pp. 135; SmSc98]. 

Figure  1: The left side shows the training set containing black and white dots, where the
black dots are inside a circle so that the two types of dots cannot be linearly separated.
The right side shows the linearly separable set after applying the kernel function. The sup-
port vectors are additionally surrounded by circles.

4.2 Mapping the input

We start in a two dimensional space, where we have attributes s=s1 , s2 with

two different examples y=±1 . One of them lie in a circular area (see figure 1
on the left side), which means that the two sets are not linearly separable.
We now use a function F s= f 1 , f 2 , f 3 that maps each input to a

new vector by using the features

f 1=s1
2 , f 2=s2

2 , f 3=2 s1 s2 . (12)

F s maps the inputs to a three dimensional room, where the two different
classes of examples are linearly separable (see figure 1 on the right side). This
effect can be produced in general  by mapping the inputs to a  sufficiently high
dimensional space.  But  by using a too high dimensional  space the problem of
overfitting appears, which means that nearly every input could be mapped to its
own dimension becoming its own class.
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4.3 Support vectors

To not run into that trap, an optimization algorithm is used to find the optimal line-
ar separator, which means that the margin between the different examples is ma-
ximal. This problem can be solved efficiently through quadratic programming by
finding the values of the i s that maximize

∑
i

i−
1
2∑i , j

i j y i y j  xi⋅x j (13)

under  the  constraints i≥0 and ∑
i

i yi=0 ,  where  the  examples xi

and x j have the classes y i=±1 .

After the values for i s have been determined, which are unique, the class of

the example x can be found by

h  x =sign ∑
i

i yi x⋅xi . (14)

The examples next to the border of each class are called support vectors (see figu-
re 1 on the right side). Only the i s belonging to the support vectors are non-

zero.

4.4 Kernels

We now need to find a linear separator in a space with enough dimensions. This is
done be replacing xi⋅x j in (13) with F x i⋅F x j .

This replacement has the pleasant characteristic that by involving (12)

F xi⋅F x j= xi⋅x j
2 . (15)

This means that F  xi⋅F x j can be computed without computing F for

each point.

xi⋅x j
2 is called the kernel function and can often be found as K  xi , x j

. There are many kernel functions that can be used, as long as it evaluates the dot
product of two input samples, where the kernel used to build the metamodel for the
metapopulations is the radial basis function

K xi , x j=exp−∥xi−x j∥
2 ,0 , (16)

where  is a kernel parameter.
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Figure 2: Interpolation polynomial (blue crosses) for increasing errors, which leads to in-
creasing radiusses. The first picture shows the function that has to be approximated. The
other pictures show the resulting interpolation polynomial for different error values.

4.5 Interpolation

The support vectors are used for the Lagrange polynomial interpolation[Späth94],
which provides the desired functional approximation of the training set in our app-
lication. The amount of support vectors used for the interpolation depends on a
chosen error  .

The error  defines the radius of a pipe that encloses the function that has to be
approximated,  in which the interpolation polynomial must be located.  Figure 2
shows the interpolation polynomial for different s .

If the error decreases, more support vectors are used to specify the interpolation
polynomial. Figure 3 shows the dependency between the support vectors and the
resulting interpolation.
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Figure 3: The error of the interpolation polynomial (function of crosses) becomes lesser the
more support vectors (blue dots) are used for the Lagrange interpolation algorithm. The er-
ror determines the quality of the interpolation polynomial.

5 Optimization algorithm
The optimization algorithm is used to apply costs to the metapopulation model's
parameters in that way, that the mean time to extinction reaches its possible maxi-
mum for the given costs. There are several algorithm that can be used to achieve
this; the one that is used here is tabu search [MiFo00].
The tabu search algorithm does not optimize the metapopulation model itself but
the metamodel that was built from the metapopulation's samples. The optimization
algorithm needs numerous values of the mean time to extinction for certain me-
tapopulations. The metamodel will provide the answer much faster than it would
the metapopulation model itself by using its simulation algorithm to compute the
mean time to extinction.
The optimum computed by the metamodel has not necessarily to be the optimum
for the metapopulation. But the bigger the training set for building the metamodel
is, the better will the metamodel become and the nearer is the resulting optimum of
the metamodel to the metapopulation's optimum.
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5.1 Hill climbing

The tabu search basically uses hill climbing. The hill  climbing algorithm starts
from the original metapopulation configuration, where randomly costs have been
applied to it, and steps from metapopulation configuration to metapopulation con-
figuration until it reaches a maximum and stops. Therefor for each step it analysis
the  neighboring  metapopulation  configurations  and  valuates  them regarding  to
their mean time to extinction. It then chooses the best configuration and makes the
move.

5.2 Tabu list

The hill climbing algorithm has the disadvantage that it cannot escape form local
maxima,  because  no neighboring metapopulation offers a  higher  mean time to
extinction. To achieve better results a tabu list is used, where the last n steps
are remembered. The algorithm is not allowed to step on a metapopulation's confi-
guration, which is in that list. Additionally the algorithm is now forced to make a
step, even if it leads it to a configuration of a lower mean time to extinction.
The behaviour of the algorithm now changes in that way, that it can escape from
local maxima. After reaching a local maximum, the algorithm is forced to go dow-
nhill, because the way uphill is taboo. It then can reach another maximum.
The algorithm stops after a certain amount of steps and returns the best metapopu-
lation found so far.

6 Example of an optimization
An example of use will show the capabilities of the optimization algorithm by
optimizing  a  concrete  metapopulation  model,  that  is  created  by  Meta-X.  The
results of the optimization process are then compared to the original scenario and
dicussed regarding their effectivity by comparing them to standard ecologist's pro-
cedures.

6.1 The scenario

The scenario consists of six patches that are divided by a road so that three patches
are on the one side and the other three patches are on the other side of the road.
The road represents a barrier for the individuals of the species so that they have a
high possibility to die by trying to move from a patch from the one side of the road
to a patch from the other side of the road. This scenario's characteristic is designed
by having a huge distance between the patches that lie on the different sides of the
road so that the possibility to move successfully to the other side of the road is
low. Figure 4 shows a graphical representation of the scenario.
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Figure 4: The scenario to be optimized consists of six patches, where the patches 1-3 are on
the one side and the patches 4-6 are on the other side of the road. The patches are only
connected to their direct neighbors.

6.2 Optimization's results

The optimization algorithm applies two units of costs to the local extinction rate
and the patch distance of the metapopulation model.  Tables  1 and 2 show the
resulting values of the metapopulation model's characteristics.
The mean time to extinction calculated by Meta-X  gets advanced from 118 to
135, which is an improvement of 15%.

Patch Before After

P1 0.019999862 0.016567826

P2 0.049999833 0.049999833
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Patch Before After

P3 0.03999996 0.035209537

P4 0.029999971 0.029999971

P5 0.03999996 0.03452456

P6 0.019999862 0.018660545

Table 1: The local extinction of the patches before and after the application of costs by the
optimization algorithm.

Patch1 Patch2 Before After

P1 P2 28.28 28.28

P1 P3 44.719997 25.115685

P1 P4 113.14 113.14

P1 P5 128.06 128.06

P1 P6 141.42 141.42

P2 P3 20.000002 20.000002

P2 P4 84.84998 84.84998

P2 P5 99.99999 67.382744

P2 P6 113.14 113.14

P3 P4 72.109985 72.109985

P3 P5 84.84998 84.84998

P3 P6 100.0 100.0

P4 P5 20.000002 17.625334

P4 P6 28.28 20.475328

P5 P6 20.000002 18.192558

Table 2: The patch distances before and after the optimization algorithm applied costs on
them.

6.3 Discussion of the results

First of all the mean time to extinction rises, which is the desired effect for the
optimization algorithm. The allocation of the costs shows, that some costs were
applied to improve the local extinction rates of some patches and most of the costs
were used to improve the possibility of successfully moving between the patches
P2 and P5.
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This distribution of costs should be understood as a priority list where to begin to
improve the environment. In this case it clearly says to improve the possibility for
the individuals to move between the patches P2 and P5. As already said before, the
costs are not meant as an amount of real money and so the distribution of the costs
the optimization algorithm recommends should not be slavishly obeyed. 
This way to apply costs to a metapopulation model means to build a green bridge
between these two patches and is a well known procedure by ecologists to increase
the viability of a population. The counterpart in reality could be pipes beneath the
road ease the way between the patches for small animals like frogs and hedgehogs.
Small fences sideways at the rest of the road guide the way towards the bridges.
The procedure depends on the examined species.
Other improvements would be thinkable, like easing every possible crossing of the
road which would have been suggested by an equal distribution of the costs to
each distance between the patches that lie on different sides of the road and would
have been executed by lowering the speed limit of the road. But the optimization
algorithm has found the green bridge to be more effective.
The optimization algorithm has made up an approved way to improve the viability
of a population, and it gives direction where exactly to apply this method in the
concrete metapopulation model, so that the resulting mean time to extinction rea-
ches its maximum for the available amount of costs. 

7 Conclusion
Although metapopulations are an often used way to gain knowledge about a cer-
tain species in a landscape, there was not a convenient way to automatically optim-
ize those landscapes because of the computational complexity of the problem. Ex-
perts  thought  improvements  for  the  given situation up,  which were  weight  up
against each other by the results of the improved metapopulation's simulations so
that a decision could be made.
Through the procedure suggested by this paper it is now possible to systematically
walk through the solution space of the possible applications of costs to the meta-
population's parameters to gain the distribution that maximizes the utility for the
metapopulation.
This procedure does not replace the knowledge of real experts, but it can give im-
pulses in what direction to think when it comes to optimize certain metapopula-
tions that may be complex or extraordinary. The algorithm has the advantage of re-
viewing a large set of possible solutions, so that an uncommon solution may be
found that a human might overlook.
The suggested procedure is more than a toy example and can probably be adopted
to  many other  population models than Meta-X, where it  already works [Grün-
ing05]. It seems to be a convenient way of gaining knowledge on how to improve
a certain landscape and can be used by ecologists and decision makers.
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