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Abstract—Multi-agent systems often consist of heterogeneous
agents with different capabilities and objectives. While some
agents might try to maximize their system’s utility, others
might be self-interested and thus only act for their own good.
However, because of their limited capabilities and resources, it
is often necessary that agents cooperate to be able to satisfy
given tasks. To work together on such a task, the agents have to
solve a task allocation problem, e.g., by teaming up in groups
like coalitions or distributing the task among themselves on
electronic markets.

In this paper, we introduce two algorithms that allow
agents to cooperatively solve a dynamic task allocation prob-
lem in uncertain environments. Based on these algorithms,
we investigate the influence of inter-agent variation on the
system’s behavior. One of these algorithms explicitly exploits
inter-agent variation to solve the task without communication
between the agents, while the other builds upon a fixed overlay
network in which agents exchange information. Throughout the
paper, the frequency stabilization problem from the domain of
decentralized power management serves as a running example
to illustrate our algorithms and results.

Keywords-Inter-Agent Variation; Dynamic Task Allocation
Problem; Distributed Problem Solving; Frequency Stabilization
Problem

I. THE DYNAMIC TASK ALLOCATION PROBLEM

Multi-agent systems (MAS) are usually composed of var-
ious agents with different capabilities and limited resources.
Because complex tasks often require several capabilities and
resources that exceed those of a single agent, they have to
be solved in a cooperative manner. In many cases, solving
a given task allocation problem (TAP) is accompanied by
the formation of explicit organizational structures such as
coalitions [1] which allow agents to satisfy tasks coop-
eratively in an optimized way, even though agents might
be self-interested [2] or untrustworthy [3]. One step in
coalition formation is thus to decide which agents should
work together on which task.

The dynamic task allocation problem (DTAP) that we
address in this paper consists of a single task that is
dividable into arbitrary partitions and to be solved by a set of
cooperative agents A = {a1, . . . , an}. While the task does
not require different capabilities, it can exceed the resources
available to a single agent. Therefore, instead of having to
decide which agent should work on which task, the main
problem in our DTAP is to distribute the task among agents.

In our DTAP, the single task of the agents A is to hold a
global value at a constant, predefined target value VT ∈ R at
all times. To this end, all agentsA cooperatively work on this
task. Each agent ai ∈ A can autonomously decide whether
or not to change the actual, current global value V (t) ∈ R
in time step t by changing its own contribution vai(t).
To be able to make informed decisions, each agent knows
V (t) and thus the current deviation ∆V (t) = V (t) − VT
from the target value. However, the agents are differently
sensitive to the current deviation from the target value. So
only if |∆V (t)| reaches or exceeds an agent ai’s threshold
φai ∈ R+

0 , it can decide whether or not to change its
own contribution. If it decides to contribute to change the
global value, it can either increase or decrease its current
contribution and thus increase or decrease the global value.
Since each agent ai has limited resources, ai has a minimum
contribution of vai,min ∈ R and a maximum contribution of
vai,max ∈ R (vai,min ≤ vai,max). If 0 ∈ [vai,min, vai,max],
agents are at liberty to decide against a contribution (i.e.,
vai(t) = 0). Moreover, the contribution vai(t) of an agent
in time step t depends on its contribution vai(t− 1) in time
step t − 1, thus introducing a kind of inertia. In detail, an
agent ai can increase or decrease its contribution by at most
∆vai,max ∈ [0, vai,max − vai,min] from one time step to
another. Because of this inertia as well as the minimum and
maximum contribution, an agent ai can actually increase its
contribution by at most ∆vai,+(t) and decrease it by at most
∆vai,−(t) in time step t:

∆vai,+(t) = min (∆vai,max, vai,max − vai(t))
∆vai,−(t) = min (∆vai,max, vai(t)− vai,min) (1)

Therefore, ∆vai(t) ∈ [−∆vai,−(t),∆vai,+(t)] for the
change in contribution ∆vai(t) = vai(t + 1) − vai(t)
of an agent ai in time step t. Such properties can be
found in control systems that regulate physical devices like
generators. Consequently, if the state of an agent is not
known, it is uncertain to what extent it can contribute to
a given deviation from VT .

As it is the aim to hold the global value at the target value
VT , the change in contribution ∆vai(t) of all agents ai ∈ A
in time step t should compensate for ∆V (t), i.e., the current
deviation from VT . Thus, the global problem to be solved
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can be formulated as follows:

minimize

∣∣∣∣∣∆V (t)−
∑
ai∈A

∆vai(t)

∣∣∣∣∣
subject to ∀ai ∈ A : ∆vai(t) ∈ [−∆vai,−(t),∆vai,+(t)]

However, as stated above, each agent has a different thresh-
old φai of when to adjust its contribution. Consequently not
all agents necessarily change their contribution. The agents’
thresholds are given by a probability distribution with a
mean threshold µφ > 0. We assume that this form of inter-
agent variation as well as the agents’ other properties are
attributes of the system and cannot be changed from outside.

Further, uncertainty is introduced by the environment,
which can change the global value V (t− 1) by an arbitrary
value δ(t) ∈ [−δmax, δmax] in each time step t:

V (t) = V (t− 1) +
∑
ai∈A

∆vai(t− 1) + δ(t)

δ(t) has to be in [−δmax, δmax], because the agents have
no chance of holding the global value at a constant level if
they cannot change their contribution by δ(t).

Usually, a given TAP is to be solved (nearly) optimally
with regard to a specific cost function. MAS algorithms
for TAPs are therefore often based on electronic markets
which use auctions (e.g., [4]) or variants of the contract net
protocol (e.g., [5]) to distribute a given task among agents
in a nearly optimal way. In contrast, the algorithms that we
present in this paper serve to investigate the influence of
inter-agent variation on the system’s behavior when solving
our DTAP in a distributed manner. Inter-agent variation is a
property that has been studied in the context of distributed
task allocation by Campbell et al. [6] and applied to various
problems (e.g., [7], [8]). In Section III, we propose an
algorithm that solves our DTAP without any communication
between agents. This is achieved by utilizing the inter-agent
variation available within the system. However, because
the algorithm relies on an adequate amount of inter-agent
variation, it particularly allows to examine how this property
affects the system’s behavior. The second algorithm, which
is presented in Section IV, is based on neighborhood struc-
tures in which agents negotiate about their contribution in an
iterative process. While inter-agent variation is still present,
agents can coordinate their actions. We evaluate these two
algorithms in Section V before we discuss related work in
Section VI. In Section VII, we finally conclude the paper
and give an outlook on future work. Throughout the paper,
the frequency stabilization problem in the power grid, which
is introduced in Section II, serves as a running example.

II. RUNNING EXAMPLE: FREQUENCY STABILIZATION IN
THE POWER GRID

An instance of the DTAP outlined in Section I is the
stabilization of the utility frequency in the power grid.
However, before we go into details concerning this matter,
we show which factors influence the utility frequency and
how it is stabilized in the power grid nowadays.

A. State of the Art

In the European UCTE synchronous area, which consists
of several independent control areas, the power grid is
operated at a nominal frequency fT = 50 Hz. A frequency
deviation ∆f(t) = f(t)− fT at time step t from fT can be
traced to a mismatch between power supply and demand. If
too much energy is fed into the system, the frequency f(t)
is above 50 Hz. If more energy is demanded than produced,
f(t) is below 50 Hz. While ∆f(t) can be measured at every
socket, the actual power deviation ∆P (t) between power
supply and demand at time step t can be determined by
means of ∆f(t) and κ, the network frequency characteristic,
which puts the mismatch between supply and demand into
relation to the frequency deviation:

∆P (t) = ∆f(t) · κ (2)

Further, κ depends on the size of the power grid and defines
its behavior and reaction to disturbances. For the European
transmission system, κ is 15000 MW/Hz [9].

Most power generators as well as many consumers rely
on the nominal frequency fT for proper operation and may
disconnect from the grid or even take damage if ∆f(t)
rises above a critical value. Since f(t) is the same for all
utilities connected to the grid, the task is to cooperatively
hold the global utility frequency within a small corridor
around 50 Hz, optimally at exactly 50 Hz. As mentioned
in Section I, in each point in time, the environment can
change ∆P (t) by an arbitrary value. This uncertainty is in-
troduced by stochastic power plants like weather-dependent
generators and unpredictable power demand.

The necessary control actions for maintaining this balance
are divided into successive interdependent steps [9]. Primary
control, the first step in the series of control actions, aims at
stabilizing an increasing frequency deviation at a stationary
value in order to ensure the operational reliability of the grid.
This step is implemented as a joint action of all connected
utilities, regardless of the control area they are located in.
They simultaneously increase or decrease generation in a
time frame of seconds after a disturbance. Primary control is
activated in each participating power plant at the latest when
the frequency deviation reaches ±20 mHz, dependent on the
local frequency measurement accuracy (≤ ±10 mHz) and
insensitivity of the controller (≤ ±10 mHz), thus inducing
inter-agent variation with different thresholds. On the other
hand, secondary control, which is activated subsequent to
primary control, pursues the goal to restore the frequency to
its nominal value. It is carried out independently in each
control area so that a disturbance is compensated for in
the area where it occurred. While primary control underlies
a globally standardized control mechanism implemented in
the individual power plant’s governors, the semi-automatic
secondary control may be realized differently in each control
area. We therefore focus on secondary control in a single
control area throughout the rest of this paper.



B. Dynamic Task Allocation Problem

Usually, the capacity for secondary control is issued by
controllable, fast-responding generators like hydro, biofuel,
or gas power plants and is activated by a central scheduler
within each control area. More formally, such a scheduler
has to solve an instance of the DTAP introduced in Section I.

In order to counter the mismatch between energy supply
and demand, the set A of power plants contributing sec-
ondary control power in a specific control area have to adjust
their output according to ∆P (t). Optimally, they would pro-
vide an aggregated reactive adjustment

∑
ai∈A rai(t), where

rai(t) is the reactive adjustment of power plant ai ∈ A,
that is equal to ∆P (t) and takes effect in the next time
step t + 1. Hence, ai’s output in the next time step is
pai(t + 1) = pai(t) + rai(t). Under the assumption that
the environment does not change ∆P (t+ 1), the mismatch
would be dissolved.

However, the process of modifying a power plant’s output
is bound to physical constraints which limit the power plant’s
output range and how fast it can increase or decrease its out-
put. The output range of a power plant ai is defined by ai’s
minimum output pai,min

1 and maximum output pai,max.
∆pai,max is the absolute maximum value by which ai can
change its output.2 Consequently, for the given time step t,
power plant ai can increase its output by at most ∆pai,+(t)
and decrease it by at most ∆pai,−(t) akin to Equation 1.

Further, the system has to deal with inter-agent variation
as the power plants are differently sensitive to power devi-
ations. The threshold φai states at which minimum power
deviation φai power plant ai takes measures to stabilize and
restore the frequency by adjusting its output. As stated in
Section I, the degree of inter-agent variation is defined by a
probability distribution with a mean threshold µφ.

Because of these physical constraints, it is often not pos-
sible to provide the reactive adjustment necessary to balance
energy supply and load within a single time step. The
objective is therefore to compensate for ∆P (t) as effectively
as possible (we deliberately abstract from economic criteria
that might influence optimal solutions):

minimize

∣∣∣∣∣∆P (t)−
∑
ai∈A

rai(t)

∣∣∣∣∣ (3)

subject to ∀ai ∈ A : rai(t) ∈ [−∆pai,−(t); ∆pai,+(t)]

If this optimization problem is solved by a central sched-
uler, one can easily define an optimal solution according to
Equation 3. However, centralized solutions do not scale with
the number of power plants that participate in the frequency
stabilization problem. As the number of distributed energy
resources is steadily increasing, a centralized approach is
thus not suitable in future energy management systems [10].
Further, future energy systems will develop to a more

1We assume that pai,min is a value ≥ 0 kW. We thus do not regard
storage power plants or controllable consumers.

2For simplicity, we assume that ∆pai,max does not depend on pai (t)
and that pai (t) can take arbitrary values between pai,min and pai,max.

and more “open access” system in which any component
becomes an active decision maker [11]. Therefore, decen-
tralized approaches have to be investigated. However, if the
frequency stabilization problem is solved in a decentralized
way by making use of local knowledge and local decisions,
it is not obvious how to compensate for a given power
deviation. For example, if a power plant does not know the
state and properties of others, it does not know how they
will react to a given power deviation.

For the two distributed utility frequency stabilization
approaches that are introduced in Section III and Section IV,
there is no central instance that calculates appropriate reac-
tive adjustments for all power plants. Instead, each power
plant tries to adjust its output on its own by making use of
local knowledge. The view of an individual power plant on
the frequency stabilization problem is thus the following:
Each power plant ai determines the current power devia-
tion ∆P (t) as explained in Equation 2. If |∆P (t)| ≥ φai ,
its goal is to autonomously adjust its current output by rai(t)
such that together with the reaction of the other power plants
A \ {ai} the deviation is reduced and, optimally, dissolved.

In such a setting, each power plant ai might only have
knowledge about how a limited number of other power
plants in its neighborhood Nai will react.3 Because we
assume that Nai 6= A, ∆P (t) is the only information that is
available to all power plants. Thus, the system could either
tend to insufficiently react to a given power deviation or to
overreact. The latter can result in undesired oscillations.

In the following, we present two bio-inspired distributed
algorithms that solve the frequency stabilization problem by
autonomous decisions based on local knowledge.

III. THE HONEY BEE ALGORITHM

Variation and error have been identified as important
properties of complex technical (e.g., [12]) and biological
systems (e.g., [13]) to allow them to reach their objectives.
Inspired by these insights, Campbell et al. [6] hypothesized
and deduced that inter-agent variation is also an essential
property to enable effective self-organization and a stable
system behavior in cooperative MAS. Based on the results
of Campbell et al. (see Section VI for a more detailed
discussion), we regard the way honey bees regulate the
temperature of their nest to solve the DTAP given in this
paper and investigate the impact of inter-agent variation on
the system’s behavior.

In order that the brood develops normally, honey bees
have to hold the temperature of their nest between 32 ◦C
and 36 ◦C, optimally at 35 ◦C [13]. Worker bees manage to
regulate the temperature by fanning hot air out of the nest if
the nest temperature is too high or by generating metabolic
heat if it is too low. Genetic variance makes sure that the bees
have different threshold temperatures, i.e., sensitivities, when
to start cooling or heating the nest so that the optimal nest
temperature can be maintained. Interestingly, this property is

3If ∀ai ∈ A : Nai = A, each power plant ai would have full knowledge
about the system.



achieved without any communication between the individ-
uals. Bees solely perceive and influence the temperature in
their environment. The property of variance is of great im-
portance. If each bee equally perceived temperature, all bees
would start to cool or heat the nest simultaneously. Thus, it
is likely that the nest temperature would oscillate between
two temperature values (see Section V), which is not desired
from an evolutionary as well as a technical perspective.
Because of these characteristics, the nest thermoregulation
mechanism is an auspicious example from nature illustrating
how inter-agent variation allows complex self-organizing
systems to achieve their goals without communication.

With regard to the definition of our DTAP, we mapped
the honey bee nest thermoregulation mechanism onto the
frequency stabilization problem in power systems as follows
(see Figure 1): As each bee can feel the temperature of
the nest, each power plant can determine the current power
deviation ∆P (t) = ∆f(t) · κ which has to be compensated
for as stated in Section II-B. Similarly to bees, power plants
do not react simultaneously to this power deviation. Their
different sensitivity values introduce inter-agent variation.

Determine Power 
Deviation

Idle Adjust Output

Determine 
Reactive 

Adjustment

 [|powerDeviation| > threshold]

 [else]

Figure 1. Control loop of the Honey Bee Algorithm

To be able to investigate how inter-agent variation influ-
ences the system’s behavior, the function used by power
plants to determine their reactive adjustment should have two
properties: 1) In case of either too little or too much inter-
agent variation, the power plants should either overreact to
a given power deviation, which results in oscillations, or
insufficiently adjust their output to compensate for a given
power deviation ∆P (t). 2) In case of a suitable degree of
inter-agent variation, the power plants should manage to
compensate for ∆P (t).
r∗ai(t) meets these properties. In detail, independent of

∆pai,−(t) and ∆pai,+(t), r∗ai(t) specifies the preliminary
reactive adjustment of power plant ai on the basis of
the power deviation ∆P (t), ai’s threshold φai , and the
maximum value ∆pai,max by which ai can adjust its output:

r∗ai(t) =

α ·∆pai,max ·
β

√
φai
K
·

(
1− γ

√
K

|∆P (t)|+ (K − φai)

)
,

with K = 1 Hz · κ

r∗ai(t) has some important characteristics. The greater the
power deviation ∆P (t), the greater r∗ai(t). Further, the slope
of r∗ai(t) depends on the power plant’s threshold φai . While

sensitive power plants contribute earlier than less sensitive
ones, they do not adjust their contribution as much as less
sensitive power plants. Obviously, the definition of r∗ai(t)
seems to be rather complex and other functions might even
yield better results. However, it is well-suited to examine the
impact of inter-agent variation on the system’s behavior.

The crucial property that r∗ai(t) has to meet to solve our
DTAP is that the aggregated reactive adjustment of all power
plants equals ∆P (t) as accurately as possible. To reach this
objective, the constants α, β, and γ allow to calibrate the
system so that the reactive adjustments coincide with the
actual surplus of or deficit in power. Useful values for α,
β, and γ depend on the properties of the underlying system
(e.g., the number of power plants), the mean threshold µφ,
as well as the degree of inter-agent variation.

Figure 2 depicts the reactive adjustment rai(t)
∗ dependent

on the power deviation ∆P (t) and different sensitivity
values for a power plant ai with fix values for α, β, and γ.
In Section V, we identify suitable values for these constants
and analyze the role of inter-agent variation.

∆P (t) in MW

r∗ai (t) in kW

10

20

30

40

5 10 15 20

φai = 0 25.
φai = 0 5.
φai = 1
φai = 2
φai = 3

Figure 2. Reactive adjustment r∗ai (t) in MW with different thresholds
φai dependent on the power deviation ∆P (t), with ∆pai,max = 1 MW,
K = 150 MW, α = 0.8, 1

β
= 0.15, and 1

γ
= 0.85.

However, whenever ai determines its reactive adjustment,
it also has to take its current output pai(t), its minimum out-
put pai,min, and its maximum output pai,max into account.
Therefore, ai actually alters its output pai(t) by rai(t):

rai(t) =

 −min
(
r∗ai(t),∆pai,−(t)

)
if ∆P (t) ≥ φai

min
(
r∗ai(t),∆pai,+(t)

)
if ∆P (t) ≤ −φai

0 otherwise

If ∆P (t) is equal to or greater than ai’s threshold φai , it
reduces its output by at most ∆pai,−(t), or, if ∆P (t) is
equal to or less than −φai , ai increases its output by at
most ∆pai,+(t). Otherwise, ai does not adjust its output and
thus does not contribute to neutralize ∆P (t). Consequently,
given a power deviation ∆P (t), all power plants ai for
which rai(t) 6= 0 either increase or decrease their output.

Summarizing, the Honey Bee Algorithm allows the power
plants to compensate for ∆P (t) without any communication
or knowledge about the other power plants’ state or their
reaction to the given deviation. In terms of Section II-B,
this corresponds to an empty neighborhood for each power



plant (∀ai ∈ A : Nai = ∅). We thus expect the algorithm
to scale well with the number of power plants. Importantly,
as the algorithm exploits the system’s inherent inter-agent
variation, the quality of the algorithm’s results heavily
depends on the available amount of inter-agent variation.
We investigate this essential property in Section V.

IV. THE SCHOOLING FISH ALGORITHM

The Honey Bee Algorithm introduced in the previous
section does not include any communication between power
plants so that the DTAP is solved on the basis of probabilistic
local decisions and the observation of the environment.
Hence, the algorithm is very sensitive to the amount of
inter-agent variation present in the system, and has to be
configured accordingly. In contrast, social interaction of
individuals has been identified as another interesting model
for the design of distributed task solving systems [14], which
might be less dependent on the parameters of the underlying
system. In the following, we present an algorithm for the
DTAP given in this paper that is inspired by the schooling
behavior of fish. Interaction is carried out indirectly, i.e.,
by observation of other individuals rather than direct ne-
gotiations. The algorithm is based on the preliminary work
in [15], where a self-organizing coordination of dynamic
electrical loads has been proposed.

Just like flocking birds, swarming insects, or other herding
animals, the schooling of fish is an emergent behavior that
arises from local interactions between individuals, without
central control. Fish observe their environment and react to
motions of other fish. These reactions can easily be described
by few simple behavioral rules that take the distance, ve-
locity, and direction of other fish into account. Based on
these observations, a fish determines its own velocity and
swimming direction (see [16] for a detailed description).

This principle can be applied to the frequency stabilization
problem in power systems as follows: Each power plant
determines the current power deviation ∆P (t) = ∆f(t) · κ
as described in Section II. The reactive adjustment that,
in average, each single power plant has to perform can
be determined by normalizing the negative current power
deviation to the amount of participating power plants:

ravg(t) =
−∆P (t)

|A|
(4)

But as not every power plant is physically able to perform
this average adjustment, a more equitable partitioning of the
globally required reactive adjustment has to be found so that
each power plant contributes preferably the same fraction
of reactive adjustment relative to the amount it is able to
contribute in total (i.e., power plants with a large reserve
contribute more than power plants with a small reserve).
We assume that a power plant ai has a neighborhood Nai
of other power plants it can observe, and a threshold φai , as
stated in Section II-B. If |∆P (t)| ≥ φai , the task of a power
plant ai is to adapt its own reactive adjustment rai(t) based
on its local view on the system. This is done iteratively,
starting with rai(t) = 0. The local view comprises observed

properties of each neighbor aj ∈ Nai , namely the cur-
rently chosen raj (t) and the remaining possible adjustment
∆raj ,max(t) a power plant aj is physically still capable of.
For each power plant ai, the latter is defined as:

∆rai,max(t) =


∆pai,−(t)− |rai(t)| if ∆P (t) ≥ φai
∆pai,+(t)− |rai(t)| if ∆P (t) ≤ −φai
0 otherwise

(5)
Note that ∆rai,max(t) is always a positive value. Given
these observed values, a power plant ai is able to calculate
the locally still required power adjustment as

∆rNai (t) = ravg(t) · (|Nai |+ 1)−
∑

aj∈(Nai∪{ai})

raj (t)

where the term “locally” refers to the limited view of ai on
the system (i.e., its neighborhood). Further, the locally still
possible absolute reactive adjustment is given by

∆rNai ,max(t) =
∑

aj∈(Nai∪{ai})

∆raj ,max(t).

Since the power plant ai knows the situation in its neighbor-
hood at this point in time, it is able to calculate an equitable
partitioning of ∆rNai (t) and therefore the estimated fraction
of the reactive adjustment it should perform itself:

r̂ai(t) =

{
∆rNai (t) ·

∆rai,max(t)

∆rNai ,max
(t) if ∆rNai ,max(t) > 0

0 otherwise

Afterwards, the physical constraints of the power plant have
to be applied to this calculated value:

r∗ai(t) =

{
min (r̂ai(t), ∆pai,+(t)) if r̂ai(t) ≥ 0

max (r̂ai(t), −∆pai,−(t)) if r̂ai(t) < 0
(6)

However, due to varying neighborhood configurations, it
may occur that, from ai’s perspective, the desired local
reactive adjustment rNai (t) in its neighborhood Nai has
been already exceeded. Given the above calculation, the
power plant would now choose an adaptation in the op-
posite direction of the overall desired reactive adjustment
to counterbalance the local overshooting. But as such a
situation arises solely from a lack of global knowledge,
this behavior would not be beneficial for the common goal.
Thus, as a last step, the power plant compares the sign of
the above calculated value r∗ai(t) to the sign of the overall
desired reactive adjustment (see Equation 4). If the signs are
equal, the value r∗ai(t) is added to the reactive adjustment
rai(t) for the current time step t. If the signs are unequal,
the calculated values are discarded. This ensures that every
power plant in the population makes adjustments in the same
direction so that no operating reserves are wasted. If the
value of rai(t) has been changed during this process, rai(t)
and ∆rai,max(t) are finally made known to the environment.

Just like in the movement correction of fish, this adapta-
tion is performed each time a value change is observed in
the neighborhood. Overall, this mechanism yields an infinite



Listing 1. The Schooling Fish Algorithm
while True:

wait for input: ∆P (t)
rai(t) ← 0
publish rai(t) and ∆rai,max(t) // Equation 5
if ∆rai,max(t) > 0:

for c in range(0, kai):
wait for updates from neighbors,

on timeout: break
calculate r∗ai(t) // Equation 6
if sgn(r∗ai(t)) == sgn(ravg(t)):

rai(t) ← rai(t) + r∗ai(t)
publish rai(t) and ∆rai,max(t)

establish rai(t) as reactive adjustment

iterative adaptation to the changing environment by dividing
the remaining required power adjustment into smaller and
smaller pieces. While such a behavior is appropriate in
a school of fish where each movement adaptation can be
carried out instantly, it is not feasible for a technical system
like the power network. Therefore, this process is meant as
a planning phase in which the desired reactive adjustment is
determined iteratively. We included an upper bound kai on
the number of iterations a power plant is allowed to perform
for a time step t. This leads to a rapid termination of the
planning phase. Only then each power plant ai establishes
its final value rai(t) as reactive adjustment for the current
time step t. The whole process is summarized for a single
power plant ai in Listing 1.

In summary, the Schooling Fish Algorithm allows power
plants to compensate for ∆P (t) using limited, local knowl-
edge about their neighboring power plants. Due to its
iterative, adaptive nature, we expect the algorithm to be
able to cope with different amounts of inter-agent variation
available in the system, and thus to be rather independent
of the thresholds φai . This is evaluated in the following.

V. EVALUATION

For the evaluation of the Honey Bee and the School-
ing Fish Algorithm, we set up a system with a set A
of 222 simulated controllable power plants of different
types (hydro, biofuel, and gas power plants) with no
other power plants contributing to the energy supply. The
power plants had different physical properties based on
real data. More precisely, pai,min ∈ [0.0 kW, 414.0 kW],
pai,max ∈ [2.0 kW, 45500.0 kW], and ∆pai,max ∈
[2.0 kW, 45500.0 kW]. As ∀ai ∈ A : pai,min ≥ 0, we did
not regard storage power plants or controllable consumers
with a negative contribution (see Section II-B).

The power plants had to satisfy a load curve L(t) for a
set of discrete time steps T , i.e., they had to hold |∆P (t)| =
|L(t) − P (t)| as small as possible ∀t ∈ T . The energy
demand was within the power plants’ output range so that
all points in the load curve could be theoretically reached by
the power plants. Moreover, the load could only change by
at most ∆Pmax =

∑
ai∈A∆pai,max from one time step to

another so that ∀t ∈ T \ {0} : |L(t)−L(t− 1)| ≤ ∆Pmax.
Thus, the maximum uncertainty δmax introduced by the
environment was limited by ∆Pmax (see Section I).

In all simulation runs, the power plants’ sensitivity
φai ∈ [0 MW, 150 MW] was initialized by a central
random number generator using a beta distribution with
a mean threshold of µφ = 3 MW (we assume that
our system models one per cent of the UCTE network).
Different degrees of inter-agent variation were modelled
by different values for the standard deviation σφ ∈
{0 kW, 75 kW, 750 kW, 7500 kW, 15000 kW} of the power
plants’ sensitivity.

In order to properly evaluate both algorithms, the power
plants only reacted to a power deviation, i.e., the power
plants were not controlled in any other way and did not know
the future power demand, there were no malfunctioning
power plants, and all messages were processed correctly.

The evaluation was implemented in a sequential, round-
based execution model. At the beginning of each round, the
current load was updated, whereupon the current frequency
deviation based on the current demand and the previous
supply was determined. Afterwards, each power plant could
determine the power deviation by means of the frequency
deviation and adjust its output accordingly.

The Fitness Function: The goal of our algorithms is to
compensate for a given power deviation ∆P (t). With respect
to a single time step t, the fitness of a frequency stabilization
algorithm thus depends on the absolute deviation Ds(t) of
the power plants’ reactive adjustment from ∆P (t) for a
specific simulation run s (see Equation 3):

Ds(t) =

∣∣∣∣∣∆P (t)−
∑
ai∈A

rai(t)

∣∣∣∣∣
The total deviation Ds,total for a single simulation run s is
calculated by summing up Ds(t) for all time steps t ∈ T :

Ds,total =
∑
t∈T
Ds(t)

As we perform several simulation runs S for each
parametrization, we define an algorithm’s fitness for this
parametrization on the basis of the mean total deviation
Dtotal =

∑
s∈S

Ds,total
|S| :

F = 1.0− Dtotal −Dbest
Dworst −Dbest

The actual total deviation Dtotal is normalized to the dif-
ference between the highest Dworst and the lowest Dbest
mean total deviation that occurred in our simulation runs in
one scenario, regardless of a specific parametrization. Thus,
F = 0.0 is the worst and F = 1.0 is the best rating.

Scenarios: We evaluated the algorithms in two different
scenarios. On the one hand, the load was set to a constant
value L(t) = 56885 kW for all time steps (scenario CL).
The overall production of the power plants was initialized
with P (0) = 24678 kW. Thus, the power plants’ output
should converge towards the demand as fast as possible and
with as less oscillations as possible. On the other hand, the
load was based on a real load curve over six days with a
resolution of 15 minutes per time step (scenario RL). The



initial production of the power plants was initialized with
P (0) = L(0) = 56885 kW. The power plants’ task was to
follow the load curve as close as possible.

In the following, we present our evaluation results. For
each parametrization, we performed |S| = 200 simulation
runs, each starting with another random initialization of a
power plant’s initial output pai(0) ∈ [pai,min, pai,max] and∑
ai∈A pai(0) = P (0).

A. The Honey Bee Algorithm

First of all, our goal was to identify suitable parameters
for the Honey Bee Algorithm that allow to examine how
inter-agent variation influences the system’s behavior when
solving our DTAP. To identify these parameters, we used the
scenario RL and evaluated different combinations of α ∈
{0.3, 0.8, 1.2}, 1

β ∈ ]0.00, 0.50], and 1
γ ∈ [0.50, 1.00], each

with an increment of 0.05. Since we obtained promising
results with α = 0.8, 1

β = 0.15, and 1
γ = 0.85, we used

these parameters for further investigations.
To analyze to what extent inter-agent variation influences

oscillations and convergence, we employed the scenario CL
and compared the results for the five different values for the
standard deviation σφ of the power plants’ sensitivity. As
can be seen in Figure 3, inter-agent variation significantly
influenced the agents’ behavior and thus the algorithm’s
results. Too much inter-agent variation (σφ = 15000 kW)
made the algorithm too sluggish. Since too few agents
contributed to the task, the system needed much time to
compensate for the given power deviation. On the other
hand, if the system featured no or insufficient inter-agent
variation (e.g., σφ = 0 kW, σφ = 75 kW, or σφ = 750 kW),
the system tended to overreact and was prone to oscillations.
The smaller σφ, the higher the amplitudes and the lower
the damping. Regarding the results depicted in Figure 3,
an inter-agent variation of σφ = 7500 kW allowed the
system to compensate for the given power deviation within
approximately 4 time steps – almost without oscillations.
Interestingly, the agents compensated for the majority of the
power deviation in the first time step.

Table I lists the total deviation Dtotal, the standard de-
viation σDtotal of Dtotal, as well as the fitness F for each
parametrization. Like Figure 3, the table mirrors that the
system’s behavior was very sensitive to the amount of inter-
agent variation. For scenario CL and σφ = 7500 kW, Dtotal
was only 13% or 19% of Dtotal for σφ = 750 kW or
σφ = 15000 kW.

The results for the scenario RL are shown in Figure 4.
For the sake of clarity, we only depict the results for three
different values of σφ, representing a low, medium, and high
amount of inter-agent variation. If an adequate degree of
inter-agent variation was available, the power plants could
compensate for power deviations very accurately. However,
in case of too little inter-agent variation, the power plants
did not sufficiently adjust their output and were not sensitive
enough to react to small power deviations (the output was
sometimes kept at a constant level while the consumption

σφ Dtotal σDtotal F

C
L

0 kW 402484.68 kW 3046.73 0.000
75 kW 401804.38 kW 3981.39 0.002

750 kW 335255.37 kW 30041.63 0.187
7500 kW 43232.44 kW 7981.76 1.000

15000 kW 223861.35 kW 139629.91 0.497

R
L

0 kW 1197486.89 kW 11186.26 0.197
75 kW 1193843.26 kW 12429.11 0.200

750 kW 1153631.58 kW 91626.88 0.229
7500 kW 551714.40 kW 155030.11 0.677

15000 kW 1462001.22 kW 576019.70 0.000

Table I
HONEY BEE ALGORITHM: STATISTICAL OVERVIEW OF DIFFERENT
DEGREES OF INTER-AGENT VARIATION IN SCENARIOS CL AND RL
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Figure 3. Honey Bee Algorithm: output adjustment to compensate for a
given power deviation caused by a constant load for different degrees of
inter-agent variation (standard deviations) in scenario CL.

changed). Similarly, if the system featured too much inter-
agent variation, the output seemed to lag behind the con-
sumption and load peaks were not satisfied either.

Table I quantifies these observations. For scenario RL and
σφ = 7500 kW, the Honey Bee Algorithm yielded results
for which Dtotal was 38% or 46% of Dtotal for σφ = 0 kW
or σφ = 15000 kW. However, the Honey Bee Algorithm
only achieved a maximum fitness of 0.677, indicating that
the Schooling Fish Algorithm solved our DTAP much better.
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Figure 4. Honey Bee Algorithm: following a given load curve with
different degrees of inter-agent variation (standard deviations) in scenario
RL (top); remaining difference to the load curve (bottom).

B. The Schooling Fish Algorithm
The Schooling Fish Algorithm uses local knowledge and

interaction in order to solve the given DTAP. We expected



that the underlying communication network, which defines
the neighborhood structure, would have an influence on
the solution quality. So, first of all, we examined different
network topologies: an ordered ring, random graphs with
different densities, small worlds with varying shortcut prob-
abilities (cf. [17]), and a regular mesh-shaped graph. We
found that, in general, there is a trade-off between solution
quality and the amount of communication in the system. But
as there were no obvious dependencies between the network
topology and the amount of inter-agent-variation in the
system, we chose a single topology for further investigations,
namely a random graph with a mean neighborhood size
|Nai | = 5. This topology produced rather much commu-
nication overhead, but in turn yielded very good results.

To investigate the influence of inter-agent variation on the
Schooling Fish Algorithm, we evaluated the same five values
for the standard deviation σφ of the power plants’ sensitivity
as in the Honey Bee Algorithm. The simulation results for
scenario CL are shown in Figure 5. As expected, the power
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Figure 5. Schooling Fish Algorithm: output adjustment to compensate for
a given power deviation caused by a constant load for different degrees of
inter-agent variation (standard deviations) in scenario CL.

plants divided the deviation from the target load value itera-
tively into smaller and smaller pieces. Thus, a near-optimal
partition of reactive adjustments was approached asymptot-
ically without inducing oscillations. Because the number of
iterations in each time step t was limited to kai = |Nai | for
each power plant ai, the convergence advanced over several
time steps.4 More importantly, the results show that, regard-
ing the speed of convergence, the inter-agent variation did
not have an influence on the Schooling Fish Algorithm. All
examined threshold distributions show a similar slope in the
first nine time steps.5 Afterwards however, parametrizations
with a very low standard deviation σφ leveled at a overall
production

∑
ai∈A pai(t) ≈ (L(t)− µφ). This indicates that

the algorithm was not able to find an optimal partition of
reactive adjustments if the system featured very little inter-
agent variation. Table II shows the total deviation Dtotal,
the standard deviation σDtotal of Dtotal, the fitness F , and
the number of messages msg which were sent on average

4Note that the single iterations during the planning phase are not shown
here; only the resulting overall production per time step is depicted.

5The graphs of σφ = 0 kW and σφ = 75 kW are almost identical and
thus are visually indistinguishable in the figure.

in each time step per agent for each parametrization. These

σφ Dtotal σDtotal F msg

C
L

0 kW 342029.00 kW 22568.91 kW 0.168 5.15
75 kW 341011.44 kW 19163.09 kW 0.171 5.15

750 kW 278791.92 kW 28809.23 kW 0.344 5.16
7500 kW 123273.04 kW 17188.02 kW 0.777 5.25

15000 kW 117251.98 kW 17340.99 kW 0.794 5.31

R
L

0 kW 784578.48 kW 22565.43 kW 0.504 6.26
75 kW 787419.68 kW 23818.22 kW 0.502 6.03

750 kW 786352.64 kW 29336.63 kW 0.503 5.42
7500 kW 182570.04 kW 37941.59 kW 0.952 11.66

15000 kW 117896.81 kW 18960.42 kW 1.000 16.98

Table II
SCHOOLING FISH ALGORITHM: STATISTICAL OVERVIEW OF DIFFERENT

DEGREES OF INTER-AGENT VARIATION IN SCENARIOS CL AND RL

values confirm that, regarding convergence in scenario CL,
the algorithm performs better the more inter-agent variation
is present in the system.

Figure 6 (upper subplot) shows the simulation results for
scenario RL. For a better visualization, we included only
the two best and the worst performing parametrizations
in the diagram. The lower subplot depicts the remaining
difference to the load curve. The statistical properties of
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Figure 6. Schooling Fish Algorithm: following a given load curve with
different degrees of inter-agent variation (standard deviations) in scenario
RL (top); remaining difference to the load curve (bottom).

these simulations are shown in Table II as well. Again, it is
obvious that the algorithm performs better with an increasing
amount of inter-agent variation. If we look at the values more
closely, however, we see that Dtotal dropped dramatically
by 77% from σφ = 750 kW to σφ = 7500 kW. So there
seems to be a critical threshold for the amount of inter-agent
variation, which is needed by the Schooling Fish Algorithm
to find a near-optimal solution.

VI. RELATED WORK

As stated in Section III, Campbell et al. investigate in
[6] the role and benefit of inter-agent variation in self-
organizing systems on the basis of a TAP that is solved
by a variant of our Honey Bee Algorithm ([6] refers to our
sensitivity as error). Similar to our DTAP, their agents try
to maintain a task’s value at a predefined target value by
contributing to the task. As in our DTAP, the task’s value
is not fix but the value can change from one time step



to another. Despite a changing environment, the authors of
[6] are able to compute how much inter-agent variation is
necessary so that the system reaches and is kept in a stable
state. In this state, the task’s value equals the target value in
each future time step. However, there are several differences
between the TAP given in [6] and our DTAP introduced in
Section I. 1) [6] only regards negative deviations, whereas
our agents try to compensate for negative as well as positive
deviations. 2) In [6], each agent contributes with the same,
fixed value. With respect to our Honey Bee Algorithm, an
agent’s contribution depends on the deviation from the target
value as well as the agent’s sensitivity, its properties, and its
resources. 3) In [6], the current value of the task is decreased
by a constant value so that the agents can anticipate their
behavior. In our DTAP, the task’s current value can change
randomly within certain bounds from one time step to
another. Therefore, power plants cannot anticipate how much
to contribute. Consequently, as our system features a higher
degree of inter-agent variation and is situated in an uncertain
environment, we could not apply the formulas given in [6]
to our Honey Bee Algorithm. Apart from that, [6] served as
a theoretical foundation for our investigations.

In the context of frequency stabilization, there are ap-
proaches that suggest to introduce [18] or to make use
of inherent [19] inter-agent variation as a means to avoid
oscillations. [18] proposed that the hardware used to detect
and react to an impending frequency instability should use
different frequency-response thresholds. In [19], a mecha-
nism for frequency stabilization is presented that is based
on a great quantity of devices equipped with thermal storage
capacity whose temperature should be held within certain
bounds (e.g., refrigerators). For frequency stabilization, the
control system that governs the cooling is modified such
that it allows temperatures that are linearly dependent on
the utility frequency. Interestingly, inter-agent variation is
not in place as a result of different sensitivity thresholds
like in our DTAP. Instead, [19] assumes that the devices are
in different states with respect to their temperature and thus
react differently to a given frequency deviation. A similar
source of inter-agent variation is also present in our DTAP.
Like the Honey Bee Algorithm, the mechanism in [19] gets
by with local knowledge and without any communication.

[20], [21] present an approach for balancing energy supply
and load by grouping small generators and consumers into
pools. Within each pool, dynamic groups of generators
and consumers immediately balance small power deviations,
while the other devices compensate for significant devi-
ations. The devices within a dynamic group successively
adjust their output and communicate the remaining power
deviation to a neighbor. If the dynamic groups cannot com-
pensate for the deviation, the other devices within the pool
adjust their output. If a device adjusts its output, it requests
its neighbors to what extent they can adjust their output and
subsequently selects those devices that are best suited to
compensate for the power deviation. While these devices
thus have to solve a knapsack problem to decide which
devices should adjust their output, our agents only decide

how to adjust their own output. When using the Honey Bee
Algorithm, no communication is needed. With regard to the
Schooling Fish Algorithm, information is exchanged within
an agent’s neighborhood, similar to [20], [21].

A related approach to the Schooling Fish Algorithm can
be found in the domain of distributed constraint satisfaction
problems (DCSPs). [22] introduces DCSPs as a formalism
for cooperative distributed problem solving. Similar to our
approach, the Asynchronous Backtracking algorithm (ABT)
[22] for DCSPs harnesses the partial knowledge of agents
induced by neighborhood relations to speed up the search for
an optimal solution. However, ABT is limited to satisfaction-
based problems and cannot easily be transferred to optimiza-
tion problems as discussed in the paper at hand. In [23], an
extension for ABT for optimization is presented which can
be applied only to limited types of optimization problems.

In [24], a self-organizing system of cooperative energy
resource agents (primarily flexible loads) is proposed. The
agents communicate indirectly by using a black-board like
medium called “stigspace”. The goal is to satisfy a globally
known power supply cap. Similar to our Schooling Fish
Algorithm, the agents adapt their load adjustments according
to published values of other agents. Inter-agent variation is
introduced by using randomized load shifts as an adjustment
strategy. Our approach differs in that we equitably distribute
the required power adjustments rather than making random
choices. Also, in the DTAP given in this paper, inter-agent
variation is inherent in the system rather than introduced by
the algorithm. It is exploited by the Honey Bee Algorithm
on the one hand, and coped with by the Schooling Fish
Algorithm on the other hand.

A bottom-up approach to a supply and demand matching
is proposed in [25]. Agents are organized in a dynamically
built tree hierarchy using an overlay network on top of
a decentralized peer-to-peer communication network. Here,
each agent receives the set of possible energy utilization
plans for a specific period of time (i.e., the feasible load
schedules) from its child nodes in the tree hierarchy. From
these sets, it selects the best combination of plans subject
to a fitness function and informs the child nodes about its
choice. These plans are then sent to the parent node together
with the set of possible own plans, which in turn applies
the same procedure. Eventually, the root node is reached
where the resulting global plan emerges. This is similar
to our Schooling Fish Algorithm since it also propagates
information on the basis of neighborhood relations. Our
approach, however, allows arbitrary topologies and does not
rely on a hierarchy. Hence, we do not have a single point of
failure and no performance bottleneck. We also make use of
iterative adaptation to gradually improve an initial solution,
whereas [25] uses a greedy bottom-up mechanism.

VII. DISCUSSION AND FUTURE WORK

In this paper, we presented two algorithms that solve a
dynamic task allocation problem (DTAP) under uncertainty.
On their basis, we examined how inter-agent variation affects
the system’s behavior. In our DTAP, a group of agents has



the task to hold a global value at a fixed target value by
adjusting their contribution. While the agents solve the task
cooperatively, inter-agent variation is introduced by different
thresholds of when agents adjust their contribution to satisfy
the task. Uncertainty is introduced as the global value can
change almost arbitrarily from one time step to another.

The Honey Bee Algorithm solves the DTAP by exploiting
the system’s inter-agent variation. It copes without com-
munication between the agents or knowledge about the
agents’ state or contribution to the task. However, while our
evaluations showed that the algorithm can achieve appealing
results, their quality heavily depends on the amount of inter-
agent variation available within the system. If the amount
of inter-agent variation is inadequate, i.e., either too high
or too low, either oscillations occur or the agents insuffi-
ciently change their contribution. Regarding the Honey Bee
Algorithm, future work is to examine to what extent other
execution models influence the algorithm’s results. Further-
more, we will investigate if we can improve the results by
allowing the agents to self-configure their parameters on the
basis of a feedback mechanism.

In the Schooling Fish Algorithm, each agent knows the
number of agents solving the DTAP. Moreover, agents can
coordinate their actions by communicating within over-
lapping neighborhoods. The evaluations showed that the
algorithm can solve the DTAP very accurately. In contrast
to the Honey Bee Algorithm, the Schooling Fish Algo-
rithm is not prone to oscillations because of its iterative
annealing nature which is almost independent of the amount
of inter-agent variation. Interestingly, the more inter-agent
variation was available, the better the algorithm’s results.
Simulation results indicated that there even is a critical
amount of inter-agent variation which helps the algorithm
to find near-optimal solutions. Conversely, if the amount of
inter-agent variation exceeded a certain point in the Honey
Bee Algorithm, higher inter-agent variation led to a more
sluggish behavior. Future work is to examine these critical
amounts as well as the impact of different probability distri-
butions, i.e., characteristics of inter-agent variation, on the
system’s behavior in more detail. Regarding the Schooling
Fish Algorithm, different topologies should be analyzed,
especially with respect to these properties, in order to find a
possibly hidden dependency between network structure and
the ability to cope with less inter-agent variation.
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