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Abstract

Future energy systems will increasingly rely ortriisited and renewable energy sources (RES). iitlatfeed-in

of photovoltaic (PV) power plants and wind energywerters (WEC may vary greatly, the supply of &leal pow-

er from RES and the demand for electrical powemateper se matching. and in addition, with a grmvshare of
generation capacity especially in distribution grithe top-down paradigm of electricity distributis gradually re-
placed by a bottom-up power supply. This altogetbads to new problems regarding a safe and reliapération
of power grids. In order to address these challgentpe notion of Smart Grids has been introducedhis context,
autonomous agents and the concept of self-organgsistems are key elements in order to intelligensle the in-
herent flexibilities of distributed generators, movwstorage systems and power consumers. Our rbsgaat is to
optimise the local utilisation of RES feed-in irgiwen power grid by intelligently integrating boslupply and de-
mand management measures and with special regpiagt €lectrical infrastructure. In this papestfive show how
an intelligent load management system for battearging/discharging of electrical vehicles EVs dacrease the
locally used share of supply from PV systems iova Voltage grid. For a reliable demand side managof large
sets of appliances dynamic clustering is neces$deyshow how control of such clusters can affeatllpeaks in
distribution grids. Additionally we give a shortewview how we are going to expand an attempt dfaeglanised
clusters of units to a virtual control centre fatyamamic virtual power plant.

1. Supply-demand-matching considering renewably ener gy sources

Future energy systems will increasingly rely ortriisited and renewable energy sources (RES). 10,203
between 50% (BMWi 2010) and 67% (BMU 2012) of thhesg electricity demand of Germany are ex-
pected to be covered by electric feed-in from REBS2050, this share is expected to grow up to 85%
(BMU 2012). In course of this politically driven @ution of an energy system, new challenges reggrdi
the successful and sustainable integration of RER into the power grid and into energy marketsehav

be addressed: As photovoltaic (PV) power plantswind energy converters (WEC) rely on solar radia-
tion and wind, respectively, their electrical fdadmay vary greatly and unforeseen in small amoohts
time (stochastic fluctuation of RES feed-in). Irdain, the supply of electrical power from RES ahd
demand for electrical power are not per se matchihmgg is there are times of high electrical fee@ind
low power demand, vice versa. Even with today’s paratively low share of RES, these situations may
yield negative electricity prices at the Europeamefgy Exchange (EEX) (Wissing 2012) due to the
(short-term) surplus of power generation. Regardivegelectrical infrastructure, the integrationRES
increases the strain on power grid assets (e.gepwansformers) as today’s power grids where hcsb

ly designed for a top-down power transmission aisttidution. With a growing share of generation ca-
pacity especially in distribution grids, the topadoparadigm is gradually replaced by a bottom-uywero
supply, leading to new problems regarding a satkereliable operation of power grids (e.g. voltaga-c
trol and power grid protection measures).
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In order to address these challenges, the notioBnwdrt Grids has been introduced. The European
Technology Platform (ETP) defines Smart Grids dscteicity networks that can intelligently integeat
the behaviour and actions of all users connectéd-tgenerators, consumers and those that do-bath
order to efficiently deliver sustainable, econormaitd secure electricity supplies” (EU ETP 2010)ellirt
gent behaviour is thus a key element of Smart Gaidsa prerequisite for an optimized utilisatiorref
newable energy supply. Taking the outlined chaksnigto account, our research goal is to optintige t
local utilisation of RES feed-in in a given poweidgby intelligently integrating both supply andndand
management measures and with special respect telébgical infrastructure. We aim to match supply
and demand of electrical power on a local scakindgagrid load into account. In this context, autormous
agents and the concept of self-organising system&ey elements in order to intelligently use thieeir-
ent flexibilities of distributed generators, povetorage systems and power consumers.

In section 2 of this paper we show how an intellighbad management system for battery charg-
ing/discharging of electrical vehicles (EVs) caorgase the locally used share of supply from P\esys
in a low voltage grid. Additionally, this load stiifg method allows reducing the average load atdbal
transformer station significantly. Integration afde sets of small appliances into load manageraggs
guestions of predictable behaviour of these dewasesell as scaling problems for control algorithfer
a reliable demand side management of large setppdfances clustering is necessary which is owtline
section 3. Section 4 of this paper gives a shoerogw how we are going to expand an attempt df sel
organised clusters of units to a virtual contraitoe for dynamic virtual power plants. This virtuaintrol
centre includes distributed methods for schedutamigation as well as rescheduling of units.

2. Increasinglocal utilisation of supply from PV systemsusing batteriesof EVs

In this section we show how a (central) intelligenohtrol method for smart charging of electric \obds
(EVs) can increase the local use of PV supply lovavoltage (LV) power grid. Additionally, we show
that grid constraints — i.e. the strain on locadl grssets such as power transformers — can impliog
taken into account by such a control method (Trélsehal 2011).

A major challenge regarding smart charging of E&/siimultaneity. Consider the following thought ex-
periment: In a small urban low-voltage (LV) gridnaprising 70 (high-income) households, 20 battery
electric vehicles (EVs) are located. The local potk@nsformer has been laid-out for a maximum load
200kVA, which is quite comfortable regarding theuseholds’ yearly peak load of about 120kW. Each
EV has a maximum storage capacity of 30kWh and @rman charging power of 10kW (three-phase
connection point). The EVs are mostly used for caotnmg, that is on work-day evenings they are all re
turned more or less at the same time to their dh@ugtation. Uncontrolled charging — starting tace
an EV’s battery as soon as it is connected to izeging station — can then result in a massivénstna
the local power infrastructure: When all 20 EVsrgeaat the same time (i.e., with high simultaneity)
to 200kW charging power is needed in addition ® gbwer demand of the 70 households. As the trans-
former has been designed to allow a maximum loazhtyf 200kVA, the resulting thermal strain may lead
to an increased aging or even damaging of thisrestpe asset.

With this worst-case scenario in mind, we developednart charging algorithm with two major design
goals: 1) reduce the simultaneity of the chargimacess, and 2) maximise the local utilisation efceic
feed-in from PV systems. Thus, not only the sti@inpower grid assets should be reduced, but the EVs
should also be charged with as much renewable gasrgossible. The basic idea is as follows: W@int
duce a central management server at the substatieh such that the charging process in an LV gid
being managed by a single optimising instance.d® s the EV has connected to the charging station
four parameters are transmitted: The expected mpatikine (provided by the user), the current stathe
battery, and a charging goal (e.g. 85 %) with s@imebility (e.g. + 15 %). The central server's etfive
is to generate plans in such a way, that the suati pfans approximate a given load curve whileheiae



dividual plan reaches the charging goal withinpheking time available. Thus, the EVS’ users’ neads
taken into account, which is a prerequisite foreptance of smart charging concepts (Schlager29Hl,
Weider et al 2011). The optimisation process cosgsrithe following three phases (for a more in-depth
discussion please refer to (Vornberger et al 2011))

1. Minimum charging: In phase one, the batteries hegged up to a minimum state of charge (SOC),
e.g. 20% of their maximum capacity. This ensuresramum mobility guarantee for the users.

2. Distributed charging: In phase two, charging idrdisted over a number of charging slots (e.g. 15-
minute time slots over one day) in order to redsiceultaneity. The target load curve — the desira-
ble resulting power demand at substation leveltaken into consideration to find ‘good’ slots. For
that purpose, the numerical difference betweerctheently expected load (the sum of all charging
loads) and the target load is calculated for e slot. Based on this difference, a charging prob
ability is calculated for each time slot, such thltts with a higher difference will be assigned a
higher charging probability. Based on these prdhesi, a random combination of charging slots is
chosen. This ensures that charging will more lilagdgur in times where extra load is required.

3. Additional charging / discharging: Provided the B¢gpport discharging, that is acting as a genera-
tor from the grid’s point of view, in the third pteadditional time slots for charging and discharg-
ing are selected in order to minimise the diffeeeatexpected load and target load.

For the evaluation of our approach, we relied aSmart Grid simulation framework mosaik (Schutte
2011). Based on data from a local distribution exysbperator, we modelled an LV grid comprising 71
private households and conducted several simulatigties — each over the course of one simulated ye
— with varying shares of PV systems and EVable 1 lists the setup for the results discussed below:

Table 1. Simulation study setup

Influencing factor Value

EV share 50% of the households have an EV

Installed PV peak power 160kWp, shared amongst 50 plants with 3,2 kWp
Grid type Rural grid, EWE Netz Gmb

Charging strategies Uncontrolled, controlled, vehicle-to-grid (V2G)
Battery capacity 31 kWF

Char ging/Dischar ging power < 3,7 kW singl-phase,<11 kW thre-phase

Using this setting, we compared three differentrgimg strategies regarding their performance when
trying to balance supply (from local PV systems) demand (from households and charging EVs):

. Uncontrolled charging: EVs are charged as sooh&sdre connected to their charging point until

their SOC reaches 100% (or until they are discamaey the user).

. Controlled charging: EVs are charged relying on ¢katral smart charging strategy discussed

above. However, EVs do not have the capabilityetmifpower back to the grid.

¢ Vehicle-to-grid (V2G): EVs are charge relying ore tbentral smart charging strategy discussed

above and have the capability to feed power batkearid.

Local utilisation of supply from PV systems (cf. Figure 1):

Regarding the utilisation of electric feed-in frdotal PV systems, the vehicle-to-grid approachdgdl

the best results. Due to the EVs’ capability todfedectrical power back to the grid in times ofthige-
mand, a very large share of the PV feed-in was tsadtisfy the demand of both households and eharg
ing of (other) EVs. The electrical power exportedstiperordinate grid levels was thus minimised #l-

so noteworthy that the controlled charging approsehbn’t able to significantly improve the localligth-

tion of PV feed-in compared to uncontrolled chaggifhis somewhat unexpected effect results from the



fact that the EVs' batteries were in
this case only discharged when driv-
ing. Thus, the total annual energy
throughput was significantly lower
than in the case of the vehicle-to-grid
approach.

[l households [l electric vehicles [l export to power grid

Strain on local power assets:
Regarding the strain on the LV

uncontrolled controlled

grid’s power transformer, also the ve- charging charging vehicle-to-grid
hicle-to-grid  approach performed

. H yearly averaged mean values; 46 electric vehicles (11 kW, 31 kWh);
best: Almost half of the (simulated)

160 kW,

vea Of installed photovoltaics; rural power grid with 71 housholds.

time, the transformer load was close

to zero - that is supply and demand
were actually balanced (dfigure 2).
Additionally, the peak loads were 05
significantly reduced compared to  o4s
the other charging approaches (ang: 0°3‘5*
even compared to the load withouts o,
EV). Again, controlled charging only
improved the situation little.

Figure 1: Results regarding the local utilisation of PV féed
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In summary, we were able to  oos T ~— \\\\\
demonstrate that an intelligent usage  ° L — ‘ ‘ ——
of flexibilities in LV power grids e S S
(here: smart charging of the EVs' transformer load states [kVA]
batterieS) iS able to matCh Supply and —w/o EV —uncontrolled charging controlled charging —vehicle-to-grid
demand locally, thus improving the Figure 2: Probability density function of the
utilisation of renewable energy and local power transformer's load

simultaneously reducing the strain on

local power assets such as power transformerstdtiee centralised optimisation and the high comput
tional complexity, however, this approach is ordgdgible for very limited numbers of systems thattar
be controlled.

3. Sdf-organised clustering of small appliancesfor load balancing

In this section we demonstrate how decentralisgdrozed clusters of devices, e.g. household ap@&n
or EVs as well, can be used for control purposgs,reduction of load spread in a medium voltagd. gr
This method especially aims at improved scalab#ity major weakness of centralised approachesasich
the one discussed in the previous section — aegpkined in more detail in (Lunsdorf 2012). We laxp
this approach in a bottom-up manner.

An essential technical prerequisite for this apphoia a hardware controller embedded into the obntr
lable devices, offering a two-way communicationroiel to some external control agent. The controller
needs to be able to intervene in the operation naddes device and trigger a temporal change in-con
sumption. An example for such an interventionhisven inFigure 3. The user has activated his washing
machine at 12 o’clock but delayed the start by Gré@nd allowed the external control agent to aderr
his setting and start the washing machine at ang in this timeframe. The override is performed by
sending a signal (in the exampleFigure 3 this happens directly at 12 o’clock) to the del@amntroller.



The premature start of the washing ma-
chine causes a temporal change in pow-
er consumption relative to the normal

operation mode: an increased consump-
tion is followed by a later decrease in 0 normal
consumption. For friges a similar cor -500
trol method has been discussed |in — 100

(Stadler et al 2009). ;Zgg Ddelta
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The effect of these possible overrides
in power consumption of a device need
to be predicted in the form of a time-
series of power demand values, called a
power schedule. In general, such a power schedwdeskiries of values for (active) power consumption
within a given time frame based on a resolutioe.gf a quarter of an hour, where power demandafor ¢
versely supply) is fixed within these slots.

For most appliances such as dish washers or wasafaehines the expected effects of override signals
differ over the course of a day. The forced sthea washing machine as depicted in the exampleelsov
only possible if the user has activated the dewnd, almost nobody starts a washing machine at.figh
overcome this problem, a day is sampled into titots @nd the predictions are calculated individufdr
each time slot. With a resolution of 15 minutes tamounts to 96 predictions (power schedules) ttaya
The effects of overrides are subject to uncertaamty vary significantly between device types. Beeaof
these uncertainties (like activation time and détathis example), predictions are usually subjectub-
stantial errors which can be expressed by timesaf variances for each time slot.

Time of day

Figure 3: Load curve of a controlled device
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Figure 5: Prediction of change in power consumption (left) astimated prediction error (right) for 500 waghmachines



The controller needs to calculate the expectedsfiaf operation mode overrides for every time akt
well as the estimated prediction errors of theseced. This is based on a simple statistical modelb-
servations of the devices’ usage in the paigjLre 4 shows the predicted effects of operation mode-over
rides for a washing machine in 96 time-series anl#fit hand side. The right hand side shows the ex-
pected error of this prediction.

This unreliability of effects of controlling a silegdevice motivates partitioning of devices intasters.

By controlling all devices in a cluster at onceg theak law of large numbers can be exploited (Georg
2004). Applied to a simultaneous operation modearae this means that the deviation to the expected
change eventually converges to zero if the clustEr becomes big enough. Under the assumptiothibat
effects of overrides are uncorrelatgtis even possible to calculate the error ofugied overrides simply
by summing up the individual variances. The effifdhe weak law of large numbers is showrrigure

5. The left hand side is showing the predicted poetwmge as ifrigure 4 but this time for a cluster of
500 washing machines. In comparisoririgur e 4 the error rate has dropped by an order of magaitud

The partitioning of a set of devices into deviceisters (i.e. subsets) is subject to several soft-
constraints. Devices should only be added to aedufsthe relative standard deviation of the canption
change does not fall below a given threshold; #nisures clusters not becoming too big — the control
agent needs several independent clusters for ifsopes. Furthermore the effect of overrides shoold
compensate each other and have roughly the samé&aiurFinding a good partitioning of devices is an
NP-hard problem also known as Coalition Structueaéation (CSG) (Michalak et al 2010).

Prediction updates are pushed autonomously argliedy from the device controllers into the system
The system that implements the partitioning needset able to adapt to these continuous updates. Fur
thermore, spatial proximity (w.r.t. the power gridust be considered too. Clusters should be forrnad
taining devices from neighbouring low power gridsstipport local demand-supply matching (cf. the dis
cussion regarding electric vehicles in SectionApart from consisting of an arbitrary amount ofcast
self-organising systems feature the ability to adapchanges in the environment. This makes a self-
organising system a perfect fit for partitioningvides into clusters. Each local substation is aasedt
with an agent in the self-organising system thaingipes clusters in its vicinity (e.g. neighbouriby
grids). It is not feasible to search for an

absolutely optimal partitioning as the 8

predictions may be updated at any time.

Instead the agents employ a heuristic|to — ¢ A

compute ‘good’ clusters. In summary, §5 —Residual load
the self-organising system outlined in <, | (normal)
(Lansdorf 2012) is continuously improv- 2 5 Residual load
ing the partitioning of devices and is £ , | \ (override)
forming clusters which respond reliably 1 = !45 —

(e.g. within given error-bounds) to exter- | Controllable
nal control signals. Based on such a par- N load (normal)
titioning into clusters and their expected o &> ° ,Q;.Q \,@ %Q”Q

reaction to control signals, an external .

control agent, e.g. situated at a utility, Time of the day

can compute schedules of control signals
to control the power consumption of deFigure 6: Power load curve of a simulated urban settlemetit edntrolla-
vices in these clusters. ble loads

3 This assumption doesn't hold for household appkarsometimes. An earlier start of a washing macfinexample may cause
the user to also activate the tumble dryer eatiemvever this occasional correlation is neglectethis paper.



An example examined in a simulation study deal$ whe load spread reduction (max. difference in
load reduced by local supply) of a small urbanlesgient. The scenario consists of about 35.000 house
hold devices (refrigerator, freezers, washing maehi tumble dryers, dishwashers, heat pumps and
charger stations for electric vehicles) in the y2@20. The distribution and parameterisation ofdbeic-
es is based on the SmartA study (Stamminger €d)2 A week in March has been examined in the sce-
nario, from whichFigure 6 excerpts the power load curves for a working dayo simulation runs were
conducted. No overrides of loads were issued ifitserun to simulate the normal consumption. Tdhs
ta is used as a reference for the second run, wheneides were scheduled to reduce the load spread
While it was not possible to increase the minimaeadl in the early morning hodrshe peak load could
be reduced by about 6% during work days and by dfing the weekend (5.74% on average). This eval-
uation shows that it is possible to reliably cohtaoge sets of devices for load shifting usingafecalised
and self-organising clustering. In the outlined-oase this technique allowed to shift 1.2MWh onrage
per day, thus exploiting the inherent flexibility widely used (small) power consumers in orderhift s
power consumption to time slots with high feedronf renewable and distributed energy systems.

4. Market-oriented dynamic virtual power plants

In the near future — in Germany at the latest afgiration of the renewable energy act (EEG) — REIS
have to offer their power at an energy market. @Hhils an interesting research problem how praatt
future energy markets will be structured, it is uestionable that the power supply from RES haseto b
refined to fulfil requirements of high reliabilityf supply within an agreed schedule for severalrfiau
days. Thus, small suppliers like PV systems or wimdines have to cooperate within virtual powemsé
(VPPs) to (i) compensate fluctuation in the supgfl\single energy converters, and (ii) to exceedketar
entry barriers regarding the minimum power supplpé offered in a time frarheSuch a VPP (Bitsch et
al 2002) might consist of several RES combined withtrollable power plants like CHPs, battery sgera
systems, as well as controllable loads like heatgsuoffering flexibilities for the control of theRP. Ba-
sically also a cluster of flexible loads, e.g. &ptes or EVs, can act as a VPP offering balanoaveer.
In the recent past, several concepts for ‘statlPPg (e.g. Mackensen et al. 2008) were examinedewher
the participating units — usually belonging to ragét owner — are fixed and control is centralidacour
research cluster Smart NérgBonnenschein et al. 2012) we are going to explaesk static concepts by
methods for dynamical aggregation of units targeincommon power product represented by a power
schedule. These dynamical VPPs — called clusteo®perate only temporarily referring both to theuat
situation at the market and to the prognosis ofetkected feed-in from the participating units.aAson-
sequence, decentralised control methods are reltgrallow clusters to be configured independenfly
fixed control units. For a dynamical VPP, currerityr control methods that together form its vittcan-
trol unit are being developed. In the following sattions we give a very short outline of these odth
a) Self-organising methods for the aggregation of UfRES, controllable plants, storage systems,
controllable loads) to clusters (dynamical VPPSsjilsir to the approach mentioned in section 3.
These clusters allow RES in combination with mdegible units to bid at the market.

b) A method for the efficient representation of flahiles, i.e. sets of possible power schedules of
single units for a given time frame. This repreagah is needed for distributed methods to plan
schedules of the controllable (i.e. flexible) unitighin a cluster.

* The load minimum spans several hours and mosteofiévices are not active in this timeframe.

5 Participation at the European Energy Exchange (EfEXrently requires the provision of at least 1\0&lectrical power.

® The research cluster Smart Nord is funded by tieskty for Science and Culture Lower Saxony (MWKjdugh the ,Nieder-
sachsisches VW-Vorab“ (grant ZN 2764).



c) Distributed optimisation methods for generating powchedules for all units in a given cluster
with respect to a power product that has been sstuéy traded at an energy market. This task is
similar to unit commitment in the present power@yp- a specific centralized scheduling method
for charging/discharging of a cluster of EVs hasrbpresented in section 2.

d) Distributed methods for rescheduling units in sstduin case of events such as deviations from the
prognosis of the feed-in from participating REShe (unexpected) outage of a unit.

These four methods are combined in a multi-agestegsy where each unit is represented by its agent.

In order to support methods of self-organisatibese agents are equally ranked, i.e. there arpeuifis
coordinators and no a priori given hierarchy inimdti-agent system.

a) Self-organising clusters of units

Units can be clustered regarding technical, ecocalimnstrategic as well as dependability relatetes.

In addition to economic aspects of individual unkisowledge from previously successful cluster comp

sitions, reputation of potential partners, andatglity regarding the delivery of an offered profygartic-

ularly grid aspects have to be respected in cldstenation. So, cluster formation consists of feasks

(Beer et al. 2011):

i. An initiating agent, e.g. representing a large R¥tam, decides for a marketable power product
that could be offered by a cluster. Its decisiopatels on its own possible power schedule resp.
prognosis that usually has to be supported by athigs in a potential cluster, both in order to ex-
ceed market barriers and to realise a minimumbiéilia of power provision.

ii. A spatially constrained neighbourhood of agent®iised referring to the physical grid topology,
thus intending to incorporate the expected stréloaal power grid assets due to the realisation of
the cluster’s schedule into the clustering process.

iii. A cluster of agents supporting the common produgamises by means of agent communication in
the neighbourhood of the initiator. Clustering bhlisady been discussed in section 3, but here some
other criteria for cluster formation mentionedtsa beginning of this section have to be respected.

iv.  During cluster formation, agents have to consenadfair) distribution key for the added value
proceeded by the cluster after successful bidirigeamarket and delivering the product.

b) Representation of flexibilitiesin possible schedules

A compact and efficiently manageable representaifdhe set of all possible schedules of a unihinia
given time frame is a rather complex problem. Delggnon the timely resolution of the schedule dral t
possible power settings of the units, the numbeheébretically possible schedules can be in thgaafi
10'°. Additionally, distributed energy resources havebey technical, economical or user defined con-
straints in their operation that restrict the skefeasible schedules. Within a cluster consistifigimits
owned by different individuals or companies, theeastraints might be confidential and not to be com
municated with the cluster. In (Bremer et al 20l&) presented a method for representation of complex
structured sets of feasible schedules by meangppfost vector classification. This method not ohniges
constraints from being explicitly communicated e tvirtual control unit of the cluster, but alstoals
integrating additional key values like cost or {gnission of the schedules into an optimisatiorcg@se
(Bremer/Sonnenschein 2013a). An essential advamthtiés method is its ability to map each potdntia
schedule to a ‘similar’ feasible schedule (Bremenf&nschein 2013b). This feature is required foefan
ficient distributed optimisation technique becausalows for the navigation in an unconstrainedrsé
domain, thus significantly reducing the complexifypossible optimisation approaches.

¢) Distributed optimisation of schedules
After having succeeded in bidding a product (ilaster schedule) at the energy market, a clustertda
optimise the schedules of the participating umtsuch a way that the benefit of the cluster —tand the



value distribution to the participation units -nsximised. RES have to be integrated into thisnaipa-
tion process on the basis of a prognosis of thmirgy production. The result of this optimisatiorarsop-
eration schedule of the cluster combining the pagbedules of the participating units. To this endis-
tributed constraint optimisation technique for himler constraints like COHDA (Hinrichs et al. 2013
has to be combined with the efficient representatib feasible schedules as discussed above. An addi
tional important (but currently unsolved) questisimow the reliability of product delivery can biéeated
positively by this optimisation. This aspect cerbpirequires a distributed multi-criteria optimiset to be
implemented. Above all, the optimised operatioresicile has to be approved by a power flow calculatio
(Wolter et al 2010) for grid compatibility.

d) Rescheduling of units

After having successfully bidden at the energy rmagrk cluster is bound to deliver the power product
otherwise it will be punished by a surcharge defimethe market rules. For several reasons, unis i
cluster might be unable to deliver their contribatto the overall power schedule selected in thieniga-
tion phase. Particularly RES possibly deviate igirtipower delivery from their prognosis. Therefoae,
cluster must be able to reschedule power produdi@iween the participating units to meet the overal
power schedule. Rescheduling again is a multi+isitdistributed constrained optimisation probleno(i
et al 2005). Besides economical and reliabilityted criteria, it is an important issue that theas of
the new operation schedule onto the power gridsmndar to the original operation schedule in orter
avoid or at least minimise the necessity for cdntreasures of the grid operator (e.g. to reactdtatrons
of the local voltage levels). Therefore, in (NigR@minenschein 2013) we presented a method to iteegra
static view of grid characteristics into the (refjsduling of units.

5. Conclusion

With the example of charging/discharging of EVs have shown how intelligent units in a future smart
grid can support local demand/supply matching. €hssof small units can be scheduled for demanel sid
management and hence reduce load peaks in a phe gfid. Self-organising, decentralised methdds a
low adapting clusters dynamically to changing sdtsnits and the predictions of their reaction ¢mtcol
signals. Such methods can also be used to orgayisanic virtual power plants allowing RES combined
with controllable units to bid at a power market.

In the near future, more and more units in the bade to cooperate for a safe and reliable operatio
power grids. This requires a smart grid enablim@lsupply/demand matching as well as provisioarsf
cillary services in the distribution grid. Agentdeal, distributed control and self-organisation @amnis-
ing methods to cope with the requirements of adiyptind scalability of a smart grid.
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