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Abstract

The future smart energy grid demands for new coptrcadigms that are able to incorporate a hugebeurof rather
small, distributed and individually configured eggiresources. In order to allow for a transitiortted current cen-
tral market and network structure to a decentrdlg®art grid, with small units pooling togethejamtly trade their

electricity production on specialized markets, -s#tfanization concepts will become indispensablaragfficient

management approach. In order to enable aheashefdianning of electricity that incorporates globhjectives and
individually constrained distributed search spaoesuch highly dynamic environment, meta-modelsaistrained
spaces of operable schedules are indispensabédfitient communication and uniform access. An B8aéprereg-
uisite for building-up machine learning based damabdels of individually constrained search spasestraining

set of operable example schedules. Drawing suemple from an electricity unit’s simulation modsla challeng-
ing task due to the high dimensionality of the peol We present two computationally feasible sangphethods
and analyze their complexity and appropriatenesseblver, the embedding of these methods and theplay of

sampling and simulation in a multi agent simulat®presented.

1. Introduction

The task of ahead of time planning of active poprewision will in future smart grid scenarios be@m
much harder to solve. Due to the huge number ofl sdistributed and individually configured energgt
sources (producer, batteries as well as consuri@shave to be orchestrated, new decentralizettaton
architectures are expected to come in place (NeeBg&, 2012; Sonnenschein et al., 2012).

Within the project Smart Nord (http://smartnord)d@h agent based control scheme rooted in market
mechanisms and discriminated in day ahead actiwepprovision and ancillary services like frequency
or voltage stability is currently developed. Instipaper we will focus on the first use case.

For any planning scenario, each energy unit haetermine alternative load schedules from thaty m
choose. We assume that many controllable units moapnly offer a set of several alternative load-p
files but rather a high-dimensional search spad¢k sghedules for some given future time horizore Th
term unit may refer to either a single producenstoner or prosumer device (energy resource) orsas a
of devices that is regarded as a commonly jointlyeenble of energy resources (e.g. a householdieThe
many search spaces from all the units in a gridesas input or as basis for decision making foesav
algorithms during the planning and re-schedulinggghlike coalition forming (Beer, Sonnenschein & Ap
pelrath, 2011), schedule-partition or optimizat{Bnemer & Sonnenschein, 2012), or continuous sdhedu
ing for grid stabilizing. These are only some exseased by surrogate models of the search sfmaces
efficient communication (Bremer, Rapp & Sonnensch2010) and automatic generation of decoders that
enable standardized usage and integration (Brentor@enschein, 2013). Such models serve as a means
for exploring the search space without actuallywkimg it and substitute for example computationailhy
favorable unit simulations during a huge numbecalfs of evaluation functions during optimizatidn.
contrast to the real (and arbitrarily implementsid)ulation models, the surrogate models consist oha
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standardized mathematical definitions and a seebhed parameters may also be communicated to othe
agents.

In order to build such models, representationdieffeasible regions that contain the operable stegd
of a unit are learned by machine learning methoal® fa set of example schedules. As a trainingveet,
initially need a set of operable example scheddias/n from a simulation model. This set represéms
feasible region and thus serves as a stencil ®rsthirogate model that later substitutes the siula
model. The encoding part that builds the modeldis=ady been scrutinized (Bremer, Rapp & Sonnen-
schein, 2010). Here we focus on building the tragrsample.

Thus, the rest of the paper is organized as follées start with a description of our use case &ed t
technical environment. We then derive the necessitgophisticated sampling methods and descriloe tw
methods and their embedding into the multi agenirenment. We conclude with some results and a
comparison of the methods’ complexity.

2. TheActive Power Planning Use Case

Prior to describing the sampling process, we sk#étehuse case that we aim at in the smart grid doma
and derive the necessity for generating a traisitgof schedules. For simplicity, we restrict oasatip-
tion to the part of our multi agent scenario whareoalition of distributed energy resources hasaaly
formed-up to place a product on some energy mahketase of acceptance, the coalition is supposed t
deliver a certain joint active power schedule faien, future time horizon as defined by the fipedd-
uct definition after market-clearing. This prodschedule might differ from the original plan. Trehed-
ule partition used during negotiation might haverbsub-optimal for complexity reduction by using in
complete information or a reduced objective setrgucoalition forming. Moreover, the partition migh
have become infeasible due to changed conditiangrid compatibility. Anyway, a successive optimiza
tion step is necessary after market-clearing td bptimal or at least good schedules for each tomali
member such that the wanted product schedulentyoesembled by the operations of the group.

In such smart grid load planning scenarios, a adimeglalgorithm (whether centralized or distribyted
must know for each participating energy resourc&lwload schedules are actually operable (satibfy a
constraints) and which are not. Each energy resduas to restrict its possible operations due getaf
individual constraints. These can be distinguisimtd hard constraints (usually technically rootedy.
minimum and/or maximum power input or output) anft sonstraints (often economically or ecological-
ly rooted, e.g. personal preferences like noiskipoh in the evening).

When determining an optimal partition of the scHedaxactly one alternative schedule is taken from
each energy units’ search space of individuallyralple schedules (individual feasible region) inesrtb
assemble the desired aggregate load schedule. K® tima necessary information available for eacly uni
the feasible region can efficiently be encoded Isyaport vector approach as has e.g. been demiastra
in (Bremer, Rapp & Sonnenschein 2011).

3. Modeling the Search Space

Such a model enables us to guide an arbitrary pigraigorithm where to look for feasible solutiofifis
is done by mapping the whole domain onto the féaségion that holds the operable schedules apatkfi
by the set of unit specific constraints. Thus ayjoathm always operates with a feasible solutiore(Ber
& Sonnenschein, 2013). The search space modehémuividually constrained feasible regions of the
several units within the planning scenario con@$tdie following information:

1. A set of example schedules (support vectors osuhface of the enclosing manifold)

2. Associated weights (for each schedule for calaudgtihe decision boundary of feasibility)



3. Unit parameters: max power, max cost, etc.
4. A decision function that allows for discriminatifegpsible schedules and for ordering schedules
due to their proximity to the feasible region.

The most important feature of this model is thebding of an automatic derivation of a mapping desrod
that transforms the problem of distributed actiwever planning into an unconstrained one (Bremer &
Sonnenschein, 2013). Such a decoder is a constramaling technique (Kramer, 2010) that maps the
constrained problem space to some other not-resirgpace where the search operates. Figure 2a& show
the concept. First, a support vector approachaised to learn an abstraction of the enclosing lepee
that contains the training sample. This abstractiay already serve as a classifier that distingusidbe-
tween operable and not operable schedules. Intastep, we derive a mapping from the abstractia th
maps the whole original unconstrained domain ofelledules to the region of operable scheduléign t
way, we get a means that guides a search algosithere to look for feasible solutions and the con-
strained problem is transferred into an unconsédhome that is much easier to solve.

Figure 1 shows the general work flow of the abdwetc&hed concept. In smart grid load planning sce-
narios, an optimization algorithm (whether cengedi or distributed) must know for each participgtin
energy resource which schedules are actually olgefahtisfy all constraints) and which are not. Sehe
can be determined by simulating the energy undividual constraints can be distinguished into hard
constraints and soft constraints which are refteatethe example schedules and are thus encodie in
model.

When determining an optimal partition, exactly algernative schedule is taken from each energy
unit’s search space of individually operable schegi(individual feasible region) in order to asstthe
desired aggregate load schedule. At this stagesdéhech space model substitutes the simulation model
(which is private to the agent).
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Figure 1. General workflow of the constraint-handling concept.

Concept

3.1 Sampling

The machine learning method for building the absketched search-space-model needs a training sample
of feasible schedules as input. Hence, prior tading, we have to draw such a sample with the bElp
simulation model of the energy unit. We will dissusgich methods in the context of their embedditg in
our simulations.

3.1.1 Architecture

The architecture of the sampling system compribesiriterplay of different components from different
layers of our smart grid simulation. We will hepefis on the part depicted in figure 2a that is eamed

with sampling. On the physical layer one would liguexpect the physical units (CHPs, heat pumps,
etc.). During the simulations these are substitiedqusually Matlab/ Simulink) simulation models: o
chestrated by the mosaik framework (Schutte, Skade&fSonnenschein, 2012). These are the units where
we want to build the search space models of.
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Figure 2a (left): General decoder concept. Figure 2b (right): Embedding into multi agent ar chitecture.

Each unit is represented by an agent. In ordelidavdhe agent to make assumptions about the future
behavior of the unit, each agent possesses a loelmwodel for its unit. While the simulation modehe-
lates the operations and resulting technical states unit, the behavior model also allows simuolasi
about possible future operations and thus additypsapports what-if-scenarios. The algorithm timaér-
actively queries the behavior model to generatesémaple is implemented in a sampler componentinhat
turn feeds the encoder with a set of example sdbgditom which the search space model is built.

On the level of the multi-agent-system these sespelce models are exchanged between the agents and
are jointly used e.g. for negotiation.

3.1.2 Sampling M ethods

Naive sampling, i.e. guessing a schedule as a vammehen evaluating its feasibility with the help
the unit or rather its behavior model is not coridecfor schedules with more than about 6 to 8 dime
sions. Often, the feasible region of operable sakesdis only a very small proportion of the spatalb
schedules. If, for example, for each time perioé tnird of the alternative schedules are prohibligd
some constraints, then the ratio of constrainedusednstrained space amounts to

2 a
1: (§m> / m&.

For the case of schedules with96 dimensions witim discrete power levels for each time period this
would amount to approx. 1.25x10 This would get us far too long to get one righthe proportion of
infeasible loads drops to ¥ the number of necedsy is still 18° In the following, we compare two
alternative approaches for sampling the model witfficient efficiency to cope with the above sketdh
problems:



Successive Sampling: This sampling method iteratively samples shorteethorizons and constructs
the final schedule by concatenating the samplesplience, we currently draw samples as a successive
drawing of period-wise guessing:

1. Guess arandom power level for just one periocigrshort enough time-horizon).
2. Validate with the help of a model of the energytuni
3. [If valid: simulate follow-up state of the unit agdto 1 for the next time period.

This approach has the advantage of leading far il@ly to guesses of valid schedules. The probabil
ity P for guessing a valid schedule for a single persoalready rather high. Allowing for multiple guess
ing (with number of trieg) results in the even higher probability (BremeapR & Sonnenschein, 2010)

n

Py = ZB(HP,TL) = z (7) Pi(l - p)n—i.
i=1

i=1

Here,P, is the probability for at least one successfuloy ofn guesses. Successive guessing then re-
sults in an overall probability for successfullyegging a complete scheduleddime periods of

n d
Py = (Z B(i|P, n)) .
i=1

As an example, let the probability of correctly gsiag a valid power level for a single period b@50.
Allowing for 100 guesses for each period, thendherall probability for guessing a schedule of @i
ods correctly is stiIP31600)=0.5655, which is sufficiently high in contrast16*% (chance of guessing all

96 periods right at once with probability of 0.@# €ach period).

One drawback of this approach is that in this wayget a set of schedules that is dominated byirite f
periods. That means schedules do not have equadlgitity for being chosen. On the other hand, wee ar
not primarily interested in statistical propertafsthe sample or the underlying density. Insteag want
to sound the geometric region where operable stéedeside in.

Figure 3 shows the interaction of this type of skempith the unit behavior model inside an agent im
plementation. The procedure starts with initializitne unit behavior model with the help of paramsete
from the physical unit or — in case of the simaat+ from its simulation model. These parameterng loea
directly read from the unit reflecting its curreageration state or may be further projected ontatare
state using the current operation schedule. Thtiglination defines the initial state of the uaitthe start-
ing point from whence alternative schedules arbealetermined. This model with the defined starting
state is given as a reference to the sampler et itiduring the following procedure.

Each time the sampler starts with determining a reevdom schedule, it resets the model to the linitia
state. Then, a random power level for only one tpagod is chosen (uniformly distributed from. [P
Pmad) @and given to the model for validation.

In a sub-process, the model takes the power valge (vorks for a power vector) as a prospectivd loa
schedule and simulates the operation starting froment state and determines the follow-up stati®f
unit. In contrast to the unit simulation model, thehavior model is not state-less. If the followalate is
feasible and no operation constraint is violatkd,follow-up state becomes the current state obétav-
ior models automata. Elsewise, the operations #@helkawn and the model stays in the previous state.

Depending on the result of the validation, the damgontinues with a guess for the next period i w
another try for the current period. If the maximoomber of tries for one period is exceeded, thepsam
gives up for the current schedule and starts withva one.

The whole guessing procedure is repeated untivdrged number of schedules has been found.



Generating a schedule sample
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Figure 3: Interactive sampling process as dialog between sampler and
behaviour model for distinguishing feasibility.

Sampling phase

Drunken sailor sampling: As an alternative sampling scheme, we scrutineedonte Carlo approach
that starts with an operable schedule of full larngttained from the behavior model. Usually, thuisesi-
ule should be the one that results from undistudpsgation of the unit resulting from autonomousrap
tion without any control signals or presetting froine outside. In each step, this schedule is nextiiit
least on point in time with a random (Gaussian)amon of the power level. If the resulting schedisle
still feasible (checked by behavior model), it ddad to the sample set. Else, the sampler takesaore
domly chosen schedule from the bag of already fanutcontinues the procedure of random mutations.

3.2 Results

Figure 4 shows samples drawn with different apgieacAs energy unit, an under-counter boiler has
been modeled by the behavior model. A traditiomalar-counter boiler has the simple task of keeping
small reservoir of water within a certain temperatband using a two position step control: starthngy
heater whenever temperature falls below lower baamdi stopping above upper bound. However, in our
simulations we assumed to have a device with ertdedntrol capabilities allowing a more sophistcat
control for arbitrary heating as long as temperagiays within the allowed region. Neverthelessnaan
we would expect a rather simply regular oscillatb@havior as for demonstration purposes we do not
model any water drawings by humans. The samplehémtbeen drawn with the naive method shows ex-



actly this behavior. Naturally, this would have bdke best approach but it is the most computaltiona
complex one. We have only been able to draw thigpsaby using a priori knowledge: Due to the specif
ic parameterization of the unit, power is alwaythii [0, 0.3].

On the lower left side, we see a pattern drawn thighsuccessive approach which is dominated by the
first periods and which is thus a selective samBteh samples on the right are drawn with the demnk
sailor approach (three mutations each time ondonp,mutation each time on bottom). Clearly, these-s
ples are dominated by the original undisturbed daleeand one can easily identify the tube aroum& th
first schedule.

mean power / kW
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mean power / kW
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Figure 4: Results from different simulation runs.

All in all, the successive method looks most prangs Depicted are 5000 schedules each and the re-
spectively resulting temperature profiles belowe Time complexity for drawing the sample suppdats t
assumption. Figure 5 shows a comparison of the tiomeplexity of all methods. Successive sampling is
competitively fast compared with the others buivées the best sample. As can be seen by the temper
tures in the successive sample (lower left) thepsauis unbalanced but all topological traits ameady
there. This sample can still be improved by usidgpéed density functions for generating random sam-
ples but on the cost of additional calculation ctamiy for example with the help of kernel denssti-
mation. In general, density estimation denotesptioeess of constructing an approximation function f
an estimate of an unknown probability density base@ set of observed data. Several techniquessfor



timating the density from data sample have beereldped. Building and rescaling a histogram is the
most basic form of density estimation. Of courhés gives only a discrete estimate. A popular me:tioo
estimating the unknown density of a sample is #mdl density estimation (KDE) that is also knoven a

the Parzen-Rosenblatt window method (Parzen, 1R68enblatt 1956, Binder 1997):
n
R 1 X — X;
falo) = _1"h-ZK( 1),
1=

If X=x,,..,x, € Ris an iid sample and K a symmetric (not necessaolyitive) function that inte-
grates to zerof, (x) gives an estimator for the underlying density ofiiXgeneral the kernel K is a con-
tinuous Lebesgue density of almost arbitrary chdicease of a Gaussian kernel for example, a rew r
dom sample in the course of the previously desdribempling process would then be generated as
x = N(xj, h) with normal distributionV(u, o) with meanu and standard deviatien The computational
complexity for calculating (pseudo) random numidens the estimation is thus the same as normal dis-
tributed values. For other kernels, we would havese a random number generator for the respedisve

tribution.
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Figure5: Comparison of runtime-behavior of the different approaches.

4. Conclusion and further work

We showed that a naive sampling for drawing randamples as a training set from a simulation model
of energy resources as input for learning searabespnodels is computationally intractable. We prase

a method for successively drawing a sample and stiats efficiency. This method is currently applted
large scenarios (approx. 50.000 electrical unitghe smart grid domain (http://smartnord.de) anthus
applied to many different unit types with differgnimplemented behavior models (Matlab/ Simulini; P

thon, Java, etc.).
An a priori estimate of the (unit model specifigdtdbutions for generating appropriately distrigdit

random guesses may significantly improve the sampédity. Currently, we are working on an extension
that will use a kernel density estimate as an apmation of the real distribution.
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