0SSIETZKY
universitat |OLDENBURG

DEPARTMENT FUR INFORMATIK
SYSTEMSOFTWARE UND VERTEILTE SYSTEME

Running a standard Linux distribution on a
smartphone

Masterthesis
Computer Science

July 13,2015

Sebastian Reichel (Matrikelnummer: 1104957)
Otto-Wels-Str. 82
26133 Oldenburg

Erstpriifer Prof. Dr.-Ing. Oliver Theel
Zweitpriifer Eike Mohlmann, Dipl. Inform.

Erklarung zur Urheberschaft

Hiermit versichere ich, dass ich diese Arbeit selbststindig verfasst und keine anderen als die
angegebenen Hilfsmittel und Quellen benutzt habe.

Oldenburg, den July 12, 2015

Sebastian Reichel

Contents

1.

v

Introduction

Hardware Architecture

Serial Access

Linux Kernel

4.1.
4.2.
4.3.
4.4.
45.
4.6.

NO0O kernel support L e e e e e
Accelerometer e e e e e e e
Modem e e e e e e
ARM Errata 430973 e e e e
Bluetooth e e
Camera Subsystem L e e e e e

Userland

5.1.
5.2.
5.3.

Graphical User Interface
Wireless LAN
Themodem L e

Function tests

6.1.
6.2.
6.3.
6.4.
6.5.

Updates & Security Updates
Voice Calls
Short Messages v i v i e e e e
Web Surfing e e e
Customization oL e e e e e

Outlook

Conclusion

12

23
25
27
29
32
33
36

41
41
42
43

47
47
47
48
49
50

51

55

Appendix

A.

B.

C
D.
E

F.

Debian Image

ISI-Protocol

. Accelerometer Patches

OpenSCAD code

. Bill of Materials

Simple Ofono Dialer

Bibliography

Glossary

Contents

56
57
62
70
75
76
77
83
86

List of Figures

vi

2.1.
2.2.
2.3.

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.
3..

4.1.
4.2.
4.4.
4.5.
4.6.
4.7.
4.8.
4.9.

5.1

6.1.
6.2.
6.3.

B.1.
B.2.

NOOO DT graph o 9
DT graph of OMAP3430°s systembus 10
DT graph Nokia N90O’s second I2Cport 10
Coverless N900’s back with labeled serial testpads 12
Pogo-Pinprofile oL 13
Battery adapter designin Inkscape L L. 14
Serial adapter schematic (designed with KiCad) 16
Generating G-Code for Gerber-files using FlatCAM 18
left: Front and back of the adapter’s PCB; right: PCB with crepe-tape-stencil 18
Colorized vector information for the lasercutter 19
3D-rendering of the layers 20
NOO0O with attached debug adapter L. 21
Flow-graph of kernel forks 23
Kernel-development flow L 24
Modem interconnection L. e e e e e e e e e 29
Modem protocol stack 31
BCM2048 Stup v o vt e e e e 34
Camera setup o i e e e e e e e e 37
OMAP’s image signal processorinLinux 39
NO90O camera setupin Linux 40
Screenshot from Enlightenment running in vertical splitmode 43
Voice call handling in ofono-dialer 48
SMS handling in ofono-dialer 49
LXDE running onthe NokiaN900 50
GPS Session e 64
GPS Session in Wireshark oL o 69

List of Tables

1.1. Smartphone Operating System Comparison v v v v v v 4
4.1. Major Linux Kernel Releases 25
4.2. N900 Linux Kernel Support (Status: Linux Kernel 4.0) 26
4.3. Nokia H4+ Packet Types 0 i e e e e 34
B.1. PhoNetHeader 62
B.2. ISI Resource IDs (excerpt of most importantIDs) 62
B.3. ISIHeader e e 63
B.4. GPS Session: Status Indication Subscription oL 63
B.5. GPS Session: Hybrid Tracking Request 65
B.6. GPS Session: Hybrid Tracking Response 65
B.7. GPS Session: Socket Open Request 66
B.8. GPS Session: Socket Send Request. 66
B.9. GPS Session: Socket Receive Request L. 67
B.10.GPS Session: GPS Status Indication: NoLock 67
B.11.GPS Session: GPS Status Indication: Lock Acquired 67
B.12.GPS Session: Hybrid LocationData 68
E.1. Bill of Materials for UART Adapter PCB 76

vii

Listings

viii

2.1.
2.2.

3.1.

4.1.

5.1.
5.2.
5.3.

6.1.
6.2.

C.1.
C.2.
C3.
C4.

D.1.

F.1.

Simplified Nokia N90O Device Tree Source File 7
Simplified and Merged SPI4 Excerpt from Nokia N900 Device Tree Source File 8
NokiaN900 Boot Log 21
Simplified Nokia N90O Display Connection DT excerpt 37
Starting X-Server together withan XTerm 41
X.org Touchscreen Configuration 42
Patch adding ofono support to the cmt-speech plugin of the FSO-audio daemon 45
Initialize a voice call from command line usingmdbus2 47
SendaSMSusingmdbus 48
[PATCH] lis31v02d: DT: use s32 to support negative values 70
[PATCH] lis31v02d: DT: add wakeup unit 2 and wakeup threshold 71
[PATCH] Documentation: DT: lis302: update wakeup binding 72
[PATCH] DTS: ARM: OMAP3-N900: Add lis3lvO2d support. 73
OpenSCAD-Code for 3D-rendering of the Serial-Adapter 75
Simple Ofono dialing and short message application. 77

Abstract The aim of this thesis is running a free operating system on a smartphone, which shares many
components and principles with the operating system already used on the desktop PC. As a result users and
developers can use the software they are used to on their PC and on their smartphone. Compared to other
closed source alternatives it also means, that any code audits are more likely reducing the probability of
built-in backdoors.

The thesis is written using Debian as example Linux distribution and uses the Nokia N900 as hardware
base. One reason for choosing the Nokia N900O was, that the main Linux kernel used by the Debian
project has already support for all base hardware components. The first part of the thesis will describe how
the kernel support for the Nokia N900 can be improved, while the second part focuses on the userspace
software.

1. Introduction

Nowadays it is common, that one can install a arbitrary Linux distribution on ones notebook or desktop
computer. Installing it on a smartphone is a completely different issue, though. Currently the Linux
kernel, as available on kernel . org, does not support a complete smartphone and as a result most Linux
distributions do not provide any smartphone support.

Smartphones, in difference to desktop PCs and notebooks are commonly shipped with a locked down sys-
tem running Android, iOS or Windows Phone these days [27]. Of these smartphone distributions only
Android is mostly based on open source software, while iOS and Windows Phone are closed source soft-
ware and always shipped with the hardware. From a users point of view the open source development
model has a few advantages:

1. Auditability: Since the software’s source code is available in public, it is possible to review it. If
the user does not understand the programming language, there is still an increased chance, that other
people review the source code. This is an important factor in times of intelligence agencies being
suspected of adding backdoors to software.

2. Freedom: Since everything is open, everything can be adjusted to fit the user’s preferences. This
also counts for any bugs, that are found. While closed source software requires, that the vendor fixes
the bug, user’s can do it themselves. There is no dependency on the vendor’s support.

Additionally trying the software is most times free of charge. While the term free in free software refers to
the independence, most software is also free of charge.

Since Windows Phone and iOS are not open source software and may even come with a hardware lock, they
will not be further compared with the aimed smartphone support for a major Linux distribution. Android’s
base system on the other hand is available as open source software and is even using the Linux kernel
as base. Nevertheless Android is quite different from most other Linux distributions, since it brings its
own software stack on top of the Linux kernel with minimal use of existing projects already available.
Apart from that vendors are not actively working on getting their software modifications back into the
original projects. Instead many vendors copy the software’s source code and continue working on the copy
(also known as fork). In the Android community these kind of forks are usually referred to as ,,vendor-
customized”.

As a result of the missing work on getting the software modifications back into the original projects, the
current Linux kernel does not support the complete hardware components of any smartphone. At the same
time the amount of work required to integrate the vendor customizations increases with time, since the
Linux kernels changes. The task of integrating vendor drivers to a newer kernel with the aim of including
them in the main Linux kernel tree, will be described more detailed in chapter 4.

Apart from Android there are a few other related projects available on the market:

OpenMoko: One of the first projects trying to run a Linux kernel on a phone is OpenMoko Linux, which
was worked on by OpenMoko Inc. from 2007-2009. It’s a custom Linux distribution created for their

kernel.org

phone, the Neo FreeRunner. Their distribution was based on the Angstrom distribution and uses the Linux
kernel, a GNU base system as well as the X.org server. The Graphical User Interface (GUI) parts were
custom developments, but based on the same toolkits as used in other Linux distributions: GTK+, Qt and
Enlightenment Foundation Libraries (EFL). The user base decreased over the time, though. One reason
may be the outdated hardware (400 MHz ARMv4 CPU and 128MB system memory).

However the project resulted in the development of a smartphone middleware, which abstracts hardware
and makes the creation of a hardware independent GUI much easier [9]. Later a new distribution named
Stable Hybrid Release (SHR) has been created on top of the Angstrom distribution reusing the smartphone
middleware developed previously [35]. The custom software from the SHR and the freesmartphone.org
(FSO) stack has been ported to a few other distributions including Debian. In opposit to previous projects,
the FSO project took care of proper device abstraction and provides a full framework for different smart-
phone related tasks.

Maemo & MeeGo: Independently from the OpenMoko related projects Nokia released a internet tablet
in 2005 [29], which was dependent on WLAN and did not contain a mobile broadband unit. It was released
with a Debian based distribution called Maemo, though. Later, in 2009 Nokia released an updated variant
of the internet tablet, the N900, which did include a cellular broadband modem. Together with the new
hardware a new version of Maemo was released, which did contain software for dialing and short messages,
so that the original Internet tablet series became a smartphone series.

After the N900 was released the market share of different phone vendors changed noticeably, resulting in
Android and i0S representing almost the complete market in most countries. Nokia became much less
relevant, since their newer phones are based on Microsoft’s Windows operating system. Not least because
of the internal changes at Nokia, the N900 has not been supported long. Since it has been developed with
many bits being open source the community has taken over support though and released (security) updates
for the system. This task becomes harder with time though, since the source code of some applications and
middle layers is not available making it hard to update some libraries.

Sailfish OS: After Nokia stopped working on Maemo (and its successor MeeGo) and cooperated with
Microsoft to use Windows Phone more extensively, some of the original developers left Nokia to found a
new company called Jolla. They continued working on the distribution under the name Sailfish OS. Sailfish
OS in opposit to Maemo is still actively been worked on and gets regular security updates. Besides that
it has an Android compatibility layer, so that most applications written for Android can also be used with
Sailfish OS. At the moment some parts of the operating system are not open source, though.

Neo0900: Another project, which tried to hop on the N900’s success in the Open Source community is
called Ne0o900 [26]. It has been started by a small company in Munich, which is working on a replace-
ment board for the N900’s case. This board is supposed to provide all of the original features, but with
an upgraded CPU, more memory and an open hardware approach. The same company also provided a
replacement board for the OpenMoko Freerunner and thus this project merges the former OpenMoko com-
munity with the Maemo/N900 community. The hardware has not yet been released and thus this project
will not be in the focus of this thesis.

Ubuntu Touch: Another related work currently being worked on by Canonical is Ubuntu Touch, which
is developed as open source software. This project is quite near to this thesis’ goals, but has only limited
availability. The project relies on existing software for the phone stack and reuses the Android compatibility
layer developed for Sailfish OS. It does not make use of standard kernels at the moment, though. Instead

1. Introduction

the CyanogenMod’s Android kernel and some related low level services are reused with older releases even
being started in a chroot [15, 1].

Android chroot: Last but not least there is the possibility of starting a chroot with one of the existing
Linux distributions from Android. This option works with most phones and needs only minimal modifica-
tion, but has the disadvantage of high memory demands and bad integration. For example its problematic
to access the phone hardware from the chroot. Apart from that one is still dependent on the underlying
Android and thus from the phone vendor regarding security (and general) updates.

Summary: Table 1.1 gives an overview about existing operating systems currently running on smart-
phones compared to the aim of this thesis. Since the mainline kernel, which is used as basis by the major
Linux distributions, does not provide support for a complete smartphone, none of the existing smartphone
operating systems are using it. This is a problem for supporting a phone with the common Linux distri-
butions, which try to avoid customized kernels for different reasons (more on that in chapter 4). Thus the
thesis will start with adding support for a smartphone to the Linux kernel as available from kernel .org.

For this task the thesis will use the Nokia N90O as basis, for the following reasons:

1. The Nokia N90O0 has quite good support in the main kernel tree.

2. The phone has a hardware keyboard reducing the amount of work required to port some applications,
since no virtual keyboard is needed.

3. The bootloader is not locked, so installing ones own kernel is easily possible.

4. The phone has a microSD card slot making it easy to add ones own operating system without over-
writing the existing one. It also makes it possible to debug the userland on a PC using an emulator.

5. It’s possible to reach a serial port for kernel development.

If the kernel is compiled with the right options, it will already run on the Nokia N900. Once the kernel
support has been sufficiently enhanced, Debian will be used as base operating system. Debian already
contains the FSO software stack as well as the graphical applications from the SHR distribution. In opposit
to other distributions it also tries to keep its main archive free of any closed source software components.

The next chapter has a look at the N900’s hardware and which hardware components must be supported to
get the phone running a basic Linux distribution. It will also be analysed what components will be needed
to develop for the phone. Then in the third chapter, it will be analysed how serial access to the Nokia
N900 can be established. This chapter will describe the construction of an adapter to access the serial
pins, which are located under the phone’s battery compartment. In the fourth chapter a couple of drivers
for important unsupported hardware components, like modem speech data support, are integrated into the
current mainline kernel. With basic kernel support established the fifth chapter describes the required

open source kernel Android compatibility ~ userland software
Windows Phone No Windows No custom
i0S No i0S No custom
Android Partially Android - custom
OpenMoko Yes custom No GNU based
Maemo Partially custom No GNU based
MeeGo Partially custom No GNU based
SailfishOS Partially Android Yes Meego software stack
Ubuntu Phone Yes Android Yes GNU based
chroot Partially Android -
thesis aim Yes mainline nice to have GNU based

Table 1.1.: Smartphone Operating System Comparison

kernel.org

userspace software, that acts as a middle layer between the Linux kernel and the user software. It will also
highlight a few user applications, that are available for usage on the phone. Then, in the sixth chapter, the
previously described software stack will be tested for functionality and usability followed by a chapter,
which summarizes all open tasks identified during the thesis categorized according to the related chapter.
Finally the last chapter contains a conclusion.

Some additional content is provided in the appendix, which contains a a step-by-step tutorial to create a
Debian SD-card image for the Nokia N900 in Appendix A. Then Appendix B describes the Intelligent
Service Interface (ISI) protocol, which is used for communication between the N900’s modem and the
processor. Next in Appendix C the kernel patches required to add support for the N90O’s accelerometer
are included. Then, Appendix D provides details about generating a 3D model of the serial adapter built in
chapter 3. The following Appendix E contains an overview of all components required to built the Printed
Circuit Board (PCB) for the UART adapter described in chapter chapter 3. Last but not least Appendix F
contains the source code for a proof of concept dialer used in chapter 6.

The next chapter will describe the N900’s hardware architecture and how its abstracted by the Linux kernel.

2. Hardware Architecture

This chapter will describe the hardware architecture of the Nokia N90O as base for the development of
Linux kernel drivers, which follows in the next chapter.

The smartphone is based on an OMAP-3430 System on a Chip (SoC) from Texas Instruments, which
contains a Cortex-A8 Central Processing Unit (CPU). The kernel support for most ARM platforms is
currently being converted to device tree (DT) based booting. The DT is a data structure, that has been
developed for usage with Open Firmware to inform the operating system about any hardware, that can
not identify itself. Since the ARM platform does not use any specific firmware interface, most operating
systems encoded any knowledge about connected peripherals in their source code. For the Linux kernel,
which supports a many different boards this became a maintenance problem, so it has been decided to
remove the board specific code and load the board information from via DT instead. This is an ongoing
process, which is far from complete, but the OMAP subsystem has already dropped support for non-DT
based booting for newer chip revisions. While the Linux 4.1 kernel still supports non-DT based booting for
the Nokia N900, the subsystem maintainer plans to remove support for all OMAP3 based boards in Linux
4.3 [20]. More details about the kernels movement to DT will follow in chapter 4. But this chapter will
already make use of the abstract hardware information provided by the kernel’s DT file.

The DT file for the Nokia N90O can be found in the Linux kernel’s source code! in arch/arm/boot/dts/omap3-
n900.dts and contains information about interconnections between different hardware components. A sim-
plified version (the whole file including the SoC information is over 4000 lines in the Linux 4.1 kernel) can
be seen in Listing 2.1.

The first line starts with the inclusion of another DT file, which provides information about all hardware
information, which are part of the OMAP3430 SoC. For example it contains information about the ARM
Cortex-A8 processor core, the system bus and the modules and any modules, that are part of the processor.

In the third line, the scope is changed to the root node /, so that all content between line 3 and line 16 is are
children of the root node. Next in line 4, the compatible property of the root node is set. The compatible
property is a standard property defined in the ePAPR standard?, which identifies the device. The standard
requires, that the value is a list of strings describing the device, which are ordered from most specific to
most general. The format is usually in the form "manufacturer,product”.

While most information about the N900’s CPU is actually part of the OMAP3430 description included in
the first line, it cannot describe where the CPU gets its energy from (since that part is no SoC specific, but
board specific). Thus the lines 6 and 7 are used to change the scope to the first CPU’s node (cpus/cpu@0),
so that the information about the power supply source can be added. Since the N90O is a single-core
device, no other CPU’s must be referenced. The CPU’s power supply source is specified by referencing
the voltage regulator in line 8 using the & character. This kind of reference is commonly used to describe
connections between different devices or modules, such as an interrupt line or a Direct Memory Access
(DMA) channel.

"The Linux kernel’s source code is available on kernel . org
https://www.power.org/documentation/epapr-version-1-1/

kernel.org
https://www.power.org/documentation/epapr-version-1-1/

Next from line 12 to line 15 the phone’s memory is described by adding a new node named memory. It
contains information about the memory position on the system-bus (0x80000000) and its size (0x10000000
=256MB).

Listing 2.1: Simplified Nokia N900 Device Tree Source File

#include "omap34xx-hs.dtsi"

1

2

3 /A

4 compatible = "nokia,omap3-n900", "ti,omap3430", "ti,omap3";
5

6 cpus |

7 cpu@0 {

8 cpul-supply = <&vcc>;

9 }i

10 b

11

12 memory {

13 device_type = "memory";

14 reg = <0x80000000 0x10000000>; /+ 256 MB #*/

15 }i
16 };

Listing 2.2 shows another extract of the Nokia N900’s DT file describing the connection of an optional
hardware component. It describes how the N900’s Wireless Local Area Network (WLAN) chip is con-
nected to the system via one of the OMAP’s SPI* ports.

The listing starts with a reference to the system-bus (line 1), which is extended by a node describing the
fourth SPI IP-Core (line 2). This controller can be identified using the compatible property (line 3) and
mapped to the correct system-bus address space using the information provided by the reg property (line
4). The reg property is interpreted the same way as it was interpreted for the memory node in Listing 2.1:
The SPI module has a base address of 0x480ba000 and has a size of 256 Bytes.

The next two properties (interrupt-parent and interrupts in line 5 and 6) describe which interrupts are
connected to the SPI controller. Neither the data, nor the standard define the interrupts usage, so that part
must be known by the driver.

Similarly the next two properties (dmas and dma-names in line 7 and 8) are used for supplying DMA
information. In opposit to the interrupt description the dmas property references the DMA controller and
the used channel and additional information about the channels is provided using the dma-names property.

The pinctrl properties in line 9 and 10 are required for setting up the SPI pins into SPI mode instead of
using them e.g. as simple General Purpose Input/Output (GPIO). The referenced mcspi4_pins provides all
information required to mux the pins correctly.

Last but not least the properties in line 12 and 13 describe how the children’s reg property’s value should
be parsed. In this case it defines, that one entry in the reg property consists of one address value and zero
size values. Providing this makes it possible to automatically parse the children’s reg properties. In case of
SPI the reg property is used to provide the SPI address of a device.

The properties are followed by a sub-node describing the wl1251 WLAN chip, which is connected to the

3a serial interface for short-distance inter-chip communication

2. Hardware Architecture

fourth SPI bus. It again contains a compatible node, so that the hardware can be identified. It also has a
reg property, which contains the chips SPI address. Next it has a couple of properties prefixed with spi-,
which can be used for setting up the SPI bus correctly (e.g. maximal bus frequency). The details are not
important here.

The next property vio-supply describes, that the chip is powered by a voltage regulator labeled vio (similar
to the CPU power supply information). This information is important for the operating system, so that it
can disable regulators when they are not needed (and thus safe energy).

The next property, ti,power-gpio describes, that the chip is also connected to a GPIO pin provided by the
SoC. That GPIO can be used for enabling the WLAN chip. The two properties following also describe a
GPIO connection, but since this GPIO is used as interrupt source its described as such. Last but not least
there are two properties, which reference the proper GPIO pin setup for the pin controller.

Listing 2.2: Simplified and Merged SPI4 Excerpt from Nokia N900 Device Tree Source File

1 &ocp |

2 mcspid: spi@480bal00 {

3 compatible = "ti, omap2-mcspi";
4 reg = <0x480ba000 0x100>;

5 interrupt-parent = <&intc>;

6 interrupts = <48>;

7 dmas = <&sdma 70>, <&sdma 71>;
8 dma-names = "tx0", "rx0";

9 pinctrl-names = "default";

10 pinctrl-0 = <&mcspi4_pins>;

11

12 #address—-cells = <1>;

13 #size-cells = <0>;

14

15 wll251@0 {

16 compatible = "ti,wll251";

17 reg = <0>;

18

19 spi—-max—frequency = <48000000>;
20 spi-cpol;

21 spi-cpha;

22

23 vio-supply = <&vio>;

24

25 ti,power—-gpio = <&gpio3 23 GPIO_ACTIVE_HIGH>; /* 87 */
26

27 interrupt-parent = <&gpio2>;
28 interrupts = <10 IRQ_TYPE_NONE>; /# gpio line 42 x*/
29

30 pinctrl-names = "default";
31 pinctrl-0 = <&wll251_pins>;
32 }i

33 }i

M}

So the device tree describes quite detailed how different hardware components are connected to each other
and how they must be configured for proper interaction. This thesis will depend on this data for properly

Figure 2.1.: N900O DT graph

describing the hardware by extending the DT-compiler to support output for Graphviz files, which can be
turned into proper graphs of the hardware resulting in visualized interconnections.

For converting the DT source files into visual graphs the device tree compiler, which is also shipped with
the Linux kernel’s source code has been slightly extended, so that it generates a shared object, that can be
used with other software.

Based upon this library a small Python proof-of-concept application has been written, which parses the
DT file and creates a Graphviz node for each node found in the DT. Additionally links are added for each
parent-child connection in the DT file as well as for each phandle* reference.

As visible in Figure 2.1 the graph contains far too many nodes to be usable, though. For this reason a
couple of parameters have been introduced to reduce the nodes appearing in the graph. This can be used to
have a look at specific details of the platform’s interconnections.

For example Figure 2.2 is a DT graph visualization starting at the OMAP’s system bus with a maximum
depth of one node, with disabled rendering of any properties attached to the nodes. The result is a nice
overview of all IP-Cores available on the OMAP3430 SoC. As shown in the figure there are almost 80
IP-Cores available in the SoC with some of them missing in the graph, since they do not yet have a DT
binding (e.g. the Image Signal Processor (ISP) used for connecting cameras).

Describing the whole architecture would be out of scope for this thesis, but to visualise the interconnection
principles a more detailed graph for the second I12C module is shown in Figure 2.3. In opposit to Figure 2.2
the property rendering has not been disabled, so that hardware details become visible. Shown in Figure 2.3
is the address space of the second I12C module (0x48072000 - 0x48072080), as well as the interrupt port
it is connected to (0x39 — 57). The interrupt controller is inherited from its parent node (the OCP bus),
which is not part of the figure. The next entry ("dma") is actually a merged property from the DT file to
ease reading. The properties define a DMA channel for receiving and sending data respectively. In opposit
to the interrupt property the DMA controller is explicitly referenced via its label. Next the pin controller
configuration is referenced, which is supposed to configure the pins for usage with the I2C module. Last
but not least the I2C module is configured to use a bus speed of 100 KHz.

The child nodes of the controller are no longer part of the SoC, but standalone chips connected to the
OMAP via its second I12C port. Each child node provides a reg property, which describes the chip’s
12C address. Also provided by each node is a compatible property, which identifies the chip. Other
common properties are GPIO specifiers, which, like the DMA channel description, reference a controller
and provide an additional identifier for the pin number. The additional integer describes if the GPIO is
used with an active high or an active low signal. The properties and their values are partly defined directly
in the ePAPR standard, partly generic extensions of the ePAPR standard and sometimes device specific.
Normally device specific properties are supposed to be prefixed by the manufacturer code, which is also
used in the compatible string (like e.g. the "ti,resistor-sense" property in the bq24150a node).

4phandle is the DT term for the references seen in Listing 2.1 and Listing 2.2

2. Hardware Architecture

[gpiol: gpio@48310000 | [mespi3: spi@480b8000 |

i2¢2: i2c@48072000 timer6: timer@4903a000
em: cm@48004000 timer2: timer @49032000

i2¢3: i2c@48060000

timer10: timer@48086000

timer4: timer@49036000
mcspid: spi @480ba000

B 000000
gpio5: gpio@49056000 N

timer7: timer@4903c000

/| mespi2: spi@4809a000

@48058000

mmcl: mmc@4809c000

uart3: serial @49020000 |c0umer32k: counter@48320000 ‘

/

omap3_scm_general: tisyscon@48002270 ‘

Sohstll: usbhstll @48062
mme2: mmc@480b4000 OB T EIC LA

mailbox: mailbox @48094000 timerl: timer@48318000
/ timer 1 timer @48088000

[pbias_regulator: pbias_regulator] — S ouer@48200000|
R ———
omap3_pmx_core: pinmux @48002030 ‘ / \
S Serm @43002000 |smarlreﬁex7mpu,iva: smartreflex @480c9000
timer3: timer@49034000
mi

usb_otg_hs: usb_otg_hs@480ab000 /

gpio4: gpio@49054000

|smartreﬁexﬁcore: smartreflex @480cb000

wdi2: wdt@48314000 [zpio3: gpio@49052000 | - [prm: prm@48306000]

|omap3_pmx_wkup: pinmux @48002a00 ‘

/| mu_isp: mmu@480bd400
[usbhshost: usbhshost@48064000 | / 201:1206:18070000,
i06: gpio@4
gpio6: gpio@49058000 P |limer8: limer@49036000‘

2pio2: gpio@49050000 R
uart2: serial @4806c000

e @ 45038000 |timer9: timer@49040000 | |hdqw1w: 1w @480b2000 |\
I v
/ |dss: dss@4sosoooo| [mebsp2: mebsp@49022000 |
mcspil: spi@48098000

|sdma: dma-controller @48056000 ‘

|omap37pmx,c0r62: pinmux @480025d8 ‘

Figure 2.2.: DT graph of OMAP3430’s system bus

2c2: 12c@43072000

compatible | _"ti.omap3-i2¢”
reg 0x48072000 0x80
interrupts <0x39>

x: <dosdma> <29
dmas [

x: <&sdma> <30>

pinctrl-names “defaull”
pincirl0 <&i2e2_pins>
[clock-frequency| 1000 KHz

195523 p5523@32
compatible “national Ip5523"
—_— ¥ reg 032 bq24150a: bq24150a@60
V320aic3x: (v320aic3x @ 18
AN IeAEIE 1v320aic3x_aux: 1v320aic3x @19 clock-mode 100 compatible 1i.bq24150a
compatible v320nic3n” =
= s compatible “t0v320aic3y" <&gpiod>, 09> <0x0> T R B reg 0x66
" reg 0x19 1512563: 512563@29 50mA - 100 mA st e s i current-limit <0x63>
epioresel | <&gpiod>, <Oxlc>, <0x0> - bq27200: bq271200@55 compatible | "ti.1pa6130a2" R AR
- gpio-teset|<&gpio2>, <Oxlc>, <0x0> ["amstaos, 1512563 5.0mA - 10.0 mA ti,weak-battery-voltage <0xd48>
AiBn-gpio-func <0x0>, <0x5> reg 060
AVDD iy Pramre o> SOmA-T00mA battery-reg 2| <oxTo6s>
AVDD-supply <&vmme2> [Tree | 0xss | [Vadsupply <&vmme2>
: DRVDD supply | <&vmmezs e TS S0mA_100mA T charge < e
DRVDD-supply <Svmme2> ” power-gpio |<&gpiot>, <0x2>. <0x0>
TOVDD-supply <&vios S0mA-100mA e curer <0n6H>
T0VDD-supply <&vio>
DVDD-supply <&vio> S0mA-100mA i resistor-sense x>
DVDD-supply <&vio>
S0mA-100mA G.usb-charger-detection | <&ispl 704
Channel "Ips523Kkb5" | 5.0 mA - 100 mA
Channel “Ip5523kb6"| 5.0 mA - 100 mA

Figure 2.3.: DT graph Nokia N900’s second 12C port

While none of the components connected to the second 12C bus is strictly needed (a description for each
component can be seen in the list below), some other externally connected components are required for
booting.

* tlv320aic3x: audio codec from Texas Instruments

* ts12563: light sensor from AMS TAOS

* 1p5523: multi-channel LED controller used for the keyboards backlight and the phone’s RGB led
* bq27200: battery fuel gauge

* tpa6130a2: headphone amplifier

bq24150a: Li-ioN battery charger

10

For example to get data on the built-in Liquid Crystal Display (LCD), a couple of different subsystem
must be initialized before. First of all the OMAP processor contains an IP-Core, which is named Display
Subsystem (DSS). This module acquires its frames from the system’s memory using DMA, optionally adds
up another image (e.g. the mouse cursor’s sprite) and finally outputs the frame via Texas Instruments’s
Serial Display Interface (SDI), MIPI’s Display Serial Interface (DSI) or its TV out encoder.

In addition to the DSS, obviously the LCD itself must be configured correctly. Since it is connected to the
first SPI port, the SPI subsystem must also be configured. In addition the display requires a reset GP1O,
resulting in a dependency on the GPIO subsystem. It should be noted, that this setup only supports simple
frame buffers, but no 2D or 3D acceleration. Accelerated graphics require support for the PowerVR SGX
IP-Core.

For developing a more simple interface to the system is needed, so that early errors can be analysed. Apart
from that using the LCD means, that it may not be possible to read the full error message (most stack
traces do no fit on a 800x480 screen) and the messages cannot be copied for later analysis. For Linux
kernel development usually a UART interface is used, which usually can be initialized quite early in the
boot process or is already pre-configured by the bootloader[21, p. 365]. Apart from that accessing it is
quite simple compared to other devices.

11

3. Serial Access

This chapter will describe how access to one of the OMAP’s UART ports, also named serial interface
will be gained. Once the serial controller is initialized, which can be very early depending on the kernel
configuration, the kernel’s main console can send data to it. Thus the debug messages of all drivers will be
routed via the UART interface !. Other options for debugging are more fragile, initialized too late or just
not as convenient:

One of the most obvious solutions is usage of the built-in LCD. This solution has a couple of disadvantages,
though. Having the debug messages displayed means, that only the last few lines are visible and one has
to type out the message. There are also disadvantages from the drivers side of view. For accessing the
display several subsystems must be configured correctly: As mentioned in ??, the display controller is
connected via SPI and uses a GPIO, so these subsystems have to be initialized. Additionally the OMAP’s
DSS controller must be configured, which makes use of DMA. On a typically configured kernel the display
is thus one of the last initialized components. Apart from the increased amount of subsystems, that have
to be configured, several of the involved controller are much more complex than the UART controller, so
there is an increased chance of something going wrong before the display is configured as debug output.

A second solution for accessing debug messages is the Universal Serial Bus (USB) port. It has the ad-

!The kernel’s message output framework ensures, that a message is fully sent before it starts sending the next message.

Figure 3.1.: Coverless N900’s back with labeled serial test pads

12

vantage of better throughput, but like the graphic stack its dependent on multiple other subsystems and its
initialization is error prone.

Another variant is using a working userland and access the kernel messages from there. This is the easiest
method, but only works if the userland can be started. This limits its usability for kernel development,
since the kernel may crash before the userland starts.

Fortunately there are pad connectors under the N900’s battery compartment. These have been analyzed by
the Maemo community [22] and some pads found to be connected to the SoC’s third UART port. The test
pads needed for the serial access are marked in Figure 3.1. Two problems must be solved before the UART
port can be used, though:

1. The pads are neither a standard RS232 connector using 12V, nor using a 3.3 or 5 Volt based voltage
level. Thus it is not possible to simply use a USB-RS232 or USB-UART adapter, which are com-
monly found at electronic distributors”. This can be solved by either using a more expensive and less
common USB-UART adapter supporting a 1.8 Volt IO voltage or by using a 5V based USB-UART
adapter together with a logic level converter between the test pads and a USB-UART adapter.

2. If cables are connected without modifying the case, it is not possible to insert a battery. Nokia’s
developers had an adapter to access the pads, but it has never been publicly accessible. If the phone
is used only for development one could simply solder wires directly to the test pads and the battery
connectors. Otherwise Pogo-Pins (also known as spring probe pins, see Figure 3.2) can be used
together with a small mounting, so that they probe the correct pads. The fact, that the pads are below
the battery compartment can be used as an advantage here, since the battery compartment can hold
the self-built adapter instead of a battery.

For solving both problems a simple debug adapter will be designed in the following paragraphs. This
adapter uses Pogo-Pins to tap the UART test pads below the battery compartment and for tapping the
battery pins of the compartment. To tap the correct pads a dummy battery will be built, which has holes to
fit the Pogo-Pins. Then a small circuit will be created, which does a 5V to 1.8V voltage level conversion
for the N900’s UART port and contains a USB-UART chip, so that a simple USB cable is enough to access
the phone’s UART interface.

Additionally two optional features will be added to the circuit making it useful for more advanced use cases
in the future:

1. A power meter is put between the battery and the phone, so that the phone’s energy usage can be
measured. This is useful to check the effectiveness of different power saving methods.

2. A kill switch is added between the battery and the phone making it possible to interrupt the phone’s
power supply. This is needed to reboot the phone in case of a hanging kernel and allows to use the
adapter for automatic regression testing once everything works as expected.

Designing the adapter requires information about the exact positions of the UART pads first. This can be

*Using these adapters directly will most likely destroy the complete SoC or at least the OMAP’s UART port

oW WYV

Figure 3.2.: Pogo-Pin profile

13

3. Serial Access

done manually (e.g. by measuring the distances using a vernier scale), but for this thesis a simpler and
precise method has been used instead: Scanning the phone in a flatbed scanner returns a pixel based image
of the battery compartment, which can be used as a basis for vectorization.

The vectorization task can be seen in Figure 3.3. The red and blue lines drawn above the scanned image
are vector information, while the underlying image is a pixel based. Once everything of interest has been
vectorized, the pixel based image can be removed from the file resulting in a Scalable Vector Graphics
(SVQG) file, which can be further converted to other vector formats understood by Computerized Numerical
Control (CNC) machines.

Before the vector information can be used with a CNC-machines it must be scaled accordingly, though.
Since CNC-machines ignore the thickness of the vectors, the software used for scaling should ignore it,
too. In Inkscape this has to be configured by selecting enabling Preferences—Tools—Geometric
bounding box. Afterwards one can measure one side of the battery slot and scale the whole object by
locking width and height together and providing the correct information for one of the sides.

Next a simple test production should be done to verify, that everything is correctly sized and positioned.
This should be done using transparent material, so that one can see if something sticked into the wholes
for the UART pads hits them correctly.

Once the physical information has been acquired the circuit design can be started. Since the adapters main
intention is accessing the phone’s serial port and most modern computers/notebooks no longer provide any

) zerial-ndapter.zvg - Inkscape =l)x]
File Edit \iew Layer 0Object Path Text Filters Extensions Help

T BEEe AR 9 BXE Q@@ el 98 BPTeBE -
2 | e

]

5

F PRINQOD20PHCLH

L | A X -
o: | iroat] | 5 | No objects selected. Click, Shife+ click, Alt+ scrall mouse on top of abjects, or drag around objects to select yv. 735.82 Z[2% |3

178.28

Figure 3.3.: Battery adapter design in Inkscape

14

RS232 port, a USB to UART chip will be used as base. For additional voltage and current measuring an
additional port with the custom logic will be needed. This port should support I2C or SPI instead of the
UART protocol making it easy to acquire sensors for the power measurements.

For this thesis FTDI’s FT2232H and Cypress’s CY7C65215 USB to dual UART solutions have been eval-
uated. Both chips provide support for two serial interfaces, which can be configured as I12C, SPI or UART
independently. Since the CY7C65215 has an integrated oscillator making it a bit easier to integrate and is
also a bit cheaper than the FT2232H it has been chosen here.

Since the N900’s UART pins must be driven at 1.8V and USB provides only 5V, a voltage controller is
needed. The power is only needed as reference and thus a very small voltage controller is enough. For this
thesis an Texas Instruments TPS76918 has been chosen, since it was available from local distributors and
can be soldered surface mounted making the case design easier.

For power measuring Texas Instruments’s INA219 has been chosen, since it was the only fully integrated
solution available from local distributors. This introduces another problem: The UART pins must be driven
at 1.8V, but the INA219 must be driven between 3V and 5V.

This has been solved by adding a transistor to the RX and TX lines between the phone and the CY7C65215,
which does the logic level voltage translation. For this task a Fairchild Semiconductor BSS138 has been
chosen, since it has been shown to be suitable for this purpose in SparkFun’s Logic Level Converter board.

Last but not least another transistor has been added between the phone’s battery connector and the real
battery, so that the power supply can be cut on demand. The complete schematic can be seen in Figure 3.4.

In the next step all components must be connected to their footprints, since the schematic only contains
information about the abstract components. To protect the PCB against physical damage and to make the
whole adapter more portable the PCB is intended to be placed inside of the adapter. This requires cutouts
in the adapter’s case for every part soldered on the PCB. To avoid doing this work on both sides of the
PCB, only Surface Mounted Device (SMD) footprints have been selected for the PCB in this thesis.

Once all components have their footprints assigned the PCB layout can be created. This task requires
some additional obstacles compared to simple PCBs, since the drilled holes for the underlying debug pads
must be positioned exactly. This has been solved by starting to draw the PCB’s edges first using the
size informations from the vectorized data created before. Then in the next step the drilled holes can be
positioned using the vectorized data.

Before continuing to place and connect all components in the PCB-software, one can validate the correct
position of the drilling holes by exporting the PCB data into an intermediate format, which is supported
by the vector-software (e.g. PostScript). Then the PCB data can be put as overlay on top of the vectorized
data. If the drilling holes do not match the vector information they should be relocated appropriately.

Once all PCB holes sizes and positions match the ones from the initial vector file, all components have
been placed and the traces have been routed, the PCB is ready for manufacture.

There are a couple of methods available for creating PCBs prototypes. Normally a PCB consists of a
copper layer on top of support material. The big industrial machines used for PCB manufacturing use
acid to etch some areas of the copper layer leaving the separated traces. Alternatively a CNC-mill can be
used to remove the copper layer as needed. This method leaves less hazardous waste (no used acids), but
is not interesting for industry-grade manufacturing, since the process requires more time (acid works on

15

3. Serial Access

-
e

LAVE-USB

VSSA CY7C65215 GPI0_0 |25 TXLED
VSSD cpio_1 |26 RXLED
VSSD SCBO_1/GPI0_2 21 x
VSSD SCB0_2/GPI0_3 %x
veeD SCBO_3,/GPI0_t |29 x
VDDD SCBO_4/GPI0_S5 |30 UART TX
VDDD GPIO_6 %x
VBUS GPIO_7 32 x
USBDP sc80_0/6PI08 |2 UART RX
USBDM SCBO_5/GPI0_9 |——x
WAKEUP scB1_0,/GPI0_10 —5— SCL
nXRES sce1_1/GPi0_11 6 SDA
SCB1_2/GPI0_12 —L—x
SCB1_3/GPI0_13 —8—x
SCB1_4/GPIO_14 —2x
SCB1_5/GPI0_15 %x
GPI0_16 |—13x
ui GPIO_17 | 21 "~ PWRGPIO
GP\O::LB | 22 USERLED
SUSPEND —11 x

USB Interface

Status LEDs

BATTERY
FON338P o
s07-23

PWRGPIO

VIN+

Al

VIN= SDA
GND

VS INA219
A0 uz2

SCL

4 TPS76918

L 1N ouT|—2

HuF 2 GND

b3 O EN NC
U3

UART RX

UART TX

Battery Power Control and Measurement

NS00 TX

1
1285

N900 RX

Voltage adaption (5V <-> 1.8V)

P1

P4

N900 RX 1 N900 VDD 1
NQOO—HART—RX NgooféATprUS
N900 TX 1 o oo
NQOO—HART—TX
P3
1 BATSENS 1
% N9Q0 - !lRT—GND NgooféAT—SENS

1
<~ NgoofaATfM\N
P6

N900 Serial Pins

16

10
1
& BATTERY 2.2
BATSENS 3 5% 3

NS00 Battery Pins

Battery Pins (-, +, sens)

Figure 3.4.: Serial adapter schematic (designed with KiCad)

the whole board at the same time) and is pricier (milling heads must be replaced regularly). Nevertheless
isolation milling is a fast way to create a low quantity of prototypes.

Method I: CNC-based For this task the output usually generated by PCB-software (Gerber files), must
be post-processed to generate instructions for the CNC-mill (which usually requires G-Code). One of
these software files is visible in Figure 3.5. The green areas are read from the Gerber file and are supposed
to become isolated copper areas. The isolation milling software solves the problem by generating paths
for the CNC-mill around the green areas (red lines). The path has a little distance from the green areas
to compensate the milling tool’s diameter. As a result the tool’s diameter must be smaller than the area,
that should be removed. For example the approximately 0.4mm tool used in Figure 3.5 is too big to mill
between the pads intended to be used for the micro-controller.

Method IlI: Acid-based After some experimenting the idea of using isolation milling to create a pro-
totype for the adapters PCB has been given up, since the required milling tools were not available easily.
Instead the etching method has been tried by exposing the PCB to ultra-violet light with a protection mask
on top of the areas, which should not be etched. Next the PCB is put into sodium hydroxide to remove the
light-sensitive coating from the areas exposed to the ultra-violet light. Last but not least the PCBs were put
into Iron(III) chloride to etch away the copper layer. Unfortunately the results were not good enough to be
usable as prototype.

Method lll: Professional Manufacturer At the end the PCB files have been sent to a professional
PCB manufacturer without prior prototype testing. The resulting PCB can be seen in the left of Figure 3.6.

In the next step the PCB had to be populated with the SMD parts. This task can be done either by using a
thin soldering iron or by applying some soldering paste on the pads, putting the part on top and heat up the
paste using hot air or an oven. Soldering the QFN32 micro-controller using a soldering iron is quite hard,
so soldering paste has been used instead. For properly applying the paste on the pads (correct amount and
position), a simple stencil has been created using a Thunderlaser Mars 120 laser-cutter.

Professional stencil are usually created using a thin steel or aluminium sheet. Unfortunately the Thunder-
laser Mars 120 cannot cut metal, so instead a sheet of transparency usually used with overhead projectors
has been tried as suggested by different Blog articles in the web [3]. While the resulting stencil was good
enough for the bigger SMD components, the QFN32 pads became too big making the stencil unusable.

Instead of the transparency a few other materials have been tested after some unsuccessful results. At the
end simple crepe tape produced very good results. A PCB prepared with the crepe tape stencil can be seen
on the right in Figure 3.6. In opposit to standard stencils it has the advantage of being sticky, so its very
easy to distribute the solder paste without accidently moving the stencil. Instead it becomes a little harder
to remove the stencil without ruining the solder mask on the PCB. This turned out unproblematic if only
small areas of the PCB are prepared. A second disadvantage of the crepe tape is its rough surface resulting
in wasted soldering paste.

Once the PCB has been fully assembled, it must be prepared for usage as battery replacement in the N90O.
For this task a case out of acrylic glass has been created. Figure 3.7 depicts the vector data, which will be
used with the CNC machine. Depending on the layer different colors are enabled for being cut resulting in
the setup seen in Figure 3.8. All in all three different layers are needed between the PCB and the phone’s
battery compartment and five additional layers are required on top of the PCB.

17

3. Serial Access

File Edit Options Wiew Tool Help
QaAaAaEENNRIEB - RODPONMMEPEL £ & X Hb |-

[‘:o Gerber Object

Name

rial-sdaptsrF_Cu.pho

Plot Options:
(] Plot] solid [] Multicolored

Isolation Routing:

Taol dia 0.4064

Width (# passes): |1

Pa

l

Board cutout:

werlap. 0.150000

ensrate Geometry

Taol dia: [0.07

Margin;

Gap size:

Gaps: O 2me) O zWR @ 4

I

Hon-copper regions:

enerate Geomatry

Boundary Margin

(] Rounded corners

l

Bounding Box:

ensrate Geometry

Boundary Hargin

[Rounded corners

l

Scale:

enerate Geometry

Factor: [1.000000

|

| scale

Offsen

Vector: [(0.0, 0.0)

O Object deleted: serial-adapterF_Cu pho_iso_d

NIIL.

I

Nokia N900 Debug Adapter

Figure 3.6.: left: Front and back of the adapter’s PCB; right: PCB with crepe-tape-stencil

18

®)
O
—— B[]

O O
O

Figure 3.7.: Colorized vector information for the laser cutter

All layers are cut with the black, outer border, but only the lowest layer enables the blue rectangular vectors
() for the phone’s battery connectors. Also enabled in the lowest layer are the green-blue circles (i,
which are inside of the red circles. Those are a little bit smaller than the screws, which will be used to hold
everything together. This will result in the screws cutting their own screw thread. Last but not least the
green small circles ([]) for the serial pins are enabled. Using a little bit of the acrylic glass’ offcuts it has
been tested, that the bottom layer should be 3mm thick.

The next layer enables the purple box (JJjjj), so that the phone’s nose intended to hold the battery tightly
can do the same with our adapter. Additionally the dark-blue circles (JJj) are enabled instead of the blue
rectangular boxes, since the phone’s battery pins are less then 3mm in height and the round holes provide
the Pogo-Pins stability. Like the previous layer, this layer contains the holes for the serial Pogo-Pins ()
and still enables the smaller screw holes (Jii). Like the first layer this one should be about 3mm in height.

The third layer must disable the purple box (JJf) again, so that the adapter can be clamped into the battery
compartment. Like the previous layer all six holes for the Pogo-Pins must be enabled (I, [P, too. To
simplify the construction step the third layer should no longer use the small screw holes though. Instead
the bigger, red holes (JJfj) should be enabled. The height of this layer should be at least 3mm (to provide
some distance between the PCB and the phone), but can be bigger. The prototype built in this thesis 6mm
have been chosen.

The next layer is the PCB, which can simply be put on top of the acrylic glass. If the Pogo-Pins have not yet
been soldered to the PCB, it should be done now. For this task it helps to put a 2mm layer below the other
layer while keeping the battery holes uncovered. Inserting the Pogo-Pins into the prepared holes in the
PCB and the adapter’s lower acrylic glass layer should result in the pins sticking 2mm out of the adapter.

19

3. Serial Access

Once this has been ensured the pins can be soldered to the PCB. Next the additional layer at the bottom
should be increased to 5-6mm and the same procedure should be done for the serial pad’s Pogo-Pins, so
that they stick out 5-6mm. Once this has been done the PCB is very fragile, so all further steps should be
done with care.

The layer following right after the PCB must enable
a cutout for the parts on top of the PCB by enabling
the orange vectors ([]). Apart from that the red

I—aye ro9 screw holes (i) and the Pogo-Pin holes (], |l
L ayer must be enabled. This layer should have a height
of Smm, which is a bit more than the height of the
1ni- ort soldered to the .
L 7 Mini-USB p ldered to the PCB
ayer
e next few layers are basically identical to the
Th few lay basically identical h
Laye ro previous layer, but without the orange PCB-parts
Laver 5 cutout. A couple of them should be stacked to reach
y the end of the serial Pogo-Pins. At this point the
Laye r 4: PCB nextfew layers should not cut the green (Jl]) holes,
so that the Pogo-Pins are protected. The same pro-
I—aye r3 cedure is done for the battery pins, which should be
roughly 3-4mm longer. Once the final layer has been
Laye r 2 put on top the red screw holes () can be used with
3mm machine screws.
Layer 1

Since the Pogo-Pins must stick out at the bottom of
the adapter and they are quite fragile, transporting
the adapter as-is, might be a problem, though. For
this reason the lowest two layers should contain the
four green-blue holes (Jfi]) in the middle. They can
be used to hold a simple protection cap.

Figure 3.8.: 3D-rendering of the layers

The protection cap can be made by cutting another layer, which has all six Pogo-Pin holes ([, [and
the green-blue holes (Jfi) in the middle of the adapter, though slightly reduced in their size. This layer
should be at least 6mm long, so that the protruding Pogo-Pins are completely covered. Next four 10mm
long M3 screws can be inserted into the protection cap layer. To prevent the protection cap from falling of
the adapter an elastic band can be used.

Since the described adapter does not take care of holding the battery, a battery compartment must be build,
too. For this task a cheap (apparently broken) Nokia phone using the same battery type has been acquired.
Next the phone has been disassembled to get its PCB, which in turn has been further processed with hot air
to remove all parts except the battery pins.

At the next step its important to verify, that there are no electrical shorts between any of the battery pins
(in that case another hot air rework is needed to remove remaining solder from the PCB’s pads.

Then a frame was designed using the same technique as for the actual adapter. All PCB parts, which are
not covered by the frame have been cut off and some wholes were drilled through the more or less unused
PCB as needed. Last but not least the PCB is put between the frame layers and a wire is soldered to each
of its battery pins. Once a plug matching the debug adapter’s power socket has been crimped to the wires
the battery compartment is ready to use.

20

Figure 3.9.: N90O with attached debug adapter

With both, the adapter and its battery compartment it is possible to exchange data with the N900’s serial
port. Figure 3.9 shows the complete setup. If the PC’s serial software is configured to the default serial
settings used by the N900, which are 115200 baud and 8 data bits, no parity bit, 1 stop bit (8-N-1 format),
it is possible to receive NOLO’s debug output as visible in Listing 3.1

Listing 3.1: Nokia N900 Boot Log

NOLO X-Loader (v1.4.14, Jun 3 2010)

Secondary image size 109384

Booting secondary

0.002] Nokia OMAP Loader v1.4.14 (Jun 3 2010) running on Nokia N900 F5 (RX-51)
.014] 1I2C v3.12

.033] System DMA v4.0

.036] OneNAND device ID 0040, version ID 0121 (256 MiB, 66 MHz)
.070] OneNAND blocks unlocked in 28010 us

.075] Flash id: ec4021

.097] Partition table successfully read

.105] TWL4030 PWR ISR: 44

.108] Reset reason: usb

.111] McSPI v2.1

.114] LP5523 found at I2C bus 2, address 0x32

.125] SMB138C: Not loading driver (version reg. 0x4Db)

.131] BQ24150 (rev. 3) found on I2C bus 1, address 0xb6b

.137] SSI version 1.0

.151] Battery voltage 4.020 Vv, BSI: O

.161] Disabling charging (no battery present)

.170] Initializing LCD panel

O O O O O OO OO0 O0OOO0OO0OO0OO0OO0Ooooo

.173] Detecting LCD panel moscow
L177] Panel ID: 108b77

.180] Detected LCD panel: acx565akm
.184] DISPC: version 3.0

.189] LCD pixel clock 24000 kHz

.220] Logo drawn in 5 ms (11700 kB/s)

21

3. Serial Access

[0.350] Uber-cool backlight fade-in took 9 ms

[0.358] Initializing USB

[0.366] USB host detected

[0.369] Entering USB loop

[0.420] USB suspend signaling detected

[0.544] USB reset received

[0.655] SETUP: RD STD DEVICE GET_DESCRIPTOR DEVICE (value 00, index 0000, length
64 bytes)

[0.669] USB reset received

[0.831] SETUP: WR STD DEVICE SET_ADDRESS value 0015 index 0000 length 0000

[0.855] SETUP: RD STD DEVICE GET_DESCRIPTOR DEVICE (value 00, index 0000, length
18 bytes)

[0.865] SETUP: RD STD DEVICE GET_DESCRIPTOR CONFIGURATION (value 00, index 0000,
length 9 bytes)

[0.875] SETUP: RD STD DEVICE GET_DESCRIPTOR CONFIGURATION (value 00, index 0000,
length 94 bytes)

[0.886] SETUP: RD STD DEVICE GET_DESCRIPTOR STRING (value 00, index 0000, length
255 bytes)

[0.895] SETUP: RD STD DEVICE GET_DESCRIPTOR STRING (value 02, index 0409, length
255 bytes)

[0.905] SETUP: RD STD DEVICE GET_DESCRIPTOR STRING (value 01, index 0409, length
255 bytes)

[0.915] SETUP: RD STD DEVICE GET_DESCRIPTOR STRING (value 05, index 0409, length
255 bytes)

[0.925] SETUP: WR STD DEVICE SET_CONFIGURATION value 0001 index 0000 length 0000

[0.934] SETUP: RD STD DEVICE GET_DESCRIPTOR STRING (value 03, index 0409, length
255 bytes)

[0.943] SETUP: RD STD DEVICE GET_DESCRIPTOR STRING (value 04, index 0409, length
255 bytes)

[0.953] SETUP: RD STD DEVICE GET_DESCRIPTOR STRING (value 04, index 0409, length
255 bytes)

[0.963] SETUP: WR STD INTERFACE SET_INTERFACE value 0000 index 0002 length 0000

[0.972] SETUP: RD STD DEVICE GET_DESCRIPTOR STRING (value 04, index 0409, length
255 bytes)

[2.353] Timeout waiting for flashing commands

[2.363] Loading kernel image info

Loading kernel (1961 kB)... done in 71 ms (27434 kB/s)

[2.443] Loading initfs image info

[2.447] Total bootup time 2472 ms

[2.451] Serial console disabled

Uncompressing LaNUX . ..ttt ittt ettt ettt et ene et eneeneennn

Also visible in Listing 3.1 is a hardware problem of the adapter built for this thesis. Apparently the phone’s
bootloader (and the original Maemo operating system) has problems to read out the BSI value, which is
the third battery pin (used for identifying the battery). This results in no charging being performed. Since
the BSI value is currently ignored by the charging driver, which is part of the mainline kernel, this is not a
problem there.

Charging the battery reverses the voltage flow though, resulting in the adapter’s power control switch
transistor being used in reverse direction. This results in the transistor being degraded to a diode, reducing
the voltage going into the battery by approximately 0.7V. This results in a reboot-loop once the battery
is below a threshold capable of supplying the phone. This has been fixed by replacing the power control
switch transistor with a direct connection between the phone and the battery effectively removing the
adapter’s extra functionality. In a future revision of the adapter the transistor should be replaced by a relay.

With access to debug output from the phone it is possible to start working on the kernel without relying on

the lower stack being functional. In next chapter we will focus on kernel development for the N900O. First
starting with an introduction, which describes the current state.

22

4. Linux Kernel

At the base of each Linux distribution is the Linux Kernel providing the operating system’s core. The Linux
kernel takes care of abstracting the underlying hardware and thus is one of the most important components
for the operating system’s smartphone support.

Since most smartphones come with Android today, there actually is already a Linux kernel tree, which
contains the device drivers required for a phone. Usually the kernel trees used by the vendor only support
one specific phone, so that multiple kernel trees must be taken care of. Most major Linux distributions do
not support multiple kernel sources, though. Instead they use the mainline kernel tree provided by Linus
Torvalds together with a few distribution specific patches. Adding custom changes to the kernel results in
increased maintenance efforts. As a result most Linux distributions only add patches, that have already
been accepted in the mainline kernel. Some distributions provide multiple kernel source trees to avoid
the additional integration work by simply using the vendor’s kernel tree. This has the disadvantage, that
the vendor’s kernel tree is often unmaintained after a short amount of time and its hard to track security
updates.

The problem with vendor kernels can be seen in the bottom graph of Figure 4.1 (solid arrows stand for
a full merge of all patches and dashed arrows for a partial merge), which shows how a vendor kernel is
usually developed: At some point a mainline kernel release is forked and the vendor adds its customiza-
tions. Then the mainline kernel development proceeds. At some point the vendor merges the changes (one

Linux 2.6.28 Linux 3.16
Vendor Kernel }-f-{ --------------- ’
Linux 2.6.28 Linux 3.16
Vendor Kernel Vendor Kernel Vendor Kernel

Figure 4.1.: Flow-graph of kernel forks

23

4. Linux Kernel

mainline kernel release currently has about 10.000 changes [36]) done in the mainline kernel into their own
development tree. For Android based vendor kernels its even more complicated, since the process happens
two times: There is a kernel fork from Google, which adds the Android patches and then there is another
fork done by the vendor, which adds the device specific changes on top.

The kernel developers would prefer to merge the changes into the mainline kernel instead, resulting in less
work for all involved parties. For the vendor it means, that the driver is taken into account, when internal
kernel Application Programming Interfaces (APIs) change. For users it means, that the community has
a chance to keep their device working once the vendor has stopped updating their vendor kernel and for
the kernel developers it broadens the pool of devices considered for designing kernel frameworks. The
downside of the development style desired by the community are longer product development cycles.
Getting full support for a device into the mainline kernel takes multiple months and may take multiple
years depending on the amount of missing features. Apart from that it is not guaranteed, that a specific API
developed by the vendor is accepted in the mainline kernel.

The Nokia N900 has been delivered with a Linux 2.6.28 based kernel, that includes many additional device
drivers. This kernel tree has never been updated to a newer kernel basis by Nokia, but Nokia’s developers
send many of those drivers to their respective maintainer in the mainline kernel. A simplified graphical
representation of this development style can be seen in the upper graph of Figure 4.1.

To get patches into the mainline kernel it is useful to understand how its development flow works nowadays.
As seen in Table 4.1 new kernels have been released by Linus Torvalds approximately every eight to nine
weeks. This is the result of the kernel’s development flow used for the last few years as visualized in
Figure 4.2. At the beginning of each kernel release Linus Torvalds pulls from different topic branches,
which have their own maintainers. Usually he closes the so called merge window after two weeks by
releasing the first release candidate. Then the Linus Torvalds pulls fixes sent by the same maintainers.
Roughly every week a new release candidate is released. After some release candidates (usually seven) a
new major release is done.

During the stabilization phase the kernel maintainers prepare patches for the next merge window, so that
they get some testing before being sent to Linus Torvalds. For this testing there is another kernel tree called
linux-next currently maintained by Stephen Rothwell. It’s basically a preview of the next kernel release
used for automatic and manual testing.

Merge Window Stabilization Phase Next Merge Window
— 5 = 3 —

|
input input
for/a.1 for/4.1-rc

... for/4.1-

spi for/4.1 re

... for/a1

14

Figure 4.2.: Kernel-development flow

\S)

4

4.1. N90O0 kernel support

version | release date version | release date
3.12 03.11.2013
4.1 22.06.2015 3.11 02.09.2013
4.0 12.04.2015 3.10 30.06.2013
3.19 08.02.2015 3.9 28.04.2013
3.18 07.12.2014 3.8 18.02.2013
3.17 05.10.2014 3.7 10.12.2012
3.16 03.08.2014 3.6 30.09.2012
3.15 08.06.2014 3.5 21.07.2012
3.14 30.03.2014 34 20.05.2012
3.13 19.01.2014

Table 4.1.: Major Linux Kernel Releases

The next section will describe which N900 hardware components are not yet supported in the mainline
kernel.

4.1. N900 kernel support

Before this thesis started the N900 already had quite good kernel support. The first kernel, which was
fairly usable with a DT based boot was 3.16, which has been used for Debian 8.0 ,,Jessie” (frozen before
this thesis was started). Table 4.2 contains an entry for most chips built into the Nokia N900. The Driver
column specifies the initial kernel support for the chip’s functionality, while DT support specifies when the
driver received support for being initialized from DT. The N900 DT file column specifies when the chip or
it is sub-module has been added to the N900’s DT file.

As visible in Table 4.2 the kernel supports all of the critical hardware components (CPU, memory, serial)
making the effort to work on other drivers endurable, assumed, that one has access to a serial port for
receiving early debug messages.

Display & Touchscreen: Apart from critical hardware components, the OMAP processor’s DSS and
the Sony ACX565AKM panel are supported. Thus the display can also be used for debugging, but it has
two disadvantages. First of all only problems occurring after the display has been initialized can be de-
bugged. Since the controller needs many other resources (GPIOs, 12C, regulators, ...) it is initialized quite
late during the boot process, though. Assuming, that the error occurs after the display has been initialized,
many error messages are too long to fit on the screen and thus are cut off. Since the kernel stops after
fatal error messages and the kernel handles all device inputs and outputs, it is not possible to copy any fatal
error messages either. Additionally there is support for the TSC2005 touchscreen controller and the keypad
matrix making it possible to start a framebuffer based X-Server providing a basic graphical environment.
However, it does not support any 2D or 3D acceleration, since the DSS IP-Core only provides the capabil-
ity to fetch data from memory and send it to a display connected via a serial or parallel bus. 2D and 3D
acceleration requires support for the PowerVR SGX Graphical Processor Unit (GPU). Unfortunately, the
GPU’s specification is not publicly available.

MMC: Also supported are the OMAP’s MultiMediaCard (MMC) slots, which are used for an internal
32GB eMMC chip and a uSD card slot on the N900. Thus one can simply put the Linux distribution

25

4. Linux Kernel

Chip Functionality Driver | DT support | N900 DT file | Comments
TI OMAP3430 Cortex A8 CPU 2.6.22 | N/A 3.13

IOMMU 2.6.31 | 3.15 3.15

DSS DSS 2.6.33 | 3.15 3.15

LDRM support 33 N/A N/A modern Linux kernel interface for graphics

MMC 2630 | 34 3.13 used for eMMC and uSD

WDT 2.6.19 | 3.8 3.13

SSI 3.16 3.16 3.16

12C 2.6.19 | 33 3.13

SPI 2623 | 34 3.13

USB 2.6.28 | 3.7 3.13

UART 2.6.37 | 33 3.13

GPIO 2638 | 34 3.13

RNG 3.13 3.16 N/A

ISP ISP 2639 | - -

TMS320 C64x DSP - - -

PowerVR SGX530 GPU - - -

Temp. Sensor - - -
TI TWL5030 Core 2628 | 3.3 3.13 OMAP companion chip

Audio 2633 | 3.7 3.13

Vibrator 2633 | 3.7 3.13

Voltage Regulator 2.6.30 | 3.3 3.13

RTC 2628 | 33 3.13

WDT 2631 | 39 3.13

Keypad 2,632 | 3.14 3.15

Power Button 2630 | 3.14 3.14

Analog Digital Converter | 2.6.39 | 3.15 3.16
Camera Button N/A N/A 3.13 connected via GPIO
Taos TSL2563 2,633 | 3.14 3.15 light sensor
TI LP5523 2.6.37 3.13 3.13 LED controller (RGB, keyboard)
Sony ACX565AKM 2635 | 3.15 3.15 display controller
TI TSC2005 2.6.39 | 3.16 3.16 touchscreen controller
TI WL1251 2631 | 3.15 3.16 WLAN controller, requires FW
Si4713 2.6.32 | 3.19 3.19 FM transmitter
TPA6130a2 2,633 | 3.13 3.13 headphone amplifier
TLV320AIC3X 2.6.25 | 3.13 3.13 audio codec
Virtual Sound Card 2.6.34 | 3.16 3.16
Proximity sensor N/A N/A 3.13 connected via GPIO
Modem 3.16 3.16 3.16

McSAAB protocol 3.16 N/A N/A

LPhoNet protocol 2.6.28 | N/A N/A

CMT speech protocol - N/A N/A
TI NL5350 N/A N/A N/A accessible via Modem
Battery 3.8 3.17 3.19
bq27200 2.6.28 | 2.6.28 3.13 battery fuel gauge
ispl707a 2637 | 3.14 3.15 USB identification
bq24150a 3.8 3.14 3.15 battery charger
OneNAND 2628 | 3.8 3.13
LIS302DL 2632 | - - accelerometer
ADP 1653 3.1 - - LED controller (flash light)
STM VS6555 34 4.0 - front camera sensor
ET8EKS8 - - - main camera sensor
AD5820 - - - auto-focus
BCM2048 Bluetooth - - -

FM radio 3.14 - -
IR transmitter 3.7 - -

26

Table 4.2.: N90O Linux Kernel Support (Status: Linux Kernel 4.0)

4.2. Accelerometer

on one of them instead of being dependent on the bootloader putting everything into the Random Access
Memory (RAM) or using network based boot over the USB interface / WLAN.

Audio: Also working is the sound subsystem, which consists of a headphone amplifier (TPA6130a2),
two digital-audio-data-serial interfaces (tlv320aic3x), OMAP’s Digital Audio Interface (DAI) known as
Multichannel Buffered Serial Port (McBSP), as well as some N90O specific glue code.

Power Supply: The 3.16 kernel also has basic support for accessing power supply related properties,
such as battery capacity or current voltage. In addition there is a driver for the charging chip, which is
automatically enabled depending on the USB state.

Modem: Partially working is the modem, which is connected via a serial bus from Texas Instruments,
which is called Synchronous Serial Interface (SSI). In the kernel it is supported in the subsystem of the
bus’ successor named Highspeed Serial Interface (HSI) (which is a MIPI standard). The code in Linux
3.16 is enough to control the modem, do data connections, exchange short messages and initialize voice
calls. Once initiated the voice call is silent, though, since the audio data is not transmitted over the already
supported PhoNet protocol. Instead it uses its own protocol on a second channel.

Bluetooth: Also unsupported is the Bluetooth module BCM2048. The old driver written by Nokia is
inadequate for the mainline kernel, since it does not support DT and violates layer policies: The driver is
a combination of a BCM2048 Bluetooth and an OMAP serial port driver. Instead the BCM2048 driver
should use the existing OMAP serial driver via the kernel’s serial API.

Cameras: Both cameras, the main cameras auto-focus and the flash-light controller are currently unsup-
ported. The 3.16 kernel contains a driver for the OMAP processor’s part called ISP, which takes care of
post-processing the image sensors data. It also contains a driver for the front camera sensor. Both drivers
are currently lacking support for DT based initialization, though. Drivers for the main camera and related
chips (e.g. auto-focus) are missing. In addition the current kernel architecture was not designed for having
two sensors connected to the same ISP input port as implemented on the N90O.

Miscellaneous: Apart from the mentioned components there are already a few other supported chips,
which are not important for basic usage: FM transmitter (Si4713), RGB led and keyboard backlight driver
(LP5523), ambient light sensor (TSL2563) as well as WLAN (WL1251).

Last but not least it should be mentioned, that the OMAP processor built into the N90O suffers from a
hardware bug, which crashes every binary. There is a workaround in the kernel, which is currently disabled
in Debian, since it negatively affects other platforms. This is something that must be fixed for proper out
of the box experience.

So summarized most of the really important hardware is already supported since Linux kernel 3.16, main
problems are missing speech support and the hardware bug. Also missing is support for Bluetooth and
Cameras, which would be nice to have, as they are quite common on modern smartphones.

4.2. Accelerometer

One of the simple additions is the accelerometer of the N90O, which is already supported by the deprecated
board-code based boot, but not yet using DT based booting. The accelerometer built into the N90O is a

27

4. Linux Kernel

+Z
+Y

OMAP3430 e

12C 3 >

LIS3LV02D
=Y 180 [« irqg 0
GPIO
181 irq 1
Z o
(a) accelerometer axis configuration (b) accelerometer SoC connection

LIS3LV02D, which is connected to the phone’s SoC via one of its I2C ports. As illustrated in Figure 4.3b
there are additional interrupt lines provided by the accelerometer, which are connected to GPIO pins of the
SoC. These are triggered by the accelerometer when a specified threshold value is reached for one of its
channels.

The accelerometer of smartphones are mainly used to detect the device’s orientation (e.g. tilt) [34]. This
detection is possible, because the accelerometer measures the acceleration of gravity. Apart from that it
can be used to give a rough estimate of movement by (e.g. when a GPS signal is lost in a tunnel) [33].

The lis31v02d has already a Linux kernel driver and is already supported by the soon to be removed N900
board code. So supporting the accelerometer in Debian basically can be established by adding DT support
to the lis31v02d driver. From that task 90% have already been done in the mainline kernel at the beginning
of this thesis.

The DT conversion did not expose some of the lis31v02d’s features used on the N90O, though. Specifically
the second wakeup unit could not be described and the axis could not be inverted. This is a problem, since
the accelerometer placement in the N900 does not default to the desired axis configuration as depicted in
Figure 4.3a. In addition to the driver changes another patch is needed to update the lis31v02d’s DT binding
specification, so that the driver implements the correct binding. Last but not least the N900’s DT source
file had to be updated, so that it advertises the accelerometer to the kernel.

All patches have been added to the Linux 4.1 kernel and can be seen in Appendix C.
After this introduction into what is needed for mainlining support for a simple sensor, the thesis will
focus on more complex things starting with one of the most important components for a smartphone - the

modem used for Universal Mobile Telecommunications System (UMTS) and Global System for Mobile
Communications (GSM) connections.

28

4.3. Modem

(N900 Modem) ([omap3430
goTTTTTITITTT T N N 0\
| ~€control-»{1 ——CAWAKE—>|

: - CADATA——>|
speech interface L CAFLAG—>|
H [«—ACREADY——
<«—data—»2
M e . SSI
T s . ssl Port 1
' w€control»{0
E(- [€«——ACWAKE———]
data interface [<€——ACDATA—
: €«——ACFLAG—
: <—data—>{3 - CAREADY—>]
N __ N
0\
omap reset request »{72
reset request <« 73
1€ 75
rese GPIO
enable « 4
bsi [« 157
omap sleepX |« 70
N/
N\ Y, I\ Y,

Figure 4.4.: Modem interconnection

4.3. Modem

In opposite to some of the OMAP’s competing SoCs it does not come with a built-in modem. Instead
it provides a high-speed serial interface called SSI. This port has been used by Nokia to connected their
baseband processor as shown in Figure 4.4. Note, that this is a very simplistic view, since the modem
actually consists of multiple chips on the N900’s PCB (e.g. it has a module providing 128 MB RAM and
128 MB flash memory making it more or less independent from the remaining system).

Even more simplified the modem could be described as feature phone connected via a serial port having its
power button(s) connected via GPIOs. For supporting the modem multiple things had to be implemented
in the mainline kernel.

When Carlos Chinea started to push support for the SSI interface to the mainline kernel, a standardized
successor of the protocol already existed, namely HSI. Thus a new framework was introduced by Carlos,
which provides some generic functionality. He also provided initial patches providing support for the
OMAP3’s SSI IP-Core [7].

After a couple of reworks later Linus Torvalds pulled the HSI framework into the 3.4 kernel [37] - without
the OMAP3-SSI support, which was still being worked on by Carlos. Afterwards Nokia completely shut
off their Maemo/MeeGo work and Carlos had no more time to work on the SSI support [39].

Following that I took over Carlos’ subsystem at the end of 2013 to continue his work by adding mainline

support for the OMAP3-SSI IP-Core. At that point the internal kernel structures have improved quite a bit
and DT had been introduced, so that it took almost one more year to get the drivers in shape.

29

4. Linux Kernel

Before looking at the protocols used to exchange data with the modem it is important to understand some
of SST’s (and HSI’s) design concepts. As visible in Figure 4.4 there are eight signals connecting the SSI
port of the modem with the SSI port of the OMAP. The signals can be divided into two groups, one is used
to send data from the modem (also known as cellular die) to the main processor (also known as application
die) and one group is used to send data in the opposite direction.

The four signals contained in each group are named DATA and FLAG, which are a combined data and
clock signal. Additionally there is a READY flag, which is used by the receiving side to indicate, that it
is ready to receive. Last but not least there is a WAKE signal, which can be used to wakeup the receiving
side before sending data. This signal is optional in the HSI standard, but available on the OMAP and used
by the N90O0.

While HSI is specified for data rates up to 200 Mbps [16], the SSI controller, which is part of the OMAP3
only reaches data rates of 55 Mbps according to comments in Nokia’s original driver.

In addition to the physical interface the (non-public) HSI standard also describes the data link layer, which
supports 1-8 logical channels for data transmit and receive respectively. It also defines two different modes
to send data (frame-based vs stream-based) and three different flow modes (synchronized, pipelined and
real-time). The logical channels and the data exchange modes are implemented in OMAP’s SSI IP-Core
and data exchange happens using DMA and interrupts.

As visible in Figure 4.4 the SSI connection provides four logical channels for the modem communication.
Two of those channels are used for generic communication with the modem. The protocol used with those
channels is known as McSAAB and uses one of the channels as control channel and the other as data
channel. The other two channels are used for exchanging speech data with the protocol also using one
channel as control channel and one for data exchange.

The mainline kernel got support for the McSAAB protocol together with the low level OMAP SSI driver in
3.16, since it was used to test the SSI implementation. The kernel’s McSAAB driver provides access to the
modem by providing a network device prefixed with phonet. Instead of using the standard Ethernet media
type it sets a custom PhoNet media type, which is handled by its own protocol handler named af_phonet
in the kernel. Figure 4.5 depicts the previously described modem driver architecture.

The PhoNet protocol (supported in the mainline kernel since 2.6.28) is a simple packet based binary pro-
tocol, which is an abstraction for the modem interconnect. The protocol has support for channel multi-
plexing and asynchronous notifications and can be forwarded over USB using a gadget driver on the phone
(also part of the mainline kernel since 2.6.28) and a matching USB host driver (mainline since 2.6.31).
The PhoNet driver also takes care of creating a second network device for General Packet Radio Service
(GPRS) connections. In opposit to the PhoNet network device the GPRS network device is used with
Internet Protocol (IP) based packets. Since the device is only created after the authentication has already
been done and GPRS systems usually use Dynamic Host Configuration Protocol (DHCP) to provide 1P
addresses, using the GPRS network device behaves very similar to e.g. a WLAN network device.

Currently not handled by the kernel is the modem initialization, which requires enabling and disabling of
the GPIOs seen in Figure 4.4. The GPIOs are currently simply exported to the userland and must be taken
care of by the userland software managing the modem.

On top of PhoNet another protocol is involved in the modem communication, which is Nokia’s ISI protocol.

This protocol is also not handled in the kernel, but forwarded to the userland encapsulated in PhoNet frames
and is supposed to be handled there.

30

4.3. Modem

...................

«Q

°

[}

o
'

he]

=

o

3

o

o
—
'

a

@

<

[¢)

3

3

(9]

(0]

S
—

User Space

4 N\ GJ
N . Q
ssi-protocol cmt-speech c

L) (@
w
4 A —
()
nokia-modem c
—
. Y, ()
X

4 N\
omap-ssi

Figure 4.5.: Modem protocol stack

So the current kernel supports a wide range of the modem’s functionality when used with the right userland
software. Not yet supported though is exchanging voice data with the modem, as that part does not happen
using the PhoNet protocol or the McSAAB protocol for that matter. Instead a custom SSI protocol is used,
which encapsulates small frames of voice data.

Like McSAAB the speech data is exchanged in frames. Nokia’s original driver exports a simple character
device /dev/cmt_speech for userland access to the speech data. This device simply outputs received frames
by reading from the file and sends frames by writing to the file. Some extra functionality is provided by
using custom ioctls, e.g. for setting the SSI wake-line. While Linux usually handles audio data using
Advanced Linux Sound Architecture (ALSA), Nokia’s developers have decided against using it. The prob-
lem is, that ALSA has been designed with Pulse-code modulation (PCM) interfaces in mind. The speech
protocol on the other hand is a lossy protocol with data send in packets (with metadata, like e.g. timing
information) instead of a stream. Apart from that the speech protocol used over SSI has strict timing re-
quirements (< 20ms) [38]. This timing constraint is most likely directly passed on by the modem, which
must send e.g. 160 samples every 20ms if the full rate codec is selected [32, p. 46].

The difference to a standard PCM connection can be seen, when the modem looses its coverage during a
voice call. The PCM voice link provided by most modems would still provide data samples (usually simply
containing silence). The speech interface provided by the N90O on the other hand does no longer send any
voice packets [38], since it does not receive anything.

During this thesis Nokia’s original driver has been updated to use the new Linux kernel APIs and integrated
into the DT initialized nokia-modem driver. Since the complete driver is over 1000 lines of code, it has
not been added to the Appendix, but can be found on the DVD enclosed. The changes have been pulled by
Linus Torvalds into the 4.1 Linux kernel, so that voice calls could be established with it.

31

4. Linux Kernel

In the next section the ARM CPU bug mentioned in the chapter’s introduction will be analysed further with
the aim to find a workaround acceptable for Debian.

4.4. ARM Errata 430973

Apart from missing hardware support, there may also be problems with hardware bugs. These are espe-
cially problematic, if they are bugs in the CPU, since that will affect normal code processing. The N900
has a couple of them in its ARM CPU core.

One of them, named ARM Errata 430973, is especially annoying, since it is triggered quite often by normal
code execution, if the code is using the CPU’s Thumb mode. This mode is a subset of the ARM instruction
set, which further reduces (ARM is based on a Reduced Instruction Set Computing (RISC) design) the
normal instruction set. The advantage of a smaller instruction set is a small memory footprint resulting
in better cache usage. Modern compilers usually generate code switching the instruction set at runtime to
gain the better cache usage without loosing the features from the full instruction set. While the original OS
shipped with the N90O does not trigger the bug, since the software is not compiled using the Thumb mode,
this is not the case for other Linux distributions, which normally enable it. For example a armhf Debian
userland usually has a segmentation fault after being used for a couple of minutes.

For triggering the bug some code fragment must contain an ARM/Thumb interworking branch, which
would normally switch between ARM and Thumb mode at runtime. As previously mentioned this is
used on modern systems to exploit the features of both modes. If a code fragment containing such an
interworking branch is replaced with other code at the same virtual address the Cortex A8 does not recover
from the stale interworking branch prediction resulting in code being executed in the wrong mode. The
code replacement at the same virtual address is easily triggered by the kernel re-mapping virtual to physical
addresses when the process is switched.

A workaround for this bug has been implemented in the Linux kernel in 2009 [23] by flushing the branch
target cache at every context switch on ARMv7 systems. Unfortunately its usefulness is quite limited on
kernels supporting more than one ARM platform, since flushing the cache may be quite expensive and is
not required on unaffected systems. So if a kernel with the workaround is started on an unaffected system
it will have a useless performance drop. With the number of affected systems decreasing its thus a hard
decision to enable the workaround for generic ARM kernels used by most Linux distributions.

After some discussion with the ARM and OMAP subsystem maintainers a patch has been prepared by
Russell King, which avoids the branch target buffer flush on non-Cortex A8 based CPUs [17]. As a result
the workaround can be enabled without negatively affecting performance on most unaffected systems.

Before the branch target buffer flush opcode becomes operative it must be enabled by setting the IBE bit,
though. Doing this is platform specific and must be done as soon as possible, since the kernel may be
compiled in Thumb mode itself. Thus the IBE bit should actually be set by the bootloader on affected
systems. A patch for that has been written for U-Boot for all supported OMAP3 based boards [24].

While this has also been done for The Nokia N900’s U-Boot port, it should also be set in the kernel, since
U-Boot is only used as optional chain loaded bootloader and Nokia’s original bootloader can’t be fixed
easily. Thus the bit is also set in a platform quirk for the N90O if the workaround is enabled in the kernel
configuration [31].

32

4.5. Bluetooth

While the implemented changes are enough to allow Linux distributions enabling the workaround, there is
one more possible optimization. The kernel can unconditionally enable the cache flushing for Cortex A8
based systems and require, that the state of the IBE bit is set correctly by the bootloader (enabled if the
system is affected by ARM Errata 430973 and disabled for unaffected systems). Additionally the N90O
IBE quirk can be enabled unconditionally, since all released N900s are affected by the bug.

With the most important bits working the next section will have a look at kernel support for the N900’s
Bluetooth module.

4.5. Bluetooth

On the Nokia N900 Bluetooth support is handled by Broadcom’s BCM2048, which is mainly accessed
via one of the OMAP’s UART ports as visible in Figure 4.6. Apart from Bluetooth, the BCM2048 also
supports receiving Frequency modulation (FM) radio. While the Bluetooth functionality is handled via
the UART port, FM radio functionality is handled via 12C. Apart from that the audio processing of the
Bluetooth and FM receiver submodules is handled differently: The FM radio data output is sent directly
to the audio codec, while the Bluetooth audio data is exchanged bidirectionally with one of the OMAP’s
McBSPs.

Since the Bluetooth and the FM radio interface are basically independent from each other, they are handled
by different drivers in the Linux kernel. Currently (Linux 4.1) there is a driver for the FM radio part
available in staging named bcm2048-radio, which handles the I2C communication with the BCM2048 and
exposes the module’s functionality using the Video for Linux 2 (V4L2) radio API. There will be no further
analysis of the BCM2048’s FM radio part in this thesis.

The primary part of the BCM2048 is currently not supported in the mainline kernel and, in opposit to the
modem drivers, a simple porting of Nokia’s original driver is not possible. The main problem of Nokia’s
driver is a missing abstraction between the OMAP’s UART port and Broadcom’s Bluetooth chip. The
original driver handles both, the UART port and the Bluetooth communication. This missing hardware
abstraction is problematic, since it prevents reusing the BCM2048 driver if its connected to another UART
module and results in code duplication. Apart from that the BCM2048 module must be described separately
from the UART IP-Core in the DT and drivers are normally hooked to nodes in the DT. Thus initializing
such a driver is hard in the mainline kernel.

After some discussion with developers from Broadcom working on mainline support for Broadcom’s Blue-
tooth products and the Linux kernel’s Bluetooth maintainer it became clear, that the BCM2048 built into
the N90O has been customized by Nokia. As a result Nokia should be mentioned in the compatible string,
since other vendors may have their own customizations and are probably not using Nokia’s extensions.

The customization also has some implications regarding the firmware file. While Broadcom would prob-
ably release a distributable firmware file for the BCM2048 as they did for other Bluetooth chips, they
can’t do it for the customized variant. Thus such a firmware file would have to be released by Nokia’s
smartphone division, which has been taken over by Microsoft in the meantime.

Further analysis of the original driver reveals, that it is basically using the standard Bluetooth UART Host

Controller Interface (HCI) protocol as specified in [12] also known as H:4 with some minor additions,
which probably gave the protocol its name H4+.

33

4. Linux Kernel

34

OMAP3430 BCM2048
e N
x rx
UART 2 ~ b
rs cts
K ctj< s
- N SSTmmmmmmms »{pcm BT
McBSP3 € == mmmmme oo , "Ne::; o
. A wake host
a R F
91
37
GPIO 101
a3 4 h
K J audio left u IO
[D irq M audio right C d
12C 3 € == = m m e oD »|i2c odec
L) N J
Figure 4.6.: BCM2048 setup
Packet Type Packet Indicator H4 Standard
HCI Command Packet 0x01 yes
HCI Asynchronous Connection-Less (ACL) Data Packet ~ 0x02 yes
HCI Synchronous connection-oriented (SCO) Data Packet 0x03 yes
HCI Event Packet 0x04 yes
HCI Negotiation Packet 0x06 no
HCI Alive Packet 0x07 no
HCI Radio Packet 0x08 no
Table 4.3.: Nokia H4+ Packet Types

4.5. Bluetooth

While the H:4 protocol provides four different packet types Nokia’s BCM2048 driver uses three more
packet types, which are not part of the standard, as visible in Table 4.3. Apart from that the driver must
take care of the additional GPIOs for waking up the Bluetooth chip before sending data to it.

For developing an open driver it was first necessary to understand what the additional packet types are
used for. Checking Nokia’s driver the Negotiation packet is the first exchanged packet and is responsible
for setting up the BCM2048’s baud rate, protocol and provides system clock speed information. Before
receiving this packet the BCM2048 can be accessed using a baud rate of 120000.

The alive packet is a simple alive check, which is answered by the BCM?2048 to verify, that the UART
connection is working. Testing revealed, that its the only packet, that can be sent before Negotiation
without triggering an hardware error event.

Last but not least the radio packet is probably used for setup of the FM radio part built into the BCM2048.
Nokia’s original driver does not handle it except for sending a single message as part of the firmware.

Since all of the extra packets are only sent during the device initialization and part of the firmware file, only
the receiving side needs special handling. Marcel Holtmann, who is currently maintaining the Bluetooth
subsystem in the Linux kernel, changed the subsystem making it possible for Bluetooth UART drivers to
register their own packet type handlers and prepared a simple driver, which implements the above infor-
mation about Nokia’s H4+ protocol [14, 13].

With the restructured H:4 code its possible to reuse its functions for splitting the incoming data stream
from the UART into individual packets as required for further processing in the Linux kernel’s network
subsystem [30, p. 298-310]. All standard H4 packets are simply passed to the Bluetooth subsystem in the
kernel, which does any further required processing.

Not yet implemented in Marcel Holtmann’s template driver is the UART handling and the GPIO handling.
As shown in Figure 4.6 there are three important GPIOs: reset, wake-bt and wake-host. The wake-host
GPIO is needed to allow the OMAP’s UART transitioning into low power states. While it can be waken
by simply receiving data, it would loose the first few bytes this way, since it needs some time to wake up.
Instead the wake-host GPIO is set shortly before data is sent by the BCM?2048.

The wake-bt GPIO basically does the same thing in the opposite direction. It must be set by the kernel
before sending data to the BCM2048 and should be unset once all data has been sent.

Last but not least the device can be reseted using the reset GPIO. The reset procedure must be performed
before initial use and after hardware error events are received.

Last but not least its important to correctly setup the RS232 settings. The Bluetooth specification [12]
specifies, that devices should use the common 8-N-1 format and make use of Ready to Send (RTS) and
Clear to Send (CTS) signals for flow control. Additional information like baud rates can be taken from
Nokia’s original driver: After reset the chip initially uses a baud rate of 120000 (= 15 kB/s). Then its
increased to 921600 (=~ 922 kB/s) after the negotiation took place. Last but not least its further increased
to 3692300 (= 1.8 MB/s) once the firmware has been transmitted.

For implementing a mainline kernel driver another problem is the DT binding. Currently the kernel has not

a single UART attached driver with a DT binding, which could be used for reference. When this topic has
been brought up at the Linux kernel mailing list (LKML), two different binding styles have been proposed.

35

4. Linux Kernel

The first proposal adds a sub-node as child of the UART node, while the second proposal puts the UART
attached device somewhere else (usually at the root level of the tree) and adds a link to the UART device.
Both proposals support all use cases currently expected by the kernel developers on the LKML and would
support loading the BCM2048 driver.

The main argument for using references instead of a parent-child link brought so far can be summarized,
that parent-child relationships in DT so far either means, that the child is connected to the parent using an
addressable bus or the parent being a multi function device (MFD) with the children describing individual
functions of it. The second argument for using references is, that they are more powerful than a parent-child
description, since they allow multiple connections, while there can be only one parent.

On the other hand the arguments for binding UART attached devices using a parent-child style assume,
that the parent-child dependency show the chip’s “main” interface. The observation, that it is used for
addressable buses and MFD devices is the result of the kernel not supporting other “main” interfaces so
far. Also while a reference styled binding is more powerful in its expressiveness it makes parsing the “tree”
harder. In theory everything could be using just references instead of parent-child connections. Currently
the kernel uses parent-child connections for automatic runtime power management: If a child is supposed
to be accessed, the kernel must enable its parent first. A discussion around this problem can be found in
the thread following the mail at [5].

A simple driver, which extends the skeleton one from Marcel Holtmann has been prepared for the mainline
kernel as part of this thesis and can be found on the attached DVD, but so far the BCM2048 only sends
hardware error events making the driver useless in its current state. It will be further worked upon and is
expected to be ready in time for the Linux 4.3 kernel.

In the next section the cameras and the OMAP’s image signal processor will be analysed.

4.6. Camera Subsystem

Another component of the N900O not yet supported in the mainline kernel is the camera subsystem. The
N900 has two different cameras, which are built to the phone’s front (vs6555) and back (ETS8EKS). As
shown in Figure 4.7 both cameras are connected to the same port of the OMAP using a multiplexer (GPIO
controlled switch). In addition to the interface for the pixel data both sensors can be configured via I12C.

Both sensors are supplied with a reference clock from the OMAP, which is fed into a built-in Phase Locked
Loop (PLL) to generate the clock used for sending pixel data. In addition both sensors have an enable pin,
which can be used to to send them into low power states. Unfortunately the GPIO used for enabling the
front camera is also used to setup the video bus multiplexer.

Currently the mainline Linux kernel has drivers for the OMAP’s ISP module and a generic driver for
Standard Mobile Imaging Architecture (SMIA) compatible camera sensors, which can be used for the
vs6555. Missing are drivers for the ETSEKS, which is not fully SMIA compatible and for the video bus
multiplexer. Once the basic support for the ET8EKS is working, an additional driver would be needed for
the AD5820, which drives the motor controlling the lenses.

Both sensors are configured to use the Camera Serial Interface (CSI 1) protocol, which is also known under
the name Compact Camera Port 2 (CCP2), though with slightly different clock configuration.

36

4.6. Camera Subsystem

[12C 3] [12C 2]

OMAP3430
GPIO 102 GPIO 97

ISP
clk

‘ N N

video bus multiplexer
select
(" port0) (“portl)

enablel etgek8 vs6555

Back Camera Sensor ‘ Front Camera Sensor

clk

1 Tt

(

Figure 4.7.: Camera setup

A solution to describe video pipelines in DT has been discussed in the kernel community. The result
was the creation of a generic graph binding description, which can be found in Documentation/device-
tree/bindings/graph.txt. In opposit to simple phandles, which allow simple directed graphs, it allows to add
bi-directional links between two nodes in the DT. It’s supposed to be used for connections, which cannot
be inferred from DT’s parent-child relationships.

While the graph binding makes it possible to describe, that there is a connection, it does not provide any
information about the link between the two devices. For this an extended description has been created in
Documentation/devicetree/bindings/media/video-interfaces.txt. It extends the common graph binding by
video interface specific properties.

To demonstrate how the generic video interface binding can be applied a simplified DT description for the
N900’s display connection can be seen in Listing 4.1. Basically a port node is added to the device, which
may have an optional reg value for identifying the port number. Since this may require to setup correct size
information using #address-cells and #size-cells, the port nodes may be grouped together in a ports node.
Inside of the port node an endpoint node is added, which contains a phandle to the remote endpoint node.

Listing 4.1: Simplified Nokia N900 Display Connection DT excerpt

&dss |
status = "ok";

/% ... additional properties ... #*/
ports {

#address-cells = <1>;
#size-cells = <0>;

37

4. Linux Kernel

10 port@l {
11 reg = <1>;

13 sdi_out: endpoint {
14 remote—-endpoint = <&lcd_in>;
15 datapairs = <2>;

16 };
17 }i

18 }i

19 };

21 &mcspil |
2 acx565akm@2 {

23 compatible = "sony,acx565akm";

24 spi-max—-frequency = <6000000>;

25 reg = <2>;

26

27 /% ... additional properties ... */
28

29 port {

30 lcd_in: endpoint {

31 remote—endpoint = <&sdi_out>;

32 }i

3 }i

Based on this Sakari Ailus started to work on a DT binding for the generic SMIA driver of the mainline
kernel (smiapp), which can be seen as the successor of the one used in Nokia’s kernel for the vs6555 sensor.
The main work here is the conversion to V4L.2’s asynchronous sub-device registration API, which allows
sensor drivers to be registered before the ISP they are connected to. This is important for the DT initialized
drivers, since the sensor will be probed for when the DT parser hits the matching DT node. Previously
the ISP’s sub-devices have been registered via the V4L2 framework after the ISP has been initialized. In
addition support for some device specific properties had to be added. While DT support for the driver has
been added in the 4.0 kernel, neither the driver, nor the DT binding support the CCP2 protocol used on the
N900.

Also worked on by Sakari Ailus was DT support for the omap3isp driver, which handles the OMAP’s
ISP based upon Laurent Pinchart’s work regarding DT support for the ISP’s Memory Management Unit
(MMU). With the DT based initialization working the N900’s kernel exposes the V4L2 sub-devices vis-
ible in Figure 4.8 to the userspace. In this figure the green boxes (rounded corners) are sub-devices
for some specific functionality of the ISP and the yellow (sharp corners) are userspace accessible video
sources/sinks. For accessing the N90O cameras it is important, that at least the OMAP3 ISP CCP2 sub-
device works, since the cameras are both connected to it. It’s also important, that the OMAP3 ISP CCDC
sub-device is working, since it is not possible to access video data directly from the OMAP3 ISP CCP2
sub-device. At later steps it also important to get the Auto Exposure White Balance (AEWB), Auto Fo-
cus (AF) and histogram sub-devices working to provide good images. The only sub-device completely
irrelevant on the N90O is the CSI2a block, since nothing is connected to it.

Equally to the smiapp DT binding, Sakari’s omap3isp DT binding does not include support for the CCP2
protocol. Thus the amount of work needed to get the N900’s cameras working can be summarized as

38

4.6. Camera Subsystem

OMAP3 ISP CCP2 input
/dev/videoO
T

4 0) 4 0)
OMAP3 ISP CCP2 OMAP3 ISP CSI2a
/dev/v4l-subdevO /dev/v4l-subdev1
N i J J

P

T S

OMAP3 ISP preview input OMAP3 ISP CCDC OMAP3 ISP CSI2a output
/dev/video3 /dev/v4l-subdev2 /dev/videol

A P o i
T 0;\’ ‘//’ :l N 0 N 0 R
1
OMAP3 ISP preview OMAP3 ISP CCDC output OMAP3 ISP resizer input | | OMAP3 ISP AEWB OMAP3 ISP AF OMAP3 ISP histogram
/dev/v4l-subdev3 /dev/video2 /dev/video5 E /dev/v4l-subdev5 /dev/v4l-subdevo /dev/v4l-subdev7
1
A [N J U J U)
S~]
. Y
ssssssss Y //
———————— ,(— 0;\4—»/
OMAPS3 ISP preview output OMAP3 ISP resizer
/dev/video4 /dev/v4l-subdev4
«
1
1
v
OMAP3 ISP resizer output
/dev/video6

Figure 4.8.: OMAP’s image signal processor in Linux

follows:

1. Add CCP2 DT support to the omap3isp driver.
2. Add CCP2 DT support to the smiapp driver.

3. Create new driver for the video bus multiplexer

This will be enough to get the front-camera working. The main camera additionally needs a completely
new sensor driver and a driver for the AF’s motor coil.

In the context of this thesis a driver for the video bus multiplexer and CCP2 support for the omap3isp and
the smiapp driver have been implemented. The result can be seen in Figure 4.9, which depicts the camera
setup as seen by the Linux kernel. The shapes have the same meaning as the ones in Figure 4.8. In addition
dashed arrows stand for unconfigured connections, while solid arrows stand for configured ones with solid

bold arrows being immutable connections.

Unfortunately the video pipeline still contains a bug resulting in no data being received at all. There are
many possible reasons for this and the next planned step is checking at hardware level if any data is sent by
the sensor using an oscilloscope or logic analyzer. For time reasons this will be postponed after the thesis,
though. The existing code can be found on the attached DVD.

The next chapter will have a look at the userland software required to make use of the features provided by

the Linux kernel.

39

4. Linux Kernel

——

vs6555 pixel array 1-0010
/dev/v4l-subdev8

_0
4 N 0 N

et8ek8 2-003e
/dev/v4l-subdev10

vs6555 binner 1-0010
/dev/v4l-subdev9

S 4
OMAP3 ISP CCP2 input
/dev/video0
T
1
1
i
‘\
‘e 0 Y 0
OMAP3 ISP CCP2 OMAP3 ISP CSI2a
/dev/v4l-subdev0 /dev/v4l-subdev1
N ! J Al ! J
!
y) 1
e '
Y |
OMAP3 ISP preview input OMAP3 ISP CCDC OMAP3 ISP CSI2a output
/dev/video3 /dev/v4l-subdev2 /dev/videol
|
4
—————— 1
/4 (% '4 / ‘= N 4 0 4 0
1
OMAP3 ISP preview OMAP3 ISP CCDC output OMAP3 ISP resizer input | | OMAP3 ISP AEWB OMAP3 ISP AF OMAP3 ISP histogram
|
/dev/v4l-subdev3 /dev/video2 /dev/videoS ! /dev/v4l-subdev5 /dev/v4l-subdevo /dev/v4l-subdev7
1
L A AN VAN J U Y,
I

OMAP3 ISP preview output
/dev/video4

40

vV
> 0 .-~

OMAP3 ISP resizer
/dev/v4l-subdev4

OMAP3 ISP resizer output
/dev/video6

Figure 4.9.: N900 camera setup in Linux

5. Userland

Apparently a working kernel is not a full Linux distribution. This chapter will describe how the Debian
GNU/Linux userland can be prepared for the Nokia N90O0.

The smartphone has three different persistent memories: A 256MB NAND flash, a 32 GB eMMC flash
and a uSD card slot supporting the SD High Capacity standard (SDHC, up to 32GB). The phone is shipped
with Maemo installed to the NAND with additional files in the eMMC flash. While the 32GB eMMC flash
could be repartitioned to gain some space for another operating system this thesis will focus on installing
the userland on a uSD card. Apart from most SDHC uSD cards being faster than the eMMC flash, it is
also simpler to debug problems, since the uSD card can be removed from the phone and used with a card
reader.

Currently the Debian installer does not support the N900. Instead the image must be created manually.
Appendix A provides a detailed explanation how this is achieved from a running Unix system. This chapter
will focus on services required to support specific hardware components of the phone once the base image
can be booted on the phone.

After booting the image described in the Appendix, the user will be greeted with a simple console login
prompt. After providing the login credentials, one has a fully functional shell available. At the beginning
of this thesis, there was a problem with the arrows keys, since Debian’s ckbcomp utility, which converts
X.org keyboard descriptions into console keyboard descriptions did not fully understand the N90O keyboard
description file!. This has been fixed by adding support for the keyboards special function key to ckbcomp.
Unfortunately the N900’s keyboard layout does not provide hardware keys for Eg (Tab), which is
usually used for command completion. Typing each command fully is especially inconvenient on a mobile
hardware keyboard. Also missing is a [ﬂ (Pipe) key, so there is no easy way to redirect the command
output into a pager. Thus its not easily possible to use commands with output not fitting to the N900’s
screen.

5.1. Graphical User Interface

Thus the first thing, that should be done is to start the graphical X server and see if everything works as
expected. To avoid seeing just a blank screen with a cursor on top, we should first configure an application
being started together with the X server, though. For a first try it is advisable to simple start a xterm. Thus
the first steps can be seen in Listing 5.1.

Listing 5.1: Starting X-Server together with an XTerm

1 echo xterm > .xinitrc
2 startx

'nttps://bugs.debian.org/789816 - Nokia N90O Keyboard Model is not fully supported by ckbcomp

41

https://bugs.debian.org/789816

5. Userland

Assuming everything works as expected one should be greeted by a white terminal on top of a black
background. Apart from that there should be a cursor visible somewhere on the screen.

It is advisable to calibrate the touchscreen before going on with further customization of the Debian image,
since the uncalibrated touchscreen is basically unusable. This can be done by typing xinput_calibrator
-v into the open terminal window. The calibration software will display a small reticle on the display’s
top-left corner. Once the reticle has been touched another will be shown in the next corner. After a
reticle has been touched in all corners, the application will exit showing the touchscreen configuration
looking similar to Listing 5.2. The generated snipped should be copied into /us+/share/X11/xorg.conf.d/20-
ts-calibration.conf, so that the X server will pick it up during start-up.

Listing 5.2: X.org Touchscreen Configuration

1 Section "InputClass"

2 Identifier "Touchscreen"
3 MatchProduct "TSC2005 touchscreen"
4 Option "Calibration" "200 3910 3761 180"

5 End Section

Once the Touchscreen has been configured, basic keyboard and mouse input should work, so its time to
replace the minimal xterm setup with a full desktop environment. Here it is possible to choose from a wide
array of window managers, that have been written for Desktop PCs. Since neither the mainline kernel, nor
the Debian userland provide any 3D acceleration capabilities for the Nokia N900O, Open Graphics Language
(OpenGL) using window managers should be avoided, though. For example in the installation process
described in Appendix A the desktop environment from the Enlightenment team has been installed, which
has explicit support for mobile devices. The Enlightenment desktop environment can be started using
enlightenment_start, so the ~/.xinitrc file should be updated accordingly. After restarting the X server
(it will automatically quit by closing the terminal window), Enlightenment will start up with a simple
configuration wizard requesting some user specific information (e.g. the user’s preferred language) and the
option to choose between the desktop and the mobile variant. The mobile variant comes with a desktop and
two panels. Figure 5.1 depicts the Enlightenment desktop environment with a split screen setup (the fourth
button in the top panel switches between mono, horizontal- and vertical-split) running the web-browser
midori on the left and Enlightenment’s terminal application on the right.

After verifying, that everything works as expected, a display manager can be installed, so that the system
boots directly into a graphical user interface. A suitable candidate is entrance from the Enlightenment
project (not available in Debian) or lightdm. It’s installation requires a network connection, though, so the
next section will deal with that first.

5.2. Wireless LAN

The Wireless LAN driver for the wl1251 built into the Nokia N90O uses the standard framework for WLAN
in the Linux kernel. Thus the interface is managed using wpa_supplicant, which provides an inter-process
communication (IPC) interface for high-level network managers. Possible candidates managing the net-
work interfaces are network-manager, wicd or connman. If the network manager should also take care of
the WWAN data connection later, wicd should be avoided, since it does not provide such functionality.
Similarly there is no support for ofono in network-manager, which uses modem-manager for its WWAN

42

5.3. The modem

B = b

New Tab Back Forward INext
debian | Suche
Uber Debian Debian besorgen
Unterstitzung Entwicller-Eclke
/

[FJDownload Debian 8.1
(32/64-bit PC Netzwerk-Installer)

debian

The universal operating system

Diehiarn ict ain freiss Betrisheewetern (el filir =]

Figure 5.1.: Screenshot from Enlightenment running in vertical split mode

modem capabilities’. Thus the best option for handling the data connections is connman, which comes
with ofono and wpa_supplicant support out of the box.

For configuration of the data connections the Enlightenment desktop environment comes with a simple
configuration utility. Unfortunately it is currently disabled in Debian’s Enlightenment build currently. For
this thesis the package has been rebuilt including the connman configuration tool. For other desktop envi-
ronments connman-ui should be installed in addition to connman. It provides a GTK+ based configuration
GUI for connman.

5.3. The modem

As described in section 4.3, the modem is connected via one of the OMAP’s SSI ports. The kernel provides
a driver named ssi-protocol, which implements the layer 2 protocol for modem communication. It provides
a network interface to the userspace, which can be used to send messages to the modem. While this
interface would normally be named ssip (short for ssi-protocol) or mesaab (the protocol’s original name
was McSAAB), it has been named phonet. PhoNet is the name of the layer 3 protocol used with the Nokia
N900’s modem. In the end the naming is not a big problem, though, since the ssi-protocol only works with
PhoNet as layer 3 protocol.

Currently there are three known userspace implementations making use of the PhoNet network interface:

1. Nokia Cellular Services Daemon (shipped with Maemo)

2Ubuntu modified network-manager, adding support for ofono. There are currently no plans to merge this into the upstream
project, though.

43

5. Userland

2. ofono
3. fsogsmd / libgisi

All implementations expose the modem functionality via a D-Bus interface providing a more or less high-
level API. The daemon shipped with Maemo is the most tested application and comes with advanced
PulseAudio plugins, which handle the speech data and implement noise cancellation on the OMAP’s Digi-
tal Signal Processor (DSP). Neither the cellular services daemon, nor its accompanying PulseAudio plugins
are free software, though.

In collaboration with Intel and some other vendors, Nokia started to work on a free phone daemon called
ofono in 2009 with the intention to use it for MeeGo in the future. The daemon is maintained under
the kernel.org umbrella and supports most of the N900O modem’s functionalities. Not implemented
is support for handling the cmt-speech device, so voice calls are not working without further software
support. For this task a PulseAudio module has been written, which listens for call related events from
ofono and properly post-processes the cmt-speech data using Pulse Audio.

Apart from support in ofono there is also support in the GSM daemon from the FSO project (fsogsmd),
which stripped some code parts of the ofono project and moved them into a library. This library implements
a C API for the ISI protocol, which is a datagram based protocol used on top of the PhoNet protocol. It
is used instead of the AT style commands, that are specified in ETSI GSM 07.07 and usually used for
controlling a GSM modem.

The ISI protocol is capable of exchanging asynchronous events, for example to notify any incoming calls,
as well as a request-response model. The protocol itself does not only provide usual GSM related com-
mands, but also some unusual commands, e.g. for Location lookup using Global Positioning System
(GPS). Appendix B provides are more detailed description of the protocol.

None of the three ISI protocol implementations provide a GUI, which could be used to dial out or send a
short message, though. Instead they provide a D-Bus interface, which is supposed to be used by GUIs.

For FSO’s GSM daemon there is currently one client providing access to most of its functionalities. It
has been created for the SHR distribution and is called phoneuid. It provides a dialer, a message-, as well
as a contacts-application. All of them will be ,,pre-started” when the phoneuid application is started with
the actual windows being hidden. For example clicking the desktop icon for the dialing application will
instruct phoneuid to show the dialer window instead of initialising the dialer window. This design has been
chosen to avoid slow access to the system’s persistent memory when a call comes in. Without this feature,
it could happen, that the GUI opened too slow to accept an incoming call on OpenMoko’s FreeRunner.

Nokia’s developers chose a different approach in Maemo. Instead of writing a GUI for their Cellular
Services Daemon, they made use of Telepathy, which is a framework for instant messaging (like XMPP,
ICQ or MSN) and Voice over IP (e.g. SIP). The Nokia N900 comes with a Telepathy backend, which
provides GSM/UMTS capabilities. Thus a GSM call can be handled by the same application, which
handles e.g. a SIP call and the application taking care of instant messaging can also take care of short
messages.

This concept has been taken over for ofono. MeeGo and some of its successors use a Telepathy backend
named telepathy-ring. Also following this way is the software stack used for Ubuntu Phone, which created
their own Telepathy backend named telepathy-ofono, though. Currently Debian does not fully support any
of the stacks on the N900. From the FSO stack only the fso-audio daemon is missing, which would take
care of handling the cmtspeech interface. For the ofono stack the telepathy-ring plugin needs an update for

44

kernel.org

5.3. The modem

the new ofono API and the PulseAudio plugin must be packaged. The Ubuntu phone stack on the other
hand is missing completely.

Unfortunately the work on FSO has mostly stalled with only a couple of fixes being applied in their repos-
itories during the last year. While the Ubuntu phone stack is actively being worked on, it involves lots of
different components and has no explicit support for the Nokia N900. Porting it to another distribution
and adding support for a non Android based kernel will take more time, than available in this thesis. Thus
the MeeGo software stack is the first choice regarding userland software. Instead of porting the complete
mobile GUI (dialer, messaging app, ...) another Telepathy client, like Gnome’s empathy can be used.

A simplified version of MeeGo’s PulseAudio modules ported to PulseAudio 6.0 can be found on the DVD
accompanying this thesis including the packaging files needed for Debian. Unfortunately packaging the
modules required changes to Debian’s PulseAudio package, since the project does not support external
modules. For this reason the packaged modules cannot be uploaded to the Debian repository. The FSO
project does not use PulseAudio and thus has an alternative solution ready. They created a small daemon
named fsoaudiod, which does the speech data processing using libcmtspeechdata and the soundcard’s
ALSA interface. It does not listen to the ofono call events though. The patch in Listing 5.3 adds optional
support to use the daemon with ofono instead of FSO’s audio daemon.

Listing 5.3: Patch adding ofono support to the cmt-speech plugin of the FSO-audio daemon

Description: Add support for using the cmtspeechdata plugin with ofono
With this patch the FSO audio daemon can be used in
conjunction with ofono instead of the FSO gsm daemon.

[N O

diff --git a/src/plugins/gsmvoice_alsa_cmtspeechdata/Makefile.am b/src/plugins/
gsmvoice_alsa_cmtspeechdata/Makefile.am

6 index 688c909..03b2532 100644

7 -—— a/src/plugins/gsmvoice_alsa_cmtspeechdata/Makefile.am

8 +++ b/src/plugins/gsmvoice_alsa_cmtspeechdata/Makefile.am

9 @@ -13,6 +13,7 @@ modlibexec_LTLIBRARIES = gsmvoice_alsa_cmtspeechdata.la

10 gsmvoice_alsa_cmtspeechdata_la_SOURCES = \

11 plugin.vala \

12 cmthandler.vala \

13 + ofono.vala \

14 $ (NULL)

15 gsmvoice_alsa_cmtspeechdata_la_VALAFLAGS = \
16 —--basedir $(top_srcdir) \

17 diff --git a/src/plugins/gsmvoice_alsa_cmtspeechdata/ofono.vala b/src/plugins/
gsmvoice_alsa_cmtspeechdata/ofono.vala

18 new file mode 100644

19 index 0000000..43a78cb

20 ——— /dev/null

21 +++ b/src/plugins/gsmvoice_alsa_cmtspeechdata/ofono.vala

22 @@ -0,0 +1,7 @a

23 +namespace Ofono {

24 + [DBus (name = "org.ofono.AudioSettings", timeout = 120000)]

25 + public interface AudioSettings : GLib.Object {

26 + [DBus (name = "PropertyChanged")]

27 + public signal void property_changed (string name, GLib.Variant val);
28 + }

29 +}

30 diff --git a/src/plugins/gsmvoice_alsa_cmtspeechdata/plugin.vala b/src/plugins/
gsmvoice_alsa_cmtspeechdata/plugin.vala

index b66cf63..60e62cf 100644

32 —--- a/src/plugins/gsmvoice_alsa_cmtspeechdata/plugin.vala

33 +++ b/src/plugins/gsmvoice_alsa_cmtspeechdata/plugin.vala

34 @@ -28,6 +28,7 Q@@ class FsoAudio.GsmVoiceCmtspeechdata.Plugin : FsoFramework.AbstractObject

w

35 private FsoFramework.Subsystem subsystem;

36 private CmtHandler cmthandler;

37 private FreeSmartphone.GSM.Call gsmcallproxy;
38 + private Ofono.AudioSettings ofonoaudiosettings;
39

40 //

45

5. Userland

41 // Private API

42 @@ -52,6 +53,12 Q@ class FsoAudio.GsmVoiceCmtspeechdata.Plugin : FsoFramework.
AbstractObject

43 }

44 }

45

46 + private void onOfonoAudioSettingsPropertyChanged(string name, Variant val)

47 + {

48 + if (name == "Active")

49 + cmthandler.setAudioStatus (val.get_boolean());

50 + }

51 +

52 //

53 // Public API

54 //

55 @@ -60,14 +67,22 @@ class FsoAudio.GsmVoiceCmtspeechdata.Plugin : FsoFramework.
AbstractObject

56 this.subsystem = subsystem;

57 cmthandler = new CmtHandler () ;

58

59 + var ofono = config.boolValue(MODULE_NAME, "hook_ofono", false);

60 +

61 try

62 {

63 — gsmcallproxy = Bus.get_proxy_sync<FreeSmartphone.GSM.Call>(BusType.SYSTEM, "
org.freesmartphone.ogsmd", "/org/freesmartphone/GSM/Device", DBusProxyFlags.
DO_NOT_AUTO_START) ;

64 — gsmcallproxy.call_status.connect (onCallStatusSignal);

65 + if (ofono) {

66 + ofonoaudiosettings = Bus.get_proxy_sync<Ofono.AudioSettings>(BusType.
SYSTEM, "org.ofono", "/n900_0", DBusProxyFlags.DO_NOT_AUTO_START);

67 + ofonoaudiosettings.property_changed.connect (
onOfonoAudioSettingsPropertyChanged) ;

68 + } else {

69 + gsmcallproxy = Bus.get_proxy_sync<FreeSmartphone.GSM.Call>(BusType.SYSTEM

"org.freesmartphone.ogsmd", "/org/freesmartphone/GSM/Device", DBusProxyFlags.
DO_NOT_AUTO_START) ;

70 + gsmcallproxy.call_status.connect (onCallStatusSignal);

71+ }

72 }

73 catch (Error e)

74 {

75 - logger.error (@"Could not hook to fsogsmd: $(e.message)");

76+ var hookeddaemon = ofono ? "ofono" : "fsogsmd";

77 + logger.error(@"Could not hook to $hookeddaemon: $(e.message)");

78 }

79 }

80

81 ——— a/conf/nokia_n900/fsoaudiod.conf

82 +++ b/conf/nokia_n900/fsoaudiod.conf

83 @@ -16,4 +16,7 @@

84 # No settings yet

85

86 [fsoaudio.gsmvoice_alsa_cmtspeechdatal

87 —# No settings yet

88 +# The following option should be set to true if
89 +# the FSO Audio Daemon should be used with ofono
90 +# instead of the FSO GSM Daemon.

91 +hook_ofono = true

Once the MeeGo PulseAudio modules are integrated into the main PulseAudio project, or the project
reconsiders its decision regarding external modules, the Debian packaging should be straight forward,
since its dependency libcmtspeechdata is already available.

With ofono, the patched fso-audiod and telepathy running (ofono and Telepathy have already been available

in Debian), it should be possible to establish voice calls (and text messaging) using empathy. This will be
assumed as core smartphone functionality, so that the next chapter will focus on testing the use cases.

46

6. Function tests

In this chapter it will be analyzed if the problems mentioned in the introduction have been solved and if
the main features of a smartphone are supported.

6.1. Updates & Security Updates

In Debian updates, as well as security updates are done using apt-get. Assuming, that apt is configured
correctly, it can be done as simple as running apt-get update to update the package index followed by
apt-get upgrade to install new versions of all installed packages. Alternatively a front end like gnome-
packagekit can be used, which will automatically update the packet index regularly and notify about any
updates.

In opposit to Android, Debian and other standard Linux distributions do not come with a fine-grained
rights management, so its not possible to easily remove or grant rights to an application. On the other
hand the Distribution’s equivalent to Google’s Play-Store does not allow any application developer access.
Software contained in the distribution’s archives follows certain guidelines, so that malicious software,
which missuses information gained from the system is not supposed to be in there.

6.2. Voice Calls

The ofono D-Bus API can be used to start voice calls. This can be done using any generic D-Bus client,
such as mdbus' as shown in Listing 6.1. The modem’s voice data is automatically routed to the N900’s
soundcard by fso-audiod once the call has been established.

Listing 6.1: Initialize a voice call from command line using mdbus2

1. power on modem

mdbus2 -s org.ofono /n900_0 org.ofono.Modem.SetProperty Powered true

2. unlock SIM by providing PIN

mdbus2 -s org.ofono /n900_0 org.ofono.SimManager.EnterPin Pin 1234

3. connect to network

mdbus2 -s org.ofono /n900_0 org.ofono.Modem.SetProperty Online true

4. call 123456789 without hiding own identity

mdbus2 -s org.ofono /n900_0 org.ofono.VoiceCallManager.Dial 123456789 false

® N N AW N —

Testing revealed, that the more abstract Telepathy API mentioned in chapter 5 cannot be used easily in De-
bian, since both clients in its repository (Empathy and kde-telepathy) require support for 3D acceleration.
Instead a proof of concept user interface (ofono-dialer) has been implemented for this thesis, which can be
found in Appendix F. The Python script requests a modem power up when started, followed by a check if
the Subscriber Identity Module (SIM) card has enabled PIN protection. If no PIN is required, or the user

"https://github.com/freesmartphone/mdbus/

47

https://github.com/freesmartphone/mdbus/

6. Function tests

Active Voice Call]

o |

o # X3

Figure 6.1.: Voice call handling in ofono-dialer

provided the correct one in the following PIN dialog, the script will connect the modem to the network
and open the top-left window seen in Figure 6.1. In this window the to-be-called phone number can be
inserted into the input box using the phone’s hardware keyboard or the virtual keypad on the left. Pressing
the call button will open a dialog as visible in the right window in Figure 6.1. The application also handles
incoming voice calls by opening the dialog visible at the bottom. While both, outgoing and incoming calls
can be established with this application, it is not very user friendly, since it lacks usability features, such as

 automatically turn off display and ignore input events if phone is held to the ear
* automatically rotate the display using the accelerometer

* support ringing/vibrating on incoming call

* support address book lookup for phone numbers

* error handling

Porting Ubuntu’s or MeeGo’s voice call applications might help to improve voice call handling. Since both
applications require many other libraries to be ported first, further evaluation on this was not possible in
the scope of this thesis.

6.3. Short Messages

Assuming the modem is already connected to the network (see previous section), Short Messages (SMS)
can be sent using ofono’s D-Bus API as shown in Listing 6.2.

Listing 6.2: Send a SMS using mdbus

1 # send "Hello World!" to 123456789

48

6.4. Web Surfing

2 mdbus2 -s org.ofono /n900_0 org.ofono.MessageManager.SendMessage 123456789 "Hello
World!"

The proof of concept dialer application from Appendix F can also be used to send and receive short mes-
sages using the ofono API. Figure 6.2a shows how a SMS can be sent with the interface by starting with
entering the phone number at (1). After pressing the SMS button (2), a new dialog opens to insert the
message’s text at (3). Once everything looks fine, the message can be send using the send button (4). For
incoming messages a dialog window, as seen in Figure 6.2b, opens automatically showing the incoming
message.

Like the voice call part, the short message implementation is just proof of concept for testing the lower
stack. The features missing in the voice call part also affect the short message implementation of the ap-
plication (e.g. no phone book, no history). Again porting Ubuntu’s or MeeGo’s short message applications
might help to make the distribution ready for daily use.

6.4. Web Surfing

Connecting to a wireless LAN can be simply established using the connman configuration tool from en-
lightenment. Unfortunately Debian’s enlightenment desktop environment is currently built without conn-
man support, so the package must be rebuilt with the correct options added.

Connecting to the GPRS or UMTS network is currently not possible using enlightenments connman con-
figuration tool, but can be achieved using the connmanctl command line tool.

Once a connection has been built up, any browser available from the Debian archive (e.g. Iceweasel
(Firefox) or Gnome’s epiphany) can be used the same way as on a desktop. For this thesis midori has been
tested as visible in Figure 5.1 and Figure 6.3. Unfortunately the Nokia N900’s system memory is too small
for comfortable surfing, though. Scrolling webpages up and down will result in short intervals to load the
next chunk of data into the memory.

a s 6 J @ B S [Phone Number:
Time: 2015-07-08T19:42:48+0200
Hello world!|

(a) send SMS (b) receive SMS

Figure 6.2.: SMS handling in ofono-dialer

49

6. Function tests

6.5. Customization

There are various ways to customize the interface. One of the first relevant visible components is the
display manager. Since the Nokia N90O comes with a hardware keyboard, any non OpenGL using display
manager can be used. This might be a bigger issue on other smartphones, which require a virtual keyboard
to insert the user’s credentials. Even if lightdm is used there are a lot of customization options, since it
comes with different user interfaces (GTK+ or Qt based) and many configuration options in /etc/lightdm.

The next option of customization is the selection of a desktop environment. For this thesis Enlightenment’s
window manager has been chosen, since it comes with a nice mobile optimized variant. Of course it
is possible to use any other window manager instead (as long as it does not require OpenGL, which is
currently not supported by the N900). Basically everything can be adopted to fit the users needs, only
limited by the amount of time the user is willing to dedicate. For example Figure 6.3 shows LXDE running
on the Nokia N90O resulting in a PC like handling of the smartphone including a start menu in the bottom
left corner.

If Debian does not provide the desired functionality in one of its 43000 packages, the system is also flexible
regarding to the development of custom applications. It is possible to use most programming languages,
frameworks and graphical toolkits on the Nokia N900. For example the dialer for testing the voice call and
short message service has been written in Python using GTK+. If software is not written in an interpreted
language, it must be compiled for usage with an ARM processor, though. This can either be done by using
a cross-compiler, or directly on target by installing the compiler on the phone.

Debian -- The Universal Operating System - 8 x
P g sy
- O Back O IQ. (@ http:/www.debian.org/ B | Duck Duck Go L &
Debian -- The U... .| N900 - eLinux.org .. maemao.org - m,|
@ rg rg
File Edit View Calculator Help 7|
(a About Debian Getting Debian Support Deve 0
debian / |
C AC <
{) MS w 1R 1+
= . 7 8 9 ! sqrt
» Accessories
{J Internet 2 4 5 6 * %
Othe Dialer 0S) f
B Sound & Video P | . Nokiakbdfix [0>) (O yourcl 1 . = N
. System Tools p [T= ar T aomerEs Al malke your co = ‘ - . -
Preferences >) : :
more than a pure O5: it comes with over 43000 packages, precompiled
Ru
. d up in a nice format for easy installation on your machine. Read more... =

& Logout
w Ieii Debian -- The Un... galculator 00:42 -'r

Figure 6.3.: LXDE running on the Nokia N900

50

7. Outlook

This chapter aims to give a summary of outstanding work to improve the usability of the N90O running a
mainline kernel and documents some missing smartphone related applications in Debian. Initially it will
have a look at improvements for a next revision of the debug adapter described in chapter 3 though.

Debug Adapter

As already mentioned in chapter 3, the debug adapter should be capable of cutting the phone’s power
supply, so that it can be used for automatic regression testing. In this scenario there is often no local user
available, that can do this manually in case of a hanging kernel. The adapter built in chapter 3 provides this
feature, but due to a hardware bug this feature is not usable. A future revision of the adapter should replace
the transistor used for cutting off the power with a relay, which supports cutting the power independently
of the voltage direction (which depends on the battery charging state).

Apart from that it would be nice if the adapter could optionally supply the phone using the power from its
USB port instead of requiring a battery. It must not be used exclusively, though, since it would make it
impossible to test the battery measurement and charging logic. This feature requires prior measurements
of the maximum current drawn by the N90O to ensure, that it does not damage any USB ports.

The adapter’s next revision should also use another connector for attaching the battery compartment, since
the current one provides only a few mating cycles and is quite fragile. A suitable replacement would be a
standard 2.54 mm pin header.

Another improvement would be the usage of shorter Pogo-Pins. The adapter built in this thesis only uses
the long Pogo-Pins, since no other pins have been found, which satisfy all requirements. The replacement
pins should have approximately the same diameter and a round head to avoid damage to the test pads, but
should be much shorter to reduce the height of the adapter.

Apart from that it has been noticed, that the PCB should provide more of its functionality (like the 12C
port) on externally available pins, so that debugging is eased and extra functionality may be attached at a
later time. Also useful for debugging purposes are vertical interconnect accesses commonly known as via.
These make signal probing using an oscilloscope or just a multimeter for testing, if everything has been
soldered correctly, much easier.

Last but not least the QFN32 packaged USB-UART chip should be replaced by another chip, which uses
a package with pins instead of pads (e.g. FTDI’s FT2232D, which is available in a LQFP-48 package).
While the chip has been soldered successfully using hot-air, it is placement turned out to be very hard
without a pick-and-place machine, since one cannot see if the pads of the chip are aligned with the PCB’s
pads while placing it.

Alternatively to the dual UART chip a USB hub should also be considered, since the additional USB port

51

7. Outlook

could be attached to the N900’s USB port, so that a single USB cable can be used to attach the development
phone to the development PC. To reduce the required area on the PCB, a chip with integrated I2C support
can be used as described in Microchips application note 1941 [25].

The next sections will have give an outlook regarding the Linux kernel support for specific hardware
components of the Nokia N90O starting with its modem support.

Modem

As described before the modem’s power up/down sequence is currently handled by userland code via
exported GPIOs. This is supposed to be moved into kernelspace, so that userspace software like ofono can
simply open the PhoNet network device and focus on the ISI implementation. All power sequence related
steps should be done inside of the kernel.

Apart from that there are concepts to move the speech handling into the kernel. This would make it possible
to do voice calls without any special userspace applications (except for ofono / fso-gsmd). Audio data could
simply be piped from the modem’s ALSA-device to the sound card’s ALSA-device and vice versa. This
task requires a complete rework of the cmt-speech driver, which would have to react to call related packets
sent through the related PhoNet device. In addition to the new code detecting speech data related events
on the PhoNet device, the code from the cmtspeech PulseAudio module / fso-audiod and libcmtspeechdata
must be moved inside the cmt-speech kernel driver.

BCM2048

As described in section 4.5 a clean Bluetooth driver for serial attached devices from Nokia is almost ready.
Before sending the driver attached to this thesis for mainline inclusion, the communication bug has to be
solved first, though. This requires to debug the differences between the new driver and Nokia’s old driver
regarding to serial port configuration and GPIO timings.

In addition the firmware required for the BCM2048 chip is not available under a license compatible with
the linux-firmware project. This makes installing a standard Distribution on the Nokia N90O0 a little harder
than it has to be, since the firmware must be extracted from the original Operating System. This problem
can be solved by negotiating a more fitting license with its current copyright holders (Microsoft).

Also waiting for a few cleanups is the BCM2048 FM radio driver, which is currently part of the staging
tree inside of the mainline kernel. If nobody takes care of the requested cleanups, it will be removed from
the mainline kernel in the next few releases.

Camera Subsystem

Unfortunately one of the tasks, which accompanied this thesis could not be finished in time with it, so that
the camera subsystem is still not working at all with the mainline kernel.

52

As previously described in section 4.6, time intensive debugging sessions are needed to figure out com-
munication problems between the camera sensors and the ISP. In addition the driver for the main camera
sensors (ET8EKS) and the related driver for its auto-focus motor have not yet been cleaned up for mainline
inclusion and are missing proper DT bindings.

Apart from that some changes are required to the asynchronous V4L2 API are needed to support sensors,
which are not directly connected to an ISP.

PowerVR SGX (GPU)

Last but not least the smartphone’s GPU, which takes care of 2D and 3D acceleration is still a complete
black box. While it has been built into multiple smartphones and some of Intel’s SoCs, reverse engineering
the IP-Core is still in its very early phases with nobody actively working on it.

Since more and more modern desktop environments available for Linux use 3D acceleration by default,
this will be a task, which has to be tackled at some point to keep the Nokia N90O or its unofficial successor
the Neo900 (which also uses the PowerVR SGX) an usable platform.

While there Texas Instruments released an GNU Public License (GPL) licensed kernel driver for the Pow-
erVR SGX, it is considered non-free as long as it depends on a non-free userspace component. This is
especially true, when the kernel component is mostly used to forward data between the userspace compo-
nent and the actual IP-Core, which is the case for the PowerVR SGX.

Nevertheless the existing software is a good starting point to reverse engineer the GPU, since all data being
exchanged with the PowerVR SGX can simply be tapped in the kernel.

For proper support in common Linux distributions, multiple components would be required. First of all
there would have to be a kernel driver, which takes care of providing the userspace components an inter-
face to the GPU similar to the existing driver. Except for initial testing it does not make sense to reuse
Texas Instruments’s driver, which abstracts the Linux kernel APIs (possibly to keep the PowerVR SGX
driver compatible with other operating systems). This driver would have to be integrated with the existing
omapdrm driver.

Next support for the driver specific interfaces should be added to libdrm, which provides an API to the
rendering related interfaces provided by the kernel.

Last but not least the main task is the creation of a Gallium3D based userspace driver, which interacts
with the kernel driver using the libdrm. For this task the PowerVR reverse engineering project has already
analysed the instruction set used for the unified scalable shader engine (USSE) modules found inside of
the PowerVR SGX [19].

According to one of Imagination Technology’s employee, the vendor is currently working on a free driver
for the PowerVR series [2]. Apart from this hint and a matching job advertisement, no details have been
made public until the end of this thesis, though. In the past these kind of in-house developed drivers had
problems to be merged into the official projects (e.g. the VIA drivers never have been merged). Neverthe-
less it may help to give some insights about the hardware’s functionality.

53

7. Outlook

Apart from the hardware support deficiencies, there are also some smartphone related applications missing.
These will be described in the next section.

Userspace Software

Nowadays users of Android, iOS or Windows Phone based smartphones have access to a wide array of
mobile optimized applications. While some of them have an equivalent in the currently common Linux
distributions, many do not. While it is possible to use some of the applications written for normal personal
computers and notebooks, they are often not optimized for usage with a touchscreen. Having easily usable
user interfaces is important at least for the core applications, such as a dialer, a messaging application or
a calendar. With the existing infrastructure built up in this thesis it should be possible to port the existing
applications from the Maemo and MeeGo project, write new ones or package the Ubuntu Phone stack.

The next chapter will give a conclusion regarding running a universal Linux distribution on a smartphone.

54

8. Conclusion

While there is lots of outstanding work to make a non-mobile optimized Linux distribution, such as Debian,
properly usable on a smartphone, it is possible to do voice calls and exchange text messages. Due to missing
Touchscreen optimized software the workflow required for doing different smartphone tasks is less straight
forward on a universal Linux distribution, though. Here the N900’s hardware keyboard helps a lot, since it
is mostly possible to use the phone like a notebook.

Even with proper alternatives available for the most common smartphone tasks, the Debian is probably not
usable on a smartphone for the average user, though. Since the distribution’s software repositories contain
many software components not intended to be used on smartphones while missing typical applications used
by casual users (e.g. games) third party repositories would be required. This is a security problem, though,
since there is no fine-grained rights management available.

Nevertheless, the distribution is interesting for students and open source developers, since they can simply
reuse their existing software on a phone. For people trusting the GNU is not unix (GNU) userland and
the Linux kernel it is also a security benefit, as no closed source bits are needed and the software can be
updated without being dependent on any specific vendor.

Unfortunately only the Nokia N90O is almost fully supported by the mainline Linux kernel. As visible in
chapter 3 and chapter 4 adding support for a smartphone is a time consuming and demanding task if its not
done large-scale (e.g. directly by the vendor). Analysis why this is not yet happening has been done by the
Consumer Electronics Linux Forum revealing that 91% of the developers think its important, but in 61%
the management disapproves of such work or does not grant the required time [8].

One of the biggest issues regarding userland software is the N900’s missing support for 3D acceleration
and its low amount of memory (256MB), which is barely enough to start the base system. Modern browsers
require a multiple of that and keeping some memory free helps the Linux kernel to cache some files. It is
expected, that a modern smartphone, which usually comes with at least one GB of memory, will solve this
problem.

55

Appendix

56

A. Debian Image

There are multiple ways to create a N900 compatible Debian image. This chapter will use debootstrap,
which can be found in the Debian archive:

https://packages.debian.org/stable/debootstrap

This tool allows to install a Debian userland into an existing directory in a filesystem. It has intention-
ally quite few dependencies, so that it could be used on a non-Debian based system by unpacking the
*.deb archive. Once debootstrap is available on the system the following steps will create a Debian root
filesystem.

Preparing the SD card

After plugging the uSD card into your computer’s card-reader, it will appear as /dev/sd? or /dev/mmcblk?
depending on the card-reader type. In the following $SSDCARD is used as placeholder for this device.

Once the correct device has been identified it should be partitioned for use with the N900. It is recom-
mendable to create a small FAT32 partion to be used with U-Boot (The U-Boot release in Maemo does
not support ext2) and a second partition for the root filesystem. This can be done by using parted or its
graphical interface gparted. In the following $BOOTPART will be used to represent the (unmounted) boot
partition and SROOTPART will be used to represent the (unmounted) root partition.

Once this has been done the root partition should be mounted at some point in the filesystem. In this
chapter we will expect, that SROOTPART is mounted to /mnt/n900. This can be done by running

1 mkdir /mnt/n900
2> mount SROOTPART /mnt/n9%900

Running debootstrap

With the filesystem prepared and debootstrap installed the installation process can be started. A standard
root filesystem can be created by using the following command.

1 debootstrap -—arch=armhf --foreign stable /mnt/n900 http://httpredir.
debian.org/debian

It is possible to include some desired packets at installation time though, so it is recommendable to extend
the query to the following and use testing instead of stable to get a kernel with the ARM Errata 430973 fix.

3 export PACKAGES="ifupdown,openssh-server,udev,procps, netbase, vim"
4+ export PACKAGES="S$PACKAGES,module-init-tools,wget,openssh-client"

57

https://packages.debian.org/stable/debootstrap

A. Debian Image

5 export PACKAGES="S$SPACKAGES,watchdog,whiptail,alsa-base,apt-utils"

export PACKAGES="S$PACKAGES, locales,dbus,psmisc, htop"

export PACKAGES="S$PACKAGES, tmux, ofono,alsa-utils,mdbus2, rsyslog"

export PACKAGES="S$SPACKAGES, console-setup,aptitude,u-boot-tools"

export PACKAGES="SPACKAGES,net-tools,wireless-tools,rfkill,wpasupplicant"

10 export PACKAGES="SPACKAGES, iputils-ping,isc-dhcp-client"

11 export PACKAGES="S$PACKAGES, linux—image-armmp"

12 debootstrap —--arch=armhf --foreign --verbose --variant minbase —--include=
SPACKAGES testing /mnt/n900 http://httpredir.debian.org/debian

© o 2 o

Once this has been successfully completed there will be an armhf root filesystem in /mnt/n900. Since
--foreign was supplied the packages have not yet been configured, though. For this task either a working
ARMV7 board or an emulator is required. The root filesystem itself is not yet bootable, since the kernel’s
initramfs has not yet been created.

The easiest way to configure the packages is using a chroot and gemu with userland emulation in combina-
tion with an entry in the PC’s Linux kernel binfmt_misc interface. This way ARM binaries can be called on
the PC resulting in the kernel running the binary through gemu-user. In Debian the following listing will
change into the N900’s new root filesystem (the binfmt_misc entry is created automatically by installing
gemu-user-static):

I apt—get install gemu-user-static

2 cp /usr/bin/gemu-arm-static /mnt/n900-rootfs/usr/bin

3 chroot /mnt/n9%00-rootfs /bin/bash

Once a shell in the N900 root filesystem is available, the post configuration can be started. debootstrap
will put a script into the root filesystem at /debootstrap/debootstrap, which should be called with --second-
stage:

1 /debootstrap/debootstrap —--second-stage

This will configure all packages downloaded and extracted by debootstrap in the previous step. Next some
extra configuration steps are required, which are normally performed by the Debian installer.

Initial Configuration

Once all installed packages have been configured the root filesystem could be used in theory. In practice a
couple of additional configuration steps should be done. For this step we use the N900 root filesystem shell
already opened using chroot previously. First of all a password for the root account should be set using
passwd:

1 passwd

Then the keyboard should be configured by editing /etc/default/keyboard using an installed editor (e.g.
vim). The file should set the following variables for the built-in keyboard of the smartphone.

1 XKBMODEL="nokiarx51"
2 XKBLAYOUT="de"

Next the hostname should be configured to setup /efc/hostname to avoid accidently working in the wrong
filesystem.

58

| echo "HOSTNAME" > /etc/hostname

Another step, which should be taken is disabling a udev rule shipped with Debian, which takes care of
persistent network device names. This rule normally ensures, that a WLAN card will always get the same
device name (e.g. wlan0). Unfortunately this rule has the opposit effect on the N900, since the WLAN
card has no static MAC address configured. Instead it generates a random one at each boot resulting in
each boot having another WLAN device name. The rule can be disabled by deleting or commenting the
related file in /etc/udev/rules.d.

1 echo "#" > /etc/udev/rules.d/75-persistent—-net—generator.rules

Next the setup for apt sources should follow. Note that non-free is only included as source for the WLAN
firmware. If WLAN firmware is not required (wl1251 won’t work without the firmware!) or not sourced
using the Debian infrastructure the non-free entry can be skipped.

1 echo "deb http://httpredir.debian.org/debian testing main" > /etc/apt/
sources.list

2> echo "deb http://httpredir.debian.org/debian testing non-free" >> /etc/
apt/sources.list

3 apt—get update

Last but not least a user account should be prepared, so that the device does not have to be used with the
root account. This can be done using the adduser command.

adduser <username>

adduser <username> audio
adduser <username> video
adduser <username> bluetooth

N

Hardware Specific Configuration

Next some of the hardware components need additional configurations to make it usable or improve its
usability. First of all there is the WLAN chip, which requires a firmware file. Installing firmware-ti-
connectivity is enough to get the WLAN device working.

I apt—-get install firmware-ti-connectivity

Next the modem driver currently does not automatically load in all cases, so it should be added to /etc/-
modules. Apart from that the pm parameter should be set, so that the driver exports the GPIOs. Last but not
least the GPIOs are exported to /sys/bus/hsi/devices/n900-modem, but ofono searches for them in /dev/cmt
for historical reasons. Thus /dev/cmt should be linked to the correct location.

1 echo nokia-modem >> /etc/modules
> echo "options nokia-modem pm=1" >> /etc/modprobe.d/nokia-modem.conf
3 In —-s /sys/bus/hsi/devices/n900-modem /dev/cmt

Apart from that the display drivers should be loaded as early as possible, since its the main source of debug
outputs without a serial adapter. This requires adding a couple of modules to /etc/initramfs-tools/modules
and regenerating the initramfs.

59

A. Debian Image

1 echo "spi_omap2_mcspi" >> /etc/initramfs-tools/modules

echo "omapdss" >> /etc/initramfs-tools/modules

echo "panel_sony_acx565akm" >> /etc/initramfs-tools/modules
echo "omapdrm" >> /etc/initramfs-tools/modules

[I N VO)

update—-initramfs -k all -u

[=)

At last a couple of X.org related packages should be installed to have a graphical user interface. Debian
provides for example e/7 as smartphone compatible desktop environment. In addition a simple browser
and a terminal emulator is installed with the following commands.

I apt—get install xserver—-xorg xserver—-xorg-video-omap xserver—-xorg-input-
evdev xinit

2 apt—-get install xinput-calibrator xll-utils xterm xinput

3 apt—-get install el7?7

4 apt—-get install terminology mpv midori

Boot Partition

Next, the $BOOTPART must be mounted (outside of the chroot). In the thesis /mnt/n900/bootloader will
be used as mount point.

13 mount $BOOTPART /mnt/n900/bootloader

Maemo’s U-Boot package is configured to check for a boot.scr file on the SD cards first partition, if it is
using a FAT32 filesystem. If it is found, it will be sourced by the bootloader. The following boot script
can be used, assuming, that the Device Tree blob will be attached to the kernel instead of being loaded
individually by the bootloader.

I setenv bootcmd 'mmc init; fatload mmcl 0 0x82000000 uImage; fatload mmcl
0 0x83000000 uInitrd; bootm 0x82000000 0x83000000"

> setenv bootargs ’root=/dev/mmcblkOp2 rootwait console=tty02,115200n8
earlyprintk loglevel=7 quiet rootwait rw’

3 boot

To be usable with U-Boot the boot script must be compiled first. Assuming this boot script has been named
boot.scr.txt, the usable boot script can be generated by using mkimage (available in Debian’s u-boot-tools
package) as follows:

1 mkimage -A arm -O linux -T script -C none -a 0 -e 0 -n "Debian" -d boot.
scr.txt boot.scr

The resulting boot.scr file should be placed at /mnt/n900/bootloader, so that it will be picked up by U-
Boot. Additionally the kernel and the initramfs must be placed to /mnt/n900/bootloader. This task requires
concatenating the kernel image and the Device Tree blob, which can be done by using cat. Apart from that
the initramfs file will be copied to a temporary location for generating the U-Boot images:

I cat /mnt/n900/boot/vmlinuz-4.0.0-2-armmp /mnt/n900/usr/lib/linux—-image
-4.0.0-2-armmp/omap3-n900.dtb > zImage
2 cp /mnt/n900/boot/initrd.img-4.0.0-2-armmp > initrd

60

Last but not least the files must be converted into U-Boot’s image format, which can also be done using
mkimage. The temporary files zImage and initrd can be deleted afterwards.
1 sudo mkimage -A arm -0 linux -T kernel -C none —-a 80008000 -e 80008000 -
n vmlinuz -d zImage /mnt/n900/bootloader/ulmage
2> sudo mkimage -A arm -0 linux -T ramdisk -C none -a O -e 0 -

n initramfs -d initrd /mnt/n900/bootloader/ulnitrd
3 rm zImage initrd

After this the userland is ready for use on the smartphone.

Bootloader Installation

Since the N900’s bootloader, also known as NOLO, cannot be replaced easily, U-Boot is installed as chain-
loaded bootloader. NOLO will load it the same way, as it would load a normal kernel image. Flashing
the U-Boot image can be done either from a working system on the N900 (e.g. Maemo), or via NOLO’s
flash-over-USB feature.

U-Boot from Debian: If Debian’s U-Boot image should be used, it is not easily possible to keep using
Maemo on the device. The basic workflow consists of installing the package u-boot-omap package in the
N900’s root filesystem, which provides pre-built U-Boot images for the smartphone.

I apt—-get install u-boot-omap

Next a tool to access the N900’s first bootloader (NOLO) must be installed in the host system. For this step
either Nokia’s closed source tool flasher-3.5 can be used, or the reverse engineered OXFFFF (Free Fiasco
Firmware Flasher). In Debian OXFFFF is available from the main repositories, so it will be used here.

Before flashing the U-Boot image, it can be directly started for testing purposes.

1 OXFFFF -1 -m kernel:/mnt/n900/usr/lib/u-boot/nokia_rx51/u-boot.bin

Once its known to be working the -/ can be skipped to flash the U-Boot image to the kernel area.

U-Boot from Maemo: If, on the other hand, the existing Maemo installation should be kept easily
available, U-Boot can be installed from within Maemo. In this case the package will append Maemo’s own
kernel to the U-Boot image, so that it is still available.

Assuming, that the user has enabled the community repositories in Maemo installing U-Boot is as easy as
running the following command from within Maemo:

1 apt—-get install uboot-prl3

If the U-Boot Script has been configured as described in the previous section, the bootloader will prompt
for operating system selection if the keyboard has been slided out during the boot process. Otherwise
Maemo will be booted by default.

61

B. ISI-Protocol

[SI is a datagram based protocol used for communication with Nokia phones. Every ISI packet starts with
a common header visible in Table B.1, which is identical to the PhoNet protocol.

Offset

Type Name

0x00
0x01
0x02
0x03
0x05
0x06

UINT8 Receiver Device ID
UINT8 Sender Device ID
UINTS8 Resource ID
UINT16 Length

UINT8 Receiver Object
UINT8 Sender Object

This header contains the receiver and sender device IDs, which could be either 0x00 for the Modem, Ox6¢
for the Host or OxFF for Broadcast. Next follows a resource identifier. A list of the most important resource
IDs can be seen in Table B.2. Next the header contains a length field, which contains the number of bytes
following after the PhoNet header. Last but not least it contains a number describing a receiver and sender
object, which can be used to identify, which process has requested specific information, in case of multiple

Table B.1.: PhoNet Header

processes communicating with the modem.

Value Description

0x01 Call

0x02 Short Message Service (SMS)
0x06 Subscriber Services

0x08 SIM Authentication (PIN, PUK)
0x09 SIM

0x10 ComMgr

0x0A Network

0x1B Phone Information

0x31 GPRS

0x54 Location (GPS)

0xB4 Radio settings

0xD9 Pipe

Table B.2.: ISI Resource IDs (excerpt of most important IDs)

The PhoNet header is followed by a resource specific header, which usually starts with packet identifier

followed by a command identifier.

A full list of all gathered (e.g. from ofono) and reverse engineered information about the protocol can be
found in the Wireshark plugin on the attached DVD. The plugin implements a protocol dissector for the

ISI protocol.

62

Offset Type Name
0x00 UINT8 PacketID
0x01 UINT8 Common Command

Table B.3.: ISI Header

As an example, how the protocol is used, a commented recording of a GPS session' will be described in
the next sub-chapter.

GPS-Session

As example for the ISI-protocol this chapter will have a look at a typical GPS session as invoked by Nokia’s
map application. Figure B.1 gives a rough overview over a typical GPS session, which will be analysed
more detailed in the following paragraphs.

First of all the host system registers for GPS resource status indications sent by the modem. This is done
using the ComMgr resource. The related packet can be seen in Table B.4.

Offset Key Value Description

0x00 Receiver Device 0x00 Modem

0x01 Sender Device 0x6¢ Host

0x02 Resource 0x10 ComMgr

0x03 Length 0x0006 (0x5+0x6 = 0x0b)
0x05 Receiver Object 0x00

0x06 Sender Object 0x62

0x07 Packet ID 0x00

0x08 Command 0x10 Subscribe Resources Indication
0x09 Resource Count 0x01

0x0A Resource ID 0x54 GPS

Table B.4.: GPS Session: Status Indication Subscription

Next the GPS receiver must be powered on. For this a Hybrid Tracking request must be sent to the modem.
The related packet sent by Maemo can be seen in Table B.5. It basically informs the modem, that the host
systems requests hybrid location data. Thus it will try to get location data from multiple sources (e.g. GSM
and GPS).

Next the modem will reply to the power request with an matching Hybrid tracking response. The related
packet can be seen in Table B.6.

The following packets (Socket Open, Socket Send, Socket Receive) are used by the modem to request A-
GPS information. This is initiated by a Socket open request from the modem, which tells the Host system
to open a TCP connection to the specified server. Table B.7 contains the socket opening request sent by an
unmodified Maemo system.

It is replied to by the Host system with a simple response containing a descriptor ID used for further

"The GPS receiver of the N90O is connected to the modem instead of the processor, so GPS positions are queried from the
modem.

63

B. ISI-Protocol

64

Application Backend Modem
; enable GPS N ;
: g subscribe to status indications
i i Hybrid Tracking Request i
, > Hybrid Tracking Response ,
1 Status Indication: GPS Satellite Search :
4 Socket Open Request (A-GPS)
‘ Socket Open Response \
‘ Socket Send Request (A-GPS)
o Socket Send Response R
i Socket Receive Request (A-GPS) 1
b Socket Receive Response N
E . Emnm .
i > Socket Close Request (A-GPS) ;
‘ Socket Close Response R
4 Hybrid Tracking Notification
L Hybrid Tracking Notification e '
A ! nnm !
i L Status Indication: GPS Fix i
i > Hybrid Tracking Notification i
> Hybrid Tracking Notification o 5
v : Emn :
5 disable GPS N ;
' Hybrid Tracking Request ‘
5 | Hybrid Tracking Response !
3 Status Indication: GPS None

Figure B.1.: GPS Session

}_

A-GPS

Offset Key Value Description

0x00 Receiver Device 0x00 Modem

0x01 Sender Device 0x6¢ Host

0x02 Resource 0x54 GPS

0x03 Length 0x001e (0x5+0x1e = 0x23)

0x05 Receiver Object 0x00

0x06 Sender Object 0x62

0x07 Packet ID 0x00

0x08 Command 0x90 Hybrid Tracking Request
0x09 Hybrid Command 0x00 Measurement Start

Ox0a Number of sub-packets 0x01

0xOb Client-ID 0x00000000

0x0f NPEID 0x00000000

0x13 sub-packet command 0x0901 Hybrid Tracking Instruction
0x15 sub-packet length 0x0010 Length

0x17 allowed methods 0x0000000a ACWP, AGNSS

0x1b Options 0x00000003 channel status, cell info
Ox1f Interval 0x000a 1 second

0x21 Report Criteria 0x00 Hybrid Report at all Intervals
0x22 ACWP Timer 0x00 -

Table B.5.: GPS Session: Hybrid Tracking Request

Offset Key Value Description

0x00 Receiver Device 0x6¢ Host

0x01 Sender Device 0x00 Modem

0x02 Resource 0x54 GPS

0x03 Length 0x000e (0x5+0xe = 0x13)

0x05 Receiver Object 0x62
0x06 Sender Object 0x00

0x07 Packet ID 0x00

0x08 Command 0x91 Hybrid Tracking Response
0x09 Status 0x01 OK

0x0a Cause 0x00 Cause Success

0xOb Client ID 0x00000000

0x0f NPEID 0x00000000

Table B.6.: GPS Session: Hybrid Tracking Response

processing on this socket and a status code. Once the modem got the response, it will request (Table B.8),
that some data is sent via the socket.

The Host replies with two packets to the Modem. The first packet, known as Socket-Send-Response,
contains the Descriptor ID as reference together with a status code. If there were no problems it will be
followed by another packet, which contains the received data as shown in Table B.9.

This packet will be replied by the Modem with a matching Socket-Receive-Response. Next the Modem will

either send another Socket-Send-Request or will request to close the Socket using a Socket-Close-Request
answered by a Socket-Close-Response packet.

65

B. ISI-Protocol

Offset Key Value Description
0x00 Receiver Device 0x6¢ Host
0x01 Sender Device 0x00 Modem
0x02 Resource 0x54 GPS
0x03 Length 0x002a (0x5+0x2a = 0x2f)
0x05 Receiver Object Ox4e
0x06 Sender Object 0x1b
0x07 Packet ID 0x01
0x08 Command 0x84 Socket Open Request
0x09 Number of sub-packets 0x02 2
0Ox0a Sub-packet Type 0x1200 Socket Address
0x0Oc Sub-packet Length 0x001c
0x0e Port Ox1c6b 7275
0x10 Type 0x02 Domain Name
0Ox11 IP Length 0x00
0x12 Domain Length 0x0e
0x13 Padding 0x000000
0Ox11 Data supl.nokia.com
Table B.7.: GPS Session: Socket Open Request
Offset Key Value Description
0x00 Receiver Device 0x6c¢ Host
0x01 Sender Device 0x00 Modem
0x02 Resource 0x54 GPS
0x03 Length 0x002a (0x5+0x2a = 0x2f)
0x05 Receiver Object Ox4e
0x06 Sender Object Ox1b
0x07 Packet ID 0x01
0x08 Command 0x86 Socket Send Request
0x09 Descriptor 0x09
0Ox0a Padding 0x00
0x0b Data Length 0x0040
0x0d Padding 0x0000
Ox1f Data

As implied by the domain name and the port number in the socket opening request, the data being sent
around is following the Secure User Plane Location Protocol (SUPL) protocol. This protocol is used to
inform the user about his or her rough position using information about neighbouring GSM cell IDs (or
alternatively WLAN networks). It also provides information about the current GPS satellite positions and
their route, so that the GPS receiver can find them faster and does not have to receive the data using GPS
satellite signalling, which is very slow. During the analysis of this, it has been noticed, that the phone’s
International Mobile Subscriber Identity (IMSI) is sent around as session ID in the SUPL connection

Table B.8.: GPS Session: Socket Send Request

making the phone more vulnerable to low level attacks[10].

Some time after requesting the location, the modem will send out a GPS status indication, that the GPS
lock has not yet been acquired (satellites have not yet been found). The related packet is described in

Table B.10.

66

Offset Key Value Description

0x00 Receiver Device 0x00 Host

0x01 Sender Device 0x6¢ Modem

0x02 Resource 0x54 GPS

0x03 Length 0x0026 (0x5+0x26 = 0x2b)
0x05 Receiver Object 0x00

0x06 Sender Object Ox4e

0x07 Packet ID 0x00

0x08 Command 0x88 Socket Receive Request
0x09 Descriptor 0x09

0x0a Padding 0x00

0x0Ob Data Length 0x001c

0x0d Padding 0x0000

0x1f Data

Table B.9.: GPS Session: Socket Receive Request

Offset Key Value Description
0x00 Receiver Device 0x6¢ Host

0x01 Sender Device 0x00 Modem

0x02 Resource 0x54 GPS

0x03 Length 0x000e (0x5+0x6 = Oxb)
0x05 Receiver Object 0x62

0x06 Sender Object 0x1b

0x07 Packet ID 0x00

0x08 Command 0x7d GPS Status Indication
0x09 Power 0x01 Enabled

0x0a Status 0x01 Searching

Table B.10.: GPS Session: GPS Status Indication: No Lock

Next the Modem will start to send out GPS data packets with positioning information. Since it has not yet
acquired a GPS satellite lock, it falls back to position information from the cellular network (e.g. center
of Germany with accuracy being rough enough to cover the whole nation). Then, once the A-GPS results
have been received, it will be a bit more accurate (the accuracy radius is < 5Skm in Germany). When enough
GPS satellites have been found, another indication will be sent by the modem as visible in Table B.11.

Offset Key Value Description
0x00 Receiver Device 0x6¢ Host

0x01 Sender Device 0x00 Modem

0x02 Resource 0x54 GPS

0x03 Length 0x000e (0x5+0x6 = 0xb)
0x05 Receiver Object 0x62

0x06 Sender Object 0x1b

0x07 Packet ID 0x00

0x08 Command 0x91 GPS Status Indication
0x09 Power 0x01 Enabled

Ox0a Status 0x02 Lock acquired

Table B.11.: GPS Session: GPS Status Indication: Lock Acquired

67

B. ISI-Protocol

Now the modem will sent out position information about once every second. As visible in the simplified
Table B.12, the GPS resource does not only provide the position, but also time information, a list of
all visible satellites, the GSM or UMTS cell the user is currently connected to, as well as movement
information derived from the current and the last position.

Offset Key Value Description
0x00 Receiver Device 0x6¢ Host

0x01 Sender Device 0x00 Modem

0x02 Resource 0x54 GPS

0x03 Length 0x00£2 (0x5+0xf2 = 0xf7)
0x05 Receiver Object 0x62

0x06 Sender Object 0x1b

0x07 Packet ID 0x00

0x08 Command 0x92 GPS Data
0x09-0x0e Padding

0x0f Number of sub-packets 0x05 (5 sub-packets)
0x10-0x12 Padding

0x13-0x22 — GPS time & date sub-packet
0x13-0x22 ..

0x23-0x3e — GPS position sub-packet

0x23 sub-packet marker 0x09

0x24 sub-packet type ID 0x02 GPS Position
0x25-26 sub-packet length 0x001c

0x27-0x2a latitude 0x25cb0fbd 53.14670
0x2b-0x2e longitude 0x05d1517e 8.18123
0x2f-0x3e ...

0x3f-0x52 — GPS movement sub-packet
0x3f-0x52 ..

0x53-Oxea —— GPS satellite info sub-packet
0x53-Oxea ...

Oxeb-0xf6 ———— GPS cell information sub-packet
0Oxeb-0xf6

Table B.12.: GPS Session: Hybrid Location Data

The protocol can be analyzed using the attached Wireshark plugin. The project has been started a couple of
years ago and acquired full the GPS dissection capabilities during this thesis. Figure B.2 depicts Wireshark
with the loaded plugin dissecting the GPS session described above. For recording any packets send between
the Modem and the CPU, tcpdump can be used in Maemo (available from the fremantle-extra repository).

68

File Edit View Go Capture Analyze Statistics Telephony Tols Internals Help

@4Adm i BN X2 de»¥F & BE o v -
Filter: [‘ v] Expression... Clear Apply Save
Interface: E Frequency: EIB 1 monitor interfaces found
No. | Time Protocol Source Destination Resource Information A
1 17:29:56.496581000 Is1 Host Modem ComMgr,GPS Subscribed Resources Indication
2 17:29:56.528930000 IsI Host Modem GPS Hybrid Tracking Request
3 17:29:56.530548000 IsI Modem Host GPS Hybrid Tracking Response
4 17:29:56.534759000 IsI Modem Host GPS Socket Open Request
5 17:29:57.951721000 IsI Modem Host GPS GPS Status Indication: GPS _STATE SEARCH
6 17:29:57.951843000 ISI Modem Host GPS GPS Status Indication: GPS_STATE SEARCH
7 17:29:57.951934000 IST Modem Host GPS Hybrid Tracking Notification
8 17:29:58.927825000 Is1 Modem Host GPS Hybrid Tracking Notification
9 17:29:59.321807000 ISI Host Modem GPS Socket Open Response
10 17:29:59.325042000 up Modem Host GPS msSUPLSTART
11 17:29:59.326507000 IsI Host Modem GPS Socket Send Response
12 17:29:59.450347000 up Host Modem GPS msSUPLRESPONSE
13 17:29:59.450927000 IsI Modem Host GPS Socket Receive Response
14 17:29:59.452056000 up Modem Host GPS msSUPLPOSINIT
15 17:29:59.453979000 IsI Host Modem GPS Socket Send Response
16 17:29:59.923797000 Is1 Modem Host GPS Hybrid Tracking Notification [

Receiver Device: Host (0x6c)
Sender Device: Modem (0x00)
Resource: GPS (0x54)
Length: 62
Receiver Object: 0x62
Sender Object: Ox1b
Packet ID: ©
~ Payload
Command: LS_HYBRID_TRACKING_NTF (0x92)
Number of Subpackets: 3
~7 Subpacket (LS SB NPE POSITION)
Subpacket Type: LS SB NPE_POSITION (6x6962)
Subpacket Length: 28
Latitude: 51.0999999381602
Longitude: 10.4999999608845
Position Accuracy: 480000

Altitude: 0
Altitude Accuracy: 32767
7 Subpacket (LS_SB_CELL_INFO_WCDHA) v
O™ | Frame (frame), 83 bytes | [Packets: 88 - Displayed: 88 (100.0%) - Load time: 0:00.000] & ()

Figure B.2.: GPS Session in Wireshark

69

C. Accelerometer Patches

This chapter provides the patches, which were required to complete the lis31v02d driver’s DT support
regarding the Nokia N900’s accelerometer. Additionally the last patch adds the lis31v02d to the Nokia
N900’s device tree file. All four patches have been added to the mainline Linux kernel in 4.1-rc1.

lis3lv02d: DT: use s32 to support negative values

The first patch required for the Nokia N90O’s accelerometer adds support for describing inverted axis to the
existing DT axis description parser by reading it as signed integer instead of as unsigned integer. Support
for reading signed integers from DT has been added to the kernel right before to this thesis. At the same
time the patch adds support for negative thresholds, which are also used by the Nokia N90O.

In the mainline Linux kernel this patch can be found under its shortened commit ID cdcd6f824ecb.

Listing C.1: [PATCH] lis31v02d: DT: use s32 to support negative values

1 diff --git a/drivers/misc/1is31v02d/1is31v02d.c b/drivers/misc/1is31v02d/
1is31v02d.c

2 index 3ef4627..d2b0968 100644

3 ——— a/drivers/misc/1is31v02d/1is31v02d.c

4 +++ b/drivers/misc/1is31v02d/1is31v02d.c

5 @@ -950,6 +950,7 Q@ int 1is31v02d_init_dt (struct 1is31v02d x1is3)

6 struct 1is31v02d_platform_data xpdata;

7 struct device_node xnp = lis3->o0f_node;

8 u32 val;

9 + s32 sval;

10

11 if (!'1is3->0f_node)

12 return O;

13 @@ -1054,29 +1055,29 @@ int 1is31v02d_init_dt (struct 1is31v02d x1is3)
14 if (of_get_property(np, "st,hipass2-disable", NULL))

15 pdata->hipass_ctrl |= LIS3_HIPASS2_DISABLE;

16

17 — 1f (of_get_property(np, "st,axis-x", &val))

18 — pdata->axis_x = val;

19 — 1f (of_get_property(np, "st,axis-y", &val))

20 — pdata->axis_y = val;

21 = 1f (of_get_property(np, "st,axis-z", &val))

2 - pdata->axis_z = val;

3 + 1f (of_property_read_s32 (np, "st,axis-x", &sval) == 0)
24 + pdata->axis_x = sval;

5 + 1f (of_property_read _s32(np, "st,axis-y", é&sval) == 0)
26 + pdata->axis_y = sval;

27 + 1f (of_property_read_s32 (np, "st,axis-z", &sval) == 0)
28 + pdata->axis_z = sval;

70

30
31

33
34
35
36
37
38
39
40
41
4
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

if (of_get_property (np, "st,default-rate", NULL))
pdata->default_rate = val;

- 1f (of_get_property(np, "st,min-limit-x", &val))
- pdata->st_min_limits[0] = val;
- 1f (of_get_property(np, "st,min-limit-y", &val))
- pdata->st_min_limits[1l] = val;
- 1f (of_get_property(np, "st,min-limit-z", &val))
- pdata->st_min_limits[2] = val;

- 1f (of_get_property(np, "st,max-limit-x", &val))

- pdata->st_max_limits[0] = val;

- 1f (of_get_property(np, "st,max-limit-y", &val))

- pdata->st_max_limits[l] = val;

- 1if (of_get_property(np, "st,max-limit-z", &val))

- pdata->st_max_limits[2] = val;

+ 1f (of_property_read_s32(np, "st,min-limit-x", &sval) == 0)
+ pdata->st_min_limits[0] = sval;

+ if (of_property_read_s32(np, "st,min-limit-y", &sval) == 0)
+ pdata->st_min_limits[l] = sval;

+ 1f (of_property_read_s32(np, "st,min-limit-z", &sval) == 0)
+ pdata->st_min_limits[2] = sval;

+

+ if (of_property_read_s32(np, "st,max-limit-x", &sval) == 0)
+ pdata->st_max_limits[0] = sval;

+ 1if (of_property_read_s32(np, "st,max-limit-y", &sval) == 0)
+ pdata->st_max_limits[1l] = sval;

+ 1f (of_property_read_s32(np, "st,max-limit-z", &sval) == 0)
+ pdata->st_max_limits[2] = sval;

lis3->pdata = pdata;

lis3lv02d: DT: add wakeup unit 2 and wakeup threshold

The second patch required for the Nokia N900’s accelerometer adds support for the second wakeup unit of
the lis31v02d. It is used by the N90O for receiving events on the Z-axis, while the first engine is configured
to fire when the X or Y axis reach a specific threshold.

In the mainline Linux kernel this patch can be found under its shortened commit ID ¢5131a373613.

Listing C.2: [PATCH] lis31v02d: DT: add wakeup unit 2 and wakeup threshold

diff --git a/drivers/misc/11s31v02d/1is31v02d.c b/drivers/misc/1is31v02d/
1lis31v02d.c

index d2b0968..4739689 100644

-—— a/drivers/misc/1is31v02d/1is31v02d.c

+++ b/drivers/misc/1is31v02d/1is31v02d.c

@@ -1032,6 +1032,23 @Q@ int 1is31v02d_init_dt (struct 1is31v02d *1is3)

pdata->wakeup_flags |= LIS3_WAKEUP_Z_LO;
if (of_get_property(np, "st,wakeup-z-hi", NULL))
pdata->wakeup_flags |= LIS3_WAKEUP_Z_HI;

+ 1f (of_get_property (np, "st,wakeup-threshold", &val))

71

C. Accelerometer Patches

10 + pdata->wakeup_thresh = val;

1+

2+ 1f (of_get_property(np, "st,wakeup2-x-1lo", NULL))

13+ pdata->wakeup_flags2 |= LIS3_WAKEUP_X_L1O;

14 + 1f (of_get_property(np, "st,wakeup2-x-hi", NULL))

15 + pdata->wakeup_flags2 |= LIS3_WAKEUP_X_ HI;

16 + 1f (of_get_property(np, "st,wakeup2-y-1lo", NULL))

17 + pdata->wakeup_flags2 |= LIS3_WAKEUP_Y_ LO;

8 + 1f (of_get_property(np, "st,wakeup2-y-hi", NULL))

19 + pdata->wakeup_flags2 |= LIS3_WAKEUP_Y_ HTI;

20 + 1f (of_get_property(np, "st,wakeup2-z-1lo", NULL))

21 + pdata->wakeup_flags2 |= LIS3_WAKEUP_Z_LO;

» + 1f (of_get_property(np, "st,wakeup2-z-hi", NULL))

23 + pdata->wakeup_flags2 |= LIS3_WAKEUP_Z_ HI;

u + 1f (of_get_property(np, "st,wakeup2-threshold", &val))
5 + pdata->wakeup_thresh2 = val;

26

27 if (l'of_property_read_u32 (np, "st,highpass-cutoff-hz", &val)) {
28 switch (val) {

Documentation: DT: lis302: update wakeup binding

The third patch documents the API changes regarding the lis31lv02d DT binding in its binding document.
It can be found in the mainline kernel via its shortened commmit ID 21e8681862a5.

Listing C.3: [PATCH] Documentation: DT: lis302: update wakeup binding

1 diff —-—git a/Documentation/devicetree/bindings/misc/1is302.txt b/
Documentation/devicetree/bindings/misc/1is302.txt

2 index 6def86f..2al9%ff 100644

3 ——— a/Documentation/devicetree/bindings/misc/1is302.txt

4 +++ b/Documentation/devicetree/bindings/misc/1is302.txt

5 @@ -46,11 +46,18 @@ Optional properties for all bus drivers:

6 interrupt 2

7 - st,wakeup—{x,v,z}-{lo,hi}: set wakeup condition on x/y/z axis for
8 upper/lower limit

9 + — st,wakeup-threshold: set wakeup threshold

10 + — st,wakeup2-{x,y,z}-{lo,hi}: set wakeup condition on x/y/z axis for
1o+ upper/lower limit for second wakeup

12 + engine.

13 + — st,wakeup2-threshold: set wakeup threshold for second wakeup

14 + engine.

15 - st,highpass-cutoff-hz=: 1, 2, 4 or 8 for 1Hz, 2Hz, 4Hz or 8Hz of

highpass cut-off frequency

- st,hipass{l,2}-disable: disable highpass 1/2.

- st,default-rate=: set the default rate

- st,axis—{x,y,z}=: set the axis to map to the three coordinates

- st,axis—{x,y,z}=: set the axis to map to the three coordinates.
Negative values can be used for inverted axis.

- st, {min,max}-limit-{x,vy, z} set the min/max limits for x/y/z axis
(used by self-test)

72

DTS: ARM: OMAP3-N900: Add lis3lv02d support

Last but not least the fourth patch adds the lis31v02d node to the Nokia N900’s DT description file. It
makes use of the previously introduced support for the second wakeup engine and inverts the Y and the Z
axis as well as using negative threshold for the X axis.

It can be found in the mainline kernel via its shortened commit ID 1ac4e6fee41d.

Listing C.4: [PATCH] DTS: ARM: OMAP3-N900: Add lis31v02d support
1 diff --git a/arch/arm/boot/dts/omap3-n900.dts b/arch/arm/boot/dts/omap3-

n900.dts
2 index db80f9d..2cabl49 100644
3 ——— a/arch/arm/boot/dts/omap3-n900.dts

4 +++ b/arch/arm/boot/dts/omap3-n900.dts
5 @@ -609,6 +609,58 @@
pinctrl-0 = <&i2c3_pins>;

8 clock-frequency = <400000>;

11s302d1l: 1is31v02d@1d {
compatible = "st,1is31v02d";
reg = <0x1d>;

Vdd-supply = <&vauxl>;
Vdd_IO-supply = <&vio>;

interrupt-parent = <&gpio6>;
interrupts = <21 20>; /* 181 and 180 «*/

/* click flags =/
st,click-single-x;
st,click-single-y;
st,click-single-z;

/* Limits are 0.5g * value =/
st,click-threshold-x = <8>;
st,click-threshold-y <8>;
st,click-threshold-z <10>;

/* Click must be longer than time limit */
st,click-time-limit = <9>;

/* Kind of debounce filter x/
st,click-latency = <50>;

/* Interrupt line 2 for click detection */
st,irg2-click;

st, wakeup—-x-hi;

st,wakeup-y-hi;

st,wakeup-threshold = <(800/18)>; /% millig-value / 18 to get HW
values «*/

]
R
+ 4+ + 4+ + + F ++ A+ A+ A+ o+ A+ o+ o+ A+ o+ +

'
)
+

43 + st, wakeup2-z-hi;

73

C. Accelerometer Patches

44

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

74

B

st, wakeup2-threshold = <(900/18)>; /* millig-value / 18 to get HW
values */
st,hipassl-disable;
st,hipass2-disable;
st,axis—-x = <1>; /* LIS3_DEV_X */
st,axis-y = <(-2)>; /% LIS3_INV_DEV_Y */
st,axis—-z = <(-3)>; /x LIS3_INV_DEV_Z x/
st,min-limit-x <(=32)>;
st,min-limit-y <3>;
st,min-limit-z <3>;
st,max-limit-x <(=3)>;
st,max-limit-y <32>;
st,max-limit-z <32>;
bi
}i
&mmcl {

D. OpenSCAD code

The 3D rendering of the 2D vector information for the layer cutter has been generated by exporting the 2D
data into multiple files encoded in AutoCAD’s Drawing Exchange Format. Next the files were imported in
OpenSCAD, extruded to their correct thickness, slightly moved apart from each other and finally colored
differently using the code from Listing D.1.

Listing D.1: OpenSCAD-Code for 3D-rendering of the Serial-Adapter
1 /* file, pos, heigth, color (r,g,b,a) =/

2 layers = [

3 ["layer0O.dxf", 0, 3, [0.5,0.5,0.5,111],

4 ["layerl.dxf", 20, 3, [0.5,0.5,0.5,1117],

5 ["layer2.dxf", 40, 6, [0.5,0.5,0.5,1117],

6 ["layer3.dxf", 55, 1.5, [1,0,0,1]], /* PCB =/
7 ["layerd.dxf", 68, 2, [0.5,0.5,0.5,111],

8 ["layer5.dxf", 85, 3, [0.5,0.5,0.5,111,

9 ["layer6.dxf", 105, 14, [0.5,0.5,0.5,111],

10 ["layer7.dxf", 125, 3, [0.5,0.5,0.5,111],

0 ["layer8.dxf", 140, 2, [0.5,0.5,0.5,1]11,

2 1;

13

14 for (layer = layers)

15 color (layer[3])

16 translate ([0,0,layer[1]])

17 linear_extrude (height = layer([2], center = true, convexity = 10)
18 import (file = layer([0]);

75

E. Bill of Materials

To build the UART adapter described in chapter 3 the components from Table E.1 have been used.

Amount PCB-ID Name Supplier Unit Price Total Price
10 — PCB Elecrow - 9.88 €
1 C1 NPO-G0805 100P Reichelt 0.05 € 0.04 €
3 C2-C4 X7R-G0805 1,0/25X7R-G0805 1,0/25 Reichelt 0.05 € 0.15 €
1 C5 SMD Tantal-Eko 4.7 uF (T491B475K016AT) Distrelec 0.39 € 0.39 €
1 D1 SMD-LED 0805 GN Reichelt 0.08 € 0.08 €
1 D2 SMD-LED 0805 RT Reichelt 0.08 € 0.08 €
1 D3 SMD-LED 0805 BL Reichelt 0.20 € 0.20 €
1 I USB BWM SMDUSB BWM SMD Reichelt 0.27 € 0.27 €
1 K1 PicoBlade 90° SMD Pin Header (53261-0371) Distrelec 047 € 047 €
1 Ul CY7C65215-32LTXI Cypress 0.33 € 0.33 €
1 U2 INA219BIDCNT RS Electronics 229 € 229 €
1 U3 TPS76918 Distrelec 0.68 € 0.68 €
6 P1-P6 GKS181 Ebay ~ 1.00 € 6.00 €
1 Q1 FDN338P Distrelec 0.40 € 0.40 €
2 Q2,Q3 BSS 138 SMD Reichelt 0.04 € 0.08 €
3 R1,R2,R13 SMD-0805 220 Reichelt 0.11 € 0.33 €
3 R3, R4, R9 SMD-0805 2,20K Reichelt 0.11 € 033 €
1 R5 SMD Resistor 0.02 (LR1206-21R020FA) Distrelec 033 € 033 €
2 R6,R7 SMD-0805 10,0 Reichelt 0.11 € 022 €
4 R8, R10-R12 SMD-0805 10,0K Reichelt 0.11 € 0.44 €

2371 €

76

Table E.1.: Bill of Materials for UART Adapter PCB

F. Simple Ofono Dialer

Listing F.1 contains the simple dialing application, that has been written to test the functionality of the

lower stack. A description of its functionality and Screenshots can be found in chapter 6.

O % N AW N —

S =5

13

36

Listing F.1: Simple Ofono dialing and short message application

#!/usr/bin/python3

from dbus.mainloop.glib import DBusGMainLoop
from gi.repository import Gtk, GObject
import dbus, dbus.service

import sys, time

class PINDialog(Gtk.Dialog) :
def _ init__ (self, parent = None):
Gtk.Dialog.__init__ (self, "SIM PIN", parent,

0,

(Gtk.STOCK_CANCEL, Gtk.ResponseType.CANCEL,

Gtk .STOCK_OK, Gtk.ResponseType.OK))
self.set_modal (True)

self.grid = Gtk.Grid()
self.get_content_area () .add(self.grid)

self.label = Gtk.Label()

self.label.set_justify (Gtk.Justification.CENTER)
self.label.set_markup ("Pin Required")

self.grid.attach(self.label, 0, 0, 1, 1)

self.pin_entry = Gtk.Entry/()

self.pin_entry.connect ("activate", self.__emit_ok)

self.pin_entry.set_hexpand (True)
self.pin_entry.set_visibility (False)
self.grid.attach(self.pin_entry, 0, 1, 1, 1)
self.show_all ()

def _ _emit_ok(self, widget):
self.emit ("response", Gtk.ResponseType.OK)

def get_pin(self):
return self.pin_entry.get_text ()

class SMSReceiveDialog (Gtk.Dialog) :

def _ _init__ (self, parent, number, time, message) :

Gtk.Dialog.__init__ (self, "SMS", parent, O,
(Gtk.STOCK_OK, Gtk.ResponseType.OK))

self.set_modal (True)

box = self.get_content_area()

self.num_label = Gtk.Label ()

self.num_label.set_markup ("Phone Number: " + number)

box.add (self.num_label)

self.time_label = Gtk.Label ()
self.time_label.set_markup ("Time: " +
box.add (self.time_label)

self.sw = Gtk.ScrolledWindow ()
self.sw.set_policy (Gtk.PolicyType.AUTOMATIC,

self.textbox = Gtk.TextView()
self.textbox.set_editable (False)

time)

Gtk.PolicyType.AUTOMATIC)

77

FE. Simple Ofono Dialer

56 self.textbox.set_hexpand(True)

57 self.textbox.set_vexpand (True)

58

59 self.sw.add (self.textbox)

60

61 buf = self.textbox.get_buffer ()

62 buf.set_text (message)

63

64 box.add (self.sw)

65 self.show_all ()

66

67 class SMSSendDialog(Gtk.Dialog):

68 def _ _init__ (self, parent):

69 Gtk.Dialog.__init__ (self, "SMS", parent, 0, ())

70 self.set_modal (True)

71

72 cancel_button = self.add_button("Cancel", Gtk.ResponseType.CANCEL)
73 image = Gtk.Image ()

74 image.set_from_icon_name ("gtk-cancel", Gtk.IconSize.BUTTON)
75 cancel_button.set_always_show_image (True)

76 cancel_button.set_image (image)

77

78 send_button = self.add_button("Send", Gtk.ResponseType.OK)
79 image = Gtk.Image ()

80 image.set_from_icon_name ("mail-send", Gtk.IconSize.BUTTON)
81 send_button.set_always_show_image (True)

82 send_button.set_image (image)

83

84 self.sw = Gtk.ScrolledWindow ()

85 self.sw.set_policy(Gtk.PolicyType.AUTOMATIC, Gtk.PolicyType.AUTOMATIC)
86

87 self.textbox = Gtk.TextView ()

88 self.textbox.set_editable (True)

89 self.textbox.set_hexpand (True)

90 self.textbox.set_vexpand(True)

91

92 self.sw.add(self.textbox)

93

94 box = self.get_content_areal()

95 box.add (self.sw)

96 self.show_all ()

97

98 def get_message (self):

99 buf = self.textbox.get_buffer ()

100 start = buf.get_start_iter ()

101 stop = buf.get_end_iter ()

102 return buf.get_text (start, stop, True)

103

104 class CallDialog(Gtk.Dialog):

105 def _ init__ (self, parent, number):

106 Gtk.Dialog.__init__ (self, "Call", parent, 0, ())

107 self.set_modal (True)

108

109 hangup_button = self.add_button ("Hangup", Gtk.ResponseType.CANCEL)
110 image = Gtk.Image ()

111 image.set_from_icon_name ("call-stop", Gtk.IconSize.BUTTON)
112 hangup_button.set_always_show_image (True)

113 hangup_button.set_image (image)

114

115 self.number = number

116 self.label = Gtk.Label ()

117 self.label.set_justify (Gtk.Justification.CENTER)

118 msg = "Active Voice Call\n"+number+""
119 self.label.set_markup (msqg)

120 box = self.get_content_area()

121 box.add(self.label)

122

123 self.show_all ()

124

125 class IncomingCallDialog (Gtk.Dialog) :

126 def _ _init__ (self, parent, number):

78

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

Gtk.Dialog.__init__ (self, "Call", parent, 0, ())
self.set_modal (True)

hangup_button = self.add_button ("Hangup", Gtk.ResponseType.CANCEL)
image = Gtk.Image ()

image.set_from_icon_name ("call-stop", Gtk.IconSize.BUTTON)
hangup_button.set_always_show_image (True)
hangup_button.set_image (image)

accept_button = self.add_button ("Accept", Gtk.ResponseType.ACCEPT)
image = Gtk.Image ()

image.set_from_icon_name ("call-start", Gtk.IconSize.BUTTON)
accept_button.set_always_show_image (True)
accept_button.set_image (image)

self.number = number
self.label = Gtk.Label ()
self.label.set_justify (Gtk.Justification.CENTER)

msg = "Incoming Voice Call\n"+self.number+""

self.label.set_markup (msg)
box = self.get_content_area()
box.add (self.label)

self.show_all ()

class DialerWindow (Gtk.Window) :
__gsignals__ = {
"send-sms’: (GObject.SIGNAL_RUN_FIRST, None, (str, str,)),
"start-voice-call’: (GObject.SIGNAL_RUN_FIRST, None, (str,))

def _ _init__ (self):
Gtk.Window.__ _init_ (self, title="Dialer")

self.grid = Gtk.Grid()
self.grid.set_hexpand (True)
self.add(self.grid)

buttons = [
r*1", o, o1, ("2", 1, o1, [("3", 2, 01,
rv4», o, 11, [("5", 1, 11, [("e", 2, 11,
(7", o, 21, [("8", 1, 21, ["9", 2, 21,
["s", o, 31, ("o", 1, 31, ["#", 2, 31,

for bdesc in buttons:
button = Gtk.Button (label=bdesc([0])
button.set_size_request (100,100)
button.connect ("clicked", self.on_number_button_clicked)
self.grid.attach (button, bdesc[l], bdesc[2], 1, 1)

self.number_entry = Gtk.Entry()
self.number_entry.set_hexpand(True)
self.grid.attach(self.number_entry, 4, 0, 1, 1)

image = Gtk.Image ()

image.set_from_stock (Gtk.STOCK_GO_BACK, Gtk.IconSize.LARGE_TOOLBAR)
self.buttonBack = Gtk.Button()

self.buttonBack.set_image (image)
self.buttonBack.set_size_request (100,100)

self.buttonBack.connect ("clicked", self.on_back_button_clicked)
self.grid.attach(self.buttonBack, 5, 0, 1, 1)

image = Gtk.Image ()

image.set_from_icon_name ("call-start", Gtk.IconSize.LARGE_TOOLBAR)
self.buttonCall = Gtk.Button ()

self.buttonCall.set_image (image)
self.buttonCall.set_size_request (100,100)

self.buttonCall.connect ("clicked", self.on_call_button_clicked)
self.grid.attach(self.buttonCall, 4, 1, 2, 1)

FE. Simple Ofono Dialer

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268

80

def

def

def

def

def

def

def

image = Gtk.Image ()

image.set_from_icon_name ("mail-message-new", Gtk.IconSize.LARGE_TOOLBAR)
self.buttonSMS = Gtk.Button()

self.buttonSMS.set_image (image)

self.buttonSMS.set_size_request (100,100)

self.buttonSMS.connect ("clicked", self.on_sms_button_clicked)
self.grid.attach(self.buttonsSMs, 4, 2, 2, 1)

image = Gtk.Image ()

image.set_from_stock (Gtk.STOCK_QUIT, Gtk.IconSize.LARGE_TOOLBAR)
self.buttonQuit = Gtk.Button|()

self.buttonQuit.set_image (image)
self.buttonQuit.set_size_request (100, 100)
self.buttonQuit.connect ("clicked", self.on_quit_button_clicked)
self.grid.attach(self.buttonQuit, 4, 3, 2, 1)

self.show_all ()

on_number_button_clicked(self, widget):
new = self.number_entry.get_text () + widget.get_label ()
self.number_entry.set_text (new)

on_back_button_clicked(self, widget):
new = self.number_entry.get_text () [:-1]
self.number_entry.set_text (new)

on_call_button_clicked(self, widget):
numpber = self.number_entry.get_text ()
if number == "":

return
self.emit ("start-voice-call", number)

on_sms_button_clicked(self, widget):
number = self.number_entry.get_text ()
if number == "":
return
dialog = SMSSendDialog (self)
response = dialog.run()
if response == Gtk.ResponseType.OK:
message = dialog.get_message ()
dialog.destroy ()
self.emit ("send-sms", number, message)

on_quit_button_clicked(self, widget):
Gtk.main_quit ()

class OfonoController:

__init_dbus_connection__ (self):
try:
DBusGMainLoop (set_as_default=True)
self.bus = dbus.SystemBus ()
self.ofono = self.bus.get_object ('org.ofono’, ’/n900_0")
self.modem = dbus.Interface(self.ofono, ’'org.ofono.Modem’)
self.sim = dbus.Interface(self.ofono, ’org.ofono.SimManager’)
self.sms = dbus.Interface(self.ofono, ’'org.ofono.MessageManager’)
self.call = dbus.Interface(self.ofono, ’'org.ofono.VoiceCallManager’)
except dbus.exceptions.DBusException as e:
dialog = Gtk.MessageDialog(None, 0, Gtk.MessageType.ERROR,
Gtk.ButtonsType.CLOSE, "DBus Exception")
dialog.format_secondary_text (str(e))
dialog.run ()
dialog.destroy ()
sys.exit (1)

__init_ofono__(self):
self.modem.SetProperty ("Powered", True)

if self.sim.GetProperties () ["PinRequired"] != "none":
dialog = PINDialog ()
response = dialog.run/()

pin = dialog.get_pin()

269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300

302
303
304
305
306
307

309
310
311
312
313
314
315
316
317
318
319
320
321

323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339

def

def

def

def

def

def

def

dialog.destroy ()

if response != Gtk.ResponseType.OK:
sys.exit (1)

print ("Pin: \"%$s\"" % pin)

self.sim.EnterPin ("pin", pin)

time.sleep (3)

if self.sim.GetProperties () ["PinRequired"] != "none":
dialog = Gtk.MessageDialog(None, 0, Gtk.MessageType.ERROR,
Gtk.ButtonsType.CLOSE, "Incorect PIN")
dialog.format_secondary_text ("Provided PIN was not correct!")
dialog.run ()
dialog.destroy ()
sys.exit (1)

self.modem.SetProperty ("Online", True)
self.call.connect_to_signal ("CallAdded", self.on_ofono_call_added)

self.call.connect_to_signal ("CallRemoved", self.on_ofono_call_removed)
self.sms.connect_to_signal ("IncomingMessage", self.on_ofono_message)

__init__ (self):
self._init_dbus_connection__ ()
self.__init_ofono__ ()

self.win = DialerWindow ()

self.win.connect ("delete-event", Gtk.main_quit)
self.win.connect ("send-sms", self.on_send_sms)
self.win.connect ("start-voice-call", self.on_start_voice_call)

accept_call (self, path):

callobj = self.bus.get_object ('org.ofono’, path)

callinterface = dbus.Interface(callobj, ’'org.ofono.VoiceCall’)
callinterface.Answer ()

hangup_call (self, path):

try:
callobj = self.bus.get_object ('org.ofono’, path)
callinterface = dbus.Interface(callobj, ’'org.ofono.VoiceCall’)
callinterface.Hangup ()

except dbus.exceptions.DBusException as e:
path may no longer exist, if the remote side ended the call
pass

on_send_sms (self, window, number, message) :
print ("Send SMS (%s): $s" % (number, message))
self.sms.SendMessage (number, message)

on_start_voice_call (self, window, number) :
print ("Voice Call:", number)
self.call.Dial (number, False)

on_ofono_call_removed(self, path):
print ("End Voice Call!"™)
self.calldialog.response (Gtk.ResponseType.CANCEL)

on_ofono_call_added(self, path, properties):
if properties["State"] == "incoming":

print ("Incoming Call!™)
else:

print ("Outgoing Call!™)

number = properties["LineIdentification™]

Dialog shown for accepting/rejecting incoming calls

if properties["State"] == "incoming":
self.calldialog = IncomingCallDialog(self.win, number)
response = self.calldialog.run()

self.calldialog.destroy ()

81

FE. Simple Ofono Dialer

340 if response != Gtk.ResponseType.ACCEPT:
341 self.hangup_call (path)

342 print ("Incoming Call Rejected!")

343 return

344 else:

345 self.accept_call (path)

346 print ("Incoming Call Accepted!")

347

348 # Dialog shown during active voice calls

349 self.calldialog = CallDialog(self.win, number)
350 response = self.calldialog.run()

351 self.calldialog.destroy ()

352

353 self.hangup_call (path)

354

355 print ("Call has been hung up!")

356

357 def on_ofono_message (self, message, info):

358 number = info["Sender"]

359 time = info["SentTime"]

360 print ("Incoming Message (%s): %s" % (sender, message))
361 dialog = SMSReceiveDialog(self.win, sender, time, message)
362 dialog.run()

363 dialog.destroy ()

364

365 if _ _name_ == "__main__ ":

366 settings = Gtk.Settings.get_default ()

367 settings.set_long_property ("gtk-entry-password-hint-timeout", 500, "ofono-dialer")
368

369 main = OfonoController ()

370 Gtk.main ()

82

Bibliography

(1]

(2]

(3]

[4]

(5]

(6]

[7]

[8]

[9]
[10]

(11]

[12]

[13]

[14]

[15]

Ricardo Salveti de Araujo. Ubuntu Touch Internals. Apr. 2014. URL: https://events.linux
foundation.org/sites/events/files/slides/Ubuntu%20Touch%20Internal
s_1.pdf.

Hans-Joachim Baader. Imagination: Freier Grafiktreiber fiir PowerVR. June 2015. URL: http :
//www.pro—-linux.de/news/1/22439/imagination-freier—-grafiktreiber-
fuer—-powervr.html.

Brian Benchoff. DIY SMD stencils made with a craft cutter. Dec. 2012. URL: http://hackada
y.com/2012/12/27/diy-smd-stencils-made-with-a-craft-cutter/.

Tim Bird. “Overcoming Obstacles to Mainlining”. In: ELCE. 2014. URL: http://www.elinux.
org/images/8/8f/0Overcoming_Obstacles_to_Mainlining-ELCE-2014-
with—notes.pdf.

Neil Brown. tty slave device support - version 3. Mar. 2015. URL: http://1lkml . kernel.
org/r/20150318055437.21025.13990.stgit@notabene.brown.

Alison Chaiken. “Best practices for long-term support and security of the device-tree”. In: ELCE.
2013. URL: http://events.linuxfoundation.org/sites/events/files/slide
s/DT_ELCE_2013.pdf.

Carlos Chinea. HSI framework and drivers. Apr. 2010. URL: https://lwn.net/Articles/
384526/.

Jonathan Corbet. Obstacles to contribution in embedded Linux. June 2015. URL: https://lwn.
net/Articles/647524/.

FreeSmartPhone.org Project. URL: http://www.freesmartphone.org/.

Peter Gewald. “Sicherheitsaspekte von Mobiltelefonen - Erkennung und Visualisierung von An-
griffsvektoren”. MA thesis. Department Informatik: Carl von Ossietzky University of Oldenburg,
Oct. 2014.

Quim Gil. “How Maemo approaches Open Source”. In: Maemo Summit. 2008. URL: https :
//maemo.org/midcom-serveattachmentguid-4c0c9590887911dd804ae36efca
fed98ed98/how_nokia_approaches_open_source_for_maemo.pdf.

Bluetooth Special Interest Group. Specification of the Bluetooth System: Host Controller Interface
[Transport Layer]. Jan. 2006. URL: https://www.bluetooth.org/docman/handlers/
downloaddoc.ashx?doc_id=41266.

Marcel Holtmann. Bluetooth: hci-uart: Add protocol support for Nokia UART devices. Apr. 2015.
URL: http://permalink.gmane.org/gmane.linux.bluez.kernel/61384.

Marcel Holtmann. Bluetooth: hci-uart: Provide generic H:4 receive framework. Apr. 2015. URL:
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/
commit/?id=79b8df9362e8bd1951elfddbd65ca87af8df52c8.

How is Ubuntu Touch connected to Android? URL: https://wiki.ubuntu.com/Touch/
FAQ#How_is_Ubuntu_Touch_connected_to_Android. 3F.

83

https://events.linuxfoundation.org/sites/events/files/slides/Ubuntu%20Touch%20Internals_1.pdf
https://events.linuxfoundation.org/sites/events/files/slides/Ubuntu%20Touch%20Internals_1.pdf
https://events.linuxfoundation.org/sites/events/files/slides/Ubuntu%20Touch%20Internals_1.pdf
http://www.pro-linux.de/news/1/22439/imagination-freier-grafiktreiber-fuer-powervr.html
http://www.pro-linux.de/news/1/22439/imagination-freier-grafiktreiber-fuer-powervr.html
http://www.pro-linux.de/news/1/22439/imagination-freier-grafiktreiber-fuer-powervr.html
http://hackaday.com/2012/12/27/diy-smd-stencils-made-with-a-craft-cutter/
http://hackaday.com/2012/12/27/diy-smd-stencils-made-with-a-craft-cutter/
http://www.elinux.org/images/8/8f/Overcoming_Obstacles_to_Mainlining-ELCE-2014-with-notes.pdf
http://www.elinux.org/images/8/8f/Overcoming_Obstacles_to_Mainlining-ELCE-2014-with-notes.pdf
http://www.elinux.org/images/8/8f/Overcoming_Obstacles_to_Mainlining-ELCE-2014-with-notes.pdf
http://lkml.kernel.org/r/20150318055437.21025.13990.stgit@notabene.brown
http://lkml.kernel.org/r/20150318055437.21025.13990.stgit@notabene.brown
http://events.linuxfoundation.org/sites/events/files/slides/DT_ELCE_2013.pdf
http://events.linuxfoundation.org/sites/events/files/slides/DT_ELCE_2013.pdf
https://lwn.net/Articles/384526/
https://lwn.net/Articles/384526/
https://lwn.net/Articles/647524/
https://lwn.net/Articles/647524/
http://www.freesmartphone.org/
https://maemo.org/midcom-serveattachmentguid-4c0c9590887911dd804ae36efcafed98ed98/how_nokia_approaches_open_source_for_maemo.pdf
https://maemo.org/midcom-serveattachmentguid-4c0c9590887911dd804ae36efcafed98ed98/how_nokia_approaches_open_source_for_maemo.pdf
https://maemo.org/midcom-serveattachmentguid-4c0c9590887911dd804ae36efcafed98ed98/how_nokia_approaches_open_source_for_maemo.pdf
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=41266
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=41266
http://permalink.gmane.org/gmane.linux.bluez.kernel/61384
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=79b8df9362e8bd1951e1fddbd65ca87af8df52c8
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=79b8df9362e8bd1951e1fddbd65ca87af8df52c8
https://wiki.ubuntu.com/Touch/FAQ#How_is_Ubuntu_Touch_connected_to_Android.3F
https://wiki.ubuntu.com/Touch/FAQ#How_is_Ubuntu_Touch_connected_to_Android.3F

Bibliography

[16] Arasan Chip Systems Inc. HSI Controller IP Core. May 2015. URL: http: //arasan . com/
products/mipi/hsi-controller/.

[17] Russell King. ARM: proc-v7: avoid errata 430973 workaround for non-Cortex A8 CPUs. Apr. 2015.
URL: https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.
git/commit/?1d=a6d746789825e4d7229523eebee233b03ad48c54.

[18] Ingmar Kristian Klein. “ARM SOC:s as a desktop replacement?” MA thesis. June 2014. URL: http:
//www .hs—augsburg.de/~ingmar_k/Masterarbeit_WS1314/Vorabversion/
PDF/preliminary.pdf.

[19] Luke Kenneth Casson Leighton. PowerVR SGX USSE Opcodes. June 2015. URL: http://power
vr.gnu.org.ve/doku.php?id=opcodes.

[20] Tony Lindgren. [GIT PULL 1/2] omap clean-up for v4.2. May 2015. URL: https://patchwor
k.ozlabs.org/patch/474676/.

[21] Robert Love. Linux Kernel development. 3rd ed. Addison-Wesley Professional, 2010. ISBN: 978-
0672329463.

[22] Maemo Wiki: N900 Hardware Hacking. URL: https://wiki.maemo.org/N900_Hardwar
e_Hacking#Debug_ports.

[23] Catalin Marinas. [ARM] 5487/1: ARM errata: Stale prediction on replaced interworking branch.
Apr. 2009. URL: https://git.kernel.org/cgit/linux/kernel/git/torvalds/
linux.git/commit/?id=7ce236fcd6fd45b0441a2d49%9acb2ceb2de2e8ad.

[24] Nishanth Menon. ARM: Introduce erratum workaround for 430973. Mar. 2015. URL: http://
git.denx.de/?p=u-boot.git;a=commitdiff; h=5902f4ce0f2bdl411e40dclec
e3598a0fcl9b2ae.

[25] Microchip. Application Note 1941. May 2015. URL: http://wwl.microchip.com/downlo
ads/cn/AppNotes/cn574185.pdf.

[26] Neo900 Project. URL: http://neo900.0rg/.

[27] Kantar World Panel. “Kantar: Apple gewinnt Marktanteile, Android verliert”. In: (Jan. 2015). URL:
http://www.heise.de/mac-and-i/meldung/Kantar—Apple-gewinnt—-Markta
nteile—-Android-verliert-2513813.html.

[28] Thomas Petazzoni. “Device Tree for Dummies”. In: ELCE. 2013. URL: http://events.lin
uxfoundation.org/sites/events/files/slides/petazzoni-device-tree-
dummies.pdf.

[29] Pocket-Computer Nokia 770 Internet Tablet und die Maemo Development Platform. July 2005. URL:
http://www.linux-magazin.de/Ausgaben/2005/07/Aus—heiterem-Himmel.

[30] Jiirgen Quade and Eva-Katharina Kunst. Linux-Treiber entwickeln: Eine systematische Einfiihrung
in die Gerditetreiber- und Kernelprogrammierung. 2nd ed. dpunkt.verlag, 2006. ISBN: 978-3898646963.

[31] Sebastian Reichel. ARM: OMAP2+: Add support for thumb mode on DT booted N900. Feb. 2014.
URL: https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.
git/commit/?id=deff82e688a278eb4b822fd616c05fc62907bb71.

[32] Martin Sauter. Grundkurs Mobile Kommunikationssysteme: UMTS, HSDPA und LTE, GSM, GPRS
und Wireless LAN. 5th ed. Aug. 2013. 1SBN: 978-3658014605.

[33] Freescale Semiconductor. AN3397: Implementing Positioning Algorithms Using Accelerometers.
Feb. 2007. URL: https://www.freescale.com/files/sensors/doc/app_note/
AN3397.pdf.

84

http://arasan.com/products/mipi/hsi-controller/
http://arasan.com/products/mipi/hsi-controller/
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=a6d746789825e4d7229523eebee233b03ad48c54
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=a6d746789825e4d7229523eebee233b03ad48c54
http://www.hs-augsburg.de/~ingmar_k/Masterarbeit_WS1314/Vorabversion/PDF/preliminary.pdf
http://www.hs-augsburg.de/~ingmar_k/Masterarbeit_WS1314/Vorabversion/PDF/preliminary.pdf
http://www.hs-augsburg.de/~ingmar_k/Masterarbeit_WS1314/Vorabversion/PDF/preliminary.pdf
http://powervr.gnu.org.ve/doku.php?id=opcodes
http://powervr.gnu.org.ve/doku.php?id=opcodes
https://patchwork.ozlabs.org/patch/474676/
https://patchwork.ozlabs.org/patch/474676/
https://wiki.maemo.org/N900_Hardware_Hacking#Debug_ports
https://wiki.maemo.org/N900_Hardware_Hacking#Debug_ports
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=7ce236fcd6fd45b0441a2d49acb2ceb2de2e8a47
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=7ce236fcd6fd45b0441a2d49acb2ceb2de2e8a47
http://git.denx.de/?p=u-boot.git;a=commitdiff;h=5902f4ce0f2bd1411e40dc0ece3598a0fc19b2ae
http://git.denx.de/?p=u-boot.git;a=commitdiff;h=5902f4ce0f2bd1411e40dc0ece3598a0fc19b2ae
http://git.denx.de/?p=u-boot.git;a=commitdiff;h=5902f4ce0f2bd1411e40dc0ece3598a0fc19b2ae
http://ww1.microchip.com/downloads/cn/AppNotes/cn574185.pdf
http://ww1.microchip.com/downloads/cn/AppNotes/cn574185.pdf
http://neo900.org/
http://www.heise.de/mac-and-i/meldung/Kantar-Apple-gewinnt-Marktanteile-Android-verliert-2513813.html
http://www.heise.de/mac-and-i/meldung/Kantar-Apple-gewinnt-Marktanteile-Android-verliert-2513813.html
http://events.linuxfoundation.org/sites/events/files/slides/petazzoni-device-tree-dummies.pdf
http://events.linuxfoundation.org/sites/events/files/slides/petazzoni-device-tree-dummies.pdf
http://events.linuxfoundation.org/sites/events/files/slides/petazzoni-device-tree-dummies.pdf
http://www.linux-magazin.de/Ausgaben/2005/07/Aus-heiterem-Himmel
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=deff82e688a278eb4b822fd616c05fc62907bb71
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=deff82e688a278eb4b822fd616c05fc62907bb71
https://www.freescale.com/files/sensors/doc/app_note/AN3397.pdf
https://www.freescale.com/files/sensors/doc/app_note/AN3397.pdf

[34]

[35]
[36]

[37]

[38]

[39]

Bibliography

Freescale Semiconductor. AN3461: Tilt Sensing Using a Three-Axis Accelerometer. Mar. 2013. URL:
https://cache.freescale.com/files/sensors/doc/app_note/AN3461.pdf.

Stable Hybrid Release. URL: http://www.shr-project.org/.

Linus Torvalds. Linux 4.0-rcl out.. Feb. 2015. URL: https://1lkml.org/1lkml/2015/2/
22/203.

Linus Torvalds. Merge branch ’for-next’ of git://gitorious.org/kernel-hsi/kernel-hsi. Apr. 2012. URL:
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/co
mmit/drivers/Makefile?id=bl1a808£f£f436343956a6ae63178eal810c5eba3al.

Kai Vehmanen. N900 Modem Speech Support. Mar. 2015. URL: https://1lkml.org/lkml/
2015/3/5/606.

Linus Walleij. HSI subsystem status. Jan. 2013. URL: https://lkml.org/lkml/2013/1/
6/150.

85

https://cache.freescale.com/files/sensors/doc/app_note/AN3461.pdf
http://www.shr-project.org/
https://lkml.org/lkml/2015/2/22/203
https://lkml.org/lkml/2015/2/22/203
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/drivers/Makefile?id=b1a808ff436343956a6ae63178ea1810c5e5a3a1
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/drivers/Makefile?id=b1a808ff436343956a6ae63178ea1810c5e5a3a1
https://lkml.org/lkml/2015/3/5/606
https://lkml.org/lkml/2015/3/5/606
https://lkml.org/lkml/2013/1/6/150
https://lkml.org/lkml/2013/1/6/150

Glossary

8-N-1 format 8 data bits, no parity bit, 1 stop bit. 21, 35

ACL Asynchronous Connection-Less. 34

AEWB Auto Exposure White Balance. 38

AF Auto Focus. 38, 39

ALSA Advanced Linux Sound Architecture. 31, 45, 52

Android Linux distribution from Google with its main focus on smartphones and tablets. 2—4
APl Application Programming Interface. 24, 27, 31, 33, 44, 47, 53

ARM Holdings British-based semiconductor and software design company. Its largest business is de-
signing processors (CPU) bearing the ARM name. 6, 32

CCP2 Compact Camera Port 2. 36, 38, 39

chroot program, which tells the operating system to use a sub-directory as new root node for all sub-
processes. Can be used to switch into another Linux distribution. 4

CNC Computerized Numerical Control. 14, 17

CNC-machine A machine tool, that is controlled from a computer (e.g. a laser-cutter or a mill) see. 14
CPU Central Processing Unit. 6, 25, 26, 32

CSI 1 Camera Serial Interface. 36

CTS Clear to Send. 35

Cypress semiconductor manufacturer, known for its USB chips. 15

D-Bus IPC and RPC implementation designed as part of the freedesktop.org project. 44, 47
DAI Digital Audio Interface. 27
Debian Community driven Linux distribution. 3, 25, 32

DHCP Dynamic Host Configuration Protocol. 30

86

Glossary

DMA Direct Memory Access. 6,7, 9, 11, 12, 30
DSI Display Serial Interface. 11

DSP Digital Signal Processor. 26, 44

DSS Display Subsystem. 11, 12, 25, 26

DT device tree. 6, 7, 9, 25, 27-29, 31, 33, 35-39, 53, 70, 72, 73

EFL Enlightenment Foundation Libraries. 3

Fairchild Semiconductor Fairchild Semiconductor International, Inc., semiconductor manufacturer,
among others known for its transistors. 15

FM Frequency modulation. 33, 35, 52

fork In Software Development a fork means, that the source code of a project is copied and developed on
independently. After the fork there are two projects, which are worked on independently. 2

framebuffer memory area containing a bitmap, that should be send to a video display. 25
FSO freesmartphone.org. 3, 4, 44, 45

FTDI Future Technology Devices International, commonly known for its USB-serial chips. 15

GNU GNU is not unix. 55

GPIO General Purpose Input/Output. 7,9, 11, 12, 25, 26, 29, 30, 35, 36, 52, 59

GPL GNU Public License. 53

GPRS General Packet Radio Service. 30

GPS Global Positioning System. 44, 63, 66, 67

GPU processor for calculation of 2D and 3D graphical data. 25, 26, 53

Graphviz open source graph visualization software (http://www.graphviz.org). 9
GSM Global System for Mobile Communications. 28, 44, 66

GUI Graphical User Interface. 3, 43-45

H:4 Bluetooth transport protocol for serial devices. 33, 35

HCI Host Controller Interface. 33

87

http://www.graphviz.org

Glossary

HSI Highspeed Serial Interface. 27, 29, 30

I2C Inter-Integrated Circuit, serial bus, which supports multiple slaves devices and optionally multiple
masters. Usually used for connecting in-device sensors to the processor.. 9, 10, 15, 25, 26, 28, 33,
51,52

IMSI International Mobile Subscriber Identity. 66

ioctl input/output control, device-specific system-call related to input/output operations. 31

IOMMU MMU for I/0O devices. 26

IP Internet Protocol. 30

IP-Core A reusable unit (of logic), that is intellectual property and may be licensed, e.g. an MP3-encoder.
7,9, 11, 25, 29, 30, 33, 53

IPC inter-process communication. 42
ISI Intelligent Service Interface. 5, 30, 44, 52, 62, 63

ISP Image Signal Processor. 9, 26, 27, 36, 38, 53

kernel fundamental part of modern operating systems, that acts as low-level abstraction layer. 2

LCD Liquid Crystal Display. 11, 12
Linus Torvalds originator of the Linux kernel project. 23, 24, 29
Linux open source Unix-like operating system kernel. 2, 55, see kernel

Linux distribution common name for operating systems based on the Linux kernel, e.g. Debian or Red
Hat Enterprise Linux. 2—4, 23, 25, 32, 33, 47, 53, 55, see Linux & kernel

LIS3LV02D Accelerometer Chip from STMicroeletronics with 12C or SPI interface http://mipi.
org. 28

LKML Linux kernel mailing list. 35, 36

Maemo Linux distribution developed by Nokia for their Internet tablet hardware series, which gained
smartphone capabilities in later versions. In 2010 it has been merged with Intel’s Moblin and is
known as MeeGo since then. . 3, 13

McBSP Multichannel Buffered Serial Port. 27, 33

McSAAB SSI protocol for communication with Nokia N900’s modem, also known as improved SSI
protocol or simply SSI protocol. 26, 30, 31, 43

88

http://mipi.org
http://mipi.org

Glossary

MFD multi function device. 36

Microsoft Corporation American multinational corporation known for its Operating System Windows,
Office Suite and the game console XBox. 3

MIPI MIPI Alliance http://mipi.org. 11,27
MMC MultiMediaCard. 25

MMU Memory Management Unit. 38, 88

N900 Smartphone developed by Nokia, which is using Texas Instruments OMAP3 processor (ARM
based) and comes with Maemo by default. . 3, 5, 13, 15

Nokia Oyj Finish communications and information technology company. 3

NOLO bootloader used by the Nokia N900. 21

OMAP Open Multimedia Applications Platform, ARM based SoC developed for smart phones and tablets.
6,7,12, 13, 25,27, 29, 32, see SoC

OpenGL Open Graphics Language. 42, 50

OpenMoko small company, which created a open smartphone running a custom Linux distribution. 2, 3,
44

PCB Printed Circuit Board. 5, 15, 17, 19, 20, 29, 51, 52
PCM Pulse-code modulation. 31
phandle Numerical reference to another node in the Device Tree. 37

PhoNet Phone Network protocol (PhoNet) is a simple binary protocol abstracting modem interconnect
with support for multiplexing and asynchronous notifications. 26, 27, 30, 31, 43, 44, 52, 62

PLL Phase Locked Loop, system to generate an output signal related to an incoming signal, commonly
used to generate or distribute clock signals in embedded devices. 36

Pogo-Pin A pin, which contains a spring, so that it can be compressed. E.g. used for temporary connec-
tions between two PCBs. vi, 13, 19, 20, 51

QFN32 PCB footprint with 32 pads (no pins) at the chips sides. 17, 51

RAM Random Access Memory. 27, 29

RISC Reduced Instruction Set Computing. 32

89

http://mipi.org

Glossary

RNG Random Number Generator. 26
RS232 Standard for serial transmission defining some additional signals. 15
RTC clock tracking absolute time values. 26

RTS Ready to Send. 35

SCO Synchronous connection-oriented. 34

SDI Serial Display Interface. 11

SHR Stable Hybrid Release. 3, 4, 44

SIM Subscriber Identity Module. 47

SMD Surface Mounted Device. 15, 17

SMIA SMIA (Standard Mobile Imaging Architecture) is an image sensor standard defined jointly by
Nokia and ST. SMIA++, defined by Nokia, is an extension of that. These definitions are valid

for both types of sensors.. 36, 38

SoC System on a Chip, IC integrating all components of a computer or similar system into a single chip.
6,8,9, 13, 28, 29, 53

SparkFun Manufacturer of development and breakout boards. 15

SPI Serial Peripheral Interface, full-duplex serial bus intended for embedded devices. 7, 8, 11, 12, 15, 26
SSI Synchronous Serial Interface. 26, 27, 29-31

SUPL Secure User Plane Location Protocol. 66

SVG Scalable Vector Graphics. 14

Telepathy software framework for instant messaging, voice over ip, video calls. 44

Texas Instruments semiconductor manufacturer, among others responsible for the OMAP SoCs. 6, 10,
11, 15, 27,53

Thumb compact 16-bit encoded subset of the ARM instruction set to reduce required memory space. 32

U-Boot bootloader for embedded systems - http://www.denx.de/wiki/U-Boot. 32

UART universal asynchronous receiver/transmitter, which is used to exchange data between two systems
using two independent serial lines. 12—15, 26, 33, 35, 36, 51

UMTS Universal Mobile Telecommunications System. 28, 44

90

http://www.denx.de/wiki/U-Boot

Glossary

USB Universal Serial Bus. 12, 13, 15, 20, 26, 27, 30, 51, 52

USSE unified scalable shader engine. 53

V4L2 Video for Linux 2. 33, 38, 53

WDT timer for recovering from malfunction by triggering a hardware reset. 26

WLAN Wireless Local Area Network. 7, 8

X-Server Windowing System for bitmap based displays, that is usually used on UNIX and Linux systems.
25

91

	1 Introduction
	2 Hardware Architecture
	3 Serial Access
	4 Linux Kernel
	4.1 N900 kernel support
	4.2 Accelerometer
	4.3 Modem
	4.4 ARM Errata 430973
	4.5 Bluetooth
	4.6 Camera Subsystem

	5 Userland
	5.1 Graphical User Interface
	5.2 Wireless LAN
	5.3 The modem

	6 Function tests
	6.1 Updates & Security Updates
	6.2 Voice Calls
	6.3 Short Messages
	6.4 Web Surfing
	6.5 Customization

	7 Outlook
	8 Conclusion
	Appendix
	A Debian Image
	B ISI-Protocol
	C Accelerometer Patches
	D OpenSCAD code
	E Bill of Materials
	F Simple Ofono Dialer
	Bibliography
	Glossary

