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ABSTRACT 
Bayesian belief networks (BBNs) have become the de facto 

standard for the representation of uncertain knowledge. 

They consist of a qualitative and of a quantitative part de-

scribing the (in-)dependencies between the variables of 

interest as a directed acyclic graph (DAG) and the decom-

position of the joint probability distribution (JPD) as a 

product of conditional probability distributions constrained 

by the structure of the DAG. In this paper we present a new 

constraint-based query procedure: Query-an-Oracle 

(QAO). We assume that an oracle – preferable a human 

domain expert – is at hand which is competent and willing 

to answer questions generated by QAO concerning the 

directed (causal) dependence and (conditional) independ-

ence of the relevant random variables in the domain. Com-

pared to other structure learning methods (e.g. the PC-

Algorithm of Peter Spirtes and Clark Glymour and the IC-

Algorithm of Pearl) QAO has a number of advantages. It 

derives the DAG of the BBN with less computational com-

plexity, with no redundant questions, and is able to exploit 

directed dependence information without urging oracles to 

differentiate between direct and indirect influence. 

Categories and Subject Descriptors              
I.2.4 Knowledge Representation Formalisms and Methods 

General Terms 
Algorithms, Measurement, Design, Experimentation, Hu-

man Factors 

LEARNING THE STRUCTURE OF BBNs 
We were looking for an alternative method which is formal, 

simple to use for domain experts, not restrictive in its as-

sumptions, and not suffering from the same or similar 

drawbacks as the Bounded Strata Method [1] or the PC-

/IC-Algorithm [2, 3]. 
 

The Query-an-Oracle (QAO) Algorithm 
This led to the development of a greedy knowledge

 
acquisi-

tion method for the construction of the transitive closure of 

the precedes/causes(X,Y)-relation[4,5].
 

  

 
Figure 1. Model Space of Structure Learning Algorithms 

PCA, ICA, and QAO 

First step of QAO 
In the first step of QAO this algorithm controls the non-

redundant pair comparison of variables, and generates the 

Hasse and the transitive closure diagram of the partial-order 

relation precedes/causes(X, Y). The greedy behaviour is 

controlled by 13 production or propagation rules [4, 5]. 

When a pair (i, j) of variables is presented the oracle has to 

select a rating from a set of alternatives {i causes/precedes 

j, i follows j, i neither causes/precedes nor follows j } inter-

nally abbreviated as {+(i, j), -(i, j), 0(i, j)}}. The QAO 

selects a special order of pair comparisons along the main 

diagonal of the adjacency matrix. When the variables are 

ancestral ordered this minimizes the number of pair com-

parisons queried from the oracle and maximizes the number 

of transitive inferences that are automatically generated by 

the algorithm. Because each transitive edge has to be con-

firmed by a (directional) conditional independence test in 

the second step of QAO the sequence of the query process 

is unimportant when we take the query complexity of both 

steps into account. Taking only the +(i,j) markings from the 

transitive closure  we can reconstruct the Hasse diagram. 
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Second step of QAO 
After termination of step 1 the semantics of the “+” edges has 

become unambiguous. The propagation process in step 1 

denotes “+”-edges as not transitive. The semantics of the “+”-

edge between X and Y is that X is a direct influencer of Y. In 

contrast to that the semantics of the “++”- edge is still ambig-

uous. The oracle has to decide whether “++”-edges denote a 

direct influencer or an indirect one. The true DAG (only 

known to nature) lies somewhere between the Hasse model 

and the transitive closure model (Fig. 1). In [4] we recom-

mended a Markov blanket test for every variable for the deci-

sion in the second step. The improved solutions we propose 

here are much simpler. There are two alternative solutions for 

the second step.  

(1) The first is a Markov blanket test only for “++”-edges. 

(2) The other is a new kind of query to the oracle: Instead of 

the conventional non directional conditional independ-

ence I(X, Y | Z) QAO asks for each transitive 

“++(X,Y)”-edge in the transitive closure model a direc-

tional conditional independence Idir(Y, X | Z):  Does X 

causally influence Y, when Z is known? Yes or No?  

Complexity of QAO 
A rough calculation of QAO’s complexity for the first step 

gives following results. In the best case the true graph de-

scribes a total order. When we assume that the variables are 

ancestral ordered. QAO acquires the Hasse and the transitive 

closure diagrams by (n-1) questions only. Due to transitivity 

(n-2)(n-1)/2 instances of a precedes/causes relations are in-

ferred by QAO and need not be queried from the oracle. 

Thus, the first step of QAO has a best case complexity of 

O(n) for the query process and a computational complexity of 

O(n
4
) because the computation of transitive edges requires at 

most [(n-1)(n-2)/2]
2
 edge tests. In the worst case QAO needs 

n(n-1)/2 ratings. Then the DAG has no transitivity edges and 

the second step is not required. In this case the complexity of 

the query process is O(n
2
) and the computational complexity 

for the transitivity calculation is O(c).  

A Comparison of PCA and QAO 
It is interesting to benchmark the improved QAO asking the 

directional conditional independence questions in the second 

step with the conventional constraint-based structure learning 

methods PCA [2] and ICA [3].  

Example 7.1.3 from Jensen and Nielsen 
The first example for a comparison is from [6, p.235f] 

(Figure 2). We wrote a computer program according to the 

Jensen and Nielsen’s pseudo code. In the first step PCA 

generated 40 independence queries (10 independence que-

ries I(X,Y) of order zero, 21 queries I(X,Y|{Z}) of order 

one and 9 queries I(X,Y|{Z1,Z2}) of order two). The inde-

pendence queries I(A, B), I(B, C), I(C, D | {A}), I(A, E | 

{C, D}), and I(E, B | {C, D}) were answered with “Yes”. 

The result is the undirected skeleton graph (Figure 2). Then 

in the second step three production rules are applied to the 

skeleton. They mainly introduce directed v-structures (here 

two). Then in the third step the oracle is queried again to 

direct the remaining undirected edges. The total number of 

queries is 41.  

What is the behaviour of QAO? In the first step QAO asks 

8 pair comparison queries. In the second step 2 directional 

conditional independence questions are generated Idir(E, A | 

{C, D}) and Idir(E, B |{C, D}) (Figure 2) and answered with 

“Yes”. The total number of queries is 10. Compared to 

PCA, this is a reduction of almost 75%.

 

Figure 2. Steps 1 and 2 of PCA and Step 1 of QAO 

SUMMARY 
We presented a new structure learning algorithm Query-an-

Oracle (QAO). This is in the second step an improved ver-

sion of [4]. Compared to the well-known PC-algorithm of 

Spirtes et al. [2] and to the IC-algorithm of Pearl [3] it has a 

considerably smaller query complexity which is exactly 

O(n
2
). QAO is the first structure learning algorithm which 

exploits directional dependence ratings without urging 

oracles to give ratings of direct influence or direct control. 
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