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Abstract. Simulation-based training has become a standard in opera-
tional knowledge training for supervisory control in safety-critical envi-
ronments. But traditional simulators do not support mental model for-
mation of automated systems though these systems are a dominant part
in modern control systems. Recently various ”intelligent components”
for this support have been suggested. But these approaches neglect the
dynamic character of mental models. They focus on building a norma-
tive model at the beginning of the training but do not consider how it
evolves due to knowledge acquisition processes. In this paper we present
a model-based approach to diagnose success-driven learning in simula-
tor training and to predict dangerous over-simplifications. Our research
focuses on pilot training for automated cockpits.

1 Introduction

New developments in computer technology made high fidelity simulators with a
very close resemblance to reality possible. Simulator training allows students to
develop operational skills without harming their own life, that of others or real
world equipment. But simulation-based learning has to be accompanied by good
support and feedback on the learners’ behaviour [7]. Recently several researchers
emphasized the need for intelligent technologies that diagnose the student’s per-
formance and are able to assist the learner [1, 8] and to adapt simulated scenarios
accordingly [18]. As Connolly et al. [1] state it, ”the focus of development efforts
should be on incorporating intelligent technologies into these simulators rather
than emphasizing the relative fidelity of the systems” (p. 535). In modern highly
automated cockpits the need for ”intelligent components” that support the con-
struction of adequate mental models of the automatic systems has been pointed
out [10,15]. Most tasks have been automated and the pilot’s role can be under-
stood as supervisory control [17]. He has to program the automatic systems, to
observe their behaviour and to intervene when an error occurs. This role imposes
increased demand on the mental capabilities. A crucial question is whether pilots
can cope with them and are able to build an adequate mental model of the sys-
tems behaviour at the beginning of the training and will maintain it when gaining



experience. Humans develop routine, which makes their performance faster. But
on the other hand routine may also lead to over-simplifications (OS) [4] that
appear to work well in normal situations but lead to error in exceptional cases.
This may result in catastrophic human errors as a number of accidents show.
Thus it is not enough to support mental model formation at the beginning of
the training. Moreover we have to take into account knowledge acquisition pro-
cesses that take part when the pilot applies his normative model. In this paper
an approach based on a two-layered pilot model is presented. The first layer is a
normative mental model of auto pilot (AP) behaviour and the second a success-
driven knowledge acquisition process with access to the first layer. We intent to
connect it to a flight simulator in order to diagnose OS based on the performance
trace of the pilot student. In Ohlsson’s categorisation [14] our pilot model is a
simulation model, because it is able to construct the student’s problem solving
path step by step. Other approaches to pilot modeling (e.g. MIDAS [2], Javaux’s
and Oliver’s approach [6]) differ from our model because they do not consider
knowledge acquisition processes.

The cognitive approach relies on the empirically proofed ISP-DL (Impasse-
Success-Problem Solving-Driven Learning) theory of knowledge acquisition [11,
13]. In our working group this psychological theory guided the development
of IPSEs (Intelligent Problem Solving Environments) in various domains, for
instance functional programming in the ABSYNT project. We have adapted
the framework according to pilot domain requirements and used it to formalise
normative operational rules for an AP system. The contents of the rules have
been extracted from type rating documents and interviews. According to the ISP-
DL theory experienced pilots will need less planning than novices, because they
act according to stored and well-tried but still dynamically changing schemata
[12]. Schemata are constructed through success-driven learning, optimised for
routine situations but lacking specific features for exceptional situations. Thus
they may be used to model OS.

After an introduction we present a brief explanation of a typical pilot error.
The main part of this paper contains the detailed description of the modeling
framework followed by an empirical case study.

2 Explanation of an Exemplary Pilot Error

An empirical study in a full-motion Piper Cheyenne flight simulator was con-
ducted at Lufthansa Flight Training in order to identify and explain systematic
pilot errors concerning the AP operation. The following error of subject A (fig.
1) happened in a step-climb manoeuvre and according to flight instructors could
happen to almost every pilot:

After start the aircraft was cleared from air traffic control for 4000 ft. The
pilot dialled this altitude in the ’Alerter’ and selected it by pressing the ALTS-
Button, which causes the AP to go into ’Altitude Select’ mode. Then he pressed
the ETRIM-Button to increase vertical speed (VS). Suggested VS for a climb
is 2000 ft/min but it has to be adjusted to keep the indicated airspeed (IAS)



above the 160 knts limit - increased VS causes IAS to decrease. The adjustment
should be delegated to the AP by activating the IAS mode via the IAS-Button.
Subject A waited for TAS to reach 160 knts in order to activate IAS mode in
the correct moment. Approximately 300 ft before the selected altitude (Lead
Point) the AP automatically transitions to ’Capture’ mode and decreases VS so
that the aircraft smoothly levels off. When finally 160 knts were reached and
subject A pressed the IAS-Button the automatic transition to ’Capture’ mode
had already occured. Surprisingly for the pilot the aircraft did not level off at
4000 ft but continued to climb. Stabilising TAS is not allowed in ’Capture’ mode.
The problem was that transition to ’Capture’ mode occurred exceptionally early
and was not noticed, because the pilot had not expected it.
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Fig. 1. Trajectory of the exemplary pilot error

To explain this error we constructed and analysed a formal model of the AP
mode logic considering the relevant modes. Our analysis was guided by the work
of Degani [3] and Leveson et al. [9]. Both suggested structural design features
that may be a source for human error. We found a number of instantiations of
these in the AP mode logic. For instance ”inconsistent behaviour” in connection
with the IAS-Button (fig. 2): When it is pressed in ’Altitude Select’ mode, IAS
mode becomes active, and the selected altitude is kept as an active target. But
when pressed in ’Capture’ mode though again IAS mode becomes active the
selected altitude is no longer an active target - the manoeuvre is cancelled.

From the psychological perspective the ”branching error” concept of Reason
[16] applies to our scenario, because the initial sequence for both cases (160 knts
reached in ’Altitude Select’ or in *Capture’ mode) is the same (fig. 2). Then the
pilot gets to a ”critical decision point” before pressing the IAS-Button. He has to
look carefully for the automatic mode transition. Formal interviews revealed that
principally pilots know about that decision point, which leads to the assumption
that initially both paths are represented in the mental model. But during training
pressing the IAS-Button becomes a habit (bold arrows in fig. 2) because most



times the transition occurs late enough. In accordance to the ”branching error”
concept we fade out alternative actions in our present pilot model based merely
on the frequency of their successful application in the past.
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Fig. 2. Inconsistent AP behaviour after IAS-Button

3 Modelling Framework

To build the pilot model we take advantage of the goals-means-relation (GMR)
modeling framework that was originally used in the ABSYNT project [11,12] to
simulate knowledge acquisition processes. ABSYNT is a functional visual pro-
gramming language, indeed a tree representation of pure LISP. Using a problem-
solving monitor (PSM) a learner acquires basic functional programming concepts
while working on programming tasks. The learner starts with basic pieces of
knowledge acquired in theoretical lessons. If he succeeds in solving a familiar
task, the knowledge he used is optimised by eliminating planning steps. Next
time when working on a similar problem he will perform faster because of a
shorter problem-solving path. In ABSYNT this process of success-driven learn-
ing is modelled by composition of simple GMR rules, which yields schemata and
moreover whole solution cases. In the pilot context GMRs are used to represent
the pilot’s knowledge about how to operate the AP - the operational rules. Rule
composition serves to model the development of "habitual processes” and OS
in this context. In order to use the ABSYNT modeling framework in this way
the two domains have been compared carefully in detail. The text that follows
provides a summary of this comparison and a brief description of the knowledge
representation for the pilot domain.

The main difference is that the pilot acts in a dynamic environment whereas
the ABSYNT domain is static. The state of the aircraft constantly changes
caused not only by the pilot but also by external influences. The modelling
framework has to take this into account. First the various problem-solving ac-
tivities have been compared. The ISP-DL theory states that the problem-solving
process can be decomposed into phases very alike to the Rubicon Theory [5]:



In the deliberation phase the problem solver decides to strive for the goal to
solve a chosen or given task. Task goals in ABSYNT are specifyed by a pred-
icative requirement that has to be fulfilled by a program yet to be created. In
the pilot domain task goals are predicatively specifyed by flight parameters
(e.g. altitude) to be achieved by a manoeuvre yet to be performed.

In the planning phase the problem solver elaborates goals into implementable
sub goals. In ABSYNT the result is a plan containing a set of language
primitives the learner intends to arrange in the PSM. These actions only
depend on goals and previously executed actions. Because of the dynamic
environment the pilot must constantly check the current situation. He derives
a plan containing a set of intended checks on the displays and movements of
control instruments(CI).

In the execution phase plans are executed. ABSYNT actions refer to mouse
movements to arrange graphical icons in the PSM. In the pilot domain there
are move-actions refering to movements of CI (e.g. pressing buttons) and
check-actions refering to checks on displays to get information about the AP
and the aircraft.

In the evaluation phase the result of the actions is evaluated according to
the task goal. In ABSYNT only the final program is evaluated, not those
actions that have been ”undone”. In the pilot domain every single action is
interpreted instantly by the AP and influences the goal achievement. Most
times incorrect pilot actions can be alleviated by counteractions, but this
increases pilots’ workload and extends the manoeuvre time. So, the whole
action trace has to be evaluated and not only the final result.

Next we present the comparison with regard to knowledge representation:

Concept |General De-|Characteristics in|Characteristics in the pi-
scription ABSYNT lot domain
Goals are derived and|represented by predi-|{the predicates additionally

detailed during
planning

cates describing a goal
with associated sub
goals

describe instruments to be
checked

Means set of operator|operator nodes repre-loperator mnodes represent
and leaf nodes [sent programming lan-{move- and check-actions;
guage primitives; leaf|lleaf nodes represent state
nodes stand for param-|expressions that should be
eters and constants true after execution
GMR associates a goallassociates  program-|associates manoeuvre goals
with a means |ming goals with LISP|with pilot actions (checks and
primitives moves)
GMR GMR is implemented in a set of rules in a Horn clause format.
rules The GMR on the left hand side (Head) of a rule holds, if all GMRs

on the right (Body) are true. There are four types of rules: task
rules, goal elaboration rules, operator rules, and leaf rules




Task convert a task|the task is to construct|the task is to combine ac-
rules goal into  ala program that fulfills{tions in an adequate chrono-
planning  goal|the task goal logical order and dependency
and impose that fulfills the task goal
constraints for
the means
Goal ela-|differentiate alreification of goals|reification of goals is not de-
boration |goal but the|made goal elaboration|sirable because of workload
rules implementation |"executable” in the|considerations
is postponed PSM
Operator |describe how|describe the implemen-|describe the realisation of ma-
rules goals can beltation of programmingnoeuvre goals and constrain
achieved by|goals the execution of move-actions
operator nodes on the result of check-actions
Leaf rules|special type of|describe the implemen-|describe the result of pilot ac-
primitive opera-|tation of parameters|tions by pilot leaf nodes
tor rules and constants by leaf
nodes

The main differences in knowledge representation are the list of instruments I
contained in the goal representation and the semantics of operators. First, we
have chosen to extend the representation of goals, because the instruments pilots
have to look for always depends on the present goal respectively manoeuvre. For
example in a ’free climb’ (without selected altitude) there is no ’Capture’ mode,
thus there is no need to look for it before pressing the IAS-button. By comparing
I with the instruments considered in the associated check-actions sources for OS
can be identified. Second, the semantics of operators differs in the control flow.
In the pilot domain move-actions are only executed if preceding check-actions
deliver that necessary preconditions are fulfilled. If not the move-actions are
canceled. In ABSYNT there is no such dependency.

Finally we adapt the learning component. In ABSYNT rule composition
was used to model changes in the learner’s knowledge after he has successfully
solved similar tasks (success-driven learning). Rules are composed if they have
been used in succession few times and if certain constraints are fulfilled (see per-
formance hypotheses below). Technically this is done according to the cut rule:

F«—P&C, P+ A
F+—A&Qo

The two clauses above the line resolve to the clause below the line by merg-
ing them and thereby eliminating P and P’. P and P’ must have at least one
identical instantiation. o stands for the most general unifier and is applied to
the whole resolvent. As an example we consider the following two GMR rules
written here as Horn clauses:

P, P’, F must be atoms (here: predicates)
A and C can be conjunctions of atoms




gmr (check_act_ias (instr(speed-ind,mode-annunciation,ias-button)) ,Act)) <—
gmr (checkl_ias(instr(speed-ind)), Checkl)) &
gmr (check2_ias(instr(mode-annunciation)), Check2)) &
gmr (act_ias(instr(ias-button)) ,Act)).

gmr (check2_ias (instr(mode-annunciation)), unequal(value(MA),capture)) <—
value(MA), MA # capture.

The second GMR in the body of the first rule and the head of the second one
can be unified if 0 =[Check2 / unequal(value(MA),capture)]. Applying the cut
rule yields the composite:

gmr (check_act_ias (instr(speed-ind,mode-annunciation,ias-button)) ,Act)) <+—
gmr (checkl_ias(instr(speed-ind)), Check)) &
(value(MA), MA # capture) & gmr(act_ias(instr(ias-button)),Act)).

By composing rules "habitual processes” are modelled, but there is a major
difference in rule composition between ABSYNT and the pilot domain. In AB-
SYNT composition always generates correct rules. Whereas in the pilot domain
we constructed the rules in way so that composition can lead to the elimination
of check-actions. In the example the check for the capture phase is replaced by
the assumption that this phase is not active. This technique serves to model OS.
In ABSYNT four hypotheses about performance differences between novices and
experts were derived, where gaining expertise means continuously building more
condensed schemata until whole solution cases emerge. At present we apply two
of these hypotheses to show empirical indications for rule composition:

Time hypothesis. The selection and execution of each rule takes time, so
a pilot using composites should be faster than someone using simple rules.

No-interleaving hypothesis. Actions contained in the same means are
processed without interruption by other means. Thus actions in different means
should not interleave. This enables to predict a partial order on action steps in
different GMR rules. For actions in composites this is not possible.

In the pilot domain these hypotheses serve to diagnose based on the perfor-
mance trace what rules have been composed and over-simplified.

4 Applicability of Rule Composition - an Empirical Case
Study

During the case study 4 flight students have been taped on video. Subject A
was filmed in 7 missions (7 * 1.5h). The results of a protocol analysis for subject
A in step-climb and step-descent manoeuvres are described. Each manoeuvre
protocol resulted from a transcription of a video sequence that was stopped and
transcribed every 2 seconds. Manoeuvre time varied from 1 to 4 min.



First we investigated the time hypothesis. We analysed the time the subject
needed for the first three manoeuvre actions: Dialling in the altitude, selecting it,
and pressing the ETRIM-Button the first time (fig. 3 up to manoeuvre 10). The
ETRIM-Button has to be pressed a few times until the desired VS is reached,
but this time span heavily depends on environmental factors like wind and air
pressure. Thus we considered only the initial stroke. When the times for manoeu-
vre 3, 4, 8, and 10 are considered as outliers we can draw a line connecting the
remaining values. We interpret that the required time gets constantly shorter.
The outliers can be explained by tasks that had to be performed in parallel to
the climb or descent and by the initial VS before the manoeuvre. E.g. before the
fourth manoeuvre VS was already 1500 ft/min, so there was no need to adjust
it immediately and he could activate climb power (a parallel task) first.

35, time[sec] - dial altitude, 0
30 4 ¢ - selectit,
3 ‘ - initial stroke on

” ‘\_ etrim-button
20 order of
15 T actions - dial altitude, .
10 [ h - few strokes on

7 [ 4 4 4 4 N etrim-button,

0 i - select altitude

o 1 2 3 4 5 6 7 & 9 10 11 12 13 14 15 16 manoeuvre

Fig. 3. Performance times for manoeuvres 1 to 11 and 12 to 16

One weak explanation for the faster performance is that the subject gets
used to the location of the buttons. But according to our explanation the subject
eliminates sub goals and thus needs less planning time. We model this speeding
up by rule composition, which is plausible because the manoeuvres could be
executed using the same set of rules.

Next we investigated the no-interleaving hypothesis. We assume that at the
beginning of the training pilots have one simple rule for every single action, be-
cause there are individual constraints for each action. Thus according to the no-
interleaving hypothesis for example altitude selection and decreasing VS should
not interleave. But in the twelfth manoeuvre subject A starts to interleave ex-
actly these two actions: He hits the ETRIM-Button a few times, then selects
the altitude and continues with the ETRIM-Button until the prescribed VS is
reached. This interleaving could be observed in all following manoeuvres. Ac-
cording to our model this interleaving is only possible if the subject has built
a composite containing the actions for altitude selection and VS adjustment in
the same means. He is no longer using the simple rules.

With this new rule set we investigated the time hypothesis again starting from
the twelfth manoeuvre. We considered the same three actions as before, but this
time in another order. We had to incorporate not only the initial stroke on the
ETRIM-Button but all strokes he made before selecting altitude. This time span
still leaves out the fine tuning of VS which heavily depends on environmental



factors. As can be seen in fig. 3 (from manoeuvre 12 to 16) the time decreases
with only one outlier. Because again all manoeuvres could be executed using the
same set of rules (including the composite) and according to the time hypothesis
our explanation is that further planning steps have been eliminated. In the 16th
manoeuvre the subject commits the error described in section 2. This is the first
time that the transition to ’Capture’-mode occurs before the 160 knts limit (the
desired value for IAS stabilisation) is reached. The active mode is not noticed by
the pilot and he stabilises IAS, which causes the plane to overshoot the cleared
altitude. Thus we suppose that the necessary check has been eliminated during
the rule composition and the resulting composite is over-simplified and applied
under inappropriate conditions.

5 Conclusion and Further Work

We described a typical pilot error that was observed regularly in an empirical
study we conducted at Lufthansa Flight Training during simulation-based pilot
training. Based on theoretical work on system structure and human factors we
found a hypothetical explanation of this error. The GMR modelling framework
was adapted to the pilot context and serves the purpose of modelling a success-
driven knowledge acquisition process by rule composition. This process leads
to optimised knowledge ignoring necessary checks on display instruments, which
can be understood as OS. Based on empirical data we have shown first indications
for the applicability of our cognitive modeling approach. The model predictions
will be used to improve learning environments for pilots. We envision integrating
it with a flight simulator in order to diagnose OS of pilot students based on their
performance trace. Identified OS shall be indicated to the flight instructor, how
has to decide what to do. In further work the pilots’ attentiveness to crucial
automatic mode transitions of the AP has to be analysed thoroughly. Because in
the empirical case study we observed, that the described error does not occur in
situations with a high level of attentiveness. After the model is fully implemented
and attentiveness is integrated it shall be evaluated as a whole.
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