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Summary

We describean approachto acquirequalitativeand quantitativeknowledgefrom verbal statements
and dialoguesin complex, probabilistic domains. This work is part of the developmentof an
intelligent environment MEDICUS (Modelling, explanation,and diagnosticsupport forcomplex,
uncertainsubject matters), that supportsmodelling and diagnosticreasoningin the domains of
environmental medicine and human genetics. The syistelesignedor professionabswell as for
further educationpurposesin thesetwo medicaldomains.Support forother domainsof rapidly
changing and uncertain knowledge will be possible as well. In MEDICUS, uncertanatydtedby
the Bayesiannetwork approach. Thusnodelling consists ofcreatinga Bayesiannetwork for the
problem at hand. Since MEDICUS is designed for users interestieeldlomainbut notnecessarily
in mathematicaissues,it is possibleto statepropositionsverbally and let the systemgeneratea
Bayesiannetwork proposal. This differs from existing reasoningsystemsbasedon Bayesian
networks, i.e. in medical domains, which contain a built-in knowledge base that may be ussd but
created or modified by the us&iagnostic reasoning and decidicgnsists of usinghe network for
stating and testing diagnostic hypotheses, and asking for recommendations.

In this paperwe will focus onthe modelling component.In order to designa domain model
representedas a Bayesiannetwork, it is necessaryto specify the qualitative and quantitative
information necessaryThis is a problem for probability-basedas well as for other uncertainty
formalisms. We will describe our approaches how to acquire this knowledge from dialogues.

» With respectto qualitative information it is necessaryto check whetherthe dependence and
independence relations implied bBayesiannetwork correspondo the intentionsof the modeller.
In MEDICUS, these relations are obtained from diagnostic assertions.

* With respect tquantitative informatiopapriori and conditional distributions havelte obtainedin

orderto be ableto usethe networkfor diagnosticreasoning But evendomain expertsare usually
hesitant to specify numerical relationships. So we atigaign an easily usablesystemthe modeller
shouldbe ableto statepropositionsverbally. We are currently developingan approachto assign
probabilities to these "fuzzy" relations and concepts.

We will show how to extendtheseapproache$o naturaldialoguesituationsbetweentwo or more
participants. The purpose of this is to be able to acquire the knowltedgenore naturalsituations,
andto modeldialoguesin probabilisticdomains.This is a necessaryondition to supportthemin

professional as well as educational contexts.

1. Introduction

Diagnosisand decisionmaking involve reasoningand problem solving tasks that can be quite
difficult. This is especiallytrue in medicaldomains(Barrows & Tamblyn, 1980; Boshuizen&
Schmidt, 1992; Elstein et al., 1978; Patel & Groen, 1986) where the knowledgeis particularly
complex, interrelated,and uncertain. Two examplesof such domainsare the epidemiology of
diseases caused by environmental influencespliteition, and of humangeneticdefects. Inthese



domains,clear-cuttaxonomiesand explanatorymodelsof diseasespr syndromes have not been
developed yet. But these domains are getting increasingly important. This is for example reflected
the fact that currently many further education courses for physicians are established.

The main aim of medical expertsystems hadeento supportdiagnostichypothesesand further
diagnosticsteps,for example,for differential diagnosis.Some systemsalso generatetherapeutic
recommendationdJncertaintyis handledheuristically (i.e. MYCIN, Shortliffe, 1976; CASNET,
Weiss et al., 1978; PIP, Szolovits & Pauker,1978; 1993;INTERNIST, Miller et al., 1982;
TRAINER, Reinhardi& Schewe,1995) orin a probability-basedvay (i.e., NESTOR, Cooper,
1984; MUNIN, Andreassen etl., 1987; PATHFINDER, Heckerman,1991). Somesystemge.g.
TRAINER) have beerlevelopedor educationpurposesThey enablethe userto statediagnostic
hypothesed$or medicalcasesand give feedbackor they are able to explain their reasoning(e.g.
Clancey,1983). But they do not allow the user to createnew knowledgebases bystating or
modifying domain modeldVodelling is importantfor two reasonsFirstly, medicalexpertswould
appreciatea tool for summarisingand organisingassumptionsand resultsof studies.This would
help to presentinformationin a compactway aswell asin the derivation of researchquestions.
Secondly,within educationalcontextsthe user shouldchave anopportunity not only to practice
diagnosis, but also to actively construct models of diseases, their possible causes, and the sympt
associated with them, and to evaluate the consequences of these models.

MEDICUS (Schrdder et al., 1996) is a system currently under developmertesiighedo enable
and assist in the creation of domain models and to support diagnostic reasoning andrdakismn
using the Bayesiannetwork approach,both within professionaland educationalcontexts. In
environmentamedicine,diagnosticreasoningand deciding doesnot only refer to diagnosisof a
patient'sdiseaseput alsoto the detectiorof relevantenvironmentaffactors, requiring chemical/
technical analyses. Table 1 shows the potential users of MEDICUS.

context
professional educational
modelling epidemiologists participants of further
appli- education courses
cation

diagnostic reason-| physicians participants of further
ing and deciding chemical / technical staff education courses

Table 1: Tasks, contexts, and potential users of MEDICUS

This paperfocuses orthe modelling part of MEDICUS. For the creationof a Baysiannetwork
domain model, the modeller has to specify a lot of qualitative and quantitative information.

*  On the qualitative level, the network implies dependence and independence redatiinbas
to be verified that these implicatioage consistentwvith the assumptionsindintentionsof the user.
In MEDICUS the user may specify these assumptions by diagnostic assertions.

*  On the quantitative level, apriceind conditionaldistributionsare neededor the network. But
this information is difficult to obtain. Epidemiologicalstudiesoften cannotbe directly compared
becausef specialconditions,and evendomainexpertshesitateto specify numericalrelationships
(Nakao & Axelrod, 1983). Therefore, we enable the modellstaiepropositionsverbally. We are
currently developing an approach to acquire quantitative information from verbal propositions.

We think that it is particularly useful to extend batbproacheso naturaldialoguesbhetweentwo or

more participants Firstly, in a dialoguethe needednformationcanbe acquiredn a more natural

way. Secondly,modellingdialoguesis a prerequisitefor supportingtutorial dialoguesas well as
expert discussions. Thirdly, for diagnostic purposes it seems apprdpriegea modelthatresults

from experts' discussions if objective data are not available. Again this requires dialogue modelling
The next section provides an overview of MEDICUS, including its approachego acquire the
qualitative and quantitative information needed.(A more detailed description can be found in
Folckerset al., 1996, and Schréderet al., 1996). Thenwe will describehow to extendthese
knowledge acquisition approaches to dialogues. The closing section will state some conclusions.



2. An Overview of MEDICUS
2.1. Design Principles

In order to create a system designedupportproblemsolving in learningand educationcontexts,
design principles are required that are basedon a theory of problem solving and knowledge
acquisition.We call our approachan Intelligent Problem Solving Environment(IPSE, Mébus,
1995): The learner acquires knowledgeactively testinghypothesesThe task of the systemis to
analyse thdnypothesesndto provide help and explanationsThe psychologicafoundationof our
IPSE approach is th&P-DL Theory of knowledgeacquisitionand problemsolving (i.e., Mdbus,
1995)which is influencedby van Lehn (1988), Newell (1990), Anderson(1993), and Gollwitzer
(1990). Briefly, it states that new knowledge is acquired as a result of problem soidiagplying
weak heuristics in responseto impasses.In contrast, knowledge is optimised if applied
successfullyln addition,thereare four distinct problemsolving phasesdeliberatingand setting a
goal, planning how to reachthe goal, executingthe plan and evaluatingthe result. The ISP-DL
Theory leadsto severaldesignprinciplesfor IPSE's (M6bus, 1995). For example,firstly, the
theory stateghat the learnerwill appreciatehelp only at an impasse.So the systemshould not
interrupt the learner buiffer help on demandSecondly,feedbackand help informationshouldbe
availableany time, aiming at the actualproblemsolving phaseof the learner. Thirdly, the learner
should be preventeiom trappinginto follow-up impassesThus help information shouldrefer to
the learner's pre-knowledge as much as possible.

MEDICUS is designed accordirtg thesecriteria. For example help informationis or will always

be available on demand. Planning a model is facilitated by a simplified-natural-language model edi
thatallows the learnerto stateher or his ideasin an informal way. The evaluationof modelsis
supported qualitatively and quantitatively.

We choseto handlethe uncertaintyof knowledgeby the Bayesiannetwork approach.A Bayesian
network (e.g., Neapolitan, 1990; Pedr®88) represents joint probability distribution on a setof
propositional variables b directedacyclic graph. The nodes ofthe graphrepresenthe variables.
The directedarcsrepresentonditionalprobabilities(eachvariableconditionedon its parentsin the
network). Figure 1 shows a simple Bayesiannetwork. Independenciesdetween variables are
representedoy omitting arcs, which simplifies the conditional distributions. For example, the
variables "benzene" and "flickeringteindependengiven knowledgeabout“eye irritations”. This
meansthat informationwhethera patientsuffersfrom flickering is not relevantfor the hypothesis
that he hasbeenexposedo benzendandvice versa)if it is alreadyknown whetherthe patientis
suffering from eye irritations: p(flickering | eye irritations, benzene) = p(flickering | eye irritations).
This support ofqualitativereasoningwvas an importantreasonfor choosingthe Bayesiannetwork
approachn MEDICUS. A physicianengagedn medical diagnosisproceedsn a highly selective
manner(i.e., Elsteinetal., 1978). It seemsa promising hypothesisthat thereis correspondence
between this selectivity - and human reasoning patternsin general -, and the kinds of
(in)dependencies in Bayesian networks (Henrion, 1987; Pearl, 1988).

2.2. The Implementation State

The current implementation state of MEDICUS consists of the following components:
» Components for building domain models:
» Components for initial model formulation:
- agraphical model editor for creating Bayesian network graphs
- alinguistic model editor for creating simplified natural language statements

- acompiler creating an initial Bayesian network graph in the graphical model editor from
a set of sentences stated in the linguistic model editor, and vice versa

» Components for qualitative model specification and modification:
- adiagnostic relevance editor for asserting diagnostic relevances

- afeedback component comparing relevance assertions to the Bayesian network graph,
delivering feedback, modification proposals, and explanations

» Components for quantitative model specification and modification:



guantification of the Bayesian network graph with apriori and conditional probabilities
component for assigning probabilities to verbal relational terms stated in the
linguistic model editofwork in progress)

» A diagnostic support componentrecommendingdiagnostic steps concerning history taking,
examinations, laboratory tests and environmental tests (takingnahygsingfor exampleinroom air
samples).
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Figure 1: A simple Bayesian network

In the graphical model editor, the user may createa graph showing the relationshipsbetween
variables in the domain of interest (Figure 1).

In order for acomputer-basetbol to be acceptedy a rangeof differentusers,it is necessarghat
the user may state his ideas in an informal Wdnys canbe donein the simplified-natural-language
linguistic model editar

Figure 2 shows an example. Each sentence is placed in a sentence field. Inoedgetentences,
the user may selewtiriablecategoriesrelations,modifier, andlogical junctionsfrom a menu,and
namethem. The relationsare classifiedbasedon i) probabilistic conceptsof causality (Suppes,
1970) organisedaccordingto "kind of influence" (positive/ negative)and "direction of influence"
(forward, backward, or undirected),and ii) has-part/ is-a hierarchies.For example,the verb
"causes” (sixth sentence in Figure 2) expresdesnaard, positive influencebetweentwo variables
A and B: p <tB, p(B | A) > p(B). The user may specify new relations alibvegedimensionsThe
sentences created by the learner are checkedléfjréte clausegrammarfor syntacticalcorrectness
and some semantic restrictions.
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Figure 2: The linguistic model editor
Thecompilergenerates an initial graph from the verbal model. For example, the griajgluie 1 is
generatedrom the set of sentencesn Figure 2. Nouns are representedy nodes. The relations
between nounarerepresentedby links whosedirectionsdependon the featuresof the verb being
usedin the linguistic model editor (kind and direction of influence). For relations describing
undirectedrelations(like "correspondgo”), a dialogueis evoked:The user isaskedto specifythe
direction, or to specify another variable as the common cause or effect of the variables in question

After the initial formulation of the model, it hasto be analysedand, if necessaryrevisedon a
gualitative level. In particular, it has to be verified tthee dependencieand independenciesnplied
by the graphcorrespondo the knowledgeof the modeller.This knowledgehasto be acquiredy
the systemin a way that is both comfortableto the modeller and informative for generating
independencassertionsTherefore MEDICUS hasa diagnosticrelevanceeditor. For a case,the
modeller specifies the initial data known, if any. Next, he specifies a diagnostic hypofhesily,
he specifieswhat information he would look for next, that is, what information he considers
diagnosticallyrelevantto the hypothesis,given the facts alreadyknown. Information considered
relevantto the hypothesishy the modeller,given the known data, isdependenbf the hypothesis,
given these data. Informatiot considered relevant isdependent.

The system noweheckswhetherthe graphis consistenwith the dependencieandindependencies
specified by the modeller in this way, using the d-separationcriterion (Pearl, 1988). If no
differencesarefound, the feedbackcomponeninforms the modeller.If differencesare found, a
graphis constructednternally from the dependencand independencassertiongSrinivas et al.,
1990). This internal graph is compared to the modeller's graph. Thiteatdy the resultthatarcs
have to be removed from the graph in orddsé@onsistentwith the in-/ dependenciegr thatarcs
have to be added to the graph, or that c) arcs have to be removed and added as well.

On further request, the modelleray ask the systemfor modification proposalsand an explanation
of these proposals. The modification proposals stem from the internal graptxpléeationrelates
the modification proposal to the corresponding assertion made by the user in the diagnostic releva
editor. That is, the proposal to remove an arc is explained by an independence asaddimnthe
user (the userdid not considerthe variablesconnectedby the arc relevantto each other). The
proposal to add an arc is explained by a corresponding dependence assertion.

When thequalitativestructureof the graphis fixed, the modellermay quantify the netwith apriori

and conditionalprobabilities,enter evidencesand let the systemgenerateposteriordistributions.
Like for examplein ERGO and HUGIN, evidencepropagationis implementedaccordingto the
Lauritzen & Spiegelhalter (1988) algorithm.

As noted, as an alternative to entering numerical probabilities, the system will be géteratehe
needed conditional probability distributions from verbal relational terms stated in the linguostt
editor. Thereis literatureaboutthe empiricalinvestigationof the semanticsof adverbphrasedike

"probably”, "perhaps”,"maybe", etc., and modal verb forms like "should”, "will", "may", etc.
(Kipper & Jameson]1994; Teigen& Brun, 1995; Wallstenet al., 1986; Wallsten & Budescu,
1995), but this works not aimedat relational terms, like "A may sometimedeadto B", "Thereis

some degree of correspondematweenA andB", andthe like. We are currentlyworking onthis

problem. One possibility is to extend tapproachesnentionedby acquiringmembershigunctions
for relational terms (Schroder et d996). We also considera different approachthat stayswithin

probability theory. Both approaches require empirical judgements concerning the adgoeroal
relational phrases as descriptions of probability or frequency distributions.

3. Acquiring Qualitative and Quantitative Knowledge from Dialogues

In this section, wedescribesomeextensionof MEDICUS to dialoguesituationsthat are not yet
implemented.We think that natural discussionsand dialogues are particularly useful for the
acquisition of the qualitative and quantitative knowledge necessaryfor domain modelling with
Bayesian networks for several reasons:

« The information can be acquiredin a more natural and non-reactiveway. This is especially
important for users interested in the domain but not in the underlying mathematics of the tool.
» By encouragingor enablingdiscussionsvia electronicmail / Internet, it is possibleto utilise
information from persons at remote locations.



» Any domain ofuncertainknowledgeis facedwith a problemas soonasa domainmodelis to be
utilised for diagnosticpurposesTheremay be as many modelsas experts,especiallyif objective
data are not available. Bynabling,analysing,and guiding expertdialoguesit might be possibleto
find out the rangeof opinionsand argument& the domainof discourse,to settlesomeof the
conflicts (forexample,spuriousconflicts dueto differentuse ofterminology),andto structurethe
discussionn a way that helpsto evaluatethe different modelsso that the selectionof a particular
model is more grounded.

» Modelling dialoguesis alsoa prerequisitefor supportingtutorial dialogues Modelling a dialogue
betweena tutor and a learner,or betweenlearners,may leadto hypothesesabout the learners'
knowledge states and about effects of the tutor's utterances on the knostéeelgiethe learner(s).
This can help the tutor to select utterances so that they will achieve desired knowledge changes.

3.1. Qualitative Knowledge

Figure 3 shows how qualitative information about dependenciesand independenciesnay be
obtainedfrom a diagnosticdialogue.The verbal utterancefleftmost column) are translatedinto
dependencieémiddle column).For example,sinceexpertl considersD relevantfor C, given no

prior information, D and Gre not independengiven no prior information: = 1({D},{},{C}). The

right column shows a parsimoniousgraph (Srinivas et al., 1990) encodingthese dependencies,
where A, B, and F are etiology variables (or "causes"), C and E are possible diseases, and H, D
G aresymptomvariables.Now expert2 makesan additionthatleadsto a slightly different graph.

But sinceexpertl disagreeson that,there are two competingmodels.In orderto find out the
reasons for these different opinions dadhelp settle theconflict if possible,the discussion should
continue.This could be stimulatedby generatingquestionsvheredifferent answersfrom the two
expertsare expectedFor example,if we askthe experts whetheF is importantfor H, we would
expect expert 1 to say "nddecauseccordingto his model,I({F},{}.,{H}), butwe wouldexpect
expert 2 to say "yes" because according to his model -I1({F},{},{H}). Examplestloér questions

are: "Is F important for C if information about H is available?", "Is G impoftan€ if information
about H is available?", and so onthE expertsdo not settleon one commonmodel but keeptheir
models,thesequestionscan also help to selecta model if neededfor diagnostic purposes:One
would of course select the model with the least inconsistent answers. This Kiatbgfiecould be
extended to groups of experts, or stimulate discussions and explorations within groups of learner:

3.2. Quantitative Knowledge

Whenthe modelis fixed on the qualitativelevel, a quantitativedialogue can be evoked. Figure 4
shows how the effects of "fuzzy" relationaterance®f dialoguepartnerson the domainmodel of
onedialoguepartnercanbe modelledsimilarly to Kipper (1995). Initially, the learnerhas noidea
about the probabilities, for example, about p(H+ | C+). This is representedby a uniform
distribution. Nowthe dialoguepartnersmakeutterancexoncerningthe relationbetweenC andH.
Distributions for these utterances (p(B(H+ | C+)=x) = ...xanbe obtainedempirically usingone
of the approaches mentioned at the end of section 2. The hypothetical influetheagtteranceon
the learner's knowledge can then be modddedomputingthe probabilities(p(p(H+ | C+)=x) | Ej

,Ej, ...) and calculating their expected value.

In the sameway, it would be possibleto modelthe generatiorof fuzzy relationalstatementsn an
experts'discussionandthe impactsof thesestatementon the modelsof the other participants.
Finally, the effects of all experts' contributions can be usedstea "common™ modelthat canbe
used for diagnostic purposes and decisions.

4. Conclusions and Further Work

With respectto educationand training purposes,one of our long-term goals is to establish
MEDICUS as a modelling and diagnosticreasoningtool within university and further education
courses.With respectto professionalapplications,we plan to apply the systemas a diagnostic
assistantoncerningpatientswith suspectedtrainsof substancesuch as mercury, lealenzene,



andso on. In both applicationfields, a tool for analysing,modelling, and supportingdialogues
seemspromising. For MEDICUS, the approachegpresentedwill lead to the implementationof
agentsfor modelling the knowledgestatesof the dialogue partnersand for participatingin and
guiding the discussion in expert-expert, tutor-learner and learner-learner dialogues.

Utterancees Dependencies Graphs

Expert 1:
In order to diagnose C,
| am looking for symptoms D~ | ({D}, {}, {C})

and H . . . =1 ({H}, {}, {C})

and for possible etiologies A- | ({A}, {}, {C})

and B. -1 ({B}, {}, {C})

In order to diagnose E,

| would like to know

about symptoms D -1 ({D}, {}, {E}

and G. _ -1 ({G}, {}. {E})

Furthermore, the etiology -1 ({F}, {}, {E})

F is important. A B F
Expert 2:

| agree. But in addition
| think that symptom H -1 ({H}, {3, {E})
is also important for E.

Expert 1: G
No, | don't think so. O

Figure 3: An example dialogue for the acquisition of qualitative knowledge



Initial model of the learner: uniform distribution Utterances of dialogue partners

O p(p(H+ | C+)=0.05) = 0.1 p(H | C)

pkp(H+ | C+)=0.45) = 0.1
p(p(H+ | C+)=0.55) = 0.1

p(p(H+ | C+)=0.95) = 0.1 ‘ ‘

El: "Cis of con- E2: "An influence E3: "C is only
siderable im- fromCtoH marginally
portance for H" cannot be ruled out” relevant to H"

p(E1 | p(H+ | C+)=0.05) =0.00  p(E2 | p(H+ | C+)=0.05) = ...
p(E1 | p(H+ | C+)=0.15) =0.00 ...

p(E1 | p(H+ | C+)=0.25) =0.01  p(E2 | p(H+ | C+)=0.95) = ...
p(E1 | p(H+ | C+)=0.35) = 0.01

p(E1 | p(H+ | C+)=0.45) = 0.02

p(E1 | p(H+ | C+)=0.55) = 0.10

p(E1 | p(H+ | C+)=0.65) = 0.30

p(E1 | p(H+ | C+)=0.75) = 0.40 p(E3 | p(H+ | C+)=0.05) = ...
p(E1 | p(H+ | C+)=0.85) = 0.15 ...

p(E1 | p(H+ | C+)=0.95) =0.01 Pp(E3 | p(H+ | C+)=0.95) = ...

Posterior probabilities: p(p(H+ | C+)=0.05 | E1, E2, E3) = ..., ..., p(p(H+ | C+)=0.95 | E1, E2, E3) = ...

Figure 4: An example dialogue for the acquisition of quantitative knowledge
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