Designing Help for Viewpoint Centered Planning of Petri Nets

O. SCHRODER, C. MOBUS, K. PITSCHKE
Department of Computational Science
Oldenburg University, 26111 Oldenburg, Germany
E-Mail: Claus.Moebus@ar bi.informatik.uni-oldenburg.de

Abstract: PETRI-HELP supportsnovicesin learningto model with condition-
eventPetri nets. It is basedon a theoreticalframework recommendinghat a help
systemshouldoffer help, let the learneruse pre-knowledge, and support different
problem solving levels. In PETRI-HELP the learner create®etri nets for given
tasks, test hypothesesabout the solutions or fragments of them, and receive
feedback, completions, and correction proposals.

This help refersto Petri net places,transitions,andlinks. It doesnot yet support
planning, i.e., creatingan abstractsolution idea and postponing implementation
decisions,asrecommendedy the theory and by our empirical work. This paper
describesan approachto supportplanning within PETRI-HELP. It is basedon
transformation rules (Olderog,1991) for the systematicalderivation of a Petri net
from a specificationcomposedof viewpoints of different agents. Applying this
approachto PETRI-HELP will enablethe learnerto proposesolution ideas,test
hypotheses, and get help on an abstract "goal level".

Introduction

Intelligent help systemsand knowledgecommunicationsystemsare expectedo supply the user with
information which is sensitive to the actual problem solving situation and to the actual knowledge and intentions
of the user. Developingsuch systemsrequiresa variety of designdecisions,like whento supply remedial
information, what to supply (what determines "good" help?), and how to presentaiccehnce of knowledge
communication systems by users critically depends on satisfactory solutions to these problems.

In orderto supportdesigndecisionsfor the developmentof an intelligent help system, a theoretical
framework of problem solving and learning is needed. Our ISP-DL Theory (impasseess problemsolving
- driven learningtheory) attemptsto integrateimpasse-driveriearning (Laird, Rosenbloom& Newell, 1986;

1987; Newell, 1990; Rosenbloom et al., 1991; van Lehn, 19881), success-drivetearning(e.g., Anderson,
1983; 1986; 1989; Wolff, 1987; 1991), and phaseproblemsolving (Gollwitzer, 1990). Briefly, the ISP-DL
Theory (Mdbus, Schréder& Thole, 1991; 1992) statesthat problem solving processesnay consist of four
phases: The problem solver (Rig)iberates with the result of choosing a goal to persue; thplaato reachthe
goal is created, the planegecuted, and the obtained result ésaluated. Impasses might resultat severalpoints
in this process: The PS mighot be ableto choosea goal, or the plan cannotbe createdor executionis not
possible, or the obtained result is not satisfying. PBereactsto an impasseby problemsolving, using weak
heuristics like looking for help, asking, cheating. As a result, the PS may overcome the impasse and acquire new
knowledge (impasse-drivenlearning). But alternatively, the information obtained may not be helpful but
confusing, so the learner might encounter a secondary impasse (Brown & vabd8ehrFinally, if a problem
has been successfully solved without impasses, then the knowledge used is optimized (success-driven learning).

The ISP-DL Theory leads to several design principles for a knowledge communication system:

« Accordingto the theory, the learnerwill look for andappreciatehelp if he or sheis caughtin an

impasse. Without an impasse ther@dsneedfor help. So the systemshouldnot interruptthe learner

(see for example also Winkels & Breuker, 1990),dster help.

« The learner should be prevented from trapping into secondary impassesnalyiad away from the

original problemsolving. So pre-knowledge shouldbe useableat impassesas much as possible.One

way to realize this principle is to let the learner test hypotheses aboutlhisrsmiutions, and get help
and proposals from the system. This leaves the activity on the learner’s sidarrthes not disturbed
by unwantedsystemcomments.Secondly,accountingfor pre-knowledgemeansthat help should be
adapted to the knowledge state of the learner. Help shoulbberiented. This requires a learner model.
 Accordingto the ISP-DL Theory, help should be provided at different phasesof problem solving
becausémpassesnay arisein all phases.So a help systemshould supportdeliberating, planning,
executing, andevaluating solution proposals. Help should preoblem phase oriented.

Centeredaroundthe ISP-DL Theory, we developtwo help systems: ABSYNT supports functional
programmingin a visual language(Mébus, Schréder& Thole, 1992), and PETRI-HELP supportsmodelling
with condition-event Petmets (Mdbus, Pitschke& Schréder,1992). Accordingto the theory, modellingwith
Petri nets is a problem solving activity consisting of the following sub-activities:

« to develop specifications of systems or processes to be moddbklefating”)

« to plan a Petri net solution for a given specificatigafining”)

« to actually construct a Petri neexécuting”)

« to evaluate the resulting net, for example whether it meets the specificatigongting").

So theskill of modellingwith Petri netsmay be decomposedhto four correspondingsubskillsto be
learnedby a Petri net modeller. Consequently PETRI-HELP should support the acquisition of these four
subskills. Currently, mainly "execution"and"evaluation"are supportedaswill be shownin the next section
which gives a short overview of the currentimplementationstate of PETRI-HELP, and of some empirical
results. The main section of this paper is concerned with an approach to shepeatner’ splanning processes
while constructing Petri nets for given tasks. In the final conclugdéagion,we will alsotouch uponthe issue
how to support the learnerdsliberation processes.

A Brief Overview of PETRI-HELP

PETRI-HELP (M6bus, Pitschke& Schréder,1992)is intendedto supportnoviceswhile constructing
condition-event Petri nets. The learner may create Petri net solutions to given tasks which are speetfiefl as
temporallogic formulas. The learnermay also hypothesizenhich (sub)setof the formulasconstitutinga task
description he thinks is fulfilled by his current solution proposal. The systengthesfeedbackaboutfulfilled
and unfulfilled formulas, and may deliver proposals how to complete or to correct the actual state of the solution.

Therearetwo reasondor specifyingthe tasksin PETRI-HELP as sets of temporallogic formulas.

Firstly, well-defined tasks are necessary in general in order for the system to be able to evaluate Petri net solutio
proposals.Secondly,temporallogic specificationsallow to verify Petri net proposalsby model checking
(Clarke, Emerson & Sistla, 1986; Josko, 1990). So the learner sst&slconstructa condition-eventPetri net

that satisfies the given set of temporal logic formulas (i.e., a given task description). Due to model ctiecking,
system supports free, unconstrained problem solving iratiyahypothesisof the learnercan be evaluatedand
feedback and completions can be given to it based on rules learned by the system.

Figure 1 shows the temporal-logic specification and an empirical solotaposalto a task, "Bavarian
Biergarten". [],0, O are the temporal logic operators. Informally, [means "always" (diwaystrue that ..."),
¢ means "eventually" ("now or at some point in future it willthee that ..."), andO means'nexttime ("at the
next point in time it will be true that ..."). So for example [] (WséWro) means: "It is always true that if the
waiter sleepsthen he will eventuallybe readyto acceptan order." In the condition-eventPetri net, circles
represent places (conditions, states), and rectargpessentransitions(events).The conditionrepresentedby a
place is true if the place contains a token.

PETRI-HELP consists of the following components:

« aneditor for constructing condition-event Petri nets and for simulating them.

« atask window where the actual task (= set of temporal logic formulas) is pres€ntgdntly thereare

10 tasks in PETRI-HELP, for example, modelling events in a restaurant (Figure liprery the use

of a telephone, and processes in natural (photosynthesis) as well as technical systems.

« ahypotheses window where the learner may hypothesize which (sub)set of the task forhatasshe

considers fulfilled by the actual Petri net proposal.

« afeedback window where the learnés informed aboutwhich formulasof his hypothesisarefulfilled

and which ones not. This analysis is based on a case graph constructor and a model checking algorithm.

Ws : Waiter is sleeping] (Ws - ¢ Wro) [1 (=(Ws A Wro))

Wro : Waiter is ready to acceptorder [(R A Ws - O Wrs) [1 (=(Ws AWTrs))
Wrs : Waiter is ready to serve 0 (Wro - ¢ (Ws AK)) 0 (=(Wro A Wrs))
K : Kitchen got order K> 0P) [0 (Ws v Wro v Wrs)
P : Preparation of the meal 0 (RAWro - 0 Wrs) [1 (Wrs - O WSs)
R : Meal is ready NP - O0R)
O means "nexttime'¢ means "eventually”, [| means "always"
R
K P
Wro
Wrs
Ws
[l

Figure 1. Specification and solution to the task "Bavarian biergarten”

« acompletion proposal window where thdearnergetshints abouthow to continuewith the Petri net
proposal.The completion/ correction proposaltells the studentwhich states,transitions, and links
between them to add and which ones to delete, if any. The completion proposal isrbaded learned
by the systemfrom prior sessionswith other students.These rules associatesubsetsof the task
formulas to Petri net fragments fulfilling them.

So PETRI-HELP currently suppliestwo kinds of help: Feedbaclof fulfilled andunfulfilled formulas,
and completions / corrections of Petri net proposals. How is PETRI-HELP related to the ISP-DL Theory?

« PETRI-HELPoffers information. It is up to the learner to stdigpothesegsubsetf the set of task
formulas), and to ask for completion proposals. The activity is on the learner’s side.

* PETRI-HELP lets the learnerse his or her pre-knowledgebecausehe learnertestshypotheses, gets
completion proposals, and decides what to keep and what to claragklition, the learneralwaysgets
only minimal information to resolve the actual impasse without telling too much about the solution.
* Yet missingin PETRI-HELPis a user-centereghroposalof solution completions.This requiresa
model of the individual learner (M6bus, Schréder & Thole, 1992) not yet realized in this domain.
 Also missing is help for a "planning phase": information whiglmore abstracthan the actualPetri
net constructg(states transitions,andlinks). Currently, PETRI-HELP provideshelp for two different
problem solving phases: the execution level (or "language lahellevel of Petri net constructs)and
the evaluation level (hypotheses testing, net simulation). But the learner gets no helptampsses
which could arise and be met at a more abstractlevel than Petri net states,transitions, and links.
Furthermore, there is no support of a "deliberation" phdserethe learnermay want to find out what
kind of task he or she wants to work on in the first place.

Some of the current shortcomings of PETRI-HELP are mirrored in the results of our empirica2%vork.
studentsworking with PETRI-HELP appreciatedhe two kinds of help differently. Testing hypotheseswas
acceptedand widely used. Studentsreportedthat receiving feedbackof fulfilled and unfulfilled fomulas gave
information about whereto proceedwithout obstructingproblem solving. In contrast,the reactionsto the
completions and correction proposals were less positiveeXample,somestudentscriticized that this kind of
help was too detailed and took part of the problem solving dxeay them. In addition, places transitions,and
links were just presented but not explained.

So the ISP-DL Theoryand empirical studiesled to a commonimplication for PETRI-HELP: Help
information shouldbe providedon a level more abstracthan places,transitions,and links. This information
should support planning and hypothesegesting of plans at early stagesof problem solving, andit should
support their stepwise transformation into more detailed ones.

Incorporating Viewpoint Centered Planning into PETRI-HELP

We investigate an approach develojgdOlderog(1991) that allows to transforma task description(a
specification)into a condition-eventPetri net by making use of intermediatespecificationsas well as "mixed
terms" (terms composed of specification fragmemdPetri net fragments) Basically, the intention of Olderog
is to derivea descriptionof the operationalbehaviorof concurrentprocessesrom a set of logical formulas
specifying these processes. A transformation begins with a set of formulas and coagiracesserm from it
by transformatiorrules. The processerm expresses possibly concurrentprocessn an abstractprogramming
language. A Petri net, with an explicit representationasfcurrencydefinesthe semanticof the processerm.
It canbe derivedfrom the term by net constructionrules. So a derivation chain can be constructedfrom the
specification to the Petri net.

Viewpoint Centered Specification

The specification of a process is stated in trace logic (i.e., Hoare, 1985). As aestaplgle,Figure 2
shows a possible trace-logic specification of (a variant of) the "Bavarian Biergarten":

When observingthe eventsin the "Bavarian Biergarten”, we may notice a lot of things. At the
beginning, the waiter may be sleeping (WE)en after someotherthings not of concernhere(denotedby @),
the waiter is ready to accept an order (Wro) from a guest. Next, the kitchen receives the order from tt€ waiter
(Of course, there are events in between: Whéer approacheshe table, welcomesthe guest,receiveshis order
and goes to the kitchen. But these steps are ignored here.) Then the kitchen prepares the meal (P)né#ien the
is ready (R), the waiter is ready to serve (Wrs), and so on.

Trace of events in the "Bavarian Biergarten":
Ws. @. @. Wro. K. P. @. R. Wrs. Ws. @. Wro. K. @. P ...

Trace logic specification of the "Bavarian Biergarten":
tracel {K, P, R O pref(K.P.R)* A
tracel {Ws, Wro, K, R, Wr} O pref(Ws.Wro.K.R.Wrs)*

View of kitchen: K.P.R.K.P.R....
View of waiter: Ws.Wro.K.R.Wrs.Ws.Wro.K.R.Wrs...

Figure 2. Trace and trace logic specification of the "Bavarian Biergarten"

We may look at this chainof eventsfrom different perspectiveqsee Figure 2). From the kitchen’s
viewpoint, there are only threerelevant events: K, P, R. This is expresssedy "trace | {K, P, R} O
pref(K.P.R)*". This means:f the trace (= the observedchain of events)is filtered (1) by looking only at the
eventsk, P, R, thenatraceis obtainedthat is an elementof the set "pref(K.P.R)*", which is {¢, K, K.P,
K.P.R, KP.RK, K.P.RK.P, KP.R.K.P.R, ...3 (s the empty trace). So the kitchen’s view is a succession of
events K.P.R.K.P.R.K... Similarly, we can take the waiter’s point of vieig.dtsuccessiorof sleeping(Ws),
taking orders (Wro), passing them to the kitchen (K), being told that a meal is ready (R), and serving it (Wrs).

Viewpoint Centered Planning and Implementation

In order to make the transformational approach of Oldét8§1) useablewithin PETRI-HELP, several
simplifications were made. Figure 3 show graphicalrepresentationsf sometransformatiorrules. In these
representationsgachrule hasthreeparts. The upperpart containsthe name of the rule, the middle part may
contain conditions, and the lower part contains a statement. The paralleligmsule condition. It saysthat a
specification which is expressed as a conjunction of terms S and TY$ equivalentto two specificationsS
and T which haveto be implementedas parallelnets. On the PETRI-HELP screen,we may createtwo goal
regions labeledby S andT, which have yet to be implementedby Petri net fragments.Thus a goal region
represents a specification atask or subtask:the goal to createa Petri net fragmentthat is equivalentto that
specification. The dotted crossing lines between the goal regions in Figure 3 mean that these nets wilkhave to

synchronized (which is specified by the net combination rule). For example, apihigipgrallelismrule to the
trace specification of the Bavarian Biergarten in Figure 2 leads to the goal regions shown in Figure 4.

parallelism rule prefix rule
init(s) = {y}
SAT 2 N N
:.,\\\\\ :“ \\, \.,‘ \: 4||',.~v.s'U|.L
] N : L] 5 W L y
\ Y — PN NN N — y
NIRRT, /RIS TN B N T
R - NS B N N {S after_y
: \ A ::; LN : \ N R R A A S
N \ R B R ? }
\\\\1“*‘ \\1"' \\‘\.‘“ \,1\‘\.& \1\\\\\\\\\1\1‘”
recursion rule expansion rule
| init(S) = {y1, y2, ..
S\ ! ‘S\ (S = {yl, y }
e IR S
N "
R N RN —
N N N N) N \
Ny N — Ny Y SN N N yi| [y2]......
\? \ I I\? \ \ \ \ 7 \ _
W * 0 I S N W N \
NN RS B R S T~
]] S’ ') \“ﬁ 5 ::, \ ’ iy :q
5 :‘ Ml & it 'y : \\\\‘* R wunt
N N NN S after y1 S after y2
e T N)
S —’? net combination rule
:sx\\\\ ‘s _>O y — -
5 N T yl
" \ -+() —-»>
N2 v Y
\ n : . -; -----
\ N - — —»
AN < yn y
TR RN | R —
Figure 3. Some transformation rules
trace! {K,P, R tracel {Ws, Wro, K, R, Wr}
O pref(K.P.R)* O pref(Ws.Wro.K.R.Wrs)*
ﬂt\\‘\._\ ‘_\\\\\\\\\\\\\\
> ’ N |
\ IR \
N RS e AN N
N e ey

Figure 4. Applying the parallelism rule to the trace specification in Figure 2

Now we can constructthe two nets for the kitchen and for the waiter separately,and finally we
synchronize them. We will show the construction of the "kitchen net", the "waiter net" is constructed similarly:

"init(S)" is the set of next possibleeventsof a processspecifiedby S. This set might be empty
(deadlock,not shown), contain one element(then the prefix rule is applicable),or more than one element
(handledby the expansiorrule). "trace | {K, P, R} O pref(K.P.R)*" (goal region5a in Figure 5) hasone
possible next element: K. (Since all non-empty traces in this set begin wéthyKalue of the variable"trace"
must start with K in order for thiermulato be true.) So the prefix rule (Figure 3) is applicable.Now we can
generate a place leading to a transition labeled with K leading to a goal region again (Figure 5b). The place gets
token because it is the starting place in this construction. The new goal region represents thaftiitdtaanng
receivedan orderfrom the waiter: "K.trace | {K, P, R} O pref(K.P.R)*". (If "K.trace", which is any trace
starting with K, is projected onto {K, P, R}, then the result is in the set "pref(K.P.Rjigyre 5b representa
mixed expression because it is a mixture of specification parts and places, transitions, aNeXthkke prefix
rule is applicableagainbecausehe expressiorfK.trace | {K, P, R} O pref(K.P.R)*" canonly betrueif any
value of the variable "trace" begins with P. (Figure 5c). After three applications of the prefix rule (Figure 5d), the
expressio’K.P.R.trace! {K, P, R} O pref(K.P.R)*" will be obtained.This expressionis equivalentto the
original expression "trace {K, P, R O pref(K.P.R)*", because if &raceis in the set"pref(K.P.R)*", thenthe
same trace preceded by K.P.R will also be in this set, and vice versah&masursionrule is applicable(with
S substitutedby "trace ! {K, P, R} O pref(K.P.R)*', and S' substitutedby "K.P.R.trace! {K, P, R} O
pref(K.P.R)*"). The recursion rule states that if a specification S is equivalent to a mixed expression coataining
specification S', an® andS' are equivalentaswell, then changingthat mixed expressiorby removingS' and
introducing recursion still keeps it equivalent to S. Figure 5e shows the result of its application.

5e
—>

S5a 5b 5

K

|

When nets have been created for different viewpoihts; haveto be gluedtogetherto one single net.
This is achieved by the net combination rule (Figure 3). It says that if two transitions wintieeameoccur
in two nets,thenan arrow shouldleadfrom eachof its preconditiongin both nets)to the transition, and an
arrow should lead from the transition to each postcondition as well. Tlremétinationrule will combinenets
for the two views in Figure 2 to the net shown in Figure 6b. (K and R are the synchronizing transitions.)
Using the transformation approach, differsmategies are possible. For examphe cantake a look at
the two different views oFigure 2 simultaneously andthus avoid the parallelismrule. The resultis shownin
Figure 6a. Alternatively, the components of a net can be devetgpadatelyby using the parallelismrule, and
then gluedtogetherby the netcombinationrule, as shownin Figure 6b. In general,intermediatestrategies
between maximal sequentiality and maximal parallelism are possible too, though not in this simple example.

0 pref(K.P.R)*

K.P.R.trace+ {K,P,R}"
0 pref(K.P.R)* N S

Figure 5. Petri net construction, using prefix and recursion rule

Viewpoint Centered Synchronization

@_> Wsl () p{Wro

Figure 6. Two Petri nets derived from the trace specification in Figure 2. Figure 6a (on the lefi@rinedby
a sequential strategy, Figure 6b (on the right): net derived by a parallel strategy

Supporting planning of Petri nets in PETRI-HELP

How can the transformational approach support learners in constructing Petri nets?

1. If the learner does not know how to proceed and asks for a completion proposal, the sysbffen may
goal regions (asillustratedin Figures4 and5) ashelp. So the learnerwould be providedwith descriptionsof
subtasks yet to be solved, and with recommendations how to decompose the task into subtattlessyidtem
would not be restricted to help on the level of places, transitions, and links.

2. The learnermay statehypotheses about goal regions, not only about Petri net fragments.So the
learner may get information whether he or she is "on the right track" at very early platagegFor example,
the learnermay ask the systemif it is appropriateto structurethe problem of Figure 2 into two parallel
components (Figure 4) without bothering about what the components will exactly loogdikke learnermay
postpone implementation considerations and work with partial plans and mixed expressions.

3. The learner may receive direct guidance in Petri net constructiosifny the transformation rules as
help. So the learnermay createa Petri net solution by stepwiseapplication of the rules, that is, in a
systematical, derivational way. In order to find out whether this is feasable, we carriesirngleaubjectstudy.
The subject was a novice concerning Petri nets. Her task was to create the "restaurant'pagevétid pencil,
using graphicalrepresentationsf the transformationrules as shown in Figure 3. The subject adopteda
maximally parallel strategy. She needed some assistane@plying the parallelismandrecursionrule, shedid
not immediatelyrealizetheir applicability. But in general,shehad no seriousproblemswith this task. This
preliminary result suggests that the approach is feasable as a basis for supporting novices in Petri net design.

Conclusions

In PETRI-HELP as currently implemented, tasks are spedifstdmporallogic formulas.One of their
advantages is that there are no restrictions to possitigions (Petri nets), exceptthat the set of formulashas
to be fulfilled. Any solution proposal can be analyzed.So the temporal logic approachallows “free",
unconstrained problem solving, but does not support planning "above" the level of places, traasdidmss,
and it does not support a systematic, guided construction of a solution.

We have shown an approatthincorporateplanninginto Petri net designwhich is more abstractthan
the Petri net constructs.The approachallows to systematicallyconstructa net proposal,startingfrom a trace
logic formula. Furthermorejt is a soundbasisfor letting the learnerexpressinitial ideas, partial plans, test
hypotheses about them, and receive proposals from the system at the sarid@ddeatneris enabledto think
about specifications (and "mixed terms") without bothering about their implementation from the beginning.

Our future work is concerned with combining the temporal logic and the trace logic approach so that free
problem solving, guided systematical problem solving, and abstract planning are possible as well.

With respectto our theoreticalframework, the problem solving level of deliberation remains still
uncovered. This means thie learnershouldbe supportecby PETRI-HELPin generating the specificationof
some systemor process. Therthe Petri net solution createdby the learnerwould be checkedagainstthis
specification.In assistingthe learnerto createa specification,the systemmay help the learnerand help in a
dialog to acquire and to integrate the knowledge needed.

References

Anderson, J.R. (1983Jhe architecture of cognition. Cambridge: Harvard University Press.

Anderson,J.R. (1986). Knowledge compilation: The generallearning mechanism.n R.S. Michalski, J.G.
Carbonell, T.M. Mitchell (eds)Machine learning, Vol. Il. Los Altos: Kaufman, 289-310.

Anderson, J.R. (1989). A theory of the origins of human knowledig#icial Intelligence, 40, 313-351.

Brown, J.S. & van Lehn, K. (1980). Repair theory: A generative thebbugsin proceduralkskills. Cognitive
Science, 4, 379-426.

Clarke, E.M.,EmersonF.A. & Sistla, A.P. (1986). Automatic verification of finite-stateconcurrentsystems
using temporal logic specification&CM Trans. on Programming Languages and Systems, 8(2), 244-263.
Gollwitzer, P.M. (1990). Action phases and mind-sets. In E.T. Hig&iri®.M. Sorrentino(eds):Handbook of

motivation and cognition: Foundations of social behavior, Vol.2, 53-92.

Hoare, C.A.R. (1985 Communicating sequential processes. Englewood Cliffs: Prentice Hall.

Josko, B. (1990). Verifying the correctnessA#DL modulesusing modelchecking.ln J.W. de Bakker,W.P.
de Roever & G. Rozenberg (edB)oceedings REX-Workshop on stepwise refinement of distributed systems:
models, formalisms, correctness. Berlin: Springer, LNCS 430, 387-400.

Laird, J.E., Rosenbloom,P.S. & Newell, A. (1986). Universal subgoaling and chunking. The automatic
generation and learning of goal hierarchies. Boston: Kluwer.

Laird, J.E., Rosenbloom, P.S. & Newell, A. (1983DAR: An architecturefor generalintelligence.Artificial
Intelligence, 33, 1-64.

Mobus, C., Pitschke,K. & Schrdder,O. (1992). Towards the theory-guideddesign of help systemsfor
programmingand modelling tasks. In C. Frasson,G. Gauthier& G.I. McCalla (eds): Intelligent tutoring
systems, Proceedings ITS92. Berlin: Springer, LNCS 608, 294-301.

Mobus, C., SchroderO. & Thole, H.-J. (1991). Runtime modeling the novice-expertshift in programming
skills on a rule-schema-case continuum. In J. Kay & A. Quilici (dRt)ceedings of the IJCAI Workshop W.4
Agent modelling for intelligent interaction, 12th Int. Joint Conf. on Artificial Intelligence, Darling Harbour,
Sydney, Australia, 137-143.

Mo6bus, C., Schroder,0. & Thole, H.-J. (1992). A model of the acquisitionand improvementof domain
knowledge for functional programmindpurnal of Artificial Intelligencein Education, 3(4), 449-476.

Newell, A. (1990)Unified theories of cognition. Cambridge: Harward University Press.

Olderog, E.-R. (1991 Nets, terms, and formulas. Cambridge: Cambridge University Press.

Rosenbloom,P.S., Laird, J.E., Newell, A. & McCarl, R. (1991). A preliminary analysis of the SOAR
architecture as a basis for general intelligeActficial Intelligence, 47, 289-305.

Van Lehn K. (1988). Toward a theory of impasse-drivertearning.in H. Mandl & A. Lesgold(eds):Learning
issues for intelligent tutoring systems. New York: Springer, 19-41.

Van Lehn, K. (1991). Rule acquisition events in the discovery of problem solving stra@mjeidive Science,
15, 1-47.

Winkels, R. & Breuker, J. (1990). Discourse planning in intelligent help systems. In C. FragdoG&uthier
(eds):Intelligent tutoring systems. Norwood: Ablex, 124-139.

Wolff, J.G. (1987). Cognitive development as optimisation. In L. Bolc @otputational models of learning.
Berlin: Springer, 161-205.

Wolff, J.G. (1991) Towards a theory of cognition and computing. Chichester: Ellis Horwood.

Acknowledgements

We thank J. FOLCKERS for implementing the PETRI-HELP interface.
This research was supported by the Stiftung Volkswagenwerk (Az. 210-70631/9-13-14/89)

