st- Ws& KOH®EPEHIIUS BOCTOK- 3AIIA /L
» 10 HOBBIM HMH(OPMANHOHHBIM TEXHOJIOTHAM
B 00pa30BaAHHH '

EAST-WEST CONFERENCE

ON EMERGING COMPUTER TECHNOLOGIES
IN EDUCATION

JTOKJIAJIBI
PROCEEDINGS

Online Modelling The Novice-Expert Shift in Programming Skills

ON-LINE MODELLING THE NOVICE-EXPERT SHIFT IN PROGRAMMING
SKILLS ON A RULE-SCHEMA-CASE PARTIAL ORDER FOR INTERNAL
STUDENT MODELS

Claus Moebus, Olaf Schroeder, Heinz-Juergen Thole
University of Oldenburg,
D-2900 Oldenburg, Germany

Abstract: This paper describes an approach to model students’ knowledge growth from novice to
expert within the framework of a help system, ABSYNT, in the domain of functional programming.
The help system has expert knowledge about a large solution space. This is necessary because
especially novices often produce "unusual” solutions. On the other hand, it requires a model of the
students’ actual state of domain knowledge in order to provide user-centered help. The model
distinguishes between knowledge acquisition and knowledge improvement. Knowledge acquisition is
reprosented by augmenting the model with expert planning knowledge represented as rules, The
acquisition of malrules is possible, too. Knowledge improvement is represented by rule composition,
In this way, the knowledge contained in the model can be located on a partial order from general
rules to more specific schemas for solution fragments to specific cases (= example solutions).

Introduction

Modeclling knowledge acquisition processes has been recognized as an important research topic (Anderson,
1083, 1986, 1989; Brown & Burton, 1982; Brown & VanLehn, 1980; Rosenbloom & Newell, 1986, 1987,
Rosenbloom et al.,, 1991; Sleeman, 1984) to answer questions like: Which order is the best for a set of tasks to
be worked on? Why is information useless to one person and helpful to another? How is help material to be
designed? Answering these questions requires hypotheses about the learner’s knowledge states and knowledge
acquisition processes. This is especially true within help and tutoring systems (Frasson & Gauthier, 1990;
Kearsley, 1988; Sleeman & Brown, 1982; Wenger, 1987), where online diagnosis of the learner’s knowledge is
necessary in order to react in an adequate way. This diagnosis has to be both efficient and valid. But to achieve
both goals is a difficult problem (Self, 1990, 1991) because there is only a limited source of information, the
learner’s stream of actions.

We model the change of knowledge with two models: the infemal model (IM) and the extemal model (EM).
The IM (described in this paper) is an integrated part of the help system. Its purpose is to provide user-
centered feedback to the stream of problem solving actions. The EM is not a part of the help system (“external’
to it) but is designed to simulate the knowledge acquisition process of learners on a level of detail, including
protocol analyses of verbal data, not available to the IM. The IM describes the hypothetical knowledge growth
of the learner. The EM contains additional hypothetical control knowledge and thus provides hypothetical
reasons for the knowledge changes described in the IM. One of its purposes is to support the development of
the IM.

For modeclling knowledge acquisition processes, a theoretical position concerning problem solving and
learning is necessary which is able to describe the shift of a learner from novice to expert. We have integrated
scveral approaches into a theory we call ISP-DL Theory (Impasse Success Problem solving Driven Learning
Theory) to be described now.

The ISP-DL Knowledge Acquisition Theory

For the informal description of our ISP-DL theory we use hierarchical higher Petri-nets (Huber et al.,, 1990).
The process is divided into 4 recursive subprocesses: "Problem Processing”, "Goal Processing”, "Nonoperational
Goal processing” and "Operational Goal Processing" (Figures 1-4). Places represent states or data memories,
transitions represent cvents or process steps. Places can contain tokens which represent mental objects (goals,
memory traccs, heuristics etc.) or real objects (eg. a solution or a behaviour protocol). Places can be marked
with tags (B for border place, FG for global fusion set). A FG tagged place is common to several nets (eg. the

Knowledge Base). Transitions can be tagged with HI (HI for hierarchical invocation transition).

— 230 -

1

Moebus, Schroeder & Thole

Problem Processinges p - Goal Processing =

E]; operational @ : ol

operation;
Goal

Problem Processin
" Goa .
—a ?J%f;la—:rgéa | ubgoals Heu
Result -> / ristics -> Goal
Result of H.based Solut
evaluation ->Solutions ey
Subgoals,/” Heuristl Goal -3
s ey . Solut. -p
s | Solutio Solutio

- Non-operational _
Goal Processing -

Environ){ First Part
ment of Goal

HJ
First Part of Rest of Goal
Goal -> Goal -> Goals
First Solution Rest Solution;
- Solution -> Solutions

This means that the process is continued in a freshly created instance of the subnet. Within the dotted
boxes it is shown which places are corrgsponding in the calling net and the called net, Shaded transitions and
places are of concern for the IM.
Problem Solving is started in the page "Problem Processing® (Figure 1). The problem solver (PS) strives for
one goal to choose out of the set of goals: "deliberate".
A goal may be viewed as a set of facts about the environment which the problem solver wants to become
truc (Newell, 1982). More precisely, a goal can be expressed as a predicative description which is to be
achieved by a problem solution, For example, the goal to create a program which tests if a natural number is
cven, "even(n)", can be even, "even(n)’, can be expressed by the description: "funct even = (nat n) bool:
goal is achieved if a program is created which satisfies this description.
The goal is processed in the page "Goal Processing” (Figure 2). If the PS comes up with a solution, the
used knowledge is optimized: deduclive knowledge optimization. When the PS encounters a similar problem,
the solution time will be shorter, The net is left when there are no tokens in "Goals", "Goal" and "Solutions".

In the page "Goal Processsing' (Figure 2) the PS checks whether his sct of problem solving operators is
sufficient for a solution: "operational?”/"non-operational?”,

=23 —

Online Modelling The Novice-Expert Shift in Programming Skills

In the latter case, the process is continued in the page "non- operational goal processing” (Figure 3). The
problem can be decomposed and subsolutions are composed to a final solution.

In the former case processing is done according to the page "operational goal processing" (Figure 4). A
plan is synthesized by applying problem solving operators, or it is created by analogical reasoning. The plan
may be a partially ordered sequence or hierarchy of problem solving operators or heuristics. The PS is in
favour of applying problem solving operators. If he uses heuristics a memory trace is kept. In either case, a
problem solving protocol is generated, which is used in combination with the knowledge base to evaluate the
outcome. The result of the evaluation generates an impasse or a success. The result of the evaluation is
transferred back to the page "Goal Processing”.

The reaction of the PS to success is: leave "Goal Processing” with a solution. On the other hand the
reaction to an impasse is the creation of subgoals to use weak heuristics for problem solving. The
corresponding problem solving process creates heuristic-based solutions and memory (races during the
application of the’heuristics. After that the PS will generate inductively a new operator on the basis of the
memory trace and the knowledge about a success.

It is possible and necessary to refine the theory’s transitions and places. For our purpose this simple theory
is sufficient. Important for the rest of the paper is the theoretically and empirically validated statement: New
knowledge is acquired only at impasse time after the successful application of weak heuristics and on the basis o
memory traces. Information is helpful only in impasses and if it is synchronized with the knowledge state of the PS.

The ABSYNT Problem Solving Monitor

The ABSYNT problem solving monitor provides an iconic programming environment (Figure 5) and is
aimed at supporting novices’ acquisition of functional programming concepts up to recursive systems (Moebus,
1990; Moebus & Thole, 1990). The main components of ABSYNT are a visual editor, trace, and a help
component: a hypotheses testing environment. In this environment, the learner may state hypotheses (bold parts
of the program in the upper worksheet in Figure 5) about the correctness of total programs or parts thereof.
The hypothesis is: "Is it possible to embed the boldly marked fragment of the program in a correct solution?". If
the hypothesis can be confirmed the PS is shown a copy of the hypothesis. If this information is not sufficient
to resolve the impasse, the PS may ask for more information. The student’s proposal (Figure 5, upper half) for
the "even" problem does not terminate for odd arguments, Despite of that his/her hypothesis (upper half, bold)
s embeddable in a correct solution. So the hypothesis is returned as feedback to the student (thin part of lower

half of Figure 5). The student then may ask for a completion proposal generated by the system (bold part of
lower half of Figure 5).

One reason for the hypotheses testing approach is that in functional programming a bug usually cannot be
absolutely localized, and there is a variety of ways to debug a wrong solution. Hypotheses testing leaves this |
decision to the PS and thereby provides a rich data source about the learner’s knowledge state.

The answers to the learneras hypotheses are generated by rules defining a goals-means-relation (GMR).
These rules may be viewed as “pure" expert knowledge not influenced by learning. Thus we will call this set of
rules EXPERT in the remainder of the paper. Currently, EXPERT contains 622 rules and analyzes and
synthesizes several millions of solutions for 40 tasks (Moebus, 1990; 1991; Mocbus & Thole, 1990).

For adaptive help gencration, the EXPERT rules have to be augmented by an internal student model (IM).
The function of the IM is to select the completion which is maximally consistent with the learneras current
knowledge state. This should reduce the learneras surprise to a minimum.

—-232 -

Moebus, Schroeder & Thole

Mark #1: EVEN
Head Body

A
[iF THENETSE]
A

Resuit: Mark #1: EVEN

\ Head Body

Figure 5: Snapshot of the ABS YNT hypotheses testing environment

GMR Rules

This section desccribes the GMR-rules which can be partitioned in two ways: rule type (simple, composed)
. database of the rules (EXPERT, POSS, IM). There are three kinds of simple rules: goal elaboration rules,
lles implementing one ABSYNT node, and rules implementing ABSYNT program heads. Composite rules are
cated by merging at least two successive rules parsing a solution. Composites may be produced from simple
les and composites. A composite containing at least one variable which can be bound to a subtree is called a
hema. If all variables in a composite can only be bound to node names or values, then the composite is called
case.

The other way to split the set GMR is the data base of the rules. EXPERT contains the expert domain
nowledge. The sets IM and POSS are created at runtime and will be described below.

Figure 6 shows examples for simple rules depicted in their visual representations. Each rule has a rule
cad (left hand side, pointed to by the arrow) and a rule body (right hand side, where the arrow is pointing
om). The rule head contains a goal -implementation - pair where the goal is contained in the ellipse and the
iplementation is contained in the rectangle. The rule body contains one goal-implementation-pair or a
mjunction of several pairs, or a primitive predicate.

—233-

Qnline Modelling The Novice-Expert Shift in Programming Skills

EA ,
s1 os2 S2{S" g s
\ Program
51 82 Program less_than difference difference Tree
absdiff Tree branching
gmr gmr
o1

Pi P2 P3

if-then-eise P1 P2 @ P3

IF THEN ESE

branching

gmr gmr gmr amr

Figure 6: A goal elaboration rule (E1) and a rule implementing one ABSYNT node ((929]

The first rule of Figure 6, E1, is a goal elaboration rule. It can be read:

If

then
If

then

(rule head):

your main goal is "absdiff* with two subgoals S1 and S2,

leave space for a program tree yet to be implemented, and (rule body).

in the next planning step you create the new goal "branching" with the three subgoals
"less_than (S1,82)", "difference (S2, 81)", and "difference (81, 82)",

the program tree solving this new goal will also be the solution for the main goal”

O1 in Figure 6 is an example of a simple rule implementing one ABSYNT node (operator, parameter, or

constant):
If

then

if
then
if
then
if
then

(rule head):

your main goal is "branching" with three subgoals (IF, THEN, ELSE),

implement an ‘“if-then-else™node with three connections leaving from this node, and leave
space above these connections for three program trees P1, P2, P3 yet to be implemented; and

(rule body):

in the next planning step you persue the goal IF,

its solution P1 will also be at P1 in the solution of the main goal, and
in the next planning step you persue the goal THEN,

its solution P2 will also be at P2 in the solution of the main goal, and
in the next planning step you persue the goal ELSE,

its solution P3 will also be at P3 in the solution of the main goal.

Composition of Rules

In our theory, composites represeat improved sped-up knowledge. Together with the simple rules, they .
constitute a patial order from general planning rules to solution schemata to specific cases representing
complete solution examples. In this section we will define rule composition.

If we view the rules as Horn clauses (Kowalski, 1979), then the composite RIJ of two rules RI and RJ can
be described by the inference rule:

RI: (F <- P & C) RJ: (P’ <- A)

RIJ: (F <= A & C)o-

33

Moebus, Schroeder & Thole

The two clauses above the line resolve to the resolvent below the line. A, C are conjunctions of atomic
formulas. P, P’, and F are atomic formulas. s is the most general unifier of P and P’,

For example we can compose the schema C7 (Figure 7) out of the set of simple rules {O1, O3, L1, L2},
where:

01: gmr(branching(If,Then,Else),ite-pop(P1,P2,P3)):- gmr(If,P1),gmr(Then,P2),gmr(Else,P3).
0s: gmr(equal(S1,82), eq-pop(P1,P2))- gmr(S1,P1),gmr(S2,P2).
L1; gmr(parm(P), P-pl)- is_parm(P).
L2: gmr(const(C), C-cl)- is_const(C).
C gmr(branching(equal(parm(Y),const(C)),parm(X),Else),ite-pop(eq-pop(Y-pl,C-c1),X-pL,P)):-
is_parm(Y),is_const(C),is_parm(X),gmr(Else,P). ' _
ite-pop = primitive ABSYNT operator "if-then-else"
eq-pop = primitive ABSYNT operator "="
P-pl = unnamed ABSYNT parameter node
C-cl = empty ABSYNT constant node

C7 : Composite of the rules O1, O35, L1, and L2

& &

is_parameter is_constant

Figure 7: The composite C7

We describe the composition of node implementing rules RI and RJ with a shorthand notation:
RIU = RIf - RJ

The index k denotes the place k in the goal tree of the head of RI. A place k is the k-th variable leaf
mmbered from left to right (e.g.: 013 = Else). The semantics of "e" can be described in three steps. First, the
variable in place k in the goal term of RI is substituted by the goal term in the head of RJ. Second the call
term P in the body of RI which contains the k-th variable and which unifies with the head of RJ is replaced by
the body of RI. Third the unifier s is applied to this term resulting in the composed rule RIJ.

For example 012 e L1 = gmr(branching(If, parm(P), Else), ite- pop(P1,P,P3)):- gmr(If,P1),is parm(P),
gmr(Else, P3). C7 can be composed out of the ruleset {O1, OS5, L1, L2}in 12 different ways. Two po-ssibi]iiics
are:

C7 = (012 - L1)1 - ((052 - L2)1 - L1)
or
C7 =(((011-05)3-L1)2-L2)1- L1

Empirical Constraints of Simple Rules, Chains, Schemata and Cases

Rules, rule chains and schemata give rise to different empirical predictions. Novices work sequentially, set
more subgoals, and need more control decisions, while experts work in parallel, set less subgoals, and need less
control decisions. This difference is reflected in the partial order from simple rules to schemata te specific
tases or solution examples.

We pose the following hypotheses:

- If the problem solver applies a rule which contains a goal tree and a program fragment in its head, then
these goals may be verbalized and this fragment is implemented in a continuous uninterrupted action sequence.
Verbalizations and actions are intermixed.

- 235

F

Onling Modelling The Novice-Expert Shift in Programming Skills

- If the problem solver applies a rule which contains subgoals in its body, then these subgoals may be
verbalized.

Comparing the application of a composite to the application of the corresponding chain of simple rules,
this leads to the following empirical consequences:

- For the composite, the order in which the parts of the program fragments in the rule head are
implemented is indeterminate and not predictable. The same is true for the verbalized goals in the goal tree.

- For the rule chain, not only the set but also the order of programming actions is predictable.

- The composite is accompanied by verbalizations to a less degree. Cases should not be accompanied by
verbalizations at all. For the rule chain, the content and the order of the verbalizations is predictable.

- Compared to the corresponding chain of simple rules, the program fragment in the head of the composite
is programmed faster, because of the simpler goal structure of the composite and the smaller number of control
decisions. :

These relationships are illustrated in Figure 8 (suppressing the location information for compositions). The
rule sets are organized in a partial order which reflects the degree of verbalization, performance time, and
degree of predictability of the order of programming actions.

The application of chains of rules, which can be built from the rule sets containing simple rules and
composites, and the schema C7 all lead to the same solution: the not yet finished ABSYNT program depicted in
the head of C7. But we would expect differences in verbalizations and performance time. For example, the rule
chain built out of the elements of the set {O1, OS5, L1, L2} should be accompanied by more verbalizations and
longer performance time than the other rule chains and C7 (in Figure 8).

For example the rule chain (01, L1, 05, L2, L1) which when composed generates C7 according to (012
L1)1 - ((052 - L2)1 - L1) leads to the prediction of the stream of events: events(O1) < events(L1) < events(O5)
< events(L2) < events(L1), where:

- events(O1) = {verb(branching(-,)), act(if-then-clse), act(link(if-then-else1,P1)), act(link(if-then-else2,P2)),

act(link(if-then-else3,P3)), space(P1),space(P2), space(P3)},

- events(L1) = {verb(parameter(-)), act(parameter(X))},

- events(05) = {verb(equal(+,")), act(=), act(link(=1, P1)), act(link(=2, P2)), space(P1), space(P2)}

- events(L2) = {verb(constant(")), act(constant(C))}

- events(L1) = {verb(parameter(")), act(parameter(X)}}.

A < B means that the events of set A are followed by the events in set B,

The empirical meaning of the terms is:

- verb(Functor(;, ..,”)): the value of Functor and the instantiated arguments of Functor are possibly
verbalized

- act(Functor): the Functor will necessarily be implemented by an ABSYNT node

- act(Functor(*)): the Functor will be necessarily be implemented by an ABSYNT node which content is
filled by the argument value

- act(link(Nodel;, Node2)): necessarily an ABSYNT link will be implemented between the i-th input of
ABSYNT-Nodel and ABSYNT- Node2.

- space(): necessarily a space in the programming environment will be reserved for the program fragment
which is denoted by the argument of space.

The empirical predictions of the schema C7 are less constrained. The prediction is not a sequence of event
sets but only one set of events:

- events(C7) = { verb(branching(:,")), verb(equal(:,)), verb(parameter(-)), verb(constant()), act(if-then-

else), act(=), act(parameter(Y)), act(constant(C)), act(parameter(X)), act(link(if-then-elsel,=)), act(link(if-then-
else2,X)), act(link(if-then-else3,P)), act(link(=1,Y)),act(link(=2,C)), space(P)}.

- 236 —

WMoebus, Schroeder & Thole

more

number of ‘k
{01, 05, L1, L2} verbalizations
performance timel
degree of order
predictability

{O1-05, L1, L2} {O1, O5-L2, L1} {O1-L1, 05, L2, L1} {01, O5-L1, L1, L2}

{01-05-L2,L1) {O1-05-L1, L2} {O1-05-L1,L1, L2} {OIsL1, O5-L2, L1} (01, O5+L2+L1, L1}
|I

C7 = (O1+05-L1-L2}

= SS‘
* NSNS COMPpOSItIon I

Figure 8: Rule sets partially ordered according to expected number of verbalizations, performance
time, and degree of order predictability

Evolution of the IM during Problem Solving

The IM has the following general features:

- In accordance with ISP-DL-Theory, the IM contains simple rules representing acquired but not yet

mproved knowledge, and composites representing various degrees of expertise.

- Since knowledge improvement should result in sped-up performance, a composite becomes part of the IM
wly if the PS shows a speedup from an earlier to a later action sequence where both sequences can be
foduced by the composite or the corresponding chain of simple rules.

- The IM contains only simple rules and composites which proved to be plausible with respect to an action
tquence at least once. By this we mean the following:

Except for “goal elaboration rules”, the simple rules and composites contain a program fragment in their
jule head (Figures 6 and 7). Thus if the PS applies a certain rule from his domain knowledge, then we expect
{hat he implements the program fragment in the head of the rule in an uninterrupted temporal sequence. The
{rder of action steps within this sequence is indeterminate.

With respect to some sequence of actions, simple rules and composites form four subsets:

L. Rules not containing any program fragments (“goal elaboration rules”) are nondecisive with respect to
{he action sequence. (But fragments of verbalizations can be related to the goal elaboration rules; Moebus &
gT]mle, 1990).

2. Rules whose head contains a program fragment which is part of the final result produced by the action

is&quence, and which was programmed in a noninterrupted, temporally continuous subsequence. These rules are

jlausible with respect to the action sequence.

| 3. Rules also containing a program fragment which is part of the final result of the action sequence, but

iﬂ]is fragment corresponds only to the result of a noncontinuous action subsequence interrupted by other action

ieps. These rules are implausible with respect to the action sequence.

4. Rules whose head contains a program fragment which is not part of the final result produced by the

lution sequence. These rules are irrelevant to the action sequence.

- A credit scheme rewards the uscfulness of the rules in the IM. The credit of a rule is the number of
iution steps explained by this rule in the problem solving process of the PS. Thus the credit is determined by the

gth of the action sequence explained by the rule and the number of its successful applications.

| - According to ISP-DL-Theory, a simple rule acquired by impasse- driven learning can only be improved
iter its successful application (success-driven Icarning). This implies for the IM that it cannot at the same time
¢ augmented by a new simple rule and by composites built from this simple rule. Rather, the possible
mposites have to wait for incorporation in the IM. For this reason, in addition to the IM there is a set POSS

possible candidates for future composites of the IM. Composites of the rules used for parsing a solution
joposal are generated in a generate-and-test-cycle and kept in POSS as candidates. Those surviving a test
lise are then moved into the IM. So the IM contains only simple rules and composites for which we

- 237 —

i Online Modelling The Novice-Expert Shift in Programming Skills

hypothesize that the learner used them already, whereas POSS contains only composites which the PS might
have created as a result of success- driven learning, but did not use them yet.

Figure 9 shows the development of the IM during the knowledge acquisition process.

Start (Top of Figure 9): Before performing the first task, both sets IM and POSS are empty.

i:= 1: Now the learner solves the first task.

First Test: IM and POSS are empty, so nothing happens.

First Parse: The learneras solution to the first task is parsed with the EXPERT rules.

Start:

IM empty, POSS empty

Learner s sclution of
i-h task

i-th TEST; i-th GENERATE:
1. Each composite in POSS 1. The plausible parsc EXPERT rules
- which is plausible in the present solution sequencd | are put into IM and get credit
- which actual cxecution ime is shorter than the 2, The plausible composites of all
time attached parse rules are put into POSS.
is moved from POSS o TM Exccution times of the corresp.action
2. Each irelevant compaosite is kept in POSS sequences are attached.
3. All other composites in POSS are skipped
14, Credit ol all placsible rules in IM is updated

i-th PARSE:

Solution is parsed with rules in IM ordered by credit,
and (as necded) with ather EXPERT rules

Figure 9: Development of the IM during the knowledge acquisition process

First Generate: The EXPERT rules just used for parsing are compared to the action sequence which
produced the learneras solution, and which is saved in a log file. The plausible parse EXPERT rules are put
into the IM and get credit, These rules are hypothesized as newly acquired by PS solving the first task.

Next, the composites of all parse rules are created and compared to the action sequence. The plausible
composites are kept in POSS, They are candidates of improved knowledge useful for future tasks. For each
plausible composite, the time needed by the PS to perform the correspondin action sequence is attached.

i := i+1: Now the learner solves the second task.

Second Test: Each composite in POSS is checked if

a) it is plausible with respect to the action sequence, and

b) the time needed by the PS to perform the respective continuous action sequence is shorter than the time
attached to the composite.

The composites meeting these requirements are put into the IM. Composites in POSS which are irrelevant
to the action sequence of the solution just created are left in POSS. They might prove as useful composites on
future tasks. All other composites violate the two requirements. They are skipped. (That is, composites
implausible to the actual sequence, or composites which predict a more speedy action sequence than observed)
Finally, the credits of all rules in the IM which are plausible with respect to the present action sequence are
updated.

Second Parse: Now the solution of the second task is parsed with the rules of the IM ordered by their
credits. As far as needed, EXPERT rules are also used for parsing.

Second Generate: The plausibility of EXPERT rules which have just been used for parsing is checked. The
plausible EXPERT parse rules are again put into the IM and get credit. As in the first Generate Phase, they
are hypothesized as the newly acquired knowledge in response to impasses on the task just performed.
Furthermore, the composites of all actual parse rules are created. The plausible composites are put into POSS,
they will be tested on the next test phase. Again the time needed for the corresponding action sequence is
stored with each composite.

— 238~

Moebus, Schroeder & Thole

An Empirical Example illustrating Plausibility

To illustrate, Figure 10 shows a continuous fragment of the action sequence of a PS, Subject 2 (82), on a
program ming task. We will restrict our attention to the rules O1, O5, L1, L2, and C7 (see Figures 6 and 7).
When 82 performs the sequence of Figure 10, O1, L1 and L2 are already in the IM from earlier tasks. O5 is not
et in the IM but only in the set of EXPERT rules. C7 has not yet been created.

: After 82 has solved the task, the Test Phase (Figure 9) starts. Since the only composite we look at here
|(C7) has not been created, we only consider the fourth subphase: Credit updating. O1 is implausible with
espect to Figure 10 because the actions corresponding to the rule head of O1 are not continuous but
interrupted. They are performed at 11:15:52, 11:15:58, 11:16:46, and 11:16:55 (Figure 10). Thus the action
sequence corresponding to the rule head of O1 is interrupted at 11:16:42 and 11:16:50.

_ L1 and L2 are also implausible. Actions corresponding to L1 are performed the first time at 11:15:08 and
11:15:29. Thus this sequence is interrupted at 11:15:16 and 11:15:22, L1-like actions are shown a second time by
the PS at 11:16:42 and 11:16:50. These are interrupted, too. Actions corresponding to L2 are performed at
11:15:16 and 11:15:34, with interruptions at 11:15:22 and 11:15:29. So since Ol, L1, and L2 are implausible, their
credits are not changed.

Now S2’s solution is parsed with rules in the IM and, as needed, with additional EXPERT rules (Figure 9).
01, O3, L1, and L2 are among the parse rules in this case, as no other rules have a higher credit and are able

to parse the solution.

After the Parse Phase, the Generate Phase (Figure 9) starts. O5 is an EXPERT rule used for parsing. But
05 is implausible, since its corresponding actions were performed at 11:15:22, 11:15:38, and 11:15:43, with
interruptions at 11:15:29 and 11:15:34, So OS5 is not put into the IM. Then the composites of the parse rules are
formed. C7 (Figure 7) is a composite formed from O1, O35, L1 and L2. This composite is plausible because it
deseribes the uninterrupted sequence of programming actions from 11:15:08 to 11:16:55 (see Figure 10) - despite

the fact that its compoenents O1, 05, L1, and L2 are all implausible. Starting from the beginning of the task (at
11:14:40), the time for this action sequence is 135 seconds. Thus the composite C7 is stored in POSS with "135
seconds” attached to it.

After 82 has solved the next task, the now following Test phase reveals that C7 is plausible again. The
corresponding action sequence (not depicted) was performed in 92 seconds, which is less than 135, So C7 is
moved into the IM and gets a credit of 13 since it describes 13 programming steps (see Figure 10). This credit
will be incremented by 13 each time the composite is plausible again.

11:14:40 Start of task

11:15:08 11:15:22

@ sy,
:15: 11:15:52 11:15:58

TN

11:15:29 11:15:34

T AR
= ©
(N

11:16:42 - 11:16:46 il:

=
)

-

The rule O1 (Figure 6) corresponds

tor the four boldly lined programming
actions: placing the if-then-else node and
drawing the three input connections.

In the sequence these actions are
interrupted twice (dotted lined actions):
Placing and naming a parameter node.
These actions correspond to the rule L1
(Figure 7).

L 11:16:55

LY

froe s m s s s s s s,
P P B P

’
'
’
’
‘
’
’
’
’
[
[
’
[
’

Figure 10: A continuous fragment of a sequence of programmung acnons of Subject SZ

— 239~

Online Modelling The Novice-Expert Shift in Programming Skill

Outlock

Further empirical analyses (in contrast to e.g. Elio & Scharf, 1990) of sulutions and continuous action
streams are in progress. The same is true for the schema-based help generation. When the PS is caught in an
impasse for a task j it is possible to use our hypotheses testing approach. We generate a solution proposal to
task j based on schemata taken from the IM. These schemata represent the content of a hypothesis now
generated by the IM and not by the user as before. Thus it is possible to offer help which uses episodic
information and which was used by the PS successfully before.

References _
Anderson, LR., The Architecture of Cognition. Harvard University Press, 1983

Anderson, J.R., Knowledge Compilation; The General Learning Mechanism. In: Michalski, R.S.; Carbonell, J.G.;
Mitchell, T.M.,Machine Learning, Vol. IL. Los Altos Kaufman, 1986, 289-310

Anderson, LR, A Theory of the Origins of Human Knowledge, Artificial Intelligence, 1989, 40, 313-351

Brown, 1.S., Burton, R.R., Diagnosing Bugs in a Simple Procedural Skill. In: Sleeman, D,, Brown,].S,, Intelligent
Tutoring Systems, New York: Academic Press, 1982, 157-183

Brown, 1.8, van Lehn, K., Repair Theory: A Generative Theory of Bugs in Procedural Skills. Cognitive Science,
1980, 4, 379-426 Elio, R., Scharf, P.B,, Modeling Novice-to-Expert Shifts in Problem Solving Strategy and
Knowledge Organization. Cognitive Science, 1990, 14, 579-639

Frasson, C., Gauthier, G. (eds), Intelligent Tutoring Systems, Norwood, N.J.: Ablex, 1990
Huber, P, Jensen, K. & Shapiro, R.M., Hierarchies in Coloured

Petri Nets, in: G. Rozenberg (ed.): Advances in Petri Nets 1990, Lecture Notes of Computer Science,
Heidelberg: Springer '

Kearsley, G., Online Help Systems. Norwood: Ablex, 1988 Kowalski, R., Logic for Problem Solving, Amsterdam:
Elsevier Science Publ,, 1979

Moebus, C., Toward the Design of Adaptive Instructions and Help for Knowledge Communication with the
Problem Solving Monitor ABSYNT. in: Marik, V. Stepankova, O; Zdrahal, Z. (eds): Artificial
Intelligence in Higher Education, Proceedings of the CEPES UNESCO International Symposium Prague,
CSFR, October 23 - 25, 1989, Berlin - Heidelberg - New York: Springer, Lecture Notes in Computer
Science, No.451 (subseries LNAI), 1990, 138 - 145

Moebus, C., The Relevance of Computational Models of Knowledge Acquisition for the Design of Helps in the
Problem Solving Monitor ABSYNT, in: Lewis, R., Setsuko,0. (eds), Advanced Research on Computers in
Education (ARCE ’90), Proceedings, Amsterdam: North- Holland,1991, 137-144

Moebus, C., Thole, H.J,, Interactive Support for Planning Visual Programs in the Problem Solving Monitor
ABSYNT: Giving Feedback to User Hypotheses on the Language Level, in: Norrie, D.H,, Six, H.W. (ed),
Computer Assisted Learning. Proceedings of the 3rd International Conference on Computer- Assisted
Learning ICCAL 90, Hagen, Germany, Lecture Notes in Computer Science, Vol. 438, Heidelberg:
Springer, 1990, 36-49

Newell, A., The Knowledge Level. Artificial Intelligence, 1982, 18, 87-127

Rosenbloom, P.S,, Laird, I.LE,, Newell, A,, McCarl, R,, A Preliminary Analysis of the SOAR Architecture as a
Basis for General Intelligence, Artificial Intelligence, 1991, 47, 289-305 Rosenbloom, P.; Newell, A, The
Chunking of Goal Hierarchies: A Generalized Model of Practice. In: Michalski, R.S.; Carbonell, J.G,
Mitchell, T.M., Machine Learning, Vol. II. Los Altos: Kaufman, 1986, 247-288

— 240 —

S1n
| Rosenbloom, P.; Newell, A, Learning by Chunking: A Production System Model of Practice. In: Klahr, D,;
Langley, P.; Neches, R. (eds), Production System Models of Learning and Development, Cambridge; MIT
Press, 1987, 221-286

Self, J.A., Bypassing the Intractable Problem of Student Modeling. In, Frasson, C. Gauthier, G. (eds),
Intelligent Tutoring Systems, Norwood, N.J.: Ablex, 1990, 107-123

Self, J.A., Formal Approaches to Learner Modelling. Technical Report AI-59, Dept. of Computing, Lancaster
University, Lancaster, England, 1991

Sleeman, D., An Attempt to Understand Students Understanding of Basic Algebra. Cognitive Science, 1984, §,
387-412

Sleeman, D., Brown, 1.8, Intelligent Tutoring Systems, New York: Academic Press, 1982

Wenger, E., Artificial Intelligence and Tutoring Systems, Los Altos, Ca., 1987

A COMPUTERIZED LEARNING ENVIRONMENT INTEGRATING
PRESCRIBED AND FREE STUDENT ACTIVITIES

Luis Osin
Centre for Educational Technology (C.E.T.)
16 Klausner Street, Ramat Aviv 69011, Israel

Abstract: Instructional computer programs may be classified, in terms of locus of control, in a
spectrum whose extremes are total student control ("learner- directed” or "free"), and total system
control ("author-directed” or "preseribed").

The pioneering C.A L systems developed in the 60’s and 70’s were author- directed. These systems
included a “teacher model", whose decisions were based on the analysis of a "student model",
updated by the computer according to its monitoring of the student performance. The success of
this type of system in improving the learning rate in basic skills has been widely documented.

In the 80’s, the augmented technological possibilities, and the emphasis in the development of
higher order thinking skills, resulted in more emphasis being placed in simulations, games,
microworlds and tools. In these programs every student has complete freedom, with tools for
exploring the environment s/he is presented with. The lack of evaluations showing a clear student
improvement in thinking skills because of the use of these programs is not a reason for abandoning
this line of development. The field is too young, and much more has to be learned.

The problem to solve is how to integrate into one computer system, in a coherent form, the
reliability of the classical prescribed activities, with the possibilities opened by the free activities.
Our solution to this problem involves a structure of pointers linking the student model, whose
knowledge structure is updated according to the computer monitored activities, to a
multidimensional taxonomy of free activities.

Instruction and individual differences

The school we are familiar with was conceived in Europe, at the time of the industrial revolution, and was
nfluenced by industrial methods: start from the raw materials (pupils), apply a sequence of standard processes,
nd the result will be a final product (graduates). What the educational system did not copy from industry
efers to responsibility: if the final industrial product fails, the producer tries to change the process; if the
ducational product fails, the educational system blames the raw material. What the well-intentioned people
hat tried to design a system for mass education did not realize, is that the raw material is not adequate for the
pplication of one standard process. There is a crucial difference between the industrial and the educational
ituation: industry may choose its raw materials and establish quality and homogeneity controls before the

e e

