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Abstract

This paper describes an approach 10 model students'
knowledge growth from novice to expert within the
framework of a help system, ABSYNT, in the domain
of functional programming. The help system has expert
knowledge about a large solution space. This is ncces-
sary because especially novices often produce "unusu-
al” solutions. On the other hand, it requires a model of
the students' actual state of domain knowledge in order
1o provide user-centered help. The model distinguishes
between knowledge acquisition and knowledge im-
provement. Knowledge acquisition is represented by
augmenting the model with expert planning knowledge
represented as rules. The acquisition of malrules is pos-
sible, 0o0. Knowledge improvement is represented by
rule composition. In this way, the knowledge contained
in the model can be located on a gradual continuum
from general rules to more specific schemas for solu-
tion fragments to specific cases (= example solutions).

1. Introduction

Modelling knowledge acquisition processes has been recog-
nized as a necessary extension [0 status maodels, i.c., of bugs
in skills (Anderson, 1983, 1986, 1989; Brown & Burton,
1982; Brown & VanLehn, 1980; Rosenbloom & Newell,
1986, 1987; Rosenbloom et al., 1991; Sleeman, 1984) to an-
swer questions like: Which order is the best for a set of tasks
to be worked on? Why is information uscless (o one person
and helpful to another? How is help and instructional material
to be designed? Answering these questions requires hypothe-
ses about the learner's knowledge states and knowledge acqui-
sition processes. This is especially true within help and tutor-
ing systems (Frasson & Gauthier, 1990; Kearsley, 1988; Slec-
man & Brown, 1982; Wenger, 1987), wherc online diagnosis
of the learner's knowledge is necessary in order to react in an
adequate way. This diagnosis has to be both efficient and val-
id. But to achieve both goals is a difficult problem (Self, 1990,
1991) because there is only a limited source of information,
the learner's stream of actions.

We model the change of knowledge with two models: the
internal model (IM) and the external model (EM). The IM is
an integrated part of the help system. Its purpose is to provide
user-centered feedback to the stream of problem solving ac-
tions. The EM is not a part of the help system ("external" to it)
but is designed to simulate the knowledge acquisition process
of learners on a level of detail, including protocol analyscs of

verbal data, not available to the IM, The IM describes the
hypothetical knowledge growth of the learner. The EM is
more detailed. It contains hypothetical control knowledge
and thus provides hypothetical reasons for the knowledge
changes described in the IM.

If IM and EM are empirically valid, then they should pre-
dict the same sequence of knowledge states and action se-
quences. So we hope to achieve a model of the change of
knowledge states which is usable as an efficient diagnosis
tool (the IM), and a detailed model of knowledge acquisition
processes (the EM), where both models are valid and consis-
tent mutually and with the ISP-DL Theory (sec next chapter).

2. The ISP-DL Knowledge Acquisition Theory

For modelling the knowledge acquisition process, a theorcti-
cal position concerning problem solving and learning is
necessary which is able to describe the shift of the learner
from novice to expert. We have integrated several approaches
into a theory we call ISP-DL Theory (Impasse-Success-Pro-
blemsolving-Driven-Learning-Theory).

For the informal description of our theory we use hierar-
chical higher Petri-nets (Huber et al., 1990). The process is
divided into 4 recursive subprocesses: "Problem Processing”,
"Goal Processing", "Nonoperational Goal processing” and
"Operational Goal Processing” (Figures 1-4). Places repre-
sent states or data memories whereas transitions represent
events or process steps. Places can contain tokens which rep-
resent mental objects (goals, memory Lraces, heuristics etc.)
or real objects (cg. a solution or a behaviour protocol). Places
can be marked with tags (B for border place, FG for global
fusion set). A FG tagged place is common to several nets (cg.
the Knowledge Base). Transitions can be tagged with HI (HI
for hierarchical invocation transition). This means that the
process is continued in a fresh created instance of the subnet.
Within the dotted boxes it is shown which places are corre-
sponding places in the calling net and the called net.

Problem Solving is started in the page "Problem Process-
ing" (figurc 1). The problem solver (PS) strives for one goal
to choose out of the set of goals: “deliberate”.

A goal may be viewed as a sct of facts about the
environment which the problem solver wants to become truc
(Newell, 1982). More preciscly, a goal can be expressed as a
predicative description which is to be achieved by a problem
solution. For example, the goal to create a program which
tests if a natural number is even, "even(n)", can be expressed
by the description: "funct even = (nat n) bool : exists ((natk) :
2 * k = n)". This goal is achieved if a program is creatcd
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which satisfics this description,

The goal is processed in the page “Goal Processing”
(Figure 2). If the PS comes up with a solution, the used
knowledge is optimized deductively: deductive knowledge
optimization. When the PS encounters » similar problem, the
solution time will be shorter. The net 1s left, when there are
no tokens in “Goals”, "Goal" and "Solutions”.

In the page "Goal Processsing” (Figure 2) the PS checks
whether his set of problem solving operators is sufficient for
a solution: “operational?"!"non-operational?".

In the latter case, the process is continued in page “non-
operational goal processing” (Figure 3). The problem can be
decomposed and subsolutions are composed to a final solu-
tion.

In the former case processing is done according to the
page "operational goal processing" (Figure 4). A plan is
synthesized. This may be a partial ordercd sequence or hier-
archy of problem sol' ing operators or heuristics. The PS is in
favour of applying problem solving operators. If he uses
heuristics a memory trace is kept. Anyway, a problem solv-
ing protocol is generated, which is used in combination with
the knowledge base 10 evaluate the outcome. The result of
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the evaluation generates an impasse or a success. The result
of the evaluation is transferred back to the page "Goal Pro-
cessing".

The reaction of the PS to success is: leave "Goal Pro-
cessing” with a solution. On the other hand the reaction Lu
an impasse is the creation of subgoals 1o use weak heuristics
for problem solving. The corresponding problem solving pro-
cess creates heuristic-based solutions and memory traces dur-
ing the application of the heuristics. After that the PS will
generate inductively a new operator on the basis of the mem-
ory trace and the knowledge about a success.

It is possible and necessary to refine the theory's transi-
tions and places. For our purpose this simple theory is suffi-
cient. Iimportant for the rest of the paper is the theoretically
and empirically validated statement: New knowledge is ac-
quired only at impasse time dafter the successful application
of weak heuristics and on the basis of memory traces. Infor-
mation is hewpful only in impasses and if it is synchrouized
with the knowledge state of the PS.
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3. The ABSYNT Problem Solving Monitor

The ABSYNT problem solving monitor provides an iconic
programming environment (Figure 5) and is aimed at sup-
porting novices' acquisition of functional programming con-
cepts up Lo recursive sysiems (Maobus, 1990; Mobus & Thole,
1990). The main components of ABSYNT are: a visual edi-
tor, trace and a help component. The help component con-
sists of two parts: a hypotheses testing environment, and a sct
of visual planning rules. In the hypotheses testing environ-
ment, the learner may state hypotheses (bold parts of the pro-
gram in the upper worksheet in Figure 5) about the correct-
ness of total programs or parts thercof. The hypothesis is: "Is
it possible to embed the bold marked fragment of the program
in a correct solution?". If the hypothesis can be confirmed the
PS is shown a copy of the hypothesis. If this information is
not sufficient 1o resolve the impasse, the PS ~an ask for more
information,

The student's proposal (Figure 5, upper half) for the
"even" problem does not terminate for odd arguments. De-
spite of that his/her hypothesis (bold) is embeddable in a cor-
rect solution, When s/he wants to see the two complements
of the hypothesis the PS has two possibilities to uncover the
complements. The PS now knows that s/he can repair the pro-
gram by two substitutions: 1) =(a,0) / T and 2) T / =(a,0)
(Figure 5, lower half). This means an interchange ol program
parts.

One reason for the hypotheses testing approach is that in
functional programming a bug usually cannot be absolutely
localized, and there is a variety of ways to debug a wrong so-
lution. Hypotheses testing leaves this decision to the PS and
thereby provides a rich data source about the learner's knowl-
edge state.

The answers to the leamer’s hypothcses are generated by

rules defining a goals-means-relation (GMR). These rules
may be viewed as "pure” expert knowledge not influenced by
learning. Thus we will call this set of rules EXPERT in the
remainder of the paper. Currently, EXPERT contains 622
rules and analyzes and synthesizes scveral millions of
solutions for 40 tasks (Mobus, 1990; 1991; Mabus & Thole,
1990).

For adaptive help generation, the EXPERT rules have to
be augmented by an internal student model (IM). The
function of the IM is to select the completion which is
maximally consistent with the learner’s current knowledge
state. This should reduce the learner’s surprise to a minimum.

4. GMR Rules

This section desceribes the GMR-rules which can be parti-
tioned in two ways: ruletype (simple, composed) vs. data-
base of the rules (EXPERT, POSS, IM). We have three kinds
of simple rules: goal elaboration rules, rules implementing
one ABSYNT node, and rules implementing ABSYNT
program heads. Composite rules are created by merging at
least two successive rules parsing a solution. Composiles may
be produced from simple rules and composites. A composile
which contains at least one variable which can be bound 1o a
subtree is called a schema. If all variables in a composite can
only be bound to node names or values, then the composile is
called a case.

The other way to split the set GMR is the data base of the
rules. EXPERT contains the expert domain knowledge. 1he
sets IM and POSS are created at runtime and will be described
cclow,

Now, we will provide cxamples for simple rules which
will be depicted in their visual representations (Figure 6).
Each rule has a rule head (lelt hand side, pointed to by the
arrow) and a rule body (right hand side, where the arrow is




pointing from). The rule head contains a goal -implementa-
tion - pair where the goal is contained in the ellipse and the
implementation is contained in the rectangle. The rule body
contains one goal - implementation - pair or a conjunction of
several pairs, or a primitive predicate.
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The first rule of Figure 6 is the goal elaboration rule E1. It can
be read:

If (rule head):
your Liain goal is "absdiff” with two subgoals S1 and
S2,

then leave space for a program tree yet to be implemented

and (rule body):

If in the next planning step you create the new goal
"branching" with the three subgoals "less_than (S1,
§2)", "difference (52, $1)", and “difference (S1, 52)",

then the program tree which solves this new goal will
also be the solution for the main goal”

O1 in Figure 6 is an example of a simple rule implementing
one ABSYNT node (operator, parameter, or conslant):

If (rule head):
your main goal is "branching” with three subgoals
(IF, THEN, ELSE),

then implement an "if-then-else"-node with three
connections leaving from this node, and leave space
above these connections for three program trees P1,
P2, P3 yet to be implemented.

and (rule body):

if in the next planning step you persuc the goal IF,

then its solution P1 will also be at P1 in the solution of
the main goal, and

if in the next planning step you persue the goal THEN,

then its soluticn P2 will also be at P2 in the solution of
the main goal, and

if in the next planning step you persue the goal ELSE,

then its solution P3 will also be at P3 in the solution of the

main goal.

5. Composition of Rules

In our theory, composites represent improved sped-up
~ knowledge. Together witn the simple rules, they constitute a
gradual continuum from general planning rules to solution
schemes to specific cases representing complete solution
examples. In this section we will define rule composition,

If we view the ru'es as Homn clauscs (Kowalski, 1979),
then the composite RIJ of two rules RI and RJ can be de-
scribed by the inference rule:
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RI:(F<- P & O) RJ: (P' <- A)

RII: F<- A & C)o

The two clauses above the line resolve to the resolvent below
the line. A, C are conjunctions . " atomic formulas. P, P', and
F are atomic formulas. & is the most general unificr of P and
P'.

For cxample we can compose the schema C7 (Figure 7)
out of the set of simple rules {O1, 05, L1, L2}, where:

01 gmulbranching(1Then El),itepop(P1, 22, P3)) - grme(lf, PL), gmr(Then, P2), gm(Else, P3). W
05 gmrlequa(SL, 52), eq-pop(P1, P2)) - gmr(SL, P1), gm(S2, P2). o
L grw(pam(P),P-pl) -15_pam(P). poc
12 gmriconstC), C-d):-is_const(C). =
C7: - gne(oranchinglequal Gamy Y, cont(C), parm(X), ) - popte po Y-l CeX-pl P - e
is_parm(Y), is_cnast(C), is_parm(X), gre(Ele, P). S
U
ite-pop= primitive ABSYNT operator "if -then-clse” i
eq-pop = primitive ABSYNT operator "=" g
P-pl = unnamed ABSYNT parameter node 3
C-cl = empty ABSYNT constant node |
e
7 ; Compasile of the rules 01,05, L1, and L2 3
¥ Y £ O
FTox .04 :
pﬂmqelcymmp/ aep | = X au ]
paramete) |
Eq'wl\f// if-tenelse b
i P L

& &

o
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Figure 7

We can describe the composition of two rules RIand RJ with
a shorthand notation:
RI = RIk . RI

The index k denotes the place k in the goal tree of the head cl
RI. A place k is the k-th variable leaf numbered from left
right (e.g. Olg = Else). The semantics of "«" can be de-
scribed in three Steps. First, the variable in place k in the goal
term of RI is substituted by the goal term in the head of RJ.
Second the call term P in the body of RI which contains the
k-th variable and which unifies with the head of R is re-
placed by the body of RJ. Third the unifier o is applicd to this
term resulting in the composed rule RIJ.

As an example Ol, « L1 = gmr(branching(If, parm(P}, _
Else), ite-pop(P1,P.P3})-- gmr(If P1),is_parm(P), gmrElse, =8
P3). C7 can be composed out of the ruleset {O1, OS5, L1,
L2}in 12 different ways. Two possibilities are:

C7= (0l L1)y » (055 * L) - L1)
or )
C7=(((O1, » 05)3+ L1), + L2); - LI

6. Empirical Constraints of Rules, Schemes, and
Cases

Rules, rule chains and schemes give risc 10 different
empirical predictions. Novices work sequentially, set more
subgoals, anc¢ need more control decisions, while experls
work in parallel, st less subgoals, and need less control
decisions. This difference is reflected in the continuum from
simple rules to schemes to specific cases or solution
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We pose the following hypotheses:

» If the problem solver applies a rule which contains a goal
tree and a program fragment in its head, then these goals may
be verbalized and this fragment is implemented in a
continuous uninterrupted action sequence. Verbalizations
and actlions are intermixed.

« If the problem solver applies a rule which contains
subgoals in its body, then these subgoals may be verbalized.

Comparing the application of a composite to the
application of the corresponding chain of simple rules, this
leads to the following empirical consequences:

« For the composite, the order in which the parts of the
program fragments in the rule head are implemented is
indeterminate and not predictable. The same is true for the
verbalized goals in the goal tree.

» For the rule chain, not only the set bul also the order of
programming actions is predictable.

The composite is accompanied by verbalizations to a less

degree. Cases should not be accompanied by verbalizations
at all. For the rule chain, the content and the order of the
verbalizations is predictable.
» Compared to the corresponding chain of simple rules, the
program fragment in the head of the composite is
programmed faster, because of the simpler goal structure of
the composite and the smaller number of control decisions.

{01, 08, L1, L2} { it
{0105, L1, 12} (01, 05:L2, L1} {OLsLI, 05, L2, L1} [O1, O5LY, LT, L2]
number of
verhalizations
performance me
degree of order

[01:05:L2, L1} {O1405L1, L2} [01405L1, L1, L2} {O1L1, O5:LL LI} {O1, OFLBLL, LIK predictability

C7:={0L0SLILY s

Figure 8 * means compositio

These relationships are illustrated in Figure 8 (suppressing

the location information for compositions). The rulesets are

organized in a partial order which reflects the degree of ver-
balization, performance time, and degree of predictability of
the order of programming actions.

The application of chains of rules, which can be built from
the rule sets containing simple rules #~d composites, and the
schema C7 all lead to the same solution: the not yet finished
ABSYNT program depicted in the head of C7. But we would
expect differences in verbalizations and performance time.
For example, the rule chain built out of the elements of the
set {O1, OS5, L1, L2} should be accompanied by more
verbalizations and longer performance time than the other
rule chains and C7 (in Figure 8).

For example the rule chain (O1, L1, OS5, L2, L1) which
when composed generates C7 according to (Ol = L1); »
(055 « L2); « L1) leads to the prediction of the stream of
events: events(O1) < events(LL1) < events(05) < events(L2)
< events(L1), where:

- events(O1) = {verb(branching(s,*,*}), aci(if-then-else),
act(link(if-then-elsc, JP1)), act(link(if-then-
else,,P2)), act(link(if-then-clseq,P3)), space(P1),
space(P2), space(P3)],

« events(L1) = {verb(parameter(+)), act(parameter(X))},
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« events(OS) = {verhfequal(s oW actf= actlink (=, P1)),
act(link(=4, P2)), space(P1), space(P2)}

« events(L2) = {verb{constant(+)), act(constant(C )}

» events(L1) = {verb(paramctei{*Y}, aci{parametc (X))}.

A < B means that the events of set A are followed by Lhe

events in set B,

The empirical meaning of the terms is:

« verb(Functor(s, ...,+)): the value of Functor and the instan-
tiated arguments of Functor are possibly verbalized

« act(Functor): the Functor will necessarily be iniplemented
by an ABSYNT node

« act(Functor(+)): the Functor will be necessarily be imple-
mented by an ABSYNT node which content is filled by the
argument value

+ act(link(Nodel;, Node2)): necessarily an ABSYNT link
will be implemented between the i-th 'nput of ABSYNT-
Nodel and ABSYNT-Node2.

« space(s): necessarily a space in the programming cnvi-
ronment will be reserved for the program fragment which is
denoted by the argument of space.

The empirical predictions of the schema CT7 are less con-
strained. The prediction is not a sequence of evet sets but
only one set of events:

events(C7) = { verb(branching(s,*,*)), verb(equ.il(s,+}).

verb(parameter(+)), verb(constant(+)), act(if-then-clse),

acl(=), act(parameter(Y)), act(constant{C)), act(parame-
ter(X)), act(link(if-then-clse | ,=)), act(link(if-then-
r::lse,lz,)()), act(link(if-then-elseq,P)), act(link(=1.Y)),
act(link(=,,C)), space(P)}.

7. Evolution of the IM during Problem Solving

The IM has the following general features:

« In accordance with ISP-DL-Theory, the IM contains
simple rules representing acquired but not yet improved
knowledge, and composites representing various degrees of
cxpertise.

Since knowledge improvement should result in sped-up
performance, a composite becomes part of the IM only if the
PS shows a speedup from an earlier to a later action sequence
where both sequences can be produced by the composite or
the corresponding chain of simple rules.

« The IM contains only simple rules and composites which
proved to be plausible with respect to an action sequence at
least once, By this we mean the following:

Except for "goal elaboration rules”, the simple rules znd
composites contain a program fragment in their rule head
(Figures 6 and 7). Thus if the PS applies a certain rule from
his domain knowledge, then we expect that he implements
the program fragment in the head of the rule in an
uninterrupted temporal sequence. The order of action steps
within this sequence is indeterminate.

With respect to some sequence of actions, simple rules
and composites form four subsets:

1. Rules not containing any program fragments ("goal
elaboration rules") are nondecisive with respect to the action
sequence. (But fragments of verbalizations can be related 1o
the goal elaboration rules; Mobus & Thole, 1990).

2. Rules whose head contains a program fragment which
is part of the final result produced by the action sequence,
and which was programmed in a noninterrupted, temporally
continuous subsequence. These rules are plausible with
respect to the action sequence.

3. Rules also containing a program fragment which is part
of the final result of the action sequence, but this fragment
corresponds only to the result of a noncontinuous action sub-
sequence interrupted by other action steps. These rules are
implausible with respect to the action sequence.



4, Rules whose head contains a program fragment which is
not part of the final result produced by the action sequence.
These rules are irrelevant to the action seguence.

« A credit scheme rewards the usefulness of the rules in the
IM. The credit of a rule is the number of action steps ex-
plained by this rule in the problem solving process of the PS.
Thus the credit is determined by the length of the action
sequence explained by the rule and the number of its suc-
cessful applications.

« According to ISP-DL-Theory, a simple rule acquired by
impasse-driven learning can only be improved after its suc-
cessful application (success-driven learning). This implies for
the IM that it cannot at the same time be augmented by a new
simple rule and by composites built from this simple rule.
Rather, the possible composites have to wait for incorporation
in the IM. For this reason, in addition to the IM there is a set
POSS of possible candidates for future composites of the IM.
Composites of the rules used for parsing a solution proposal
are generated in a generate-and-test-cycle and kept in POSS
as candidates. Those surviving a test phase are then moved
into the IM. So the IM contains only simplc rules and
composites for which we hypothesize that the learner used
them already, whereas POSS contains only composites
which the PS might have created as a result of success-driv-

Start:

IM empty, POSS empty

Learner ssolutionof
i-th task

i-th TEST:

i-th GENERATE:

1. Iiach composile in POSS

- which is plausible in the
presentsolutionsequence

- which actual execution
time is shorter than the
timeattached

1. The plausible
parse EXPERT rules
are put into IM and
gecredit

2. The plausible

PS solving the first task.

Next, the composites of all parse rules are created and
compared to the action sequence. The plausible composites
arc kept in POSS. They are candidates of improved
knowledge useful for future tasks. For each plausible
composite, the time needed by the PS to perform the corre-
spondin action sequence is attached.

i := i+1: Now the learner solves the second task.

Second Test: Each composite in POSS is checked if

a) it is plausible with respect to the action sequence, and

b) the time needed by the PS to perform the respective
continuous action sequence is shorter than the time attached
10 the composite.

The composites meeting these requirements are put into
the IM. Composites in POSS which are irrelevant to e
action sequence of the solution just created are left in POSS.
They might prove as useful composites on future tasks. All
other composites violate the two requirements. They are
skipped. (That is, composites implausible o the actual
sequence, or composites which predict a more speedy action
sequence than observed). Finally, the credits of all rules in
the IM which are plausible with respect to the present action
sequence arc updated.

Second Parse: Now the solution of the second task is
parsed with the rules of the IM ordered by their credits. As
far as needed, EXPERT rules are also used for parsing.

Second Generate: The plausibility of EXPERT rules
which have just been used for parsing is checked. The
plausible EXPERT parse rules are again put into the IM and
get credit. As in the first Generate Phase, they are
hypothesized as the newly acquired knowledge in response
to impasses on the task just performed. Furthermore, the
composites of all actual parse rules are created. The plausible
composites are put into POSS, they will be tested on the next
test phase. Again the time necded for the corresponding
action sequence is stored with each composite.

is moved from POSS to IM
2. Each irrelevant compo-
site is kept in POSS

3. All other composites in
POSS areskipped

4. Credit of all plausible
rules in IM is updated

composites of all
parserules are put
into POSS.
Execution times of
thecorresp.action
sequencesare
attached.

v

i-th PARSE:

Sorution 1s parsed with rules in

IM ordered by credit, and (as
needed) with other EXPERT rules |

Figure 9

en learning, but did not use them yet.

Figure 9 shows the development of the IM during the
knowledge acquisition process. We will explain Figure 9:

Start (Top of Figure 9): Before performing the first
programming task, both sets IM and POSS are empty.

i ;= I: Now the learner solves the first task.

First Test: IM and POSS are empty, so nothing happens.

First Parse: The learner’s solution to the first
programming task is parsed with the EXPERT rules.

First Generate: The EXPERT ru'es just used for parsing
are compared to the action sequence which produced the
learner’s solution, and which is saved in a log file. The
plausible parse EXPERT rules are put into the IM and get
credit. These rules are hypothesized as newly acquired by the
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The rule O1 (Fi?um 6) correspands

1o the four boldly lined programming
actions: placing the if-then-elaa node and
drawing the three input connections.

In the sequence these actions arc
inu‘.‘.l‘rupl:d[wice{(luu.cd linedactions):
Placing and naming a parameter node.
These actiona corraspond o therule L1
(Figure 7).

Figure 10

8. An Empirical Example

For illustrations, Figure 10 shows a continuous fragment
of the action sequence of a PS, Subject 2 (S2), on a program-
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ming task. We will restrict our attention to the rules O1, 0S8,
L1, L2, and C7 (see Figures 6 and 7). When S2 performs the
sequence of Figure 10, O1, L1 and L2 are already in the IM
from earlier tasks. O5 is not yet in the IM but only in the set
of EXPERT rules. C7 has not yet been created.

When S2 has solved the task, the Test Phase (Figure 9)
starts. Since the only composite we look at here (C7) has not
been created, we only consider the fourth subphase: Credit
updating. O1 is implausible with respect to Figure 10 be-
cause the actions corresponding to the rule head of O1 are not
continuous but interrupted. They are performed at 11:15:52,
11:15:58, 11:16:46, and 11:16:55 (Figure 10). Thus the
action sequence corresponding to the rule head of Ol is
interrupted at 11:16:42 and 11:16:50,

L1 and L2 are also implausible. Actions corresponding to
L1 are performed the first time at 11:15:08 and 11:15:29.
Thus this sequence is interrupted at 11:15:16 and 11:15:22.
L1-like actions are shown a second time by the PS at
11:16:42 and 11:16:50. These are interrupted, too. Actlions
corresponding to L2 are performed at 11:15;16 and 11:15:34,
with interruptions at 11:15:22 and 11:15:29. So since O1, L1,
and L2 are implausible, their credits are not changed.

Now S2°s solution is parsed with rules in the IM and, as
needed, with additional EXPERT rules (Figure 9), 01, O35,
L1, and L2 are among the parse rules in this case, as no other
rules have a higher credit and are able (o parse the solution.

After the Parse Phase, the Generate Phase (Figurc 9)
starts. OS5 is an EXPERT rule used for parsing. But O5 is
implausible, since its corresponding actions were performed
at 11:15:22, 11:15:38, and 11;15:43, with interruptions at
11:15:29 and 11:15:34. So OS5 is not put into the IM. Then
the composites of the parse rules are formed. C7 (Figure 7) is
a composite formed from O1, 05, L1 and L2. This composite
is plausible because it describes the uninterrupted sequence
of programming actions from 11:15:08 to 11:16:55 (sce Fig-
ure 10) - despite the fact that its components O1, O5, L1, and
L2 are all implausible. Starting from the beginning of the task
(at 11:14:40), the time for this action sequence is 135
seconds. Thus the composite C7 is stored in POSS with "135
seconds™ attached to it.

After S2 has solved the next task, the now following Test
phase reveals that C7 is plausible again. The corresponding
action sequence (not depicted) was performed in 92 seconds,
which is less than 135. So C7 is moved into the IM and gets a
credit of 13 since it describes 13 programming steps (see Fig-
ure 10). This credit will be incremented by 13 each time the
composite is plausible again,

9. OQutlook

Further empirical analyses (in contrast to e.g. Elio &
Scharf, 1990) of solutions and continuous action streams are
in progress. The same is true for the schema - based help
gencration, When the PS is caught in an impasse for a task j
it is possible 10 use our hypotheses testing approach. We gen-
erate a solution proposal to task j on the basis of schemes tak-
en from the IM. These schemes represent the content of the
hypothesis now generated by the IM and not by the user as
before. Thus it is possible to offer help which uses episodic
information and which was used by the PS successfully be-
fore.
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