
Intelligent Assistance in a Problem Solving

Environment for UML Class Diagrams by

Combining a Generative System with Constraints

Hilke Garbe

Department of Informatik

Carl von Ossietzky University Oldenburg

26111 Oldenburg

hilke.garbe@uni-oldenburg.de

Abstract: In this paper we present a Problem Solving Environment

for UML Class Diagrams. To support the students’ learning process,

we use a new approach for the expert system generating the help.

This new approach uses a generative expert system enhanced with a

constraint based system to combine the advantages of the two

specific systems: complete a correct solution proposal to a solution

and give hints for correcting an erroneous solution proposal. We aim

at developing the combined system in such a way that enables us to

provide an authoring system for new tasks. Using the authoring

system new tasks can be supported by the system without extension

of the expert systems.

1 Introduction

UML Class Diagrams are a fundamental technique for computer scientists.

In the program of study at our university they are taught in the third

semester and used throughout the rest of the program. Often the tutors of the

courses are asked for more modeling tasks that help the students to prepare

themselves for the exams.

We aim at helping the students to train their skills in developing such UML

Class Diagrams by providing them with an Intelligent Problem Solving

Environment (IPSE) for such diagrams. In this IPSE they can solve given

modeling tasks and ask the system for different types of help supporting the

problem solving process.

Mainly four requirements lead the design of our IPSE:

1. Free form design of UML Class Diagrams

Van Merrienboer and Kirschner state that “authentic learning tasks

based on real life tasks […] help learners to integrate knowledge,

skills and attitudes, stimulate them to learn to coordinate

constituent skills, and facilitate transfer of what is learned to new

problem situations” [MK07].

So we wanted to integrate the IPSE into a UML modeling tool and

restrict the modeling facilities of the tool as little as possible.

2. Support problem solving with respect to the ISP-DL theory

(Impasse - Success - Problem - Solving - Driven – Learning)

[MAG+03]

The system has to be able to test learners’ hypotheses about their

solution proposal like: “Is (this part of) my solution proposal

correct?” The system then tries to embed the solution proposal of

the student into a system generated solution. If it is embeddable,

the system should generate the next step(s) towards this solution.

As the user's part of the solution is embedded in the system's

solution the system is able to give adaptive feedback. If the user’s

solution proposal cannot be embedded the user is asked to mark a

part of his proposal which he assumes is correct and ask the system

again.

3. Give hints to correct erroneous student solution proposals

In case the learner’s solution proposal contains errors and therefore

cannot be embedded in a solution, the system should give hints

about the parts that have to be corrected and how this can be done.

4. Support the authoring of new tasks

The expert system generating the help should be designed in a way

that enables tutors to incorporate new tasks without any knowledge

of the knowledge representation. This is because the building of

new tasks should take as little time as possible.

2 Expert systems for intelligent learning environments

In the area of intelligent learning environments two different approaches for

the expert systems have been established as successful:

On the one hand, there are the systems using a generative expert system,

e.g. the Cognitive Tutors developed at the Carnegie Mellon University

described e.g. in [ACK+95] or the Intelligent Problem-Solving

Environments (IPSEs) [MAG+03] of the Department "Learning and

Cognitive Systems" at the University of Oldenburg. On the other hand there

are the constraint-based tutoring systems e.g. of the Intelligent Computer

Tutoring Group at the University of Canterbury e.g. described in [MO06a]

and [Ba07]. In [MKM03], [KWR05] and [MO06b] both approaches are

compared.

2.1 Generative expert systems

These systems use generative expert systems that model the users’ problem

solving process and therefore are able to generate solutions for the given

task. By doing this they can e.g. complete a correct solution proposal to a

solution. The knowledge representations used for these expert systems vary:

Cognitive Tutors use production rules, IPSEs use e.g. goals-means-relations

[MAG+03] depending on the domain. But to enable these systems to correct

erroneous solution proposals is very cumbersome because the possible

errors have to be incorporated in the system's knowledge of the problem

solving process, e.g. by incorporating rules representing these errors.

2.2 Constraint Based Tutors

The advantage of Constraint Based Tutors on the other hand is the ability to

give hints for correcting an erroneous solution proposal without having to

model all possible errors. In general they do not include a problem solving

algorithm [Ma01]. Instead constraints are used that have to be satisfied for

the different states of the solution. “Each constraint consists of two parts: a

relevance condition, Cr, and a satisfaction condition, Cs. The relevance

condition identifies the pedagogically relevant states and the satisfaction

condition identifies states where this piece of knowledge has been correctly

applied. A generic constraint states that if Cr is true, then Cs has to be also

true. Otherwise, something has gone wrong and the feedback message

attached to the violated constraint is shown to the student.”[Ba07] The

weakness of these systems is that they are not able to complete learners'

solution proposals because they consider only states of the solution and not

the necessary steps of a Problem Solving Process. This drawback means

that our requirement 2 is not met.

2.3 Tutors for UML-Class-Diagrams

At least two approaches to assist users in learning UML-Class-Diagrams

using a constraint based tutor are described in literature.

Baghaei developed a “Collaborative Constraint-Based Intelligent System

for Learning Object-Oriented Analysis and Design Using UML” [Ba07].

The system supports single users as well as collaborative work. A major

drawback of the system with respect to our requirements is that it uses its

own Class Diagram editor which allows only the class, attribute and method

names that are predefined in the task description. This violates our

requirement 1.

Le, too, describes in [Le06] a constraint based approach of a learning

system for Class Diagrams. The system is integrated in ArgoUML, allows

free-form-modeling of diagrams and therefore meets our requirement 1. But

according to [Le06] the system only analyses classes and associations with

respect to an ideal solution. Attributes, methods and type information aren’t

considered.

3 Combining a generative expert system and constraints

To meet all our requirements we combine the two approaches mentioned

above. We use a generative expert system to generate the correct solutions

and constraints to detect errors in the learner’s solution proposal. As the

semantic constraints used in the constraint based tutors compare the

learner’s solution proposal with one ideal solution implemented in the

system (e.g. [Ba07]) one major challenge of our approach was to detect the

solution generated by the system that is most similar to the user’s proposal.

This solution is used to evaluate the constraints.

The bases of the expert system are graphs that describe the solutions. As

nodes they contain both the elements of the UML diagram as well as

automatically generated metadata based on the formal design description

language LePUS3 [EN11] such as inheritance hierarchies of classes and

methods. Generating these abstract metadata automatically for the given

ideal solutions and learner’s solution proposals is one of the implemented

strategies to identify correct variations of diagrams independent of a special

task. These graphs are used as well for the generation of completions for the

solution proposals of the students as for the definition of the constraints.

Using the same data structure containing the abstract metadata for the

diagrams reduces the development effort for the combined approach.

As mentioned above, it is necessary to identify the system’s solution that is

most similar to the user’s proposal to evaluate the constraints. This is done

stepwise using e.g. an exact or relaxed graph matching implemented as

Constraint Satisfaction Problem using the Degree Heuristic [RN10]. Having

calculated the most similar solution the constraints evaluate the user’s

solution proposal against this ideal solution.

An example for an incorporated constraint is:

Relevance Condition Cr: IF the solution contains a method hierarchy but

the method is just contained in the Superclass AND the diagram of the user

contains an according hierarchy of classes and methods

Satisfaction Condition Cs: THEN any of the Subclasses in the user

diagram should redefine the according method.

If the constraint is violated, the system gives the hint: “The method X

should be implemented in the Superclass Y and not in the Subclasses.” The

system instantiates the variables X and Y with the names of the according

elements in the learner’s solution proposal.

4 Working with the InPULSE system

Working with the system the learner is given a modeling task. In the shown

example his task is to model the relation between a sportsman, his manager

and a sponsor using the Proxy design pattern. The IPSE is integrated in the

UML-Modeling Tool Fujaba
1
 and the learner is not restricted in using

certain names for his diagram elements (Requirement 1). Figure 1 shows a

possible learner’s solution proposal.

1 http://www.fujaba.de/

Figure 1: Proposal of a learner modeled in Fujaba

If the user wants to ask the system for help, the system analyses his

proposal by trying to find a graph matching with the solution graphs. To

reduce the complexity of the graph matching it is performed stepwise with

an increasing set of considered diagram element types. Then the learner is

asked a few questions about the meaning of his diagram elements, to affirm

or decline the element matches. In the given example this e.g. would be:

“Does the class “Athlete” model the sportsman?” In case he declines all or

some of the matches the system tries to find a new match. Having found a

match that is affirmed by the user the system is able to give different types

of help:

1. Analyse Diagram: analyses if the diagram or a marked part of it is

embeddable in a correct solution. (Requirement 2)

2. Hint: Using the incorporated constraints the system gives a textual hint

about errors or missing elements (Requirement 3). In the case of the

diagram shown in figure 1 this would be:”The method

bookAppointment of the class BusinessPartner should not implement

any behaviour. This should be done in the subclasses.” Asking again

for a hint, the system answers:”The method bookAppointment of the

class BusinessPartner should be an abstract method.”

3. Show next step: if the (marked part of the) solution proposal is

embeddable in a correct solution, the system generates a new element

of the solution and presents the new diagram to the user (Figure 2)

together with a text explaining the new element. Now, the user can

choose to add the new element to his diagram.

Figure 2: Generating the next step for the learner's solution proposal2

4.1 Authoring new tasks

The new hybrid approach enables us to provide authors with an authoring

system which is, in contrast to CTAT ([ASM+06], [AMS+09]) or Aspire

([MMS+09], [SMM10]), domain specific. Using this domain specific

authoring system has the advantage that authors do not need any knowledge

about the knowledge representation or the specification of the problem

solving process. Due to the automatic generation of metadata, new tasks can

be created by specifying one or more solution diagrams using Fujaba and

specifying the questions about the meaning of the diagram elements

(Requirement 4). This is nearly the same effort as preparing tasks for face-

to-face classroom tutorials.

2 The texts displayed by the system have been translated for this paper.

5 Evaluation

An evaluation of the system is taking place at the moment. During an

evaluation session the students were asked to answer some questions e.g

about their experience in using UML-modelling tools and eLearning

systems. Then they worked about 90 minutes with the system. As a first

exercise they were asked to solve the task presented above (Figure 1 and 2).

Having solved this they could choose between two tasks about

metamodelling which were parts of the exams in the “Software

Engineering” classes in the last years. After using the system they were

again asked to answer a questionnaire about how they liked to work with

the system.

After the first three evaluation sessions with students of this year’s

“Software Engineering” class and students of the “eLearning” class the

majority of the students answered the question how they liked it to work

with the system with “well” or “very well”. The different types of help seem

to be accepted equally well, with some students showing preferences for the

one or the other kind.

6 Conclusion

Using our new hybrid approach for the underlying expert system our

Intelligent Problem Solving Environment is able to (1) support problem

solving with the hypothesis testing approach with respect to the ISP-DL

theory and (2) give hints to correct erroneous student solution proposals.

Only the correct solutions are modeled and used for the hypothesis testing.

Learners’ errors are determined using the constraints which are used to give

correcting hints. This can be done without having to perform studies

recording the learners’ possible mistakes.

Using the same data structure containing the abstract metadata for both

approaches reduces the development effort for the combined approach.

Furthermore, the system is, in contrast to the most constraint based tutors,

able to work with more than one “ideal solution” for each task by using an

error correcting graph matching algorithm to detect which ideal solution is

most similar to the user’s proposal.

A first evaluation showed that users liked to work with the system.

7 Acknowledgements

The development of the system started within the project InPULSE
3
. The

following people helped me to implement the system: Jan-Patrick Osterloh

implemented the data exchange between Java and Prolog, Andreas Schäfer

the Fujaba Plug-In, and Lars Weber the component displaying the

completion proposal of the system (Figure 2, left side).

8 References

[ACK+95] Anderson, J. R.; Corbett, A. T.; Koedinger, K. R.; Pelletier, R.:

Cognitive tutors: Lessons learned. In: The Journal of Learning

Sciences, 4, 1995, p.167-207.

[AMS+09] Aleven, V.; McLaren, B.M.; Sewall, J.; Koedinger, K.R.: A

New Paradigm for Intelligent Tutoring Systems: Example-Tracing

Tutors. In: International Journal of Artificial Intelligence in

Education, 19(2), 2009, p. 105-154.

[ASM+06] Aleven, V.; Sewall, J.; McLaren, B.M.; Koedinger, K.R.: Rapid

authoring of intelligent tutors for real-world and experimental use.

In: Proceedings of the 6th IEEE International Conference on

Advanced Learning Technologies (ICALT 2006), Los Alamitos,

CA: IEEE Computer Society,2006, p. 847-851.

[Ba07] Baghaei, N.: A Collaborative Constraint-Based Intelligent System

for Learning Object-Oriented Analysis and Design Using UML.

PhD Thesis, University of Canterbury, 2007

[EN11] Eden, A.H.; Nicholson, J.: Codecharts: Roadmaps and blueprints

for object-oriented programs, John Wiley & Sons; 2011.

[KWR05] Kodaganallur, V.; Weitz, R.R.; Rosenthal, D.: A Comparison of

Model-Tracing and Constraint-Based Intelligent Tutoring

Paradigms. In: International Journal of Artificial Intelligence in

Education Volume 15, Issue 2 (April 2005), p. 117-144.

[Le06] Le, N.-T.: A constraint-based assessment approach for free-form

design of class diagrams using UML. In: Proceedings of the

Workshop on Intelligent Tutoring Systems for Ill-Defined

Domains, the 8th Conference on ITS, 2006, p. 11 – 19.

3 http://inpulse.uni-oldenburg.de/inpulse/

[Ma01] Martin, B.: Intelligent Tutoring Systems: The Practical

Implementation of Constraint-Based Modelling University of

Canterbury, PhD thesis, University of Canterbury, 2001.

[MAG+03] Möbus, C.; Albers, B.; Garbe, H.; Hartmann, St.; Thole, H.J.;

Yakimchuk, V.; Zurborg, J.: Towards an AI-Specification of

Intelligent Distributed Learning Environments. In: KI - Zeitschrift

Künstliche Intelligenz Heft 1/03 "Schwerpunkt:Lernen:

Modellierung und Kommunikation", p. 19-24, Bremen: arendtap

Verlag, 2003.

[MK07] Van Merrienboer, J.J.G.; Kirschner, P.A.: Ten Steps to Complex

Learning: A Systematic Approach to Four-Component

Instructional Design, Lawrence Erlbaum Assoc Inc, April 2007

[MKM03] Mitrovic, A.; Koedinger K.R.; Martin, B.: A Comparative

Analysis of Cognitive Tutoring and Constraint-Based Modelling.

In: User Modeling 2003: 9th International Conference (UM 2003),

Johnstown, PA, USA, LNCS 2702, p. 313-322.

[MMS+09] Mitrovic, A.; Martin, B.; Suraweera, P.; Zakharov, K.; Milik,

N.; Holland, J.; McGuigan, N.: ASPIRE: An Authoring System

and Deployment Environment for Constraint-Based Tutors. In:

International Journal of Artificial Intelligence in Education, 19(2),

2009, p.155-188.

 [MO06a] Mitrovic, A.; Ohlsson, S.: Constraint-Based Knowledge

Representation for Individualized Instruction. In: Computer

Science and Information Systems (COMSIS), vol 3(1), 2006, p. 1-

22.

[MO06b] Mitrovic, A.; Ohlsson, St.: A Critique of Kodaganallur, Weitz and

Rosenthal, "A Comparison of Model-Tracing and Constraint-Based

Intelligent Tutoring Paradigms". In: International Journal of

Artificial Intelligence in Education, Volume 16, Issue 3, 2006, p.

277-289.

 [RN10] Russell, St.; Norvig, P.: Artificial Intelligence: A Modern

Approach, Prentice Hall, 2010.

[SMM10] Suraweera, P.; Mitrovic, A; Martin, B.: Widening the Knowledge

Acquisition Bottleneck for Constraint-based Tutors. In:

International Journal of Artificial Intelligence in Education,, vol.

20(2), 2010, p. 137-173.

