
INTELLIGENT ASSISTANCE IN A PROBLEM SOLVING

ENVIRONMENT FOR UML CLASS DIAGRAMS USING A

HYBRID EXPERT SYSTEM

Hilke Garbe

Carl von Ossietzky University Oldenburg

26111 Oldenburg
Germany

ABSTRACT

In this paper an Intelligent Problem Solving Environment for UML Class Diagrams is presented which uses a new hybrid

expert system. This hybrid expert system combines a generative expert system and a constraint based approach to support

learners while solving UML modeling tasks. Using this combination we are able to give different types of help without
having to model all possible errors that can occur while solving the tasks. The generative expert system is used to

complete an embeddable learner’s solution proposal and the constraints are used to correct erroneous s tudent proposals.

New tasks can be added to the system without any knowledge of the underlying expert systems.

KEYWORDS

Intelligent Problem Solving Environment, UML Class Diagrams, generative expert system, constraints

1. INTRODUCTION

UML is a standard modeling language in the field of computer science. We aim at supporting the students

while learning to use UML class models. As they often want to train their skills and get feedback for their

solution proposals, we developed an Intelligent Problem Solving Environment (IPSE). Using this IPSE they

can solve given tasks using the UML modeling tool Fu jaba
1
 and ask the system for help.

As two user groups are intended for our system we aim at supporting both of them. On the one hand,

learner’s should get more than one type of help: According to the hypotheses testing approach described in

the ISP-DL-theory (Möbus et al 2003) students should be supported in building hypotheses about their

solution proposal and ask questions like: “Is my solution proposal or a part of it embeddable in a correct

solution?” If it is, the system should be able to perform the next solution step and present it to the student. If

it is not, the system should additionally be able to correct the erroneous solution proposal.

On the other hand, authors should be able to integrate new tasks in the IPSE as easy as possible without any

knowledge about the underlying expert systems.

2. EXPERT SYSTEMS FOR INTELLIGENT LEARNING

ENVIRONMENTS

Generative expert systems are used e.g. for the Cognitive Tutors developed at the Carnegie Mellon

University or the intelligent problem-solving environments (Möbus et al 2003, Garbe 2012) of the

Department "Learn ing and Cognitive Systems" at the University of Oldenburg. One of the advantages of

these systems is their ability to generate solutions for the given tasks, which enables them e.g. to complete an

embeddable learner’s solution proposal to a complete solution. Different types of knowledge representations

1
 www.fujaba.de

are used for these expert systems: Cognit ive Tutors use production rules , IPSEs use e.g. goals-means-

relations depending on the domain. But to give correcting hints for erroneous student proposals is difficult,

because knowledge about the possible errors has to be incorporated in the expert system. So, often studies

about the errors occurring in students’ solution proposals have to be performed. Modeling these errors is very

cumbersome, because in most domains more erroneous proposals occur than correct solutions.

On the other hand the constraint-based tutoring systems e.g. of the Intelligent Computer Tutoring Group at

the University of Canterbury (Baghaei 2007) use a constraint based approach. Instead of modeling the

problem solving process they describe correct solutions with constrain ts (like e.g. in Figure 1) that have to be

fulfilled. These are evaluated with regard to an ideal solution. If a domain constraint is violated an error

occurred. Possible correct variat ions of the ideal solution have to be considered in the constraints. E.g. in a

class diagram it is possible to model a relationship between two classes as an association or as an attribute in

one or both of the classes. Using the constraints errors can be detected in a learner’s proposal without having

to model them explicit ly. But without an incorporated problem solving process they are not able to perform

the next problem solving step to help the learner.

The following articles compare both approaches in detail: (Mitrovic et al 2003), (Kodaganallur et al 2005),

and (Mitrovic and Ohlsson 2006). (Baghaei 2007) and (Le 2006) describe constraint based UML modeling

tutoring systems.

2. THE INTELLIGENT PROBLEMSOLVING ENVIRONMENT

2.1 The hybrid approach: Integrating a generative expert system and

constraints

Using our hybrid approach we are able to combine the above described advantages of the two specific

systems. We use a generative expert system that is able to generate the poss ible solutions and a constraint

based approach to detect errors.

The generative expert system uses graphs to represent the UML class diagrams as well as additionally

generated metadata e.g. about class or method hierarchies (Eden and Nicholson 2011). Transforming the

UML diagrams for the solutions into these graphs we are ab le to detect correct variat ions of diagrams that are

valid for all tasks: e.g. if a link between two classes is modeled as association or as attribute. Additionally

authors may assign more than one solution to a task containing task specific variat ions (Figure 2, left side).

One major challenge in enhancing this system with constraints is the identification of the most similar

solution with regard to a possibly erroneous solution proposal. This is done by a stepwise exact and error-

correcting graph matching process using A*-search and constraint satisfaction problems with degree heuristic

(Russell and Norvig 2010). Having detected the most similar solution diagram it can be used to generate the

next solution step or to evaluate the constraints (Figure 2, left side). As the correct variations of the diagrams

are described in the graphs they need not be considered in the constraints anymore. Figure 1 shows a simple

constraint incorporated in the system.

Constraint

 Relevance Condition Cr :

IF the user diagram contains a concrete class X and the solution contains an according class Y

 Satisfaction Condition Cs :

THEN this solution class Y should also be concrete.

 Hint:

If the constraint is violated, the system generates the hint:”No objects should be generated from

the class X.” A second hint would be:”The class X should be an abstract class.” Within these

sentences the constraint interpreter instantiates the names of the classes.

Figure 1. Example of a constraint

 Figure 2. Architecture of the system

2.2 Working with the IPSE

The learner is given a modeling task which he can work on in the UML-Modeling Tool Fujaba. In the

shown example he is asked to develop a metamodel for SADT-Diagrams. This task was also part of the

evaluation study because metamodeling is part of the software-engineering class at our university and the

students wanted to train their metamodeling skills.

Solving this task learners are not restricted in using certain names for their d iagram elements (Figure 3).

Asked for help the system tries to find a graph matching with the solution graphs. To confirm or decline the

graph matching the learner is asked some questions concerning the semantic of his diagram elements relating

them to the text of the task, e.g.: “Does the class “Void” model the environment?” As long as the user

declines some matches the system tries to find new matches. Having found a match that is affirmed by the

user the system is able to give the different types of help described above. As the shown proposal is not

embeddable in a correct solution , because the class “Flow” should be an abstract class, the system gives the

hints associated with the constraint shown in Figure 1. After correcting the class the user can ask for a next

solution step. The system presents the new diagram to the user (Figure 4) in a new window. Now, the user

can choose to add the new element to his diagram.

2.3 Architecture

The architecture of the system is shown in Figure 2 on the right side. It is integrated in Fujaba as a Plug-

In
2
. As we wanted to allow the user to choose whether he wants to add the elements proposed by the system

as next solution step to his diagram, we implemented a display component for UML class diagrams
3
 in Java

(Figure 4, left side). The hybrid expert system is implemented in SWI-Prolog
4
. It contains e.g. the diagram

matching algorithms and a metainterpreter for the constraints. The solution diagrams and the semantic

questions like “Does the class X model the environment?” are stored in simple text files. Only these have to

be changed when new tasks are added by an author using the authoring tool.

2
 Andreas Schäfer implemented the Fujaba Plug-In and Jan-Patrick Osterloh the data-exchange between Java

and Prolog.
3
 Lars Weber implemented the component displaying the completion proposal of the system.

4
 www.swi-prolog.org

Figure 3. Learner’s solution proposal modeled in Fujaba

Figure 4. Generation of the next solution step

5

2.4 Evaluation

So far we have evaluated the system with 14 students from a “Software Engineering” class and an

“eLearn ing” class. The evaluation sessions lasted about 2 hours containing (1) a prephase with a

questionnaire e.g. about their experience in using UML modeling tools and eLearning tools, (2) about 1.5

hours of working with the system, and (3) a postphase with a feedback questionnaire about how they liked to

work with the IPSE and the different types of help. A majority of the students answered that they liked it

“very well” or “well” to work with the system. As we hoped some of them showed preferences for the one or

5
 The texts displayed by the system have been translated as the original messages are in german.

the other kind of help. Another evaluation as think-aloud session is planned with the tutors of the Software

Engineering course to further improve our feedback messages.

3. CONCLUSION

As described above we use a new hybrid expert system to support learners in training their UML

modeling skills. This hybrid expert system enables us to support hypothesis testing with respect to the ISP-

DL theory as well as to give correcting hints for erroneous student proposals without the need to model the

possible errors explicitly. Using graph matching algorithms we are, in contrast to most constraint based

tutors, able to work with more than one ideal solution for every task. Especially in the domain of UML class

modeling this is important. New tasks can be added easily by authors, as they just need to specify the solution

diagram(s) using Fujaba and the semantic question concerning the diagram elements using an authoring

system.

In order to support authentic learn ing tasks (Van Merrienboer and Kirschner 2007) we integrated our

learning environment in the UML modeling tool Fu jaba.

REFERENCES

Baghaei, N., 2007. A Collaborative Constraint-Based Intelligent System for Learning Object-Oriented

Analysis and Design Using UML. PhD Thesis, University of Canterbury.

Eden, A.H. and Nicholson, J, 2011. Codecharts: Roadmaps and blueprints for object-oriented programs,

John Wiley & Sons, Hoboken, NJ, USA.

Garbe, H., 2012, Intelligent Assistance in a Problem Solv ing Environment for UML Class Diagrams by

Combin ing a Generat ive System with Constraints , accepted for eLBa 2012.

Kodaganallur, V. et al, 2005. A Comparison of Model-Tracing and Constraint-Based Intelligent Tutoring

Paradigms. International Journal of Artificial Intelligence in Education , Volume 15, Issue 2 (April

2005), p. 117-144.

Le, N.-T., 2003. A constraint-based assessment approach for free-form design of class diagrams using UML.

Proceedings of the Workshop on Intelligent Tutoring Systems for Ill -Defined Domains, the 8th

Conference on ITS, p. 11 – 19.

Mitrovic, A. et al, 2003. A Comparative Analysis of Cognitive Tutoring and Constraint-Based Modelling.

User Modeling 2003: 9th International Conference (UM 2003) , Johnstown, PA, USA, LNCS 2702,

p. 313-322.

Mitrovic, A. and Ohlsson, St., 2006. A Crit ique of Kodaganallur, Weitz and Rosenthal, "A Comparison of

Model-Tracing and Constraint-Based Intelligent Tutoring Paradigms". International Journal of

Artificial Intelligence in Education , Volume 16, Issue 3, p. 277-289.

Möbus, C. et al, 2003: Towards an AI-Specificat ion of Intelligent Distributed Learn ing Environments. KI -

Zeitschrift Künstliche Intelligenz Heft 1/03 "Schwerpunkt: Lernen: Modellierung und

Kommunikation", Bremen: arendtap Verlag, p. 19-24.

Russell, St. and Norvig, P., 2010: Artificial Intelligence: A Modern Approach , Prentice Hall.

Van Merrienboer, J.J.G., Kirschner, P.A., 2007: Ten Steps to Complex Learning: A Systematic Approach to

Four-Component Instructional Design, Lawrence Erlbaum Assoc Inc.

