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ABSTRACT 

 

In this paper, we describe results to model lateral and longitudinal control behavior 

of drivers with simple linear multiple regression models. This approach fits into the 

Bayesian Programming (BP) approach (Bessière, 2008) because the linear multiple 

regression model suggests an action selection strategy which is an alternative to the 

BP action selection strategies draw and best. Furthermore, the inference process 

provided by a linear multiple regression model is a kind of short cut inference 

compared to the inference approach used in Bayesian networks or Bayesian 

Programming.  

 

Keywords: digital human modeling, driver modeling, lateral and longitudinal 

control, linear multiple regression model, Bayesian Programming 

INTRODUCTION   

Modeling driver behavior is essential for developing error-compensating assistance 

systems (Cacciabue, 2007). The Human Centered Design of Partial Autonomous 

Driver Assistance Systems (PADAS) requires Digital Human Models (DHMs) of 

human control strategies for simulating traffic scenarios (Möbus et al., 2009).   
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There are a number of control-theoretical driver models (Jürgensohn, 2007; Weir 

and Chao, 2007) available.  Salvucci and Gray (2004) and Salvucci  (2007) 

proposed an integrated model (S&G-model), which has been implemented as a 

production system within the wide-spread cognitive architecture ACT-R (Anderson 

et al., 2004).  However, only lateral control in this integrated model has been 

achieved by using a control model, which uses visual signals as input for steering 

actions. Longitudinal control is missing. 

Using linear multiple regression models, we estimated the optimal coefficients 

as well as parameters for the lateral control model from single human test drives. 

Additionally, the steering model has been reformulated in order to achieve a better 

fit with human data. The same techniques were applied to longitudinal control, i.e. 

acceleration and deceleration. 

This approach fits into the Bayesian Programming (BP) approach (Bessière et 

al., 2008). The multiple regression model  E(Action | Percepts) uses the conditional 

probability distribution P(Action | Percepts). This is a form in the BP framework. 

The linear multiple regression model suggests the action selection strategy selection 

of expected conditional action which is an alternative to the BP action selection 

strategies draw and best.  

The regression models are learnt from multivariate time series of driving 

episodes generated by a single driver. The variables of the time series describe 

phenomena and processes of perception, cognition, and action control of drivers 

according to the S&G-Model.  The real-time control of virtual vehicles is achieved 

by inferring the appropriate actions under the evidence of sensory percepts.  This is 

a slightly different but more efficient action selection strategy than those used in the 

BP framework. Here the action selection strategies are 

𝑑𝑟𝑎𝑤(𝑃 𝐴𝑐𝑡𝑖𝑜𝑛   𝑃𝑒𝑟𝑐𝑒𝑝𝑡𝑠 ) or 𝑏𝑒𝑠𝑡(𝑃 𝐴𝑐𝑡𝑖𝑜𝑛   𝑃𝑒𝑟𝑐𝑒𝑝𝑡𝑠 ). According to the 

draw strategy the concrete action is randomly selected from the conditional 

probability distribution 𝑃 𝐴𝑐𝑡𝑖𝑜𝑛   𝑃𝑒𝑟𝑐𝑒𝑝𝑡𝑠 , while under the best strategy the 

concrete action with the highest probability or density is selected from the 

conditional probability distribution 𝑃 𝐴𝑐𝑡𝑖𝑜𝑛   𝑃𝑒𝑟𝑐𝑒𝑝𝑡𝑠 . This differs from our 

approach, where the selected action is the conditional expected value 

𝐸 𝐴𝑐𝑡𝑖𝑜𝑛   𝑃𝑒𝑟𝑐𝑒𝑝𝑡𝑠  under the constraint of a linear model.  

THE TWO-POINT VISUAL CONTROL MODEL OF STEERING 

In the Two-Point Visual Control Model (S&G-Model; Salvucci and Gray, 2004), 

steering actions are controlled by points which are obtained from the road. It is 

based on the experiments of Land and Horwood (Land and Horwood, 1995; Land, 

1998), where participants were shown only small visual segments of the road. This 

resulted in the hypothesis that the quality of driving improved with the horizontal 

angle of two visual segments. This hypothesis was adapted by the S&G-Model and 

now states that these visual signals are in fact two points: The Near Point (𝑁) is 

defined by its distance 𝑑𝑁  to the vehicle. The Far Point’s location (𝐹) is dependent 

on the situation (Figure 1.1): On straight road strips, it is defined by the escape 
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point, while on bent strips it is defined by the tangential point. A third situation is 

defined by a leading vehicle, but shall not be of further interest in this work. 

The respective angles between F and N and the car’s longitudinal axis, 𝜃𝐹  and 

𝜃𝑁 , constitute the errors for two parallel-connected controllers. Thus, the steering 

angle φ is computed by a Proportional (P) controller for 𝐹 and a Proportional-

Integral (PI) controller for 𝑁 in the original S&G-Model (Salvucci, 2004): 

𝜑 = 𝑘𝑁𝜃𝑁 + 𝑘𝐹𝜃𝐹 + 𝑘𝐼  𝜃𝑁𝑑𝑡 

 
Thus, the coefficients 𝑘𝑁 , 𝑘𝐹 , and 𝑘𝐼  are unknown. In the work of Salvucci and 

Gray, the distance between 𝑁 and the car’s location is given as 6.2m. However, it 

should be noted that all original experiments were conducted at the relatively low 

constant speed of 60.84 km/h. Thus, no longitudinal control was needed in their 

experimental setting.  

 

 

FIGURE 1.1. Straight (left) and Bend (right) situations in the S&G Model 

 
This leads to the question whether the parameters are dependent on the vehicle 

speed. In order to achieve this, test drives can be used to identify the coefficients as 

well as the N distance parameter. A less coercive model should be able to cope with 

high and variable velocities as well. 

REIMPLEMENTATION OF THE S&G-MODEL 

We already implemented the S&G-Model before (Möbus et al., 2007). We had 

some doubts whether the autonomous control of a vehicle is dependent on foveal 

control as is hypothesized by Salvucci and Gray (2004). There is some evidence that 

ambient vision is sufficient for real-time control in routine driving situations 

(Horrey et al., 2006).  A Bayesian model for longitudinal and lateral control which 

rests on the assumption of ambient vision has been presented by Möbus and Eilers 

(2009). 
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The current implementation uses the open-source TORCS1 racing simulator as 

simulation environment, which has been augmented with a development 

environment for all kinds of control-theory based driver models (Lenk, 2008). In 

this implementation, the selection rules for the situation-dependent Far Point 

calculation had to be redefined, as the original ACT-R model could not be reused. 

The front-vehicle situation has not been considered, thus leaving the escape and 

tangential point situations. These were distinguished by introducing another 

parameter, the distance 𝑑𝐹  (Figure 1.1) to the Far Point. Thus, if the road strip in the 

given distance ahead is curved, the tangential point is calculated, otherwise the 

escape point serves as 𝐹.  

ESTIMATING LATERAL CONTROL   

A simulated test drive has been conducted. The track chosen for this drive features 

many different types of curves with varying radii. The drive lasted around 14 

minutes, during which a multivariate time series with 95522 episodes of data had 

been sampled. These included the car state, such as position, velocity, acceleration, 

and orientation, as well as the steering, braking, and accelerating actions of the 

driver. The human driver had been instructed to drive fast, but careful enough to 

stay on the road at all times, although cutting curves was permitted. Average speed 

was  30.65039 m/s (around 110 km/h) with a standard deviation of 5.475582 m/s. 

This may be a significantly higher average speed than any one encountered in day-

to-day traffic, however we felt the model should work under extreme conditions. 

REGRESSION FOR THE S&G MODEL 

The locations of the control points 𝑁 and 𝐹 are hypothetical constructs. We had to 

infer the distances as a second set of parameters. In order to find the optimal 

distance parameters, we conducted a grid search over a set of regressions on the 

same test data with varying distances 𝑑𝑁  and 𝑑𝐹 . The controller’s coefficients were 

estimated for any distance between 10𝑚 and 40𝑚 for 𝑑𝑁  and 10𝑚 to 80𝑚 for 𝑑𝐹  

using a multiple linear regression model.  

𝑦 = 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3  
 

The dependent variable y corresponds to the steering angle 𝜑, while the 

independent variables are 𝑥1 (𝜃𝑁), 𝑥2 (𝜃𝐹), and 𝑥3 ( 𝜃𝑁 𝑑𝑡). The parameters 𝛽1, 𝛽2, 

and 𝛽3 are estimated. The model does not include an intercept term. The 

determination coefficient 𝑅2 of the regressions is very high in general (Figure 2.1).  

Subsequently, the parameter estimations are used as controller coefficients 𝑘𝑁 , 𝑘𝐹 , 

and 𝑘𝐼, respectively. The 𝑑𝑁
𝑜𝑝𝑡 , 𝑑𝐹

𝑜𝑝𝑡 -tuple with the highest coefficient of 

determination 𝑅2 determines two optimal angles 𝜃𝑁
𝑜𝑝𝑡  and 𝜃𝐹

𝑜𝑝𝑡 , which best explain 

                                                        
1 http://torcs.sourceforge.net/ (last retrieved: 2/25/2010) 
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the actions of the human driver. Thus, the controller calculates the conditional 

expected value 𝐸 𝜑 𝜃𝑁
𝑜𝑝𝑡

,𝜃𝐹
𝑜𝑝𝑡

  using the sum of the products of the estimated 

coefficients with their respective angles. 

 

FIGURE 2.1. Coefficient of determination 𝑅2 for multiple regressions on varying 

distances 𝑑𝑁  and 𝑑𝐹 using the original unmodified 3-parameter S&G lateral control 

model. 

EXTENDING THE S&G MODEL 

We adapted the S&G-Model by introducing a segmentation of the road into bent 

and straight strips. This approach effects in a doubling of the number of controller 

coefficients. Thus, 𝑘𝑁𝑆 , 𝑘𝐹𝑆 , and 𝑘𝐼𝑆  guide the model on straights, while 𝑘𝑁𝐵 , 𝑘𝐹𝐵 , 

and 𝑘𝐼𝐵  perform the same function on bends. 

𝜑 =  
𝑘𝑁𝑆𝜃𝑁 + 𝑘𝐹𝑆𝜃𝐹 + 𝑘𝐼𝑆  𝜃𝑁𝑑𝑡 ,         on straight segments

𝑘𝑁𝐵𝜃𝑁 + 𝑘𝐹𝐵𝜃𝐹 + 𝑘𝐼𝐵  𝜃𝑁𝑑𝑡 ,            on bent segments

  

 

Accordingly, the data matrix for the predictors in the regression features six 

columns, which are either filled with the actual values for the angles in one 

condition or set to zero when the opposite condition applies.  The type of Far Point 

calculation serves as discriminator in order to determine whether the straight or bent 

strip condition is in place. If the tangential point is calculated, the columns in the 

data matrix corresponding to 𝜃∗𝐵  are filled with the actual values, or vice versa if 

the escape point is calculated. 

The results of the regressions (Figure 2.2) generally show a higher coefficient of 
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determination for all reviewed distances 𝑑𝑁  and 𝑑𝐹 . The maximum 𝑅2 =0.809 can 

be found at 𝑑𝑁
𝑜𝑝𝑡

= 40 and 𝑑𝐹
𝑜𝑝𝑡

= 10. These extreme values may seem surprising at 

first, but the estimated controller coefficients (Table 2.1) perform well. The 

resulting behavior is similar to that of the actual test drive, so that while the cutting 

corner behavior is reproduced, the car is kept stable in the middle of the road. 

 

FIGURE 2.2. Coefficient of determination 𝑅2 for multiple regressions on varying 

distances 𝑑𝑁  and 𝑑𝐹 using the modified lateral control model with segmentation. 

Due to the fact that 𝑑𝐹
𝑜𝑝𝑡  is actually lower than 𝑑𝑁

𝑜𝑝𝑡 , the name characterization 

as a “Far Point” might be disputed. However, this is only the case for the straight 

condition, since the distance of the tangential point in the bent condition is usually 

higher than the distance to the Near Point. This could be an indicator that a single-

point model could be preferable on straight roads. 

Table 2.1 Estimated controller coefficients for  𝑑𝑁
𝑜𝑝𝑡

= 40 and 𝑑𝐹
𝑜𝑝𝑡

= 10. 

𝒌𝑵𝑺 𝒌𝑭𝑺 𝒌𝑰𝑺 𝒌𝑵𝑩 𝒌𝑭𝑩 𝒌𝑰𝑩 

0.166 0.0038 6.16×10-5 0.1295 0.0461 -0.0002 

ESTIMATING LONGITUDINAL CONTROL 

In order to achieve longitudinal control emitting acceleration and deceleration 

actions, a naïve control model has been chosen first. Thus, braking and accelerating 

actions 𝑢 are numeric values on the same axis with opposite signs. A PID controller 
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adjusts this value using the difference between the actual velocity 𝑣 and a set-point 

velocity 𝑣𝑑  (Coller, 2007).   

𝑢 =  − 𝑐𝑃 𝑣 − 𝑣𝑑 +  𝑐𝐼   𝑣 − 𝑣𝑑 𝑑𝑡 + 𝑐𝐷
𝑑 𝑣 − 𝑣𝑑 

𝑑𝑡
  

 

However, while the actual velocity 𝑣 is known from the experiment data, the 

set-point velocity 𝑣𝑑  might be considered an internal state of the driver, thus not 

being observable. However, it might be approximated by a heuristic using two 

parameters: a braking rate 𝑏 and a maximum velocity 𝑣𝑡𝑜𝑝 .  

For each road segment 𝑠, a maximum velocity 𝑣𝑠
𝑚𝑎𝑥  may be determined. For a 

bent road segment, it is defined by the radius 𝑟𝑠 , and a friction constant 𝑓𝑠. 

𝑣𝑠
𝑚𝑎𝑥 =  

min  𝑓𝑠 ∙ 𝐺 ∙ 𝑟𝑠 , 𝑣𝑡𝑜𝑝         on bends

𝑣𝑡𝑜𝑝                                      on straights

  

 

All road segments within a velocity-dependent look-ahead distance 
𝑑𝑙 = 𝑣2  2 ∙ 𝑏   are examined for their maximum velocity. Thus, the set-point 

velocity is approximated by 𝑣𝑑 = min(𝑣𝑠
𝑚𝑎𝑥 |∀𝑠 𝑤𝑖𝑡ℎ 𝑑𝑠 < 𝑑𝑙 ). 

With this approximation of 𝑣𝑑 , it is possible to conduct yet another grid search 

over the parameters 𝑏 and 𝑣𝑡𝑜𝑝 , using multiple linear regressions to estimate 𝑐𝑃 , 𝑐𝐼, 
and 𝑐𝐷  (Figure 3.1). Once again, the coefficient of determination is used to select 

the optimal parameters 𝑏𝑜𝑝𝑡  and 𝑣𝑡𝑜𝑝
𝑜𝑝𝑡

, which effect an optimal set-point speed 𝑣𝑑
𝑜𝑝𝑡 .  

Thus, the controller output is the conditional expected value 𝐸 𝑢 𝑣𝑑
𝑜𝑝𝑡

 . 

 

FIGURE 3.1. Coefficient of determination 𝑅2 for multiple regressions on varying 

distances 𝑏 and 𝑣𝑡𝑜𝑝  using the longitudinal control model. 

Again, the values 𝑏𝑜𝑝𝑡 = 22 and 𝑣𝑡𝑜𝑝
𝑜𝑝𝑡

= 220 may seem extreme, but provide 
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the best fit with human data with 𝑅2 = 0.612. The estimated coefficients for this 

configuration (Table 3.1) provide adequate acceleration and deceleration during the 

model run. It should be noted that the longitudinal controller ignores the current 

gear state altogether, even though the fuel pedal state depends on it. Thus, the 

estimation for the controller would have an even better fit with human data if it 

were adapted to accommodate this variable.  

Table 3.1 Estimated longitudinal controller coefficients for 𝑏𝑜𝑝𝑡 = 22 and 

𝑣𝑡𝑜𝑝
𝑜𝑝𝑡

= 220 

𝒄𝑷 𝒄𝑰 𝒄𝑫 

0.0069 2.59×10-6 -5.35×10-5 

DEPENDENCY OF LONGITUDINAL CONTROL ON VISUAL PERCEPTS 

Clearly, the above controller is not an entirely plausible model of a human driver, 

since the set-point speed 𝑣𝑑
𝑜𝑝𝑡  cannot be readily established from human data. 

However, it may be derived from the absolute values of the visual percepts 𝜃𝑁
𝑜𝑝𝑡  and 

𝜃𝐹
𝑜𝑝𝑡 . Thus, a nested controller may be embedded in the above longitudinal 

controller, which estimates the expected value 𝐸 𝑣𝑑
𝑜𝑝𝑡

 𝜃𝑁
𝑜𝑝𝑡

, 𝜃𝐹
𝑜𝑝𝑡

 . Again, 

discrimination between straight and bent segments takes place. A constant 𝑘 is 

needed to provide a positive value when both angles converge to zero. 

𝑣𝑑
𝑜𝑝𝑡

=  
𝑐𝑁𝑆  𝜃𝑁

𝑜𝑝𝑡
  + 𝑐𝐹𝑆 𝜃𝐹

𝑜𝑝𝑡
  + 𝑘         on straights

𝑐𝑁𝐵  𝜃𝑁
𝑜𝑝𝑡

  + 𝑐𝐹𝐵  𝜃𝐹
𝑜𝑝𝑡

  + 𝑘           on bends

  

 

Using a single regression, values for the coefficients may be estimated (Table 

3.2). The coefficient of determination for this regression is 𝑅2 = 0.5716. In a way, 

both regressions for the longitudinal controller effect a role change for 𝑣 and 𝑣𝑑
𝑜𝑝𝑡 . 

As the velocity v is provided by human data, it can be considered the set-point 

velocity, while its difference to the model-provided 𝑣𝑑
𝑜𝑝𝑡  is minimized by the nested 

regressions. 

 

Table 3.2 Estimated controller coefficients 𝑣𝑑
𝑜𝑝𝑡 . 

𝒄𝑵𝑺 𝒄𝑭𝑺 𝒄𝑵𝑩 𝒄𝑭𝑩 𝒌 

-43.1718 -12.7844 -105.2268 -9.0415 60.6528 
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MODEL RUN 

If the integrated model is run on the same track as the test drive using the estimated 

coefficients (Tables 2.1, 3.2, and 3.3) the model performance shows similar 

behavior for lateral as well as longitudinal control. The achieved average velocity of 

 29.98395 𝑚/𝑠 is slightly lower than in the original human data and the model does 

not achieve the same high velocities as the original human driver (Figure 3.2) with a 

standard deviation of 5.123619 𝑚/𝑠.  Nevertheless, it performs well on the road. 

Generally spoken, the model actions tend to be more temperate than those of the 

human driver. 

 

FIGURE 3.2. Density of achieved velocities by Human Driver (left) and 

integrated model (right) while driving. 

CONCLUSION 

We reformulate the S&G Model of steering as a linear multiple regression model 

and extend this model with a second linear multiple regression model for the 

purpose of longitudinal control. The inference process provided by a linear multiple 

regression model is a kind of short cut inference compared to the inference 

approach used in Bayesian networks or Bayesian Programming.  From this 

perspective the percept-based inference or selection of actions on the basis of linear 

multiple regression models is suited for reactive agents and seems to be more 

efficient than the usual inference process of the BP approach. But there is an 

efficiency-flexibility trade-off. Linear models are more restrictive than the flexible 

Bayesian Programs. They only allow one direction of inference. 

The proceedings introduced in this work are reproducible for other human test 

data, even though the concrete estimations may vary. Further study is required to 

determine the relationships between lateral and longitudinal control. 
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