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Abstract: We present a probabilistic model architecture combining a layered 
model of human driver expertise with a cognitive map and beliefs about the driv-
er-vehicle state to describe the effect of anticipations on driver actions. It imple-
ments the sensory-motor system of human drivers with autonomous, goal-based 
attention allocation and anticipation processes. The model has emergent properties 
and combines reactive with prospective behavior based on anticipated or imagined 
percepts obtained from a Bayesian cognitive map. It has the ability to predict 
agent’s behavior, to abduct hazardous situations (what could have been the initial 
situation), to generate anticipatory plans, and control countermeasures preventing 
hazardous situations. 
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Introduction 

Driving is a skill with high inter- and intraindividual variation [1]. So, the hu-
man or cognitive centered design of intelligent transport systems requires digital 
models of human behavior and cognition (MHBC) which are embedded, context 
aware, personalized, adaptive, and anticipatory.  
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We present a probabilistic model architecture combining a layered model of 
human driver expertise with a cognitive map and beliefs about the driver-vehicle 
state to describe the effect of anticipations on driver actions. It implements the 
sensory-motor system of human drivers in a psychological motivated mixture-of-
behaviors (MoB) architecture with autonomous, goal-based attention allocation 
and anticipation processes (Horrey and Wickens, 2006; Koike et al., 2008; Pez-
zulo et al., 2008).  

Our Bayesian autonomous driver mixture-of-behaviors (BAD-MoB) model of-
fers sharing of behaviors in different driving maneuvers and is able to decompose 
complex skills into basic skills and to compose the expertise to drive complex ma-
neuvers from basic behaviors (Möbus and Eilers, 2010a, b; Eilers and Möbus, 
2010). The 2-time-slice template of the basic dynamic reactive BAD-MoB Model 
is shown in the left part and a 4-time-slice roll-out in the total view of Fig. 1. This 
roll-out is made under the Markov and the stationary assumption.  

We call the basic model reactive because the Areas of Interest (AoIs) directly 
influence actions. The model embeds two naïve Bayesian classifiers: one for the 
behaviors B and one for the states S. This simplifies the structure of the architec-
ture. Time slices are selected so that in each new time slice a new behavior is ac-
tive. A sequence of behaviors implements a single maneuver. The basic model 
was discussed in detail in (Möbus and Eilers, 2010a, b). 
 

 
Fig. 1. 4-time-sliced (4-TBN) Anticipatory BAD-MoB Model 

Time slices (t-1) and t are used for the dynamic reactive part of the model. This 
part uses percepts of the real world and some information from the most recent 
slice (t-1) to select appropriate behavior and actions for time slice t. It describes a 
driver who is driving a scenario the first time in a visual driving style, so that he 
can stop the car in the assured clear distance ahead. This driver has no imagination 
or anticipations about the course of the road beyond his vision field. The cognitive 
Bayesian map is represented in the model by adding model slices to the right ac-
cording to the level of expertise or competence C augmenting the anticipation 
horizon into the future. Perception is then substituted by imagination obtained 
from the Bayesian cognitive map. This information is learnt by memorizing for-
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mer drives. To get the parameters of the anticipatory model we need at least one 
replication of the training drive for each expertise level: at least 3 training drives 
for the model in Fig. 1.  

Here, we give a proof of concept for the operating mode of the cognitive 
Bayesian map and anticipatory planning with plausible but artificial data. The 
model contains 2105 parameters. These have been hand-coded into the model to 
test the plausibility of the concept model. We demonstrate that a BAD-MoB mod-
el based on Dynamic Bayesian Networks (DBNs) shows some emergent compe-
tencies: it has the ability to predict agent’s behavior, to abduct hazardous situa-
tions (what could have been the initial situation), to generate anticipatory plans 
and control countermeasures preventing hazardous situations. The distinction be-
tween prediction and anticipation is defined by: Prediction is a representation of 
particular future events. Anticipation is a future-oriented action, decision, or be-
havior based on a (implicit or explicit) prediction [13]. 

Bayesian Autonomous Driver Mixture of Behaviors Models with 
a Bayesian Map Extension 

BAD models [8 - 10] are developed in the framework of Bayesian (Robot) Pro-
gramming [2, 7]. They describe phenomena and generate motor control on the ba-
sis of the joint probability distribution (JPD) of the variables of interest and their 
factorization into conditional probability distributions (CPDs).  

A BAD-MoB model is able to decompose complex skills (scenarios, maneu-
vers) into basic skills (= behaviors, actions) and vice versa (Eilers and Möbus, 
2010, Möbus and Eilers, 2010a, b). The basic behaviors or sensory-motor schemas 
could be shared and reused in different maneuvers. Context dependent complex 
driver behavior will be generated by mixing the pure basic behaviors.  BAD-MoB 
models are embedded in DBNs. Under the assumption of stationary their template 
models (Fig. 1, left two slices) are specified as 2-time-slice DBNs (2-TDBNs). The 
template model can be unrolled so that their interface variables Behaviors and 
State are glued together producing an rolled-out DBN over T time slices (T-
TDBN) like the 4-TDBN in Fig. 1.  

The degree of roll-out defines the anticipation horizon of the model. This is 
controlled by the level of the binary expertise or competence variable Ct. If Ct  = 
1, then the conventional transition probability matrices P(Bt+j | Bt+j-1) and P(St+j | 
St+j-1) are used. When Ct = 0, then all Ct+i  = 0 (i ≥ 1) and the probability distribu-
tions P(Bt+j |Bt+j-1) and P(St+j |St+j-1) are replaced by static distributions P(Bt+j) and 
P(St+j). Hence, Ct can be seen as a switch to activate and deactivate anticipatory 
time slices.  

Learning data are time series of the pertinent domain-specific variables per-
cepts, AoIs, goals, behaviors, actions, observable states, and actions combined 
with posthoc annotations of maneuvers, scenarios, and the replication number of 



MÖBUS, C. & EILERS, M., Integrating Anticipatory Competence into a Bayesian Driver Model, in:  P. C. Cacciabue et al. 
(eds.), Human Modelling in Assisted Transportation, DOI: 10.1007/978-88-470-1821-1_24, Springer-Verlag Italia Srl 2011 

the training drive. 
Information can be propagated within the T-TDBN in various directions. When 

working top-down, goals emitted by higher cognitive layers of the agent activate a 
corresponding behavior which propagates actions, relevant AoIs, and expected 
perceptions. When working bottom-up, percepts trigger AoIs, actions, behaviors, 
and goals. When the task or goal is defined and there are percepts, evidence can 
be propagated simultaneously top-down and bottom-up, and the appropriate be-
havior can be activated. Furthermore, evidence can be propagated for predictions 
from the past to the future and vice versa for abductions. This flexibility is used 
for anticipatory planning (Fig. 3-5). 
 

 
Fig. 2. The Bayesian Map model definition expressed in the Bayesian (Robot) Programming 
(BRP) formalism (Diard and Bessiere, 2008, p.165) 

The BAD-MoB Model (Fig. 1) implements a Bayesian Map (BM). The struc-
ture of a BM is defined in (Fig. 2). The location variable L is redefined in our 
model as the belief state S. The belief state of future slices defines the Bayesian 
cognitive map.  

A BM is capable to answer three kinds of questions: 

• Localization (Where am I, if I have percept P ?) : P(Lt | P) = ? 
• Prediction (Where do I go, when I generate action A?) : P(Lt‘ | A, Lt)  = ?  
• Control (What actions should I generate, to reach/avoid  Lt‘ ?) :P(A | Lt, Lt‘) = ? 

 



MÖBUS, C. & EILERS, M., Integrating Anticipatory Competence into a Bayesian Driver Model, in:  P. C. Cacciabue et al. 
(eds.), Human Modelling in Assisted Transportation, DOI: 10.1007/978-88-470-1821-1_24, Springer-Verlag Italia Srl 2011 

 
Fig. 3. The BAD-MoB gives an answer to the control question P(At-1,At | st-1, st+1)   

The model in Fig. 3 is a rolled-out version of our basic template (Fig. 1). It an-
swers the control question P(Actionst-1, Actionst | Statet-1 = is_in_right_lane, 
Statet+1 = is_in_middle-lane). The model recommends actions with P(Actionst-1 = 
left_turn | Statet-1 = is_in_right_lane, Statet+1 = is_in_middle-lane) = 0.59 and 
P(Actionst = left_turn | Statet-1 = is_in_right_lane, Statet+1 = is_in_middle-lane) = 
0.41 (circled in Fig. 3). If the spatial goal at time t+1 is changed to the left lane the 
corresponding conditional probabilities are changed to P(Actionst-1 = left_turn | 
Statet-1 = is_in_right_lane, Statet+1 = is_in_left-lane) = 1.0 and P(Actionst = 
left_turn | Statet-1 = is_in_right_lane, Statet+1 = is_in_left-lane) = 1.0. 

Anticipatory Planning of Countermeasures with our BAD-MoB 
Model  

Generally, anticipatory systems are those that use their predictive capabilities to 
optimize behavior and learning to the best of their knowledge… Anticipatory be-
havior may be defined as: […] a process or behavior that does not only depend on 
past and present but also on predictions, expectations, or beliefs about the future. 
…While reactive systems can functionally be described with STIMULUS  
ACTION (S-A) behavioral patterns, anticipatory systems have instead 
(STIMULUS +) EXPECTATION  ACTION (E-A) behavioral patterns, which is 
permitted by the explicit prediction of a stimulus or an action effect (STIMULUS 
 EXPECTATION (S-E), or STIMULUS, ACTION  EXPECTATION (S-A-E)).  
(Pezzulo et. al, 2008, p. 24).  
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Our BAD-MoB model is an instance of an anticipatory system. The model in 
Fig. 3-5 uses partly perceptual and partly imaginary evidence. If perceptual evi-
dence is included in time slice t or (t-1) the beliefs about the driver-vehicle state S 
will revise the beliefs based on pure imagination obtained from time slices t’>t. 

The process of anticipatory planning consists of five steps (Figs 4, 5): 
• Step 1: Anticipation and Prediction in (t-1) of Hazard and Collision for (t+1) 

and abduction of appropriate behaviors or goals in (t-1) 
The model in Fig. 4  realizes in the current time step (t-1) that it is in the belief 
State(t-1) = in_the_right_Lane and that it will stay there including the future time 
slice (t+1) with the conditional probability P(State(t+1) = in_the_right_Lane | ….) 
= 0.849. This is an unfavorable state of affairs, because it “expects” at the same 
time, that only the left lane will be empty. These expectations are fed into the 
model as virtual evidence for t+1. The reason for this evidence has to be obtained 
from a higher cognitive layer of the model. Appropriate behaviors and goals could 
be inferred backwards by an abduction process: left_lane_in, pass_in in time slice 
t-1, etc. 
 

 

Fig. 4. 3-time-sliced roll-out of BAD-MoB model with belief state and Bayesian map with Anticipa-
tory Planning Step 1 (NETICA implementation) 

• Step 2: Proactive Goal Activation in (t-1) and Collision Prediction for (t+1)   
The BAD-MoB model gets from a higher cognitive layer a goal activation for the 
left_lane_change maneuver. This maneuver starts with the left_lane_in behavior. 
This means that the goal Behavior(t-1) = left_lane_in is injected in the model as 
evidence for t-1. As a consequence the conditional probability drops down to 
P(State(t+1) = in_the_right_Lane | …. Behavior(t-1) = left_lane) = 0.696, which 
is far too high. 
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• Step 3: Proactive Action Selection in (t-1) and Crash Prediction for (t+1) 
The model “knows” that some actions (like signal left or look to the left) do not 
change the belief state. So it activates and executes the state changing Action = 
left-turn. As a consequence the conditional probability drops down to P(State(t+1) 
= in_the_right_Lane | …. Behavior(t-1)=left_lane, Action(t-1)=left_turn) = 0.000. 
Because P(State(t+1) = in_the_left_Lane | …. Behavior(t-1)=left_lane, Action(t-
1)=left_turn) = 0.012 the model “decides” that the state of affairs will be still un-
favorable.  
• Step 4: Anticipatory Goal Activation for (t) and Collision Prediction for (t+1) 
The models freezes the goal activation up to the next time slice with Behavior(t) = 
left_lane_in. As a consequence the conditional probability increases slightly to 
P(State(t+1) = in_the_left_Lane | …. Behavior(t-1)=left_lane, Action(t-
1)=left_turn, Behavior(t) = left_lane_in) = 0.031 which is still far too low. 
 

 
Fig. 5. 3-time-sliced roll-out of BAD-MoB model with belief state and Bayesian map with Anticipa-

tory Planning Steps 1-5 (NETICA implementation) 

• Step 5: Anticipatory Action Selection for (t) and Good Luck Prediction for 
(t+1) 

This “motivates”  the model to select the Action(t)=left_turn a second time (Fig. 
5). Now the conditional probability increases to P(State(t+1) = in_the_left_Lane | 
…. Behavior(t-1)=left_lane, Action(t-1)=left_turn, Behavior(t) = left_lane_in, Ac-
tion(t)=left_turn) = 1.000, which is a good state of affairs because it promises the 
avoidance of a collision. 
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Conclusions 

We demonstrated that the Bayesian-Map-extended BAD-MoB model has the abil-
ity to predict agent’s behavior, to abduct hazardous situations (what could have 
been the initial situation, what could be appropriate behavior), to generate antici-
patory plans, and control countermeasures preventing hazardous situations. It was 
demonstrated that the selection of action and goal evidence has to be planned by a 
higher cognitive layer residing on top of the BAD-MoB model. An implementa-
tion with real expert and novice data has to follow this conceptual study. 
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