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ABSTRACT 

The Human or Cognitive Centered Design (HCD) of intelligent transport systems 

requires computational Models of Human Behavior and Cognition (MHBC). They 

are developed and used as driver models in traffic scenario simulations and risk-

based design.  

The conventional approach is first to develop handcrafted control-theoretic or 

artificial intelligence based prototypes and then to evaluate ex post their learnability, 

usability, and human likeness. We propose a machine-learning alternative: The 

Bayesian estimation of MHBCs from behavior traces. The learnt Bayesian 

Autonomous Driver (BAD) models are empirical valid by construction. An ex post 

evaluation of BAD models is not necessary.  

 BAD models can be built so that they decompose or compose skills into or from 

basic skills: BAD Mixture-of-Behaviors (BAD MoB) models. We present an 
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efficient implementation which is able to control a simulated vehicle in real-time. It 

is able to generate complex behaviors of several layers of expertise by mixing and 

sequencing simpler behavior models. 
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INTRODUCTION 

The skills and the skill acquisition process of human (traffic) agents can be 

described by a three-stage model consisting of a cognitive, an associative, and an 

autonomous stage or layer (Fitts, 1967; Anderson, 2002). For each stage, various 

modeling approaches have emerged: production-system models for the cognitive 

and associative stage, control-theoretic, or probabilistic models for the autonomous 

stage.  

Due to the variability of human cognition and behavior, the irreducible lack of 

knowledge about underlying cognitive mechanisms and irreducible incompleteness 

of knowledge about the environment (Bessière, 2008) we conceptualize, estimate 

and implement probabilistic human traffic agent models. We described first steps to 

model lateral and longitudinal control behavior of single and groups of drivers with 

simple reactive Bayesian sensory-motor models (Möbus and Eilers, 2008). Then we 

included the time domain and reported work in progress with dynamic Bayesian 

sensory-motor models (Möbus and Eilers, 2009a; 2009b). In this paper we propose 

a dynamic BAD MoB model which is able to decompose complex maneuvers into 

basic behaviors and vice versa. The model facilitates the management of sensory-

motor schemas (= behaviors) in a library. Context dependent driver behavior can 

then be generated by mixing pure basic behaviors.  

BASIC CONCEPTS OF BAYESIAN PROGRAMS 

BAD MoB models are developed in the tradition of Bayesian expert systems (Pearl, 

2009) and Bayesian (Robot) Programming (Bessière et al., 2003, 2008). A Bayesian 

Program (BP) (Bessiere et al., 2003, 2008, Lebeltel et al., 2004) is defined as a 

mean of specifying a family of probability distributions. By using such a 

specification it is possible to construct a driver model, which can effectively control 

a (virtual) vehicle. The components of a BP are presented in Fig. 1. 

An application consists of a (behavior model) description and a question. A 

description is constructed from preliminary knowledge 𝜋 and a data set 𝛿. 

Preliminary knowledge is constructed from a set of pertinent variables, a 

decomposition of their joint probability distribution (JPD) and a set of forms. Forms 

are either parametric forms or questions in other BPs. 

The purpose of a description is to specify an effective method to compute a JPD 

on a set of variables given a set of (experimental) data and preliminary knowledge. 
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To specify preliminary knowledge the modeler must define the set of relevant 

variables on which the JPD is defined, decompose the JPD into factors of 

(conditional) probability distributions (CPDs) according to conditional 

independency hypothesis (CIHs), and define their forms. Each CPD in the 

decomposition is a form. Either this is a parametric form whose parameters are 

estimated from batch data (behavior traces) or a question to another application. 

Parameter estimation from batch data is the conventional way of estimating the 

parameters in a BAD model. The Bayesian estimation procedure uses only a small 

fraction of the data (cases) for updating the model parameters. 

 

 

FIGURE 1. Structure of a Bayesian Program (adapted from Bessiere et al., (2003, 

2008), Lebeltel et al., (2004)). 

Given a description a question is obtained by partitioning the variables into 

searched, known, and unknown variables. A question is defined as the CPD 

𝑃(𝑆𝑒𝑎𝑟𝑐ℎ𝑒𝑑|𝑘𝑛𝑜𝑤𝑛, 𝜋, 𝛿). Various policies (Draw, Best, and Expectation) are 

possible whether the concrete action is drawn at random, chosen as the best action 

with highest probability, or as the expected action. 

BAYESIAN-AUTONOMOUS-DRIVER MIXTURE-OF-

BEHAVIOR MODELS 

We presented a probabilistic model architecture for embedding layered models of 

human driver expertise which allow sharing of behaviors in different driving 

maneuvers (Möbus and Eilers, 2010). These models implement the sensory-motor 

system of human drivers in a psychological motivated mixture-of-behaviors (MoB) 

architecture with autonomous and goal-based attention allocation processes. A 

Bayesian MoB model is able to decompose complex skills into basic skills and to 

compose the expertise to drive complex maneuvers from basic behaviors.  



We gave a proof of concept with plausible but artificial data and first modeling 

results with real data. We demonstrated that the Dynamic Bayesian Network 

(DBN)-based BAD MoB model has the ability to predict agent’s behavior, to 

abduct hazardous situations (what could have been the initial situation), to generate 

anticipatory plans and control, and to plan counteractive measures by simulating 

counterfactual behaviors or actions preventing hazardous situations. 

With an increasing number of observable action- or percept-variables and 

especially latent state- or behavior-variables, inferences in a BAD MoB model can 

soon become too complex to be computable for real-time-control. Therefore we 

propose an effective implementation of BAD MoB models, based on the concept of 

behavior-combination (Bessière et al., 2003), that allows to realize DBN-based 

BAD MoB model by several simpler BPs. 

BASIC CONCEPTS OF IMPLEMENTATION 

A BAD MoB model as proposed in Möbus and Eilers (2010) intends to model 𝑛 

behaviors. It contains a set of action-variables 𝐴, a set of percept-variables 𝑃 =
𝑃1 , … , 𝑃𝑚  and a single behavior-variable 𝐵 =  1, … , 𝑛  with 𝑛 values for the 𝑛 

behaviors3. This BAD MoB model can efficiently be implemented by BPs with 

three different purposes which we will call: Action-, behavior-classification- and 

gating-models.  

Each behavior bi 𝑖 ∈  1, … , 𝑛  has to be defined by an action-model, with 

preliminary knowledge 𝜋𝑖  and sample data 𝛿𝑖 , consisting of the set of action-

variables 𝐴 and an own set of percept-variables 𝑃𝑖 ⊆ 𝑃. An action-model defines 

the JPD 𝑃 𝐴, 𝑃𝑖 |𝜋𝑖𝛿𝑖  that will be used to answer the question 𝑃 𝐴|𝑃𝑖 , 𝜋𝑖 , 𝛿𝑖 . 

Identification of proper behaviors for a given situation is achieved using a 

behavior-classification-model. It consists of the behavior-variable 𝐵 and a set of 

percept-variables 𝑃𝐵 ⊆ 𝑃. They define the JPD 𝑃 𝐵, 𝑃𝐵 |𝜋𝐵𝛿𝐵  and will be used to 

answer the question 𝑃 𝐵|𝑃𝐵 , 𝜋𝐵 , 𝛿𝐵 . 

The action-models and behavior-classification-model are combined by the 

gating-model, which consists of the action-variables 𝐴, the percept-variables 𝑃 and 

the behavior-variable 𝐵. Whereas the JPDs of action- and behavior-classification-

models may be decomposed into simpler terms according to CIHs, the JPD of a 

gating-model is decomposed as follows: 

 

𝑃 𝐴, 𝑃, 𝐵|𝜋, 𝛿  

= 𝑃 𝑃|𝜋, 𝛿 ∙ 𝑃 𝐵|𝑃, 𝜋, 𝛿 ∙ 𝑃 𝐴|𝑃, 𝐵, 𝜋, 𝛿 . 

 

The decomposition of a gating-model consists of three terms: 𝑃 𝑃|𝜋, 𝛿  is the 

prior distribution of all percept-variables and can be derived from (experimental) 

data or assumed to be uniform. The term 𝑃 𝐵|𝑃, 𝜋, 𝛿  denotes the probability of 
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each behavior for the given percepts and will be defined as a question to the 

behavior-classification-model: 

 

𝑃 𝐵|𝑃, 𝜋, 𝛿 ≡ 𝑃 𝐵|𝑃𝐵 , 𝜋𝐵 , 𝛿𝐵 . 

  

For each possible behavior 𝐵 = 𝑏𝑖 , 1 ≤ 𝑖 ≤ 𝑛 the term 𝑃 𝐴|𝑃, 𝐵 = 𝑏𝑖 , 𝜋, 𝛿  is 

defined as a question to the corresponding 𝑖-th action-model: 

 

𝑃 𝐴|𝑃, 𝐵 = 𝑏𝑖 , 𝜋, 𝛿 ≡ 𝑃 𝐴|𝑃𝑖 , 𝜋𝑖 , 𝛿𝑖 . 

  

The question to be answered by a BAD-MoB model is 𝑃 𝐴|𝑃, 𝜋, 𝛿 . By asking 

this question to the gating-model we obtain the weighted sum over all behaviors: 

 

𝑃 𝐴|𝑃, 𝜋, 𝛿  

=   𝑃 𝐵 = 𝑏𝑖|𝑃, 𝜋, 𝛿 ∙ 𝑃 𝐴|𝑃, 𝐵 = 𝑏𝑖 , 𝜋, 𝛿  

𝑛

𝑖=1

 

=   𝑃 𝐵 = 𝑏𝑖|𝑃𝐵 , 𝜋𝐵 , 𝛿𝐵 ∙ 𝑃 𝐴|𝑃𝑖 , 𝜋𝑖 , 𝛿𝑖  .

𝑛

𝑖=1

 

  

This structure of a BAD MoB model can be seen as a template. A BAD MoB 

model can be extended to hierarchical BAD MoB model by replacing some of its 

action-models with further BAD MoB models. An example is shown in Fig. 2  

 

 

FIGURE 2. Graphical representation of a hierarchical BAD MoB model constructed 

by BAD MoB templates, where an action-model was replaced by a further BAD MoB 

model. Rectangle nodes represent gating-, rounded rectangles represent behavior-

classification-, and diamond nodes represent action-models (notation adapted from 

Bishop and Svensen (2003)). Directed connections represent that CPDs of the 



parent-model are defined to be questions of the child-model. 

IMPLEMENTATION 

Using the racing simulation TORCS4 we implemented a BAD MoB model intended 

to master a complex driving scenario. The scenario covers the ability to drive on a 

racing track together with two other slow vehicles. When approaching a slower car, 

they should be followed until given the possibility for overtaking.  

LEVELS OF EXPERTISE 

In reference to (Möbus and Eilers, 2010), this intended driving scenario was split up 

into driving maneuvers, namely Lane-Following, Car-Following and Overtaking. 

Lane-Following, a complex maneuver by itself (Möbus and Eilers, 2009a), was 

supposed to be created by mixing and sequencing the lane-following.behaviors for 

driving through a left curve (Left), along a straight road (Straight) and through a 

right curve (Right). Accordingly, the maneuver Car-Following consists of car-

following.behaviors for following a car through a left curve (FollowLeft), on a 

straight road (FollowStraight) and through a right curve (FollowRight). The third 

maneuver Overtaking is composed by the three overtaking.behaviors of veering to 

the left lane (PassOut), passing the car (Pass Car) and go back to the lane (PassIn). 

Each action-model will infer concrete actions for steering wheel angle and a 

combined acceleration-braking-pedal, which refers to the driving action level of 

expertise. The referring BAD MoB model therefore consists of four gating-, four 

behavior-classification- and nine action-models on three hierarchical layers, 

covering four levels of expertise. The structure of the model is shown in Fig. 3. 

 

 

FIGURE 3. Hierarchical structure of BAD MoB model constructed by four gating-, 

four behavior-classification-, and nine action-models, covering four levels of 
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expertise. 

MODELING PURE BEHAVIORS BY ACTION-MODELS 

Each of the nine action-models was implemented as a DBN. The action-models 

Left, Straight, and Right share the same preliminary knowledge, specify the same 

variables and define the same decompositions. They only differ in the experimental 

data set used for parameter estimation. The same applies for the FollowLeft, 

FollowStraight, and FollowRight action-models, and for the action-models Pass-

Out, Pass-Car, and PassIn. Their structure is shown in Fig. 4.  

For each time slice, variable 𝑆𝑡𝑒𝑒𝑟𝑡  represents the current steering wheel angle, 

𝐴𝑐𝑐𝑡  represents the position of a combined acceleration-braking-pedal. 𝑆𝑝𝑒𝑒𝑑𝑡  

denotes the longitudinal velocity. A variable 𝑀𝑖𝑑∠𝑖
𝑡  represents the angle between 

heading vector of the car and the vector to the middle of the right lane in a distance 

of 𝑖 meters. In contrast to this, a variable 𝐶𝑜𝑢∠𝑖
𝑡  represents the angle between 

heading of the car and the course of the road in a distance of 𝑖 meters. The variables 

𝐷𝑖𝑠𝑡  and 𝐶𝑎𝑟∠𝑡  represent distance and angle to the nearest other vehicle. All 

pertinent variables were chosen as a tradeoff between computation speed and model 

performance, guided by statistical methods (i.e. likelihood maximization). 

 

 

FIGURE 4. Upper Left: DBN of Left, Straight, and Right action-models. The boxes, 

called plates, denote  copies of the nodes shown inside the box. Upper Right: DBN 

of FollowLeft, FollowStraight, and FollowRight action-models.  Lower Middle: DBN 

of PassOut, PassCar, and PassIn action-models. 



BEHAVIOR-IDENTIFICATION BY BEHAVIOR-CLASSIFICATION-MODELS 

For behavior identification each behavior-classification-model was implemented in 

form of a DBN. In each time slice, the behavior-classification-models define a 

single behavior-variable representing the current driving maneuver or behavior, 

namely 𝐷𝑀𝑡  for the Driving-Maneuver-Classification model, 𝐿𝐹𝐵𝑡  for the Lane-

Following-Behavior-Classification model, 𝐶𝐹𝐵𝑡  for the Car-Following-Behavior-

Classification model, and 𝑂𝐵𝑡  for the Overtaking-Behavior-Classification model. 

For all behavior-classification-models each time slice is implemented as naïve 

Bayesian classifier. The pertinent variables were chosen as a tradeoff between 

computation speed and model performance, guided by statistical methods (i.e. 

likelihood maximization). The structure of the behavior-classification-models is 

shown in Fig. 5. 

 

.  

FIGURE 5. Upper Left: DBN of Driving-Maneuver-Classification model. Upper 

Right: DBN of Lane-Following-Behavior-Classification model. Lower Left: DBN of 

Car-Following-Behavior-Classification model. Lower Right: DBN of Overtaking-

Behavior-Classification model.  

BEHAVIOR-COMBINATION BY GATING-MODELS 

Following the structure shown in Fig. 3, the action-models were combined by the 

Lane-Following-Maneuver-, Car-Following-Maneuver-, and Overtaking- 

Maneuver-gating model using their corresponding behavior-classification-models 

for behavior identification. These three gating-models were then combined by the 

Driving-Scenario-Gating model using the DMC model for maneuver identification. 

Considering the defined decomposition of gating-models, we will relinquish to 

show their structure. 
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LEARNING BY DATA COLLECTION AND BEHAVIOR ANNOTATION 

For the purpose of data collection four laps were driven by a single driver, two laps 

at a time on two different TORCS racing tracks, containing several complex 

chicanes like s-shaped curves and hairpins. Instructions were given to drive sensual, 

stay on the right side of the road and observe a speed limit of approximately 110 

km/h (70 mph). When approaching a slower car, it should be followed in short 

distance until a longer straight road segment would allow an overtaking-maneuver. 

Experimental data for parameter estimation was then obtained by recording time 

series of all current variable values. As values of behavior-variables were unknown 

during recording, the time series were annotated offline, manually setting the 

appropriated behaviors. 

RESULTS 

First results are very promising. With the recorded experimental data the BAD MoB 

model is able to accomplish the racing tracks used for data collection and other 

tracks of comparable complexity. The model successfully performs Car-Following 

and Overtaking maneuvers (an example of model-ability is shown in Fig. 6, videos 

are available at http://www.lks.uni-oldenburg.de/46350.html). Compared to former 

BAD models (Möbus and Eilers, 2008, 2009a) the driving performance was 

considerably improved: the BAD MoB model now stays on the right lane, sticks to 

the intended high speed and does not collide with roadsides anymore. In addition, 

the use of the proposed BAD MoB model structure significantly improved 

performance towards implementation of combined BAD MoB models.  

 

 

FIGURE 6. Sequencing of behaviors during Overtaking maneuver. Upper row shows 

snapshots of BAD MoB model (A) in TORCS simulation overtaking slower vehicle 

(B), lower row shows corresponding CPD of overtaking.behavior variable 𝑂𝐵𝑡 . 



CONLUSION AND OUTLOOK 

We believe that the proof of concept is convincing: Bayesian Autonomous Driver 

Models with Mixture-of-Behavior are expressive enough to describe and predict a 

wide range of phenomena. Next we have to implement further models creating a 

library of behaviors of various levels of expertise. To that end a careful selected 

taxonomy of scenarios, maneuvers, behaviors, and control actions without and with 

alter agents has to be defined and studied. 
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