
KARaCAs: Knowledge Acquisition with

Repertory Grids and Formal Concept Analysis
for Dialog System Construction

Hilke Garbe1, Claudia Janssen2, Claus Möbus1, Heiko Seebold2,
and Holger de Vries2

1 University of Oldenburg, Germany
{garbe, moebus}@uni-oldenburg.de

2 OFFIS Oldenburg, Germany

Abstract. We describe a new knowledge acquisition tool that enabled
us to develop a dialog system recommending software design patterns by
asking critical questions. This assistance system is based on interviews
with experts. For the interviews we adopted the repertory grid method
and integrated formal concept analysis. The repertory grid method stim-
ulates the generation of common and differentiating attributes for a given
set of objects. Using formal concept analysis we can control the reper-
tory grid procedure, minimize the required expert judgements and build
an abstraction based hierarchy of design patterns, even from the judge-
ments of different experts. Based on the acquired knowledge we semi-
automatically generate a Bayesian Belief Network (BBN), that is used
to conduct dialogs with users to suggest a suitable design pattern for
their individual problem situation. Integrating these different methods
into our knowledge acquisition tool KARaCAs enables us to support the
entire knowledge acquisition and engineering process. We used KARa-
CAs with three design pattern experts and derived approximately 130 at-
tributes for 23 design patterns. Using formal concept analysis we merged
the three lattices and condensed them to approximately 80 common
attributes.

1 Introduction

Design patterns are an accepted method for improving the quality of software.
The standard book about design patterns in object oriented software design is
Gamma et al. [1], where a citation of Christopher Alexander is used to explain
what patterns are: “ Each pattern describes a problem which occurs over and
over again in our environment, and then describes the core of the solution to
that problem, in such a way that you can use the solution a million times over,
without ever doing it the same way twice.” [2]. Although Alexander was an
architect his description is also suitable for patterns in the domain of object
oriented software design. One purpose of design patterns is to capture design
experience and make it available to other developers, so they can improve their
designs. The standard elements of a pattern description are:

S. Staab and V. Svatek (Eds.): EKAW 2006, LNAI 4248, pp. 3–18, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

4 H. Garbe et al.

Name. Every design pattern has a name.
Problem. This section describes the problem situation in which a pattern is

applicable.
Solution. The solution describes how objects and classes can work together to

solve the problem. The solution is a template that has to be instantiated for
each specific situation.

Consequences. The consequences describe e.g. trade-offs that have to be con-
sidered if a design pattern should be applied.

Gamma et al. [1] describe 23 design patterns organized as a catalog. In addition
there is an increasing amount of new patterns including for example architectural
andJ2EEpatterns.Nevertheless, knowledge about designpatterns is not verywide
spread among software developers and the literature about patterns is often orga-
nized as catalogs; pattern bypattern. A software engineer has to read all (or at least
many) pattern descriptions before he can decide which pattern is suitable for his
problem situation. Tool support for selecting appropriate design patterns is rare.
Meffert [3] supposes semantic source code annotations which can be analysed to
capture the intent of a piece of software. These annotations can be compared to
given pattern templates and if a match can be found, the source code elements
can gradually be transfered to a pattern. Gomes [4] describes a case based reason-
ing approach for reusing software which uses Baysian Networks and WordNet as
a common sense ontology. Both approaches work on source code or UML model
artifacts. Our goal was to develop a dialog system that is able to approve possi-
ble design patterns [5] without analysing given source code or models. This dialog
system can assist software developers in choosing a design pattern. Who, even if
he has not read all the design pattern descriptions is able to benefit from the ex-
periences of other software developers. Our dialog system questions him about his
design problem and makes a suggestion which pattern might be applicable.

This article is organized as follows: Section 2 provides an overview of our
proposed knowledge acquisition and engineering process. Section 3 describes our
knowledge acquisition procedure containing repertory grids (3.1), formal concept
analysis (3.2), and their integration in KARaCAs (3.3). The merging process
for the results of different expert interviews is outlined in section 4. Our dialog
system is based on BBNs (section 5) that are generated semi-automatically from
the data we obtained in the expert interviews with KARaCAs. In section 6 we
discuss conclusions and further work.

2 Requirements and Proposed Knowledge Acquisition
Process

Our goal was to design an efficient dialog system that assists software developers
to choose a design pattern for their specific problem situation. The intended
dialog system should question the user about his specific problem situation. The
user answers these questions with “yes”, “no” or “I don’t know”. During this
dialog the system successively reduces the set of applicable patterns until it
proposes one.

KARaCAs 5

This dialog system has to fulfill the following requirements:

1.1 User input. Requirements on how user input is processed:
1.1.1 Undo. The user should have the possibility to reconsider a given answer

and change it. The dialog has to adjust itself to the altered information.
1.1.2 Fault Tolerance. The dialog has to be “fault tolerant”. Even if a user

gives a wrong answer about his problem situation he should have the
possibility to continue the dialog and get a pattern suggestion.

1.1.3 No answer. Additionally, he should be able to skip questions, since
he might not be able to classify his problem situation completely and
therefore might not be able to answer every question.

1.2 Probabilities for suggestions. The dialog system may not be able to
comprehend the entire problem situation and context. This may be because
the user has a diverging conception of his situation or the posed question
and therefore enters misleading information in the dialog system. Another
reason might be that there are institutional programming standards that are
unknown for the dialog system. Because of this, a certain pattern can only
be suggested with an approximated probability. The user should be informed
about this probability. This information should be presented to him during
the entire dialog.

As we were not able to extract the required knowledge from design pattern
literature, we used a knowledge acquisition with design pattern experts. Deduced
from the requirements for the dialog, we had the following requirements for the
knowledge acquisition procedure:

2.1 Free generation and naming of attributes. The experts should not be
restricted in generating and naming attributes for the problem situations a
specific pattern can be applied to. We were interested in the terms experts
use to describe problem situations for software engineers.

2.1.1 Shared attributes. To set up an efficient dialog, attributes were required
that are sharedbetween two ormore patterns.These attributes canbe used
to successively reduce the set of patterns that are relevant for the ongoing
dialog. This is a very difficult task for design pattern experts. We made
the experience that they first think of specific problem situations for every
pattern, and finding shared attributes was a difficult task for them.

2.1.2 Differentiating attributes. To identify a situation in which one spe-
cific design pattern can be suggested by the dialog system, every pattern
should be identifiable by its attributes. Therefore the attribute sets of
the patterns should be pairwise disjoint.

2.2 Probabilities. A design pattern is a template that can be adjusted to a
given situation and the situations to which it can be applied can vary. There-
fore the attributes of these situations can vary and so a specific attribute
must not always be present. To capture this, we needed a method that can
deal with probabilities.

2.3 Visualization of results. The results of the knowledge acquisition should
be visualized in such a way, that the domain expert can understand them.

6 H. Garbe et al.

2.4 Merging. As we wanted to integrate the knowledge of different experts who
can freely name attributes, the knowledge acquisition procedure should allow
the possibility to merge different sets of attributes for the design patterns.
This includes for example the assistance in identifying attributes that are
used synonymously, as generalisation or specialisation of others. Because of
the amount of attributes we have to deal with, this procedure has to be
supported by the knowledge acquisition method.

To fulfill these requirements we propose a three stage knowledge acquisition
process (Fig. 1). We first acquire knowledge from different experts. For these
interviews we adapted the repertory grid technique and integrated Formal Con-
cept analysis. The results of these interviews are merged with support of Formal
Concept Analysis. From this aggregated information we semi-automatically gen-
erate a BBN for the dialog system. Using these different knowledge acquisition
methods and engineering and integrating them into our tool KARaCAs we can
support the whole process.

The three stages of the process will be described in sections 3 - 5.

Fig. 1. Proposed Knowledge Acquisition Process

KARaCAs 7

3 Knowledge Acquisition

For our knowledge acquisition process we used modified repertory grids and
formal concept analysis. Both methods have distinct advantages but also some
strong disadvantages in regard to our requirements. By combining the two the
disadvantages for our application could be overcome.

3.1 Knowledge Acquisition with Repertory Grids

The Repertory Grid techniques was proposed by Kelly [6]. It was embedded in
his Personal Construct Psychology. Delugach states: “In accordance with the
theory, the repertory grid technique distinguishes the objects of a problem do-
main (called elements) through their attributes (called constructs).” [7]

The Repertory Grid technique has three steps.

1. The elements for the procedure are chosen. In Personal Construct Psychology
the considered elements are usually persons or situations. Often elements are
preselected instead of being acquired through an interview.

2. At the second step constructs are acquired by classification from three ran-
domly chosen elements (triade) into two classes. The interviewed person has
to explain in which way two elements of the triade are similar and how
they differ from the remaining one. Elements and constructs are listed in a
two-dimensional matrix called grid.

3. The last step is to rate all elements concerning the given constructs. This
is normally done by rating each element on a given scale between the two
poles.

Gaines and Shaw state: “The repertory grid was an instrument designed by
Kelly to bypass cognitive defenses and give access to a persons underlying con-
struction system by asking the person to compare and contrast relevant examples
(significant people in the person’s life in the original application).” [8]

Since 1955 several variations of the repertory grid technique have been de-
veloped, Castro-Schez et al. [9] give a short overview. Apart from the use in
psychology (e.g. Spangenberg and Wolff [10]) Repertory Grids and its variations
have often been used for knowledge acquisition in different domains (e.g. Gaines
and Shaw [8], Richards [11] and Castro-Schez et al. [9]).

The repertory grid technique has a lot of advantages that makes it well suited
for our knowledge acquisition process:

– It can be performed in natural spoken language without given items (re-
quirement 2.1). Nevertheless we obtain formal and structured results which
can be used as input in other procedures.

– The method supports the experts in generating shared (requirement 2.1.1)
and differentiating (requirement 2.1.2) attributes for design patterns. By
asking them to group two of three items they can concentrate on these.
At each step only a small subset of the design patterns has to be consid-
ered. Therefore the expert is supported in generating these differentiating
attributes.

8 H. Garbe et al.

– The two poles of every construct can be interpreted as attributes. By rating
the attributes for the design patterns probabilities can be assigned to the
relations (requirement 2.2).

There are some disadvantages:

– The triads are randomly chosen. In the worst case this leads to a very large
amount of needed triads to get enough differentiating attributes. In addition,
the repertory grid method can not assure that the sets of attributes for all
design patterns are pairwise disjoint. (Requirement 2.1.1) If for example two
very similar elements are presented in a triad, it can be expected that they
are always grouped together (cp. Choisel and Wickelmaier [12]).

– The generated attributes depend on the presented triads, so possibly not
every attribute the expert thinks to be important might be generated. If
for example all elements have a very important attribute in common this
would never be mentioned during the procedure. Considering the attributes
that are generated during the repertory grid for a specific design pattern the
expert might miss one or more attributes that are relevant for this pattern.
The expert should have the possibility to complete the set of attributes to
properly describe the design pattern.

– Bruder, Lengnink and Prediger [13] used repertory grids to ask mathematics
students about their subjective theories about mathematical tasks. As a
result of their studies they describe an additional problem: It was often very
difficult for the students to find exact antipodes for attributes.

The result of the repertory grid method is a matrix with ratings for the el-
ements concerning the constructs. This data has to be analysed and visualized
properly to be understood and interpreted by the domain expert and the knowl-
edge engineer. Several methods have been used for this and were implemented
in tools (cp. Gaines and Shaw [8]). In our work we focus on Formal Concept
Analysis for this purpose.

3.2 Ontology Engineering and Formal Concept Analysis

This section gives a short introduction to formal concept analysis. The combi-
nation of repertory grids and formal concept analysis is described in section 3.3.
Formal Concept Analysis (FCA) is a method for qualitative analysis of data.
Subject to FCA is a formal context. A formal context (G, M, I) is a subset of
the Cartesian product (I ⊆ G × M) of a quantity of objects G (Gegenstände in
German) and a quantity of attributes M (Merkmale in German). The term gI m
means: object g owns attribute m [14]. FCA structures data into units, which are
formal abstractions of concepts of mind. A formal concept comprises two parts,
its extension and its intension. The extension enfolds all objects belonging to
this concept. The intension covers all attributes shared by those objects. The
extension of a concept determines the intension and the intension determines
the extension [14]. This approach allows gathering all concepts of a context and
introduces a subsumption hierarchy between them. The amount of all formalized

KARaCAs 9

concepts is called concept lattice of the formal context. This lattice can be visu-
alized as a conceptual hierarchy (Hasse Diagram), which enables a different view
on the structure of the data and supports its analysis. An area of application for
FCA is Ontology Engineering by utilizing the ability to structure data by means
of concept lattices. The generated hierarchies may be used as a starting point
for the manual or semi-automatic creation of ontologies [15]. The concept lat-
tice enables domain experts to identify incorrectness or missing coherence in the
dataset (requirement 2.3). Gaps in the conceptual hierarchy indicate probable
missing objects or attributes. With these hints the data ascertainment can be
completed [16]. Because the concept lattices represent the data in a way domain
experts intuitively understand [16,17].

3.3 Integrating the Methods - KARaCAs

A combination of repertory grids and FCA has already been used in different
domains.

Spangenberg and Wolf used FCA [10] to reduce the amount of data acquired
with repertory grids and discuss alternative approaches. They transform the
repertory grid data into a multivalued context, which has to be reduced to an
univalent context. Their repertory grid has a rating scale from 1 to 6. They
interpret votes with values from 3 to 4 as indecisiveness and ignore those votes.

Bruder, Lengnink and Prediger [18] used line diagrams produced by FCA to
visualize the structure of the repertory grid results. They asked mathematics
students about their subjective theories about mathematical tasks and inves-
tigated the change over time. Based on their studies they describe two major
problems [13]:

1. The set of objects (tasks) has a direct influence on the acquired attributes,
therefore it must be possible for the students to add additional relevant
attributes after the repertory grid procedure is performed.

2. Often it was very difficult for the students to find exact antipodes for at-
tributes.

Delugach and Lampkin presented a method for knowledge acquisition us-
ing repertory grids, Formal Concept Analysis and Concept Graphs. They used:
“repertory grids for acquisition, formal concept analysis for analysis, and con-
ceptual graphs for representation.”[7]

These groups mainly used FCA to analyse the results of repertory grids. They
first questioned experts with repertory grids and analysed the data using formal
concept analysis after the interviews. We integrated the two methods for a better
use of the advantages and to overcome some of the disadvantages. We developed
two versions of KARaCAs with an ascending level of integration.

We adapt the repertory grid method to allow attributes that are not exact
opposite of each other (cp. Bruder et al. [13]). Steps 1 and 2 are performed the
same way as describe in section 3.1. Step 3 is modified as follows:

3.1 First the expert is asked to assign one of the two attributes to each object
(pattern in our case), if possible. This is done due to the fact that these two

10 H. Garbe et al.

attributes are not necessarily the opposite of each other and neither may
apply in some cases.

3.2 In the next step the expert has to quantify how certain a given attribute
applies to a pattern. In contrast to Kelly’s repertory grid method this eval-
uation is not done with the two attributes as boundary or poles.

Similar to the card sorting method Kelly proposed for the Grid we designed
our graphical user interface using the card sorting metaphor (Fig. 2).

Fig. 2. KARaCAs: GUI for the adapted Repertory Grid

After each triad KARaCAs analyses the data with formal concept analysis.
The elements and the associated attributes are transferred to a formal context.
In the formal context each attribute is set in relation to an element it is assigned
to. From this context a concept lattice is generated. The lattice in Fig. 3 shows
a part of the generated attributes from an expert interview.

This new integration of FCA and Repertory Grid in one tool has two distinct
advantages:

On the one hand performing the formal concept analysis after each triad
gives the domain expert the possibility to inspect the results in form of a lattice
(Fig. 3, Requirement 1.7) even during the interview with the repertory grid. By
integrating both methods into one tool it is possible to switch between two dif-
ferent views of the acquired data, resulting in synergistic effects. The knowledge

KARaCAs 11

Fig. 3. KARaCAs: Corresponding Line Diagram for the context

engineer is able to present the lattice representing the so far obtained attributes
to the expert during the acquisition and discuss it. The expert can see if a suf-
ficient set of attributes was already acquired. The lattice in Fig. 3 e.g. shows
that the design patterns Abstract Factory and Factory Method can not be dis-
tinguished by the attributes given so far. If the expert identifies such missing
attributes while looking at the graph (compare Bruder, Lengnink and Prediger
[13]) they can be directly added to the formal context and are also available after
switching back to the repertory grid. The first version of KARaCAs contained
this integration level of the two methods. It was used to acquire approximately
130 attributes from three different experts. Each of the interviews lasted about
an hour which is a relatively short time span for the given task and shows the
data acquisition efficiency of our method.

Furthermore, we can control the ongoing repertory grid. The second version
of KARaCAs analyses the data with respect to the following questions:

1 Are there any two or more elements with attribute sets that are not pairwise
disjoint?
In this case, the next triad will be chosen so that the domain expert is forced
to generate a differentiating attribute.
1.1 Are there three or more elements with equal sets of attributes?

The algorithm produces a triad containing three of these elements. Doing
so, the expert is forced to distinguish one of these elements from the
others and generate an appropriate attribute.

12 H. Garbe et al.

1.2 Are there two elements with equal sets of attributes?
A third element for the triad has to be chosen that has a maximum
amount of attributes in common with the other two elements. Otherwise
it is likely that the two remain grouped together and the third one is
separated. We choose an element contained in a superconcept node or a
subconcept node of a shared superconcept node as third element because
they have the most attributes in common. It is assumed that elements
contained in concepts near to each other in the concept lattice are more
similar than object in concepts far from each other.

1.2.1 Are there two elements with equal sets of attributes that have been
presented together in five triads without being separated? Or is no
new triad possible containing these two elements?
The elements are presented as pairs and separating attributes have
to be generated. At this point we use this limit because we assume
that the two are very similar in relation to the remaining elements
and would always be grouped together when presented with a third
element.

2 If the attribute sets for all elements are pairwise disjoint no new triad is
presented.

Using this algorithm we can ensure that the acquired attribute sets for all ele-
ments are pairwise disjoint at the end of the procedure. By choosing elements as
similar as possible for triades we increase the efficiency of the repertory grid tech-
nique in regard to our requirements and minimize the required expert judgements.

4 Merging

Ontology merging is widely discussed and a lot of tools are developed to sup-
port this process (Stumme and Maedche [19] give a short overview). Ganter and
Stumme describe the general task of ontology merging as follows: ”Merging two
ontologies means creating a new ontology in a semi-automatic manner by merg-
ing concepts of the source ontologies.” [20] Stumme proposed the use of FCA for
this purpose [19,21]. Our acquired source ontologies share the same objects: the
given design patterns. Therefore, we only have to merge the acquired attributes
for these objects. KARaCAs enables us to merge the results of different expert
interviews (requirement 2.4) by aggregating the attribute sets in one large for-
mal context. From this joint context a line diagram is generated, which helps
the knowledge engineer to analyse the attributes.

We primarily investigated the lattices concerning the following two questions:

– Are different attributes used synonymously?
If this is the case, one (or more) of them is redundant and is deleted from
the merged context. In the corresponding lattice these attributes would be
annotated to the same nodes (concepts).

KARaCAs 13

– Do different experts assign very similar attributes A and B to different design
pattern sets?

This might occur if an attribute is only weakly connected to a specific
design pattern. One expert might assign this attribute with a low probability
to a specific design pattern and the other does not connect the two. Another
possibility is that one expert forgot that an attribute is relevant for a design
pattern. In this case, starting at the node that A is assigned to B would be
annotated to a node on an upwards or downwards path.

Supported by this feature we condensed the approximately 130 acquired at-
tributes to about 80 which form the basis for our dialog system.

5 Knowledge Representation with Bayesian Belief
Networks

Bayesian Belief Networks ([22,23]) are the representation of choice for modeling
uncertain knowledge (e.g.[24,25,26,27]). A BBN models this knowledge as a di-
rected acyclic graph that represents a probability distribution. The nodes of the
graph represent propositional variables and directed arcs represent probabilistic
relationships between them. Probabilistic independence between variables is in-
dicated by the types of path in the network and the lack of them. Furthermore,
the relations are conditional probabilities (each variable conditioned on its par-
ents in the network) that define a joint probability distribution of the variables.

We used BBN to express knowledge about the applicability of design patterns
for a given problem situation. For this purpose the qualitative structure of the
BBNs is grouped in two levels (see Fig. 4): the first level contains the actual
design patterns while the second contains the attributes of a problem situation.
Due to this template it is possible to create the qualitative and quantitative
structure of the BBN automatically from the acquired data as presented in the
following section.

5.1 Generating Bayesian Belief Networks

The generation of the BBN was performed in two steps: In the first step the qual-
itative structure of the network was created. The acquired attributes assigned
to the corresponding design patterns and the necessary conditional probabilities
were identified. For each attribute assigned to a design pattern in KARaCAs a re-
lation between these two was created in the qualitative network. This step could
be done automatically by KARaCAs. In the second step a quantitative structure
of the networks was build. While acquiring the different attributes to the design
patterns the experts were asked to judge the probability of the relation between
design patterns and attribute. This probability statements were taken as simple
conditional probabilities like P (attribute A = yes|design pattern singleton =
yes) = 0.9, i.e. the expert judged that in 90% of the cases where a singleton is
used the attribute A applies. However, to build the quantitative structure of the
network more complex conditional statements which expressed the validity of an

14 H. Garbe et al.

Fig. 4. Small Part of the generated Bayesian Belief Network

attribute under the influence of several design patterns were necessary. These
probabilities could be calculated by using the ”noisy-or” ([23]) by making some
assumptions:

1. The chance that an attribute is valid without any of the regarding design
patterns present is 0.05. This states how probable it is for an attribute to
apply, if no design pattern is given. To get more accurate values for these
probabilities it would be necessary to perform a more general statistical
study about the frequency of occurrence of the attribute without a design
pattern associated.

2. We assume that the factors inhibiting the influence of design patterns on an
attribute are independent from each other.

3. In the early stage of the project the experts had to identify attributes for
design patterns without stating the probability of the relation. Because in
this stage the experts were asked to state only attributes which certainly
apply, we assumed the probability of the relations to be 0.9.

Under these assumptions we were able to calculate the necessary conditional
probabilities from the expert statements by using the “noisy-or” approach ([23]).
Finally we had to obtain the a-priori-probability of the design patterns. Since
we had no information if a design pattern is appropriate for a given problem, we
assumed it has a 50% chance of being applicable at the beginning. To get a more
accurate value for this probability a general statistical study about the frequency
of application of the design patterns has to be performed. The calculation of the
necessary probabilities is done automatically by KARaCAs.

5.2 A Dialog System Using Bayesian Belief Networks

The generated BBN is the basis for our dialog system. This system questions the
user successively about his problem situation using the acquired design pattern
attributes. The dialog is performed using the following algorithm:

1. Determine the design pattern node with the highest probability for the state
“yes”. If this probability is higher than 0.9 recommend the design pattern as
applicable to the user. If the probability is lower proceed with the algorithm.

KARaCAs 15

2. Determine the relevant attribute nodes for this design pattern node. This is
done using Shachter’s Bayes Ball algorithm [28].

3. Determine the node with the highest probability for “yes” from this set and
question the user about the associated attribute of this node.

4. If the user answers “yes” or “no” enter this as evidence in the BBN and
perform an inference on the net. If the user answer with “I don’t know”
mark the node as being asked already.

5. Restart with 1.

By always determining the design pattern that is applicable with the high-
est probability and asking about it’s attributes we try to conduct the dialog
according to the users expectations. We assume this dialog strategy minimizes
questions that astonish the user because they are not related to his problem
situation. Using BBN for the dialog we can fulfill the requirements listed in sec-
tion 2. Each answer a user gives is entered as evidence in the BBN and the new
probabilities for all design patterns and attributes are calculated. An undo (re-
quirement 1.1.1) function for user inputs is easily implemented by deleting one
piece of evidence and doing an inference on the BBN.

If probabilities of 0 or 1 are avoided in the specification of the attribute nodes
the dialog can be made fault tolerant for unexpected user input (requirement
1.1.2). If a user answers for example “no” where the situation would imply a
“yes” the applicable design pattern would get a very low possibility. But after
the user answered the following questions (that try to establish an alternative
design pattern) also with “no”, the suitable pattern is assumed to get the pattern
with the highest probability again. In this case the dialog will last longer than in
the best case, but the user has the possibility to get a suggestion. If the user is
not quite sure about how to answer a certain question he also has the possibility
to say “I don’t know” (requirement 1.1.3). The attribute node in the BBN is
then marked and will not be answered again, but no evidence is entered into
the BBN. Because new evidence is directly propagated through the network, it
is possible to present a ranking list of the design patterns after each answer.
The user always has an overview of the probabilities with which each pattern is
suitable concerning his so far entered information.

Using Bayesian Belief Networks as knowledge representation for the dialog
enabled us to fulfill the requirements from section 2. Alternative representations
could have been for example the concept lattice produced by FCA or a decision
tree. But both can’t fulfill our requirements. Especially the representation of
probabilities and the required opportunity to change any already given answer
during the dialog is difficult to implement with these techniques.

6 Conclusion and Further Work

6.1 Conclusion

A knowledge acquisition method was presented that combines repertory grids
and formal concept analysis on two ascending levels of integration. The first

16 H. Garbe et al.

version of KARaCAs was used to acquire approximately 130 attributes from
three design pattern experts. Each of the three interviews only lasted about one
hour. During the interviews the visualization was used to analyse the data so far
obtained. The concept lattice was easy to understand for the experts and helped
them to reflect on their answers. Based on the experiences from these interviews
we developed the second version of KARaCAs. The results of the three interviews
were merged as described and condensed to about 80 attributes. These attributes
are the basis for our dialog system. KARaCAs supports the entire knowledge
acquisition process and automatically generates a BBN from the data that is
used in the dialog system.

6.2 Further Work

The dialog system will be evaluated with computer science students at the Uni-
versity of Oldenburg. A special question for this evaluation is whether the at-
tributes given by design pattern experts can be understood by beginners. An-
other one is the suitability of the dialog strategy which determines the questions
that are presented to the user. To further support the experts in generating at-
tributes we plan to do interviews with a dyad of experts. A small test with two
experts showed that they discuss the grouping of design patterns and the naming
of the attributes a lot. It seemed promising to do interviews with a peer group
of experts to increase the quality of the acquired data. Furthermore we want to
expand the dialog system. Our focus is on the domain dependent applicability
of design patterns.

Acknowledgements

The development of KARaCAs and the dialog system was embedded in the
multi-partner project InPULSE which was granted by the BMBF (German Fed-
eral Ministry of Education and Research). We thank Jan-Patrick Osterloh and
Lars Weber for implementing our ideas and algorithms in KARaCAs and Steffen
Kruse and Malte Zilinski for critical comments.

References

1. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addision-Wesley (1995)

2. Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I., Angel,
S.: A Pattern Language. Oxford University Press, New York (1977)

3. Meffert, K.: Supporting design patterns with annotations. In: 13th Annual IEEE
International Symposium and Workshop on Engineering of Computer Based Sys-
tems (ECBS’06). (2006) 437–445

4. Gomes, P.: Software design retrieval using bayesian networks and wordnet. In:
Proceedings of the 7th European Conference on Case-Based Reasoning, ECCBR
2004. (2004) 184–197

KARaCAs 17

5. Möbus, C., Seebold, H., Garbe, H.: A greedy knowledge acquisition method for
the rapid prototyping of knowledge structures. In Clark, P., Schreiber, G., eds.:
Proceedings of the 3rd International Conference on Knowledge Capture, 2005, New
York, NY: ACM Press (2005) 211 – 212

6. Kelly, G.A.: Psychology of Personal Constructs. New York: W. W. Norton (1955)
7. Delugach, H., Lampkin, B.: Troika: Using grids, lattices and graphs in knowledge

acquisition. In Stumme, G., ed.: Working with Conceptual Structures: Contribu-
tions to ICCS 2000, Aachen, Germany: Shaker Verlag (2000) 201–214

8. Gaines, B., Shaw, M.: Knowledge acquisition tools based on personal construct
psychology. The Knowledge Engineering Review 8(1) (1993) 49–85

9. Castro-Schez, J.J., Jennings, N.R., Luo, X., Shadbolt, N.: Acquiring domain
knowledge for negotiating agents: a case study. International Journal of Human-
Computer Studies 61(1) (2004) 3–31,

10. Spangenberg, N., Wolff, K.: Datenreduktion durch die Formale Begriffsanalyse
von Repertory Grids. In: Einführung in die Repertory Grid-Technik, Band 2,
Klinische Forschung und Praxis. Bern, Göttingen, Toronto, Seattle: Verlag Hans
Huber (1993) 38–54

11. Richards, D.: Ripple-down rules with formal concept analysis: A comparison to
personal construct psychology. In Gaines, B., Musen, M., eds.: Proceedings of 11th
Workshop on Knowledge Acquisition, Modeling and Management, Banff Canada,
SRDG Publications, Calgary, Canada (1998)

12. Choisel, S., Wickelmaier, F.: Extraction of auditory features and elicitation of at-
tributes for the assessment of multichannel reproduced sound. In: 118th Convention
of the Audio Engineering Society, Barcelona, Spain (2005)

13. Bruder, R., Lengnink, K., Prediger, S.: Ein Instrumentarium zur Erfassung sub-
jektiver Theorien über Mathematikaufgaben. Preprint Nr. 2265 des Fachbereichs
Mathematik, TU Darmstadt (2003)

14. Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations.
Springer, Berlin, Heidelberg, NewYork (1999)

15. Cimiano, P., Hotho, A., Stumme, G., Tane, J.: Conceptual knowledge process-
ing with formal concept analysis and ontologies. In: Proceedings of the Second
International Conference on Formal Concept Analysis - ICFCA04. (2004) 189 –
207

16. Kollewe, W.: Begriffliche Wissensverarbeitung: Wie Begriffsstrukturen die Pflege
und Recherche in Wissensdatenbanken unterstützen. In: Bitkom KnowTech. (2002)

17. Düwel, S.: BASE - ein begriffsbasiertes Analyseverfahren für die Software-
Entwicklung. PhD thesis, Philipps-Universität Marburg (2000)

18. Lengnink, K., Prediger, S.: Development of the personal constructs about mathe-
matical tasks - a qualitative study using repretory grid methodology. In: Proceed-
ings of the 27th Annual Meeting of the International Group for the Psychology of
Mathematics Education (PME), Hawaii (2003)

19. Stumme, G., Maedche, A.: FCA - MERGE: Bottom-up merging of ontologies. In:
IJCAI. (2001) 225–234

20. Ganter, B., Stumme, G.: Creation and merging of ontology top-levels. In de Moor,
A., Lex, W., Ganter, B., eds.: Conceptual Structures for Knowledge Creation and
Communication, 11th International Conferebce on Conceptual Structures, ICCS
2003, Proceedings, Springer (2003) 131 – 145

21. Stumme, G.: Ontology merging with formal concept analysis. In Kalfoglou, Y.,
Schorlemmer, M., Sheth, A., Staab, S., Uschold, M., eds.: Semantic Interoperability
and Integration. Number 04391 in Dagstuhl Seminar Proceedings, Internationales
Begegnungs- und Forschungszentrum (IBFI), Schloss Dagstuhl, Germany (2005)

18 H. Garbe et al.

22. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Revised second printing edn. Morgan Kaufman Publishers, San Mateo,
CA. (1998)

23. Jensen, F.: Bayesian Networks and Decision Graphs, Statistics for Engineering and
Information Science. Berlin: Springer (2001)

24. Folckers, J., Möbus, C., Schröder, O., Thole, H.J.: An intelligent problem solv-
ing environment for designing explanation models and for diagnostic reasoning
in probabilistic domains. In Frasson, C., Gauthier, G., Lesgold, A., eds.: Intelli-
gent Tutoring Systems. LNCS (1086), ITS 96, Montreal, Canada, Berlin: Springer
(1996) 353–362

25. Mislevy, R., Almond, R.G., Yan, D., Steinberg, L.: Bayes nets in educational
assessment: Where do the numbers come from? CSE Technical Report 518, Center
for the Study of Evaluation, University of California, Los Angeles (2000)

26. Bunt, A., Conati, C.: Assessing effective exploration in open learning environ-
ments using bayesian networks. In Cerri, S.A., Gouardres, G., Paraguacu, F., eds.:
Intelligent Tutoring Systems, Berlin: Springer (2002) 698 – 707

27. Zapata-Rivera, J., Greer, J.: Student model accuracy using inspectable bayesian
student models. In Hoppe, U., Verdejo, F., Kay, J., eds.: Artificial Intelligence
in Education: Shaping the Future of Learning through Intelligent Technologies,
Amsterdam: IOS Press (2003) 65 – 72

28. Schachter, R.D.: Bayes-ball: The rational pastime (for determining irrelevance
and requisite information in belief networks and influence diagrams). In Cooper,
G.F., Moral, S., eds.: Proceedings of the Fourteenth Conference on Uncertainty in
Artificial Intelligence (UAI-98), Morgan Kaufmann (1998) 480487

	Introduction
	Requirements and Proposed Knowledge Acquisition Process
	Knowledge Acquisition
	Knowledge Acquisition with Repertory Grids
	Ontology Engineering and Formal Concept Analysis
	Integrating the Methods - KARaCAs

	Merging
	Knowledge Representation with Bayesian Belief Networks
	Generating Bayesian Belief Networks
	A Dialog System Using Bayesian Belief Networks

	Conclusion and Further Work
	Conclusion
	Further Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

