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Abstract: MEDICUS (modeling, gxplanation, and aagnostic support for complex, 
uncertain subject matters) is an intelligent modeling and diagnosis environment designed - 
to support the construction of explanation models and diagnostic reasoning in domains 
where knowledge is complex, fragile, and uncertain. MEDICUS is developed in 
collaboration with several medical institutions in the epidemiological fields of 
environmentally caused diseases and human genetics. Uncertainty is handled by the 
Bayesian network approach. In modeling, the user creates a Bayesian network for the 
problem at hand, receiving help information and explanations from the system. This 
differs from existing reasoning systems based on Bayesian networks, i.e. in medical 
domains, which contain a built-in knowledge base that may be used but not created or 
modified by the user. MEDICUS supports diagnostic rearoning by proposing diagnostic 
hypotheses and recommending examinations. In this paper we will focus on the 
modeling component of MEDICUS. 

1. Introduction 

Medical diagnosis is a reasoning and problem solving task that can be quite difficult [Barrows & Tamblyn 19801, 
[Boshuizen & Schmidt 19921, Elstein et al. 19781, [Elstein & Bordage 19801, [Patel & Groen 19861. One 
prerequisite is the availability of explanatory models of diseases, their etiologies, and symptoms associated with 
them. This is especially m e  in young medical subdomains with particularly complex, interrelated, fragile, and 
uncertain knowledge. Two examples are the epidemiology of diseases caused by environmental influences, like 
pollution, and of diseases caused by human genetic defects. Much of the knowledge in these domains is not yet 
available in a systematic way, and clear-cut taxonomies and explanatory models of diseases have not been 
developed yet. Still these domains are getting increasingly important. This is reflected by the fact that they 
receive increasing attention in medical science at university as well as in postqualification courses for physicians. 
In the domains of environmental medicine and human genetics, explanatory models of diseases are important i) in 
epidemiological research in order to systematize information from several resources, like epidemiological studies 
and clinical cases, ii) to provide a base for making e.g. environmental examinations more efficient, and iii) in the 
context of medicaI training and qualification. Thus the Iearner should have an opportunity to actively construct 
models of diseases, their possible causes, and the symptoms associated with them, and to evaluate the 
consequences of these models. In this way the learner acquires and uses the knowledge necessary for diagnostic 
reasoning. Furthermore, the learner should have an opportunity to actively perform diagnostic reasoning and to 
apply diagnostic strategies. 
Existing computer-based systems supporting medical reasoning (i.e. MYCIN [Shortliffe 19761, CASNET lWeiss 
et al. 19781, PIP [Szolovits & Pauker 1978; 19931, INTERNIST Miller et al. 19821, ABEL [Patii et al. 19811, 
NESTOR [Cooper 19841, MUNIN [Andreassen et al. 19871, PATHFINDER [Heckerman 19911, see also 
[Barahona et al. 19951) are primarily aimed at proposing diagnostic hypotheses, given available clinical evidence, 
and to suggest further diagnostic evidence gathering steps, for example, for differential diagnosis (e.g., 
[Heckerman et al. 19921). Some systems, like CASNET, also generate therapeutic recommendations and have 
some capability to explain their reasoning steps. But none of these systems is designed to support the creation of 
explanatory models for diseases and the training of diagnostic strategies. In cooperation with several medical 
institutions (Health Authority of Oldenburg, Documentation and Information Center for Environmental Issues, 



Osnabriick, Medical Institute for Environmental Hygiene, Diisseldorf, Robert-Kwh Institute, Berlin), we 
currently develop MEDICUS, an intelligent modeling and diagnosis environment. The aims of MEDICUS are 

to assist a user in developing a model of perceived causes, effects, and other relationships in a domain 
of interest The user may be a learner in a training context or a professional interested in creating an 
explanatory model summarizing epidemiological hypotheses and findings. 

to assist a user in diagnostic reasoning tasks. Again the user may be a learner in a training context, 
or he / she may be a professional planning, executing and evaluationg for example an environmental 
monitoring survey (i.e., chemical analysis of air in rooms). 

MEDICUS differs from existing medical expert systems by being designed to support these two activities: 

Model construction is supported by a linguistic model editor based on a simplified natural language, 
and a graphical model editor for editing Bayesian networks. After creating an initial linguistic and/or 
graphical model of the domain of interest, the modeler may further specify, evaluate, and revise the 
model at a qualitative and quantitative level. 

Diagnosis will also be supported qualitatively (i.e., what information is necessary in order to support 
or differentiate between what hypotheses?) and quantitatively (i.e., how strongly do new facts affect 
diagnostic hypotheses?). 

Although MEDICUS is developed within the mentioned fields of medicine, our intention is that it will be 
applicable in general in domains of uncertain and complex knowledge. The next section gives an overview of the 
design decisions for the system. The third section describes the modeling component of MEDICUS in some 
detail. The fourth section gives a brief sketch of the state of the diagnosis support component. Conclusions and 
directions of further work will be sketched in the closing section. 

2. Design Decisions for MEDICUS 

Model construction and diagnostic reasoning can be viewed as problem solving tasks. In order to create a system 
designed to support problem solving in a knowledge domain, design principles are required that are based on a 
theory of problem solving and knowledge acquisition. For training and knowledge communication contexts, we 
developed design principles leading to the concept of an Intelligent Problem Solving Environment (IPSE, 
Mobus 19951): The learner acquires knowledge while working on a sequence of problems, actively testing 
hypotheses. This means that the learner creates solution proposals, tests hypotheses about their correctness, and 
the system analyzes the proposals making use of an oracle or an expert knowledge base, and provides help and 
explanations. The psychological foundation of our IPSE approach is the ISP-DL Theory of knowledge 
acquisition and problem solving (i.e., Mobus 19951) which is influenced by [van Lehn 19881, mewell 19901, 
[Anderson 19931, [Gollwitzer 19901. Briefly, it states that new knowledge is acquired as a result of problem 
solving and applying weak heuristics in response to impasses. In contrast, existing knowledge is optimized if 
applied successfully. Furthermore there are four distinct problem solving phases: deliberating and setting a goal, 
planning how to reach the goal, executing the plan and evaluating the result. The ISP-DL Theory leads to several 
design principles for IPSE's [Mobus 19951. For example, firstly, the theory states that the learner will appreciate 
help at an impasse. So the system should not interrupt the learner but offer help on demand. Secondly, feedback 
and help information should be available any time, aiming at the actual problem solving phase of the learner. 
Thirdly, the learner should be prevented from trapping into follow-up impasses. Thus help information should 
refer to the learner's pre-knowledge as much as possible. 
The system to be described here is designed according to these criteria. Help information is or will be always 
available on demand. Planning a model is facilitated by the simplified-natural-language model editor allowing the 
learner to state her or his ideas in an informal way. The evaluation of models is supported qualitatively and 
quantitatively. Close correspondence to the learner's knowledge will be achieved by giving help that changes the 
learner's proposal as little as possible (minimal corrections and minimal completions). 
From the beginning, computer-based support of medical reasoning had to face the problem of uncertainty of 
knowledge. Uncertainty was handled by heuristic approaches (for example, in MYCIN, CASNET, PIP, 
INTERNIST, or ABEL) as well as in a Bayesian, probability-based way (for example, in NESTOR, MUNIN, or 
PATHFINDER). We chose to handle uncertainty by the Bayesian network approach. A Bayesian network (e.g., 
[Neapolitan 19901, [Pearl 19881) represents knowledge as a set of propositional variables and probabilistic 



interrelationships between them by a directed acyclic graph. The variables are represented by the nodes of the 
graph, and the relations by directed arcs. The relations are conditional probabilities (each variable conditioned on 
its parents in -the network) that define a joint probability distribution of the variables. The left of Figure 11 
shows a simple Bayesian network and the corresponding joint distribution. Independencies between variables are 
represented by omitting arcs, which simplifies the corresponding conditional distributions. For example, in the 
net on the right of Figure 11, the variables "fever" and "sore throat" are independent given knowledge about 
"influenza" and "infection of throat". This means that the information "fever" is not relevant for the hypothesis 
"sore throat" (and vice versa) if it is already known whether the patient has influenza and a throat infection. 

p(influenza, infection of throat, fever, sore throat) = p(influenza, infection of throat, fever, sore throat) = 
p(fever I sore throat, influenza, infection of throat) * p(fever I influenza, infection of throat) * 

p(sore throat I influenza, infection of throat) * p(sore throat I influenza, infection of throat) * 
 influenza I infection of throat) * p(infection of throat) Hinfluenza) *  infection of throat) 

Figure 1: Simple Bayesian network without (on the left) and with (on the right) independencies 

An important reason for choosing the Bayesian network approach is that it supports qualitative reasoning. A 
physician engaged in medical diagnosis proceeds in a highly selective manner [i.e., Elstein et al. 19781. There is 
evidence that this selectivity can be explained by exploiting independencies that are also present in Bayesian 
networks. Our reviews of case studies in the domain of environmental medicine support this hypothesis. There is 
also evidence that qualitative reasoning as supported by Bayesian networks corresponds closely to human 
reasoning patterns [Jungermann & Thiiring 19931, [Waldrnann & Holyoak 19921, [Henrion 19871. 

Alternative approaches. The Dempster-Shafer Theory of evidential reasoning (i.e., [Gordon & Shortliffe 19901) 
does not require a complete probabilistic model of the situation, so it can distinguish between uncertainty and 
equal certainties of events. A consequence of this is that belief and disbelief in an event do not have to sum to 
unity, leading to belief intervals from the positive belief in a set of possible events to their mere possibility. So 
the Dempster-Shafer Theory allows to represent beliefs, disbeliefs, and uncommitted beliefs, requiring two values 
(belief and plausibility) instead of one probability measure. This does not seem necessary at the current stage of 
our project. In addition, within the probability-based approach we can represent the uncertainty of probabilities 
by second-order probabilities [Cheeseman 19851, [Neapolitan 19901, [Pearl 19881. So we consider the 
probability-based approach sufficient for our present aims, which is not meant to preclude other methods at later 
stages. 
Fuzzy-Set Theory reasons with propositions that have vague meaning. Again there is a knowledge acquisition 
problem, i.e., the acquisition of many membership functions. But in our application domain, there are many 
vaguely specified concepts, like "severe headache" or "typical symptom" (see also the examples below). Therefore 
we work on integrating fuzzy concept descriptions into the Bayesian network approach by acquiring conditional 
distributions for fuzzy relations. 

3. Modeling with MEDICUS 

This section is organized in three steps: First we describe how the user may create an initial model. Then we 
show how MEDICUS assists the user in the qualitative revision of the model. The third subsection describes the 
quantitative specification of a model. 

3.1 Initial Model Formulation 

One of the two main goals of MEDICUS is to assist a user in developing a model of causes, effects, and other 
relationships in a domain of interest, where the user may be a learner in a training context or a professional. In 



MEDICUS, the model is represented with a formal tool, Bayesian networks. The reason to use a formal tool is 
to have a precise base for reasoning and communication, and to be able to derive consequences (in-/dependencies, 
aposteriori distributions) which can be used for proposing recommendations, help, and modifications. At the 
same time it is necessary that the modeler is able to state her or his ideas in an informal way which she  is used 
to. Therefore, we developed a simplif~ed-natural-language model editor ("linguistic model editor"). After stating 
his model in this editor, the system can generate an initial graph automatically. Alternatively, the user may also 
create a graph directly in the graphical model editor. 
Figure 21 shows an example from the linguistic model editor with five sentences from the domain of 
environmental medicine: possible effects of benzol. Each sentence is placed in a sentence field. In order to create 
sentences, the modeler may select variable categories, relations, modifier, and logical junctions from a menu, and 
name them. The relations are classified based on i) probabilistic concepts of causality [Salmon 19841, [Suppes 
19701 organized according to "kind of influence" (positive / negative) and "direction of influence" (forward, 
backward, or undirected), and ii) has-part / is-a hierarchies. Table 1 shows this taxonomy. Relations currently 
available in the linguistic model editor are marked by asterisks, but the modeler may introduce his or her own 
relations by specifying their kind and direction of influence. The sentences created by the modeler are checked by 
a definite clause grammar. Besides syntactical correctness, semantic restrictions are checked. The modeler receives 
feedback if the grammar finds errors. 
If the modeler asks the system to create a graph representation for the model specified in the linguistic model 
editor, a graph is created in the graphical model editor Figure 31. The graph is an initial heuristic proposal which 
may have to be refined by the modeler qualitatively and quantitatively (see below). In creating the graph, nouns, 
that is, variable categories named by the user, are represented by nodes (propositional variables). Table 2 shows 
the propositions assigned to the variable categories. (If not specified otherwise by the user, the system creates 
binary variables by default.) The relations between nouns are represented by links as depicted in the rightmost 
column of Table 1. For relations describing undirected relations (like "corresponds to"), a dialog is evoked where 
the learner is asked to specify the direction, or to specify another variable as the common cause or effect of the 
corresponding variables. 
When the graph is created, natural-language expressions of the conditional distributions for each node (resp. 
apriori distributions in case of root nodes) are created. They can be inspected by the user. Furthermore, the user 
may ask for an explanation of the relationship between the sentences in the model editor, and the graph. The 
explanation is based on the taxonomy of relations shown in Table 1. For example, the direction of a link is 
explained by the direction of influence of the verbal relation represented by that link. 

3.2 Qualitative Model Revision 

After the initial formulation of the model, it has to be analyzed and possibly revised on a qualitative level. In 
particular, it has to be verified that the dependencies and independencis implied by the graph correspond to the 
intentions of the modeler..As shown in [Figure 11, in Bayesian networks independencies are expressed by 
missing links. For example, the graph in [Figure 31 states that anaemia and leukopenia are independent, given 
benzol (that is, p(anaemia I benzol) = p(anaemia I benzol, leukopenia)). This means that knowledge that a patient 
suffers from leukopenia is not relevant for the hypothesis that he suffers from anaemia, if it is known whether 
the patient is exposed to benzol. In contrast, if nothing is known about benzol, information about leukopenia is 
useful for the hypothesis "anaemia" (p(anaernia) #  anaemia I leukopenia)). 

Tcx JcJ, :- -------- - x --- ------ ---- - --- --- - w$iqeyTyp-$% ,Y. F; \ $\ p~~ . ( % anoemr? - - &,> ' may lead - to - ~ p a h o r _ " f % ~ ~ ~ ~ ~ ~ & ~ ~ & & & & ~  A +  ----- ----------- - ----- - .A,. 

3. 
$nc7;i, ---------, y!: ---- - ----- -- --- ------ -- " r ---.L..--..,.----- ' --- --I ------- - - !c , &\ ;Jp&yw> V$\ ',$\ 
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Figure 2: Five sentences created in the linguistic model editor 



I 
~ i r e c t e d  and undirected relations: 

kind of influence 
positive I negative 

A causes B* I A counteracts B * 
A brings about B * A prevents B 
A triggers B * A suppresses B 
A may lead to B ... 
P(B I A) > p(B) P(B I A)  < p(B) 

A follows B A does not follow B 
A is consequence of B A is suppressed by B 
... ... 

P(A I B) > p(A) P(A I B) < p(A) 

undirected A corresponds to B* I A and B are 
A occurs with B * mutually exclusive 

Is-a and Part-of hierarchies: 

Representation 
in the graph: 

? A  

Dialog 
(see below) 

I Representation 
in the mmh: 

A is example for B* A is exemplified by B 
A contains B* A is part of B 

Table 1: Taxonomy of relations used in the linguistic model editor 

Variable categorv Pronosition 
<person> Person is <Person> 
<state> Person is in the state <state> 
<event> Person experiences the event <event> 
<action> Person performs the action <action> 
<object> Person has to do with the object <object> 
<substance> Person has to do with the substance <substance> 

Table 2: Propositions assigned to variable categories 

Similarly, "necrosis of mucous membrane" and "chills" are independent, given knowledge about leukopenia, but 
"leukopenia" and "cold" are dependent given "chills": If it is known that a patient suffers from chills, then new 
evidence that weakens the hypothesis "cold" will strengthen the hypothesis "leukopenia", and vice versa: 
Weakening one explanation for "chills" strengthens the other one. For example, if we learn that a patient 
suffering from chills has leukopenia, then we have an explanation for the chills, making the alternative 
explanation ("cold) less likely. Formally, conditional independence is described by the d-separation criterion 
Pearl 19881. 
In MEDICUS, we want the knowledge of the modeler to be acquired in a way that is at the same time 
comfortable to the modeler and informative for generating independence assertions. Therefore, a knowledge 
acquisition facility is currently developed that can be used for model construction and for model validation, that 
is, for verifying or rejecting the independencies inherent in the graph. The system offers a diagnostic dialog that 
proceeds in three steps: 

1. For a case, the modeler specifies the initial data and symptoms, i.e., results of history taking (left window in 
Figure 41: for example, "benzol", "pallor", and "cold"). Next, he specifies a hypothesis (middle window in 
Figure 41, for example "anaemia"). Thirdly, he specifies what information he considers relevant for his 
hypothesis, that is, what information he would look for next (right window in Figure 41: "oxygen deficiency" 
and "vitamin supply" in this case). Independency assertions are constructed from this dialog in the following 
way: Information not considered relevant to the hypothesis by the modeler, given the initial data and symptoms, 



is independent of the hypothesis, because it is not considered informative for the hypothesis by the modeler. In 
[Figure 41, "chills" was not selected in the right window, so "chills" and "anaemia" are considered independent, 
given "benzol!', "pallor", and "cold":  anaemia I benzol, pallor, cold, chills) =  anaemia I benzol, pallor, cold). 
Similarly, "leukopenia" and "necrosis of mucous membrane" were also not selected in the right window of 
[Figure 41, so  anaemia I benzol, pallor, cold, leukopenia) =  anaemia I benzol, pallor, cold), and p(anaemia I 
benzol, pallor, cold, necrosis of mucous membrane) = p(anaem& I benzol, pallor, cold). 

I 

Figure 3: Graph representation in the graphical model editor generated for the sentences of [Figure 21 

- g a  Sentences: Needed information #O 

Patient data, 
Symptoms Hypothesis 

Addi tionall y needed 
information 

- - 

Figure 4: Diagnostic dialog for the acquisition of information about independencies 

2. The modeler states the hypothesis that the graph is consistent with the information specified by her or him in 
the diagnostic dialog. The system analyzes this hypothesis using the d-separation criterion. If differences are 
found, a graph is constructed internally [Srinivas et al. 19901 from the dependence and independence assertions 
acquired in the diagnostic dialog. This internal graph is compared to the modeler's graph. This may lead to one of 
the following results: i) The modeler's graph and the in-/ dependencies acquired in the dialog are consistent, ii) 
links have to be removed from the graph in order to be consistent with the in-/ dependencies, iii) links have to be 
added to the graph, iv) links have to be removed from and added to the graph as well. After the dialog of Figure 
41 has taken place, the feedback for the graph in Figure 31 is that a link has to be added. 



3. On further request, the modeler may ask the system for modification proposals and an explanation of these 
proposals. For example, after the dialog of [Figure 41 has occurred, the system proposes for Figure 31 to add a 
link between ','anaemia" and "vitamin supply" because the modeler specified that "vitamin supply" is informative 
for "anaemia" given "benzol", "pallor", and "cold". The direction of the to-be-added link is not specified in the 
system's proposal because both directions are compatible with the information specified in Figure 41. The 
explanati& presented to the modeIer on request is shown in [Figure 51. 

- $EL Explanation of modification prop0 

Add edge between anaemia and vitamin 
supply because you specified that 
uitamin supply i s  informative f o r  
anaemia given benzol and pallor and 
cold 

Figure 5: Explanation of the modification proposal for the graph in [Figure 31 
after the dialog shown in [Figure 41 has occurred 

3.3 Quantitative Model Specification 

When the qualitative structure of the model is fixed, the modeler may quantify the net with apriori and 
conditional probabilities, enter evidences, and let the system generate posterior distributions, Like in ERGO and 
HUGIN, evidence propagation is implemented according to the algorithm of Duritzen & Spiegelhalter 19881. 
As mentioned at the end of [Section 23, we want MEDICUS to generate the needed conditional probabilities from 
the verbal relations specified by the modeler in the linguistic model editor. This is part of our current work. 

4. Supporting Diagnostic Reasoning 

For a specified model, MEDICUS generates qualitative diagnostic recommendations in a preliminary way 
(without a utility model, [Heckerman et al. 19921). For symptoms given, MEDICUS lists the currently most 
probable syndrome hypotheses, and it recommends diagnostically relevant symptoms and environmental factors 
to consider next. These recommendations have been demonstrated with a more realistic, multiply connected net 
containing about fifty variables to a community of environmental medicinal professionals. 

5. Conclusions and Further Work 

Together with our cooperation partners, diagnostic support will be applied to problems of planning and 
interpreting clinical and environmental investigations. Currently we create practically useable applications for 
problems of environmental monitoring and human genetics. With the Medical Institute of Environmental 
Hygiene, Diisseldorf, it is planned to apply our system to a large set of case data from environmental medicine. 
In this way it will be possible to construct a large and realistic network suitable for serious diagnostic training. 
One of our long-term goals is to establish MEDICUS within university and postqualification courses. So one of 
the next research goals is to give more detailed support and explanations for diagnostic reasoning. Another 
research goal is to enable collaborative or competitive modeling of several agents. Thus modeling will become a 



group activity. The goal of this application will be to help structure cases and research results in environmental 
medicine to achieve a unified model, or if this is not possible, to pinpoint differences and contradictions. 
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