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3.1 Abstract

Au Intelligent Problem Solving Environment (IPSE) is described that supports novices in
learning to construct models of time-discrele distributed systems with Condition-Tivent
Petri nets. The system, PETRI-HELP, is based on a theoretical framework recommending
that a help system should offer help, lel the learner use pre-knowledge, and support
different problem solving phases. In PETRI-HELP the learncr creates Petri nets for given

tasks, tests hypotheses about the solutions (or fragments of them), and receives feedback,
completions, and correction proposals,

In PETRI-IIELD, tasks are stated to the learner as sets of temporal logic formulas. On
request, the sysiem analyzes the Petri net fragment created by the learner and inlorms
the learner about the actual {sub-) set of task formulas fulfilled by the current solution
proposal. In addition, the system represents rules that reflect learners’ successful steps
towards task solutions. These rules are used for offering completions and correclion
proposals. So the system constantly improves itsell by learning from its users.

According to our theoretical framework of help system design as well as empirical work
done with PETRI-IIELP, the system should also support plenning, i.c., creating an ab-
stract solution idea and postponing implementation decisions, and the construction of
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Lasks, nol only solutions for tasks. Some additional work will be deseribed thal is aimed
al extending PETRI-IELY into these two directions. PETRI-IIELE led to the develop-
ment of another system: an IPSE for the design of pneumatic circuits. This system will
be briefly described in the closing section.

3.2 Introduction

Intelligent help systems and knowledge communication syslems are expected Lo supply
the user with information that is sensitive to the actual problem solving situation and-
to the actual knowledge and inlentions of the user. Developing this kind of systems
requires a variely of design decisions, like when to supply remedial information, what
to supply {what determines "good” help?), and how to present it. The acceplance of
knowledge communication systems by users critically depends on satisfaclory solutions to
these problems.

In order to support design decisions for the development of an intelligent help system,
a theoretical framework of problem solving and learning is needed. Without such a fra-
mewaork, design decisions will be largely unmotivated and ad hoc, resulting in a system
which tends to be inconsistent, difficult to work with, and not accepted by its users. Our
ISP-DL Theory (impasse — success — problemn solving — driven learning theory) is such a
theoretical framework. Figures 3.1 and 3.2 give a brief overview of it. The ISP-DL Theory
allempts to integrate impasse-driven learning [22, 23, 28, 38, 42, 43, success-driven lear-
ning (e.g., [2, 3, 4, 46, 47]), and phases of problem solving [14, 17]. According to the
ISP-DL Theory [26, 27, 24], if the problem solver is faced with a set of possible goals,
lic or she will construct a solution for a goal, and the knowledge used in this problem
solving process will be deductively optimized (success-driven learning) so it will be used
more elliciently in future (Figure 3.1).

The problem solving process consists of four phascs {Figure 3.2): The problem solver (I'S)
deliberates with the result of choosing or creating a goal to pursue. Then a plan to reach
the goal is synthesized or transferred from an earlier problem by analoguous reasoning.
Nexi, the plan is ezecuted, and the obtained result is evalealed. Impasses might result at
scveral points in this process: The PS might not be able to choose or to creale a goal,
or Lhe plan cannot be created, or execution may not be pussible, or the oblained result
may not be satislying. The PS reacts to an impasse by entering a new problem solving
process, using weak heuristics like looking for help, asking, and cheating. As a result, the
IS may acquire new knowledge inductively (impasse-driven learning) so he may overcome
the impasse and continue with the original problem solving process. But alternatively, the
information obtained may not be helpful but confusing, so the learner might encounter a
sccondary impasse [5].

"The ISP-DIL Theory leads ta several design principles for a knowledge comm 57 unication
gystem (IMigure 3.3):

e According to Llie theory, the learner will look for and appreciate help if lie or she is
caught in an impasse. Without an impasse there is no need for lelp. So the system
should not interrupt the learner but offer help only on request.
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Figure 3.1: ISP-DL Theory: Problem solving and deductive knowledge optimization

» The learner should be prevented from trapping into secondary impasses Lhat may
lead away from the original problem solving. So pre-knowledge should be usable at
impasses as much as possible. Help should be adapied to the knowledge state of
the learner, i.e., help should be user-oriented. This requires either a learner model
or the possibility to test hypotheses aboul the solution crealed (see below).

e According to the ISP-DL Theory, help should be provided at different phases of
problem solving because impasses may arise in all phases. So a help system should
support deliberating, planning, ezecuting, and evalwating solution proposals. Ilelp
should be problem phase oriented.

These three requirements are well met by letting the learner test hypotheses about her or
his solutions or solution fragments, and get help and proposals from Lhe system [24]. This
leaves the activity on the learner’s side, the learner is not disturbed by unwanted system
comments, but information is offered to the learner and may be obtained on request.

Secondly, hypotheses testing means that the system takes account of the user’s ideas
and intentions, that is, of his pre-knowledge, without leading him away onto diflerent
problem solving paths. Thirdly, the hypotheses testing approach takes account of different
problem solving phases (FFigure 3.2, this will be discussed below). We call systems designed
according to these criteria Intelligent Problem Solving Environments (IPSEs, [24]).

PETRI-HELP [25, 30, 39] is an IPSE designed to support novices modelling with Condi-
tion-Event Petri nets. According to the 1SP-DL Theory, modelling with Petri neis is a
problem solving activity consisting of the following sub-activitics'

! Fach of these phases can again be considered as consisting of the four subphases. For example, the
task of developing a specification of a system may consist of the subphases ” defiberating” (deciding what
to specify), "planuing” steps Lo perform in order to create a specification, "exeenling” this plan, and

16

Y

deliberate

problem solving

:

{ nuanEim H Sw:nnhcsim |

inductive
acquisition of
new bnowledge

Subgoal
solulion

L
react lo reacl to
[CCCES 1MPAsSSE
Salution

Figure 3.2: 1SP-DL Theory: I'roblem solving phases and inductive knowledge acquisition

e 1o develop specifications of systems or processes Lo be modelled (" deliberating”)

e to plan a Pelri net solution for a given specification (" planning”)

» to actually construct a Petri net (” executing”)

o to evaluale the resulting net, for example whether it meets the specification (" eva-

luaking™).

So the skill of modelling with Petri nets may be decomposed into four subskills. The first
subskill does not. directly refer to the construction of Petri nets but to the development of
specilications for them. The other three subskills refer directly to Petri net construction.

#svaluating” the result (for example, finding out whether the specification contains contradictions). So
the concept of different phases of problem solving activities has a recursive sbruclure.
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Figure 3.3: Design principles following from the ISP-DL Theory for intelligent knowledge
communication sysiems

In PETRI-HELP, the learner can create Condition Event Petri nels for given tasks, test
hypotheses, and ask for help and proposals. In the next section we will describe our
preliminary empirical studies which we did in order to investigate the design principles
for the development of PETRI-HELP. Then we will describe the main components of
PETRI-TIELD. After that some empirical work with PETRI-IIELP is presented. The
results indicate low PETRI-HELP should be extended. The fifth section describes work
aimed at these extensions: The incorporation of a user model, explanations, the systematic
construction of net solutions, and supporl of specification devclopment (the first of the
four subskills mentioned above). Finally, the cooperations of the PETRI-IIELP project
and its extension leading to a new system in the domain of pneumatic circuits will be
described.

3.3 Empirical Work Supporting the Development of
PETRI-HELP

During the initial phase of the development of PETRI-HELP, several questions were raised
which had to be solved empirically. Our preliminary empirical investigations were aimed
at the following questions:

e What difficultics do especially novices have while constructing Petri neta? Where
do they need assistance?

In order for a system to analyze learners’ Petri net solution proposals, a iask des-
cription or specificalion is necessary. Temporal logic [21] is a convenient mcaus for
specifying time-discrete systems. Furthermore, specifying modelling tasks as sets
of temporal logic formulas allows to analyze Petri net solution proposals by model
checking (sce below in more detail). But before pursuing this approach, we had to
investigate empirically whether it is feasible for novices at all to work with temporal
logic task specifications, and whether users accept temporal logic task specifications
or reject them as incomprehensible, for example.
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e What kinds of strategics do subjccts pursue in construcling Petri nets?

In these studies we made use of the Pelri net editor developed by the MOBY Project
Group [12]. Fonrteen subjecls worked in single-subjecl sessions. Each temporal logic task
forimula was wrillen on a card. Figure 3.4 gives an example.

The subjects received a short informal description of the temporal logic operators. The
subjects were asked to put each card at a certain place as soon as they considered the
formula as being fulfilled by the current state of their Petri net solution. Some of the
subjects’ interactions with the system were videolaped, so it was possible to find out the
subjects’ associations of formulas to Petri net fragments.

Progress conditions:

Abbreviations:
O Wro— ¢(WsnK) Ws: Waiter is sleeping

Wro: Wailter is ready to accept order

OK— ¢P) K: Kitchen got order
P: Meal gets prepared
O® - ¢R) R: Meal is ready

Exclusion conditions:

O- (Ws A Wro)

Figure 3.4: Cards with temporal logic formulas as part of the material used in our preli-
minary empirical studies

As stated carlier, viewed from our ISP-DL Theory the construction of a Petri net to a given
task can be deseribed as consisling of synthesizing a plan, executing il, and evaluating
the result. Analyses of the video protocels showed that the sirategy pursued by novices
can be summarized by the following steps:

o Choose a formula

o Synthesize a Pelri net fragment that might fulfill the formula

» Iixecute this plan

e Lvaluate the result by net simulation

e Il necessary: Change the net

s Repeat the process will another formula
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The following kinds of impasses were observed most frequently:

¢ In the synthesize phase, subjects encountered the impasse that the realization of a
formula scemed to invalidate another formula already realized earlier, so they had
to reconsider the earlier formula(s). Anoiher common impasse was thal they did
nol know how to proceed, especially in the initial phase of problem solving. For
example, they did not know how to express a disjunction in a Petri net, and some
of them asked for hints in these situations.

s In the evaluate phase, subjects tended to lose track of the simulation so they were
very uncertain about whether to consider a formula fulfilled or not. A relaled
impasse was that subjects felt uncertain in deciding when the net was complele,
i.e., the task finished.

None of our subjects had scrious problems with reading the formulas, so we did not
consider it necessary to develop additional material for explaining the task specifications.

The novices did not seem to follow a special strategy in selecting and realizing the task
formulas. But with more expertise, the subject’s net construction processes tended Lo
become more systematical. When becoming "intermediates”, the subjects started to fol-
low the design strategy: "First implement the temporal logic implications. Then check
the exclusion conditions.” (i.e., the co-occurrence of two states is excluded, like = (Ws A
Wro), see Figure 3.4). Within this design stralegy, we were able to identify scveral design
heuristics that the subjects scemed to follow. Each design heuristic links a progress con-
dition to a Pctri net fragment. Figure 3.5 shows the nine most frequent design heuristics
identified. (For example, the design heuristic "merging” says that a progress condition
with the pattern "D(z; A --- A 2, — Oy)” can be implemented in PETRI-IIELP as a
set of places labeled z,, -+, %y leading to a transition leading to a state y.) The design
heuristics fully explained 40 of 54 solutions created by our subjects. E

Another observation was that with the usc of design heuristics, subjects tended to encoun-
ter less impasses in the evaluation phase, They considered iheir solution as complete as
soon as a net fragment had been constructed for each progress condition. Consequently,
they tended to make less use of the net simulation. But the design heuristics worked only
as long as after applying them the exclusion conditions did not require the consideration
of any additional constraints. One of the tasks requiring special allention to the evalna-
tion conditions was "traffic lights™: In addition o applying design heuristics, the subjects
bad to make sure that one traffic light is always red. With the task "traflic lights”, the
subjects had serious problems, and based on the formulas there was no way to assist them.

They did a lot of trial and error in this situation, making much use of the net sirnulation
facility.

One of our subjects was an expert: a computer scientist who had much experience with
Petri nets. Our main ohservations were:

¢ The expert also followed the design strategy: "Tirst implement the temporal logic
implications. Then check the exclusion conditions,”
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¢ As Lo be expecled from 1SP-DL Theory, the expert aggregated certain steps. For
example, novices and intermediates checked the exclusion conditions one by one,
Lul the experi took all cards containing exclusion conditions at once and checked
them "in one glance”.

o The expert did not work according to the design heuristics {Figure 3.5) as clearly as
the intermediates. For example, he tried to keep the neis as simple as possible. In
some cases hie skipped progress conditions containing the " operator, because he
considered these formulas to be ulfilled as a by-product of the realization of other
formulas.

So the main results of these preliminary studies with respect to the design of PETRI-
HELP were:

¢ In some siluations, novices have problems in expressing logical operalors, especially
disjunction, as Petri net fragments, So there should be information available about
how Lo do this, i.c., hints about the next few editing steps should help to overcome
this impasse.

» Novices have problems in deciding when task formulas are fulfilled, and when the
task is finished. So the subjects should be provided with information concerning
the evaluation of solution proposals, like information about fulfilled and unfulfilled
[orulas.

These empirical resulls are in accordance with our design principles for PETRI-IELP:
The first problem novices have could be addressed by providing completion or correction
proposals. This takes account of the learner’s solution proposal as much as possible, so
the learner has Lo make only minimal changes Lo his proposal. The second problem could
be addressed by iesting hypotheses aboul fulfilled and unfulfilled formulas. In this way,
the learncr may make use of her / his pre-knowledge because the leerner specifies what
formulas he or she considers [ulfilled by the proposal.

3.4 The Main Components of PETRI-HELP
PETRI-HELP consists of the following components:

» A sequence of modclling tasks. Bach task requires the creation of a Petri net model
for a time-discrete distribuled system. Bach task is specilied as a set of temporal
logic formulas so Petri net solution proposals can be analyzed by model checking.

e A nel editor for constructing and simulating Petri nets.

s A hypotheses lest environment where the PS may slate hypolheses about the task
formulas fulfilled by the current state of the solution. The system gives feedback
about the hypotheses.
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Figure 3.5: Empirically observed design heuristics

o A completion and correction component which on the PS’s request delivers proposals
Low to complete or to correct the current state of a Petri net. This component is
based on rules learned by the system from the solution proposals of other learners.

We will describe each component in turn.

3.4.1 Modelling Tasks

In order for a system to give help and support to a PS, it must be able to analyze the ’8’s
solution to a given task. So a task specification is necessary. Specifications for Petri net
modelling tasks are nol very common, even in texthbooks (e.g., [35, 36]) Petri nets tend
to be presented as solutions to tasks described informally. Exceptions are for example
Josko [19] where Petri nets are used to specily the semantics of computer architecture

descriptions, and Olderog [29], where Petri nets define the semantics of process terms
derived from trace specifications.

PETRIELP contains a sequence of ten modelling tasks. (The list of tasks could be
extended casily.) The learner may create Pelri net solutions to these given tasks. Each
task is specified as a set of temporal logic formulas [21]. As mentioned before, this allows
Lo verily Petri net solution proposals by model checking [8, 10, 19]. This is done by

interpreting the temporal logic formulas on tle case graph of the PS’s Petri net proposal
[25].

Figure 3.6 (lefl side) shows the temporal logic specification to the modelling task "Ite-
staurant” [20]. Initially, the wailer is sleeping (starting condition: Ws). 00,0, Q are the
Lemporal Jogic operators. Informally, O means "always” ("it is always true that ...”), ¢
means "eventually” ("now or at some point in future it will be true that .."), and O
means "nexttime (?at the next point in time it will be true that .."). So for example
"O(Ws — OWre)” means informally: ™t is always true that il the waiter sleeps then
lie will eventually be ready Lo accept an order.” The window on the right of Figure 3.6
contains the descriptions of the abbreviations used in the formulas.

Formulas : Restaurant

Description : Restaurant

i
O

Starting Condition : Description of Places :

hic. Ws 2 Waiter 19 sleeping
Progress Conditions : Wro 2 Waiter is ready to sccept order

O{Wro=2(<C (Ws A K)}) Wrs 2 Waiter is resdy to serve

Of{K=23{OPY) K 2 Kitchen got order

a{p-2{< R P & Meal gets prepared

O{RAWs{O Wrs)) R & Meel is ready

O{ R ~Wro->{(< Wrs))
a{wrs=>{(<C Ws))
O ws->{O Wro))

Exclusion Conditions :
O{~{Ws AWro))
O{={¥s ~Wrs))
O{-( Wro ~Wrs))

O { Ws + 'Wro ~ Wra )

o] ¢l

Figure 3.6; Temporal-logic specification of the modelling task "Restaurant” of the task
sequence of PETRI-IIELP
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The tasks in PETRIIELE are partially ordered according lo five modelling goals. This
partial order reflects our preliminary view about psychological task complexily. Increasing
task complexity should also lead to an increase in task difficulty. Although we did not
pursue this empirical hypothesis within the project, it could be investigated with a test
theoretic approach (i.e. Rasch model as used by [10], with a cognitive complexily analysis
(i.c., [33, 31]), or with a set theoretic approach (i.c., [11])-

The five modellings goals are:



a} "Atomic formulas”: to create nets [or implications with an atomic lormulain premise
and conclusio. Example: O(Ws — OWro)

b} "Conjunctions”: to create nets for implications with conjunclions in premise and
conclusio. Examples: O((RA Ws) — OWrs), O{(a Ab) = O (cAdAe))

¢) "Context”: to create nets for implications with the same atomic formulas in premise
and conclusio. Example: O((a A b) — Ola A c))

d) "Disjunctions”: to create nets for implications containing disjunctions in premise
and [ or conclusio as well. Example: O{{a vV b) = QO (cAeVdVaAc))

e) "Additional constraints”: to create nets for sets of formulas requiring special at-
tention to the exclusion conditions (example: two traflic lights. In addition to the

succession of colors for each traflic light, there is the constraint that one traflic light
must always be red.)

The partial order of modelling goals incorporated in the sequence of PETRI-HELP mo-
delling tasks is shown in Figure 3.7. As can be seen, there are tasks for modelling natural
systems (four seasons, photosynthesis), technical systems (railroad, thermostat, antomatic
lock differential, traffic lights), social systems (restaurant, library), and systems conlai-

ning technical as well as social aspects (telephone, garage). It would be no dillicully to
extend the task set.

context (c)
library
a b, C
L \I
AN
5 R SR
e SISO
e E”s’),\'..'\'\
automatic lock differential avisdiios
NN
{l'l, E) - LA ACAT AT
_—Tiasiasih

. - gonjunctions (b) -

l'om! o (a) atomic formulas (a)

Figure 3.7: Partial order of the PETRI-IIELP modclling tasks

3.4.2 Net Editor

Figure 3.8 depicts a snapshot of the PETRI-HELP net editor: a solution proposal of the
Restaurant” task. In a Coudition-Evenl Petri net, circles represent places (conditions,
stales), and reclangles represent transitions (events). The condilion represented by a
place is true if the place contains a token. On the left of Figure 3.8 the lools for editing
are shown: deleting, moving, naming, creating places, transitions, and arcs, and setling
tokens. In addition, there is a ool [or simulation,

Net : Restaurant "FiceuF"c0F———=

£
|Gl

/ﬁ;c

®
O
v

Ll

Bl G5
Figure 3.8: The PETRI-HELP net editor

3.4.3 Hypotheses Test Environment

When the PS is constructing a Petri net to a given task, he may state hypotheses aboul
which subset of the formulas is fulfilled by the actual state of the solution. This is done
by selecting the respective task formulas (Figure 3.9).

Phe sysiem then analyzes the task formulas by model checking. As the result, it returns
the formulas fulilled and not fulfilled by the current state of the solution (Figure 3.10),
j.c., it partitions the selected formulas into the largest subset of formulas the Petri nel
solution proposal is a model of, and the set of remaining formulas.

Our temporal logic allows for branching time and makes use of step scmantics (cf. [10]).
lts semantics is defined in Table 1. The temporal-logic formulas are interpreted on the
case graph of the Petri net solution proposal. A part of the case graph of the net of
JFigure 3.8 is shown in Figure 3.11. Furthermore, since PETRI-IIELP is restricted to
Condition-Event Petri nels, the models are always finite and usually eyclic.

e
o



3.4.4 Completion and Correction Component

Based on the model checking approach, PETRI-IIELP can inform the PS about what
parts of the task specification are fulfilled by the current siate of the solution. The model
checking component does not tell the PS how to continue with the proposal or how to
correct it, if the PS is caught in an impasse and does not know how Lo proceed. Therefore
in PETRI-HELP there is also a completion / correction component.

When a PS is creating a correct Petri net to a given task, for example, by applying design
heuristics like those in Figure 3.5, the sequence of intermediate Petri net solution slates
oceuring is nonmonotonic with respect to the set of fulfilled formulas. That is, a formula
fulfilled at a certain state may be unfullilled at a later state. In general, any change of
the Petri net proposal will require the whole set of task formulas to be verified again. So
if the system would offer completion proposals based on empirical design heuristics, it
could happen that previously fulfilled formulas would be unfulfilled again at later stages
of solution development.

Def: o K is node #i in the case graph, K; is a set of atoms
s S(K;) := {K; | K; is immediate successor of node #i in the case graph}
o Path(Ki) := { (1, o 5 dn) | Kj=Ki A
Kj4a € 8(K;,) A
Kjer € {Kjy - Kj} A
(S(K;,) =9 L

3 KP € S(l(.‘l'n) | I{P € {[{Jl ok I(Jll})}

K;(atom) = ¢ iff  atom € K;

Ki(aAab)=t if Kia) =t AKib)=t
K{avh)=t il Ki(a) =tvKi(b)=1t
Ki(a—=b) =t if Kia)=fvEKib)=t

Ki(-a) =1 if Kifa)=f

Ki{Oa)=1 iff fS(K;)=0@thenf

(nexttime a) else ¥ K; | K; € 5(K:): K{a)
Ki(©a)=1t iff VP ePaul(K;)3je P: Kia)

(eventually a)

i)

KA a) = L if VP e Path(K) Vj € P: Kj(a)
(always a)

Table 1: Semantics of the temporal logic used in PETRI-IIELP

Selecled Tosk : "Restaurant”

Select Formula :

Hi

L

{
R
O(R AWs2(O Wrs))
O{ R AWro (O Wra)) Cancel
O { wWrs >(< Ws))
o »

O(={ WaAWrs))
O{={ Wro ~Wrs))
O{ s~ Wro -~ Wrs)

w
o
Net : Restaurant
i
Wro W
ABC P
K
O

Figure 3.9: Staling a hypothesis: The PS marks the task formulas he considers fulfilled
by the current stalc of the solution proposal

This s undesirable because il will cause sccondary impasses and confuse the novice.
PETRI-IELP’s approach to this problem is to identify solution states that fulfill a super-
set of the task formulas that were fullilled by the previous state. When a P'S constructs
a Pelri net, we call a solution state safe

e il il is the starling state (the empty net), or

e if Lhe task formulas fulfilled by it are a proper superset of the task formulas fulfilled
by the previous sale state created by the IS.
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Based on sale states, we can define design rules which can be used for completion and
correction proposals. There are two kinds of design rules:

Selecled Task : “Restaurant”
Fulfilled Formulas are ;
O(CKa3{C P)) oty
O{ws>(0 Wra)) 0| w
O{-{Ws ~Wro)) B
m
A
Not Fulfilled Formulas are :
O{Wro (0 (¥Ws AK))) 1 l
Y
]
A

Figure 3.10: Feedback to the hypothesis of Figure 3.9

Figure 3.11: Part of the case graph of the Petri net of Figure 3.8

a) net; — netj, where net; and net; are sale solution states obtained by the I'5.
net; = Fy, net; |E F; and F; O FiL
I;, I'; are subsels of the task specification.
After reaching net;, net; is the very next sale slate reached by
that PS. That is, the I'S did not reach a nety, nety |= Iy, such that
F; DF. D

If the aclual solution stale of the PS5 is net;, then the difference between net; and nei;
can be used Lo propose a net completion.

b) net; = T

If the actual solution state of the PS is net;, and there is a rule "net; = F;” and F; D F;,
then

e the difference belween nect; and net; (the part of net; not contained in net;) can

be used for a correction proposal: places, Lransitions, and arrows that have to be
deleted.

o the difference belween net; and net; (the part of net; not contained in net;) can
be used to propose a copletion: places, transitions, and arrows that have to be
added.

“These two Lypes of design rules are learned by the system from interactions of PSs with the
system while constructing Petri nets. In one mode, PETRI-HELP does model checking
after each editing step of the PS. If a new safe solution state is identified, the two types
of rules staled above arc crealed

o by associating the last safe state with the current safe state (rule type a), and

e by associating the current safe stale with the set of formulas it is a model of (rule
Lype b).

These two kinds of rules learncd by the system are the basis of the completion and
correction proposals given by the system. By making use of these rules, completion and
correction proposals make sure that previously fulfilled formulas remain satisfied, thus
avoiding secondary impasses and confusion of the learner.

Figure 3.12 shows a completion proposal gencrated during the development of the net of
Figure 3.8. The recommendation is 1o add a transition connected to the place P by an
arrow leaving from P, The right of Figure 3.13 shows an example for a completion and
correction proposal. If the P'S asks for informalion for the net on the left of Figure 3.13,
the system recommends
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Net : Restaurant E Complete : Restaurant =
ity

Complete Transilion :
from Place(s) to Place(s)

/EL>© >

Ws

&

¥ro
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|
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Figure 3.12: Completion proposal

Nel : Reslaurant === Complele : Resteurant =

M i
]] K P R Complete Place :
Wrs

Complete Transitions :
from Place(s) to Place(s)
Yras = Ws
s 3 Wre

Complete Arrows :

W from Trensition(s) to Place(s)
[{R ~ W3) 51 5 Wrs

[{R ~ ¥ro) > | > Wrs

Delete ATTOWS :

from Place(s) 1o Transition(s)
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Figure 3.13: Completion and correction proposal
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compleling a place:
to add a place Wrs

completing trensitions: )

to add a transition with the preset {Wrs} and the postset {Ws} ("Wrs — Ws"
on the right of Figure 3.13), and another transition with the preset {Ws} and the
postset {Wro} ("Ws — Wro” on the right of Figure 3.13)

completing arrows: to add an arrow from the transition with the preset {R, Ws}
and an empty postsct (denoted on the right of Figure 3.13 by "[(R A Ws) — ]7) to
the new place Wrs, and another arrow from the transition with the preset {R, Wro}
and an empty postset (denoted on the right of Figure 3.13 by *[(R A Wro) — |")
to the new place Wra

deleting arrows: to delete the arrow from the place Ws to the transition with preset

G0

{X, Ws} and postset {P} (denoted on the right of Figure 3.13 by "[(K A Ws) —
P|™), and to delete the arrow from the place Wro to the transition with preset R,
Wro and an empty postsel (denoted on the right of Figure 3.13 by "[(R A Wro) —

]”}‘

PETRIHELD generates completion and correction proposals such that the smallest pos-
sible proper superset of the actually fulfilled formulas is fulfilled. The reason for this is
(hat the PS should receive only minimal help information that is sufficient for him to
overcome Lhe actual impasse. Figure 3.12 shows a situalion where the learner gets only a
simall ammount of information, whereas in Figure 3.13 a lot more information is given. The
reason for Lhis is that Figure 3.13 shows a less common siluation where only few rules
have been learned for by the system. In general, the amount of information delivered to
the PS on request depends on the amount of learning of the system: As long as PETRI-
HELP has not learned much, the rules tend to bridge large gaps in the development of a
Petri net solution. But the more PETRIIIELP learns, the smaller the gaps bridged by
the rules tend to get, and so less information tends to be delivered to the PS at a time.

3.5 Empirical Work Supporting the Development of
PETRI-HELP

With the first version of the implemented system, we conducted empirical investigations
within a computer science postqualification course for teachers, and a practice course for
students. With the implemented system, our main questions were to find out

s how the subjecls made use of and accepted the possibility Lo test hypotheses and
10 get feedback aboul fulfilled and unfulfilled formulas,

e low the subjects made use of and accepted the completion / correction proposals.

The subjecls participating in the practice course filled out an evaluation sheet where they
were asked to comment on their impasses and on their use of the various PETRI-IIELP
featurcs. Most subjects were able to solve the whole sequence of PETRI-HELP tasks
within a few hours. We found thal testing hypotheses was made use of and accepted
widely, even alter the subjects acquired some expertise. We propose that the reason for
this is that receiving feedback about fulfilled and unfulfilled parts of the task specilication
dircets the subjects’ attention to where Lo proceed with the task, but wilhout forestalling
the solution.

In conbrast, the completion and correction proposals were less widely used and accepled.
The subjects’ comments indicated that there scemed 1o be three reasons for this:

e In several cases, the subjects did not consider the information received as plausible.
They had problems to see why the proposal would take them a step further. In some
cases they tried to self-explain the information given [7], bul sometimes they just
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goalgraph

action graph

Figure 3.14: Correspondence between the two learned graphs. Each node in the goal
graph consists of a subset of the sct of specification [ormulas, each node in the action
graph is a Petri net created by the user. The links between these two graphs link goals
to neis fulfilling them.

3.6.2 Model Checking Based Explanations

In PETRITIELP, the following two kinds of situations require explanations:

¢ Why is an unfulfilled formula of the task specification in fact unfulfilled?

o Why is the actual completion / correction proposal in fact proposed?

The approach implemented in PETRI-HELP is concerned with the first kind of explana-
tions ("Why not” explanations). It would be easy though to extend this approach to the
second kind of explanations.

In order to do this, it would be necessary to show

o what additional formulas would be fulfilled if the user accepls the completion /
correction proposal

s why these formulas would in fact be fulfilled after accepiing the proposal

o why these formulas are not fulfilled by the present net.

In our empirical studies, we observed that human tutors tended to explain unfulfilled
formulas to the learner by simulating (parts of) the net. That is, the fact that a formual
is not satisfied is verificd by showing that a marking state of the net can be reached
that violates the formula. The model checking based explanation component of PIETRI-
HELP implements this explanation pattern. Information is given in a stepwise manner
(see [32] for detail), This corresponds to our theoretical position that only as much help
information should be given as nceded to resolve the actual impasse by self cxplanation.
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For any unfulfilled formula of a hypothesis, the learner may ask for an explanation ("Why
is this formula not satisfied?”). 'The cxplanation component assumes always-quantified
formulas.

e On Uhc first Jevel of explanation, the system informs the learner that it is possible
Lo reach a marking state of the net where the formula is not true. This information
may already suffice for the learner to see why the formula is in fact unfulfilled, so
he might stop asking for further information here.

e On the sccond level of explanation, the formula is decomposed. In case of an im-
plication, the learner is informed that a marking state of the net might be reached
that with respect to the formula is to be interpreted such that the premise of the
formula is true, but its comclusio is not. In case of a conjunclion, the learuer is
informed tliat a state can be reached where at least on conjunct is false. In case of a
disjunction, the learner is informed that a state can be reached where all disjuncts
arc false.

o Oun the third level of explanation, the learner is inforined about the reasons for the
siluation deseribed on the second level. This level of explanation makes use of three
basic concepls: deadlock, circle, and alternative-possible. ”Deadlock” means that
the reason for the formula being unfulfilled is that the net may reach a stale where
no iransition is able to fire. In case of an implication, this neans that a state can be
reached hat corresponds to the formula’s premisc being true, it's conclusio being
false, and no iransilion able to fire. "Circle” means thal that the reason for the
formula being unfulfilled is that a circular sequence of marking states is possible so
thal certain places may never get tokens. In case of an implication, this means that
all stales of this sequence correspond to the formula’s premise being true but it’s
conclusio being false. ” Allernative possible” only applies for implications containing
the "nexttime” operator. It says that the reason for the formula being unfulfilled
is Lhat a marking state is possible thal corresponds to the formula’s premise being
true but it’s conclusio being false because it may not necessarily irue in the next
time step {only at some laler time step).

¢ inally, on the fourth level of explanation, the sequence of marking states leading

to the situation decribed at the third level (that is, deadlock, circle, or alternative-

possible) is visualized to the learner by nel simulation so the learner can see how
he eritical marking state(s) may be brought about.

3.6.3 Incorporating Viewpoint Centered Planning into PETRI-
HELP

As stated, the 18P-DL Theory and empirical studies led to a common implication for
PETRI-HELP: Help information should be provided on a level more abstract than places,
transilions, and links. "This information should support planning and hypotheses testing of
plans especially at the early stages of problem solving, and it should support the stepwise
transformation of plans inlo more detailed ones, until a solutiou is reached.



We investigated an approach developed by Olderog [29] that allows to transform a task
description (a specification) into a condition-event Petri net by making use of intermediate
specifications as well as "mixed terms” (terms composed of specification fragments and
Petri net fragments). Basically, the intenlion of Olderog is to derive a description of
the operalional behavior of concurrent processes from a set of logical formulas specilying
these processes. A transformation begins with a set of formulas and constructs a process
term from it by transformation rules. The process term expresses a possibly concurrent
process in an abstract programming language. A Petri net, with an explicit representation
of concurrency, defines the semantics of the process term. It can be derived from the term

by net construction rules. So a derivation chain can be constructed from the specification
to the Petri net.

Based on Olderog, Wedig [44] recently developed a method for the derivation of Petri
nets from trace specifications directly without using process terms. Based on this work
transformational steps were integrated into PETRI-HELP [15].

3.6.3.1 Viewpoint Centered Specification

The specification of a process is stated in trace logic (i.e., [18]. As a simple example,
“able 2 shows a possible trace-logic specification of (a variant of) the "Restaurant” task
which we will call "Bavarian Biergarten”:

Trace of events in the "Bavarian Biergarten”:
Ws. @. @. Wro. K. P. @. R. Wrs. Ws. @. Wro. K. @. I ...

Trace logic specification of the ”DBavarian Biergarten™:
trace | {K, P, R} € pref(K.P.R)* A
trace | {Ws, Wro, K, R, Wis} € pref(Ws.Wro. K.R.Wrs)*

View of kitchen: K.P.RK.P.R....

View of waiter: Ws. Wro.K.R. Wrs.Ws. Wro. K.R.Wrs...

Table 2: Trace and trace logic specification of the *Bavarian Biergarten”

The upper part of Table 2 shows a possible trace. Ws, Wro, K, P, R, Wrs have the same
meaning as in Figure 3.4. @ denotes things that may happen but are of no concern here.

From the kitchen’s viewpoint, there are only threc relevant events: K, P, R. This is
expressed by "trace | {K, P, R} € pref(K.P.R)*", where | is the projection operator,
and "pref(K.P.R)* is {¢, K, K.P, K.P.R, K.P.R.K, K.P.R.K.P, K.P.R.K.P.R, ...} (e is the
empty trace). Similarly, the waiter’s point of view is a succession of sleeping (Ws), taking
orders (Wro), passing them to the kitchen (K), being told that a meal is ready (R), and
serving it (Wrs).

From a knowledge acquisition perspective, an atiractive feature of trace specifications
is that they emphasize the acquisition of the knowledge needed for specifying a system
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by looking at it [rom different viewpoints (like the kitchen’s viewpoint and the waiter’s
viewpoint in our example, sce the lower part of Table 2). Thus specifications ol complex

systems can be constructed by acquiring the knowledge from the agents participating in
it.

3.6.3.2 Viewpoint Centered Planning and Implementation

In order 1o use the transformational approach within PETRI-HELP, several simplifications
were made. Figure 3.15 shows our graphical representations of some transformation rules.
In these representations, each rule has three parts. The upper part containg the pame of
the rule, the middle part may contain conditions, and the lower part conlains a statement.
"The parallelism rule has no condition. It visualizes the equivalence of a conjunction of
terms § and T (8 A T) to two specifications § and T that have to be implemented as
parallel nets. On the PETRI-UELP screen, we may create two goal regions labeled by
S and T, which have yet to be implemented by Petri net fragments. Thus a goal region
represents a specification of a task or subtask: the goal to create a Petri net fragment that
is equivalent to that specification. The dotted crossing lines between the goal regions in
Figure 3.15 mean that these nels will have to be synchronized (which is specified by the net
corubination rule). For example, applying the parallelisim rule to the trace specificalion
of the Bavarian Biergarlen in Table 2 leads to the goal regions shown in Figure 3.16.

Now the Lwo nets for the kitchen and for the waiter can be constructed separately and
synchronized later. Figure 3.17 shows steps in the construction of the "kitchen net”.
Figure 3.17a shows its specification as a goal region. "init(S)", the set of next possible
events of a process specified by S, might be emply (deadlock, not shown), contain one
clement (then the prefix rule is applicable), or more than one element (handled by the
expansion rule). Since init(trace | {K, P, R} € pref(K.P.R)*) = {K}, the prefix rule
applies, generating a place leading to a transition labeled with K leading Lo a goal region
agai 73 n (Figure 3.17b). The new goal region represents the kitchen afler having received
an order from the waiter: "K.trace | {K, P, R} € pref(K.P.R)*". Figure 3.17b represents a
mixed expression. Next, the prefix rule is applicable again, leading to Figure 3.17c. After
thrce applications of the prefix rule (Figure 3.17d), the expression ”K.P.R.trace | {K, P,
R} € pref(IC.P.R)*" will be obtained which is equivalent to the original expression "trace
| K, P, R € prel(K.P.R)*”. Thus the recursion rule is applicable {with S substituted
by "trace | K, P, R € pref(K.P.R)*", and S’ substituted by "K.P.R.trace | {K, P, R}
€ pref(K.P.R)*"). The recursion rule states that if a specification S is equivalent to a
mixed expression conlaining a specification §’, and 8 and §’ are equivalent as well, then
changing that mixed expression by removing §' and introducing recursion still keeps it
equivalent o S. Figure 3.17¢ shows the resull of its application.

trace | {K, P, R} trace | {Ws, Wro, K, R, Wrs}
€ pref{ K. R)* € prel(Ws. Wro.IK.R. Wrs)*
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Figure 3.15: Some transformation rules

3.6.3.3 Viewpoint Centered Synchronization

When nets have been created for different viewpoints, they can be glued together to one
single net by the net combination rule (Figure 3.15). The net combination rule combines
nets for the two views in Table 2 to the net shown in Figure 3.18b. (K and R are the
synchronizing transitions.)

Using ihe transformation approach, different strategies are possible, because we can take
a look at the two different views of Table 2 simultaneously and thus avoid the parallelism
rule. The result is shown in Figure 3.18a. Alternatively, the components of a net can
be developed in parallel and combined later (Figure 3.18b). In more complex exarmnp-
les, intermediate strategies between maximal sequentiality and maximal parallelism are
possible too.
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3.6.3.4 Supporting planning of Petri nets in PETRI-HELP

This section describes how the translormalional approach can support learners in con-
structing Petri nets:

1. If the learner does not know how to proceed and asks for a completion proposal, the
systemy may offer goul regions (as illustrated in Figures 3.16 and 3.17 as help). So the
Jearner is provided with descriptions of subtasks yel to be solved, and with recommenda-
tions how to decompose the lask into subtasks. Thus the system will not be restricled to
lelp on the level of places, transilions, and links.

2. The lcarner may stale hypotheses about goal regions, not only about Petri net fragments.
So the learner may gel information whether he or she is "on the right track” at very early
planning stages. For example, the learner may ask the system if it is appropriate to
structure the problem of Table 2 into two parallel components (Figure 3.16) withoul
bothering about what the components will exacily look like at this planning stage. So
the learner may postpone implementation considerations and work wilh partial plans and
mixed expressions.

3. The learner may receive direct guidance in Petri net construction by using the transfor-
mation rules as help. While our model checking approach allows for free, unconstrained
problem solving because every solution proposal can be analyzed by the system, the
transformational approach allows the learner to create a Petri net solution by stepwisc
application of the rules, that is, in a systematical, derivational way. Allernatively, the
iransformation rules can also be offered as explanations for completion proposals genera-
ted by the system. ’

In order Lo find out whether it is feasable for novices to use the transformation rules for the
derivation of a Pelri net, we carried out a single subject study. The subject was a novice
concerning Pelri nets. ler task was Lo create the "restaurant” net with paper and pencil,
using graphical representations of the transformation rules as shown in Figure 3.15. The
subject adopled a maximally parallel strategy. She needed some assistance for applying
the parallelism and recursion rule, she did not immediately realize their applicability. But
in general, she had no serious problems with this task. This prelitninary resull suggests
thal the approach is feasable as a basis lor supporting novices in Petri net design.

So the transformation approach is a sound basis for letting the learner express initial ideas,
partial plans, test hypotheses about them, and receive proposals from the system at the
same level. The learner is enabled to think about specifications (and "mixed terms”)
without hothering about their implementation from the beginning. The transformational
approach as staled here was implemented for the purposes of PETRI-IIELP [15] but has
nol yel been tesled empirically.

3.6.4 Supporting the creation of task specifications
In PETRLAELY, the temporal logic approach allows the analysis of any solution proposal

crealed by a PS by model checking, so it supports free, explorative, unguided problem
solving. The Lrace logic approach allows the derivation of a solution and thus allows
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systematic, rule-guided problem solving. Thus according Lo our theory, both approaches
have their merits.

But neither approach addresses the problem of specification development. Thus, with
respect to our theoretical framework (see Figures 3.2 and 3.3), the problem solving level
of deliberation remains still uncovered. This means that the learner should be supported
by PETRI-HELP in generating the specification of some system or process. Then the
Petri net solution created by the learner would be checked against this specification. In
assisting the learner to create a specification, the system may help the learner and help
in a dialog to acquire and to integrate the knowledge needed.

We explored the possibility that the system’s assistance in the development of a task
specification may be organized as a Socratic dialog. Collins [9] developed a set of dialog
rules that we think can be used to govern this process, Applied to the task of creating a
task specification, some of Collins’ rules can be restated in the following way:

1. Ask the user what agents will be involved in the system to be specified.

2. Ask the user about the states cach agent can be in. This will lead to a set of
agent-state-pairs.

3. Ask the user aboul which agent-state-pairs are mutually exclusive.

4. Ask the user about what agent-state-pairs, or conjunctions or disjunctions of agent-
state-pairs, lead to what consequent agent-state-pairs, or conjunctions or disjuncti-
ons of agent-state-pairs.

5. For any agent-state-pair or conjunction or disjunction of agent-state-pairs thal has
been specified as being a consequence of some other agent-state-pair (s}, ask the user
whether the consequence is expected to be true in the next time step, or whether il
is expected to be true at some later point in time.

6. Ask the user about the conjunct of agent-state-pairs expected to be true in the first
time step.

The first two questions are used to establish the atomic formulas of the task specification.
The third question delivers information about the exclusion conditions. The answers to
questions 4 and 5 are used to establish the progress conditions of the task specification.
Question 5 tries to acquire information needed for specifying the temporal logic operators.
Finally, question 6 establishes the starling condition.

3.7 Cooperations

From the MOBY Project Group we received a lot of support especially in the earlier
phases of the project. They provided us with their Petri net editor so we were able to
do onr empirical investigations. Especially Hans Fleischhack gave us a lot of support
concerning theoretical problems which had to be solved for the design and development

of PETRI-HELP.
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Furthermore, there was cooperation with Bernhard Jusko and the group of Werner Damm,
concerning theoretical discussions as well as practical support in the design and imple-
mentation of Lhe model checking approach.

There was also cooperation with Ernst-Riidiger Olderog, concerning the inlegration of the
transformation approach into PETRI-HELP. In scveral discussions he patiently answered
our questions and provided us with a lot of additional material,

We thank Werner Damim, Hans Fleischhack, Bernhard Josko, and Ernst-Ridiger Olderog
for their support and for the very helpful discussions.

Outside the universily, there was cooperation with the Competence Center Informatik
(CCI), Meppen, concerning the development of help for medical personell being trained
in Uhe use of special medical equipment. Based on specifications of medical equipment
for surgery we received from the CCl, we developed temporal logic task descriptions so
Petri net solution proposals can be constructed, and feedback and completion proposals
can be given. In cooperation with the educational institute of the chamber of industry
and commerce (Bildungswerk des Deutschen Industrie- und Handelstages), we currently
develop PULSE (Pneumatic Learning and Simulating Enviroument), an Intelligent Pro-
lilemn Solving Enviroument for the domain of pneumalic circuits, based on the foundations
layed in the PETRI-NELP project. The following section will provide a brief description
of PULSE.

3.8 PULSE: An Intelligent Problem Solving Envi-
ronment for the Domain of Pneumatics

Several chambers of industry and commerce (including Oldenburg's) offer a three year
training for those being employed as melalworkers leading to a master craftsman’s di-
ploma. ‘This course includes a 50 hours section imparting the basic concepts of bydraulics
and pneumatics. Due to the fact that only few laboratories exist where the participants
can make practical experience in those subjects, we were asked Lo develop an intelligent
problem solving environment for the domain of pneumatic circuit development. The sy-
slem shiould offer task descriptions in the way the participants are used to, and support
the development of related pneumatic circuits. It should offer the opportunity to test
liypotheses about the correctness of the developed pneumatic circuits concerning the task
descriptions, and it should offer feedback and help.

In these Lraining courses hydraulics and pneumatics are Laught as time discrete and slate
discrete systems. No dilferential equations are used to describe the behaviour of the
systent’s components. This level of abstraction fostered the adaption of the methods used
in PIETRENELD for task description and hypolheses testing,.
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3.8.1 Task Description and Solution Development in the Do-
main of Pneumatics

In the tratning section of these courses, task descriptions in the demain of pneumalics
are presented twofold. A description of the situation the problem arises in is supported
by a formal functional diagram which describes the intended dynamic behavieur of the
pneumatic circuit to be developed. The solution is te be developed as a pnenmatic circuit
including several pneumatic elements like valves, pumps, cylindes, switches, and pipes
connecting these elements.

Like PETRI-HELP, PULSE offers several tasks the problem solver may choose from.
These tasks are presented in the way the problem solvers are used to. This includes
a formal functional specification (as shown in Figure 3.19), and a text describing the
situation. For the development of a solulion a graphical editor is used which offers tools

to insert, delete, manipulate, and compose elements of a pneumatic circuit (sce Figure
3.20).

3.8.2 Hypotheses Testing

In accordance with the ISP-DL theory, the problem solver has the opportunity to stale
a hypothesis about his solution proposal at any time. This is done by marking these
parts of the functional diagram which describe the behaviour, the problem solver assumes
his circuit proposal shonld have. As a feedback the hypothesis is returned in a seperate
window with the fulfilled behaviour marked in green, and the unfulfilled marked in red.

For checking hypotheses the functional description is transformed to temporal logic for-
mulae and the pneumatic circuit is transformed to a finite state automaton [13]). This is
done by composing the finite state automata which describe the possible hehavior of the
pneumatic elements. After that, model checking takes place checking the validity of the
formulas according to the finite state automaton. So it was possible to apply the approach
developed in PETRI-HELP to the domain of pneumatic circuits.

3.8.3 State of Development, Experiences, and Further Com-
ponents

To date, PULSE includes several task descriptions problem solvers may choose and work
on. This is supported by an editing environment that offers exactly the pneumatic cle-
ments’ symbols (DIN ISO 1219) he is used to work with. At any time a hypothesis
specifying the intended behaviour of the developed circuit can be stated. Feedback is
given about the behaviour already shown by the solution proposal, and the behaviour
that could not yet be observed. Furthermore, PULSE has an explanation component
that explains the system’s feedback and information on a conceptual level [15].

At the end of 1995, a first version of PULSE has been delivered to the DIHT-Bildungsge-
sellschaft, Bonn. It was distributed among several chambers of industry and commerce
where it is tested with participants of the training courses.
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Al Lhe moment several components are under development thal are designed Lo support
the problem solver as well as the lecturers. A simulation tool will support the problem
solvers by highlighting the behaviour of the developed pueumatic circuit step by step.
This helps detecting problems especially after a hypothesis was rejected. Especially the
lecturers indicated their interest in a task editing Lool Lo develop formal task descriptions.
Such a Lool is currently being developed to support the development of formal functional
diagramms.
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Figure 3.16: Applying the parallelism rule to the trace specification in Table 2
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Figure 3.18: Twao Petri nets derived from the trace specification in Table 2. Tigure 18a
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Figure 3.19: Task description as a functional diagram
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Fignre 3.20: The pnenmatic circuit editing field including a solution for the task described
in Figure 3.19.
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Preface

This report gives an overview of the work done by the ‘Arbeitsgruppe Informatik-Systeme’
{A18) al the Department of Computer Science of the Universily of Oldenburg during the
years 1990 Lo 1995, The *Arbeitsgruppe Informatik-Systeme’ has been supported by the
‘Niedersachsisches Vorab der Volkswagen-Stiflung® (Az. 210-70631/9-13-14/89).

The AlS was founded o invesligate principles, methods and protolypical tool imple-
mentations for the development of complex software and hardware systems. Eight main
projects have been supported by the AlS:

o

. MOBY: Modelling and analysis of office procedures by Petri Nets

(Prof. Dr. V. Claus, Dr. II. Fleischhack),

. DNS: Distributed sitnulation of high-level Petri Nets

(I’rof. Dr. M. Souneuschein),

3. VPetri-Tlelp: Intelligent support for modelling time- discrete distributed systems with

Pelri Nets
{Prol. Dr. C. Médbus),

. COMDES: Specification, verification and simulation of computer architecture design

(Prof. Dr. W. Damm),

. Structure and behaviour of finite distributed automata

(Prof. Dr. V. Claus, Prof. Dr. E. R. Olderog),

. X-Fantasy: Interface design and implementation for multimedia applications

{(Prof. Dr. IL-J. Appelrath),

. MUSE 1I: User interface design with respect Lo sofiware-ergonomic criteria

{Prol. Dr. I’. Gorny),

. Integrated ISDN Systems Concepts: Computer supported cooperative work {lsing

ISDN technology
{(Prof. Dr, I Jensch).

Clencrally spokes, the firsi five projects work on modelling and analysis of complex sy-
stems, while the last three projects orientate towards multimedia applications. Thus,
AIS projects dealt with topics like modelling of business processes, computer supported
cooperalive work, user interface design, distribuled computing or hardware design.



The Department of Computer Science at the University of Oldeubu_rg' \‘m!__oﬂ%cially foun-
ded in 1988. So, the opportunity of basic research in AIS pProjects was essential for
ita development and establishment. As one result of this process; the institute OFFIS
was founded at Oldenburg, where many ideas, attempts and results of AIS projects still
influence research activities and applications. : ;

The editor wants to give his best thanks to Anja Gronewold who was

responaible for the
set up and layout of this report. g

Oldenburg, November 1995 “Michael Sonnenschein



integrated the proposal into their solution without understanding it, and sometimes
they were even upset. These effects of feedback and help information have also been
expected hy our ISP-DL Theory [27].

» Proposing parts of the solution takes away part of the problem solving from the
PS. In some cases the information delivered is too detailed. Probably, sometimes
a more abstract hint instead of a Petri net fragment would have been sufficient as
help information.

e Insome cases, more information was given in the proposals than actually needed by
the subject. But as mentioned earlier, this is a problem that diminishes when the
system learns more rules,

These results suggest the following directions of further development of PETRI-HELP:

« According to the ISP-DL Theory, completion and correction proposals should not
cause a big surprise and thereby lead to another impasse. So these proposals should
be adapted to the actuel knowledge state of the PS.

o The system should be able to ezplain its completion and correction proposals.

s Completion and correction proposals should not only be given as parts of the final
solution, but also al a more abstract *planning” level. This is also what our I5P-DL
Theory recommends: Help information should be given at the "synthesize” phase

as well (Figure 3.3).

Subsequent work on PETRI-HELP was aimed at these three directions. The next sub-
section describes work aimed at the design of a user model. After that, the explanation
facilities of PETRI-HELP are described, and an approach for supporting abstract plan-
ning. Finally, as mentioned before, the task of modelling does not only consist of creating
net models for given specifications of time-discretized distribuled systems, but also of
specilying such systems as well. So we also show how PETRI-HELP supports the deve-
lopment of specifications.

3.6 Extensions of PETRI-HELP

3.6.1 Modelling the User

Up to now, there was no possibility in PETRI-HELP to adapt the system’s help facilities to
the actual user’s needs. The following section describes our approach to system behavior
adapted to the user [30].

For Lhis objective is necessary to know what the user is planning o do. A plan is consi-
dered to he a sequence of actions that transforms a certain state to a final state [1]. Plan
recognition means identifying well known planning operations in a given sequence of acli-
ons. Planning as well as plan recognition requires a planning space and knowledge about
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the planning domain. Qur approach, being designed to detect plans in PETRI-NIELP, is
applicable to every planning domain where no explicit domain knowledge is available. It
ouly requires an oracle (in the sence of Valiant, 1984) 1o classily the user’s solutions as
correct or incorrect. In PETRI-HELP, this is done by model checking. Since in the Petri
net domain ihere is no explicite design theory for developing a net for a specification,
our approach is to let the system learr the search space of possible goals and solutions
(Petri net proposals) [rom problem solving sessions of users. The idea is to identify a
user’s solution path in this scarch space to derive predictions about next steps from the
identified path, and to use these predictions for giving Lelp information how Lo proceed
wilh the net proposal.

Therefore, goals of the user as well as their realizations have to be detecled by the sy-
slem. livery hypothesis the user states about his (sub-)net is interpreted as a subgoal.
The hypolheses consist of (sub-)sets of the temporal logic specification formulas. These
subgoals form the goal graph (problem space).

Iivery subgoal the uscr tests by model checking corresponds Lo a Pelri net developed by
the user. This net is expecled to solve the tested goal. If the hypothesis holds, the net is
associated with the stated subgoal. From these nets, the so called action graph is created.
1L consists of all nets fulfilling subgoals, and all the nets the uscr traverses to reach nets
fulfilling subgoals.

T'hus two search spaces are established (Figure 3.14): one for the goals and one for their
realizations. Both are linked by correspondences between nets and the goals they fulfill
(some kind of goals-means-relation, [26]. These spaces are built up by observing users,
ranging from novices to experts. In these graphs, all the information that can be detected
during the problem solving sessions, like all user actions, times the actions require, and
the frequency of decisions are stored.

%or the purpose of prediction of goals and aclions, the actual user is identified within these
graphs. ‘The syslem’s prediction is that the goals or actions with the highest probability,
will be performed by the user, given the observed actions and goals {or their generaliza-
tions) of the user as a precondition. So there is no actual user model with assumptions
aboul the user and conclusions drawn from them [37, 6], but a kind of usage model [16)

with user identification.The process of generating help using this model is split into two
slepsa:

o IMirst the actual goal ol the user must be identified. The system predicts 1he current
goal by relating the user’s history to the goal graph and choosing the goal with
the highest probability. The probabilities are derived from the recorded behavior of
former users.

e The second step predicts Lhe action that the PS will most likely take for reaching that
goal. Ason the goal level, the next net with the highest probability is identified. The
dilference belween this net and the user’s net is used for generating help information.

Since in this approach help is based on the most probable continuation of the proposal,
given the actual state of the solution (that is, the user’s path through the goal graph

and action graph), the information delivered takes account of the actual problem solving
behavior of the user.
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