Cognition
and
Computer
Programming

edited by

Karl E Wender
Franz Schmalhofer

Heinz-Dieter Bocker

Cognition and Computer
Programming

edited by

Karl F. Wender
Department of Psychology
University of Trier
Germany

Franz Schmalhofer
German Center for Artificial Intelligence
University of Kaiserslautern
Germany

Heinz-Dieter Bocker
Integrated Publication and Information Systems Institute (IPSI)
Gesellschaft fiir Mathematik und Datenverarbeitung (GMD)
Darmstadt '

Germany

@ Ablex Publishing Corporation
Norwood, New Jersey

Copyright (c)1995 by Ablex Publishing Corporation

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any forrn or by any means, electronic, mechanical, photocopying, microfilm-
ing, recording or otherwise, without permission of the publisher.

Printed in the Unitcd States of America

Library of Congress Cataloging-in-Publication Data
Cognition and computer programming / edited by Karl F. Wender, Franz
Schmalhofer, Heinz-Dieter Bocker,
p- cm. — {Ablex series in computational science)
Includes bibliographical references and index.
ISBN 1-56750-094-3 (cl). — ISBN 1-56750-095-1 (ppk)
1. Electronic digital computers—Programming. 2. Cognition.
I. Wender, Karl Friedrich. II. Schmalhofer, F. (Franz), 1952~
III. Bicker, Heinz-Dieter, 1949- IV. Series.
QA76.6.C6218 1994

005.1'01'9—dc20 93-44140
CIP

Ablex Publishing Corporation
355 Chestnut Street
Norwood, New Jersey 07648

—— CHAPTER 3 ——

Online Modeling the
Novice-Expert Shift in

Programming Skills on a
Rule-Schema-Case Partial Order®

Claus Mébus, Olaf Schréder, and Heinz-]Jiirgen Thole
University of Oldenburg

Department of Computational Sciences

Oldenburg, Germany

INTRODUCTION

The development of models of learners’ knowledge acquisition processes is an
important topic of cognitive science basic and applied research. Modeling
knowledge acquisition processes has been recognized as a necessary extension
to status models, that is, of bugs in skills (Brown & Burton, 1982; Brown &
VanLehn, 1980; Sleeman, 1984), because models of this kind raise the
question of the origins of the hypothesized knowledge structures. Research on
knowledge acquisition processes (Anderson, 1983, 1986, 1989; Rosenbloom,
Laird, Newell, & McCarl, 1991; Rosenbloom & Newell, 1986, 1987) also
touches on applied research questions such as: Which order is the best for a
set of tasks to be worked on? Why is information useless to one person and
helpful to another? How is help and instructional material to be designed?
Answering these questions requires hypotheses about the learner’s knowl-
edge states and knowledge acquisition processes. This is especially true within
help and tutoring systems (Frasson & Gauthier, 1990; Kearsley, 1988;
Sleeman & Brown, 1982; Wenger, 1987), in which online diagnosis of the
learner’s knowledge (learner model) is necessary in order for the system to react

*The research for this chapter was sponsored by Deutsche Forschungsgemeinschaft under
Grant No. Mo 292/3-3.

63

64 Online Modeling

in an adequate way. For example, if several reactions are possible, the learner
model should select the most appropriate one. The learner model has to be
both efficient and valid. But to achieve both goals is a difficult problem (Self,
1990, 1991) because there is only a limited source of information—the
learner's stream of actions.

We develop an adaptive help system that supports learners working on
planning tasks. The help system has knowledge about a big solution space in
order to be capable to recognize not only standard but also “unusual”
solutions. In order to meet the requirements mentioned, we developed a
thearetical framework of problem solving and leamning that serves as a base for
interpreting the student’s actions and verbalizations and for constructing the
learner model. There are two versions of this model:

e An Internal Model (IM) diagnoses the actual domain knowledge of the
learner at different stages in the knowledge acquisition process (state
model). Tt is based on the computer-assessable data provided by the
interaction of the student with the system. The IM is designed to be
an integrated part of the help system (“internal” to it) in order to
provide online diagnosis, user-centered feedback, and help.

e An External Model (EM) is designed to simulate the knowledge
acquisition processes of learners (process model) on a level of detail not
available to the IM (i.e., including verbalizations). The EM is not
part of the help system (“external” to it), but supports the design of the
IM.

The application domain of our help system is ABSYNT —a functional
visual programming language (Janke & Kohnert, 1989; Mdbus & Schréder,
1989; Mobus & Thole, 1989) which is a tree representation of pure LISP. The
ABSYNT problem-solving monitor (Mébus, 1990, 1991; Mébus & Thole,
1990) supports learners acquiring basic functional programming concepts. It
provides help for the learner while working on programming tasks. Currently,
we apply the concepts originally developed for ABSYNT to the design of a
help system for modeling discrete systems with Petri nets (Mébus, Pitschke,
& Schréder, 1992). In this chapter, we focus on the internal model (IM) of the
ABSYNT problem-solving monitor. In the next section, our theoretical
position on problem solving and learning is described. Then a short descrip-
tion of ABSYNT is provided. After that, the IM is described in some detail,
including empirical hypotheses and a case study. Finally, some extensions,
prospects, and conclusions are discussed.

THEORETICAL POSITION

For modeling knowledge changes and knowledge acquisition processes, a
theoretical position of problem solving and learning is necessary that is able to

Maébus, Schréder, and Thole 65

describe the shift of the learner from novice to expert (Elio & Scharf, 1990).
In contrast to, for example, Elio and Scharf, our model is tightly constrained
by empirical data. We think that it is useful in general to describe problem-
solving processes for a given task by the following phases (similar to
Gollwitzer, 1990; Gollwitzer, Heckhausen, & Steller, 1990):

1. Deliberation phase: For our concerns, this phase just consists of the
decision of the problem solver to strive for the goal of the given task.
A goal may be viewed as a set of facts about the environment which
the problem solver wants to become true (Newell, 1982). More
precisely, a goal can be expressed as a predicative description which
is to be achieved by a problem solution. For example, the goal to
create a program which tests if a natural number is even—
“even(n)”—can be expressed by the description: “funct even = (nat
n) bool: exists ((nat k) : 2 * £ = n).” The “even” problem can be
implemented by a function with a name such as “even,” one
parameter “n” which has the type “natural number,” the output type
of the function which is a boolean truth value, and the body of the
function which has to meet the declarative specification: “There
exists a natural number £ such that 2 * £ = nr.” This goal is achieved
if a program is created which satisfies this description.

2. Synthesizing phase: The problem solver is concerned with how to
achieve the goal. This requires planning knowledge for the elabora-
tion of goals and implementation knowledge for the realization of
these goals in the domain. The problem solver has to decide how to
differentiate the goal into one or several subgoals and how to
instantiate the subgoals. The synthesizing phase results in a set or
sequence of sets of intended actions. As an alternative to synthesiz-
ing, a plan might be created by analogical reasoning.

3. Execution phase: The planned actions are executed.

4. Evaluation phase: The result is evaluated. That is, it is checked
whether the solution obtained satisfies the task goal.

Novices and experts differ in various ways (e.g., Chi, Feltovich, & Glaser,
1981; Simon & Simon, 1978) in these phases. Novices work sequentially and
engage much in planning. Many control decisions are necessary, and many
subgoals have to be set. In contrast, experts need only a few control decisions
and subgoal settings. They just plug in their “canned solution schemes”
(Soloway, 1986). These schemes (Anderson, 1990; Bartlett, 1932) may
provide solutions for whole tasks or for subtasks. The components of the
schemes are recalled in parallel. Thus, while executing one schema, there is no
prespecified order of action steps. So we hypothesize that the order of action
steps is indeterminate. Control decisions like setting subgoals are only necessary

66 Online Modeling

between, but not within, the solution schemes. QOur theory assumes that only
the set but not the sequence of programming actions contained in the schema
can be predicted.

How does the knowledge acquisition process proceed? We found that
knowledge acquisition while working on problems alternates between impasse-
driven and success-driven learning (IDL-SDL) (M6bus & Thole, 1990; Schréder,
1990). According to IDL (Laird, Rosenbloom, & Newell, 1987; VanLehn,
1988, 1990, 1991b), the learner traps into impasses if he or she encounters
unfamiliar situations. The learner gets stuck because the knowledge needed
for the actual situation is not acquired. In response to an impasse, the learner
employs weak heuristics, for example, asking for help. If problem solving
with help is successful, the learner acquires new knowledge which enables him
or her to overcome the impasse. According to SDL (Anderson, 1986, 1989;
Lewis, 1987; Rosenbloom & Newell, 1987; Vere, 1977; Walff, 1987), already
acquired knowledge is optimized if used in familiar situations. This means
that the solution schemes characteristic for experts are created from chains of
more simple pieces of knowledge. As a result, less control decisions and
subgoals are necessary, and performance will get faster in future situations.
Thus, IDL-SDL theory makes a distinction between:

¢ acquired but not yet improved domain knowledge

® improved domain knowledge

¢ domain-unspecific weak heuristics for the acquisition of domain knowl-
edge. Problem solving with these heuristics in response to an impasse
can again be described by the four phases above: The problem solver
considers the possibilities to get help and chooses the most promising
one, for example, to ask. He plans how to effectively make use of the
help, for example, what and whom to ask. Again the plan is executed,
and the result is evaluated. Thus, the impasse should lead to a new
problem-solving phase where the problem solver considers, plans,
and uses help to generate a subgoal, to decide between two subgoals,
or to localize a bug.

Figure 3.1 summarizes our theoretical framework as a higher order Petri
net (Reisig, 1985). The IDL-SDL net of Figure 3.1 shows that goals are
reached by problem solving, and the knowledge used is optimized. The subnet
“problem solving” contains four phases: deliberation, planning, execution,
and evaluation. Evaluation might reveal that the problem solution is faulty.
This is an impasse, and a subgoal is set to resolve it. So the subnet “problem
solving” is called recursively, and IDL (acquiring new knowledge) occurs in
response to a subgoal solution. For example, new domain knowledge is
acquired as a result of asking for help. SDL might occur as the result of a

IDL/SDL-Net

Goals
Problem nowledge Goals
Solving Base

Problem Solving
deliberate
optimize
Knowledge Know-
ledge
Goal Base

/

l synthesize |;ana10gizc
Plan
execute acquire new
Knowledge
Protocol
Subgoal
evaluate Solution
Proble
Result of Solving
Evaluation
; : Sub-
Solution test for success —" test for impasse goals

Figure 3.1. Sketch of the theoretical position as a higher order Petri Net

67

68 Online Modeling

successful evaluation phase. Existing knowledge is optimized (by composi-
tion) so it can be used more efficiently.

There is some difference of our theoretical position to the SOAR
architecture (Laird et al., 1987; Rosenbloom et al., 1991). In SOAR
knowledge optimization (“chunking”) can take place only after an impasse. In
SOAR all knowledge changes stem from impasses. But it seems questionable
whether all knowledge acquisition events can reasonably be described as
resulting from impasses (VanLehn, 1991b). In our theory, knowledge is
optimized (“composed”) not after an impasse but after successful problem
solving steps not preceded by an impasse, whereas impasses lead to the
acquisition of new knowledge. Using SOAR terminology, in our IDL-SDL
theory knowledge is optimized within the same problem space, whereas in
SOAR knowledge is optimized across problem spaces.

IDL-SDL theory makes recommendations for the design of a help system.
According to the theory, the learner will appreciate help only if:

e there is an actual impasse (without impasse, there is no need for help),

e it is synchronized to the learner’s actual knowledge state, and

e it is synchronized to the actual problem-solving level. Help should not
address implementation details if there is a planning problem, and
vice versa.

According to these guidelines, the system does not interrupt the learner,
but the decision to receive help is left to the learner, The learner may make
use of help but is not constrained in his or her freedom to learn by discovery.
On the one hand, the learner may engage in free problem solving, express new
solution ideas, hypothesize their correctness, and receive proposals by the
system on how to complete or correct the solutions. Thus, the learner may
evaluate (parts of) a solution and require completion proposals from the
system that are intended to encourage self-explanation (Chi, Bassok, Lewis,
Reiman & Glaser, 1989) and replanning. Synchronizing help to the actual
knowledge state is the job of the Internal Model (IM). Finally, planning with
goal nodes is incorporated into the help system, but it is not yet addressed by
the IM.

THE ABSYNT PROBLEM-SOLVING MONITOR

The ABSYNT problem-solving monitor provides an iconic environment
(Glinert, 1990) and is aimed at supporting novices' acquisition of functional
programming concepts up to recursive systems. As a problem-solving moni-
tor, ABSYNT delivers help and proposals for solutions to given tasks, but it
does not have a curricular component. The main components of ABSYNT

Mobus, Schrider, and Thole 69

are: a visual program editor, a visual trace, and a help component. The user
is free to switch among these components.

The visual program editor allows construction and syntactical checking of
programs. The editor is not shown here, but many of its features are also
visible in the hypotheses environment (Figures 3.2, 3.3, and 3.4): An
ABSYNT program consists of a head tree and a body tree (see the upper half
of Figure 3.2). Also there is a start tree (not shown) from which programs may
be called. The nodes of the trees are constants, parameters, primitive and
self-defined operator nodes. The links between the nodes are the “pipelines”
for control and data flow. Programs are edited by taking nodes with the
mouse from a menu bar (not shown) and connecting them.

The design of the visual program editor resulted from runnable specifica-
tions of the ABSYNT interpreter (Mobus & Thole, 1989) and of the “How-to
use-it” knowledge (Janke & Kohnert, 1989). An analysis of ABSYNT in terms
of properties of visual languages and cognitive design principles is provided in
Moébus and Thole (1989).

The wvisual trace resulted from the runnable specifications of the interpreter.
It makes each computational step of the ABSYNT interpreter visible. There
is also a prediction environment in which the learner can predict the

=

Q The Nesult of the Diagnosis
of Window “"MMark 3#2: EUEN"
with Toask “"EVEN" I :

Hypothesis can NOT be completed to a
system—known solution .

=

Figure 3.2. A snapshot of the ABSYNT interface showing an incorrect program
with a user hypothesis (bold) which leads to the system’s feedback: cannot be
completed to a solution known by the system”

70 Online Modeling

&
e ICIIOP

Figure 3.3. The ABSYNT interface showing another hypothesis. The system
returns the hypothesis (lower half of the screen) to indicate its correctness

computation steps of the interpreter with a mouse and keyboard, with the
semantic rules given as a help (Mobus & Schréder, 1990), which are visual
representations of the runnable specifications.

The kelp component consists of two parts: a hypotheses environment and a set
of visual planning rules. In the hypotheses environment, the learner may state
hypotheses about the correctness of (parts of) solution proposals. Because in
our system the control of feedback selection is left to the problem solver, we
expect that the feedback content offered to the student will be more effective
than help which is not under user control (McKendree, 1990).

Figures 3.2, 3.3, and 3.4 depict snapshots of the hypotheses environment.
The learner programmed a solution proposal to the problem “even” (program
testing whether a natural number is even). Then the learner stated a
hypothesis by marking a part of the solution (bold parts in Figure 3.2): “The
boldly marked fragment is part of a correct solution!” But the system’s answer
is negative (lower window of Figure 3.2). Now the learner narrows the
hypothesis (Figure 3.3). The hypothesis has become smaller and more
general. Correspondingly, the system’s feedback space has become larger.
This time the answer is positive: The selected program fragment is embedd-
able in a correct solution to the “even” task. This is indicated to the learner by

Mobus, Schréder, and Thole 71

T

Result: Moark *3: EVIN

Hand Body o

&
o ol

Figure 3.4. On demand (bold line, lower part of the figure) the system shows
the next node of an internally generated complete solution

returning to the hypothesis in the lower window. In Figure 3.4 (lower
window), the learner asks for a completion proposal of the open connection
line (bold), and the system delivers an “if-then-else” node. Internally the
system has generated a complete solution to the task in response to the
hypothesis (see also Figure 3.5), but only one node is shown to the learner in
order to give only the minimal necessary information to resolve the impasse.
The feedback given by the system can be viewed as help on the language level,
intended to support free, unguided problem solving (M&bus & Thole, 1990).

One reason for the Aypotheses testing approach is that in programming a bug
usually cannot be localized absolutely. There are a variety of ways to debug
a wrong solution. Hypotheses testing leaves this decision to the learner and
thereby provides a rich data source about the problem-solving process.

The answers to the learner’s hypotheses are generated by rules defining a
goals-means-relation (GMR). The GMR can be looked at as a rule-based
inference system, a grammar, or an AND-OR graph with parametrized
nodes. These rules may be viewed as “pure” expert knowledge not influenced
by learning. (They correspond to what Corbett, Anderson, & Patterson
(1988) call the “ideal student model.”) Thus, we call this set of rules EXPERT
in the remainder of the chapter. Currently, EXPERT contains about 1200

72 Online Modeling

TASK = even:
"Create a program which tests if a natural number is even"

1. proposal for completion:

a 1
N/

1 5
2 I a>0
— foo

foo false |

\'/Egt

if-then-else

A

45. proposal for completion:

1=V

0) |/ \ / a=0

1f then-else a folc)

=-._.H|/

if-then-else

Figure 3.5. The first and the 45th completion generated by the system in
response to a learner’s hypothesis

rules and analyzes and synthesizes several millions of solutions for 42 tasks
(Moébus, 1990, 1991; Mébus & Thole, 1990).

Because partial solutions can be analyzed, synthesized, and completed,
hypotheses testing is possible, as illustrated earlier.

For adaptive help generation, the EXPERT GMR rules have to be
augmented by an internal student model (see the next section). The necessity
of a learner model is illustrated in Figure 3.5. It shows the first and the 45th
complete solution, which can be generated by the system in response to the
learner’s hypothesis (bold). So there are many strikingly different completion
possibilities, and it is necessary to select one. The function of the internal
model is to select the completion possibility which is maximally consistent with
the learner’s current knowledge state. This should reduce the learner’s surprise
to a minimum: “Least surprise principle of help.”

The GMR rules can be translated into sisual planning rules (Mébus, 1991).

Mébus, Schrider, and Thole 73

The visual planning rules are based on the visual representations of rule
examples shown in the appendices (they are explained in the next section).
The planning rules are the second part of the help component. In contrast to
the hypotheses feedback on the language level, the planning rules focus also on
the goal level. The goal names contained in the planning rules can be viewed
as labels for predicative goal descriptions such as the description of the “even”
predicate stated earlier. The planning rules serve to encourage help-guided
planning which starts from the presentation of the task. An explorative
feasibility study with the planning rules showed that they can be used by
programming novices for constructing solution proposals for programming
tasks, even if initially the subjects have no idea how to solve the task.

The planning rules do not give reasons for the goals and implementations
contained in them. (This is another problem we work on.) So one might be
inclined to think that our subjects felt like the person in the Chinese room in
Searle’s (1980, 1984) thought experiment. But after obtaining solutions with
the help of the planning rules, the subjects tried to explain the solutions to
themselves (Chi et al., 1989; VanLehn, 1991a) and reported feelings of
insight in a number of cases and thus “escaped the Chinese room” (Boden,
1989).

THE INTERNAL MODEL

The Internal Model (IM) is described in three subsections. In the first
subsection, the knowledge contained in the IM is described, leading to a set
of empirical constraints. In the second subsection, the evolution of the IM
and its motivation by the empirical constraints is described, and an example
is given. In the third subsection, an empirical case study is provided.

The Rule-Schema-Case Partial Order and its Empirical
Consequences

This subsection describes the domain-specific planning knowledge of
ABSYNT, as contained in GMR rules. It contains visual representations of
GMR rules and composites of varying specifity. Furthermore, the empirical
consequences which are associated with several types of rules are pointed out.
But first, the terms to be used are listed below.

All rules containing correct planning knowledge are called GMR rules.
There are two ways to split this set GMR (see Figure 3.6):

1. Simple rules and composites:
® Simple rules. There are three kinds of simple rules: rules describing
the differentiation of programming goals (goal elaboration rules),

74 Online Modeling

EXPERT POSS M -
simple
rules * %ok * initially filled
with rules
GMR

compo-

sites * % *x *%* possibly filled
with rules
during modelling

Figure 3.6. The partitions of the Goals Means Relation (GMR)

rules implementing one ABSYNT node, and rules implementing
ABSYNT program heads. Generally the variables in the simple
rules can be bound to subtrees, except for variables for parameter
names, constant values, and names of higher (self-defined)
operators.

® Composites, are rules that are created by merging at least two
successive rules of a parse tree of a solution. Composites may be
produced from simple rules and composites. Composites are not
contained in the set of EXPERT rules. A composite that contains
at least one variable which can be bound to a subtree is called a
schema. If all variables in a composite can only be bound to node
names or values, then the composite is a case. Finally, there are
cases for whole tasks or selution examples.

2. EXPERT, POSS, and IM: The other way to split the set GMR is into
the database for the rules. There are three subsets—EXPERT,
POSS, and IM. EXPERT contains the expert domain knowledge
described above. The sets IM and POSS are created at run-time and
are described later. As the figure indicates, there are no simple rules
in POSS and no composites in EXPERT.

GMR Rules. This subsection provides examples for simple rules that are
depicted in their visual representations in Appendix A. Each rule has a rule
head (lefi-hand side, pointed to by the arrow) and a rule body (right-hand
side, where the arrow is pointing from). The rule head contains a goals-
means-pair in which the goal is contained in the ellipse and the means
(implementation) is contained in the rectangle. The rule body contains one or
a conjunction of several goals-means-pairs, or a primitive predicate.

Rules El to E4 in Appendix A are goal elaboration rules. Goal elaboration
rules are planning rules; they do not contain ABSYNT program fragments.
For example, Rule El can be read:

Mobus, Schroder, and Thole 75

(rule head):

If your main goal is “absdiff” with two subgoals $1 and $2, then leave
space for a program tree yet to be implemented.

(rule body):

If in the next planning step you create the new goal “branching” with
the three subgoals “less__than (81, S2),” “difference (52, $1),” and
“difference (81, $2),” then the program tree which solves this new
goal will also be the solution for the main goal.”

Rules O1 to O4 and L1 and L2 of Appendix A are GMR rules
implementing one ABSYNT node. Rules O1 to O4 implement one operator
node. Rules L1 and L2 implement one leaf node (parameters and constants).
O1 can be read:

(rule head):

If your main goal is “branching” with three subgoals—IF, THEN,
ELSE —then program an “if-then-else” node with three connections
leaving from this node, and

* leave space above these connections for three program trees P1, P2,

P3 yet to be implemented.

(rule body):

If in the next planning step you pursue the goal IF,

then its solution P1 will also be at P1 in the solution of the main goal, and

if in the next planning step you pursue the goal THEN,

then its solution P2 will also be at P2 in the solution of the main goal, and
*® if in the next planning step you pursue the goal ELSE, then its solution

P3 will also be at P3 in the solution of the main goal.

The rules L1 and L2 do not contain goals-means-pairs in their rule bodies.
Instead, the rule body of L1 requires that the program tree X must be a
parameter. Similarly, C in L2 must be a constant. L1 can be read:

¢ If your main goal is to implement a parameter X,

then X has to be a parameter name that has to be put into a parameter
node,
which has to be implemented as a part of the ABSYNT program.

Finally, Rule H1 in Appendix A shows a rule implementing the head of an
ABSYNT program solving the task goal “absdiff,” which mieans: “Create a
program for a 2-arity function with a head and a yet unknown body. The
body is a solution to the goal absdiff(parameter(X), parameter(Y)).” This goal

76 Online Modeling

means that the program has to compute the absolute difference of two
numbers.

Figure 3.7 shows the solution of a subject—Subject 2—working on
ABSYNT problems to the “absdiff” problem. The rules in Appendix A parse
and generate this solution.

The composition of rules: Schemes and cases. In our theory, composites
represent improved speed-up knowledge. Together with the simple rules they
constitute a partial order from general planning rules to solution schemes to
specific cases representing complete solution examples. In this section we
define composition and provide and describe examples.

If we view the rules as Horn clauses (Kowalski, 1979; Robinson, 1992),
then the composite of two rules can be described by the inference rule

(F—P&Q) (P — A)
(F— A&C)o

The two clauses above the line resolve to the resolvent below the line. A,
C are conjunctions of atoms. P,P’, and F are atoms. ¢ is the most general
unifier of P and P’.

The Composites C1 to C6 in Appendix B can be created from the rules in
Appendix A. As an example, it is explained how the Composite C1 results
from O4 and two instances of L1,

O4: gmr(difference(S1, S2), -(P1, P2)) —
gmr(81, P1) & gmr(82, P2).
L1: gmr(parameter(X),X) — is__parameter(X).

04 and L1 are expressed as Horn clauses. Applying the inference rule with
¢ = [S1/ parameter(X), P1 / X] leads to the intermediate rule instantiations
O4c¢ and Llo :

O4g: gmr{difference(parameter(X), S52), -(X, P2)) —

gmr(parameter(.X), X) & gmr(52, P2).
Lio: gmr(parameter(X), X) — is__parameter(X).

which resolves to:

C0: gmr(difference(parameter(X), S2), (X, P2)) —
is__parameter(X) & gmr(52, P2).

This corresponds to an intermediate composite CO (a schema) not depicted
in Appendix B. Now we compose C0 with L1. In order to avoid name clashes,

amuunmasu oM) Jo
sduasapyp sInjosqe a3 Sunndwos weiload, yse) 2y 03 7 wolgng Aq pajesso wonnjog /- arndiyg

4| ko

[&STS]5T]

44058y

3

(

7\
m

= B

<alc>|

fipog peaj
1110594 -awei]

77

78 Online Modeling

we rename the variable X in L1 by Y. Applying the inference rule with o =
[S2 / parameter(Y), P2 / ¥] leads to C0g and Lle:

COg: gmr(difference(parameter(X), parameter(Y)), -(X, ¥)) —

is__parameter(X) & gmr(parameter(Y), ¥).
Llg: gmr(parameter(Y),Y) — is__parameter(Y).

which resolves to:

C1: gmr(difference(parameter(X), parameter(Y)), -(X, ¥)) —
is__parameter(X) & is__parameter(Y).

This corresponds to the Composite C1 in Appendix B. Thus, the Com-
posite C1 states that the goal “difference of two parameter nodes” can be
implemented by a tree which consists of the subtraction operator connected to
two parameter nodes. C2 of Appendix B states that the same goal can be
implemented by a tree in which the two parameter nodes are subtracted in
reversed order, with the result multiplied by — 1. Thus, C1 and C2 are cases
for the difference of two parameters. C3, C4, C5, and C6 are composites of
weakly increasing specifity. C3, C4, and C5 are schemes for the “absdiff” task
which contain large parts of a solution in their rule heads. Finally, C6
contains a complete solution to the goal “absdiff” in its rule head. Thus, the
Composite C6 contains a specific solution example (case) which corresponds to
the solution of Subject 2 shown in Figure 3.7. Thus, it is shown that we can
derive schemes and cases from GMR rules by rule composition. At the
present moment it is a research question as to how to relate schemes to
well-known but not precisely defined topics in problem solving, for example,
“strategies,” “tactics,” or “styles.”

The empirical constraints of rules, schemes, and cases. Simple GMR rules
and composites give rise to different empirical predictions. We make use of
some of them in the IM (see later). In this case we want to show which
predictions are possible.

This requires hypotheses about the application of knowledge represented
as GMR rules by a problem solver. According to our theory, plans are
synthesized and executed. So we propose an interaction of two processes:

® A synthesizing process selects and instantiates GMR goal-elaboration
rules. It delivers goals, subgoals, and goal-subgoal-relations for the
current task: “planner.”

® An executing process implements program fragments according to
these goals, using GMR node-implementation rules. It alse connects

Moébus, Schrider, and Thole 79

program fragments according to the goal-subgoal-relations delivered
by the synthesizing process: “coder.”

This synthesize-execute-interaction enables the application of GMR rules
in any order. The actual order is determined by the synthesizing process. We
state the following processing hypotheses:

® Implementation of ABSYNT fragments. If a certain GMR node-
implementation rule is executed, then the program fragment con-
tained in it (the “means” of the goals-means-pair) is implemented in
an uninterrupted sequence of programming actions (positioning a
node, naming a constant, parameter, or higher operator node, and
drawing a link).

® Verbalization of goals. Selecting goals and subgoals is part of the
synthesizing process and involves control decisions. So the goals and
subgoals of a rule may be verbalized when this rule is applied.

® Correction of positions. If two program fragments have to be connected
according to a goal-subgoal-relation, corrective programming actions
are possible—lengthening links, changing their orientation, and
moving nodes.

These processing hypotheses lead to hypotheses about performance differences
between novices and experts. Because novices and experts are assumed to
differ with respect to the partial order from simple rules to schemes to cases,
we compare the application of a composite to a corresponding set of simple
rules and state the following performance difference hypotheses:

® No-inlerleaving hypothesis. Because program fragments of GMR rules
are assumed to be implemented within uninterrupted sequences,
actions of different rule instantiations should not interleave. So for
the set of simple rules we can make across-rule-predictions of which
actions should or should not occur together. For the composite, there
are no such predictions because it consists of just one rule. For
example, if the “absdiff” task is solved using the Rule C6 in Appendix
B, then there are no constraints on the action steps.

® Verbalization hypothests. Applying the composite requires less goals to be
selected than applying the set of simple rules (see again C6). So there
should be /ess verbalizations in the first case.

® Rearrangement hypothesis. When applying the set of simple rules, the
corresponding program fragments have to be connected according to
goal-subgoal-relations. Thus, corrective programming actions are
likely. In contrast, applying the composite requires no information
about goal-subgoal-relations (see again C6: Everything is contained

80

Online Modeling

within one rule). So the composite should require less position

corrections.

o Time hypothesis. Selecting, elaborating, and verbalizing goals, and
rearranging program fragments cost time. So the application of the
composite should be faster than the application of the corresponding
set of simple rules.

These relationships are illustrated in Figure 3.8, using the composites of
Appendix B as example (*¢” means composition, so, for example, C4 can also
be expressed as C3eC1). The rules are organized in a partial order which
reflects degree of sequence constraints of programming actions, degree of
verbalizations, rearrangements, and performance time.

Applying the sets of rules {C1, G2, C3}, [C2, C3eC1}, {C1, C3eC2}, and
fC3eC19C2] all lead to the same solution (Figure 3.7). But application of {C]1,
C2, C3] should be accompanied by more verbalizations, rearrangements, and
longer performance time than the other rule sets of Figure 3.8. Furthermore,
{C1, C2, C3} imposes more constraints on the sequence of programming
actions. {C1, G2, C3} predicts the following sets of events (programming
actions, verbalizations, and rearrangements):

» Euvents corresponding to C1. The goal to program the difference of two
parameters X, ¥ is possibly verbalized. The subtree in the rule head
of C1 is implemented. (The programming actions are: create a “-”
node, two links, two parameter nodes and name the parameters.)

o Euvents corresponding fo C2. The goal to program the difference of two
parameters X, Y is possibly verbalized. The subtree in the rule head

of C2 is implemented.

{C2,C3.C1}

{C1, C2, C3}

{C3-

1-C2})

(Cl,C3+C2)}

f more

sequence predictability,
verbalizations,
rearrangements,
performance time

less

Figure 3.8. Partial order of sets of composites (see Appendix B), where C4 =
C3eC1, C5 = C3¢C2, C6 = C3eC1e(C2

Mobus, Schrioder, and Thole 81

® Euvenis corresponding to (3. The goal to program the task “absdiff” is
possibly verbalized. The subtree in the rule head of C3 is imple-
mented.

¢ Events corresponding to goal-subgoal-information (C1-C3). The program
tree of C1 and the first open link of C3 are possibly rearranged (if not
already connected), so they are connected.

® Events corresponding to goal-subgoal-information (C2-C3). The program
tree of C2 and the second open link of C3 are possibly rearranged (if
not already connected), so they are connected.

Nothing is predicted about the order of events within or across sets. But
events from different sets or from different rules within one rule set are
expected not to interleave.

{C3eC1eC2] = [C6} imposes no sequence constraints on programming
actions and predicts only one verbalization and no rearrangements because its
rule head contains the whole solution. There is only one set of events denoted
by C6:

® Euents corresponding to C6. The goal to program the task “absdiff” is
possibly verbalized, and the program tree in the rule head of C6 is
implemented.

The IM, to be described next, makes use of the no-interleaving hypothesis
and the time hypothesis. We also describe a study of the no-interleaving
hypothesis. The other hypotheses have not yet been tested empirically. This
is work for the future.

Evolution of the IM in the Problem-Solving Process

The IM was developed according to the following principles, which are
motivated by the constraints of IDL-8DL theory and by the empirical
constraints stated earlier.

¢ IDL-SDL theory distinguishes between acquired and improved knowl-
edge. The IM contains simple rules representing acquired but not yet
improved knowledge and composites representing various degrees of
expertise.

® The IM contains only rules whose program trees were executed in an
uninterrupted sequence (no-interleaving hypothesis).

¢ Knowledge improvement should result in speeding up performance,
as stated earlier (#tme hypothesis). Thus, a composite becomes part of
the IM only if the student shows a speed-up from an earlier to a later

82 Online Modeling

action sequence where both sequences can be produced by the
composite or the corresponding set of simple rules.

e A credit value of the rules in the IM rewards the usefulness of a rule:
The usefulness of a rule is the product of the length of the action
sequence (number of programming actions) explained by the rule and
the number of its successful applications (i.e., its actions are per-
formed in an uninterrupted sequence).

® IDL-SDL theory does not permit improvement of knowledge not yet
acquired and applied. So a rule newly acquired by IDL (a simple rule)
cannot be improved before being applied at least once. This means
that the IM should not be extended at the same time by a new simple
rule and by composites built from this rule. Therefore, possible
composites have to wait for incorporation in the IM. They are kept in
a set POSS of possible composite candidates for the IM.

In some rare circumstances the learner’s data pattern can be simulta-
neously explained by a simple rule not yet in the IM and a composite in POSS
which is built from it. For practical reasons we currently permit that both
rules enter the IM in such situations, although this does not strictly
correspond to the theory. These situations would not occur if each simple rule
would explain only one single programming action. This means to decompose
the current “simple rules” into even more elementary rules —another aspect of
future work.

Given a certain sequence of programming actions, we describe four subsets
of rules (simple rules and composites):

1. Rules which do not contain any program fragments (“goal elabora-
tion rules”). Currently the IM does not contain these rules, so they
are nondecisive with respect to the action sequence. (We work on
incorporating planning into the IM. Furthermore, fragments of
verbalizations can be related to the goal elaboration rules; Mdébus &
Thole, 1990.)

2. Rules whose heads contain a program fragment that is part of the
final result produced by the action sequence, and that was pro-
grammed in a noninterrupied, temporally continuous subsequence.
Thus, these rules fit into the no-interleaving hypothesis. They are
plausible with respect to the action sequence.

3. Rules whose heads also contain a program fragment that is part of
the final result produced by the action sequence, but this fragment
corresponds only to the result of a noncontinuous subsequence of
actions interrupted by other action steps. These rules are implausible
with respect to the action sequence. Examples for plausible and
implausible rules are given later in this section.

Mobus, Schréder, and Thole 83

4. Rules whose heads contain a program fragment that is not part of the
final result produced by the action sequence. These rules are irrelevant
to the action sequence.

Figure 3.9 shows the development of the IM during the knowledge
acquisition process. Figure 3.10 shows the changes between the different sets
of rules during this process. We will now go through Figures 3.9 and 3.10.

Start Top of Figure 3.9). The first programming task is presented. Both
sets IM and POSS are empty.

Now the learner solves the first task. An action sequence is produced
leading to a solution,

First Test Phase. Since IM and POSS are empty, nothing happens.

[Start: First task is presented. IM empty, POSS empty.l

T — Next task
earner’s action is presen- p
equence and solutiop” <—+t ‘edp[sﬁtil; §— u[:]d'i!z:inCl)S
leamer
TEST:
1. Each composite in POSS
- which is plausible in the GENERATE:
present achion sequence 1. The plausible parse EXPERT rules|
- which actual execution time is are put into IM and get credit
shorter than the time attached 2. The plausible composites of all
is moved from POSS to IM parse rules are put into POSS.
2. Each irrelevant composite is kept | |Execution times of the corresponding
in POSS o action sequences are attached,
3. All other composites in POSS
are skipped
4. Credit of all plausible rules in TM
is updated

PARSE:

Solution is parsed with rules in IM
ordered by credit, and (as needed)
with EXPERT rules

updated POS
updated IM

Figure 3.9. Development of the IM during the knowledge acquisition process

84 Online Modeling

GMR | EXPERT | ™M

credit update

. plausig
simple

/
/é credit update

MC‘$
/ *)
<,

com-
posed
plausible and
less speedy domposites
(observed action sequence
is faster than] before)
deleted removal of implausible or

too speedy composites
(observed action sequence
is slower than before)

(*) creation of plausible composites of parse rules with execution times

Shaded areas denote empty subsets of rules

Figure 3.10. Changes between the rule sets during development of the IM

First Parse Phase. 'The learner’s solution to the first programming task is
parsed with the EXPERT rules, leading to a set of parse rules. The purpose
of parsing is to check the correctness of the solution, to obtain candidates for
the IM, and to be able to generate candidate composites for POSS.

First Generate Phase. The EXPERT rules just used for parsing are
compared to the action sequence which produced the learner’s solution and
which is saved in a log file. The plausible EXPERT parse rules are put into
the IM (see also Figure 3.10 —arrow pointing from simple EXPERT rules to
simple TM rules) and get credit (number of action steps described by each
rule). These rules are hypothesized as newly acquired by the learner in response
to impasses on solving the first task. In the next step of the generate phase, the
composites of all rules just used for parsing the solution are built. Each
composite is compared against the action sequence that produced the solution.

Mobus, Schrider, and Thole 85

The plaustble composites are kept in the set POSS because they are possible
candidates of improved knowledge useful for future tasks (see also Figure
3.10—arrow pointing from simple EXPERT rules to composites in POSS).
For each plausible composite, the time needed by the learner to perform the
corresponding uninterrupted action sequence is attached.

Next, the learner solves the second task.

Second Test Phase. 'When the learner has finished the second task, each
composite in POSS is checked to see if it is plausible with respect to the action
sequence, and if the time needed by the learner to perform the respective
continuous action sequence is shorter than the time attached to the composite.
The composites meeting these two requirements are put into the IM. (In
Figure 3.10, this is represented by the arrow pointing from composites in
POSS to composites in IM.) Composites in POSS which are irrelevant to the
action sequence of the solution just created are left in POSS. They might
prove as useful composites on future tasks. (In Figure 3.10 its the arrow
pointing from composites in POSS back to composites in POSS.) All other
composites violate the two requirements. They are skipped (that is, compos-
ites implausible to the actual sequence, or composites that predict a more
speedy action sequence than observed. This means that the learner has
performed the action sequence more slowly than the sequence that led to the
creation of .the composite). In Figure 3.10, skipping these composites is
represented by the arrow pointing to deleted rules. Finally, the credits of all
rules in the IM which are plausible with respect to the present action sequence
are updated. In Figure 3.10, this is represented by the two circular arrows
within simple IM rules and within IM composites.

Second Parse Phase. Next, the solution of the second task is parsed with the
rules of the updated IM ordered by their credits. As far as needed, EXPERT
rules are also used for parsing.

Second Generate Phase. Basically the same steps are performed as in the first
generate phase, The EXPERT rules just used for parsing are compared to the
action sequence of the task solution. The plausible EXPERT rules are again
put into the IM and get credit (Figure 3.10—arrow from EXPERT to simple
IM rules). As before, they are hypothesized as newly acquired knowledge in
response to impasses on the task just performed. Furthermore, the composites
of the parse rules are created, (In Figure 3. 10, this is represented by the three
arrows labeled with “(*)”, since the parse rules may contain simple EXPERT
rules, simple IM rules, and IM composites.) The plausible composites are put
into POSS, where they will be tested on the next test phase. Again the time
needed for the corresponding action sequence is stored with each composite.

When solving the next task, the next test phase will again split the

86 Online Modeling

composites in POSS into rules for the IM, rules to keep in POSS, and rules
to skip. The circle repeats with each new task solved.

An example. We illustrate a short episode of the IM with data from
Subject 2. Figure 3.11 shows her solution to the problem: “addaddone”—
“Create an ABSYNT program which adds two natural numbers. The addition
operator can only be used for incrementing by 1.”

For this example, we restrict our attention to the GMR Rules O1, 05, L1,
L2, and C7 (see Appendices A and C). Subject 2 already worked on other
tasks before solving the “addaddone” task. At this point, C7 has not been
created. O1, L1, and L2 are already in the IM from earlier tasks. O5 is not
yet in the IM, but in the set of EXPERT rules.

After the “addaddone” task is solved, the test phase starts (see Figure 3.9).
Because the only composite we look at here (C7) has not been created yet, we
can skip the first three subphases of the test phase and go to the fourth
subphase: The credit of all plausible rules in the IM has to be updated. Figure
3.12 shows a fragment of the action sequence performed by Subject 2 on the
“addaddone” task. O1, L1, and L2 are in the IM (see earlier). O1 is implausibie
because the actions corresponding to the rule head of O1 are not continuous
but interrupted. They are performed at 11:15:52, 11:15:58, 11:16:46, and
11:16:55 (Figure 3.12). Thus, the action sequence corresponding to the rule
head of Ol is interrupted at 11:16:42 and 11:16:50. L1 and L2 are also
implausible. Actions corresponding to L1 are performed at 11:15:08 and
11:15:29. Thus, this sequence is interrupted at 11:15:16 and 11:15:22.
Actions corresponding to L2 are performed at 11:15:16 and 11:15:34. Thus,
this sequence is interrupted at 11:15:22 and 11:15:29. So because O1, L1, and
L2 are implausible, their credits are not changed.

Now the solution in Figure 3.11 is parsed with rules in the IM and, as
needed, with additional EXPERT rules (Figure 3.9). O1, O5, L1, and L2 are
among the parse rules, because no other rules have a higher credit and are
able to parse the solution.

After the parse phase, the generate phase (Figure 3.9) starts. O5 is an
EXPERT rule used for parsing. But Ob is implausible, since its corre-
sponding actions were performed at 11:15:22, 11:15:38, and 11:15:43, with
interruptions at 11:15:29 and 11:15:34. So O5 is not put into the IM. Then
the composites of the parse rules are formed. C7 (Appendix C) is a composite
formed from O1, O35, L1, and L2. This composite is plausible because it
describes the uninterrupted sequence of programming actions from 11:15:08
to 11:16:55 (see Figure 3.12)—despite the fact that its components O1, O5,
L1, and L2 are all implausible. Starting from the beginning of the task (at
11:14:40), the time for this action sequence is 135 seconds. Thus, the
composite C7 is stored in POSS with the information “133 seconds” attached
to 1t.

«1+, £q wonippe Suissaxdxa : suoppeppe,, mwopqoid a1 03 7 10afqng yo woynieg I1°¢ aanS1g
(3K [KD
&

5)
] KNI
____J
1qavaay
T-
O
v fipog peay

e

[ITTEEe———

87

11:14:40 Start task "addaddone" = program which expresses addition by "+1"
11:15:08 11:15:16 11:15:22 11:15:29

11:15:38

if

Figure 3.12. Part of the sequence of Subject 25 actions (October 23, 1989)
leading to the solution in Figure 3.11

a8

Mobus, Schroder, and Thole 89

The following task was “diffdiffone”—“Create an ABSYNT program
which subtracts two natural numbers. The subtraction operator can only be
used for decrementing by one.” Subject 2 created the solution shown in Figure
3.13, with an action subsequence shown in Figure 3,14,

The test phase following reveals that C7 is plausible again. The corre-
sponding action sequence was performed in 92 sec (starting from the
beginning of the task at. 11:10:56, to 11:12:28). This is less than the 135 sec
attached to C7. So C7 is moved into the IM and gets a credit of 13 because
it describes 13 programming steps (see Figures 3.12 and 3.14). This credit will
be incremented by 13 each time the composite is plausible again, O5 is also
plausible (actions at 11:11:43, 11:11:48, and 11:11:53). 8o it enters the IM
with a credit of 3.

An Empirical Case Study

In a case study the sequence predictions of the IM were investigated, as
implied by the no-interleaving hypothesis. Before solving the programming
tasks “addaddone” and “diffdiffone,” Subject 2 solved seven tasks not
involving abstraction or recursion. Her action sequences and solutions to
these tasks were saved in a log file. The IM was run on the action sequences,
leading to seven subsequent states of the IM,

Based on the state of the IM immediately before the i task, and the
solution proposal of Subject 2 to the /" task, uninterrupted sets of program-
ming actions to the /™ solution were predicted. This model trace was compared
to the actual subject trace: Subject 2's action sequence to the i task.

For each pair of adjacent programming actions in the subject trace which
was expected to be adjacent according to the model trace (i.e., explained by
the same IM rule instantiation), a “+” was noted. For each pair of
nonadjacent programming actions in the subject trace which was expected to
be adjacent according to the model trace, a “ — ” was noted. Thus, “+” denote
pairs fitting the predictions, and “ -” denote contradictions.

Figure 3.15 illustrates this procedure for one of the seven tasks solved by
Subject 2. Figure 3.15 shows:

a. a subset of the rules in the IM after solving the third task, “absdiff’
(program computing the absolute difference of two numbers)

b. 82s solution to the fourth task, “quot” (program dividing two
numbers such that the result is greater or equal than 1)

c. the predicted action sequence for this solution of “quot” (model
trace)

d. the observed action sequence of S2 (subject trace) marked with “+”
and “-" as described.

In Figure 3.15a, for each IM rule the program fragment in its head is
shown in addition to the rule name. In Figure 3.15¢, the program fragments

«1 — » Aq wonpenqns Juissazdxy : suoppip,, rwajqord ayy 03 7 10afqng yo wonnjog -¢y°g ndrg
G
&
EEEET] M
BEEEG
K
O hpog peay

= WK |

90

Mobus, Schroder, and Thole

91

by "_ 1 "

11:11:04

11:11:09

11:10:36 Start task "diftdiifone" = program which expresses subtraction

(T 1
N

11:11:17 11:11:20

Figure 3.14.

Part of the sequence of Subject 25 actions (October 26, 1989)
performed on the task “diffdiffone”

predicted to be constructed in an uninterrupted sequence are boxed. Thus,
for example, the if-then-else-node rule (Figure 3.15a) predicts that program-
ming the if-then-else-node and three links leaving it are four programming
actions performed in an uninterrupted sequence. So the corresponding
fragment is boxed in Figure 3.15c. Similarly, placing a parameter node and

a) Subset of the rules in the IM before S2 solves the task "quot” (after solving "absdiff"

if-then-else ess_equa
node-rule node-rule
A\ V4
jf-then-else <
b) SZ:I; solution (program body) to ¢) Predicted action sequences
the task "quot” (fourth of seven (model trace fragments)
tasks solved) 1 1 2 2 2 3
S, o
1 2

d) Observed action sequence (subject trace)
while solving the fourth task, "quot"

[placing parameter node bl
placing parameter node al
placing operator node <
" :_E creating left link into <
creating right link into £
naming parameter node bl
naming parameter node al
placing operator node if-then-else
Pt creating left link into if-then-else
| [placing parameter node a2
placing parameter node b2

. :E placing operator node /1

creating left link into /1
creating right link into /1
— naming parameter node a2
— naming parameter node b2
— creating middle link into if-then-else
-[placing parameter node b3
placing parameter node a3

:E placing operator node /2

creating left link into /2

creating right link into /2

creating right link into if-then-else
naming parameter node b3
naming parameter node a3

Figure 3.15. () subset of the IM before solving “quot”, (b) 82s solution to
“quot”, (c) predicted action sequence fragments, (d) observed action sequence
corresponding (+) or contradicting () to the predictions

92

Mébus, Schréder, and Thole 93

Table 3.1. Fit of the IM Conditional to Various Rule Types (for all seven
tasks).

Parameter Constant Primitive operator

node rule node rule node rules Composites
“+" cases 2 4 47 27
* 7 cases 27 7 14 1

naming this node are two actions predicted to occur subsequently. Different
instances of nodes are indexed in Figure 3.15¢ and 3.15d.

This procedure led to 80 “+” and 49 “ - ” for the seven subject traces to the
seven tasks. (As Figure 3.15 shows, the subject trace to the “quot” task led to
7“+” and 8 “-", so the fit was bad in this task.) Because more “+” should
lead to longer and thus fewer runs than about equally many “+” and “-", we
applied the Runs-test. There were 40 runs (p < 0.001).

This result indicates that the IM adequately describes a considerable
portion of the protocol of action sequences of Subject S2. Table 3.1 shows the
distribution of “+" and “ - ” across different types of rules in the IM.

Thus, the parameter node rule, for example, is responsible for 2 of 80 “+~,
and for 27 of 49 “-": 82 usually does not place and name a parameter node
in sequence. The same seems true for the constant node rule. Obviously,
given that this result will be reproduced with other subjects, it should be
possible to improve the IM by splitting the parameter node rule (and the
constant node rule) into two new rules: One for positioning and one for
naming a node. Then the current parameter node rule would be a composite of
these two new rules. As noted earlier, in general this means a decompeosition
of simple rules into more elementary rules, with each one explaining only one
programming action.

FURTHER WORK
The IM is currently extended to the following directions:

® Incorporating a planning level, Currently the learner’s hypothetical
solution plan is the parse tree of the solution. We extended the
ABSYNT language by goal nodes so that mixed programs containing
ABSYNT operator nodes and goal nodes are possible. The learner is
able to test hypotheses and to receive error and completion feedback
at this planning level, even if the learner has no idea about the
implementation in ABSYNT. We will extend the IM by goal nodes
accordingly.

94 Online Modeling

From the learner’s point of view, the benefit of using goal nodes is that
hypotheses testing is possible at the planning stage. From a psychological point
of view, objective data about the planning process can be obtained, and the
gap to the IDL-SDL theory is narrowed. Finally, from a help system design
point of view, the benefit is that in addition to hypotheses testing it is possible
to offer planning rules as help to the learner.

o Designing help. The ultimate goal of the IM is to deliver adaptive help.
If the learner asks for a hypothesis completion, the IM rule with the
highest credit which is able to complete the hypothesis will be used.
Depending on the actual state of the IM, the completion may consist
of a single node or of a subtree. When the IM is extended by a
planning level, a completion proposal may also consist of a goal node
(plan completion) or even a goal tree. Only if the IM does not contain
any rule able to complete the current hypothesis, an EXPERT rule
has to be used for completion.

Besides completion proposals, there are more possibilities to deliver help.
For example, adaptive planning rules could be offered to the learner.
Furthermore, it is possible to empirically test the effects of different kinds of
help (i.e., “adaptive” vs. “nonadaptive”). For example, a completion proposal
could be generated by a chain of simple rules or by a single composite.
Secondly, the completion proposal might exactly cover the diagnosed knowl-
edge gap or provide more or less information as needed to cover the gap.
Several hypotheses about the effects of help variation along these dimensions
are possible.

® Malrules. Malrules can automatically be created and integrated into
the IM. If the problem solver’s solution proposal cannot be recog-
nized by the system, and an oracle (e.g. the teacher, another system,
etc.) confirms that the solution is wrong, then it is trivial to generate
a general malrule on the spot. It relates the task to the whole solution.
If the problem solver tests hypotheses, then the systemn should be able
to generate more specific malrules. The goals corresponding to the
hypothesis and to the rest of the solution proposal can be identified
using the ordinary EXPERT rules. Then a new malrule relating these
goals can be created. This mal goal elaboration rule is able not only to
reproduce the faulty student proposal, but also similar slips.

® Generalizations. Empirical studies with ABSYNT indicated use of
previous solutions and positive transfer especially for recursive tasks.
Thus, composites in the IM should be generalized at the nonleaf
nodes of their goal trees and program trees. Generalization of
composites may be viewed as another way of knowledge optimization

Mébus, Schréder, and Thole 95

(Anderson, 1983, Wolff, 1987) in response to the successful utiliza-
tion of knowledge (Figure 3.1).

® Generate-and-lest-method. One feature of the IM which arose for
practical reasons is its generate-and-test style. Composites are gener-
ated and retained only if they survive the test phase. The obvious
alternative is to generate composites only as needed.

® Supporting the IM by an EM (External Model). The EM is designed to
provide hypothetical reasons for the knowledge shifts in the IM. It is
an extension of an earlier model of help-based knowledge acquisition
based on IDL-SDL Theory which we developed for the related
domain of the semantic knowledge for ABSYNT (Schréder, 1990). A
trace of the model was compared step by step to the action and
verbalization protocol of a single subject, coded into 13 categories.
Sixty percent of the protocol was correctly described by the model.

The EM (Schréder & Mobus, 1992) is based on the analysis of the protocol
of actions and verbalizations of another subject working on our sequence of
ABSYNT programming tasks. The model proceeds as follows:

® Tuask comprehension: A programming task is presented to the model as
a text graph of the task description. The model converts the text
graph into propositions representing the learner’s initial task repre-
sentation.

® Synthesizing phase: The concepts mentioned in this representation
(similar to Anderson, 1989) are activated. The concepts contain
general preknowledge and possibly ABSYNT-specific knowledge.
The general preknowledge consists of an input-output relation that
defines the concept. The ABSYNT-specific knowledge describes how
the concept is elaborated or implemented as an ABSYNT program
fragment. The knowledge stored in the concepts is used for con-
structing a situation model (van Dijk & Kintsch, 1983) representing the
actual solution plan for the current task.

® Execution phase: The situation model is translated into ABSYNT code.

® Evaluation phase: The code is checked. If no bugs are detected, then the
knowledge stored in the concepts actually used is improved by
composition (SDL). Thus, new concepts for composites are created.

Impasses may arise at several points in this process. For example, a certain
activated concept might not yet contain ABSYNT-specific knowledge. In this
case, the subject chooses a heuristic, for example, to create a subtask from the
definition of the concept. If the subtask is solved, then the program fragment
created is inserted into the concept slot representing ABSYNT-specific
knowledge. Thus, new ABSYNT-specific knowledge is acquired (IDL).

96 Online Modeling

EM and IM are closely related. The concepts of the EM correspond to the
rules of the IM. The situation model or solution plan of the EM corresponds
to the instantiated parse rules in the IM. EM and IM are intended to mutually
constrain each other. For example, the EM explains acquisition and improve-
ment of knowledge by certain impasses, heuristics, and successful solutions.
The IM should hypothesize the same knowledge as the EM. On the other
hand, the IM predicts impasses, verbalizations, sequence constraints on
action steps, and speedups. The EM should be consistent with these
predictions.

CONCLUSIONS

We introduced a learner model (IM) which is intended to describe the change of
knowledge of the learner by moving from novice to expert as a gradual shift
of acquiring new knowledge, schemata, and finally specific solutions. The
model processes online the recognizable data of the action stream of the
learner. It is based on theoretical constraints imposed by IDL-SDL, action
phases, and case basedness. Some summarizing remarks are made concerning
the relevance of the IM for help, its consistency with the theoretical
constraints, and its testability,

o Modeling knowledge on a rule-schema-case partial order. In our system the
often quoted dichotomy between rule-based vs. case-based knowledge
representation (Slade, 1991) is resolved in favor of a dynamic
rule-based system that models knowledge on a partial order of
fine-grained rules, schemes, and cases (composites with variables only
for node names and values). So there is only ene principle needed to
model the generation of schemes and cases. Case-based or analogical
reasoning is both plausible for psychological reasons (e.g., Anderson,
Farrell, & Sauers, 1984; Escott & McCalla, 1988; Weber, 1989; for
the domain of functional programming) and profitable for efficiency
of the diagnosis.

® Relevance for hypotheses about the knowledge acquisition process. The rules in
the IM can be directly converted into domain specific information for
the learner. Thus, the learner will receive:

a. adaptive hypothesis completion proposals. These proposals will be
generated by the IM. Thus, they will correspond to the actual
knowledge state of the learner as hypothesized by the IM,

b. adaptive planning help. The planning help supplied to the learner will
be continuously updated in accordance with the IM.

o Consistency with IDL-SDL theory. According to IDL~-SDL theory, new

Mébus, Schréder, and Thole 97

knowledge is acquired in response to impasses, and existing knowledge is
improved by successful practice.

EXPERT rules not in the IM are transferred to the IM if they are: (a) used
for parsing, and (b) plausible. They represent hypothetical newly acquired
knowledge.

Composites are transferred to the IM if: (a) they are plausible, and (b) the
corresponding actions need less time than the corresponding chain of simple
rules. The composites represent hypothetical improved knowledge.

® Preference for rules explaining long action sequences. Simple rules and
composites explain increasingly large program fragments in a partial
order up to specific solution examples (cases). In the credit scheme,
composites are preferred because they explain larger program frag-
ments than simple rules. The credit scheme also prefers rules often
applied successfully. Thus, moderately specific composites should get
a high priority. Furthermore, composites impose less constraints on
the sequence of action steps than the corresponding chain of simple
rules. Thus, composites are more likely to be plausible.

¢ Empirical testability. The IM represents the hypothetical knowledge
states of the learner. Simple rules and composites provide an
adequate description of the learner’s knowledge, only if they corre-
spond to the sequence of action steps performed by the learner. Hypoth-
eses concerning sequence constraints, verbalizations, rearrange-
ments, and time were stated already. There is also another possibility
for the IM to fail: It may happen that learners’ action sequences
cannot be described by the IM at all because: (a) the corresponding
simple rules are implausible, and (b) the corresponding composites
drop out because there is no performance speedup.

Furthermore, IDL says that new knowledge is acquired in response to
impasses. So if EXPERT rules are taken into the IM, then impasses should
have occurred just before the corresponding action steps were performed.
Thus, we expect that the learner makes use of help at exactly these points in
the problem-solving process. The EM should of course make the same
predictions.

Finally, we plan to let the learner state his expectations before receiving a
completion proposal to a hypothesis. The learner then predicts how the system
will complete his hypothesis. We would expect that the learner’s prediction
corresponds to the right side of the head of the rule used by the system for
hypothesis completion. Furthermore, if this rule is in the IM, then the learner
should be more confident in his prediction than if the rule is an EXPERT rule

98 Online Modeling

not yet in the IM. In this latter case the learner lacks domain knowledge and
thus is more inclined to guess.

® Last but not least we think that we made a contribution to a theory of
predictability of behavior. According to our theory the novice-expert shift
can be modeled by acquiring and composing GMR rules. So
knowledge can be represented by rules, schemes, and cases. As we
tried to show, this is accompanied by the impossibility to predict
action-sequences which are denoted by one schema or one case. The
empirical consequence of that prediction is: Fixed to the same
granularity of the behavior protocol the sequence of actions of the
expert is less predictable than the sequence of actions of the novice.
Thus, we expect an upper limit of predictability of action sequences
when becoming an expert.

REFERENCES

Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA: Harvard University Press,

Anderson, J. R. (1986). Knowledge compilation: The general learning mechanism. In R. S.
Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.), Machine learning (Vol. II, pp. 289-310).
Los Altos, CA: Morgan Kaufman.

Anderson, J. R. (1989). A theory of the origins of human knowledge. Artificial Intelligence, 40,
313-351.

Anderson, J. R. (1990). Cognitive psychology and its implications (3rd ed.). New York: Freeman.

Anderson, J. R., Farrell, R., & Sauers, R. (1984). Learning to program in LISP. Cognitive Science,
8, 87-129.

Bartlett, F, (1932). Remembering. Cambridge: Cambridge University Press.

Boden, M. A. (1989). Escaping from the Chinese room. In M. A. Boden (Ed), Artificial intelligence
in psychology (pp. 82-100). Cambridge, MA: MIT Press.

Brown, J. 8., & Burton, R. R. (1982). Diagnosing bugs in a simple procedural skill. In D.
Sleeman & J. 8. Brown (Eds.), Intelligent tutoring systems (pp. 157-183). New York: Academic
Press.

Brown, J. 8., & VanLehn, K. (1980). Repair theory: A generative theory of bugs in procedural
skills. Cognitive Science, £, 379-426.

Chi, M. T. H., Bassok, M., Lewis, M., Reimann, P., & Glaser, R. (1989). Self-explanations:
How students study and use examples in learning to solve problems. Cognitive Science, 13,
145-182.

Chi, M. T. H., Feltovich, P. J., & Glaser, R. (1981). Categorization and representation of
physics problems by experts and novices. Cognitive Science, 5, 121-152.

Corbett, A. T., Anderson, J. R., & Patterson, E.J. (1988). Problem compilation and tutoring
flexibility in the LISP tutor. Proceedings Intelligent Tutoring Systens ITS88 (pp. 423-429).
Montreal.

Elio, R., & Scharf, P. B. (1990). Modeling novice-to-expert shifts in problem solving strategy
and knowledge organization. Cognitioe Science, 14, 579-639.

Ericsson, K. A., & Simon, H. A. (1984). Protoco! analysis. Cambridge, MA: MIT Press.

Mobus, Schrider, and Thole 99

Escott, J. A., & McCalla, G. L. (1988). Problem solving by analogy: A source of errors in novice
LISP programming. /T5-88 Proceedings (pp. 312-319). Montreal.

Frasson, C., & Gauthier, G. (Eds.) (1990). Intelligent tuloring systems. Norwood, NJ: Ablex.

Glinert, E. P. (1990). Nontextual programming environments. In 8. K. Chang (Ed.), Principles
of visual programming systems (pp. 144-230). Englewood Cliffs, NJ: Prentice Hall.

Gollwitzer, P. M. (1990). Action phases and mind sets. In E. T. Higgins & R. M. Sorrentino
(Eds.), Handbook of motivation and cognition: Foundations of social behavior (Vol. 2, pp. 53-92). New
York: Guilford Press.

Gollwitzer, P. M., Heckhausen, H., & Steller, B. (1990). Deliberative and implemental mind
sets: Cognitive tuning toward congruous thoughts and information. Jfournal of Fersonality and
Social Psychology, 59(6), 1119-1127.

Janke, G., & Kohnert, K. (1989). Interface design of a visual programming language:
Evaluating runnable specifications. In F. Klix, N. A. Streitz, Y. Waern, & N. Wandke
(Eds.), MACINTER II Man-Computer Interaction Research (pp. 567-581). Amsterdam: North-
Holland.

Kearsley, G. (1988). Online help systems. Norwood, NJ: Ablex.

Kowalski, R. (1979). Logic for problem solving, Amsterdam: Elsevier.

Laird, J., Newell, A., & Rosenbloom, P. (1986). Universal subgoaling and chunking. Boston:
Kluwer.

Laird, J., Rosenbloom, P., & Newell, A. (1987). SOAR: An architecture for general intelligence.
Artificial Intelligence, 33, 1-64.

Lewis, C. (1987). Composition of productions. In D, Klahr, P. Langley, & R. Neches, (Eds.),
Production system models of learning and development (pp, 329-358). Cambridge, MA: MIT Press.

McKendree, J. (1990). Effective feedback content for tutoring complex skills. Human-Computer
Interaction, 5, 381-413.

Mébus, C. (1990). Toward the design of adaptive instructions and help for knowledge
communication with the problem solving monitor ABSYNT. In V. Marik, O. Stepankova,
& Z. Zdrahal (Eds.), Artificial intelligence in higher education. Proceedings of the CEPES UNESCO
International Symposium Prague (LNAI Vol. 451, pp. 138-145). Springer.

Mébus, C. (1991). The relevance of computational models of knowledge acquisition for the
design of helps in the problem solving monitor ABSYNT. In R. Lewis & O. Setsuko (Eds.),
Advanced research on computers in education (ARCE 90 pp. 137-144). Amsterdam: North-
Holland.

Msbus, C., Pitschke, K., & Schréder, O. (1992). Towards the theory-guided design of help
systems for programming and modeling tasks. In C. Frasson, G. Gauthier, & G.1. McCalla
(Eds.), Intelligent tutoring systems. Proceedings of the 2nd International Conference on ITS 52 (LNCS
608, pp. 294-301). Berlin: Springer.

Méobus, C., & Schréder, O. (1989). Knowledge specification and instruction for a visual
computer language. In F. Klix, N. Streitz, Y. Waern, & N. Wandke (Eds.), MACINTER II
man-computer interaction research (pp. 535-565). Amsterdam: North-Holland.

Méhbus, C., & Schrider, Q. (1990). Representing semantic knowledge with 2-dimensional rules
in the domain of functional programming. In P. Gorny & M. Tauber (Eds.), Visualization in
human-computer interaction. 7th Interdisciplinary Workshop in Informatics and Psychology (LNGS 439,
pp. 47-81). Berlin: Springer.

Mébhbus, C., & Thole, H.-]. (1989). Tutors, instructions, and helps. In Christaller (Ed.), Kinstliche
Intelligenz KIFS 1987, Informatik-Fachberichte 202 (pp. 336-385). Heidelberg: Springer.

Mébus, C., & Thole, H. J. (1990). Interactive support for planning visual programs in the
problem solving monitor ABSYNT: Giving feedback to user hypotheses on the language
level. In D. H. Norrie & H. W. Six (Eds.), Computer assisted learning. Proceedings of the 3rd
International Conference on Computer-Assisted Learning ICCAL 90 (LNCS 438, pp. 36-49). Berlin:
Springer.

100 Online Modeling

Newell, A, (1982). The knowledge level. Ariificial Intelligence, 18, 87-127.

Reisig, W. (1985). Peiri nets—An introduction. Springer EATCS monographs on theoretical compuler
sctence. New York: Springer.

Robinson, J. A. (1992). Logic and logic programming. Communications of the ACM, 35, 40-65.
Rosenbloom, P. S., Laird, J. E., Newell, A,, & McCarl, R. (1991). A preliminary analysis of the
SOAR architecture as a basis for general intelligence. Artificial Inieiligence, 47, 289-305.
Rosenbloom, P., & Newell, A. (1986). The chunking of goal hierarchies: A generalized model of
practice. In R. 8. Michalski, J. G. Carbonell, & T. M. Mitchell (Ecls.) Machine learning (Vol.

II, pp. 247-288). Los Altos, CA: Morgan Kaufman.

Rosenbloom, P., & Newell, A, (1987). Learning by chunking: A production system model of
practice. In D. Klahr, P. Langley, & R. Neches (Eds.), Production system models of learing and
development (pp. 221-286). Cambridge, MA: MIT Press.

Schréder, O. (1990). A model of the acquisition of rule knowledge with helps: The operational
knowledge for a functional, visual programming language. In D. H. Norrie & H. W. Six
(Eds.), Computer assisted learning. Proceedings of the 3rd International Confe on Computer-Assisted
Learning ICCAL 90 (pp. LNCS 438, pp. 142-157). Berlin: Springer,

Schréder, O., & Mébus, C. (1992). Zur Modellierung des hilfegeleiteten Wissenserwerbs beim
Problemlésen. In K. Reiss, M. Reiss, & H. Spandl {Eds.), Maschineiles lernen — Modellierung von
Lernen mit Maschinen (pp. 23-62). Berlin: Springer.

Searle, J. (1980). Minds, brains and programs. Behavioral and Brain Sciences, 3, 417-457.

Searle, J. (1984). Minds, brains, and science. Cambridge, MA: Harvard University Press. (in
German: Suhrkamp, 1986)

Self, J. A. (1990). Bypassing the intractable problem of student modeling. In C. Frasson & G.
Gauthier (eds.), Intelligent tutoring systems (pp. 107-123). Norwood, NJ: Ablex,

Self, J. A. (1991). Formal approaches to {zarner modeling (Tech. Rep. AI-59). Lancaster, England:
Department of Computing, Lancaster University.

Simon, H. A., & Simon, D. P. (1978). Individual differences in solving physics problems. In
R.S. Siegler (Ed.), Childrens’ thinking: What develops? (pp. 325-348). Hillsdale, NJ: Erlbaum.

Slade, S. (1991). Case-based reasoning: A research paradigm. Al Magazine, 12(1), 42-55.

Sleeman, D. (1984). An attempt to understand students’ understanding of basic algebra. Cognitive
Science, 8, 387-412,

Sleeman, D., & Brown, J. 8. (1982). Intelligent tuioring systems. New York: Academic Press,

Soloway, E. (1986). Learning to Program = Learning to Construct Mechanisms and Explana-
tions. Communications of the ACM, 2%(9), 850-858.

van Dijk, T. A., & Kintsch, W. (1983). Strategies of discourse comprehension. New York: Academic
Press.

WVanLehn, K. (1988). Toward a theory of impasse-driven learning. In H. Mandl & A. Lesgold
(Eds.), Learning issues for intelligent tutoring systems (pp 19- '}1) New York: Springer.

WVanLehn, K. (1990). Mind bugs: The ongins of proced: ptions. Cambridge, MA: MIT
Press. '

VanLehn, K. (1991a). Two pseudo-students: Applications of machine learning to formative
evaluation. In R. Lewis & O. Setsuko (Eds.), Ad d h on computers in education (ARCE

90). Amsterdam: North-Holland.

VanLehn, K. (1991b). Rule acquisition events in the discovery of problem solving strategies.
Cognitive Science, 13, 1-47.

Vere, 8. A, (1977). Relational production systems. Aritficial Intelligence, 8, 47-68.

Weber, G. (1989). Automatische kognitive Diagnose in einem Programmier-Tutor. In D.
Metzing (Ed.), Kiinstliche Intelligenz GWAI 89 (pp. 331-336). Berlin: Springer.

Wenger, E. (1987). Artificial intelligence and tutoring systems. Los Altos, CA: Morgan Kaufman.

Wolff, J. G. (1987). Cognitive development as optimisation. In L. Bolc (Ed.), Computational
models of learning (pp. 161-205). Berlin: Springer,

Mobus, Schréder, and Thole 101

APPENDIX A: SIMPLE GMR RULES

El
Program
Tree
gmr

E2

S1 82 Program 52 S1 Program

Tree
absdiff Tees absdiff
gmr gmr

E3 52 81

81 82 Program difference Program

Tree (. Tree
difference change_sign

<4

gmr gmr

E4

Program
Tree

Program
Tree

change_sign

<

gmr

E1l to E4: Goal elaboration rules

102 Online Modeling

01
F THEN ELS Pl P2 P3
branching if-then-else Pl P2 P3
&
gmr gmr
P2 Pl
grmr & gmr
Pl P2
& /
gmr gmr
P1 P2
&
gmr gmr grr

01 to O4: Rules implementing one operator node

L1 X
I X
parameter X
' is_parameter

giE

L2

C C

. is_constant

L1 and L2: Rules implementing a leaf node (parameter, constant)

gmr

Moébus, Schréder, and Thole 103

H1

X Y | Body

| |
Tree parameter ~ parameter

Body
Tree

absdiff

Name

absdiff

prog

gmr 4- gmr

H1: Rule implementing a program head

APPENDIX B: COMPOSITES

C1 : Composite of the simple GMR rules O4 und L1 (appendix A)
Y

|
parameter

|
parameter

difference X b ¢
| &
gmr is_parameter ~ IS_parameter
C2 : Composite of the simple GMR rules E3, E4, 03, 04, L1 and L2 (appendix A)
parameter parameter \/ 1
; N X Y -1
difference * | & & '

gmr . is_parameter is_parameter is_constant
C3 : Composite of the simple GMR rules H!, E2, El, 01,02 and L1 (appendix A)

X Y
Vi
}/ N

ame if-then-else

prog

J 1
parameter parameter

gmr

difference

i1s_parameter is_parameter gmr gmr

104

Online Modeling

C4: Composue of the rules C3 and Cl

X YX Y
A g

X Y = P |
@ Name if-then-else

/4-

is _parameter is _parameter

| 1
parameter parameter

gmr

C5: Compos:te of the rules C3 and C2

X Y

N o 4

X Y > b
Name if-then-else

gmr

&

] 1
arameter parameter

difference

&

is_parameter is_parameter

Y

gmr is_constant

ni)

Y

&

‘ is_parameter is_parameter is_constant

C6 : Composite of the rules C4 and C2 or of C5 and Cl orof C3, C1, C2

X -1

&

Mabus, Schrider, and Thole

105

APPENDIX C: MORE GMR RULES

gmr

sz
‘- &
gmr gmr

i
parameter I X
constant

parameter,

equal

branching

C7 : Composite of the rules O1, O35, L1, and L2

ELSE

0
& & &
is_constant

is_parameter is_parameter gmMr

	PCM1995_NoviceExpertShift
	PCM1995_NoviceExpertShift

