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CHAPTER 3

Online Modeling the
Novice-Expert Shift in

Programming Skills on a
Rule-Schema-Case Partial Order*

Claus Möbus, Olaf Schröder, and Heinz-Jürgen Thole
Unio.t'iry of Ouznbu/s
D.ladiunt af ConPut'tionat S;d@s

INTRODUCTION

The development of modeß ol lealleß' ktuuklge aqu*rtoa proce$es is m
importdt topic of cognitiv€ science basic dd appli€d rcsearch. Modeling
krowlcdge aquisition proc€sses has been rccognized as a necessary extension
to stdtß tu(A\ that is, of bugs in skills (BroM & Burton, 1982; Brovn &
Vanlehn, 1980; Sleeman, 1984), because models of this kind raise the
question of the origins ol the hypothesized knowledge stnrctures- Reseech on
knowledge acquisition processes (Arderson, 1983, 1986, 1989; Rosenbloom,
Lai.d, New€I, & McCad, 1991; Rosnbloom & Newell, 1986, 1987) also

touches on appli€d research questions such as: which order is the best for a
set of tasks to b€ wo*ed on? why is infomation usele$ to one persn dd
hetpful to another? How is help and instructional material to be d€si$ed?

Answ€ring th€se qu€stions .equires hypoth€ses about the lemels knowl-
edg€ states and knowledge acquisition plocesses. This is especially true withir
help and tutoring syst€ms (Fmsson & Gauthier, 1990; Kearsley, 1988;

Sleenu & ßrowa, 1982; Wenger, 1987), in which online diaglosis of the
lemels kmwledge (laaran nodrD 1s necessüy m order for the system to react

'Th€ t*aEh fo. thb dEpler vas 3pon.or.d by Dcußchc lonchusssm.intcLaft undcr
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in an adequate way. For MPte, if several reations arc possible, th€ lemer
model should select the most appropriate on€. The leamd model hd to be

both €ftcient md vatid. But to achieve both goals is a difrcult Problem (Self,

1990, 1991) because there is only a limited source of information-the
learn€is stream of etioDs.

we dev€lop an adaptive help system that supports learners working on

planning tasks. The help system has knowl€dge about a bi8 solution space in
order to be capable to recognize not only standdd but aho 'unüsüal'
solutions. In order to me€t the r€quirem€nts mentioned, we d€v€loped a

throl.tüdt fMolk oJ ptobtm soloine Lnd t dmi s that sewes as a bae for
interpreting the student's actions Dd verbalizations dd for constructin8 the

learner model. Ther€ are two v€rsions of this model:

. Aa ht d4l Mod2l (IM) diagnoses the actual domain knowledS€ of the

learner at differeDt stages in the knowl€dge acquisition process (da,
flr&l). It is based on the computer-assessable data Provided by th€

interaction of the student with the system. The IM is designed to be

m integrated part of the help system ('int€mal' to it) in order to
provide online diagaosis, user-cotered feedback, dd helP.

. An E L./@I Mod'l (EM\ is desiSaed to simulate the knowledge

acquisition processes of leaneß (pru6s nodNq on a level of detail not
available to th€ IM (i.e., including v€rbalizations) Th€ EM is not
part of the help syst€m ("external" to it), but supports the design of the

IM,

The application domain of our h€lp system is ABSYNT-a functional
visual prcg'lrl'uilg languag€ Omke & Kohn€rt, 1989; Möbus & Schnjder,

1989;Möbus & Thole, 1989) which isatree repEsentation of pure LISP. The
ABSYNT problem-solving monitor (Möbus, 1990, 1991; Möbus & Thole,
1990) supporß leamers acquüing basic functional Programning concepts lt
provides help for the learner whil€ working on prcgr@ming tasks. Currendy,

we apply the concpts originaly dweloPed lor ABSYNT to the desiSn of a

help system for modeling discrete systems with Petri nets (Möbus, Pitschke,

&Schr6der, 1992).Inthis chapter, w focus on the irternal nodel (IM)of tlle
ABSYNT problen*olving monitor. In the neat section, our theorctical
position on prcblem solving and leaning is desdib€d. Then a short descrip'

tion of ABSYNT is prcvided. Aftff that, the IM is desüibed in some detail,

including enpiricat hypotheses and a case study Finally, some extensions,

prospects, ad conclusions ae discussed.

THEORETICÄI POSITION

For nodeling lnowl€dge changes dd knowledg€ acquisition processes, a

thcoretical position of y'roblm sol"ing ed hdm;4e is necesery that is able to
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desc.ibe the shift of th€ lenrner ftom novice to expelt (Elio & Schad, 1990).

In contra.t to, for e{ample, Elio md Scharf, our model is tighdy consraired
by empirical data. We think that it is us€ful in gen€ral to describe problem-
solving processes for a Biven task by th€ fonowing phases (similar to
Gollwitzer, 1990; Golwitzer, H€ckhausen, & Steler, 1990):

l. D.Iibdaion ph6t For ou. concerns, this phase just coNists of the
decision of the Foblem solver to strive for the goal of the given task.

A goal nay be viewed a! a set of facts about th€ environment which
the p.oblem solver wants to become true (Näwe[, 1982). Mor€
preciscly, a goal can be expressed as a Fedicative de*iption which
is to be achieved by a prcblem solution. For example, the goal to
creat€ a program which tests if a naturat number is even-
'even(a)"-can be €$.essed by the description: "funct ev€n = (nat
r) booll dists ((nat *) :2' k = r)." The "even' problem can b€
implemented by a funätion with a name such as "even," one

parameter "n' which has the type "natural number," the output typ€
of the function which is a booled truth value, and the body of th€

function which has to meet th€ d€clarative specification: 'Therc
exists a natural numb€r * such that 2 ' t = ,.' This goal is achiev€d

if a progran is üeated which satisfi€s this description.
2. $ntbt;zing thatd The problem solver is concerned with how to

achi€ve the goal. This r€quires pldning knowledge for th€ elabo.a-
tion of goals and implem€ntation knowledge for th€ realization of
th€se goals in the domain. The probl€m solver has to decide how to
differentiat€ th€ goal into on€ or several subgoals dd how to
instartiate the subgoals. The synthesizing phase rcsults in a set or
sequence of sets of intended actions. As d alt€mative to synthesiz-

ing, a plm might be created by analogical reasoning.
3. Ex.curion lha : T}:.e pldned actions de executed.

+. hatuaian rnd,: The reslnt is evaluated. That is, it is checked
whether th€ solution obtained satisfies th€ task goal.

Novices and exp€lts differ in various ways (e.s., Chi, Feltovich, & Glasr,
l98l; Simon & Simon, 1978) in these phases. Novices work sequentially and
engag€ much in planning. Many control decisions are nece$ary, dd many
subgoals have to be set. In contrast, experts need oDly a few control d€cision,
od subgoal s€ttings. They just plug in their 'cmn€d solution schemes'

(Soloway, 1986). These schemes (And€rson, 1990; Banl€tt, 1932) may
plovide solutions for whole tasks or for subtasks. The components of the
schemes ar€ recaled in y'rrarrl. Thus, while executing one schema, there is no
prespecified order of action steps. So w€ hypothesire that the order of action
steps ia ;adNttnn;nota. control decisions like setting subgoals ae o. y necessary

65
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betw€en, but Dot within, the solution schem€s. Our theory assumes that only
the nl but not th€ rrq@., of programming actions contaiDed in the schema

How does the knowledg€ acquisition prccess pmceed? W€ found that
kaowledge acquisition while working on problems alternates b€twe€n Mrarrr-
driw and sucess-biDd hani,s (IDL-SDL) (Möbus & Thole, 1990; Schröder,
1990). According to IDL (Laüd, Rosenbloom, & New€I, 1987; Vdl-ehn,
1988, 1990, 1991b), the ledne. tlaps into impasses if he o. sh€ encount€rs
unfdiliar situations. The learner gets stuck because the knowledge need€d
for the actual situation is not acquired. In response to an impasse, the learD€r
employs w€ak heuristics, for exmple, asking for help. If problem mlving
with help is succesful, the leaner acquires new howl€dg€ which €nabl€s hin
or her to overcome tlrc impasse. According to SDL (Ande$on, 1986, 1989;
Lewis, 1987; Ros€Dbloom & Newel, 1987;Vere, 1977;Wolff, 1987), a.lEady
acquired knowledge is optimiz€d if used in famitiar situations. This mems
that the solution schem€s characteristic for *perts are created frcm chains of
noft simple pieces of knowledge. As a rcsult, l€ss conhol decisions aild
subgoals are necesary, aDd p€rfomdce wiü get faster in futurc situations.
Thus, IDL-SDL theory nakes a distinction betw€en:

. aquiftd b]ut not yet imprcved domain knowl€dge

. ;nprcad domai[ krowtedse

. donain-unsp€cilic aa* ianrrr.r for the acquisition of domain knowl-
edge. Prcbhn solv;ng with üese heuristics in response ro d impasse
can again be desoibed by the four phas€s abov€: The problem solver
conside.s the possibilities to get help and chooses the most prcmising
one, lor example, to ask. He plms how to effectively make use of the
help, for exanple, what and whom to ask. Again the plan is executed,
and the result is €valuated. Thus, th€ impalse should lead to a Dew
problem-solving phase where the problem solver consid€rs, plds,
and uses help to generate a subgoal, to decide between two subgoals,
or to localire a bug.

Figure 3.1 summarizes our theoretical framework as a higher order Petri
net (Reisig, 1985). Th€ IDL-SDL net of Figure 3.1 shows that goals are
reached by problem solving, and the howledge used is optimized. The subn€t
"problem solving' coDtains four phase!: deliberation, plannin8, *ecution,
and evaluation. Evaluation might Eveal that the problem solution is faulty.
This is an impasse, od a subgoal is set to resolve it. So the subn€t 'imbl€m
solvins' is crl€d recu$ively, and IDL (acqui.ins new knowledse) occuls in
respons€ to a subgoal solution. For exmple, new domain knowledge is
acquired as a result of asking for help. SDL might occur as the resutt of a
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Subgoal
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Figft 3.1. SLetch of th. thcoretical position ar a high€! oider peki Nct
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succesful evaluation phase. Existing knowledge is oPtimized (by cornposi-

tion) s it can be us€d more efüciendy
There is sone diff€ren.e of oür theoretical position to the SOAR

architecture (Laird et al., 1987; Ros€nbl@m et al , 1991) In SOAR

knowl€dge optimization ('chunling) can take plee only after an impasse ln
SOAR alt knosledge changes stem from impass. But it seems questionable

whether all knowledge acquisition events cd reasonably be described a
resultine from inpasses (Vmlehn, 1991b) In our theory, knowledge is

optinized ("composed') not aft€r m imPasse but after successlul problem

solvilg steps not prec€ded by an impasse, whereas imPass€s lead to the

acquisition of 
"ru 

knouledge. Using SOAR terminology, in our IDL-SDL
theory knowledge is optimized atrnä th€ seJn€ problem sPac€, whereas in
SOAR knowledg€ is optimized ado$ problem spaces.

IDI--SDL theory nal<es recommendations for the desiSn of a help syst€m.

AccorCing to the theon/, rhe learner will appreciate help only if:

. th€re is an actual ,'{au, (without impasse, there is no need for help),

. it is synchrcnied to the le?me.'a actual knouLdse etate, üd

. it is synchmniz€d to the rrnal ?oblensolDine bu.L Help should not
address implementation details if there is a Planning prcblem, and

Accordin8 to th€se guidelines, the system does not interruPt the leamer,

but the decision to receive help is Ieft to the leamer' Th€ learner mav make

use of help but is not constrahed in his or her freedom to learn bv discoverv

On the on. hmd, the ldner may engage inf?t probbn soloiag' express ne*
solution ideas, hypoth€size their correctness, dd receive proposals bv th€

system on how to complete or corred the solutions. Thüs, the leamer may

€valuate (pans of) a solution and require completion Proposals from the

syst€m that are intended to encourag€ s.U'.xPla'ation (Chi, Bassok, l,ewis'

Reimd & Glaser, 1989) alnd r.Planairy' Synchrcnizing help to the actual

knowledge state is the job of the Intemal Model (IM). Finauy, pl ning with
goal nodes is incorporated into the hetp system, but it is not vet addressd by

tlrc IM.

THE AESYNT PROBLEM.SOLVING MONITOB

The ABSYNT prcblem-solving monitor provides a iconic environment

(Glinen, 1990) and is aim€d at supponing novics' acquisition of tunctional

progrMming concepts uP to recußive systems. As a Pmblem-solving moni-

tor, ABSYNT deliveß helP and prcposats for solutions to given tasks, but it
does not have a cunicular component. The main components of ABSYNT



Möbus, Scbröder, dd Thole

ar€: a visual prcgre editor, a visual uace! and a help component. The uar
is free to switch mong these @mponents.

The oiual prceran d,tol alows construction and syntactical checking of
programs. The €ditor is not shoM here, but mary of its featues arc also
visible in the hypotheses envircnment (Fisurcs 3.2,3.3, and 3.4): An
ABSYNT program consists of a head tree dd a body tre€ (se€ th€ upp€r half
of Figure 3.2). Also there is a stet tre€ (not shown) from which programs may
be ca ed. The nodes of the trees e constmts, pdmeters, pdmitive and
sdf-defined operator nodes. The linhs between th€ nodes are the ipipelines'
for control and data flow. Progrms de edited by taking nod€s with the
mouse from a menu ba (not shoM) and connecting th€m.

The design of the vi al progrm editor resulted from rumable specifica-
tions of the ABSYNT iDterpreter (Möbus & Thol€, 1989) and of the "How-to
use-it' bowledg€ (Janke & Kohnert, 1989). An analysis of ABSYNT in terms
of properties of visual lmguages dd coglitive desig! priDciples is provided in
Möbus and Thole (1989).

The ,üel ta., resulted ftom the runnable sFcificatioDs of the interyrcter.
It makes each computational st€p of the ABSYNT int€rpreter visible. There
is also a prediction environm€nt in which th€ lemer can predict the

69
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Hypoth.sis c.h NOT bG Gompfcted to a
systeh-known solution -

Figür€ 3.2. A snapchot of ihe ABSYNT int€rfac. dhowi!8 ü incdü€ct program
with a q.r hypoth€sis (bold) which le.dr to the system r f.edb.cL: camot be
coDpLtcd to a rolution trowr by th. ,ystco'
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Fi8ürc 3.3. Th. AESYNT interface dhowing aüothr! üypoth.lid. Th. rydteo
retunr th. hypotheb 0ower h.lf of thc dden) to indicatc it. coN.tnes

computation steps of the intdpreter with a mouse dd keyboard, with the
sendtic rules given as a help (Möbus & Schröder, 1990), which m visual
Fprsenlations of lhe rumable speLifi.arions.

The lvlp conp|,tht.onskts of two parts: a hypothes€s €n\aronment ard a set

ot oiMl pLünine tuhJ. In the hypotheses envimnrnent, the leamer may stat€
hypotheses about the correctnes of (pans ol) solution pmposals. Because in
our system th€ control of feedbak selection is left to the problem solver, we
*p€ct that the leedback content oflered to th€ student will be more €fredive
thm help which is not under user control (McKendree, 1990).

Figur€s 3.2, 3.3, and 3.4 depict snapshots of the hypotheses enviroment-
The learn€r programrned a 3olution proposal to the problem "even" (progrm
testing wh€ther a Datural number is even). Then the learner stated a
hypothesis by making a part of the solution (bold palts in Fi$re 3.2)r 'The
boldly narked fragment is part of a corect solutionl' But tlrc system's aNwer
is n€sativ€ (lowe! window of Figure 3.2). Now the leamer narrows the
hypothesis (Figurc 3.3). The hypothesis has become smaler dd more
general. Corespondingly, the system's fe€dback space ha become ldger.
This time the answer is positiv€: The selected plogran fragment is embedd-
able in a cor€ct solution to the "even" task. This is indicated to the ledne. by
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Figüt€ 3.4. On d.mad (bold line, lo*€r pan ol the fituE) the rystem rhows
the ndt nod€ ol e interlally gcnerated conpler. solurior

retüming to th€ h}?othesis in the lower window. In Figure 3.4 (low€r
window), the leamer asks for a completion proposal of the open connection
line (bold), and the system deliven m'if-tllen-else" nod€. Intemally the
sFtem has generated a complete solution to the task in response to the
hypothesis (see also Fi$re 3.5), but oDly one Dode is shoM to the leamer in
order to give only the minimal necessdy inlorution to resolve the impasse.
The feedback given by the syst€m cm be viewed as hetp on the larSuag€ level,
irtended to suppon free, uDguided problem solvins (Möbus & Thole, 1990).

One reason for the ilp*ß6 bsnne dpPnach is that in programning a bug
usualy cdnot be localized absolutely. Th€re are a variety of ways to d€bug
a wrong solution. Hypotheses testing leaves this decision to the ledner and
th€!€by provides a rich data source about the problem-solving process.

The aswers to the learneis hypotheses ae generated by rules defining a
soals-meds-relation (GMR). The GMR cm be looked at as a rule-based
inference system, a grammar, or a AND-OR $aph with parametr;zed
nodes. There rules nay be vi€w€d as "pure' expert knowledge not influenced
by lemhg. (They con€spond to what Corbett, AndeEon, & Paue$on
(1988) cal the "ideal student rnod€I.') Thus, we cal this set of rules EX?ERT
in th€ renainder of the chapter. Currendy, EXPERT contains about 1200



TASK = even:
"Create a progam which tests if a natural number is even"

I . proposal for completion:

aall=V
foo

al
\/

I

foo
false I

lno
l ----'-

nol

a>O

a>0

\t_
if-then-else

45. proposal for completion:

a

l=
foo

alv
\.i.a ii\i'\1 1:*-...-..--- 1./

if-then-else

Figure 3.5. Th. fint dd tü.45th compLtion gen€r.t.d by ihc rylteD ir
(cpo$€ to ! l€aneü h,?oth€di!

nrles dd oalyzes dd synthesizes eveel millions of solutions for 42 task3

(Möbus. 1990, l99lr Möbus & Thole. 1990).
Recan* pdnial solutions cm be analyäd, synthesized, and completed,

hypothess testing is possible, as illust.ated €arli€r.
Fot adtptit. h€lp g€nemtion, the EXPERT GMR rrnes have to be

augmented by an internal student nodel (see the next section). The necesity
of a leamer model is illushated in Figure 3.5. It shows the first md the 45th
complete solution, which can be g€nerated by the system i! rcsponse to the

learnels hypothesis (bold). So there arc many stdkinsly different completiotr
possibilities, and it is necessary to select one. The tunction of the ilternal
model is to select the completion possibility which is mdimaly consistent with
the leamels curent knowledg€ state. This sholrld reduce the learnels surprire
to a minimüm: 'Least surplise pdrciple of help."

The GMR nrles can be translaret lnro oisut'l Pldnntis arr (Möbus, 1991).
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The vistral planning rule8 are based on tlle visual representations of rule
examples shown in the appendices (they aft explained in tüe next section).
The planning rules are the seond part of the help component. In.ontrast to
the hypotheses fe€dback on tlle /aigürgr level, tlrc plannirg rules focus also on
the goal level. The soal names contained in the planning rules can be viewed
as lab€ls for predicative goal descriptions such as the description of the "even'
pEdicate stated @lier. The planning rules serve to encourage help-guid€d
pldning which starts from the presentation of the task. An explorativ€
feasibility study with the plming rules show€d that they cd be used by
programning novices for constructing solution prcposals for progrming
tasks, eve! if initialy the subjects have no idea how to sotve the task.

The plaming nn€s do Dot give reasons for the goals md implementations
contain€d in th€m. (This is mother problm we wo.k on.) So one might b€
inclined to think that our subjects felt like the p€lson ir the Chines r@m in
Searle's (1980, 1984) thought dp€riment. But after obtaining solutions with
the h€lp of the planning rules, the subjects tried to €xplain the solutions to
th€mselves (Chi et al., 1989; Vanlehn, 1991a) and report€d f€eling! ol
irsisht in a number of cases and thüs "escaped tlrc Chines€ roorn" (Boden,
1989).

THE INTERNAL MODEL

The Internal Mod.l (IM) is desclibed ir thEe subsections. In the tust
subsction, the knowlefut @ntaired in the IM is described, leadirg to a set

of empi.ical constraints. In the s@nd subsction, the evolution of the IM
and its motivation by the empirical onstnhts is described, dd m exampl€
is giv€n. In the thid subsection, m empirical case study is Fovid€d.

Th€ Rul€-Schema-Cas. Partid Ord€. ad it! Empirical

This sübs€ction describ$ the donain-specific plannins knowleds€ of
AßSYNT, ss contained in GMR rules. It contains visual .epremtations of
GMR rules and composites of varying specifity. Furthermore, the enpüical
concqucnces which ae associated with scveral types of rules üe poirted out.
ßut filst, the tems to be used e listed bclow.

All rules containhg correa plmhg krowledge are . lled Gn4R ru16.

There are two ways to sptit this set GMR Ge Figule 3.6):

t. Sinqt nl6 dnd conqsit s:
. SinpL tulß. Th.rc Ne r\ree kirds of sinpl€ rules: rules desqibing

the diferentiation ol prograrnming goats (goal elabomtion nnes),
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EXPERT POSS IM

initiallyfilled
with rules

possibly filled
with rules
duringmadellingl*

simple
rules

sites

Figur.3.6. Th. pdtitio$ of thc Goals Meer Relation (GMR)

rules implementing one ABSYNT node, and rules implementing
ABSYNT progrm heads. Generally the variables in the simple
rules can be bound to rzrll,6, except for variables for parameter
names, constdt values, ed nmes of higher (self-defined)

. Conposit s, ae rules that are oeat€d by merging at ledt two
successive rules of a par$ tr€e of a solution. Conposites may be

produced from simple rules and composites. Composit€s are not
contained ir th€ set of EXPERT rules. A composit€ that contains
at least one variable which can b€ bound to a subtree is called a

r,rru. If all vaiables in a conposite cu only be bound to node
nmes or values, then th€ composite is a ,6,. Finally, therc are

cas€s for whole talk or raluJion trun|lß.
2. EXPERT, POSS, and IM: The other way to split the set GMR is into

the databas for the rules. There arc three subrts-EXPERT,
POSS, and IM. EXPERT contains the expe.t domain knowledgE
describ€d above. The sets IM and POSS ar€ creat€d at run-time md
are d€süib€d late.. As tne figure indicates, there aft no simple rutes
iD POSS and no cornposites in EXPERT.

GMR RuJs. This sub*ction provides examples for s;nqle tuLt rhat are
depicted in their visual represntations in Appendü A. Each flne has a rule
h€ad (left-hmd side, pointed to by the arrow) md a rde body (right-hand
side, where the arrow is pointing ftom). The rule head contains a goals-

meds-paü in which th€ goal is contained in the elips€ and the m€ans
(implem€ntation) is contain€d in the rectangle. The rule body contains one or
a conjunction of sev€ral goals-neans-pairs, or a Fimitive predicate.

Rdes E1 to E4 in Appendrs A. arc goal ebbotatiin zrr. Goal elabomtion
rules ae planning rules; they do not contain ABSYNT progru fragments.
For example, Rde El (d be read:
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. If your main goal is'absdiff' with two subgoals 51 and 52, then leave
space for a prcgram tree yet to be implemented.

(tub bodr:
. If in the next planning step you create the n€w aoal "brdchins, with

th€ thfte sübsoals 'less_thd (Sl, S2)," 'difference (S2, S1),'and
"differenc€ (Sl, S2),' th€D the program tree which solves this new
goal will also be the solution for the main goal.'

Rules 01 to 04 md L1 and L2 of Appendü A de cMR rules
implenenting one ABSYNT node. Rules 01 to 04 implm€nt one or'dt /
nod€. Rules L1 and L2 implement on€ Lalnode (pemete$ and constmts).

. If your main goal is "branching' with thrft subgoals-IF, THEN,
ELSE-then progrm m "if-then-els€" Dode with rhree connections
leaving from this node, and
leave space above tÄese connections for rhre progiam uees Pl, P2,
P3 yet to b€ implem€nted.

(ruh baQ):
. If in the n€xt planning step you pursue th€ goal If,
then its solution P1 will also be at Pl in the solution of the main goal, dd
. if in the ndt planning step you pursue the goal THEN,
then its solution P2 wil also b€ at P2 in rhe solurion of the nain goal, dd
. if in the Dext plannins st€p you pursue th€ goal ELSE, then its solution

P3 will also be at ?3 in th€ sotution of the main goat.

The rul€s L1 and L2 do not contain goalFmeans-pairs in their rule bodies.
Instead, th€ rule body of L1 requires thar rhe progrm tr€e -r must b€ a
parmeter. Similarly, C in L2 must be a constait. Ll cu b€ read:

. If your main goal is to implement a parameter -r,
th€n Xhas to be a parmeter nde that has to be put into a pdderer

which has to b€ imptem€nted as a pan of the ABSYNT program.

Finally, Rule H1 ir Appendix A shows a rule implemenring the head of m
ABSYNT progru mlving the task goal'absdiff" which mtans: "Create a
progrm for a 2-arity tunction with a head and a y.t ukrown body. The
body is a solution to the goal absdif(parm€te(X), pardeter(Y))." This goat
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means that tlrc plo$am ha! to compute the absolute difterflce of two

Fisurc 3.7 show3 the solution of a subject-Subj€ct 2-working on

ABSYNT problems to thc 'absdiP pmblen. The rules in APPendix A Parse
and generat€ this solution.

Th. @p^';,ion of atu*: Sctuma and cas. ln our theory, comPosites

represent improved sp.ed-uP knowledge. To8€ther with the simple rules they

constitut€ a partial orde. frcm generat plming rules to solution schem€s to
spccihc cases reFereDting complete solution examples. In rhis s€ction we

define composition and provide and describe exmples
If ue vitr the rules as Hom clauses (Kowalski, 1979; Robinson, 1992),

then the composite of two rule! co be d€scribed by th. inference nne

(F-P&C) (P' - A)
(F-A&c)o

The two dauses above the line resolve to the resolvent below th€ line. A,
C arc conjunctions of atoms. P,P, dd F are atoms. o is the most general

unifi€r of P and P'.

Th€ Composit€s C1 to C6 in Appendix B (9n be q€ated frcm the rules ir
Appendix A. As a exmpte, it is €xplailed how th€ Composite Cl results

frcm 04 and two i'stdces of L1.

oa: sn(difference(S1, S2), -(P1, P2) -
gn(Sl, Pl) & sm(S2, P2).

Ll: sm(pdd€ter(x),x) - is-Paramete(x).

04 and Ll de exprclsed as HolD clauses APplying the irf€lence rule with
d = [S1 / pedet€r(1o, P1 / X] leads to the intermediate lule inltantiations
O4r and Llo I

oao: sbr(dilT€lence(paramet€r{t), s2), {Ä P2)) -
srni(pam€te(x). ,l) & snr{s2, P2).

Llo: e@r(pdmete(10, x) - is-Paramete(x).

which rerolv€s tol

c0: gmr(dinereno{paramete{x), s2), {Ä P2)) -
is-pamete(x) & sm{S2, F2).

This corresponds to ü intermediate comPosite C0 (a scherna) lot dePict€d

in Appendü B. Now we compose C0 with L1 In order to avoid nme clarhes,
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w. renme th€ vdiable X in Ll by v. Applying th€ inference rule with d =
IS2 / parueter(v), P2 / 4 l€ads to cOd md L1d:

cod: sn(diflerence(paramete(x), param€te(I)), 1Ä 4) -
is- paranet€(1o & sm(pemeter(4, D.

Llo: sm(parameter(4, 4 - is-parameter(4.

vhich resolves to:

A ry"rtu*trg procss slects Dd instdtiates GMR goal'€laboration
rules. It delivers goals, subgoals, and goal-subgoal-relations lor the
curr€Dt task: 4plann€r.'

An a,a/iug process inplements progrm fragm€nts according to
thes goals, using CMR Dode-implementation nrles. It also connects

C1: gmr(differen e(parameter(x), pameter(4\, -(x, v)) -
is-paraneter(x) & is pardeter(r.

This coü€spon& to the Composite C1 in App€ndix B. Thus, the Com-
posite Cl states that the goal "diJference of two pameter nodey cm be
impl€mented by a tre€ which consists of the subtr&tion ope.ator conn€cted to
two parmeter nodes. C2 of Appendix B stat€s that th€ sane goal cd be
impl€mented by a tree in which the two parmeter nodes de subh&ted in
r€vers€d order, with the result multiplied by - l. Thus, C 1 md C2 e .6,r
for the difference of two pameters. C3, C4, C5, and C6 m composites of
weaLly inoeasing specifity. C3, C4, md C5 are nn% for the "absdill tak
which contain large parts of a solution in their rule hea&. Finally, C6
contains a complete solution to th€ goal "absdifl" in its rule head. Thus, the
Composite C6 contains a specific slution dmple (ra,) which coEesponds to
the solution of Subj€ct 2 shown in Fig!re 3.7. Thus, it is shown that we cu
derive sch€mes and c6es frcm GMR rules by .ule composition. At the
present mom€nt it is a re$arch question as to how to relat€ schemes to
well-known but not precisely defined topics in problem solving, for exanple,
"strategies,' "tactics," or "styles.'

Th. empir;el @ßttu;n^ oJ tuLq &h.tut, cd caas. Simple GMR rrnes
md composit€s give is to different €mpirical predictioDs. W. mak€ use of
some of th€m in th€ IM (see latd). In this cas we wdt to show which
predidions are possible.

This !€quires hpotheses about tlle application of knowledge reprcs€nted
as GMR rules by a problem solrer. According to our theory, plans are
synthesiz€d ed exeated. So we pmpose a interaction of two proc€sses:
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program fragments acco.ding to the goat-subgoal-relations detivered
by the synthesizing process: 'coder.'

This synthesize-€xecute-interaction €Dables rhe application of cMR ra es
in dy order. The actual o.der is deremined by the synthesizing plocess. We
state the followiDg pr,,,ßtng hypotheses:

. InPltuntatiaa of ABSYNT lragments. If a cenain cMR node-
implehentation rule is executed, then the program f.agment con-
tained in it (th€ 'meds" ol the goals-means-pair) is implemenred in
an uninterrupted sequence of progrmrning actions (positioning a
node, naming a .onstant, parm€ter, or higher op€rator node, arld
drawins a link).

. Vdbdüdt;aa of goals. Selecting goals and subgoals is part of rh€
synthesizing procss md involv€s control decisions. So the goals ed
subgoals of a rule may be ve$alized when this rule is applied.

. Cotütba of positioDs.lf two progam fragnents have to be connected
ac.ording to a goal-subgoal-relation, corective prcgrmming acrions
üe possible-length€ning links, chdgiDg rheir orientation, a.nd
moving nodes.

These processins hypoth€s€s tead to hypotleses abo[t pdfolnane difdrus
between novices and expe.ts. Because novices ud €xp€rts are assumed to
diller with respect to the partial order from simple rules ro schem€s to cases,
w€ @mpare the application of a composite to a cor.esponding set of simple
rules md state the followias pnfoinaw d;füd.e hypoüe'€sl

. No inLileaünC trpoth$i. Because pro$am fragments of GMR rules
are asuned to be implemenred withiD uniDterrupt€d sequences.
actions of difierent rule instantiations shoutd not interleav€. So for
the set of simple rules we can rnake aross-rule-predictions of which
actions shoüld or shornd nor occur togeth€r. For the composite, there
are no such pr€dictions because it coDsists of just one rute. For
exmple, if the "absdiff" task is solv€d using the Rute C6 in Appendix
B. rhen üere are no .onsrrainrs on !h. erion sreps.

. Vdbali,at;an htpok6n. Applying the conposite requires less goats to b€
selected than applying the set of simple rules (see again C6). So rlere
should be 1r,r v€rbalizations in th€ first case.

. Ratungtut bpaüßn Wh€n applying tlle set of simpte nies. the
corresponding progrm ftagments have to be connected ac.ording to
goal-subgoal-relar;ons. ThLrg. corr"crive programmi,g a,,ion, are
likely. In contrast, applying th€ composite requires no informarion
about goal-subgoal-relations Gee again C6: Everything is contained
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witfin one nne). So the composite should rcqune l$ position

. Tine bpoLb';t. Sel€cting, elaborating, and verbalizing goals, md
remmging program ftagments cost time. So the applic-ation of the
conposite should be/ala. than the applimtion of the corresponding
set of simple rules.

These relationships ar€ illustlat€d in Figure 3.8, usiDg the composites of
App€ndix B as exmple ('r'mems comPosition, so, for exmple, C4 cm also

be expressed as C3.C1). The rule are organized in a partial order which
re{lects degree of sequence constaints of progranning a.tions, degree of
verbalizar;ons. rearrangemenls, dd perlomdce time.

Applying the sets of mles lC1, C2, C3), {C2, C3.C1l, tC1, C3.C2i, dd
{C3.Cl.C2l atl lead to üe sme solution (Fisure 3.7). But application of lC1,
C2, C3] should be acconpanied by more verbalizations, rcmmgements, and
longer perfomdce time than the other rule s€ts of Figure 3.8. Furthermore,

{C1, C2, C3j imposes more coDstraints on the sequence of prcgrmming
actions. {C1, C2, C3l predicts th€ folowing sets of ev€nts (prosamning
actions, verbalizations, md reanmgen€Dts):

Eaent cnl/rspoadine b Cl. The goal to pmgram tlle difference of two
pararneters -r, r is possibly verbajized. The subtre€ in the rule h€ad
of C1 is implement€d. (The prcgreming actions ar€: crcate a '''
node, two links, two pamet€r nod€s md name the parmeten.)
hat: @n6pond;ng ta C2. The goal to pro8rm the difference of two
parmeters X, yis possibly verbalizd. The subtee in the rule head
of C2 is impl€ment€d.

{c2, cJ . cl {cl, c3 . c2}
s€quence pr€dictability

rig@ 3.8. P$tial ordcr oi cetr of compositet Gce Appcndit B), wh€t c4
C3.C1, C5 = Ca.C2, C6 = C3.C1.C2
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Eomß eanstondinß ta C3. The goal to pmgram the task "absdilP is
possibly verbalized. The subhee in the mle head of C3 is imple-

E Nah coßpo d;ne k sodt-sLbsoat-;nfomation (CJ-C3). The prog"am
tree of C I aDd the fi.st op€n linl of C3 arc possibly rcaüaiged (if not
already connected), s they are connected.
Eo.nts .o/1r'pondins to eodt-tubsMt-inJo/nat;on (C2-C3).'rjhe prog:lant
tree of C2 and the second open linh of C3 ar€ possibly realrang€d (if
not älEady connected), so they are conn€cted.

Nothing is predicted about the order of ev€nts within o! a$oss sets. But
events from difiercnt sets or from different rules within one rule set aft
*p€cted not to interleav€.

{c3.cl.C2} = {C6l imposes no s€quence constlairts on prcsrmmins
actions and predicts only one verbalization and no rea$angements because its
mle head contains thc whole solution. Therc is only one set of events denoted
by C6:

. E.ntt coft.tponding to d6. The goal to prcgrd the task "absdifr is
possibly verbalized, ard the progran tre€ in the rule head of C6 is

The IM, to be described next, makes use of th€ no-interleaving hypothesis
and the time hypothesis. We ako describe a study of the no-inte.leaving
hypothesis. The other hypothes€s have not yet be€D tested empirically. This
is work for the future.

Evolutior of th€ IM in thc Probl€h-Solybg P.oces!

The IM wa developed acordirg to the folowing principles, which are
motivated by the constraints of IDL-SDL t[eory and by the empi.ical
const.aints stated ealier-

IDL-SDL tlrcory distinguishes between ar4!'irl and iflptotud knowl.
edg€. The IM contairs simple lules rcpresenting acquired but not y€t
improved knowledgc dd composites repr€senting various degrees of

The IM .ontains only lules whose progrm trees wele executed in an
unintempted sequence (no-int /hating lUpotlus;s\.
Knowledge imp.ovem€nt should result in sp€€ding up performance,
as stated earlter (t;ru bpoth6ir). Thus, a composite becomes pan of
the IM only if the student shows a sp€ed-up fiom an eadier to a later
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&tion squence where both s€quences cm be produc€d by the
composit€ or the corresPonding set of simple rules.

. A crcdit value of th€ rules in the IM rewdds the usefirlness of a rul€:
The usefulness of a rule is the product of tlle length of the action
sequenc€ (number of prcsratnnins actiont €xplain€d by the rule and

th€ numb€r of its successtul applications (i.e, its actions are per-

formed in m unintempted sequence).
. IDL-SDL theory d@s not permit improvement of knowledge not y€t

acquired and applied. So a rul€ newly acquired by IDL (a simple rule)
cünot be imprcv€d before b€ing apPlied at least onc€ This lneans

that the IM should not be entended at the same time by a new simple
nne md by composites built from this rule. Therefore, possible

composites have to wait for in@rporation in th€ IM. They are kept in
a set POSS of possible composite cardidates fo! the IM.

ln some rare circumstuces tl}e leamels data patte.n cm be simulta-
neously explained by a simple rul€ not yet in th€ IM and a composite in POSS

which is built tron it. For pr&tical reasons we cunently permit that both
rules enter the lM in such situations, although this does not strictly
corcspond to th€ theory- These situations would not @cur if each simple rule
would *plain onty one sin8le programming action. This means to decompose

the cu[ent 'simple ruled into €ven more el€mentary rul€s - another aspect of

Giv€n a certain sequoce of programming actions, we describe four subs€ts

of ranes (simple rules dd @npositet:

1. Rules which do not contain aay progrm fragm€nts ("goal elabora-
tioD rules). Curendy t}le IM does not contain these rules, so tlley
m notdzciiuc with respect to the action sequence (We work on
incorporating planning into the IM. Furtlemore, Fagments oI
verbalizations can be related to the goal elaboration rules; Möbus &
Thole, 1990.)

2. Rules whos€ heads contain a prcgrm fragment that is part of the
final r€sult produced by the action sequence, ad that was pro'
gramrned in 

^ 
nminl'tuM, t€mporally ontinuous subsequence

Thus, these rules fit into the no-interleaving hypothesis. They de
lla6rrl' with rcspect to the action sequence.

3. Rules whose heads also contain a program fragment that is part ol
the finat result producd by the adion sequence, but this fragment
corresponds only to the result of a non@ntinuous subsquence of

^.tions 
intmPt2d by oü1er action steps. These lrules arc inpldßible

with respect to the action sequence. Exdples for plausible md
implausible rules e given later in Lhis ser tion.
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4. Rules whose heads contain a prcgram fragment üar is not Pan of $e
linal result produced by the action sequence. These tules are iftel.vant

to the action seqrence.

Figure 3.9 shows the d€velopment of the lM during the krowledge
acquisition process. Figure 3.10 shows the chmges betw€en the drflerent sets

of rules during this process. W€ wi now go through Figures 3.9 dd 3.10.

Std, Top of Figure 3.9). Th€ first programing task is presented Both
s€ts IM and POSS are empty.

Now th€ learner solves the first task. An action sequence is produced

leading to a solution.

Fi't Test Pha'.. Since IM md POSS are empty, Dothing happens.

Shn: Firsr läsk is IM POSS

L Eich composire in POSS
- which is pl $ible in the

preseni acr,on sequence
' which acrurlexecution rime is

shoner üan rhe rinre atrached
is nroved fronl POSS to lM

2. Efth inelevnnl coDposile is kepl
in POSS

3. All othercomposiles in POSS
ar€ skipp€d

4. Crcdir ofall plausible tules in IM
is updat€d

Sohrtion is pffsed with nles in IM
ordered bycrcdir, and (as needed)
wirh EXPERT rules

L The plarsible prße EXPERT
re pur into lM and ger crcdirirre put rnro rM ano ger creorl

2. The plausible composites ofall
püse rules are PUt inro Poss.
Exectrrion Iimes of Ihe con€soondEcurion rimea of lhe con€sponding

ion sequences are attached,

Fisur€ 5.9. Developü.lt of the IM düilg th€ LrowLdge acqutuition Prcces
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GMR EXPERT

crcdit updale

composiles of paße

::l:lli Shaded aieas denote cmpty subsets of rutes

Figw 3,10. Ch.!gc. bctw..r th. rü1. &tr ilurirg d.vclopo.ot of thc IM

Ffit Pdls. Phot.. The l€amels solution to the tust prcgramming task is
parsed with the EXPERT rules, leading to a set of pdse nnes. The purpose
of parsing is to check the correctness of the solution, to obtain @didates for
the IM, and to be able to generate candidate composites fo. POSS.

Fi/st Gttutdtt Piarr. The EXPERT rules just used for pasing are
compared to the action sequence which produced the leam€is solution md
which is saved in a log file. The plausible EXPERT parse rules @ put into
the IM (see also Fi$re 3.lo-erow pointins from simple EXPERT mles to
sinple IM ndeo and get credit (number of action st€ps described by ea.h
nne). These rules arc h)"othüized as ntuU aqun.d by the learn€r in response
to impasss on slving the first task. In th€ n€xt step of the generate phase, the
cornpositff of d/l nnes just used for parsing the solution m buih. Each
conposite is compaed against the action sequence that produ@d the solution.

cr€dn update

e
removal of implausibl€ or
too spe€dy composites
(obsercd action seouence
is slowcr rhan belo+)
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T\e pkßibL anPoikr are kept in the set POSS becaus€ they are possibl€
candidates of improved knowledge useful for future tasks Gee also Figure
3.10-drow pointing from simple EXPERT rules to composites in POSS).
For each plausible composite, the time needed by th€ learn€r to perfom th€
corresponding unintempt€d a.tion s€quence is attached.

Next, th€ leamer solves the second task.

Second Trt Phue. When th€ learne. has finished the second task, each
composite in POSS is checked to see if it is y'/a6öl, with respect to the action
sequence, ed if th€ tim€ need€d by the lemer to perfom the respective
continuous &tion sequenc€ is rrrrtr than th€ time attached to the composite.
The composites meeting these two requirements de put into the IM. (In
Figure 3.10, this is repres€nted by the arrcw pointing frcm composites in
POSS to composites in IM.) Cornposites in POSS which de;,&r,an, to the
action s€quence of th€ solution just created aJe left in POSS. They might
prcve as useful composites on future tasks. (In Figure 3.10 its the drow
pointing from composites in POSS back to composites in POSS.) All orla
composites violate the two requirements. They e€ skipped (thar is, compos-
ites implausibl€ to the actual sequence, or composites that pEdict a mor€
speedy action sequence than observed. This means that the ledner has
perforbed the action sequ€nce more slowly than the sequence that led to rhe
.rcation o{ the conposite). In Figure 3.10, skipping these composites is
rcpresented by the arrow pointing to deleted rules. FiDaUy, the credits of all
ftles in the IM which are plausible with respect to the pres€nt action sequence
are updat€d. ID Figure 3.10, this is r€present€d by the tlvo circular drows
within simple lM rules dd wirh;n IM composires.

S.cond Palse Phata. Next, the solution of the se.ond task is parsed with the
rules of the trpdated IM ordered by their üedits. As far asn€eded, EXPERT
rules de also used for parsiDs.

S.coad Genetut Phae Basicaly the sme steps are performed as in the first
generate pha3e. The EXPERT nn€sjust used for pa$ing are compared to th€
action sequence of the task solution. The y'la@rl, EXPERT nnes de again
put into the IM and get credit (Figure 3.10 - arrow from EXPERT to simple
IM mlet. As before, they are hypothesized as newly acquired knowledge in
respons€ to impasses on the taikjust performed. Furthemore, the composites
of the puse nnes are created. (In Figure 3.10, this is represnted by th€ three
arows lab€led with'(')', since the parse rules may contain simple EXPERT
rules, simpl€ IM rules, and IM composi,tes.)'lhe pkß;bh @npos;tß üe wt
into POSS, wher€ they will be tested on the neat test phas. Again rhe time
need€d lor the corresponding action sequence is stored with each composir€.

When solving the next task, the next t€st phas€ wil again split rhe
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composit€s in POSS into rules for the IM, rules to keep in POSS, md rul€s
to skip. The circle repeats with €&h new task solved.

An Mnph. We illurtrate a short episode of the lM with data from
Subject 2. Figure 3.11 shows heI solution to the problen: 'addaddone'-
"Create D ABSYNT progrm which adds two natural numbers. The addition
operator can only be used for incrementing by 1.'

For this exdple, w€ restrid our attention to the GMR Rules 01, 05, L1,
L2, and C7 Gee Appendices A and C). Subject 2 already work€d on other
tasks before solving the "addaddon€" task. At this point, C7 has not been
created. 01, L1, and L2 are already in the IM from earlier tasks. 05 is not
y€t in the IM, but in the s€t of EXPERT rules.

After the "addaddone' task is solved, the test phas stans (see Figure 3.9).
B€cause th€ only composite we look at here (C7) has not been created yet, we
can skip the first thre€ subphases of the test phas€ md go to tlrc fourth
subphaser Th€ ü€dit of ail plausible rules in the IM has to be updated. Figure
3.12 shows a fragment of the action sequence p€rformed by Subject 2 on the

"addaddone' task. 01, L1, and L2 are in the IM (s.e eaAi'etr. 01 is iftptaßibk
b€cause the actions corresponding to the rul€ h€ad of 01 are not continuous
but interrupted. They are perfomed at 11:15:52, 11:15:58, 11:16:46, dd
l1:16155 (Figure 3.12). Thus, th€ action sequence coresponding to the rule
head ol 01 is interrupted at 11:16:42 and 11116:50. Ll dd L2 m also

implausible. Actions coresponding to L1 are p€rfomed at 11:15:08 and
ll:15:29. Thus, this !€quence is internpted at 11:15:16 and l1:15:22.
Actions corr€sponding to L2 are pdfomed at 1l: l5: 16 and 11:15:34. Thus,
this s.qteD@ is i brult d at 1r r15:22 ed 1l:15:29. So because 01, Ll, and
L2 m implausible, their dedits are not chmged.

Now the solutioD in Fisure 3.11 is pa$ed with mles in the IM and, as

n€ed€d, with additional EXPERT mles (Fisure 3.9). 01, Os, L1, and L2 are

among the paße rules, b€cause no other rules have a higher credit and are

able to parse th€ solutioD.
After the pdse phase, the gen€rate phale (Figure 3.9) starts. 05 is an

EXPERT rule used for parshg. But 05 is implausible, sinc€ its @rre-
sponding actions w€r€ p€rformed at 11:15:22, 11:15r38, and 11:15:43, with
interruptioDs at 11:15:29 and 11:15:34. So 05 is Dot put into the IM. Then
the composites of the parse rules are formed. C7 (Appendü C) is a composite
fomed from 01, 05, L1, md L2. This composite is plausible beca$e it
desüibes the uninterrupted sequence of progrming &tions from 11:15:08
to r1:16:55 (see Figur€ 3.12)-despite the lact that its components 01, 05,
Ll, ud L2 are a, implausible. Starting from the beginning of tne task (at
ll:14:4o), th€ time for this action sequence is 135 seconds. Thus, the

composite C7 is stored in POSS with the information "135 seconds' attached
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The folowing task was 'diftdiffon€"-'Create m ABSYNT program
which subuacts two natural number3. Th€ subt.&tioD operator can only be
used for deüementing by one." Subject 2 created the solution shoM in Figure
3.13, with an action subsequence shown in Figüre 3.14.

The test phase following rcveals that C7 is plausible again. The corre-
sponding action sequence was performed in 92 sec (shning from the
b€ginning ol the task at 11: 10:56, to 1l:12:28). This is les thd the 135 sec
attach€d to C7. So C7 is moved into rhe IM and geß a credit of 13 because
it describes 13 programmiD8 st€ps (see Figures 3.12 and 3.14). This credit will
be inoemented by 13 each time the composit€ is plausibte again. 05 is atso
plausible (actions at 11:11:43, 11:11:48, aDd 11r11:53). So it enters the IM
with a $edit of 3.

An Enpiric.l Cas. Strdy

In a case study the sequ€nce predictioDs of the IM were investigated, a
impli€d by the neinterleaving hypothesis. Before solving the progrMing
talks 'addaddone' and 'difrdiffone," Subject 2 solved seven tasks not
involving abstraction or recursion. Her action sequences and solutions to
these taks w€re saved in a log file. The IM was mn on the action sequences,
leadhg to sevm subsequent stat€s of the IM.

Based on tüe state of the IM immediatety before the ts task, and the
solution proposal of Subject 2 to the e task, unitrtetupted set! of proSram-
ming actions to the ts dution wer€ pr€dict€d. This,ntdtl tlaee was(.omparcd
to the a.tnd tabj.ct be.: Subject 2's action sequence to the F task.

For each pair of adj&ent programming actions in the subj€ct trace which
wa dpected to b€ adj&ent according to the model tmce (i.e., explained by
the same IM .tne instantiation), a'+'was noted. For each pai! of
roradjacent progming actions in the subjecr uace which was exp€ded to
b€ adjacent &cording to the model trace, a'-'was noted. Thus, "+" denote
pairs fittirg the predictions, and " -' denote contradictions.

Figu.e 3.15 ilustrates this procedure for one of the seven tarks solved by
Subject 2. Fisure 3.15 shows:

a. a subset of the rules in th€ IM after solvirg rhe third task, 'absdifr
(Fogram computins the absolute difference of two numbers)

b. S2's solution to the fourth ta!k, 'quot' (program dividing two
numbers such that the result is great€r o. equal than 1)

c. the predicted action sequence for this sotution of "quot" (model

d. the observ€d action sequence of 52 (subject trace) mdked wiü " + "
md"-'asdescribed.

In Figure 3.15a, for each IM rute the proglm ftagment in its head is
shown in additioD to the r1rle name. In Figure 3.15c, the plogram flagm€nt!
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Figure 3.14. P.rt of th€ sequetrce of Subj€.t 2s 4tionc (Octobe! 26, 1989)
pedomed oD thc tqk {difiditrom"

predicted to be constructed in m uninteEupted sequ€nce are bo*ed. Thus,
for exmple, the if-then-els-node rule (Figure 3.15a) predicts that pro$m-
mins the if-then-else-node md thre links leaving it m fou progrmming
actions perfom€d in m uniDt€rrupted sequ€nce. So the conesponding
frasment is boxed in Fisure 3.15c. Similarly, placing a pameter node dd



mmm'E'ffigg
b) Sd solurion (prograrn bodyj ro
thcrask'quof (founh of seven
tasks solvcd)

d) ObseNed action sequence (subjed tnc€)
while solving the fouth task, "quot"

placing parmeter nod€ bl
placinS pamnleler node al
placing op€ralor nod€ <
crcadng left link inlo s
creating righr link into <
naming parameter node bl
naming pdameler node al
placing op€ntor rode if-then-else
crcadng left link inrc if'ü€n-ehe
placing parameter node a2
placing pararneBr node b2
placing opclator node /l
cr€ating l€ft link inlo/l
6€adng right link into /l
naming parameter nodc a2
naming paramet€I node b2
creadng middl€ link inlo if-then-else
placing parameter nod€ b3
placing pm€rer node a3
placing op€dor nod€ 2
cr€ating left link inro 2
creating righ link inlo 2
crcarins risht link in!o if-üen-else
naming parcrnder node b3
naming palameler nod€ a3

c) Pr€dicd action se4üenc€s

1666ä

FisuE 3.15. (.) subcet of th. IM b.fot. .olviq 'quot", (b) 82' sorutior to
aquoe, (c) pr.dict.d &tio! lcquclcc hrym.ltr, (d) obr.md .ctioD r.quc@
.onspoddins (+) o! coltr.dicths ( ) to th. Pß.tiction.
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Table 3.1. Iit of th. IM Condition l to Vriou llne Typq (Ior all ev.n

93

2

27

4 27

l
47

t4

nming this node are two actions predicted to occur subsequently. Difierent
inrtances of nodes are iDdexed iD Figure 3.15c and 3.15d.

This prcc€düre led to 80'+" ud 49 " - " for the s€ven subject tr&es to the
seven tasks. (As Figure 3.15 shows, the sbject trace to th€ 

qquof 
task led to

7 "+' and I " - ", so the fit was bad in ihis task.) Because mole "+' should
l€ad to longer ud thus fewer runs than about equally mmy " + " dd " - ", we
appli€d th€ Runstest. There were 40 runs (p < 0.001).

This result indicates that the IM adequately d€soibes a consid€mble
portion of the protocol of action sequences of Subject 52. Table 3.1 shoffi the
distribution of '+' and " - " across din€rent typ€s of rules in the IM.

Thus, the parmeter node nrle, for exuple, is responsible for 2 of80"+',
and for 27 of 49 " - ': 32 usually does not place and nde a pardeter node
in sequence. The same seems true for the coDstant nod€ rule. Obviously,
given that this .esult will be reproduced with otlrc. subje.ts, it should be
possibte to improve the IM by spliuins the paramet€r nde rule (and the
constant node rule) into two new rules: On€ for positioning and oDe for
namiDganode. Th€n the current palamete. node n e woüldbe a.onposit ol
thes€ two new rules. As noted eartier, in general this means a decomposition
of simpl€ rules into more elementary rules, with each one explaining only one
programminS a.tion.

TURTHER WONK

The IM is Grcntly extended to the following directions:

. Incolpoftii^c a lbnn;ag hrel. Cuffently the lealneis hypoth€tical
solution plan is the parse tree of the solution. We extended the
ABSYNT language by goal nodes so that mixed programs containing
ABSYNT operator nodes and soal nodes are possible. The learner is
abl€ to test hypotheses dd to re@ive €lror ,Id compl€tion feedback
at this pluning level, even if the l€arDer has no id€a about the
implebentation in ABSYNT. We will extend the IM by goal nodes
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Flom the learnels point of view, the benefit of using goal nodes is that
hypoth€ses testing is possible 

^r 
ü\e pknning stdc.. From a psychological point

of view, objective data about the plmnirg process (n be obtained, ud the
gap to the IDL-SDL theory is narrowed. Finaly, frcm a help system design
point of view, the ben€6t is that in addition to hypotheses testing it is possible

to ofi€r plaming nnes as help to the lemer.

. D.s;cninc MP. The nkn\at€ goal of th€ IM is to deliver adaptive help.
If the leamer asks for a hypothesis completion, th€ IM rule with the
h;shelt e/rdit whtch is able to complet€ the hypothesis will be used-
DependiDg on th€ actual state of the IM, the completion may consist

of a single node or of a subtree. When tle IM is extended by a

planning level, a compl€tion proposal may also consist of a goal node
(pkn cotupAian) ot eveL a goal tree. Only if the IM does not contain
my rule able to conplet€ the cunent hypoth€sis, d EX?ERT rule
has to be used for completion.

Besides @mpl€tion proposals, there m more possibilities to deliver help.
For example, adaptive planning rules could be offered to the leener.
Funhermor€, it is possible to empirically test th€ eff€cts of di{ferent kinds of
help (i.e., "adaptive" vs. "nonadaptive'). For exdpl€, a completion proposal
could b€ generated by a chain of simple rules or by a single composite.
Secondly, the completion prcposal might exacdy cov€r the diaposed bowl-
edge gap or provide more or less information as needed to cov€r the Bap.
Several hypotheses about the €ffects of help variation along these dimeDsions

. MahlLs. M Nles cü automatically b€ cr€ated and integrated into
the IM. If the problem solveis solution proposal cannot be recog'
nized by the system, and an omcl€ (e.g. the te&her, anoth€r system,

€tc.) coDfirms that th€ solution is wrong, then it is trivial to gen€rat€

a general malrule on the spot. k r€lates the task to the whole solution.
If the pmblem solver tests h)?othes€s, then the system should be able

to generate mor€ specifrc malrules. The goah corresponding to the

hypoth€sis dd to the rest of the solution proposal can be identified
usingthe ordinary EXPERT rules. Then anew malrul€ r€lating thes€

goals can be üeated. T\is Ml gMl .kbofttion tu is able not only to
reproduc€ the faulty student prcposal, but also similar slips.

. Gdüalizalia'. Empidcal studies with ABSYNT indicated us of
previous solutions and positive uesl€r especialy for recursive tasks.

Thus, composites in the IM shotrld b€ generalizd at the nonleaf
Dodes of their goal trees md program trees. Gen€raiization of
.omposites may be viewed as oother way of knowledge optimization
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(Andelson, 1983, Wolff, 1987) in rcsponse to the suc@ssft l utiliza-
tion of knowledse (Fisure 3.1).

. CMat -6nd-tßt-tMht.l. One feature of the IM which arose for
plactical reasons is its g€n€rate-ed-test style. Composit€s arc gener-
ated dd retained only if they survive the test phase. The obvious
altemative is to g€nerate composites only as needed.

. Suppodinc tha IM b @ t4.1(Extenal Mod€l). Th. EM is design€d to
provide hypothetical redons for the knowledge shifts in the lM. It is
an extension of d earlier model of heip-based lmowledge acquisirion
based on IDL-SDL Theory whi.l we developed for the relared
domain of the semantic knowledse for ABSYNT (Schrttder, 1990). A
trac€ of the model was compmd step by step to the action and
verbalization protocol of a singl€ subject, coded into 13 @tegories.
Sixty percent of the protocol was @rr€ctly describ€d by the model.

The EM (Schröder & Möbus, 1992) is based on the ualysis of rlle protocol
of actions md veöalizations of mother subject workirg on our sequence of
ABSYNT programming tasks. The model proceeds as fouows:

. Tßk conpl,Aeßk : A prcgrmming task is presnred ro th€ model a
a tdt graph of the tak description. The model converts th€ text
graph into propositions representing rhe ledn€is initial task repre-

. E th6;ziag,rara The concepts mentioned in this representation
(simila. to Anderson, 1989) de activared. The concepts contain
g€n€ral preknowledge ud possibly ABSYNT"specific knowledse.
The $Deral preknowledg€ consisrs of an input-output relation that
defines the concept. The ABSYNT'specific knowledg€ desoibes how
th€ concept is elaborated or inplemented as aa ABSYNT program
fragment. The knowledge stored in th€ concepts is used for con-
sr cling a, t;hutkn nr.hl (van Dük & Kintsch, 1983) rcpresenting the
&tual solution plan fo! the cunent task.

. E .ütion I'lw.: T\e situation model is truslated into ABSYNT code.

. Eoaluadoa pLq. TIß code is checked. If no bugs are detecred, th€D the
knowledg€ stored in th€ conc€pts actualy used is impmved by
composition (SDr). Thus, new corcepts for composites are oeated.

Impass€s may arise at sevenl points in this prccess. For *eple, a certain
zLctivat€d concept might not yet contain ABSYNT-specific loowledge. In this
case, the subject chooses a heuristic, for example, to creare a subtask from the
d€firition of the conc€pt. If the subtask is solv€d, then rhe program fragment
c.eated is insened into rhe concept slot represenring ABSYNT-spdific
knowleds€. Thus, new ABSYNT-specific krcwledse is acquired (IDZ).
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ModzünS knouhdg, oa d //h4clunu+ß. pad;al o/da. Id our systcm the
oft€n quoted dichotomy bctweo rule-basd vs. czre-bas.d knowledge
rcpremtation (Slade, 1991) is resolved in favor of a dynmic
rde-baed systo that models klowledge on a partial ord€r of
fine-grain€d rul€s, schemes, and c$es (composites with variables onty
for node names and valu€s). So there is oDly ,E pnnciple needed to
model the gene.ation of schemes aDd cas€s. Cas-brcd or oalogical
r€asonirg is both plausible fo! psychological lesons (e.9., Andelson,
Fdr€I, & Sauels, 1984; Escott & McCaIa, 1988; W.be., 1989; for
the domain of functional progrMird md prcfitable for eficiency

Rdzuuc fu @ponux about thr Inouus, uquürbn !@6i. The rules in
the IM car be direcdy convened into domain specihc information for
the l€dtrd. Thus, the ledner wil Eceive:

^. 
odaptiu htpothßis con'.lhtion tnposab. These p.oposals wi b€
g€nerated by the IM. Thus, they will @respond to the &tual
knowl€dge state oI the learner as hypoth$üed by the IM.

b. adaptiaa plawine hdp.'fh€ plaming help suFplied to the leam€r will
be continuously updated i! accorduce with the IM.

Coßitcry uith IDL-SDL ttraal. Accoding to IDL-SDL theory, zr@

EM od IM de closly related. The concepts of the EM corcspotrd to the
.ul€s of the IM. The situation model or solution plm of the EM coresponds
to th€ iNtantiated palle rules in tlle IM. EM and IM are intended to mutually
constrain €ach other. For exampl€, tlrc EM explains acquisition and impmve-
ment of knowledge by certain impass€s, heurbtics, a.rtd succe$ful solutions.
The IM shornd hypothesize the sme knowledge as th€ EM. On the othe.
hdd, rhe lM preditts impasses, verbalizations. sequeoc€ constraints on
action steps, and BpeeduPs. The EM should be consistent with these

CONCLUSIONS

We inl]odt@d a Ldw tudrl (IM) wlr.h is ntended to d€soibe the chmge of
knowledg€ of the learner by moving ftom novice to expert as a gradual shift
of acquiring new knowl€dg€, schemata, and finally specific solutions. Th€
model prc.esss online tle recog.izable data of the action stream of the
ledne.. It is based on theoletical const.aints imposed by IDL-SDL, actioD
phases, md cse basediess. Sone sumaizhg renarks @ made concerning
the Elevmce of the IM for help, its consistency with the th€oretical
constraint3, and its testability.
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knowledge is a.qzt d in respons€ to ,ap6r,r, md rr6t'g knowledge is
inpn.ed by sv.@ssfül pn tica.

EXPERT nles \ot in the IM ae transfered to the IM if they are: (a) used
for pdsins, and (b) plausible. They represent hwothetical Mb acqui'd
knowled8€.

Conposit s te rransferreA to th€ IM if: (a) they ale plausible, md (b) the
corresponding action! ne€d le$ time thd the corresponding chai! of simple
rules. The composites npres€nt hypothetical ,n tooed knowledge.

hefdn fü /1'h' atpla;nhs bns ütion srqurüc'. Simple mles dd
composites explain increasingly ldge prc$am fragments in a partial
order up to specific solution exmptes (rarrr). In the credit scheme,
composites e prefer€d because th€y dplain larger pro8rm frag,
m€nts thm simple rules. The credit scheme also prefers rul€s often
applied successfuly. Thus, modelately specific composites should get
a high priority. Fufihermore, composites impose less const.aints on
th€ s€quenc€ of action steps thu the coresponding chain of sinple
rules. Thus, composites aft more likely to be plausible.
Enp;rnd ustab;iry. The IM reprcsents the hypothetical knowledge
states of the learn€r. Simpl€ ru]es and composites provide d
adequat€ description of the learnels howledge, orly if they colre-
spo\d to nre qutace oJ @ioz rry'r p€rfoned by the leaner. Hyporh-
es€s coDcerning sequence conshaints, verbalizatioDs, reanuge,
ments, dd time were stated already. There is also another possibility
for the IM to fail: It may happen that ledners' action squences
cannot be describ€d by th€ IM at a1l because: (a) the corresponding
simple ru]es are implausible, and (b) the correspondin8 composites
drop out b€cause there is no performance speedup.

Funhemore, IDL says that new knowtedS€ is acquired in respons€ ro
impases. So if EXPERT rules ae taken into the IM, then inpasses should
have occurred just before the corresponding action steps w€le pe.fo.m€d.
Thus, we expect that the learner naker use of help at exacdy these points in
the problen-solving process. The EM should of course make the same

Finaly, w€ plan to let the lemer state his expectations before receiving a
completion prcposal to a hypothesis. The ledDe! then predicts how the system
will complete his hypothesis. W€ wodd dpect that the leanels Fediction
corr€spon& to the light side of the head of the rule usd by rhe system for
h}?othesis completion. Fu.thermore, if this rule is in the IM, then the teamer
should be mor€ corfdent in his prediction thd if the rlle is m EXPERT nne

97



98

not yet in the IM. In this latter cas€ th€ lemer lacks domain knowl€dge md
thus is mor€ iüclined to suess.

. Last but not least we thirk that we made a contrib|urio'r ro a. thtory of
pflditabili, af bchariot. According to our theory the novice-€xpert shift
can be nodeled by a€quirins and composins GMR rules. So
klowledge cm be represented by rules, sch€mes, and cases. As we
tried to slrcw, this is accompanied by the impossibility to predict
&tion{€quences which arc denoted by one schema or one case. The
empirical consequenc€ of that prediction is: Fixed to the sme
granularity of th€ behavior protocol the sequ€nce of actions of th€
expert is less pr€dictable thm the squenc€ of actions of the novice.
Thus, we expect m uppcr limit of pr€dictability of &tion sequences
when becoming d qpert.
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APPENDIX A: SIMPLE GMR RI]Lf,S

6r s.z s3 9r sr s\-/ \,/ v
less than differencc differerce_-___1-___

sl s2

abdiff

s2 sr

sl s2

-s2 sl
\,/

I

E1 to E4: Goal .laboration nl.3
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Kry.-vRFv

(') [-*-]\ tr-<-Y&

f.; f';l

&gru

r} Fl
\/-

crnr

Cm t"l.-<-7
01 to 04: BuLs impl.üentüg on. operator node

X

I

c

I

c
I

Ll ald L2: Rul€! implco@tiag a leaf node (Pardeter, corstdt)



Möbus, Sch!öder, dd Thol€ 10,

HI

gru

f*v"**.-

H| BuL iüpl.mdting a p.oFaü h..d

APPENDIX B: COMPOSITf,S

C2 : Composite ofthe simple CMR rules El, E4. Ol. 04. Ll rnd L2 (appendix A)

.l

**,-"l'.,., *o*1""*,
R tules Hl,82, El, Ol, 02 and Ll (appendix A)

<-

ß pdameter ß_pafdfteler gmr

C3 :Composire ol the simple GM



: Composite of 
'e 

rules C3 and Cl

X YX Y\./ t/_

M,h'#
Prog

XY

YTflP'\:t-

orofC5 and Cl ororC3, Cl, C2

I v x , -l
,&,&

? * 0,,';"* is-paramere, rs consanr

XY
x yx yY -'

" vY Y !V \\r-..,/
Nq-[!LEo-'t"

proc
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ÄPPENDIX C: MORE OMI ßULES

+\z3',7
gf th€ rules O l , 05, L l, and L2

3-i .\
\ consünt / erse
\-1p.""{,",/.'\/ 

/

YO

= X I Pl
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