User Modeling for Domains without Explicit Design Theories

Knut Pitschke

University of Oldenburg, Dept. of Computer Science
P.O.Box 2503
D 26111 Oldenburg, Germany
Knut Pitschke@informatik.uni-oldenburg.de

Abstract!

This paper presents an approach to user modeling and plan-
ning in systems where no explicit domain knowledge is
available. The system requires an oracle (for instance a veri-
fication tool) to a posteriori classify the users” behaviour.
Originally designed for Intelligent Tutoring Systems, it
seems to be applicable to other domains as well. It consists
of a leaming component that builds up search spaces out of
the classified users” actions and behaviours, a prediction
component that uses probabilities to forecast the users” goals
and means, and a calibration component that controls the
prediction mechanism and adapts it to the current user.

1. Introduction

Intelligent Tutoring Systems (ITS) are knowledge based
systems that shall support a learner by help, explanations,
exercises and recommendations in a competent and careful
way. To do this, they must be capable of adapting to the
individual leaming style of each student. This requires a
model of the user’s current knowledge state, which is
called a student model in this context (Kass 1991; McCalla,
& Greer 1992). Using a student model to realize the
student’s needs for offering appropriate help can be com-
pared to plan recognition: Observing a sequence of actions
and inferring the intended goal. Presenting adequate help is
similar to plan generation: Offering action steps, that lead
to the student’s intended goal. Using approaches from plan
recognition in the context of ITS (Bauer et. al. 1991) re-
quires knowledge about the domain being taught and being
planned in. In this paper, an approach is presented that re-
alizes the ideas of planning in the domain of ITSs which
lack an explicit design theory about the domain to be
taught, but make use of an oracle (in the sense of (Valiant
1984)) that classifies the users” solutions to exercises.

2. User modeling and planning

Plan recognition means inferring possible (planning) goals
from observed sequences of actions. Planning means trans-

IThis research was supported by the Stiftung Volkswagenwerk
(Az. 210-70631/9-13-14/89).

191

forming a current state (of problem solving) to or in the
direction of an known goal state by using possible
operators in a pre known state space (Allen et. al 1991).
This scenario is very similar when using student models in
ITSs as a basis for offering the right help information at the
right time, Students face a task they shall solve in order to
get familiar with the domain the task is taken from. Nor-
mally there is not a single solution but the number of
correct solutions is manifold, as well as the different ways
to achieve them. Locating the student’s state in that search
space is the task of the student model. By doing so the
student model provides information to generate help that
supports the student to reach his goal (M&bus, Pitschke, &
Schrader 1992).

3. Domain knowledge in user modeling and
planning

The student model usually describes and represents student
knowledge in relation to expert knowledge (Kass 1991).
The user knowledge is inferred from the observation of his
behaviour. Interpreting his actions with respect to the ex-
pert knowledge is a prerequisite for locating his knowledge
state in the knowledge space. This interpretation is usually
done by a diagnosis component that uses a domain theory
to try to reconstruct the student’s solution proposal for
finding out whether it is correct or not, and to construct a
continuation of his problem solving proposal towards a so-
lution (Md&bus, Schroder, & Thole 1992). Someone who
plans, uses his knowledge to achieve a certain goal. If no
knowledge about the planning domain or the subject being
taught is available, usually it is not possible to either
recognize a plan or the student’s knowledge state, or to
generate a plan or a solution proposal for the student. The
domain of Petri Nets, the subject being taught in our sys-
tem Pewri-Help (M&bus et. al. 1993), does not provide a
formal design theory to construct petri nets out of a given
specification. That is why the standard approaches from
planning and student modeling are not applicable.

4. Petri-Help

Petri-Help is a help system that supports users in modeling
with condition event petri nets (Pict. 2). A sequence of
tasks is presented for which the student shall develop a so-
lution. During the problem solving session, the student can
ask the system to judge his solution sketch proposal or 0
suggest a completion proposal. The judgement of solution
sketches implies a formal specification of the task to be
solved, and an oracle to classify the sketches with respect
to the specification. In the petri net domain it is unusual to
present a formal specification of the scenario to be modeled
(Reisig 1992). Instead of this nets are presented as so-
lutions and due to their self explaining property everyone
understands the problem being tackled. An exception is
(Olderog 1991), where petri nets are used as formal seman-
tics for process terms, which are formally derivable from a
trace logic specification.

In Petri-Help, we decided to present the tasks to be solved
as a set of temporal logic formulae, which describes the
propertes of the intended solution (see Pict. 1).

Description of Places:
Ws Waiter is sleeping
Wro Waiter is ready to accept order
Wrs Waiter is ready to serve
K Kitchen got the order
P Meal gets prepared
R Meal is ready

Starting Condition: Ws

Temporal Logic Formulae:
O(Wro = ¢(Ws A K))
OK — 0P)

O(P — ¢R)

O(R A Ws — 0Wrs)
O®R A Wro =20Wrs)
O(Wrs — 0Ws)
O(Ws — 0Wro)
O((Ws s Wro))
O(—(Ws A Wrs))
O(—(Wrs A Wro))
O(Ws v Wrs v Wro)

O means “always®, ¢ means “eventually"

Picture 1: Temporal Logic Description of the “Restaurant”
Modelling Task

We use a simple propositional logic which is enriched by
the temporal predicates "nexttime”, "eventually” and
"always". Our logic allows branching time and uses step
semantics. This way of specification enables us to verify

192

solution proposals or parts of them by model checking
(Josko 1990). Model checking is used to test which subset
of the specification formulae the current petri net is a
model for, or equivalently which part of the specification is
fulfilled.

Picture 2: A user’s solution proposal for the “Restaurant”
Modelling Task

Due to our restriction on condition event petri nets, these
models are always finite and often cyclic. Unfortunately,
the sequence of nets the student runs through while de-
veloping a soluticn, is nonmonotonous with respect to the
specification formulae being fulfilled in the nets. That
means, a formula once having been proven, may be
falsified in a later state of the problem solving process,
although this state is necessary to obtain a correct solution.
That is why it is not possible to glue together net fragments
fulfilling single formulae to achieve a net that fulfills the
conjunction of these formulae. In spite of this non-
monotonous property, the number of formulae fulfilled in-
creases during problem solving. At the beginning, the
empty net fulfills no formula, at the end, the correct so-
lution is a model for the whole set of specification
formulae. So there must be nets detectable during problem
solving, where some formula has been fulfilled
additionally. We call each net on the way to a solution 2
state, and each such state, where the set of fulfilled
formulae increases, a safe state. Safe states are defined in-
ductively: The empty net is a safe state. Every net that is a
model for a superset of those formulae being fulfilled in the
last safe state, is called safe. These safe states are used by a
learning component to acquire design rules which are used
to generate help proposals for the user. The system was
used by a course of graduate students. The verification of
formulae was widely used and accepted. The help pro-
posals were criticized to be not fine grained enough for the

several impasse situations. This problem arises, because no
user model is yet integrated in the system that could guide
the generation of help information towards offering appro-
priate help.

5. An adequate approach to user modeling

As mentioned above, in our domain (petri nets) it is not
possible to build up a state space a priori. Instead of this,
the search space is learnt by the system during problem
solving sessions with all users. In this state space, later
users are identified by their observable behaviour, and the
most probable next action or goal can be predicted with re-
spect to their history (Pitschke 1993). Thus, we don’t have
a real user model, but a usage model (Grunst, Oppermann,
& Thomas 1993), and the identification of a single user is
done by probabilities about his behaviour. An approach
based on probabilities as well is described by (Becker
1993) for the acquisition of stereotypes.

In the following section, it is described how the state
spaces are acquired by observing the users” behaviour. It is
shown, in which way a new student is identified within
these problem spaces and how the prediction mechanism
works in detail. After that, it is described how the pre-
diction control adapts to the current user by comparing
predictions with the observed actions. At the end, it is de-
scribed how to use this mechanism to offer appropriate
help and to validate existing design heuristics about users’
behaviour. :

5.1 Representing users” goals and actions

The information we can get about a user is restricted to the
dialog between him and the system, and its interpretation
according to the current context. The system acquires this
information at two levels: A goal level and an action level.
The goal for every user is to solve each task presented by
the system, which consists of a set of temporal logic
formulae. A sequence of possible subgoals is every se-
quence of increasing subsets of the set of formulae speci-
fying the task. So every time the user tests a subset of
formulae to be fulfilled in his current net, we assume his
(sub-)goal was to construct a petri net that is a model of
that very set. Out of these subgoals, a goal graph is con-
structed, which is enhanced by every new observation of a
_ new user. The relations that hold between these states are,
first, the subset relation. Every successor node represents a
superset of the formulae of its predecessor. Secondly, an
arc between two states indicates, that there was a user who
chose these two goals as successive subgoals.

In parallel, all the users” actions they perform to reach a
goal are noticed. These actions form the action graph. Its
nodes are petri nets which the user developed during his
problem solving session. Every editing action results in a
new node. The only relation between the nodes of the
action graph is that a student, once having developed a net,
represented in a node, after his next observable net
manipulating action, reached the successor state.

193

Goal graph and action graph (Pict. 3) are connected by
links. Every goal node is connected to all the nets in the
action graph that were tested by some user to be a model of
these formulae represented in the corresponding goal node.
Every node, in the goal graph as well as in the

action graph, which has at least one successor, is enriched
by probabilities. These probabilities represent the relative
frequency of decisions for a possible successor node on
condition that a certain history has been observed. The
conditional probabilities are represented in every node as:

p(11, h) where:
i denotes the current node
Jj denotes the successor node and
h is the history.

The histories consist of all user’s decisions in the two
graphs and also include the time, they needed to traverse
the graphs on their way to a solution. These probabilities,
together with a certain criterion vector, individual to the
current user, will be the basis for the prediction process.

goal graph

c

action graph

Picture 3: The two graphs to represent the behaviour of
several users

5.2 Predicting the behaviour

Predicting the user’s behaviour means finding the most
likely continuation with respect to his former behaviour
and to the observed behaviours of all former users.

For predicting the user’s next action or goal in a certain
state the goal graph and the action graph are searched for a
similar behaviour of a former user. For this purpose it is
checked whether a conditional probability is stored in the
actual node having the current user’s history as its con-
dition. If such conditional probabilities exist the successor
node is chosen which has the highest probability. If the
user’s history is not found as a condition in a conditional
probability it has to be generalized in order to match on an
other history leading to the current node. The criteria for

generalization are stored in a criterion vector specific to the
current user. The criteria are used to filter the information
stored in the two graphs to retrieve a history that is possibly
similar to that of the current user. This filter operation is
realized in two steps.

First of all, a heuristic generalizes the current user s history
according to the criterion vector until it matches on at least
one history.

Secondly, a conflict resolution strategy finds out which of
the possible successor nodes is most likely. After the pre-
diction process, the prognosis is compared to the user’s real
behaviour, and as a result, the criterion vector and the
heuristic strategy are calibrated.

5.3 The criterion vector

To show, how the prediction process works, we have to
take a look at the criterion vector and the matching process.
A history, leading to a specific node, consists at the
moment of a sequence of nodes, having been traversed to
reach the current node, and the amounts of time needed to
step from one node to the next It can be easily enriched by
further information, deducible from the dialog, like user’s
mistakes or demands for help.

The components of the criterion vector show how strictly
the user’s history should be used in order to find a
corresponding history in the graphs. The criterion vector is
generated after the user’s first two goals or actions were
observed. So, in the first node it is known which history the
user processed up to this node, and the way he chose to go
on. According to the user’s step from the first to the second
node an optimal history up to the first node is generated
that would have led to the prediction of that very step.
After that a least common generalization is found out of
this optimal history and the user’s actual behaviour. The
criterion vector is set up with the parameters that would
generalize the user’s history (up to the first node) to the
least general generalization mentioned above.

Consider, for instance, the user’s way traversing the nodes
a, b, c and d to reach node e (no difference whether in the
goal, or in the action graph). One criterion of the user’s
vector could state to just consider the last three nodes of his
way, in that example c, d and e. So, in the current node e,
this criterion would generalize the user’s way to *cde,
where * matches to any sequence of nodes, starting with
the empty net/goal and leading to node c. An extended
example can be found in (Jordan 1994).

5.4 The heuristic

Imagine there is no matching history after applying the
criterion vector to the user’s current history. In this case,
the criteria of the criterion vector have to be weakened, to
get a more general description. For this purpose, the
heuristic is designed as a family of functions, one for each
component of the criterion vector. Each function weakens
its specific component according to the frequency of

194

success in matching of that criterion and according to a
factor, that indicates the step size by which the criterion is
weakened. This factor is also subject to the process of
adapting the heuristic.

The conflict resolution strategy is involved if the matching
process ends with more than one history fitting the current
criterion vector. So one history has to be selected that
serves as the condition for the conditional probabilities for
choosing a specific node being in the current node.

5.5 Adapting the criterion vector and the
heuristic strategy

The adaptive aspect of the prediction mechanism is initi-
ated by predicting the behaviour in every state the user
reaches, although he didnt ask for help. After his next step,
the result of the prediction is compared to the observed
action, and the criterion vector and the heuristic are
adapted. Adapting the criterion vector means finding a
vector which generalizes by the matching process to a his-
tory, that delivers the very node that has been observed as a
prediction. In fact we need a criterion vector for a least
general generalization in order to predict correctly.
Adapting the heuristic is based on the difference vector
between the old and the adapted criterion vector, The
factor for step size in each component’s heuristic function
is changed to a value that makes the heuristic return the
adapted criterion vector (see above) in one step, when
getting the old criterion vector as its input.

6. Help generation

Students ask for help if they are in an impasse situation
(Mdtbaus, Pitschke, & Schréder 1992), That means they
don’t know how to proceed towards a correct solution.
Help information should be appropriate to the student’s
current situation, should offer as little information as
possible, so that the problem solver is urged to leave the
impasse by his own activities. Furthermore information
should cause only little surprise and not a new impasse.
Empirical studies with about 40 students indicated that
using Petri Help, impasse situations usually don’t arise at
the beginning of a problem solving session. So the
prediction mechanism as described above could adapt itself
to the current user’s problem solving strategy. Help
information containing the prediction of the student’s next
step satisfies the criteria stated above because it is the most
likely continuation of his previous work. Compared to the
help facility in Petri-Help the information offered is much
more fine grained because not only the actions leading to
safe states are offered as help.

7. Validating design heuristics

As mentioned above, in the petri net domain we have no
explicit design theory. Nevertheless, watching human

modelers indicates that they use several design heuristics to
transform the temporal logic problem description to a petri
net (Mdbus et. al 1993), They take a single formula and
create a net fragment to fulfill it, without taking care of the
nonmonotonous property. Of course, only model checking
can prove the correctness of the application of these
heuristics. Validating a design heuristic means showing
that it has been applied frequently and successfully.

The goal and the action graph provide all the information
for finding the correspondence between a heuristic’s pre-
condition and its conclusion. The difference of two
successive goals in the goal graph includes the heuristic s
precondition (a temporal logic formula). The difference
between the petri nets in the nodes of the action graph that
correspond to the goal nodes includes the conclusion (the
net fragment being a model for the formula),

A first version of the validation is already implemented to
work on the database leamt by Petri-Help (see above). It
indicates a great plausibility of the heuristics, used by most
human problem solvers.

8. Conclusion

It was shown, how a simple adaptive control mechanism,
based on a probabilistic approach, can be used to predict
student’s behaviour while interacting with an Intelligent
Tutoring System. It was pointed out, how close the relation
is between plan recognition and user modeling on one
hand, and planning and predicting behaviour on the other.
The whole system is not based on explicit domain and
background knowledge, but on a learning and a verification
component. The idea, originally developed to enhance
Petri-Help, could be adapted to any planning domain, ful-
filling the above mentioned prerequisites. Petri-Help is
fully implemented on Macintosh™ computers using
MacProlog™. It is widely used by graduate students. The
validation component is implemented as a prototype. The
rest of the system is currently under implementation by
students of an advanced practical training course in Intelli-
gent Tutoring Systems.

9. Acknowledgement

The author would like to thank Prof. Dr. C. Mébus and Dr.
O. Schrdder for their support of this work and many pro-
ductive discussions, and J. Folckers for implementing
Petri-Help. Also thanks to the reviewers for their valuable
and encouraging comments.

10. References

Allen, J., Kautz, H., Pelavin, R., & Tenenberg, J. (1991).
Reasoning about Plans. San Mateo, Ca.: Morgan
Kaufmann.

Bauer, M., Biundo, S., Dengler, D., Hecking, M., Koehler,
J., & Merziger, G., (1991). Integrated Plan Generation
and Recognition - A Logic Based Approach,

195

DFKI Research Report RR-91-26, Deutsches
Forschungszentrum fiir Kiinstliche Intelligenz
GmbH, Kaiserslauterm/ Saarbriicken

Becker, A., (1993). Automatically Acquired Knowledge
Levels as a Basis for User Modeling, in: (Kobsa, & Pohl
1993)

Grunst, G., Oppermann, R., & Thomas, C. (1993): User
Modeling in Contexi-Sensitive Help and Adaptive
System Design, in: (Kobsa, & Pohl 1993)

Jordan, O., (1994): A Method for Predicting Behaviour,

. Study Thesis, University of Oldenburg (in german)

Josko, B. (1990). Verifying the comrectness of AADL
modules using model checking. In J. W. de Bakker, W.
P. de Roever, G. Rozenberg (eds.): Proceedings REX-
Workshop on stepwise refinement of distributed
systems: models, formalisms, correctness. Berlin;
Springer, LNCS 430, 386-400.

Kass, R. (1991): Student Modeling in Intelligent Tutoring
Systems, in: (Kobsa, & Wahlster 1991)

Kobsa, A. , Pohl, W. (eds.} (1993): Workshop 'Adaptivity
and User Modeling in interactive Software
Systems', held on the German Conference on Artificial
Intelligence, Berlin, 13.-15.9.93. WIS-Memo 7,
September 1993, AG Knowledge-Based Information
Systems, University of Konstanz, (in german),

Kobsa, A., Wahlster, W. (eds.) (1991): User Models in
Dialog Systems, Berlin: Springer.

McCalla, G., Greer, ., (eds.) (1992): Journal of Ariificial
Intelligence in Education, Special Issue on Student
Modelling, 3(4) 1992

Mbobus, C., Pitschke, K., & Schréder, O. (1992) . Towards
the theory-guided design of help systems for
programming and modelling tasks. In C. Frasson, G.
Gauthier & G. I. McCalla (eds.): Intelligent tutoring
systems, Proceedings ITS 92. Berlin: Springer, LNCS
608, 294-301,

Médbus, C., Pitschke, K., Schrider, O., Folckers, J., &
Gahler, H. (1993): PETRI-HELP - Intelligent Support
for Petri Net Modellers, Internal Report, Department of
Computational Science, University of Oldenburg

Mobus, C., Schrider, O., & Thole, H.-J. (1992); A Model
of the Acquisition and Improvement of Domain
Knowledge for Functional Programming, in: (McCalla,
& Greer 1992)

Olderog, E.-R. (1991). Nets, terms, and formulas.
Cambridge: Cambridge University Press.

Pitschke, K. (1993). Goal Identification and Planning in
Intelligent Tutoring Systems; In: (Kobsa, & Pohl 93)

Reisig, W. (1992). A primer in Peiri net design, Berlin:
Springer, 1992,

Valiant, L. (1984). A Theory of the Learnable.
Communications of the ACM, 27, 1134-1142

Fourth Infernational Conference on

ser Mlodeling

Proceedings of the Conference

15-19 Rugust 1994
Tara Hyannis Hofel
Hyannis, Massachusetts, USA

Published by The MITRE Carparation
© 1994, User Modeling inc.

Order copies of proceedings from: Bradley A. Goodman, Tha MITRE Carporatian,
Artificial Intelligence Center, 202 Burlington Road, Bedford, MA 01730-1420, USA

The views and opinions expressed in these proceedings are those of the independent
authors and do not reflect the policies and procedures of The MITRE Carporation.

