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Abstractl
This paper prcs€nrs än apro&h to user noderins and plrn-
ning in system! wh€re no explicir domsin howledSe is
edlable. The systcrn rcqLrüs u orrle rfor ißrde ! ve.i-
fication lool) b a Fsbriori clalsify the uss' behavioü.
OriSinally desi8ned for Intelligqt Tutoing Sysr€ms, ii
se€ns to be appliceble to other domsiß s well. It oßisß
of a l€aming componor that builds up sech sp@s our of
lhe cl.rsifi€d üsqs' actioN md behavious, a predicrion
component tha. ws Fobabiliris ro forecarr üe usqs' goals
dd med, a.d a calibration component thar contols the

F€diction mechnnism snd adapß ir to ihe cllMt uer-

l. Introduction

Intelligenl Tutoring Systems (lTS) are knowledge based
systems lhat shall suppon a leamer by help, explanarions,
exercises and rccommendations in a competen! and careful
way. To do this, they must be capable of adapting ro the
individuai leaming style of eacb stüdenL This requires a
model of the user's cürent knowledge srate, which is
called a s[rdenl model in lhis conbxr (Kass l99l; Mccalla,
& Grcer 1992\. Using a studen! model !o realize lbe
sludent's neeö for offering appropriare help can be mm'
pared to plan recognition: Observing a sequence of actions
ard infening the intended goal. Presenting ade4uate help is
similar to plan generation: Offering action st€ps, tüat iead
!o the student's intended goal. Using approaches from plan
recognidon in Lhe context of mS (Bauer eL al. l99l) re-
quires knowledge about the domain being taught and being
planned in. In lhis paper, an approach is presenEd that re-
alizes the ide{s of planning in the domain of ITSS which
lack än explicit design theory about lhe domain to be
hrght, but make use of an o.acle (in the sens€ of (Valiant
1984)) üat classifies üe users'solutions to exercises.

2. User modeling and planning

Plan recognition means inferring possible (planning) goals
from observed sequences of actions. Planning means trans-

lThis lEse@h wo spporred by üE Stiftrmg volkwag€nwerk
( AL 210 -7 063 U9 -13 -14 ß9).

forming a cünent state (of problem solving) io or in the
direction of an known goal stale by using possible
openlo$ in a prc kno}n stare space (Allen et. al l99l).
This scenario is very similar \phen using student models in
ITSS as a basis for offering the righ help information a! the
right time. Students face a usk üey shal solve in order to
get familiar with the domain lhe usk is taken from. Nor,
mally there is not a single solutiod but the number of
correct solutions is manifold, as well as the diff€rent ways
to acbieve them. Localing the sürdent's stale in that search
space is the usk of the studont model. By doing so lhe
sludeot model provides infomation to generate help lhat
supports the student !o reach his goal (Möbus, Pitschke, &
Schröder t99).

3. Domain knowledge in user modeling and
planning

The $udenl model usoally describes and represents student
howledge in relation to expen knowledge (Kass 1991).
The user krcwledge is infened ftom lhe observation of his
behavioür. Iolerprering his actions with rcspect to the ex-
pert knowledge is a prer€quisite for locating his lxrowle.dge
state in the knowledge space. This interpreotion is usually
done by a diagnosis compon€nt that uses a domain theory
lo lry to rcconstruct the student-s solulion proposal for
finding out whetber it is corec! or not, and !o consEuct a
continuation of his problem solving proposal towards a so-
lurion (Möbus, Scfuöder, & Thote 1992). Someone who
plans, üses his lnowledge to achi€ve a ce.tain goal. If no
bowledge about üe planning domain or the subject being
raught is avail,able, Bually it is not possible to either
rccognize a plan or the studenfs tnowledge stare, or !o
genemle a plan or a solulron proposal for lhe shdent. The
domain ol PeEi Ners. rhe subjecl being raughl in our sys-
tem Petri-Help (Möbus et. al. 1993), does not p.ovide a
formal design üeory lo construct peEi nets out of a given
specificalion. Thal is why the standard approaches Iiom
planning and student modeling are oot applicable.
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4. P€tri-Help

PeEi-Help is a help sys@m üal supporls usets in modeling
wiü conitition evenl petri nels (Pict. 2). A s€quence of
rasks is Dresent€d for which üe studenl shail develop a so-

lution. öuring üe problem solving session, the student can

ask lhe system to judge his solution stetch Foposal or to
sugges! a compledon ptoposal. The judgement of solution
sketches implies a formäl specificarioD of the ask lo be
solved, and an oracle to classify the skeches wfth respecl
ro the speaification. ln lhe petri net domain it is unusual to
gesent a formal specification of the scenario to be modeled
(Reisig 1992). ldstqd of lhis nets arc prcsented as so-

lutions and due to their self explaining property ev€ryone
understanG the problem being tackled. An exception is
(Olderog 1991), where petri oeß arc used as formal seman_

lics for process terms, which arc formally derivable ftom a
trace logic speaificarion.
In Petri-Help, we decided !o present ths tasks to be solved
as a set of temporal logic formulae, which describes the
propenie,s of lhe intendei solution (see Picl I ).

solutron proposals or pans of them by model checking
(Josko 1990). Model checking is used to te$ which subset

of the specification foamulae üe curtent petri nel is a
model for, or e4uivalendy which pan of the specification is
fulfi[ed.
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Pic$re l: Temporal Logic D€scripüon of the "Restaurant'
Modeuing Task

We use a simple propositional logic which is enriched by

üe temporal predicales "nextume'. 'eventually" and

"always;, Oüt logic allows branching lime and uses step

sema;lics. This way of specificatron enables us lo verify

Picture 2: A us€r-s solution proposal for the "Resuuranf'
Modelling Task

Due !o our rcstdction on condition ev€nl petri n€ts, these

models are always finite and of@n cyclic. Unfoftunately.
the sequence of nels the student runs dlloügh while de_

veloping a solurion, is nonmonolonous with resPeci to lhe

specificarion formulae beiDg fulfilled in üe nets. That
means, a formula once having been proven, may be

falsified in a later sule of the problem solving process,

although this sErc is necessary !o obtain a con€ct solüion.
Thar is why it is not possible to glue logeüer nel fmgmenls
fulfilling single formulae to achieve a net that fulfills $e
contunclion of these fotmulae. In spite of rhis non-
monotonous propeny, the numb€r ot lormulae fulfilled in-
qeases düing goblem solving. A! the beginning, the

empty net fulfills no formula, at the end, lhe correct so_

lution is a model for üe whole set of sPecification
formülae. So lhere must tJe neß deteqable duxing problem

solviog, where some formula has been fulfilled
additionally. We call €ach ne! on the way lo a solution a

state, and each such state, wherc lhe se! of fulfilled
formulae incre€ses, a safe state. Safe strtes are defined in'
ducrively: The emply net is a safe sEte Every net that is a

model for a supersei oI those fornulae b€ing fulfi[ed in the

lasr safe stare, is c€lled safe, These safe states ,rc üs€d by a

leaming component to acquire design rules which are üsed

to generate help proposals lor the user' The system w&s

'rsü 
by a coutsi öf gtaduate sNdenls. The verification of

formuhe was widely used and accepled. The help pm'
posals were cnlicized !o be not fine goined enough for the
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several impasse siluations. This problem arises, because no
user model is yet inlegm@d in the syslem that could guide
the generation of help iofomlation towards offering apFo-
Pnate help.

5. An adequate approach to user modeling

As menlioned above, in oul domain G,etri nets) it is not
possible ro build up a state space a priori. lnstead of this,
the se3rch space is leamt by the sysrem during problem
solving sessions with all users, In this state space, larcr
üsers are ialentified by their obsewable behaviour, and the
mos! probable nexr acdon or goal can be predicted with rc-
spcct lo their hislory (Pilschke 193). Thus, we donl have
a roal user model, but a usage model (Grunst, Oppermann,
& Thomas 1993), and üe identific{tion of a single user is
done by probabilities about his behaviour. An approach
based oD probabilities as well is described by (Becker
1993) for lhe &quisition of stereotTes.
In üe following section, ir is described bow the stale
spaces are acquircd by observing the users- behaviour. It is
sbown, in which way a new stude t is identified wirhin
lhese problem spaces and how lhe predictioo mechanism
works in del3il. After thar, it is described ho* the pre-
diclion control adapts to the current user by comparing
predictions with lhe obs€rved aclions. At the end, i! is de-
scrib€d how lo use this mechanism to offer appropriale
help and !o validate existing design heuristics abou! üsers'
behaviour.

5.1 Repres€nting us€rs'goals and actions
The information we can ge! atrout a user is rcstricted to the
dialog between him and üe system, and its interpretation
according to the current context. The system acqüires this
idformation at two levels: A goal level and an aclion level.
The goal for every user is to solve €ach usk presented by
the system, which consists of a set of tempo.al logic
formulae. A sequeoce of possible subgoals is every se-
quence of increasing subsets of the se! of formulae speci,
fying lhe task. So every time the user tesls a $rbse! of
formulae ro be fulfilled in his curent net, we assume his
(sub-)goal was to constnrct a petri net lhat is a model of
thal very set. Out of these subgoals, a goal graph is con-
strurted, which is enhanced by every new observation of a
new user. The relations thar hold between these states are,
firs!, the subset relation. Every successor node rcpresents a
superset of lhe formulae of its predecessor. Serondly, an
arc belween two $a@s indlca@s, that üere was a user who
chose thes€ two goals as successive subgoals.
In parallel, all üe users'actions they perform to reach a
goal are noticed. These actions form üe actron graph. lts
nodes ar€ petri nets which the user developed during his
problem solving session. Every editing action re$rlts in a
new node. The only relation berween rhe nodes of th€
action graph is that a sudent, once having developed a net,
represented in a node, after his next obseavable net
manipulating action, rcached üe successor sEß.

Goal graph and action graph (Pict. 3) are connected by
lioks. Every goal node is connected !o all the ne$ in üe
action gaph that werc lesred by some us€r to b€ a model of
these formulae represented in the c$responding goal node.
Every rcdq in the goal graph as well as io the
action gaph, whicb has at le3st one successor, is enriched
by probabilities. These probabiliiies represent the rclative
frequency of decisions for a possible $rccessor node on
condirion that a certain hisrory has been observed. The
conditional probabiliti€s arc rcpresenred in every node ss:

p(t I i, h) where:
i deno@s th€ current node
j denoles the successor node and
hisrheh

The histories consist of all user.s decisioos in the lwo
graphs and also include the !ime, they needed to traverse
lhe graphs on their way to a solution. These probabililies,
togeüer with a c€rtain criterion veclor, individual to the
curaent user, will be the basis for lhe prediction process.

Picture 3: The two graphs !o reFesent the behavioür of
several users

5.2 Predicting the behaviour
Predicting the user's behaviour means finding the nos!
likely continuation wirh iespect to bis former behaviour
and !o the observed behavious of all former useß.
For predicüng lhe user's nexl action or goal in a cenain
state the goal graph and üe acdon graph are s€arcbed for a
similar behaviour of a former user. For lhis püpose it is
checked whether a conditional probability is srorcd in rhe
actual node having tle curren! user's history as its con-
dilion. If such condilional Fobabilities exisr lhe successor
node is chosen which has the highest probability. If the
user's history is nol found as a condition in a conditiona.l
probability i! has ro be generalized in order to match on an
other history leading to the crrrcnt [ode. The criieda for

ooal oraoh

action graph
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generalizaüon are storEd h a critetion vector sp€cific lo die
currcnt üs€a. The criteria atE used !o filter the infotmation
stored in lhe two graphs lo retrieve a history that is possibly

similar to lhat of the cürent user. This filter opemtion is
ralized in two steps.
FiNt of all, a heuristic generalizes the qnrcnt us€r-s hrslory
according to the ctilerion v€ctor unlil it matches on at leasl
one history.
seconally, a conflic! resolution strategy finals out which of
the possible successor nodes is most likely. Afier the pre-
diction pr@ess, the prognosis is compared lo lhe user's re3l
beh.avioü, and as a result, lhe criterion vector and the
heüistic sla@gy are calibr:ared.

53 The criterio[ vector

To show, how the prediclion process works, we have to
lake a look at the ci@rion vector and the matching Focess.
A history, leading to a specific node, consists a! the
moment of a sequence of nodes, having be€n Eaversed !o
aeach the curren! node, and üe amounts of time needed to
step from one node lo lhe nexL Il can be easily enriched by
funher information, deducible fiom the dialog, like user's
mi$akes or demanals for help.
The components of the criterion vector show how sEicdy
the user's history should be used in order to find a
conesponding hislory in the graphs. The criterion veclor is
generated after lhe user's firsl lwo Soals or acdons were

observ€d- So, in the fißt node it is known which hisbry the
user Focesse.d üp ro üis node, and tlle way he chose to go
on, According !o the user-s step from the first to the second
node an optimal history up to the firs! node is generated

that would have led lo the prediction of that very step.
Aft€r thät a legst common generalizalion is found ou! of
lhis optimal history and lhe user's actual behaviour. The
crit€rion vector is set up with the paomelers thal would
generaliz€ the user's history (up to lhe fu$ node) to üe
leas! geneial generalization mentioned above.
Consider, for instance, the user's way Eaversiog üe nodes

a, b, c and d to reach node e (no difference whether in lie
goal, or in the action graph). One crit€rion of the user's
vector coold slate to just consider the lasr üre€ nodes of his
way, in tha! example c, d and e. So, in the curtent node e,

this crilerion would generalize the irser-s way to tcde,

where * malches b any sequeoce of nodes, sErting wilh
üe emply ney'goal and leadrng ro node c. An extended
example can te found in (Jordan 1994).

5.4 The heuristic
Imagine there is no marching hisbry aftet apPlying $e
criterion veclor to the user's curren! hislory. In lhis case,

drc crileria of lhe criterion vector have to be wealened, to
get a more general description, For this purpose, the

heuristic is designed as a family of functions, one for e3ch

comDonen! of drc cri@rion veclor, Each flrncuon we3l<ens

lß ipecific component according to the frcquency of

success in marching of lhat criteriod änal according lo a
facror. rha! inücares the st€p size by whrch rhe citerion is
we3l<ened. This faclor is also subjecl to lhe process of
adapting the heüistic.
The conflict resoluliol| stsategy is involved if üe marching
process esds wilh more than one history filtin8 the current
criterion vector. So one history has lo be selected that
serves as the conditiol for the conahtional probabililies for
choosing a sp€cific node being in the cürent node.

55 Adapting the criterion vector and the
heuristic strates/

The adaptive aspecr of üe predrclon mechanisn is initr-
ated by Fedicting the behaviour in every state the user
reaches, although he didn'l ask for help. Afier his nexl steP,
the result of the prediction is comparcd to lhe obsewed
action. and the criterion vector and the heuristrc are
adapted. Adapting lhe criterion vector means findiog a
vector which gen€ralizes by the matthing process !o a his-
lory, tha! delivers lhe v€ry node tha! has be€n observed as a
prediction. In fact we ne€d a crit€rion vector for a least
general generalüalion in order to predicr corre.dy.
Adapting the heurisdc is based on the difference vector
between the old and the adapted criterion vector. The
faclor for step size in e3cb componenfs heoristic function
is changed !o a value that makes the heuristic retum the
adapted criterion vector (see above) in one step, when
getting the old criterion veclor as ils inpu!.

6. Help generation

studenrs ask fo. help if they ate in an imfrasse sitüalion
(Möbüs, Pitschle, & Sctuöde. 1992). That m€ns they
donl know bow to proceed towards a corect solution.
Help information should be appropriate to lhe student's
currenr siluation, should offer as little informalion as
possible, so thaa the problem solver is urged to lqve the
impasse by his own activities. Furthermorc ioformadon
should cause only lilde surprise and nol a new impasse.

Empirical studies with about 40 studenls indicated that
using PeEi Help, impasse situalions usually doll'l arise at
rhe beginning of a problem solving session. So the
p.edicrion mechanisrn as described above could atlapt itself
to the curent user's problem solving starcgy. Help
information containing the predictioo of the sudenl's next
step salrsfies the critoria staled above b€cause it is the most
likely coDtinuation of his previous work. Compared !o the
help facility in PeEiHelp the ioformalion offered is rouch
more fine grarned because not only the acdons leading to
safe states are offered as help.

7. Validatirg design heuristics

As mentioned above, in the petd net domain we have no
explicit design theory. Neveflheless, watching human
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rnodelers indicale,s rhar they use seveml design heurisrics to
transfün üe temporal logic problem desdiption lo a peEi
net (Möbus eL al 1993). They Eke a single formula and
creale a net i?gmenl lo fulill il wilhou! taking c€re of the
nonmonotonous properly. of course, ooly model checking
can prove the corectness of the applicaaion of üese
heurislics. Validating a design heuristic means showing
that il has been applied frequendy and successfully.
The goal and the action graph provide all the information
for finding the coüespondence between a heüislic's pre-
condilion ard its conclusion. The difference of two
successive goals in lhe goal graph includes the heurisric's
precondirion (a temporal Iogic fomula). The difference
between the petri nets in the nodes of lhe action gmph thar
conespond to the goal nodes inclutles the conclusion (the
nel fragment being a model for the formula).
A fißt version of lhe validation is already implemented to
work on the alabbase leamt by Petri-Help (see above). It
indicales a great plausibility of the h€uristics, used by mosr
human problem solven.

8. Conclusion

11 was shown. how a simple adaptive control mechanism,
based oo a pmbabilislic approach, can be used to predicr
student's behaviour while interactiog with an lntelligen!
Tuloring System. It was pointed oul, how close the reladon
is between plan rccognition and user modeling on one
hand, and planning and predicling behaviour on lhe orher.
The whole syslem is not based on explicit domain and
backgound knowledge, bur on a leaming and a verification
componen! The idea, originally developed !o enhance
PeEi-Help, could bc adapled to any planning domain, ful'
filling the above menrioned prerequisires. PeEi-Help is
fully irhplemented on Macinloshft computers usin!
MacPrologtu. It is widely used by gr-aduare sludents. The
validation component is implemenled as a protolype. The
resl of the syslem is cunendy under implementation by
studenb of an advanced pmctical trainiog course in Inlelli
gent Tutoring Systems.
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