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CHAPTER 11

PLANNING AND PROGRAMMING
KNOWLEDGE: DIAGNOSIS,

MODELING,AND
USER.ADAPTED HELP'

Claus Möbüs and Olaf Scfuödet

Univeßity of Oldelburg, Germany

ABSTRAC']

A thEelev€l app.oach 10 model processes of prcblem solving and fic acquisidon and
optimization of knowledSe was developed. Fiß1. a gene.al theorctical fmewo.k des.ribes
problem solving phasss, impN driven knowl€dge acquisirion, and sucess driven knowledg€
optimiätion. Second, a Slale Model ofhyporherical intemediale knowledte stales may b€
used for or iDe diaSnos€s ol leamer's domain knowledge Änd for gen€mring tearncFadapted
help md infomation. Third, a Process Model closes rhe gap belween the rheorelical
frarnework and the Slare Model. The approach enables a variety ofempi.ical predictions abour
pmbl€m solvint aclions, acdon and tme constlainß, and effecrs of help informarion. In
addition, it har implicalions fo. rhe design of intelligenl knowledge comnnnicadon sysßns.
The ABSYNT Pmblem Solving Mo.ilor (PSM) eas developed iD line with these design
eqüi.emenß. It supporrs lem€l! acquisilion of basic p.ogmmminS conceprs while wo*ing
in ä visual, funcdoml progImminS language. The lemer may tesr hyporhess about solutioü
proposals, plans üd inlendons. and incomplete plan fagmenrs. Thrs help is supplied al
impass, üe us€ of peknowledge i! €ncoDraged, and diffeßnt probtem solvine pha$s aß
suppoded. In addirion, a Slate Model is designed 10 supply help adapted l() rhe curßdr
knowledge shte of üe leafrer.

The development olexecutable ftodels ofhuman information processing and
their empirical validation has become an important research area, especially

I Tho rcsearch €poned hercin was financially supponed by cnnr No. Mo 29213-3 of the
Deut-sche ForshunSsgemeinschaft 10 Claus M öbus and Huns Colonius.
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conceming processes of knowledge acquisition. Since models of this kind
explicidy represent hypothetical knowledge structures and processes, they
enable detailed hypotheses conceming tbe representation and change ol
knowledge, and they enable detailed and sometimes surprising predictions.
Thus, they contribute to psychological theorizing and to basic research. On the
other hand, modeling the acquisition and change of knowledge is also one
necessary condition for the design of individualized instruction and help for
computer based systems. Individualized, user-centered, online instruction and
help not only enhances kllowledge acquisition processes, but is also important
for the design and development of various software tools. For example, the
acceptance of such tools may depend on their sensitivity to the actual
knowledge and intertions of the user.

The topic of our project has been to empirically investigate and to model
processes of the acquisition, utilization, and optimization ofknowledge while
working with the, BSUNZ Problem Solvitg Monitor (PSM). The ABSYNT
PSM is design€d to suppofi the acquisition ofbasic functional programming
concepts by supplying leamers with individualized, adaptive online helpand
proposals. ABSYNT ("Abstract Syntax Trees") is a functional visual
prcgramming language developed in the project. The ABSYNT PSM provides
help for the leamer constructing ABSYNT programs to accomplish given
tasks.

The design and development of a system like the ABSYNT PSM is not
possible without creating models representing knowledge states and
knowledge acquisition processes of leamers. Our system is embedded in a
three kvel approachl

I First, there is a theoretical framework of problem solving and
knowledge acquisitiona the ISP-DL fftror-y (Impasse -Success -
Problem Solving - Driven Leaming). Its purposes are to:

describe and explain the continuous stream of aclions and verbalizations
of the leamer while working on programming tasks

represent a guideline for design decisions ol the system

motivate and constrain models of leamer's knowledge states and
acquisition processes.

a An Intemal Model or ,ttate Model diagnoses the aclual domain
knowledge of the leamer (rules and schemas) at different states in the
knowledge acquisition process. It is designed to be an integrated part of
the ABSYNT PSM ("internal" to it) and to perform orlire knowledge
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diagnosis based on computer-assessable data provided by the leamer's
inlemctions with the system. The State Model is the basis lor
user-adapted help.

a An Extemal Model or Proceff Model \s designeÄ to simulate the
knowledge acquisition processes, problem solving heuristics, and (in
future) motivational processes of the leamer on a level of detail not
available to the State Model. The Process Model is not pan ol the
ABSYNT PSM ("external" to it) but suppons the design of the State
Model. The Process Model is an olfrir? model designed ro bridge rhe
gap between the ISP-DL Theory and the State Model by providing
hypothetical /edrons for the knowledge state changes represented in the
State Model. For example, the Process Model should hypothesize in
which kinds of situations which kinds of weak heuristics are prcferred
by the leamer.

Thus, ISP-DL Theory, the State Model, and the Process Model are designed
to be mutually consistent but serve different purposes. Figure I summarizes
their intenelationships: 'Ihe ISP-DL Theory collltrols the development of the
Process Model 

^nd 
the State Model. Data a\al lable from the leamer while

working with the system are: stating and testing hvotheses abou.t created
solution pmposals, progmmming actions and the time needed for them, and
verbalizations. Such data are used for online construction and updating of the
State Model, and/or for offline development and testing predictions of the
Process Model. The State Model is in part based on an Epeft Model
representing planning knowiedge and implementation knowledge of the
ABSYNT domain. Both the State Model and the Expert Model are designed
to provide user-adapted help 

^ 
d erplanations.

First we will briefly describe the ISP-DL Theory since it provides the "roof"
lor the design of the ABSYNI PSM, the State Model, and rhe Process Model.
Then theABSYNT PSM is presented. In the next section we will describe the
State Model and empirical analyses of some of its predictions. In addition, we
show which empirical predictions follow lrom rhe State Model for differenr
kinds ofhelp information ifthe adaptivity of rhe information to rhe leamer's
knowledge is varied. Finally, the Process Model is described.
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The ISP-DL Theory

As indicated, the ISP-DL Theory is intended to describe the continuous stream

of problem solving and leaming of a student as it occurs in a sequence of, lor
example, progmmming sessions. Empirical analyses of students' sessions

working with ABSYNT (M öbus & Thole, 1990: Schröder, 1990) showed that
such streams can be described as an interplay of Foblem solving,
impasse-driven leaming, and success-driven leaming. Several approaches

have been concemed with these processes, van tthn's theory of
Impasse-Driven Leaming (van l,€hn, 1988, 1990, 1991b), SOAR (Laird,

Newell & Rosenbloom, 1986, 1987; Newell, 1990; Rosenbloom et al., l99l );
or knowledge compilation mechanisms as, for example, incorporated in AcI*
(Anderson, 1983, 1986, 1989) or described by wolff (1987, 1991).

Consequendy, lhe ISP-DL Theory is an attempt to give an integrated account

of the phenomena described by these and other approaches. The ISP-DL
Th€ory has the following features (for more detarl see Mdbus, l99l b; Möbus,
Schröder, & Thole, in press):

a The distinction of differcnt problem solving phases (according to
collwitzer, 19m, l99l).ln the Deliberute Pluse, the problem solver
(PS) thinks about several goals. A goal is a set of facts which the PS

wants to become tnre (Newell, 1982) and can be expressed as a

predicative description. This phase ends vr'hen the PS chooses one goal

to pursue: The PS is now committed to an intention. In the second

phase, the PS pldrs a solution for the chosen goal. A plan is a partially
ordered sequence or hierarchy of subgoals which may be created by

domain-specific operators orbyweak heuristics.In the third phase, the
plan is executed, and ßnally the result is evdü.,ated. For example, the
PS may check whether the obtained result satisfies the predicative

description representing the main goal.

a me impasse-driven acquisitio of nert knowledge, Rott9hly, aat

impasse is a situation where "the architecture cannot decide what to do

next given the knowledge and the situation that are at its cufient focus
of attention. " (van Lehn, l99lb, p. 19). Impasses may arise at different
poiots in problem solving (Newell, 19m, p. 174). Forexample,lhe PS

may not be able to d€cide on a goal, or to synthesize a plan, or a plan

might not be executable, or there are no criteria to evaluate a result. [n
response to impasses, the PS applies weak heuristics, like asking

questions,looking for help, chealing, and soon (Laird, Rosenbloom, &
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FiSuE l: The inlerelaliorships belwe€n ISP'DL Tbeory. the Process Model, üe StaE
Model, the Eipen Mode, üe data o{ fte leamer, and help and explamtions.

Newell, 1987; van Lehn, 1988, 1989, 1990, l99lb). As a result, new
knowledge may be acquired that leads to overcoming the impasse. So,
impasses are situations where the leamer is likely to actively look for &elp
(van Lehn, 1988). But ir is also possible that the information obrained is not
helpful. For example, information intended as help may be loo complicated,
orcodusing, or lead in awrong direction. So instead ofsolving the impasse,
a secondary impasse may arise, as aheady described by Brown and van Lehn
(1980).

a me success-driven inprorement of acquired knolel€dge. Successfully
used knowledge (knowledge which application did not lead to an
impasse) may be improved so it may be used more effectively in the
future. More specifically,by rule composition (Andeßon, 1983, 1986;
Lewis, 1987; Neves & Anderson, 1981;Vere, 1977) lhe number of
control d€cisions and subgoals to be set may be reduced, because fewer
rule selections have to be performed. In contmst to these authors, our
composition is based on resolution and unfolding (Hogger,l990), se€
Möbus, Schröder, and Thole (1991; in press). This has theoretical and
empirical advantages.
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The ABSYNT Problem Solving Monitor

ABSYNT ("Abstract Syntax Trees") is a functional, visual programming
language based on ideas stated in an introductory computer science textbook
(Bauer & Coos, 1982). ABSYNT is tree representation ol pure LISP and is
aimed at supporting the acquisition of basic functional programming skills,
including abstraction and rccursive systems. The design of ABSYNT as a
risual programming language was based on'

a heo altcmatire aecutable specwations of the ABSYNT interp.eter
(Möbus & Thole, 1989; Miibus & Schröder, 1990) which were
developed according to cognitive science principles and constraints
(Larkin & Simon, 1987; Pomemntz, 1985)

r empirical studies (Colonius et al., 198?; Schröder, Fmnk & Colonius,
198?) cofterning the mental representation of and misconceptions
about fu nctional programs.

This work served to prcpare the development of the ABSYNT PS M (Kohnert
& Jante, 1988/91) according to principles of visual leaming environments
(Glinert, 1990). The motivation and analysis of ABSYNT wilh respect to
properties of visual languages is described in Miibus and Thole (1989).

The ABSYNT PSM provides al iconic ptogrcn ninq environment (Cha'rg,
1990). Its rnain cornponents arc a visual edirol, a visua\ trace, and a help
componen|, a hypotheses testing environmeü,'fhe design of the ABSYNT
PSM is motivated by the ISP-DL Theory in several respectsl

a According to the ISP-DL Theory, the leamer will look for and
appreciate help if he or she is caught in an impasse.without an impasse
there is no need for help. So the ABSYNT PSM does not intenupt the
leamer (see, for example, also Winkels & Breuker, 1990), but oj?ls
help. As a side effect, this design principle provides valuable data about

the student's impasses.

t According to the ISP-DL Theory, the leamer should be prevented from
trapping into secondary impasses which may lead away from the
original problem solving. This may be done by letting the leamer make
use of his pre-knowledge at impasses as much as possible. ln the
ABSYNT PSM, this principle is realized by the hlpotheses testing
approach. T'I'P- leafiet may state hypotheses about which pan of his
cunent solution proposal he considers correct. The system then

analyzes the hypothesis and gives feedback. The student can also ask
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the system forcompletion proposals (see below). Another reason for the
hypotheses testing approach is that in programs it is usually not possible
to absolutely localize bugs. Often the bug consists of an inconsistency
between program parts, and there are several ways to fix it. The
hypotheses testing approach leaves the decision how to change a buggy
prograrn to the PS. Again, a side effect of the hypotheses testing
approach is that it provides a rich data source of the leamer's problem
solving.

a According to the ISP-DL Theory, help should be provided at different
levels of problem solving. The ABSYNT PSM suppots the problem
solving phases ol planning, executing, ar'd evaluatitg solütion
proposals. A solution proposal may be planned first by using goal
nodes. So the leamer may create a plan and test hypotheses about it
without bothering about its implementation at this stage. The
implementatio of the goals (thus creating an executable program) may
be done later Finally, erahmtion is again supported by hypothesis
testing.

Figure 2 depicts snapshots from the ABSYNI PSM. Figure 2a shows the
visüal editor vherc ABSYNT programs can be created. There is a head
window and a body windo\r. On the left side of Figure 2a, there is the tool bar
of the editor: The bucket is for deleting nodes and links. The hand is for
moving, the pen for naming, and the line for connecting nodes. The "goal"
node will be explained below. Next, there arc constant, parameter, and
"higher" operator nodos (to be named by the leamer, using the pen tool).
Constant and parameter nodes are the leaves of ABSYNT trees. Then several
primitive operator nodes follow ("if', "+",'r", "*", ...). Editing is done by
selecting nodes with the mouse and placing them in the windows, and by
linking, moving, naming, or deleting them. Nodes and links can be created
independentlyt If a link is created before the to-belinked nodes are edited,
then shadows are automatically created at the lirik ends. They serve as place
holders for nodes tobe edited later. Shadows may also be created by clicking
into a free region oia window.

Constant, parameter and operator nodes arc implementat o, nodes, A
syntactically correct ABSYNT program is executable il it consists only of
implementation nodes. Implementation nodes have three horizontal parts: an
input stripe, a name strip€, and an output stripe (Constantnodes have only two
stripes because name and output are identical). In the üsual trace of the
ABSYNT PSM (not depicted), inpur and output stripes are filled with
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Figure 2a: Sudent's eroneous and ovedy complica@d proposal in the visünl editor.
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Figüre 2b: Sudenfs hypolhesis (bold nodes and links).

Figure 2: Snapshots ofprobtem solving with ABSYNT: Studenf s proposal 10 thc REVERSE
prcblem (2a), sluden!'s hypotlesis proposal (2b). fcedback lrom üe ABSYM
system (2c). a.d the compledon proposar of üc ABSYNT system (2d).
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Figle 2c: PosiLive teedback from üe ABSYNTsystm tolhe srudenr's hyporhBis

o 1993 Ass@ndon of Advanccmenl of conputing id Educlrion (AACD

FtSur€ 2d: Completion proposals of the ABSYNT system on student dcmand.

computation goals and obtained values, so each computational step ol the
ABSYNT interpreter can be visualized (Möbus & Schröder, 1989, 1990;
Möbus & Thole, 1989).
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But as already indicated, in ABSYNT therc are also Sral nodes designed to
sl!;Toft delibetuting and pldrniaS. Clicking on the "goal" symbol in the tool
bar (Figure 2a, on the left) causes the tool bar to switch !o the actual goal

nodes. Goal nodes reprcsent more abstract plan fragments which may be

implemented in several ways by implementation nodes or subtrees. Visually,
goal nodes have no intemal structure. In Figure 2a, "LIST EMPTY" and

"CASE' are examples of goal nodes. Each goal node is precisely defined as

a predicative description for the yet to be implemented program fragments.

For example, 'LIST EMPTY' represents the goal to test whether a list is
empty. The "CASE" node rcpresents the goal to Prograrn conditionalized
expressions, that is, condition-expression paiß. The ABSYNT goal nodes are

based on a task analysis whichapplies the tnnsfornatiol, approach developed

in the Munich CIP Project (Bauer et a1., 198?; Partsch, 1990). The

transfomation approach ensurcs that a solution can be derived to a Siven task

that is conect with respec! to the task description. Cunently ABSYNT
supports 42 programming tasks. For each task, there is a goal node with a

predicative and a verbal task description. Data types are numbers, truth values,

and lists.

In Figure 2a, a wrong solution proposal for an ABSYNT program reversing

a list is just being created. There are nodes not yet linked or even completely

unspecified (shaded arcas). As Figurc 2a shows, goal nodes and

implementation nodes can be mixed ("mixed terms") within a proposal. The

solution proposal in Figure 2a means:

llL ß equ.l lo Lhe valuc old yet unknown e\prersion.
then the value of REVERSE is NIL,
else il L is m enply lis!
üen if the value of a yet unkno*1l exp.ession is the empty lisl

then üe valE of REVERSE is tte value of L,
ele the value of REVERSE is obtained by CONSing üe välues of two ve1

unknown exprcssions bgether.

parts ofthe program in Figpre 2b) about the conectness ofa solution pmposal

or parts thereof for a given programming task. The hypothesis is: "It is

possible to emb€d the boldly marked fragment of the program in a correct

solution of the cufient task!". The system then analyzes the hypothesis.

If the hypothesis can be confirmed the PS is shown a copy of the hypothesis

(Figure 2c).Ifthis information is not sufficient to resolve the impasse, the PS

may ask for more information (completion proposals, Figure 2d). lf the
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hypothesis cannot be confirmed the leamer receives the message that the
hypothesis cannot be completed to a solution known by the system.

In Figure 2b the leamer stated a hypothesis which covers a fmgment of the
proposal created so far for the "reverse" progmmming task. The hypothesis
contains goal nodes and implementation nodes. The system recognizes the
hypothesis as embeddable, indicating this by retuming a copy of the
hypothesis to the student (Figure 2c). If this information is not sufficient for
solving the impasse, the student may ask the system forcompletion proposals
at the open links. In Figurc 2d, the student asked for and received six
completions (bold). Two of them are goal nodes, the others are
implementation nodes. The "REVERSE" goal node represents the task goal.

As far as possible, the system tries to generatecompletions consistentwith the
student's proposal. At one point, the system disagrees with the student's
proposal: The system proposes "LIST NOT EMPTY" at the third input link
of the CASE node, whereas the student's original proposal contains "LIST
EMPIY" at this point (Figure 2a). Intemally, the system has created a

complete solution, but the student always gets only minimal information.

The hypotheses testing environment is the most significant aspect where the
ABSYNT PSM differs from other systems designedto support the acquisition
of functional prograrnming knowledge, like the LISP tutor (Anderson &
Swarecki, 1986; Anderson, Conmd, & Corbett, 1989; Corbett & Anderson,
1992), the SCENT advisor(Greer, 1992;Greer, Mccalla, & Mark, 1989), and
the ELM system (Weber, 1988, 1989, 1992). As indicated, one reason for the
hypotheses testing approach is that in programming a bug usually cannot be
absolutely localized. Hypotheses testing leaves the decision which parts ofa
buggy solution proposal to keep to the studeDt and thereby provides a rich data
source about the leamer's knowledge and intentions. Single subject sessions
with the ABSYNT PSM revealed that hypotheses testing was heavily üsed.
It was almost the only means of debugging wrong solution proposals, despite
the fact that the subje{ts had also the visual trace available. This is pardy due
to the fact that in contrast to the trace, hypotheses lesting do€s not require a
complete ABSYNT progmm solution. Hypotheses testing is possible with
incomplete solutions, with goal nodes, and with mixed terms. So the student
may obtain feedback whether he is on the right track at very early planning
stages.

The answers to the leamer's hypotheses are generated by mles defining a
goalsiteans-relation(GMR) (Levi & Sirovich,l976; Nilsson, 1980). A subset
of these rules may be viewed as "pure" expert domain knowledge not
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influenced by learning. Thus, we call this set of rules EXPERT. Currendy,
EXPERT contains about 1300 planning rules and implementation rules. The
planning rules elaborate goals and the implementatioo rules describe how to
realize goals by ABSYNT implementation nodes.The goal decomposition
done by the planning rules follows the CIP transformation approach
mentioned earlier. EXPERT is able to analyze and to synthesize several
millions of plans and solutions for the 42 tasks (Möbus, 1990, 1991; Möus
& Thole,1990). we think that such a large solution space is necessary because
we observed that subjects, especially novices, often construct unusual
solutions due to local repars.

The completions shown in Figure 2d (bold program fmgments) were
generated by EXPERT rules. EXPERT analyzes and synthesizes solution
proposals, but is not adaptive to the learner's knowledge. Usually EXPERT
is able to generate a large set ofpo,r,tiöle completions. For example, EXPERT
could genemte a large number of alternatives for the "LIST NoT EMPIY"
goal node in Figüre 2d: for example, lhe goal nodes NOT, EQUAL,
GREATER THAN 0 (with respect to the length of the list), or the
implementation nodes =, *. Thus, the problem is to relectthe most appropriate
completion proposal. This is the main function of the intemal State Model, It
represents the actual knowledge state of the leamer and consists of rules

derived ftom EXPERT. The State Model should choose a completion which
is maximally consistent witi the learner's current knowledge state. This
should minimize the leamer's surprise to feedback and completion proposals.

The State Model is implemented, but not yet integrated into the ABSYNT
PsM. It will be described in the next section.

To close this section, Figure 3 gives a summary of the components involved
in planning, progmmming, and hypotheses testing in theABSYNT PSM. The
leamer solves problems, acquires new knowledge due to impasse-driven
learning, and optimizes knowledge due to success-driven learning. In Figure
3, the PS created a partial plan to the "even" task: "program thattests whether
a natural number is even." The situation sho\ s a very early stage of program
development. As can be seen from the screen the Ps is trying to do case

analysis. His decision was to splitthe "even" problem into twocases. ThePS
defined the first case as "N EQUALS 0". Under this condition the goal

"EVEN" has still to be solved. There is no proposal for the second case. The
PS knows only that under the condition of the second case the original
"EVEN" problem has to be solved. when the PS states a hypothesis, the
system analyzes it, that is, it diagnoses the intentions (planning steps) and the
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actions (implementation steps) of the PS. The diagnosis ol actions and
intentions leads to an updating of the State Model, and to positive feedback,
enor messages, or help (completion proposals) which are tailored to the
leamer. The learner will process this information (acquire new knowledge,
optimize knowledge) and continue with programming, planning, or
hypotheses testing. Figure 3 also shows the place of the intemal process model
in this framework.

The Internal State Model

The State Model is designed as an integrated parl olthe ABSYNT PSM. It
represents the actual hypothetical domain knowledge of the leamer at different
points in the knowledge acquisition process. The hypothetical domain
krowledge is organized as apartial orderofzicro rules, schemas,utdslf".ific
cas6. Micro rules represent knowledge newly acquited by impasse-d ven
learning bü not yet optimized. They describe small planning or
implementation steps in the ABSYNT domain. Schemas and cases are created
by rule composition according to the resolution method (Möbus, Schdder,
Thole, in press).

The State Model is created and updated by automatically inspecring the single
editing steps perfomed by the user while constructing ABSYNT programs
(Mitbus, Schrijder, & Thole, 199 l, in press). It is constructed according to the
following, simplified description:

a After each programming task solved, the action trace of the PS is
parsed by themicm rules, schemas, andcases of the State Model and
(as lar as needed) by EXPERT rules. (For example, belore the
leamer has solved the first task, the State Model is empty, so the first
solution has to be parsed completely by EXPERT rules.) According
to Corbett, Anderson, and Patteßon (1988) we call this process

model tracing,

r The composites of all rules just used for parsing are crcated.

I Each rule used for parsing and each new compositejust created is
checkedfot plaßibilit!. A rule is consideredplarrirte with respect
to an action trace if the ABSYNT prograft fragments specified by
this rule are contained in the action tmce in an uninterrupted
temporal sequence.
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t Each rule just found plausible is put inro the State Model if it is not
yet contained in it. For each plausible rule already in the state model,
its credit value is raised. For composites (schemas and cases), there
are two additional requirements: The part of the subject's action
trace described by a composite must have been peiorlJj.ed earlier,
and the actual sequence has to be performed/asrer than at that earlier
time. This is because composites are designed to represent
knowledge optimization.

Figure 4 illustrates some of the features of the State Model. lt depicts a

continuous fragment of a sequence of programming actions performed by a
subject. These data and associated times are stored in the action trace. To give
an example, there is a micro nrle in EXPERT which describes the following
four actions: Placing an ABSYNT if-then-else node, andcreating three input
connections to it. In Figure 4, these four actions are performed at I I I 15:52,
11:15:58, 1l:16:46, and l1:16:55 (fragments wilh bold margins). So the
actions coresponding to the "if-then-else-node" rule is interrupted at I I : l6:42
and I l:16:50. So this flrle is not plausible. This exaftple illustrates that lhe
State Modelis created online based on detailed datat individual programming
actions.

As indicated, the purpose ofthe State Model is to pmvide individualized help
and completion proposals. It also gives rise to empirical predictions
conceming verbalizations and order constraints on progmmming actions. For
example, it says that as the leamer shifts from novice to expert (that is,
acquires süccessively more schemas and cases), there will not only be less
verbalizations and more performance speedup, but also different order
constraints for solution steps.

Figure 5 illustrates this. The upper part of Figure 5 shows a set ol four micro
rules, and a set of two schemas. Each rule or schemais abstractly represented
as a goals-means-pair (a goal tree 9... and an ABSYNT program fragment
a...). The State Model postulates that ifthe leamer applies a certain rule or
schema, then the corresponding programming action(s) should be performed,
and vice versa. If the leamer verbalizes an intention, there should be a
conesponding goal in the rule assumed to be applied. Conversely, for goals
not part of the rule, there should be no verbalizations at all (middle part of
Figure 5). Together \rith the concept ofplausibility built into the State Model,
this means that if the learner applies a cenain nrle or schema, then the
corresponding action sequence of actions and goal verbalizations should be
pedormed in an uninterrupted sequence. Actions and verbalizations stemming
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o 1992 As$cidion of Advlncenent of computine in Educ0lion (AACE)

FigurE 4: A conlinDoDs fragmenr of a squence of programming acdons perfomed
by a subject.

from different rules stauld not i terleave (no-interleaving hypothesis). So if
the State Model contarns the set {rl, 12, 13, 14} of micro rules, then an

empirical sequence like [92, al, a2, ...] should /rot be obsewable (Figure 5)
because al interrupts the sequence of events [92, a2] explained by 12. But an

event sequence like [92, a2, cv, a4,94, ...1is consistent with the set { r1, O, 13,

r4): there is no interleaving of events explained by different rules. "cv"
denotes actions and verbalizations, like moving and rearanging nodes and
lin16, which are indicators of control or heuristic processes. These control
events could occur "between" events of different rules. They also should not
interrupt an event sequence explained by one rule. Control events are to be

explained by the extemal Process Model.

For the two schemas {s1, s2}, the prediction is that the data explained by sl
should not interleave with the data explained by s2. Again, control events

could occur "between" schema events. As Figure 5 shows, the event chain

[g2, al, a2,...] which was inconsistent with {r1, 12, 13, r4l is conrirt r with
{ sl, s2l, but an event chain like [al,93,92, ...] is not, because al and 92 stem
from the same schema but are interrupted by g3 . So schemas lead lo weaker
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Set of micro rules:

I tl @t, al), f2(82,^2),
13 (s3, a3), ra G4 aa) )

set of schemas:

Time-interval preöctions
time-ht€rval(lsl, s2l) < tim€'in@dal(lrl, 12' 13' 14l)

. cv is a abbreviation for: control a.tions a veöalizations

{ 3l( \.1
gt

L2'Y s2( E4 '4t I'Y
Action and verbalizadon predictions:
Model:

acdon
goal

- goal

Data:

verbalizadoß

---> - ve.balirrtior

No-interleave prcdicdons for {rt, 12, 13, 14 }l
aot: lt?, st, a2, ct, a4, 83,33, g1l
tut lA2, a2, cr., a4, 84, c\,43, 83, cv, t l , 0l l or

1a3.83, cv,92, a2, cv. tl. gl. cv,84, .41 or ".

No-interleave predictions for [sl, s2):
daB(sl) b€forE dab(cv) befo€ dah(s2) or
dara(s2) before data(cv) beforc d&ta(sl)

Nt: la\, E3,92, a3, s4, sl, A', 
^4')but lez, aI, a2, 91, cv,,4, 83, ß, Eal ot .

FigDrc 5: Empirical pßdiclions of the Stale Model for micro dles vs- shemas.

order constraints than micro ntles. BtJt therc are more predictions of the State
Model: The application of the schemas should be faster than the application
of the micro rules (bottom ofFigure 5) because less control decisions have to
be made by the learner (time hypothesis). For the same reason, we would
expect less contlol actions and verbalizations, that is, Iess moving,
rcpositioning, and rearanging ofnodes and linls (reaüanqement h)'pothesis),

Some of the predictions of the State Model have been tested empirically
(Möbus, Schröder, & Thole, 1992). The ro-interleaving hypothesis was
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investigated in the following way: The action and vertalization sequence of
a single subject working with rhe ABSYNT PSM was videotaped and
categorized, and the State Model was run offline based on the solutions
created by the subject. This led to a sequence of consecutive hypothetical
knowledge states ofthe subject. Based on this state sequence, it was predicted
which actions and verbalizations of the subject should occur in uninterrupted
s€quences. This resulted in the model trace (Figure 6, on the right) which
consists of sets. Each set of the model trace coresponds to the application of
one State Model nrle. For example, at the state depicted in Figure 6 the State

Model contains a rule that describes three programming actions: to place an

ABSYNT "product" node, and to dmw two input lints for it. So the actions
and verbalizations of each model trace set are expected to occur in a

continuous uninterupted sequence. The ,r,.rject trace (on the left of Figurc 6)
is the actually observed action and verbalization sequence. The subject trace
was compared to the model trace in the following way: For each adjacent pair
of events of the subj€ct trace, if both events are contained in the same model
trace set, then a "+" was assigned, otherwise a '!" was assigned.

For example, in Figure 6 action events 36 and 37 belong to different model
trace sets, so a "-" is assigned. (On the left of the subject race, a slightly
different but equivalent meüod of assigning "+" and "-" is shown.) So "+"
denote correspondencies of model tmce and subject trace, and "-" denote

contradictions. The whole subject tmce contained 76 "+"and 60 '!". Since

more "+" should lead to longer and thus fewer runs (continuous sequences of
"+" and':") than an equal distribution of "+" and "-", the Runs test was

applied. There were 42 runs (p < 0.001), which is consistent with the
ncinterleaving hypothesis. In addition, many of the discrepancies ("-")
between model trace and subject trace are due to the constant and parameter

node rule (see for example events 36 and 40 in Figure 6).

How can the State Model contribute to user-adapted help generation within
the ABSYNT PSM? Obviously, it should select the completion proposal to
present to the leamer, so the leamer will receive Proposals which are

maximally consistent with his pre-knowledge.

But the State Model is also capable ol identifying knowledge gaps -
knowledge not yet acquired by the PS but necessary !o continue with the
actual solution proposal. Based on such a diagnosis, new em pirical predictions

are possible because the completion proposals selected as help by the system

can be vaded according to two dimensions: Srditr size and amounL If lhe 9tuin
size is ,tne, the completion proposal may rest on a chain of micro rules
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Ev€nt no. subje.t Trac.

lo lhe coNlint node

Model T!!c€

{ ph..corBt nod€'
w'ia. th.v.luc'!I"

lnto th. consbna nod.l
{ plrc. product Dod€'

{r!.t link rom lhe
producr nd. ao tle
s€cond rnlnut node,

ctlat unt from th.

ao lh. const.na nodc )

w;a. &e vrlue ".1"
iDoo th€ constant node

Figuß 6: Empidcal analysis of the StaE Model: Sübject lrace, model race, and
the coftspondencies (+) and discrcpancies C) belween üem.

covering the gsp. For example, the completion proposal may consist of an
ABSYNT subtree with an explanation of the goal sequence leading ro ir. If
the grain size is cod6e, then the completion proposal may rest on a single
composite. For example, the completion proposal may consist of an ABSYNT
subtree without any explanation. Concerning amount, the information
provided may exactly I ll the Eap, ot too much information is provided, o ot
?nougft information so that apart of the gap remains uncovercd. Different
combinations of grain size and amount lead to different hypotheses. For
exanple:

a Ifthe information is fine-grained and exactly fills the gap, then we
would expect that the student considers this infofiation as helpful.

a If the information is coarse-grained and exactly fills the gap then the
student misses explanations. So s/he might eithetpassiyeb' accept what
is being offered, or eng age in self-explanation (van Lehn, I 99 I a).



t If the information is fine-grained but exceeds the knowledge gap'

then the studoDt has to 'Flter" the content relevant to the current

situation. This might be exlf.'ienced as burdensome.

I If the information leaves a small knowledge gap, then the student

might try to indüce one new simple rule and thereby cover the rest

of lhe gap. (This situation seems similar to the induction of one

subprocedure at a timeby van Lehn's (1987) SIERRA program.)

a Finally, the last case to be considered here is that there is a large gap

left. and the infomation offered is too coarse. The student should

experience such an information as very inadequate to his current
problem. Thus she or he should feel annoyed or even upset.

There remarns much work, ofcourse, to work out these hypotheses and put

them to empirical test. But we think we have shown that the State Model is an

empiricatly lruitful approach to knowledge diagnosis and adaptive help

ge;eration which is testable and also touches upon fwther research problems,

like motivation and emotion.

The Extemal Process Model

The Process Model is aimed atmodeling the knowledge acquisition P,'ocess?s

which hypothetically lead to the changing knowledge states as described by

the State Model. It is conceptualized as a executable reatization of the ISP-DL

architecture and tries to give an account of data not comPuter-assessable with

current technology, like the leamer's ve.balizations.

The precursor of the Process Model was a model of the acquisition ol a

cosnirive skill in the domarn of lhe operational lnowledge (inlerPreler

kr;wledge, about ABsYNT. based on a theoretical framework of knowledge

acquisition (impd$e'a d success-driven leamirrg) which was the precursor

of the ISP-DL Theory, and empirical analyses of verbal and action protocols.

The starting point for this model consisted of two altemative visual rule sets

based on executable specifications of the ABSYNT interpreter (Möbus &
Thole, 1989). The visual fiile sets were used as help material for subjects

while acquiring the operational knowledge (Möbus & Schrijder,l989' 1990).

Rule specific hypotheses conceming memory representation and working

memory load were disconfirmed (Schrijder et al.' 1990) Thereforc' a

simulation model ofthe knowledge acquisition process was constructed and

compared to adetailed protocol of verbalizations and actions (Schröder,1990,

C. Möbus and O. Scb öaer
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1992; Schriider & Kohnert, 1989/m). According to the model, new
knowledge is acquired in response to impasses: lmpasses trigger problem
solving processes which involve the use of the help material, and existing
knowledge is optimized if used successfully. The model was compared in
detail to a subject träce of actions and verbalizations. It was able to
hypothesize, for example, which kinds of situations lead to which kinds of
weak heuristics and corresponding actions.

The extemal Process Model in the domain ofconstructing ABSYNT programs
(see also Schröder & Möbus, 1992) was developed based on the ISP-DL
Theory and an empirical analysis of a subject trace (actions and
verbalizations) from a single subject session with ABSYNT. The analyzed
pafi of the subject trace contained about four hours of problem solving.
Figure 7 depicts the main components of the Process Model as a higher order
Petrinet (Huber et al., 1990). Places (circles /ellipses) represent states (e.g.,
the content of data memories, mental objects like plans or impasses, or real
objects like task descriptions or solutions). Irarsit ors (rectangles) represent
events or pr@ess steps. The model consists ol the following steps:

a The description ol a programming task is represented as a text graph.
The first step is to ?..rde6tdrd the task by creating a propositional
task representation (Kintsch & Greeno,l985; van Dijk & Kintsch,
1983) which is a hierarchy of concept names.

a Based on the task representation, a pldn for a solution proposal is
created by making use of domain knowledge. The domain
knowledge is a set of concepts. Each concept has a name, an
inpuFoutput desc.iption that can be calculated with example values,
and (possibly) an implementation in ABSYNT. So a concept
coüesponds toa micro nrle, a schema, or a case. But aconcept may
be incomplete, the ABSYNT implementation may be missing. As
asimple example, theconcept "multiplication of two numbers" may
be known, butitsimplementation in ABSYNT maybe unknown. (So
an incomplete concept represents the pre-knowledge before working
with ABSYNT.) The plan consists of instantiations of concepts of
the domain knowledge.

a Afterthe plan is created, there are seveml possibilities. The simplest
possibility is that the plan is executed. Alternatively, an impdss€
rnightarise. This happens ifthe plan cannot be executed because of
missing ABSYNT implementation knowledge in one or more
concept instantiations. Now several fter.rirticr are possible.
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Figure 7: The extemäl Proces Model
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The first one is to look for help. The help material given to subjects
consisted of example calculations of the primitive ABSYNT
operator nodes. So for each primitive ABSYNT operator, the
concept in question is calculated with the same input values as the
example calculations. Il the result is the same, then the primitive
ABSYNT operator is inserted into the concept instantiation, and it
is stored with the original uninstantiated concept as well (acquisition
of new knowledge). Ifno such ABSYNT operator is found, then the
heuristic has failed. Still the plan cannot be executed. The next
heuristic (switch focus) is tried: Another part of the plan is
implemented first. Ofcourse this does not solve the impasse, so the
impasse will be encountered again. The third heuristic is
restrucoring. An attempt is made to rcplace the concept instantiation
by another one that has the same input-output behavior. (This is
checked with example values). For example, the plan fragment to
change the sign ofa numbercan be replaced by multiplication with
-1. Il such a replacement is created, then it is stored in lhe
knowledge base (acquisition of new knowledge), and the plan is
changed accordingly. Otherwise the founh heurisric, analogy, is
ftied. The analogical transfer is basically syntactical, but in addition,
adjustrnents arc made in the target solution which are again based
on calcularions wiü inpuFoutput descriptions.

I After an executable plan has been created and executed, the resulting
ABSYNT program is eraluated by hypotheses testing. If the
feedback is that the whole proposal is correct, then the concepts used
with this task are composed, based on the executed plan, and the
next task may be tried. If the feedback is that the proposal cannot be
recognized by hypothesis testing, then the executed plan is debugged
(= resolve impasse). Strategies of hypotheses testing and debugging
are not yet paft of the model.

A trace of the model was stepwise compared to the subject trace of solving
five programming tasks. One result was that 65qo (about 200) protocol
categories of the subject trace were reprcduced by the model. What is the
significance of the external Process Model fortheISP-DLTheory, theintemal
State Model, and for help design?

a Conceming the /SP-DL Theory, the Prcress Model specifies types
of impasses, like missing implementation knowledge and negative
feedback, and hypothetical weak heuristics and the conditions for
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their application. These hypotheses can be used to make the ISP-DL

Theory more detailed and empirically testable.

Conceming the State Modet, the Process Model specifies when

which new knowledge is acquired and optimized. So the Process

Model gives hypotheses about how the knowledge contained in the

State Model might be generated. The Prccess Model might also help

to find out how to modify the State Model if its Prcdictions are

disconfirmed.

Conceming help design, hypotheses of the Process Model about

weak heuristics can be used to design domain-r.rspecific, " strategic"

help. For example, with the model it should be possible to

recämmend to the learner to look for analogies in ceftain situations,

or to think about reformulating goals or to ask for their preconditions

in other situations.

Conclusions

We described an approach to dlagnose and model knowledge and knowledge

acquisition processes, and to apply these results to user_adapted help Our

approach has three levels:

a a theotetical fmmework, the ISP-DL Theory, of problem solving and

knowledge modification

a an intemal State Model for online diagnosis and generation of
user-adapted help

a ar extemal Process Model for offline generation of hypotheses about

impasses, weak heuristics, knowledge acquisition, and optimization'

The three levels me inlended to be mutually consistent but serve differcnt

purposes. The ABSYNT PSM designed to support the acquisition of basic-

iunctional p.ogram*ing skills in a visual language is a concrete realization of
this approach. In line with the ISP-DL Theory, it ofers help to the leamer to

malce use of at impasses, it tries to be maximally consistent with the leamer's

knowledge state by hypotheses testing, and it supports the problem solving

states of-planning, ex;udon, and evaluation. Planning in ABSYNT is based

on a transformation approach. Execution leads to executable ABSYNT

programs, and evaluation is based on the hypotheses testing approach'
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The intemal State Model represents knowledge states consisting of newly
acquired and optimized knowledge, as rcquired by the ISP-DL Theory. It is
continuously updated based on the online analysis ol small action steps. It
allows a large amount ofprcdictions conceming the interleaving of action süb-
sequences, times, and Garmngements like moving and repositioning program
fmgments. Some of these predictions were empirically analyzed. The extemal
Process Model is designed to bridge the gap between the state Model and the
ISP-DL Theory by providing hypothetical reasons (impasses, weak heuristics,
...) for the knowledge state changes described by the State Model.

Further work will be directed to integrate the State Model and the Process
Model into the ABSYNT PSM, to investigate the empirical predictions, and
to Benerab explanations ol the system for positive and negative feedback in
response to hypotheses testing, and to completion proposals now provided by
the ABSYNT PSM.

Our three level approach has been developed in the context of functional
programming, but is not constrained to it. In a related project, we develop a
help system, PETRI-HELP, which is designed to support modeling concurrent
or distributed prccesses with Petri nets (Miibus, Pitschke, & Schriider, 1992).
A research goal is to study the question how much of the theory and models
is domain independent.
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