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This peper describ€s a lxodel of stud€nts tnowledge growth from rcvici to
expertwithina theoretioal fmmewo* of inp6ss€-&iven l€aming, success{ri\€r
lelmin& and Foblem solvine. Ih€ model represeds the achral state of donain
knowledg€ ofa leam6. It is designed tobepartofa h€lp systen,ABSYNT, väich
pmvides user-oedered h€lp in the domain offmctiolal prog'--i"g. Ille noCrel
is continuously updat€d bas€n or the l€amer's progmming actions. There is a
distinctior withtu the model b€tween newly acquir€d and irnlmy€d knowledge.
Ndly acquien bnvledas is reg€sented by aügnotirs lhe model with ßles
ftomlheexp€rtknowledgebase. Ktro edge imyolana'/isr€pEsentedtyn e
crnpositior Ir this w.y, lhe knowledee contain€d in the Dodel is partially
ordeEd frosr 8erc.al nl€s to nore specific schems for solutior ftagm€ixts to
srßcilic caies (= elianple solutiols for speoifio pro8r"mning ta!ks). TIrc nod€l
is inpl€m€nted but mt yet aourally us€d for help genention within th€ h€lp
ststem. This paper descaibes the theoreticsl fiuel0*, the ABSYNT help
syst€m, the nodel, a prelininary study addressing sone ofits €inpirical pr€dic-
tions, and the sienificance ofthe nodel for the help system.

lntroduction

The problem ofstudent modelling is an important research topic especially within the
cootexl ofhelp and tutoring sy6ten6 (Atrd€rso4 Boyle, Farrell, & Reiset 1987; Broirn &
ButoD, 1982; Frassotr & Gaulhier, 1990; K€arsley, 1988; Sleetna4 1984; Sleenan &
Brora, 1982; Wetrger, 1987). Advance in designing such systems 6€ems to be possibl€ only
ifthe actual knowledge state oflhe leamer can be diagnos€d orrrTe i! an efricient and valid
way. This is diffcult (SeH, 1990,1991) but &cessary fo! a system in order to rcact
adequatelyto the studenl's activities. Furthermore, it has beenw€ll re.ogoized tiatprogess
in student modelling depends much on undeßtandhg what th€ stud€nt is doing and why.
Thusdetailed assumplions about probem solvür& knowledge repres€ntation, a.nd acquisi-
tion processe6 are &eded.

We fac€ the studetrt modelling Foblem within the coDtext ofa help system in the
domain offunctioaal prograrDming: lhe ABSYNT Prölem Solvitrg Monitor. ABSYNT
("Abstract Sy8tax lre€s") is a firnctional visual programming la-nguage desigBed to
support beginners acquiring basic trnctional plogrammiag coDcepts. The ABSYNT
Problem Solving Monitor provides help fo! the student constuctiDg ABSYNT programs to

dven tasks.ldapltv€ help requiles a stualeot model Oür approach to model the student's
knowledge rests on thr€e prirciples:
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. To try to understand what the student is doing andwhy This amounts to consFuctitrg

a theorcticol lrantewotk ]|tliich is po*€rfirl enough to describe the coltrnuous stream of
hnothelical problem 6oli'in8, knowledge acqursiton, and utiüzalron evenls, ard to
d€scribe and explaitr th€ stread ofobd€rvable actions and verbalizations oflhe student.

. To use a slbset oftlns theoretical ftamework itr order to construct a student model

coDtaining the actual h)'lothetical 6late ofdomaia knowledge of the student. This rtate

model must be (and can be) simpler than lhe tieoretical ftamelvork because itsjob is
enicient onllfie Aagnosis ofdo ain knowledgeba*ed on the computer_assessable alala

Fovided by the studenl's interactiotrs with the st6tem.

. To fill the gap bctween the lheotetrcal ftarnework and the stale model by con6üucling

atr ofline model of howledge acquisitioD, knowledge modification' and problem

solung prccesses. Thi6 Procatr n rdel Fovit€s hlpothetical r€asors for lhe changirg

knowledge states as reprcs€ntEd in the stale oodel.

ln accordance with the6o principles, we pur$re a thrce-lercl apptoach:

. A th€ore[cal ftamework ofFobleE solving al}d learning s€w€s as abas€ fo! intetpreting

ad understadirgtle student's actrons aodvetbalizations. Wecall lhisfradeworklSP_
D, ?reoly Gnlpalse - quccess - Prcblem - Solving - Drivetr tearning Theory).

. Ar inter al nodet (M dia€Bos€s the actal önain knowl€dge of the leartrer at ditr€rent

states inlhe knowledge acquisitio[ procesr (rtate nodst). It is designed to h€ aa integrate-d

port of the help Eßten C'iDfemal" to it) h ordel to provide urer€tered fee-dback

. A^extemal nodet (E I) is d€signed to sim ate the L'nowl€dge acquisfioDP/ocesset of
leamers on a level ofdetail oot available to the IM (e.9., including wöalizations). Thüs,

tfte EM is not part ofthe help syslem C'extemal" to it) but süpports fte de'sigB ofttre IM.

Thus ISP-DL Theory, Ilt4 and EM are desi$ed to b€ mutually consrstent but s€.ve

diflerent purposes. This paper is concertred with tle IM. It is organized as follows: Ftst,
we wil descdbe the ISP-DL Theory atrd oür help sy61em, the ABSYNT probleEFsolving

monitor. Then, tle IM is described and iIüstrated. Empiricäl predictioDs atrd a first
evaluation arc presented. Fina.lly, w€ wi[ show how the IM enabl€s adaplive help.

The ISP-DL Knowledge Acquisition Theory

The ISP-DL Theory is istetrded to describe tie cotrtinuous flow ofprobtem solving atrd

leaming of the student as it occurs in a sequence of, for example, ptogranming sessions.

In our uew, existing appoaches touch upoo main aspects ofthrs process but do not cover

all oftheo. Conse4uentb, the ISP-DL Theory is atr attempt to iDtegrate s€veral approaches.

Before describing it, we 1sill briefly discuss lbre€ theorctlcal approaches releva here:

(l) Itr Vanl-ehn's ( 1988, 1990, 1991b) theory oflmpasse Driven Leaming, the concept of
an impasse is ofcentml impotta$ce to ths acquisitiotr ofnew knowledge Rouglily, an

impasse i6 a sitüation where "the architecture cannot d€cide vhat to do next glvetr the

koowledg€ and tle situatio! tlal are its cuirent focus ofatteltion" (Vanl-ehq l99lb,
p. l9).Impasses triSSerprobhm_solnngprccesseswhich mayleadto newitrfomBtion.
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Impasses are also situations where the learner is likely to aciii€ly look for aad to accspt
,elp (Vanleh4 1988). ButFoblem solving or trying to understatd rem€dial info.ma-
tion might as well lead to secondary impasses (Brown & Vanl-eh4 f980). Impasse
Drivenl-€amingTh€ory is concsrned about conditions for problem solving, using h€lp,
and thereby acquiring Dew klowledge. It is not conc€med ebout optimizing knowl€dg€
aLeady acquired. "Knowledge compilation . . . is not the kind of leamiag tbat the
theory describe6" (Vanlahq f988, p. 32). Thus, rrith respect to our purpose6, the
theory seerns incomplete.

(2) Io SOAR (Laird, RosenblootrL & Newe[, 1986, 1987; Ros€nbloom, Latud, N€wBll, &
Mccarl l99l), the concept ofimpass€{dvetr leaining is elaborat€d by difrerent ttTes
ofimpasses and we3k heüistics peformed in response to them. lmpasse6 Figger the
creation of6ubgoals aad heuristrc search itr conesponding problem spaces. Ifa solution
is foünd, a chunk is cregted acting as a new operator itr the original Foblem sp6ce.
As in Impasse Drivetr l,€arning Theory, all leaming is tdggercd by impass€s. But iq
oü view it seemr questionable whether all ktrowl€dgo acquisitioo events caD reason-
ably be described as resulting ftom impasses (Vanlebn, 1991b). In SOAR there is no
"success-driv€n" charge ofknowledge 6laying wilhin ore problem spac€ (i.e., as tlrc
rcsult of the successftl application of erirtirg howledge).

(3) ACT* (Anderson" 1983, 1986, 1989) foc-uses on the success{riven optimization of
already existing knowledge by lmowledge compilatiotr but pay6 less attentioa to the
problem where new linolvledge cornes ftom.

We think thal for olüpurpo6es it is necessrylo cover probled solving, impasse{riv€n
leaming and succ€ssddven leaming as well (see also Schöder, 1990). Thus, ISP-DL
Theory iDcorpomtes

. the distinction of diferent problem-solving phares (accordilrg to Gofwitzer, 1990):
De liberuting wilü t\e ß^*tlt ofchoosing a goal, p,ldrrirg a solution to it, aeallirg the
plan, and evataatt g the result.

. t\e inpasse-driven acq isition ofnew knovledge. In ßsponse to impasses, the problem
solv€r applies weak heurislics, lik€ asking questions, looking for help, €tc.(Lair4
Rosenbloom, &Newell, 1987; Vanl,€h& 1988, 1990, l99lb). Thus, n€wknowledge may
be acquired.

. t\e tuccess-driven improvement ofacqabed knowledge. Succesdily used knowl€dg€
is i4ptoved so it carr be used more efrectively. Morc q@ifrc''lly,W mle composilion
(Andeßon, 1983, 1986; Lewis, 1987;Neves&Anderson, 1981; Vere, l9??), thenumber
ofconlrol decisions ard subgoals to be set is &duc€d. Io oul approach, composi[on is
based on the resolution 6od u.trfolding method (Hogger, 1990).

We describe th€ ISP-DL Theory by hiercrchical higher Petfi nets (Htbe\ Jense\ &
Sbapiro, 1990), though altemative modelling fonnalisms alle possible, for e/.ample, slreal
cosmunication (Gr€gory, 1987). Petri net6 show tempoml consüaints otr the order of
pKrc€ssing step6 morc clearly than a purely verbal presentation. Thus they emphasize
empirical predictions. The whole prcce6s is divided into 4 recursive subproc€sses (pdger):
"Problem Processing," "Goal Processing," "Nonoperalioral Goal processing," and
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"Operational Goal Processing" (Figues l-4). Praces (circleyellipses) r€piesent states

(e.g., the cotrtent ofdala memories); farstott (r€ctangeo rEpres€nt events or process steps

Operational Goal Proc€ssing

::.$9-l-{U.o.,ü... 
j

Figutes l-1. The ISP-DL Theory of pmbl€trt solving atrd leaming
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. fl_1ces yJ contal 
lokens wbich represent menral objects tgoals. memory traces,

ueun{rcs! etc.) orreal objeqs (e.9.. a solution or a behaviour pdocol). places can be
Drarked E4tX lags (/, for enleri Dg. Orr for exi fug place, F6 for gtobal filsioo set). Atl FG
tagged place is coDrmoo üo several nets (e.g., the_X_nowleUge ti'ase;. fraositioÄ can ti
tagged with HI (for hierarchical invocation tra$itiotr). This meatrs that üe pmcess is
continued in the called subrcL The dotted boxes show .lictr places are coneio'o.ainn J
the calling net and in the cajled net. Shaded transjdo* aod pia"o 

"r. 
hf;; ;1;;ät

by the IM (see below).
Problem Solviog is srarted inthepage.. ptobten proce.sstrs. . (Fisüe I ). The Droblem

solr€r(PS)$rivesforonegoaltochoos€oulofthe6aotgoals::-aehierare.:.;;;;;
be viewed as a ser of facts aboul lhe environment whictr tli p.ottem sotver ,ranrü UäÄä
true (Newe[, 1982). Agoalcanbe e\Tressed as apl€ dic;tive desc pnon which istobe
achieved by a prölem solutioD. Forexample. rhe toal o creare a p.ogram,"nicn ress Ua
tralüral trunber is el€o, "even(n) ', catr be expressed by the descripion:

"irnct e.ven - (nat n) bool: exisrs ((nat k) 2 r k = n),'.

. . 
Thegoai is processed in tß page..Coat prccessirg'. (Figure 2). lf the pS comes up

withasolutiotr üe lJsed know ledge is optimized: dedrlc ri* t"ri"t"agi opti.iron oo. \Ihei
the PS eocoünte$ a similar problem, tle solution time witt Ue stortä. nre net is teft wnei
th€rc are no tokens in "Go als," ,,Goat," and,. Solxtions-',

,Inlhepage GoalProcesssing'(Figure2).thepsche.kwhetherhissetofproblem
solr,T og opemtors is suffcient for a solution: ..ope rationat? .,/,'nonaperat ionali.,

- 
An operational goal is process€d according to tle page,, Operatinal Goal process-

/rg'' Gigure 3 ). A pla! is slnthesizedby ar{lllingproblem solvitrg operators, or i t is created
by analoeical-rcasonlng. The plan is a panialy ordered s4ueoce oi nierarcty of domain_
specific prcbleff-solvjng operatoß (or of domain_uDspecific heurisdcs: see below;. tn
either case, the plan is er€crrted. Exerution might na.o.iat" n .tl", pf- ."fn"."ril .o
arros/s lead also back fion '.execule" to r.plarl.. 

Exe,cuLion leads to a oroUtem solvinp
p/o/ocol wbich is used itr combinatioo witll the knowteOge tase ro euotrrre tte ourcomei
The rcsult of the evaluatio, genemles an impasse or a success and is transfer€d t ack to tbe
page "CoaI tuocessing."

The /sdcto, of1le PS to sltccess is: lea.']e,,Goal prccessing" wil\ a sotltion..fl\e
r€€ction to an impasse is the cre3tion ofsubgoals to use weak beuristics for Droblem solvins
Now lbere is a r€cursive call to ' problem processitrg. . . . .Coat procesins. , and ,:On"ä
tional Coal Processitrg ' a-re called again. Thjs time:wiüitr Operational öot pro;;G
a plan 10 use heüisticr ts strthesized and executed. (Simpli examples for these weai
heudslics are to use a dictioDary, ro fitrd atr expen !o consull and so on.) A menory Eace
of üe situation whic h led to üe impasse is kept. If the use of heuristics is successfui, then
Ihe resuh is twofold:

. Tle heurisrically baaed solution to the impass€ is related to tle memory trace of rhe
impasse situation. Thus. wirhitr ..Coal processing,., 

^ew 
donain_speiitrc proAten-

solving operators are inductively adqdle4

. \lit\in "Ploblen processing,', üe domain- nspecfc heuristic knowledge u6ed is
deütci'iaely optinized. So ne{ time the pS encounters a! impasse, he or she wil b€ more
skilled and efücietrl io usitrg a dictiolary, finding someone to consutl ana so forth.
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Finally, a rcD-operatiooal goal is p.ocessed accordlngtolhep gg"Non4perational

Goal Processing" (Figrc 4). The problem is d€compo€€d and th€ subsolutions are

compos€d to a final solution.
it is possibte ard necessary to refine the theory's transitions and places' but for our

purpose tlis rheory is srfrcient. Impottant are the following theorctically and empiricaly

valldated statements:

. New knowledge is acquired or y al impasses after suc@ssfrrl application of weat

heuristics.

.Idormaliooishelpfulonlyatimpa66esandifslnchronizedwiththelnowledgestateof
üe PS.

V,lhat design pinciptes does tle ISP-DL Theory imply for the ABSYNT help system

and for the In;mal M;del (IM) which is intended to represeot tle PS's actual domain

knowledge?

Concemhg the help s$tem

(l) ft should not interupt th€ learnet but orb infofinatron üpon rc4rest.

(2) There shonld be attra C',rrue aILd easil! 6eable neans of ewluation fot all ptoblefir

solviDg phases.

(3, Differcnt probten-solving Phas.s-E'nthasizing (plandng), ex€cuting (implement-

ing), and evaluating-should be supponed.

(4) Informalioo shoutd b e user-cenlercit, tlt lis, cbsely lailored to lhe loowledge state of
tie leamer. The leam€r should be able to ose Fe_loowl€dge as much as possible'

Concemi g the Irnenal Model

(l) It should disringuish tf,nw(f.;n newtt acquired kacn/{k;dge $d improved k\o'ttlej'ge,

where knowledge can oaly be imprcved after successful application

(2) Its content should rcfl @t petfonifunce data snshas spe€dups ftom eadierto latertasks'

asking for or actively looking for help, and corections or r€desiSn of solütiotr

proposals.

(3) It should r€presentboth planningkaovltrrdge audtmple entation/ coilingtßtrowledge'

The ABSYNT Problem Solving Monitor

ABSYNT is a vislral prograrunhg language based on ideas stated in an int$duclory

computer science textbook (Bauer & Goos, 1982). It is a tree ßpresentation ofpure LISP

without the list data stucture and is aimed at supporti4 the acquisition ofbasic irnctional
pmgrammhg skills, includiog abslßction and r€cüsrve syslems. The motivation ald
änalyds U ASSYNI *ith resp€ct to propqties ofYisual lalguages is dsscribed itr Möbus

and Thole (1989). The ABSYNT Problem Solving Monitor proides 
^n 

iconic progam-
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ming eny ionfient (Ch,.ttg, 1990). Its main componedts are avisual editor, trace, and a relp
componenli 

^ 
hypotheses testing environnent.

. 
Intheeditor (Figure 5), ABSYNTprogramscanbeconstructeal. Ther€isahead window

and a body window The let pan ofFigue 5 shoss th" tool ba of th" edit* i;;;;;k;t
is for deleting üodes and lints. The hand is for movirg, the p* fo, *;;;, "; rdi;;
for cotrnecling nodes. Next there is a conslant, parameter; and ..higüer;; 

self_alefided
operator nde (to be named by the leam6., using the pen tool). Consünt aad parametei
noales are the /eave,r ofABSyNT tlees. Then several prirnitive operator noaes foliow 1.. ii,
,,1.1 

':'1"'", 
:? P.!ng is done by s€lecring node. *tn d..o*. -a pi""ioj tlern

rn Lhe wrndows and b) Iitrking, moving, Daming, or deleting them. Nodes and I inlsiaa be
created inrtependen !: II a link is creared before the to_be_litrked nodes are edited, t he n
shadows ar€ automatically crealed at the litrk ends. They ,"*" * pf""" tofa"r, f--iroa""
to b€ edit€d later. Shado\xs rnay also be createal by cli"ting irto 

" 
Ä."."gi* oi" *i"Aü.

In Figure 5, a progam is aclüa.lly under developmetrr by a studetrt. Tle; are subtre€s not
yet linked-and nodes trot yet Damed or completely unspecified (shaded areas). The upper p;
oMgure 5 sbows the Sran window for call itrg prografls. Tlus is also where t_he vimal trace
stans if s€lected by th€ student. In the visüal tmce, each cornpuational step is marte visibie
by representing computation goals and results wirtrin tt 

" 
ood", qraoU, A 3.n oA"a ioiöl.

Figure 6. A snapshot oftlrc visual editor ofABSyNT

l^ t& hypotheses testng envircnnent (Figtre 6t, rJe pS may state h]?otheses Ooldpafls oflhe progam in lhe upper worksheet in Figure 6) abour theiorreAneis ofprograms
or parts I hereof for gr€o progammi ng usks. The hlTothesis is: ..lt is possibleio embed
the boldly marked fragnent of the progmm in a corecl sotutiotr to the c;r€ot taskl 

. , 
The

PS then selects the curreol task fiom a metrq and tte sySem anal;zes the hypothesis. lf rhe

- ntsltnt rram; at;;i

ffiü4,

@etr
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hlpothesis can be confrmed, the PS is showllacopy oftte h)'pothesis lfthis infttmation
is ;ot suficieDt to resolve th€ impass€, the PS may ask for more informatron (compl€tron

proposals). If the hpothesis cannot be confirmed the PS receives the message tlat the

hFothesis cannol be codpleled to a solutiotr knowD by the systern

ffiü4"
\ tJ TJ

€@e
t! tr t3
@cc
G@@
FFNF

Flgure 6. Snapshot ofthe ABSYNT Hlpotheses Testing Envitonment
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The upper patt of Figü.e 6 shows a solution profosal to the . .even" problcm just
construct€dhya studenl " Con6truct aprogram that determines rvhether a number is wen! "
This solution does not telEinate for odd arguments. Despite that, the ,rprtlesis Oold
program fragment in lhe upper part ofFigure 6) i5 embedalable id a conect solutioD. So the
hFothesis is return€d as feedback to the student (tbin pro$am ftagmeü in the middle part
ofFigure 6). The student then day aslc for a completion proposal generated by the syjem.
In the example the system completes the hypotlesis successively witl the constant .itlue"
trd witl ü9 "="-opentor Oold prograE fragments in the middle part of Figure 6).

Internally, the systeh generates a complete solution visible it the lon€r pan ofFigure 6.
So the student's solution itr the upper part ofFigüe 6 ay be conect€d by an itrter;hange
of program parts.

One reason for the h,'?othe6es testhg approach is that itr programmin& a bug üsually
cannot be afuolutel! localized, and tjlerc is a\atiet of ways to debug a wrong solution.
Hlpothes€stestingleav€s the decisionof\ hich pans ofa buggy solution proposal to kecp
to the PS and tlereby prcviales a rich data sourc€ about the pS s knowledge state. SingG
subject session6 witi the ABSYNT problem Solving Monito! revealed that hpotheses
testing was heavily us€d. It was almost tlre ody means of debugging wrong solution
proposals, despite the fact thal tle subjects had also the visual trace availabl€. This is partly
due to th€ fact that in cootrast to lle taace, h)?otlr€ses testing does not require a complete
ABSYI.IT prog.am solution.

The ans*€rs to the leamer's h,potheses are getrerated by rules defining aaoah-rr€arr-
rclation (GMR). These nrles trlay be viewcd srs "pure" exp€rt dornaitr knowledge not
influenc€d by learqing. Thüs we will call this set ofrules EXPERT in th€ remainderoftlrc
paper. Cunendy, E)GBRT contaios about 650 nrles and analyzes and synthesizes s€veral
Dillions of solutions for 40 rasks (Möhrs, 1990, l99l; Möbus & Thole, 1990). On€ ofrhem
is the "even" task just introduced; morc tasks will be presented later. W€ tünk that such
a large solution spac€ is necessary becau6e w€ observed that espeaially novices often
construct unusual solutions öre to local rcpairs. (Ttis is exemplified by the clumsy-looking
studeft proposal in lle upper pan ofFigure 6.)

With respecl to th€ de,rig, p/trcrples meDtioned at the end of th€ las! Eection. the
ABSYNT Problem Solving Motritor does not iDternrpt but oJkrs help alld has attraqive
rlea\sof etal ation lnotheses testing, visual tnce). Iacorporation of aplrrrirg level ir
in prcgess (se€ also t}e discussion section). Concemiguser-centered ielp,tfu cornph-
tiotrs shown in tle middle part ofFigure 6 (bold progam ftagments) anal the compiete
solulion itr the lower part of Figure 6 were genemted by E)(PERT rules. EI@ERT anatzes
and synthesizes sotrtion propos:rls but is not addptiye to tie leamer,s knowledge. Usüally
EXPERT is able to g€nerate a large set ofporst6/e co!0pletionr. Thus the main irnction of
th€ 1M (interoal student model) i,6 10 rer€ct a completion fiom this set which is maximallv
corsirterl wrth the leamer's curreDt kno\+ledge stale, aod thus to provide u..r.*t"r.ä
help.

The IM contains simple clv{Rnd€s and composites ofthen It is continuously upalateal
according to theorctical aad empirical constraiüts. Therefore, GMR nrles, rule composi-
tio4 and empirical conshaints will be described before plesenting the IM.

GMR Rules

. This seclion describ€s the Ms-m€€ns-relation CMR The set of GMR rutes may be split
ilr two wats: ale 0?s (simpl€, composed) rs. datarare ofthe {nes (B)(PERT, POSS, n\i).
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. There arc three khds of simPte rulesi goal elabontion rules' rules imple entlng one

ABSYNT node (opetüot, parameter, or constant), a d rules inPlementinE prograrn

. Co posite rules aß$@ldby merging at least two sucaessrve n €sparsinga soluion

Composites may be produöed from simple nrles and composiles A composite is called

a .sclr;tn a if it contains at least oß pair ofvadables which can be bound to a goal tree

and a corresponding ABSYNT progam subtlee, rc6pectively. If a compo6ite is trlly
instantiafed ai.e., its variables catr only be bound to lod€ names ol noale values), then

it is called a cdte.

Co cf,r ilil tlLe dato base of the GMR nrles, EIGERT contains th€ expert domain

knowledg€ (only simple nrles). The sets IM and POSS wi be described below'

F4ure7 showsoomplesfor simplelules depict€d intheiivisual repres€ ations Each

rüehas a rate head (l&had ride, pointed 10 by the arrow) ald a rate ,odl (right hand

side, wherc t[e ar:row is poialrng fiom). The nrle head conlainsa$oalf"means-pair wherc

the goal is contahed in lhe €llipre ad the means (implementation ofthe goaD is contained

in tie r€ctangl€. The rule body contahs one goals_means-psir or a conjunction ofpairs, or

a primitiv€ predicate (isiarm, is-const).

Figure 7, Agoal elaboralionrule (E1) anda rule (Ol) imple enting the ABSYNT node

" if-theo-€lse"

Tlrc first nrle of Figue 7, El, is a goal elaboration rule lt caa be read:

lf tule headri
your main goal is "absditf'with lwo subgoals Sl and S2'

then ioave space lor a program tree yet to be implemented, and (rrle Dody):

lf in the next planning step you create the new goal "branching" with the

three subgoals
"loss-than (sl, S2)," "dlfference (s2, S1)," and'diffo.ence (s'i 

' s2)"'
then the program lree solving thls new goalwlll also be the solution forthe

main goal"

ol^
/1r rrtr.r,t pu\ | pt P: p:l

Yff*R,ZRZR,7
gmr
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Ol in Figure 7 is a simple rule iDpl€mnting the ABSYNT '.if-thendse" opemtor mde:

tf

then

if
thon
if
then
it
thon

tule hod):
your msin goal is "brsnching" witi thrce subgoats (tF, THEN, ELSE),
imphment an"il-tien-elso"-node (or ,,if-,'-node) with three links leaving
frcm itsinput, €nd leave space abov€ these links for three program tre;s
Pl, P2, P3 yot to be implomented; and (ru/e rody):
in the next planning slep you pursue the goal lF,
its solutlon P1 will also be at P1 in the solution of the main goal, and
in the noxt planning siep you pursue the goal THEN,
its solution P2 will also be al P2 in the solution oflhe main goat, and
in the nexl planning step you pu6ue the goal ELSE,
iis solution P3 will also be at P3 in the solution oftho main qoal.

Composltion of Rules

In oul theory, composit€s represent improved s?ed-up ktowledge. Simple rules and
composites constitute a partial order ftom simple rules (..micro rules") to solution
schemala to specific cases r€presenting solution examples for tasks. In this section we will
defi ne rule composition.

If we view th€ rules as Hortr clauses (Kowalski, l9?9), then the composit€ RIJ of two
rules RJ and RJ can b€ described by the inferenc€ rule:

RI: (F - P & C) R:(P' * A)

RU: (F * A & C)o

The hno clauses above the line resolve to the resolvent below tle line. A- C ere
cotrjutrction6 ofatomic formuias. P. P,, and F are atomic formu]as, o is the most general
unifis ofP and P'. RIJ is the lesult ofunfolding RI and RI-a round operation (Hogger,
1990).

For example, w€ can compose the scletna C? (Figure 8) out oftie set ofsimple les
{Or, 05, Ll, L2}, where:

Ol : gmr(branching(IF,THEN,ELSE),if-pop(p1,p2,p3)):-
gm(lF,P1),gmrGHEN,P2),gm(ELSE,p3).

05: gmr(equal(S1,S2), eq-pop(P1,P2)):- gm(St,pl),gm(S2,p2).
L1 : gmr(parm(P), P-pl)i is_parm(p).
L2: gmr(const(C), C-cl):- is_const(C).
C7: gm(branching(equat(parm(Y),consl(C)),parm(X),ELSE),

is_parm00,is

where:

if-pop
eq-pop
P-pl, X-pl, Y.pl
C-cl

if-pop(eq-pop(Y-pl,C-cl),X-pl,p))i
_const(C),is_parm(X),gm(ELSE,P).

= primitive ABSYNT pperator "if-then-etse" (or,,if',)
= primitive ABSYNT Operator "="
= utrlamed ABSYNT paramet€r leaves= empty ABSYNT aonstant leaf
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We also can desciibe the compositiotr of node implementitrg rüles R[ and RJ ]vilh a

shorthand notaloni

RJRIk

The index k alenotes the place k in the goal tree ofthe head ofRl Aplace k is thek-
th variable leafnrmbered ftom leftro right (e.g, Ol3 = ELSE). The semadics of "' " can

be described in thrc€ steps. Fir6! the luiable itr place k in the goal term in the head of Rl
is substituted by the goal t€rm ir the head ofRl secon4 tle call t€rm P in th€ body ofRI
whicn conains ttre tJ$e-snrbttrtutedvariable unifies with the head ofRJ and is rcplaced by

drc body ofRt. Thir4 tle unißer d is applied to the term rcsultitrg ftom the second step,

leadingtothecomposediuleRU Thu6, the variables afrected by the üification in step two

are replaced by üeir biDdings.
fi e).anpte, Orz . lt = gmroranching(IF, pa.m(P), BLSE), if-poper'P-pl,P3)):-

grnr(IF,Pf), isjarm(P), gnr(ELSE, P3) C? can be composed ftom the rule s€t {O1, 05,
Ll, L2) in 16 different ways. Two possibilities are:

C? = (O12. Ll)l . ((Os2. L2rr. Lt,
C7 = (((olt . o5)s. Ll)2. L2)1. Ll

Figure E. The composite C7

Empirical Constraints of Simple Rules, Chains, Schemata, and Cases

Rule6, nrle charnr, anal schemata give rise to dmerent emplfical prcilictions The

püpos€ ofthis sectiol ir to intoduce h]?otheses aboüt the application ofnovice and exp€rt

inowledge, viewert as simple GMR rules and composit€s. Som€ oftlese hypotheses will be

used in the Idtemal Model.
Any approach designed to represent changng knowledge states must rniror the shift

trom noviö to expert In geneßI, oovices work reqr,ertidlJ, set more subgoais, and ne€d

more control alecisions, wlüle exp€rts work inpdlallet, set fewer subgoals, and need fewer

conüol de.isions (Chase & SinorL l9?3; Elio & Scharf, 1990; Gugerty & Olsotr' 1986;

Simon & Sidon, 1978). Herg this difrerence is reflected iD the partial order {iom simple

rules to schemata to specific cases.

C7 :Composie of rhe rules Ol. 05. Ll.3d L2

YC

V*mr
\L-!-l

c

X

I

I

isl"iamerer
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In order to alemomtrate this difrerencg it is aecessary to speciry hypotheses about th€
problem-solvhg behavior. According 10 the ISP-DL Theory, a plan is E nthesized ftom
a goal, and executiotr ofoperators leads to a prctocol of actions atrd verbalizations (Figure
3). Thus, with rcEect to the li€ory, we make a distinction betweel the problem-rolving
phaßes&planninga\detecutioni Aplat synthesinrot "plannet" stnthesizesplht,aald
aA opefotor execüof ot "codef " executes olcrators 1o implement the plans. The coder
has dornain-specific knowledge (GMR rules) for implementing ABSYNT trees but no
planning howledge. The coder also has very limited execution knowledge: pattern
matchiDg wiltout üification (except for porartreter and highe! operatot names and
constänt values). More complex processes are l€ft to the plamer whosejob is to grdde the
cod€r, based oa domaiD-specific plaming knowledge and on w€ak h€uristrcs (to be
specified by the Extqrnal Model, a6 stated earlier).

For illustration ofa hypothetical interaction sequonce bctw€en plaßnet and coder, we
assume that the goal "brarching (e4ral (parm(y), co$t(o)), parn(x), ELSE)" is to be
impl€meded and tiat the coder has knor ledge about the set of simple GMR iules {Ol,
05, Lf, L2). Figure 9 shor s how the intenctiotr miglt prcc€ed: At time t0, the plann€r
deiivers tle goal. The coder has rc rule for it, so he rejects the goal. So the planner chops
the goal into subgoals. Next, he maypresentt!€ subgoal ''parm(y) " to the coder. Th€ coder
now has a rule, L I, instaltiates it to Ll', and edits all ABSYNT parameter node with tie
name ''y". Next, th€ planrcr deliveG the subgoal "parm(x) ". The plafiler us€s Ll again,
leadingto the instantiatiotrLl", ald prcgams aparameter x- Then tle planner comes up
wilh "const(o)". The coder uses L2, applyiBg L2' atrd progütnming a constant node 0.
Next, the subgoal "equal(S l, 52) " is givel The plalner instantiates 05 to 05' and creates
a ''=" node with two open links: their upper enals ar€ shadows (place holdeß for nodes).
After time !, the plarrcr tells ti€ coder that ''eqüal(S I, 52) " has "parm(y)" as its first
subgoal. So the coderconnects the first ioput 1itrk ofthe ''=" node to the parametery. Next,
the planner tells the coder ttrat ''equal(S l,S2) " has " const(o)" as its second subgoal, so
tle coder connecta the secotrd itrput link ofthe "=" node to the conslan! 0. Thus, the coder
has to rearrange the position of tle nodes and/or the orie .ation of the lioks. This is
symbolized by th€ hand itr Figure 9. Next, the planner comes üp with the
''branchitrg(IF,THEN,ELSE)" subgoal. Thecoder impleme s it, instantiating OI to Ol'.
A.ier time tm, the plan]ler tells the coder that "brarching (IF,THEN,ELSE)" has
"parm(x)" as it! second subgoal and "eqüal(Sl, S2)" as its first subgoal. So the coder
connects the second and first iaput lint ofthe " if-then-else'' node to the parameter x and
10 the "= " node, respectively. Agai., the position of linkr and/or rcdes on the screetr may
har€ to be rearlatrged. Now the goal is soh€d.

Thüs, tle planner does not how about tle coder's ktrowledge, and vice veßa. There
is no fixed order of applicatioD of GMR rules. The order solely depends on hop the goals
are delivered to the coder by the planner. In the example, the coder created tle sequence
of n e instantiations (Ll', Lf", L2', O5', Ol) depetding oD the goals delivercd by the
planftr.

In contast to tiis sequence, ifthe same goal "bmnching (equal (parm(y), const(o)),
parn(x), ELSE)" is givetr and thecoderknows the schenra C?, theothe iuteraction shown
iß FiBlIe l0 will be produced. Again, at time t0 the planner deli\€rs the goal. This time
the coder inslantiates C? to C7' and implements the ABSYNT tree contained in C7'without
rcquiring subgoals and linking ilstluctions from the planner.
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Figure 9. S$rence of inteüctions b€tween planner and coder while solving the goat
"bnnchiag (€eal (parnn(y), cotrst(o)), porn(x), ELSE)" with the s€t {Ol,O',LI,L2],
of simple rules

The planner stream

this goal, he asks the

-gJ l?\t- 6
The cod€r str€am

'he plrnn€r slr€am

- tr"

The coder stream

--Gia,"""r( ibrun.--hiisrli.'<al IFj

ffi
r-nffi;.\

---\t'--\j*
0 llhelrskis II done I

6
The coder

\=
str€am

ltkat
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Figure 10, Seque&e of interactions between planner and coder vhile solving the goal
"branching (equal (parm(y), const(o)), parm(x), ELSE)" wilh tle scherna C7

Ifwe comparc the first itrteraction (Figüe 9) wher€ the coder knows {O I, 05, Ll, L2 }
with th€ second ooe (Figrüe 10) where tlß code! knows C7, we obsorvel

.Inthefirstsequence,thecoderimplementsfiveprcgramfragmentscorespondingtothe
subgoals deliveredby the planner. In the second sequence, the coder implementsjust one
progam tre€ conespoading to the goal.

. In the firBt sequence, the planner gives explicit infonnation aboüt linking program
fragments, and tle coder re3rranges prognm fragments accordingly, ifnecessary. In the
second sequence, lhere is no süch informatioo.

In order to enable enprr cal predictions, \rc associate the following empidcal claims
with these observations:

Implcrnentation ofABSyIfi ptogtu nftagmentt: ßthe coder applies a cerüah GMR rule,
then exacdy the ABSYNI program ftagment contained in it is implemented h an
uninterrupted sequence ofprc$amming actions oike positioning a nodg drawing a lint,
etc.). We do not postulate order conrüaints vrrrr, this sequence, but rre expect lhe sequence

rct to be intemDted by progmmning actions stemmiugftofr dilferent tüe instartiations.

Vefializtlion of gosls: Following the theoretically motivated distinction of a planner and
a coder, selecting goals and subgaals for implementation by the coder is an act ofplanning
itrvolving conhol decisions. So rs seemr reasonable thatat these decision poitrts, tle selected
goals may be verbalized (Ericsson & Simon, 1984). The v€rbalizatioDs explain€d by the
selection ofa certain CMR nrle may be intermixed with the nrle's prog.amming actions but
not witl rrcrbalizations and actions stenming from different rule instantiatiors.

Co e.tion of positions: Y thejusl impledented program fiagm€nt solves a dangling call
or calls for another ftagftent already implemetrted, th€tr it is to b€ conierted with this
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existing ftagment Now, correctir€ progiamming actions are likely: lengthening 1inks,
chr.nging their orienlatioq and moving nodes.

Ifwe compare the application ofa single composite to drc application ofa set ofsimple
rules (like C7 vs. {Ol, 05, Ll, L2}), theo the followiog empirical cons€qu€nces are
assümed to result:

Inplzncntotü'n of ABSWT ptogamftagmenß Anvbn sn ation hypothesb): Fot tlß
set of simple nrles, the o.der of rule applicatioDs is indeterminatg but the prograrnming
actions described by eacft rule should be continuous . Actions ofdwrcnt nlle instantiotions
should not inE eave. Id contrast, when applyitrg the composite, tlere are no order
coNtrainls otr the prograoding actio.s al all sitrcejust otr€ le is applied.

Vefialisdon ofgoals (rerbalitation hypothesi.:t): lltlle examplq ifthe coder's lcnwledge
corlains C7, the planner has to make one control decision. Ifthe coalerknows or y {Ol, 05,
L I, L2l, the planner bas to ,nake at least five conüol alecisions (alepending on how the goal
is decompo6ed). Thus, we expecl that applying composiles iE accompanied by/sleelgoal
vefializations ftai appling conesponditrg set8 of simple rules.

CoEe.lion oJ positions (teaüangenent hypothesü)j ltr ca6o of the composite, therc are
no open GMR call6 to be implemened, atrd there arc no to-be-linked pmgam ftagments
lefl by earlier nrle applicationr. Thus, we expect that applying composites 1ea& torvel
posltlon coftectlons 

'MBSYNT 
mdes atrd liDks tha! applying the coneslondrng sets of

simplo nrl€s.

Pe4onone tine (tine hfpothesü): Plaiaiag, selecting, atrd verbalizing goals, and
correcting positions of trodes and link are intemal or external actions that are e\Tected to
needtime(Rosetrbloom&Neweü, 1987). Thusr weexpectliatapplying codlpositesislßle/
than applying the co.rEsponditrg sets of simple rules.

These predictions have not yetb€en iNestigated empfuically, except for tl€ rnplemen-
tatioD hypothesis (see b€low). But both the implementation h)'?othe6is and the tim€
h]?othesis are used in the const$ction ofthe Internal Model to be described now.

The lntemal Model (lM)

The IM is a set of domail specific knowledge (simple GMR rules and composites)
utilized and continuously updated. As staled earlier, the IM covers the subset of the ISP-
DL Theory shaded in Figues I to 4. So b€fore alescribing it in detail, we will slctch it in
terns ofthe ISP-DL Theory.

Concening Figare 1: The PS is faced with a progranming task Goal) and con6tructs a
solution proposal (.rolrtior). The solution is parsed, usilg the knowledge bose (rslesint\e
IM and-as far as needGd-in EXPERT). Subsequendy, the nlesjust used for parsing are
o p t i mi ze d W composilion.

Since these new composites may be bas€d on E)GERT nrl6s, they are not direcdy inserted
into the IM: Accordirg 10 ISP-DL Theory, a Iule car ody be imp.oved aner it is successfully
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applied. This implies for the IM that it cannotat the same time be augmenledby a new simple
.ule (from E)GERT) and by composites built ftom tle same simple r|lle. For this reasoa,
in addition to the IM there is a set POS,S ofpossible candialat€s for futurc composites oftfte
IM. Composites ofthe rules used for parshg a solution proposal are geneüt€d and kep! i[
POSS as candidates. Only lhose surviving a later test are moved itrto the IM. These rules
represent tlrc result of "de ductive kna.)ledge optinization," that is, imprceedk\o\tldge.

Conceming Fig*e 2: If parsing the solution js possible solely with ndes in the tvt, tllen
the IM is considered as sufrcien! !o construct the solutior\ and "Goal Prccessing" is
termljnated ("reaction to $ccess"). But if parsing 1le solutiotr requires additional
E)GERT rules, then the IM may be augmented by the6e (simpl€) rul€s, which represent the
r€f,d1tof"inductiyeknoyledgeacquisilio ",th^tis,k:^o,üledgenela)l!acqtircilinrcsi.ponse
to impasles.

Coacemi g Figure 3: T'l\e pa$e tree represents the student's hlpothetical solutioqplar,
vhich execunon ld to a p/olrcol: th€ sequence of programming actions, verbalizations,
and corrections exlibited by üe student. We call that part of üe protocol conristing only
of lhe sludent's programming actro.s (creating nodes and links, naming nodes) the
suüenl's action sequence, Tae action sequence is us€d to evaluate the parsc rul€s:

Since knowledge improvement shoüld resüIt in sp&-ttp [f.'fotmu\@ (time htpoth-
e,tio, a composite is movEd ftomPOSS to IM only ifthePs shows aspeedlpfrom an earlier
to a later action seqßnce whel6 both s€quences can be produced by the composite.

The IM contains only GMR rul€s (simple rules and composites) which ploved to be
plarstble witft resp€ct to an action sequerce at least once. This is defined now. With resp€ct
to sorne action sequence, GMR rules fonn foul subsets:

(l) Rules not containing any program fragments ("goal elaboration rules") are
,ordecisrv€ with respect to tl€ actron sequence. (But veftalizations can be rclated
to the goal elaboralion rules; s€e Möbus & Thole, 1990).

(2) Rules whose head contains a program ftagment which is part ofth€ final result
produced by the action s€quence, and which was programixledia anoninternlpted,
tempomlly continuous subsequence (see the imprerrentation hypothesisr. These
njl€s are plausibk wiü rerpect to the action sequenc€.

(3) Rules al6o conl,aining a program Aagment which i! part ofthe final result of the
acdon sequ€nce, but this lragment corrcsponds otrly to the result of a
,arco iouons action subseAlueß,e interruptedby other action steps. These rules
are inplausible with rcspeo lo the actiotr sequence.

(4) Rules whose head contains a prcgram fmgmenl which is not part ofthe final rcsult
produced by the action sequence. Thes€ rules are izereyarl to the action sequence.

A c/edil rewarals the usetrllress ofth€ nies in the IM. It is the product oftlrc length of
tle action sequence explained by the rule and the number of its succ€ssfi appLications
(ftequency ofbeiog plausible). Thlls, the credit depends on the empirical evidence gathered
for a rule.
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Durhg the küowledge acquisitiotr process, the tM is utilized atrd co inuouslyupalateal
according to a proc€rsing cycle shown iD Figue I l:

. Srarr CIop ofFigure I I ): The fust programming task is present€d. Ioitially, both sets IM
and POSS are empty.

. Now the learner solves the first task prcseoted. Thts, an action sequence is ptodttce,l,
leading to a roirtio, to lhe task. The action sequence is saved itr a l€ file.

. F st f€sl.' IM and POSS are empty, so Dothitrg happens.

. Frrul Paff€: The l€amel's ABSYNT program solutioo to lhe achral task is parsed witl
the EXPERT rüles, l€ading to a 6et ofparse rules.

. Fißt Generate. TheE:trPERT rulesjust used for pa$ing are compared !o the action
$qu€nce. Theptrtßiüle parse EXPERT rules are put inio the IM and get credit. Ther
the coEposites ofall parse n es are creat€d aIId comlDr€d to the action sequence. The
plausible conposites are kept in POSS. They are candidates of improved knowledge
us€fid for futule task. For each plaujgible composite, the time needed by the pS to
perform the corresponding actioD sequence is attach€d. Now the Genente phase is
fnishe4 resultitrg in an üpdated POSS and IM.

. Now the next task is presented to the PS. ?he PS creales an A.BSYNT action sequence
ard solution to it.

IM empty. mSS emtry

llurgis aob^suuui

1. Each composir€ in POSS
- which isplausible in üe pr€senl (üon s€quence
- which a.tual *e.u!ion lihe is shofler thai rhe

is moved from POSS lo lM
2. Each ifteievant composite iskcprin POSS
3. AII othercomposires in POSS are skipp€d

L The plausible par-s€ EXPERT rules
are put ino IM ard ser crcdit
2. The plausible composites ofall
Dars€ rules arE Dur inro POSS.
Exeution rimei of üe.ntr.mndinoExecution times of tlle con€sponding
aclion seouences are atbched.

SolDtion is päßed wi$ rules in IM
o.dered by credit and (as needed)
wilh other EXPERT nles

Figu 1r I l . Th€ uliliziag ard lpdating cycl€ of the IM duriry the ktrowledge acquisition
prcces8
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. Second Test: Eaßh cofrWsite in POSS is check€d if
(a) it is plausible wilh respect to the acdon sequence, a-nd
(b) the time needed by the PS 10 perform the res!€ctive continuous action sequ€nce is
shoter than the time attached to the composite. This means that the PS p€rforms the
aclion relr$e/ than the previous corresponding action set which led to the cr€tion of
the composi&.

The composites me€ting these requir€monts are put into the IM. Composites
inelevant 10 l[e action r€quence ofthe solutioojust qeated are ld in POSS. They might
prov€ as uiefirl composites otr future lastr. All other composites violate the two
requircmenls. They are skipped; that is, they are composites implausible to the actual
sequence, or composit€s which pr€dict a more speedy action sequence than observed.
This mean6 that the PS performs the action set rtolrer than the previous conesFnding
action s€twhich led tothe creation ofttre composite. This slow-dowr is inconsistent witl
our mod€l asslmption that the PS prefers composites lo simple nies; thus, the composite
is not trandercd to the IM but skipped.

Fitrally, the credits of a[ rules itr th€ IM which are plausible with rcsp€ct to the
prcsent actrotr s€quence arc updated. Thus, the s€cond test l€ads to an updated POS S and
IM.

..SscordParue:Nowthesolutionofthesecoidtaskisparsedwiththerüle6oftheIM
order€d by tteir cledits. As far as neede4 E)PERT rules arc also used for parsing.

. Second Generate. The plausibility of E)(PERT rules which luve just been ured for
parsing is checked. The plausible EXPERT parse rules are agaitr put i0to the IM and get
crcdit. Fürthermore, the composited ofall actual paNe rules arc oeated. The plalrsible
composites are put into POS S; they will be tested on the next tesl phase. Agai4 the time
needed for tle corresponding action seque&e is stor€d with each composite.

With rcslectto the design pri&iples ftomISP-DL Theory forthe IM mentioned earlier,
the IM contains,rimple rules (stemming from E)OERT) rcpresentrng newly acquired but
Dot yet imprcved knowledge, and comlrosires rcpresenting various degrees of e.\petise.
EmpüCäl perfomonce dala such as speedp and the concept of plau6ibility are used for
updating the IM. Funhermore, the IM predicls order constrainls on action sequences,
verbalization, rearangement, and time. As in the ABSYNT Problem Solving Monilor,
p/drrrrg howledge is not yet accounted for in the IM, but work is in progress. Finally, ,e/p
generation will be discussed below.

An lllustration of the lM

Figüre 12 shows a continuous ftagm€nt of th€ action s€quence of a PS oD a prognm-
ming task. Again we will focus on the nrles O l, 05, L I, L2, and C? (see Figües 7 and 8).
When 52 performs the sequence of Figtre 12, 01, Ll and L2 are already in the IM from
earlier task. 05 is not yet iü the IM but only itr the set ofEXPERT nrles. C7 has not yet
be€tr creatod,

After the subject has solved the task, the TerrPrrse (Figure I l) starts. Since the only
composite we look at here (C?) har not been created, we only consider the fourth subphase:
qeditupdatirg. Ol is irrplaßt le with respect to Figure 12 because the actions cone6pond-
itrg to the rule head of Ol are not continuous but intenupted. They arc pefiotßd at
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ll:15:52, ll:15:58, l1:16:46, and ll:16:55 (Figure l2). Thus, üe action sequence
corresponding to lie rule head of Ol is imerrupted at I l: 16:42 and I I : 16:50.

_ Ll atrd L2 are also implausible. Actionr coresponding to Ll are performed the trrst
time at I1: l5:08and I I: l5:29. Thus, üis s€qudceis i errupted at Il: ß:16 arrdlI:15:22.
Ll-like actions are slown a recond time by th€ pS at ll:l;t42 alr(l I t:16:50. These ar€
ioterrupte4 too. Actiols conesponding to L2 arc pcdormed at I l: l5: 16 and I I j l5:34. withi erluptioos at ll:15:22 and ll:t5:29. So since Ol. Ll. a.od L2 are imptausibl€. their
cledils ar€ not changed.

Now the subject's solution isparued$,ith rut€s in ltre IM and. as n€eded. with additional
E)(PERT rules (Figure I l). Ol. 05, Ll, aod L2 are amotrg the palse ruje; in this case. as
m olher nrles have a higher credil and are able ro pars€ the solütion.

After tle Palse Phase, the Generate phase Figore I l) starts. 05 ir a! E)(PERT rule
used foear6ing. But 05 is implausiblq sioce its correspotraling actions were performed at
ll:15:22, I l:15:38, and l1:15:43, with interruptions at ll:15:29 and lt:1534. So 05 is
aot put ir g the IM. Then the comp,osites oftle parse rul6s arc formed. C? (Figure 8) is a
composite formed from O 1, 05, Ll, and L2. This composite is plalsible because it rlescribes

!!i {nter.roryn-r"qu9oce ofprogmrDming actions froo I l: i5 :08 to 1 l: t6:i5 (see Figure
12)--des-pite the frcl tlat its comporcnts Ol, 05, Ll, ad L2 are all imptausibü. Staiitrg
fromtheb€ginning ofthetask (at I 1 | 14:40), the time forthis action sequence is l3 5 seconrisi
Thus, tle composite C? is stored iü POSS lvith . . 

135 s6conds" atttched to it.
Aft€l soluliod ofthe nextEsk, the now following T€stpha6e rev€als that C7 is plausible

again. ilhr correEonding action sequence (not depicted) was perforrned in 92;econds,
which i6 less than 135. So C7 is moved into the IM and gets a crqdit of 13 rince it describ€;
13 programming steps (see Figue 12). Ttis credit will be inciementeal bv 13 each time the
coüposite is plausible agäin.

An Empirical Analysis of the lM

As stated, tle IM gives riße to several empirical predictions_ We investigated the
inplene tation hypath5is, slaling lhat the programmi ng actioDs described by a äe i n the
IM are performed io a contjnuous unintenupted ten{nial sequencc for a single subject
crcatrnB oon-rccursive solutions to seven ABSYNT prcgrammmg tasl(s. Tbe IM was run
offline based otr tle action reque[ces exhibited by th; s;bjecr Fo;ev€ry solution, a rrrodsl
tace (order constaint6 on the action sequ€oce) was prealicted and compared to th;ff jed
tace, th€ subject's action sequence ttrat l€d to the solution. Figure ljshows

(a) a slrbset of the /n/es in the IM after the subject solved tle third progmmming task of
tle task sequence. For each IM nrle, the rule name and the prog; fr;gm€nt ir-its head
are depictd.

O) the subject's so/rlto, to rüe next tast, '.quot', (to cooslrljct a program dividing the
larger by the smaller of two trumbers).

(c) ürcpredictedconstrai s onth€ actiotrs€quen@ (rrodel r/ac€), given this solution. The
p$güm ftagments predicted to be coNtrüctedin an unideirupGd sequerce are box€d.
Thus, for examplg the if-ü€n-else node nie prealicts that prog.arnming the if-tten_
el8€ rcde a-nd three link leaving it are four prograjnming actions peÄrmed in an
unifte..upted scquence. So t[e cor€spolding ftagmeafis boxed ia nigure ßc.



I l:15:08

FI(:-

@@tg tr]
a.)

l1m
t-

,d--iö-l
PJ IOJ I\..,' i

a:-.)idtqi
<r3r

..------t3-l

I lrl5:29

-t:-
l1:15:52mFrt- \:,

-TJ
.f:f)
t----t

@@t3 L9
ettct<Ül.:m

The rule Ol (Fisue 7) coßponds
to üe four boldly lided progran'
ming actions:
placing the if-tlen-else-node and
drawing the $ree input linl.s.
In üe sequence these aations rre
inre.rupled twice (doded lines):
Placing and nmins a paffeter
node.These aclions correspond
!o the ruleL1.

ll:15:22

-t=
@6t4 trj

-LJ

I l:15:16

@6tir. J

rqGT3 LJJ

-t=
I1.16146,

I l:15r:14

r@@t4 t9
:t-

1lil6i55

rryr r*r\- L:'

-@
L : lI a I\-<=7-

A Modelotthe Acquisition and lmprovement of Domain Knowledge 469

Figure 12. A continuous ftagment ofa s€querce ofprogmrnrniog actions of a subject

Similarly, placiry a pal:ameter node and naming this node are two actroos preaLcted to
occur subsequently. lnstances ofthe s€me nodes are indexed,

(d) the observed actions sequeoce ofth€ subjecl (srläject tace). A "+" denotes a p6ir of
progiamming actions explained by the same IM n e a$d perfomed subsequently. A
"r' dercles a pair of progamming actions explained by tl€ saE6 lM rule but
interrupted by sooe otler actron(s). Thus, "+" denotes fits and "-" d€Dotes @ntm-
dictions to lh€ predictions.
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There were 80 "+" and 49 " -" for the sel€n action sequences. Since more ''+ " shoüld
le3d to fefl€r runs than equally many ''+" alrd " r', we applied the Runs tesl. There wer€
40 runs (D < 0.001).

Figüre 13. a) subset of the IM before solving "quot", b) Sz's solutioo to "quot", c)
ptedicted action sequences, d) observBd action sequence corrcsponding (+) or conuadicting
G) to Lhe predictions

a) Sub\d !l Lh(rul(s,nrh(lMl.-ll,N52slvcstheln51 unot (afrcrsolvinr "rbslltl')

t$tHt$tggtgtYJ
b) S2's soluLion ro thr tsl quof

c) Prcdictrn a.don sequences (model trace fragment!)

d) Obsened action se4uence (sübiet tmcc)

placing pardrnel€r node bl
placing parüD€ler node ä1
placing ope.alor node <
creating lefl link into <
crcati.g right link into <
naming pdmeler node bl
nmins paramerer node al
placing operator node if-then'else
cleating leit link into ii-thcn-elsc
placing paiameler node ,
placing paramctcr nodc b2

llacing opcrator nodc /l
crcä{iDg leli lint iDLo /l
crcaling .i8ht link into /1
narning parametcr node a2
naming palmeter node b2
creating middle link into if-ücn-els
placing paraDelcr node b3
placins Darameter node a3
placing operator nodc ,2
€rea1in8 leit link into /2
crcadng right link inr,o /2
crearing right link inlo if-üen-else
naming paraneler node b3
nämins patameiff node a3

,@,@.@,@8,

Htr'ltsi,
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Discussion

Weprcsented an approach !o online diagnoris ofstudents'knowledge which is intended
to bebas& ott a theorctical framewo* onprcblefir *lving ad leaming, to b€ empiricaly
valid, aad. to s\tppott adaptir€ l7erp gercratio[ We will now discuss how far the IM meets
these requirements and how we plan to imFove it.

Foüdütion on olheotdicautama.wr*: Inlhe section "The InternalModel", we showed
how in our view th€ IM is related to tie ISP-DL Theory. We tded to motivate the fstures
ofthe IM by the th€ory. But still many aspects ofthe tleory rernain u.ncov€rcd by the IM.

. Generulizano, of knowledge. Oü obsenations from single-subject sessions with
ABSYNT indicated use of previous solutions and positive tlalrsfer e6pecialy fo!
recursive tasks- Thus composites in the IM should be gane'?lr4.d.. Generulization of
compasil6 may be viewed as another tray ofknowledge optimization (e.g., Anderson,
1983; Wolfr, 1987) itr tesponse to the 6uccesstul ütilization ofkaowledge (Figüre t).
Additionaly, geneolized knoydedge should also result fto''\analogiziig as ^ ^lbfia-tive to 5'athesiziry a plan (Figure 3).

. Syr hesizing aplar. Cünently, the IM takes account only ofthe implementation leve1,
but there is uo Gpresentation of plaming k rowledge witlin the IM.

Con.f'rniug generalizatior, it is easy to construct g€rcralized GMR nrles (containing
variables not only at the l€av€s of the goal tees alrd program tre€s) by using a concept
hierarchy. Conceming a p lanhinE level, we wafr.llß leamer to be able to construct plans
with an extension of the ABSYNT larguage by new goal nodes so that ni.xed ABSYNT
progam6 containiog opemtor nodes aqd goal nodes will be possible. The learner will be able
to lest hlToth€ses and to receive error and completion feedback at this plarrirg l€vel even
ifhe or she has ao idea yet about tle implementation. Thus, the leamer mayfir iptan tgcß.l
üee for the task at hand, test h)loth€s€s aboul it, and dobug it, ifnecessary. Afterwards, the
leatr'et may implement t\e goals by replacing them with operator rcdes or subtrees.

Frcm the user's Ioint ofview, lhe benefit ofusing goal nodes will b€ tlat hpottreses
testin& will be possible at tlß planning stage, Itlotjtßt at the impleme ation stag€. Frcm
a psychological point ofview, the benefit is that orlctte alata about the plaffitrg process
can be obtained in additi@ to tle veöalizations. Fitally, fmm a help system design point
of view, the benelit is that in addition to ht?otheses tesling it will be possible to offer
plonning rules ashelp to the legmer. The planning rule6 will be visual representations of
GMR goal elabomtion rules.

Empirical wlidity. First of all, the model bas to be empirically t€shble. We showed
lbat nany empirical predictions are pos6ible based on the IM, and 6ome more will be
presented below. IIl aaldition, a 6rst empirical investigation revealed that the IM describes
a considerable poiion of t-he subject trace. But the investigation also revealed how th€ IM
might be improved. The following table shows how the ''+" aad '1" are distributed across
different t Tes of rules in the IM:
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Perdmotü Conslenl Pdniliveoperatü Conposiles
node nrle noderule node rules

"+" cas€s 2
27

447
714

27
1

Thus, the pammeter node nrle, for examplq is rcsponsible for 2 "+" and for 27

"-": The subjecl usoally does not place and name a parameter ndc in sequence. The same

s€ems tnle for the coostant node rule. Obviously, grr€n that this result wiu be reproduced

witl other subjecls, it should be possible to enhance the IM by splitting the parameter node
rule (and the coDstant oode nrle as well) into trryo new tules; one for positioning and one for
namiDg a parameler md6. Th€n the curent palametü node rüle would have to be

consrdered as a corposrlg ofthese two new rules.

tulapth,ehelpgenetutia.TheultimategoaloftheIMistoprovid€adaptvehelpor,
more generally,lo have animpact onthe us€!-s)5tem-intenclion in a way thattakes account

ofthe individual. In the ABSYNT Problem Solving Monilol the need fot the IM is obvious:

. Ther€ is a large solution space (ihe system is able to analyze and generate mrny solutions
to givellrsk) which is ne.€ssarybe.ause we want tobe able to take car€ ofnovices' often
unusual or uDrecessarily complicated solutions (see Figue 6).

. Becaus€ of the large solution spac€, there is usually a large amoutrt of completion
proposals that can b€ geßrated by the ststem, so the problem is wluch one to selecl. Th€
task of the IM is to enabl€ sercentered sel({iion.

But as indicate4 the role ofthe IM will notbe resldcted to tle completion ofABSYNT
nodes. Exteühdg completron 10 the planning level and ofrering visual plarming nrles as

help wil impose additional dernands io the IM. Additio@lly, the IM does more thanjüst
help selectio4. The infornation provided to lhe stualent may b6 varied itr several ways, and
this gives rise to empirical predictions {hich in tum might support orweaken the IM. Figure
14 illustrates how idormation intenaled as help calt be varied and what can be prcdict€d.
Basically, whelt the student is caught in an inpasse and ask for a completron Foposal,
according to the IM there arc two possible situatiors:

. The student lacks domain-specific implementationküowledge. Thus, with rcspect to the
intemction of plaruriog and coding described earlier, there is a coding Foblem.

. The stualent has knowledge of how to proceed but does not make üse of it; there is a
planning prcble'ü.

Therefore, it shouldbc possJ.blelo Fedict inpassesbas€d on the IM. Another prcdiction
is that idomation iDtended as help should address the dghl level. If the student is stuck
because of a pldrril,g problem, he or she should get annoyed or even üps€t by info.mation
a! the codirg level (or implementation level), aadvrceve$a. But more specific predictions

within each level are possible too: Figure l4 depicts a hDotheticol situation wh€Ie th€
studentjust perfomed some programming aclions, then gets slrck and asks for completron
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proposals. Acrordiog to the I]vl there is a knowl€dge gap on the codiDg let€l, and after
filling it, the student would be able to proceed (shaded part ofthe srrow in tie upper right
of Figure l4). Now there are several possibilities to re3ct to the gap: The information
provided might vary in g/dh nze ard amount (o\ t\e l€ft ofFigue l4).

Figure 14. TITES of infornation possibly provided in response to a knowledge gap
diagnosed by the tü, and h'?otheses conceming the student's reaclion to this infonnation

. Grai, $?e concems the rules ündedying the completion proposal. Iflhe grain size islre,
then the completion prcposal may rest on a chain of simple lules which covers the gap.

ln this case, the completion proposal may consist of an ABSYNT subtree with an
erylanatiotr of each programming step needed to construct this subtree, where the
explanationis based onthe goal structure ofthe chain ofsimple n es.Ifthe grain size
is coals€, t!6n the completion proposal may rest on a sirgle composilg (to take the other
exüeme). The 94€ subtlee may be provided, but without an explanation.

. l oarl crncen6 th€ relation between the completiotr and the gap. The complelron
prcposal mi!.}l exactly |i, the gap, so subseqrently the student can prcc€ed by r€lying
on her / his own knowledgp. Alternatively, the completion proposal may contarn too
nuc, idormation (more tban necessary) or ro, eroug,ft inforrnatioa (tle gap is not
completely covercd).

Imparse: Slodent demands
compleLion prcposal by rhe sysEm

(according to IM): (rime)

ypoLheses: how üe studenl reacrs ro help

(slllÄil gäp lefi)

Gmall sap left)

(laise gap lefi)

f i1le.in8 equired: burdensomc

self explanalion + filEring

helplul + small hduction step rcquired

""r*.t"" 
< sT:f,!L"ffip"" "8' 

+ sm:ill DducLioD step requir€d

helpful + large iduction slep €qui€d

*,-,"s <$?:;'JLTHÜ"8
+ rarge rnducuon step ßqulßdtarnolrn!
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Oo th€ left aad iddie pan ofFigure 14, the difrerent combinations of gmin size and
amount of inftnnation arc shog,a. They lead to diffelent hl,potheses (on tle dght ofFigüe
l4). we will desc{ibe soEe of th€d:

. Ifthe information is fitre-grained and exactly fills the gap (Iirsl row itr Figuie l4), ttren
we wodd expect that the stualent considers this itrfotmelion as helpful.

. ffthe informalion is coarse-graine-d and exacdy fills the gap (second row), then the
student misses e4lanations. S/He might eitherpasstwly accept whatisbeittgofreffÄ,
or engage fu self-explanatto, (Vanl-ehn, l99la).

. lfthe infonnation is fine-grained but exceeds the kmwledge gap (third row), tften lh€
student has to'jrlel" the co ent relevalt to the current situation. This might be
expeienc?Ä as b ur de n s o n e.

. Iftle iofo!fiation leaves a small knowledge gap (fifth änd sixth rows), thetr tle student
mighl try 10 induce one new simple rule and thereby cover the r€st of lh€ gap. Clhis
situatiotr 6eems similar to the induction of one subp.ocodure at a time by Vanl-ehn's

ll987l SIERRA program.)

. Finally, lhe last cas€ to be consider€d here is that there is a large gap 1efr, and the
inforrnation odlered is loo coaise oast roD. The rtudent should experience such
inforrnation as very inadequate to his curcnt problem. She or hg then, should feel
annoyed or even upset-

There remains much research, ofcourse, to wolk out these h'?otheses and put them to
€mplncal test. But we think we har€ shown that the IM is an empirically fiuitful approach
to ktrowledge diagrosis ard adaptive help gpneration which is testable and also toüches

upo! füth6 iopo.ta[t lesearch problems, like motivation and emotion.
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