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This paper describes a model of students’” knowledge growth from novice to
expert within a theoretical framework of impasse-driven learning, success-driven
learning, and problem solving. The model represents the actual state of domain
knowledge of a learner. It is designed to be part of a help system, ABSYNT, which
provides user-centered help in the domain of functional programming. The model
is continuously updated based on the learner’s programming actions. There is a
distinction within the model between newly acquired and improved knowledge.
Newly acquired knowledge is represented by angmenting the model with rules
from the expert knowledge base. Knowledge improvement is represented by rule
composition. In this way, the knowledge contained in the model is partially
ordered from general rules to more specific schemas for solution fragments to
specific cases (= example solutions for specific programming tasks). The model
is implemented but not yet actually used for help generation within the help
system. This paper describes the theoretical framework, the ABSYNT help
system, the model, a preliminary study addressing some of its empirical predic-
tions, and the significance of the model for the help system.

Introduction

The problem of student modelling is an important research topic especially within the
context of help and tutoring systems (Anderson, Boyle, Farrell, & Reiser, 1987; Brown &
Burton, 1982; Frasson & Gauthier, 1990, Kearsley, 1988; Sleeman, 1984; Sleeman &
Brown, 1982; Wenger, 1987). Advance in designing such systems seems to be possible only
if the actual knowledge state of the learner can be diagnosed online in an efficient and valid
way. This is difficult (Self, 1990,1991) but necessary for a system in order to react
adequately to the student ‘s activities. Furthermore, it has been well recognized that progress
in student modelling depends much on understanding what the student is doing and why.
Thus,detailed assumptions about probem solving, knowledge representation, and acquisi-
tion processes are needed.

We face the student modelling problem within the context of a help system in the
domain of functional programming: the ABSYNT Problem Solving Monitor. ABSYNT
(*‘Abstract Syntax Trees’’) is a functional visual programming language designed to
support beginners acquiring basic functional programming concepts. The ABSYNT
Problem Solving Monitor provides help for the student constructing ABSYNT programs to
given tasks. Adaptive help requires a student model. Our approach to model the student’s
knowledge rests on three principles:
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o To try to understand what the student is doing and why. This amounts to constructing
a theoretical framework which is powerful enough to describe the continuous stream of
hypothetical problem solving, knowledge acquisition, and utilization events, and to
describe and explain the stream of observable actions and verbalizations of the student.

e To use a subset of this theoretical framework in order to construct a student model
containing the actual hypothetical state of domain knowledge of the student. This state
model must be (and can be) simpler than the theoretical framework because its job is
efficient online diagnosis of domain knowledge based on the computer-assessable data
provided by the student’s interactions with the system.

o Tofill the gap between the theoretical framework and the state model by constructing
an offline model of knowledge acquisition, knowledge modification, and problem
solving processes. This process model provides hypothetical reasons for the changing
knowledge states as represented in the state model.

In accordance with these principles, we pursue a three-level approach:

o Atheoretical framework of problem solving and learning serves asabase for interpreting
and understanding the student s actions and verbalizations. We call this framework ISP-
DL Theory (Impasse - Success - Problem - Solving - Driven Learning Theory).

o An internal model (IM) diagnoses the actual domain knowledge of the learner at different
states in the knowledge acquisition process (state model). It is designed to be an integrated
part of the help system (*‘internal”” to it) in order to provide user-centered feedback.

e An external model (EM) is designed to simulate the knowledge acquisition processes of
learners on a level of detail not available to the IM (e.g., including verbalizations). Thus,
the EM is not part of the help system (“‘external’” to it) but supports the design of the IM.

Thus ISP-DL Theory, IM, and EM are designed to be mutually consistent but serve
different purposes. This paper is concerned with the IM. It is organized as follows: First,
we will describe the ISP-DL Theory and our help system, the ABSYNT problem-solving
monitor. Then, the IM is described and illustrated. Empirical predictions and a first
evaluation are presented. Finally, we will show how the IM enables adaptive help.

The ISP-DL Knowledge Acquisition Theory

The ISP-DL Theory is intended to describe the continuous flow of problem solving and
learning of the student as it occurs in a sequence of, for example, programming sessions.
In our view, existing approaches touch upon main aspects of this process but do not cover
all of them. Consequently, the ISP-DL Theory is an attempt to integrate several approaches.
Before describing it, we will briefly discuss three theoretical approaches relevant here:

(1) InVanLehn's (1988, 1990, 1991b) theory of Impasse Driven Learning, the concept of
an impasse is of central importance to the acquisition of new knowledge. Roughly, an
impasse is a situation where *“the architecture cannot decide what to do next given the
knowledge and the situation that are its current focus of attention’” (VanLehn, 199 1b,
p. 19). Impasses trigger problem-solving processes which may lead to new information.
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(2)

€))

Impasses are also situations where the learner is likely to actively look for and to accept
help (VanLehn, 1988). But problem solving or trying to understand remedial informa-
tion might as well lead to secondary impasses (Brown & VanLehn, 1980). Impasse
DrivenLearning Theory is concerned about conditions for problem solving, using help,
and thereby acquiring new knowledge. It is not concerned about optimizing knowledge
already acquired. ‘‘Knowledge compilation . . . is not the kind of learning that the
theory describes” (VanLehn, 1988, p. 32). Thus, with respect to our purposes, the
theory seems incomplete.

In SOAR (Laird, Rosenbloom, & Newell, 1986, 1987, Rosenbloom, Laird, Newell, &
McCarl 1991), the concept of impasse-driven learning is elaborated by different types
of impasses and weak heuristics performed in response to them, Impasses trigger the
creation of subgoals and heuristic searchin corresponding problem spaces. If a solution
is found, a chunk is created acting as a new operator in the original problem space.
As in Impasse Driven Learning Theory, all learning is triggered by impasses. But in
our view it seems questionable whether all knowledge acquisition events can reason-
ably be described as resulting from impasses (VanLehn, 1991b). In SOAR there is no
“‘success-driven’’ change of knowledge staying within ore problem space (i.¢., as the
result of the successful application of existing knowledge).

ACT* (Anderson, 1983, 1986, 1989) focuses on the success-driven optimization of
already existing knowledge by knowledge compilation but pays less attention to the
problem where new knowledge comes from,

We think that for our purposes it is necessary to cover problem solving, impasse-driven

learning, and success-driven learning as well (see also Schréder, 1990). Thus, ISP-DL
Theory incorporates

the distinction of different problem-solving phases (according to Gollwitzer, 1990):
Deliberating with the result of choosing a goal, planning a solution to it, executing the
plan, and evaluating the result.

the impasse-driven acquisition of new knowiedge. In response to impasses, the problem
solver applies weak heuristics, like asking questions, looking for help, etc.(Laird,
Rosenbloom, & Newell, 1987; VanLehn, 1988, 1990, 1991b). Thus, newknowledge may
be acquired.

the success-driven improvement of acquired knowledge. Successfully used knowledge
is improved so it can be used more effectively. More specifically, by rule composition
(Anderson, 1983, 1986; Lewis, 1987; Neves & Anderson, 1981, Vere, 1977), the number
of control decisions and subgoals to be set is reduced. In our approach, composition is
based on the resolution and unfolding method (Hogger, 1990).

We describe the ISP-DL Theory by hierarchical higher Petri nets (Huber, Jensen, &

Shapiro, 1990), though alternative modelling formalisms are possible, for example, stream
communication (Gregory, 1987). Petri nets show temporal constraints on the order of
processing steps more clearly than a purely verbal presentation. Thus they emphasize
empirical predictions. The whole process is divided into 4 recursive subprocesses (pages):
““Problem Processing,”” ‘‘Goal Processing,”’ ‘‘Nonoperational Goal processing,’” and
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“‘Operational Goal Processing’’ (Figures 1-4). Places (circles/ellipses) represent states
(e.g., the content of data memories); transitions (rectangles) represent events or process steps.
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Figures 1-4. The ISP-DL Theory of problem solving and learning
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Places may contain tokens which represent mental objects (goals, memory traces,
heuristics, etc.) or real objects (e.g., a solution or a behaviour protocol). Places can be
marked with tags (Jn for entering, Out for exiting place, FG for global fusion set). An FG
tagged place is common to several nets (e.g., the Knowledge Base). Transitions can be
tagged with HI (for hierarchical invocation transition). This means that the process is
continued in the called subnet. The dotted boxes show which places are corresponding in
the calling net and in the called net. Shaded transitions and places are taken into account
by the IM (see below).

Problem Solving is started in the page “ Problem Processing”’ (Figure 1). The problem
solver (PS) strives for one goal to choose out of the set of goals: “‘deliberate.”” A goal may
be viewed as a set of facts about the environment which the problem solver wants to become
true (Newell, 1982). A goal can be expressed as a predicative description which is to be
achieved by a problem solution. For example, the goal to create a program which tests if a
natural number is even, “‘even(n)’’, can be expressed by the description:

““funct even = (nat n) bool; exists ((natk) 2 * k = n)’’,

The goal is processed in the page **Goal Processing’ (Figure 2). If the PS comes up
with a solution, the used knowledge is optimized: deductive knowledge optimization. When
the PS encounters a similar problem, the solution time will be shorter. The net is left when
there are no tokens in ““Goals,” **Goal,’’ and “‘Solutions.”

In the page ““Goal Processsing’’ (Figure 2), the PS checks whether his set of problem
solving operators is sufficient for a solution: “operational? '’/ ' 'non-operational?’’

An operational goal is processed according to the page “‘Operational Goal Process-
ing”’ (Figure 3). A plan is synthesized by applying problem solving operators, oritis created
by analogical reasoning. The plan is a partially ordered sequence or hierarchy of domain-
specific problem-solving operators (or of domain-unspecific heuristics; see below). In
either case, the plan is executed. Execution might necessitate further plan refinement, so
arrows lead also back from “‘execute’” to *‘Plan.”” Execution leads to a problem solving
protocol which is used in combination with the knowledge base to evaluate the outcome,
The result of the evaluation generates an impasse or a success and is transferred back to the
page ““Goal Processing.”’

The reaction of the PS to success is: leave “Goal Processing’® with a solution. The
reaction to an impasse is the creation of subgoals to use weak heuristics for problem solving,
Now there is a recursive call to *‘Problem Processing.” *‘Goal Processing’” and ‘‘Opera-
tional Goal Processing’’ are called again. This time, within Operational Goal Processing
a plan to use heuristics is synthesized and executed. (Simple examples for these weak
heuristics are to use a dictionary, to find an expert to consult, and so on.) A memory trace
of the situation which led to the impasse is kept. If the use of heuristics is successful, then
the result is twofold:

» The heuristically based solution to the impasse is related to the memory trace of the
impasse situation. Thus, within ““Goal Processing,”’ new domain-specific problem-
solving operators are inductively acquired.

» Within ““Problem Processing,’’ the domain-unspecific heuristic knowledge used is
deductively opfimized. So next time the PS encounters an impasse, he or she will be more
skilled and efficient in using a dictionary, finding someone to consult, and so forth.
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Finally, a non-operational goal is processed according to the page ““Non-operational
Goal Processing’’ (Figure 4). The problem is decomposed and the subsolutions are
composed to a final solution.

It is possible and necessary to refine the theory’s transitions and places, but for our
purpose this theory is sufficient. Important are the following theoretically and empirically
validated statements:

o New knowledge is acquired only at impasses after successful application of weak
heuristics.

o Information is helpful only at impasses and if synchronized with the knowledge state of
the PS.

What design principles does the ISP-DL Theory imply for the ABSYNT help system
and for the Internal Model (IM) which is intended to represent the PS’s actual domain
knowledge?

Concerning the help system
(1) It should not interrupt the learner but offer information upon request.

(2) There should be atiractive and easily useable means of evaluation for all problem
solving phases.

(3) Different problem-solving phases—synthesizing (planning), executing (implement-
ing), and evaluating—should be supported.

(4) Information should be user-centered, that is, closely tailored to the knowledge state of
the learner. The learner should be able to use pre-knowledge as much as possible.

Concerning the Internal Model

(1) It should distinguish between newly acquired knowledge and improved knowledge,
where knowledge can only be improved after successful application.

(2) Itscontent should reflect performance data such as speedups from earlier to later tasks,
asking for or actively looking for help, and corrections or redesign of solution
proposals.

(3) It should represent both planning knowledge and implementation / coding knowledge.

The ABSYNT Problem Solving Monitor

ABSYNT is a visual programming language based on ideas stated in an introductory
computer science textbook (Bauer & Goos, 1982). It is a tree representation of pure LISP
without the list data structure and is aimed at supporting the acquisition of basic functional
programming skills, including abstraction and recursive systems. The motivation and
analysis of ABSYNT with respect to properties of visual languages is described in M6bus
and Thole (1989). The ABSYNT Problem Solving Monitor provides an iconic program-



A Model of the Acquisition and Improvement of Domain Knowledge 455

ming environment (Chang, 1990). Its main components are a visual editor, trace, and a selp
component: a hypotheses testing environment.

Inthe editor (Figure 5), ABSYNT programscanbe constructed. There is a head window
and a body window. The left part of Figure 5 shows the tool bar of the editor: The bucket
is for deleting nodes and links. The hand is for moving, the pen for naming, and the line
for connecting nodes. Next, there is a constant, parameter, and ‘‘higher’’ self-defined
operator node (to be named by the learner, using the pen tool). Constant and parameter
nodes are the /eaves of ABSYNT trees, Then several primitive operator nodes follow (*“if”’,
7, e, e L), Editing is done by selecting nodes with the mouse and placing them
in the windows and by linking, moving, naming, or deleting them. Nodes and links can be
created independently: If a link is created before the to-be-linked nodes are edited, then
shadows are automatically created at the link ends. They serve as place holders for nodes
to be edited later. Shadows may also be created by clicking into a free region of a window.
In Figure 5, a program is actually under development by a student. There are subtrees not
yetlinked and nodes not yet named or completely unspecified (shaded areas). The upper part
of Figure 5 shows the Start window for calling programs. This is also where the visual trace
starts if selected by the student, In the visual trace, each computational step is made visible
by representing computation goals and results within the nodes (Mdbus & Schréder, 1990).
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Figure 5. A snapshot of the visual editor of ABSYNT

In the hypotheses testing environment (Figure 6), the PS may state hypotheses (bold
parts of the program in the upper worksheet in Figure 6) about the correctness of programs
or parts thereof for given programming tasks. The hypothesis is: “It is possible to embed
the boldly marked fragment of the program in a correct solution to the current task!”’ The
PS then selects the current task from a menu, and the system analyzes the hypothesis. If the
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hypothesis can be confirmed, the PS is shown a copy of the hypothesis. If this information
is not sufficient to resolve the impasse, the PS may ask for more information (completion
proposals). If the hypothesis cannot be confirmed, the PS receives the message that the
hypothesis cannot be completed to a solution known by the system.
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Figure 6. Snapshot of the ABSYNT Hypotheses Testing Environment
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The upper part of Figure 6 shows a solution proposal to the ‘‘even’’ problem just
constructed by a student: ** Construct a program that determines whether a numberis even!’’
This solution does not terminate for odd arguments. Despite that, the hypothesis (bold
program fragment in the upper part of Figure 6) is embeddable in a correct solution. So the
hypothesis is returned as feedback to the student (thin program fragment in the middle part
of Figure 6). The student then may ask for a completion proposal generated by the system.
In the example the system completes the hypothesis successively with the constant *‘true’’
and with the *‘=""-operator (bold program fragments in the middle part of Figure 6).
Internally, the system generates a complete solution visible in the lower part of Figure 6.
So the student’s solution in the upper part of Figure 6 may be corrected by an interchange
of program parts,

One reason for the hypotheses testing approach is that in programming, a bug usually
cannot be absolutely localized, and there is a variety of ways to debug a wrong solution.
Hypotheses testing leaves the decision of which parts of a buggy solution proposal to keep
to the PS and thereby provides a rich data source about the PS's knowledge state. Single
subject sessions with the ABSYNT Problem Solving Monitor revealed that hypotheses
testing was heavily used. It was almost the only means of debugging wrong solution
proposals, despite the fact that the subjects had also the visual trace available. This is partly
due to the fact that in contrast to the trace, hypotheses testing does not require a complete
ABSYNT program solution,

The answers to the learner’s hypotheses are generated by rules defining a goals-means-
relation (GMR). These rules may be viewed as ““pure’’ expert domain knowledge not
influenced by learning. Thus we will call this set of rules EXPERT in the remainder of the
paper. Currently, EXPERT contains about 650 rules and analyzes and synthesizes several
millions of solutions for 40 tasks (Mdbus, 1990, 1991; Mbus & Thole, 1990). One of them
is the “‘even’’ task just introduced; more tasks will be presented later. We think that such
a large solution space is necessary because we observed that especially novices often
construct unusual solutions due to local repairs. (This is exemplified by the clumsy-looking
student proposal in the upper part of Figure 6.)

With respect to the design principles mentioned at the end of the last section, the
ABSYNT Problem Solving Monitor does not interrupt but offers help and has attractive
means of evaluation (hypotheses testing, visual trace). Incorporation of a planning level is
in progress (see also the discussion section). Concerning user-centered help, the comple-
tions shown in the middle part of Figure 6 (bold program fragments) and the complete
solution in the lower part of Figure 6 were generated by EXPERT rules. EXPERT analyzes
and synthesizes solution proposals but is not adaptive to the learner’s knowledge. Usually
EXPERT is able to generate a large set of possible completions, Thus the main function of
the /M (internal student model) is to select a completion from this set which is maximally
consistent with the learner’s current knowledge state, and thus to provide user-centered
help.

The IM contains simple GMR rules and composites of them. It is continuously updated
according to theoretical and empirical constraints. Therefore, GMR rules, rule composi-
tion, and empirical constraints will be described before presenting the IM.

GMR Rules

This section describes the goals-means-relation GMR. The set of GMR rules may be split
in two ways: rule fype (simple, composed) vs. database of the rules (EXPERT, POSS, IM).
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o There are three kinds of simple rules: goal elaboration rules, rules implementing one
ABSYNT node (operator, parameter, or constant), and rules implementing program
heads.

o Composite rules are created by merging at least two successive rules parsing a solution.
Composites may be produced from simple rules and composites. A composite is called
a schema if it contains at least one pair of variables which can be bound to a goal tree
and a corresponding ABSYNT program subtree, respectively. If a composite is fully
instantiated (i.e., its variables can only be bound to node names or node values), then
it is called a case.

Concerning the data base of the GMR rules, EXPERT contains the expert domain
knowledge (only simple rules). The sets IM and POSS will be described below.

Figure 7 shows examples for simple rules depicted in their visual representations. Each
rule has a rule head (left hand side, pointed to by the arrow) and a rule body (right hand
side, where the arrow is pointing from). The rule head contains a goals-means-pair where
the goal is contained in the ellipse and the means (implementation of the goal) is contained
in the rectangle. The rule body contains one goals-means-pair or a conjunction of pairs, or
a primitive predicate (is_parm, is_const).

El 5w 28 g
Program less_than d%e:rence difference Frogram
Tree branching
~iffju
omr gmr
0l
IF THEN ELSR\ | P1 P2 P3
branching e Pl @/ﬂ
—~etiff— & &
gmr gmr gmr gmr

Figure 7. A goal elaboration rule (E1) and a rule (O1) implementing the ABSYNT node
““if-then-else™

The first rule of Figure 7, El, is a goal elaboration rule. It can be read:

If (rule head):
your main goal is “absdiff” with two subgoals S1 and S2,
then leave space for a program tree yet to be implemented, and (rule body):
If in the next planning step you create the new goal “branching” with the
three subgoals
“less_than (S1, $2),” “difference (S2, $1),” and “difference (S1, S2),"
then the program tree solving this new goal will also be the solution for the
main goal”
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Ol in Figure 7 is a simple rule implementing the ABSYNT *‘if-then-clse’’ operator node:

If (rule head):
your main goal is “branching” with three subgoals (IF, THEN, ELSE),
then  implement an “if-then-else"-node (or “if-"-node) with three links leaving
from itsinput, and leave space above these links for three program trees
P1, P2, P3 yet to be implemented; and (rule body):

if in the next planning step you pursue the goal IF,

then its solution P1 will also be at P1 in the solution of the main goal, and
if in the next planning step you pursue the goal THEN,

then  its solution P2 will also be at P2 in the solution of the main goal, and
if in the next planning step you pursue the goal ELSE,

then its solution P3 will also be at P3 in the solution of the main goal.
Composition of Rules

In our theory, composites represent improved sped-up knowledge. Simple rules and
composites constitute a partial order from simple rules (‘‘micro rules’ ’) to solution
schemata to specific cases representing solution examples for tasks. In this section we will
define rule composition.

If we view the rules as Horn clauses (Kowalski, 1979), then the composite RIJ of two
rules RI and RJ can be described by the inference rule:

R:F -« P & Q) RL({®P +«~ A)

RII.F ~« A & OO0

The two clauses above the line resolve to the resolvent below the line. A, C are
conjunctions of atomic formulas. P, P', and F are atomic formulas. o is the most general
unifier of P and P'. RIJ is the result of unfolding RI and RJ—a sound operation (Hogger,
1990).

For example, we can compose the schema C7 (Figure 8) out of the set of simple rules
{01, 05, L1, L2}, where:

O1:gmr(branching(IF, THEN,ELSE),if-pop(P1,P2,P3)):-
gmr(IF,P1),gmr(THEN,P2),gmr(ELSE,P3).

O5:gmr(equal($1,S2), eq-pop(P1,P2)):- gmr(S1,P1),gmr(S2,P2).

L1: gmr(parm(P), P-pl):- is_parm(P).

L2: gmr(const(C), C-cl):- is_const(C).

C7: gmr(branching(equal(parm(Y),const(C)),parm(X),ELSE),

if-pop(eqg-pop(Y-pl,C-cl),X-pl,P)):-

is_parm(Y),is_const(C),is_parm(X),gmr(ELSE,P).

where:

if-pop = primitive ABSYNT operator “if-then-else” (or “if")
eq-pop = primitive ABSYNT operator “="

P-pl, X-pl, Y-p! = unnamed ABSYNT parameter leaves

C-l = empty ABSYNT constant leaf
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We also can describe the composition of node implementing rules RI and RJ with a
shorthand notation:

R = Rk o RJ

The index k denotes the place k in the goal tree of the head of RI. A place k is the k-
th variable leaf numbered from left to right (e.g., 013 = ELSE). The semantics of “e’’ can
be described in three steps. First, the variable in place k in the goal term in the head of RI
is substituted by the goal term in the head of RJ. Second, the call term P in the body of RI
which contains the to-be-substituted variable unifies with the head of RJ and is replaced by
the body of RJ. Third, the unifier o is applied to the term resulting from the second step,
leading to the composed rule RIJ. Thus, the variables affected by the unification in step two
are replaced by their bindings.

For example, O12 L1 = gmr(branching(IF, parm(P), ELSE), if-pop(P1,P-pl,P3)):-
gmr(IF,P1), is_parm(P), gmr(ELSE, P3). C7 can be composed from the rule set {01, 05,
L1, L2} in 16 different ways. Two possibilities are:

C7=(012 ¢ L1)] » (052 « L2)] o L1)
C7=(((01] » 05)3 ¢ L1)2 ¢ L2)] « L1

C7 : Composite of the rules O1, 05, L1, and L2

Y C
Y C
IR e |
parqeter con;tam/elcr ELSE)| <_ X is_parameter  is_constant
equal if-then-else

branching

gmr

is_parameter gmr

Figure 8. The composite C7
Empirical Constraints of Simple Rules, Chains, Schemata, and Cases

Rules, rule chains, and schemata give rise to different empirical predictions. The
purpose of this section is to introduce hypotheses about the application of novice and expert
knowledge, viewed as simple GMR rules and composites. Some of these hypotheses will be
used in the Internal Model.

Any approach designed to represent changing knowledge states must mirror the shift
from novice to expert. In general, novices work sequentially, set more subgoals, and need
more control decisions, while experts work in parallel, set fewer subgoals, and need fewer
control decisions (Chase & Simon, 1973; Elio & Scharf, 1990; Gugerty & Olson, 1986;
Simon & Simon, 1978). Here, this difference is reflected in the partial order from simple
rules to schemata to specific cases.
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In order to demonstrate this difference, it is necessary to specify hypotheses about the
problem-solving behavior. According to the ISP-DL Theory, a plan is synthesized from
a goal, and execution of operators leads to a protocol of actions and verbalizations (Figure
3). Thus, with respect to the theory, we make a distinction between the problem-solving
phases of planning and execution: A plan synthesizer or ‘‘planner’’ synthesizes plans, and
an operator execufor o1 ‘‘coder’’ execufes operators to implement the plans. The coder
has domain-specific knowledge (GMR rules) for implementing ABSYNT trees but no
planning knowledge. The coder also has very limited execution knowledge: pattern
matching without unification (except for parameter and higher operator names and
constant values). More complex processes are left to the planner whose job is to guide the
coder, based on domain-specific planning knowledge and on weak heuristics (to be
specified by the External Model, as stated earlier).

Forillustration of a hypothetical interaction sequence between planner and coder, we
assume that the goal ‘‘branching (equal (parm(y), const(0)), parm(x), ELSE)"’ is to be
implemented and that the coder has knowledge about the set of simple GMR rules {O1,
05,L1,L2}. Figure 9 shows how the interaction might proceed: At time tg, the planner
delivers the goal. The coder has no rule for it, so he rejects the goal. So the planner chops
the goal into subgoals. Next, he may present the subgoal “‘parm(y)’’ to the coder. The coder
now has a rule, L1, instantiates it to L1', and edits an ABSYNT parameter node with the
name “‘y’’. Next, the planner delivers the subgoal ““parm(x)’’. The planner uses L1 again,
leading to the instantiation 1", and programs a parameter x. Then the planner comes up
with “‘const(0)’’. The coder uses L2, applying L.2' and programming a constant node 0.
Next, the subgoal *‘equal(S1,532)"’ is given. The planner instantiates O5 to O5' and creates
a *‘="" node with two open links; their upper ends are shadows (place holders for nodes).
After time tj, the planner tells the coder that ‘“equal(S1, S2)’" has ‘‘parm(y)’’ as its first
subgoal. Sothe coder connects the first input link ofthe ““="" node to the parametery. Next,
the planner tells the coder that “‘equal($1,S2)"’ has ““const(0)’’ as its second subgoal, so
the coder connects the second input link of the ‘="’ node to the constant 0. Thus, the coder
has to rearrange the position of the nodes and/or the orientation of the links. This is
symbolized by the hand in Figure 9. Next, the planner comes up with the
*‘branching(IF, THEN,ELSE)"’ subgoal. The coder implements it, instantiating O1to O1',
After time tm, the planner tells the coder that ‘‘branching (IF,THEN,ELSE)"’ has
““parm(x)’” as its second subgoal and “‘equal(S1, S2)*’ as its first subgoal. So the coder
connects the second and first input link of the *‘if-then-else’” node to the parameter x and
tothe ““="" node, respectively. Again, the position of links and/or nodes on the screen may
have to be rearranged. Now the goal is solved.

Thus, the planner does not know about the coder’s knowledge, and vice versa. There
is no fixed order of application of GMR rules. The order solely depends on how the goals
are delivered to the coder by the planner. In the example, the coder created the sequence
of rule instantiations (L1', L1”, L2', 05', O1") depending on the goals delivered by the
planner.

In contrast to this sequence, if the same goal “‘branching (equal (parm(y), const(0)),
parm(x), ELSE)"’ is given and the coder knows the schema C7, then the interaction shown
in Figure 10 will be produced. Again, at time tg the planner delivers the goal. This time
the coder instantiates C7to C7' and implements the ABSYNT tree contained in C7' without
requiring subgoals and linking instructions from the planner.
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The planner stream

branching(equal(parm(y),
const(0)), parm(x),
ELSE)

to t;
The coder can’t solve
this goal, he asks the
planner to decompose @
the goal. ——

The coder stream
| The planner stream

goal_subgoal_relation
(equal(Sl, S2), 82,
const(0))

goal_subgoal relation
(equal(S1, 82), 81,
parm(y))

&

The coder stream -
The planner stream
£oal_subgoal_relalion goal_subgoal_relation
(branching(IF, THEN, (branching(IF, THEN, No more
LSE), THEN, parm(x ELSE), IF, equal(S1, 52 y0als

The task is
done

_—

The coder stream

Figure 9. Squence of interactions between planner and coder while solving the goal
‘“branching (equal (parm(y), const(0)), parm(x), ELSE)’* with the set {O1, 05, L1, L2}
of simple rules
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The planner stream

branching(equal{parm(y),
const(0)), parm(x),
ELSE)

0 more
goals

I'he task 1s
done

The coder stream

Figure 10. Sequence of interactions between planner and coder while solving the goal
“‘branching (equal (parm(y), const(0)), parm(x), ELSE)"* with the schema C7

If we compare the first interaction (Figure 9) where the coder knows {01, 05,L1,L2}
with the second one (Figure 10) where the coder knows C7, we observe:

¢ Inthefirst sequence, the coder implements five program fragments corresponding to the
subgoals delivered by the planner. In the second sequence, the coder implements just one
program tree corresponding to the goal.

¢ In the first sequence, the planner gives explicit information about linking program
fragments, and the coder rearranges program fragments accordingly, if necessary. In the
second sequence, there is no such information.

In order to enable empiricai predictions, we associate the following empirical claims
with these observations:

Implementation of ABSYNT program fragments: If the coder applies a certain GMR rule,
then exactly the ABSYNT program fragment contained in it is implemented in an
uninterrupted sequence of programming actions (like positioning a node, drawing a link,
etc.). We do not postulate order constraints within this sequence, but we expect the sequence
not to be interrupted by programming actions stemming from different rule instantiations.

Verbalization of goals: Following the theoretically motivated distinction of a planner and
a coder, selecting goals and subgoals for implementation by the coder is an act of planning
involving control decisions. Sois seems reasonable that at these decision points, the selected
goals may be verbalized (Ericsson & Simon, 1984). The verbalizations explained by the
selection of a certain GMR rule may be intermixed with the rule’s programming actions but
not with verbalizations and actions stemming from different rule instantiations.

Correction of positions: If the just implemented program fragment solves a dangling call
or calls for another fragment already implemented, then it is to be connected with this
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existing fragment. Now, corrective programming actions are likely: lengthening links,
changing their orientation, and moving nodes.

If we compare the application of a single composite to the application of a set of simple
rules (like C7 vs. {O1, 05, L1, L2}), then the following empirical consequences are
assumed to result:

Implementation of ABSYNT program fragments (implementation hypothesisj: For the
set of simple rules, the order of rule applications is indeterminate, but the programming
actions described by each rule should be continuous. Actions of different rule instantiations
should not interleave. In contrast, when applying the composite, there are no order
constraints on the programming actions at all since just one rule is applied.

Verbalization of goals (verbalization hypothesis): In the example, ifthe coder’sknowledge

contains C7, the planner has to make one control decision. Ifthe coderknows only {O1, O3,
L1, L2}, the planner has to make at least five control decisions (depending on how the goal
is decomposed). Thus, we expect that applying composites is accompanied by fewer goal
verbalizations than applying corresponding sets of simple rules.

Correction of positions (rearrangement hypothesis): 1n case of the composite, there are
no open GMR calls to be implemented, and there are no to-be-linked program fragments
left by earlier rule applications. Thus, we expect that applying composites leads to fewer
position corrections of ABSYNT nodes and links than applying the corresponding sets of
simple rules.

Performance time (time hypothesis): Planning, selecting, and verbalizing goals, and
correcting positions of nodes and links are internal or external actions that are expected to
need time (Rosenbloom & Newell, 1987). Thus, weexpect that applying composites is faster
than applying the corresponding sets of simple rules.

These predictions have not yet been investigated empirically, except for the implemen-
tation hypothesis (see below). But both the implementation hypothesis and the time
hypothesis are used in the construction of the Internal Model to be described now.

The Internal Model (IM)

The IM is a set of domain specific knowledge (simple GMR rules and composites)
utilized and continuously updated. As stated earlier, the IM covers the subset of the ISP-
DL Theory shaded in Figures 1 to 4. So before describing it in detail, we will sketch it in
terms of the ISP-DL Theory.

Concerning Figure 1: The PS is faced with a programming task (goal) and constructs a
solution proposal (sofution). The solution is parsed, using the knowledge base (rules in the
IM and—as far as needed—in EXPERT). Subsequently, the rules just used for parsing are
optimized by composition,

Since these new composites may be based on EXPERT rules, they are not directly inserted
into the IM: According to ISP-DL Theory, arule can only be improved after it is successfully
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applied. This implies for the IM that it cannot at the same time be augmented by a new simple
rule (from EXPERT) and by composites built from the same simple rule. For this reason,
in addition to the IM there is a set POSS of possible candidates for future composites of the
IM. Composites of the rules used for parsing a solution proposal are generated and kept in
POSS as candidates. Only those surviving a later test are moved into the IM. These rules
represent the result of “*deductive knowledge optimization,”’ that is, improved knowledge.

Concerning Figure 2: If parsing the solution is possible solely with rules in the IM, then
the IM is considered as sufficient to construct the solution, and *‘Goal Processing’ is
terminated (“‘reaction to success’’). But if parsing the solution requires additional
EXPERT rules, then the IM may be augmented by these (simple) rules, which represent the
result of “‘inductive knowledge acquisition’’, that is, knowledge newly acquired in response
to impasses. :

Concerning Figure 3: The parse tree represents the studernit’s hypothetical solution plan,
which execution led to a protocol: the sequence of programming actions, verbalizations,
and corrections exhibited by the student. We call that part of the protocol consisting only
of the student’s programming actions (creating nodes and links, naming nodes) the
student’s action sequence. The action sequence is used to evaluate the parse rules:

Since knowledge improvement should result in sped-up performance (time hypoth-
esis), acomposite is moved from POSS to IM only if the PS shows a speedup from an earlier
to a later action sequence where both sequences can be produced by the composite.

The IM contains only GMR rules (simple rules and composites) which proved to be
plausible with respect to an action sequence at least once. This is defined now. With respect
to some action sequence, GMR rules form four subsets:

(1) Rules not containing any program fragments (“‘goal elaboration rules’’) are
nondecisive with respect to the action sequence. (But verbalizations can be related
to the goal elaboration rules; see Mébus & Thole, 1990).

(2) Rules whose head contains a program fragment which is part of the final result
produced by the action sequence, and which was programmed in a noninterrupted,
temporally continuous subsequence (see the implementation hypothesis). These
rules are plausible with respect to the action sequence.

(3) Rules also containing a program fragment which is part of the final result of the
action sequence, but this fragment corresponds only to the result of a
noncontinuous action subsequence inferrupted by other action steps. These rules
are implausible with respect to the action sequence.

(4) Rules whose head contains a program fragment which is not part of the final result
produced by the action sequence. These rules are irrelevant to the action sequence.

A credit rewards the usefulness of the rules in the IM. It is the product of the length of
the action sequence explained by the rule and the number of its successful applications
(frequency of being plausible). Thus, the credit depends on the empirical evidence gathered
for a rule.
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During theknowledge acquisition process, the IM is utilized and continuously updated

according to a processing cycle shown in Figure 11:

Sfart (Top of Figure 11): The first programming task is presented. Initially, both sets IM
and POSS are empty.

Now the learner solves the first task presented. Thus, an action sequence is produced,
leading to a solution to the task. The action sequence is saved in a log file.

First Test: IM and POSS are empty, so nothing happens.

First Parse: The learner’s ABSYNT program solution to the actual task is parsed with
the EXPERT rules, leading to a set of parse rules.

First Generate: The EXPERT rules just used for parsing are compared to the action
sequence. The plausible parse EXPERT rules are put into the IM and get credit. Then
the composites of all parse rules are created and compared to the action sequence. The
plausible composites are kept in POSS. They are candidates of improved knowledge
useful for future tasks. For each plausible composite, the time needed by the PS to
perform the corresponding action sequence is attached. Now the Generate phase is
finished, resulting in an updated POSS and IM.

Now the next task is presented to the PS. The PS creates an ABSYNT action sequence
and solution to it.

otart: First task 1s presented

IM empty, POSS empty

7 : Next task

dImer s achion séquence is presen-

and solution ted to the
* leamner

updated POS.
updated II

TEST: GENERATE:

1. Each composite in POSS 1. The plausible parse EXPERT rules

- which is plausible in the present action sequence | | are put into IM and get credit

- which actual execution time is shorter than the 2. The plausible composites of all
time attached parse rules are put into POSS.

is moved from POSS 10 IM Execution times of the corresponding

2. Each irrelevant composite is kept in POSS action sequences are attached.

3. All other composites in POSS are skipped

4. Credit of all plausible rules in IM is updated

PARSE:

Sclution is parsed with rules in IM
ordered by credit, and (as needed)
with other EXPERT rules

updated POS
updated IM

Figure 11. The utilizing and updating cycle of the IM during the knowledge acquisition
process
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¢ Second Test: Each composite in POSS is checked if
(a) it is plausible with respect to the action sequence, and
(b) the time needed by the PS to perform the respective continuous action sequence is
shorter than the time attached to the composite. This means that the PS performs the
action set faster than the previous corresponding action set which led to the creation of
the composite.

The composites meeting these requirements are put into the IM. Composites
irrelevant to the action sequence of the solution just created are left in POSS. They might
prove as useful composites on future tasks. All other composites violate the two
requirements. They are skipped; that is, they are composites implausible to the actual
sequence, or composites which predict a more speedy action sequence than observed.
This means that the PS performs the action set slower than the previous corresponding
action set which led to the creation of the composite. This slow-down is inconsistent with
our model assumption that the PS prefers composites to simple rules; thus, the composite
is not transfered to the IM but skipped.

Finally, the credits of all rules in the IM which are plausible with respect to the
present action sequence are updated. Thus, the second test leads to an updated POSS and
M.

o Second Parse: Now the solution of the second task is parsed with the rules of the IM
ordered by their credits. As far as needed, EXPERT rules are also used for parsing.

o Second Generate: The plausibility of EXPERT rules which have just been used for
parsing is checked. The plausible EXPERT parse rules are again put into the IM and get
credit. Furthermore, the composites of all actual parse rules are created. The plausible
composites are put into POSS; they will be tested on the next test phase. Again, the time
needed for the corresponding action sequence is stored with each composite.

With respect to the design principles from ISP-DL Theory for the IM mentioned earlier,
the IM contains simple rules (stemming from EXPERT) representing newly acquired but
not yet improved knowledge, and composites representing various degrees of expertise.
Empirical performance data such as speedup and the concept of plausibility are used for
updating the IM. Furthermore, the IM predicts order constraints on action sequences,
verbalization, rearrangement, and time. As in the ABSYNT Problem Solving Monitor,
planning knowledge is not yet accounted for in the IM, but work is in progress. Finally, help
generation will be discussed below.

An llustration of the IM

Figure 12 shows a continuous fragment of the action sequence of a PS on a program-
ming task. Again we will focus on the rules O1, 05, L1, L2, and C7 (see Figures 7 and 8).
When S2 performs the sequence of Figure 12, O1, L1 and L2 are already in the IM from
earlier tasks. O5 is not yet in the IM but only in the set of EXPERT rules. C7 has not yet
been created.

After the subject has solved the task, the Test Phase (Figure 11) starts. Since the only
composite we look at here (C7) has not been created, we only consider the fourth subphase:
creditupdating. Ol isimplausible with respect to Figure 12 because the actions correspond-
ing to the rule head of O1 are not continuous but inferrupted. They are performed at
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11:15:52, 11:15:58, 11:16:46, and 11:16:55 (Figure 12). Thus, the action sequence
corresponding to the rule head of O1 is interrupted at 11:16:42 and 11:16:50.

L1 and L2 are also implausible. Actions corresponding to L1 are performed the first
timeat 11:15:08 and 11:15:29. Thus, this sequence s interruptedat 11:15:16 and 11:15:22.
L1-like actions are shown a second time by the PS at 11:16:42 and 11:16:50. These are
interrupted, too. Actions corresponding to L2 are performedat 11:15:16 and 11:15: 34, with
interruptions at 11:15:22 and 11:15:29. So since O1, L1, and L2 are implausible, their
credits are not changed.

Now the subject s solution is parsed with rules in the IM and, as needed, with additional
EXPERT rules (Figure 11). O1, O5, L1, and L2 are among the parse rules in this case, as
no other rules have a higher credit and are able to parse the solution.

After the Parse Phase, the Generate Phase (Figure 11) starts. O3 is an EXPERT rule
used for parsing. But O5 is implausible, since its corresponding actions were performed at
11:15:22, 11:15:38, and 11:15:43, with interruptions at 11:15:29 and 11:15:34. So 05 is
not put into the IM. Then the composites of the parse rules are formed. C7 (Figure 8) is a
composite formed from O1, 05, L1, and L2. This composite is plausible because it describes
the uninterrupted sequence of programming actions from 11:15:08 to 11:16:55 (see Figure
12)—despite the fact that its components O1, 05, L1, and L2 are all implausible. Starting
fromthe beginning of the task (at 11;14:40), the time for this action sequence is 135 seconds.
Thus, the composite C7 is stored in POSS with “*135 seconds’’ attached to it.

After solution of the next task, the now following Test phase reveals that C7 is plausible
again. The corresponding action sequence (not depicted) was performed in 92 seconds,
which is less than 135. So C7 is moved into the IM and gets a credit of 13 since it describes
13 programming steps (see Figure 12). This credit will be incremented by 13 each time the
composite is plausible again.

An Empirical Analysis of the IM

As stated, the IM gives rise to several empirical predictions. We investigated the
implementation hypothesis, stating that the programming actions described by a rule in the
IM are performed in a continuous uninterrupted temporal sequence for a single subject
creating non-recursive solutions to seven ABSYNT programming tasks. The IM was run
offline based on the action sequences exhibited by the subject. For every solution, a mode!
trace (order constraints on the action sequence) was predicted and compared to the subject
trace, the subject’s action sequence that led to the solution. Figure 13 shows

(a) a subset of the rules in the IM after the subject solved the third programming task of
the task sequence. For each IM rule, the rule name and the program fragment in its head
are depicted.

(b) the subject’s solution to the next task, “‘quot’ (to construct a program dividing the
larger by the smaller of two numbers).

(c) thepredicted constraints on the action sequence (model trace), given this solution. The
program fragments predicted to be constructed in an uninterrupted sequence are boxed.
Thus, for example, the if-then-else node rule predicts that programiming the if-then-
else node and three links leaving it are four prograraming actions performed in an
uninterrupted sequence. So the corresponding fragment is boxed in Figure 13c.
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11:14:40) Start of task
11:15:08 11:15:16 11:15:22 11:15:29

11:15:34 11:15:38

=

11:16:42

11:16:46

11:15:58

11:16:50 11:16:55

The rule O1 (Figure 7) corresponds
to the four boldly lined program-
ming actions:

placing the if-then-else-node and
drawing the three input links.

In the sequence these actions are
interrupted twice (dotted lines):
Placing and naming a parameter
node.These actions correspond

to the rule L1.

P s s s s s s sy

Figure 12. A continuous fragment of a sequence of programming actions of a subject

Similarly, placing a parameter node and naming this node are two actions predicted to
occur subsequently, Instances of the same nodes are indexed.

(d) the observed actions sequence of the subject (subject trace). A **+*° denotes a pair of
programming actions explained by the same IM rule and perfomed subsequently. A
““-** denotes a pair of programming actions explained by the same IM rule but
interrupted by some other action(s). Thus, “*+*’ denotes fits and *‘-’* denotes contra-
dictions to the predictions.



470 C. Mdébus, O. Schréder, and H-J. Thole

There were 80 ““+’” and 49 **-*’ for the seven action sequences. Since more ““+’’ should
lead to fewer runs than equally many “‘+’* and “*-"’, we applied the Runs test. There were

40 runs (p < 0.001).
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d) Observed action sequence (subject trace)

— placing parameter node bl

placing parameter node al

creating left link into £
creating right link into <
- naming parameter node bl

—— naming parameter node al
—— placing operator node if-then-else
t——— creating left link into if-then-clse
[~ placing parameler node a2
placing paramcter node b2
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creating right link into /1
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placing parameter node a3

:E placing operator node /2

creating left link into /2

creating right link into /2

creating right link into if-then-else
naming parameter node b3
naming parameler node a3

Figure 13. a) subset of the IM before solving ‘‘quot’’, b) S2’s solution to ““quot’’, c)
predicted action sequences, d) observed action sequence corresponding (+) or contradicting

(=) to the predictions
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Discussion

We presented an approach to online diagnosisof students’ knowledge whichis intended
to be based on a theoretical framework on problem solving and learning, to be empirically
valid, and to support adaptive help generation. We will now discuss how far the IM meets
these requirements and how we plan to improve it.

Foundation on atheoretical framework: In the section **The Internal Model”’, we showed
how in our view the IM is related to the ISP-DL Theory. We tried to motivate the features
of the IM by the theory. But still many aspects of the theory remain uncovered by the IM.
Two of them are:

o Generalization of knowledge. Our observations from single-subject sessions with
ABSYNT indicated use of previous solutions and positive transfer especially for
recursive tasks. Thus composites in the IM should be generalized. Generalization of
composites may be viewed as another way of knowledge optimization (e.g., Anderson,
1983; Wolff, 1987) in response to the successful utilization of knowledge (Figure 1).
Additionally, generalized knowledge should also result from analogizing as an alterna-
tive to synthesizing a plan (Figure 3).

o Synthesizing a plan. Currently, the IM takes account only of the implementation level,
but there is no representation of planning knowledge within the IM.

Concerning generalization, it is easy to construct generalized GMR rules (containing
variables not only at the leaves of the goal trees and program trees) by using a concept
hierarchy. Concerning a planning level, we want the learner to be able to construct plans
with an extension of the ABSYNT language by new goal nodes so that mixed ABSYNT
programs containing operator nodes and goal nodes will be possible. The learner will be able
to test hypotheses and to receive error and completion feedback at this planning level even
ifhe or she has no idea yet about the implementation. Thus, the learner may first plan a goal
tree for the task at hand, test hypotheses about it, and debug it, if necessary. Afterwards, the
learner may implement the goals by replacing them with operator nodes or subtrees.

From the user’s point of view, the benefit of using goal nodes will be that hypotheses
testing, will be possible at the planning stage, not just at the implementation stage. From
a psychological point of view, the benefit is that objective data about the planning process
can be obtained in addition to the verbalizations. Finally, from a help system design point
of view, the benefit is that in addition to hypotheses testing it will be possible to offer
planning rules as help to the learner. The planning rules will be visual representations of
GMR goal elaboration rules.

Empirical validity. First of all, the model has to be empirically testable. We showed
that many empirical predictions are possible based on the IM, and some more will be
presented below. In addition, a first empirical investigation revealed that the IM describes
a considerable portion of the subject trace. But the investigation also revealed how the IM
might be improved. The following table shows how the **+’” and **-** are distributed across
different types of rules in the IM;



472 C. Mébus, O. Schrdder, and H-J. Thole

Parameter Constant Primitive operator Composites
node rule node rule node rules

“+" cases 2 4 47 27

".! cases 27 7 14 1

Thus, the parameter node rule, for example, is responsible for 2 “*+>” and for 27
¢.>*: The subject usually does not place and name a parameter node in sequence. The same
seems true for the constant node rule. Obviously, given that this result will be reproduced
with other subjects, it should be possible to enhance the IM by splitting the parameter node
rule (and the constant node rule as well) into two new rules; one for positioning and one for
naming a parameter node. Then the current parameter node rule would have to be
considered as a composite of these two new rules.

Adaptive help generation. The ultimate goal of the IM is to provide adaptive help or,
more generally, to have an impact on the user-system-interaction in a way that takes account
of the individual, In the ABSYNT Problem Solving Monitor, the need for the IM is obvious:

o Thereisalargesolution space (the system is able to analyze and generate many solutions
to given tasks) which is necessary because we want tobe able to take care of novices’ often
unusual or unnecessarily complicated solutions (see Figure 6).

o Because of the large solution space, there is usually a large amount of completion
proposals that can be generated by the system, so the problem is which one to select. The
task of the IM is to enable user-centered selection.

But as indicated, the role of the IM will not be restricted to the completion of ABSYNT
nodes. Extending completion to the planning level and offering visual planning rules as
help will impose additional demands to the IM. Additionally, the IM does more than just
help selection, The information provided to the student may be varied in several ways, and
this gives rise to empirical predictions which in turn might support or weaken the IM. Figure
14 illustrates how information intended as help can be varied and what can be predicted.
Basically, when the student is caught in an impasse and asks for a completion proposal,
according to the IM there are two possible situations:

¢ The student lacks domain-specific implementation knowledge. Thus, with respect to the
interaction of planning and coding described earlier, there is a coding problem.

o The student has knowledge of how to proceed but does not make use of it; there is a
planning problem,

Therefore, it should be possible to predict impasses based on the IM. Another prediction
is that information intended as help should address the right level. If the student is stuck
because of a planning problem, he or she should get annoyed or even upset by information
at the coding level (or implementation level), and vice versa, But more specific predictions
within each level are possible too: Figure 14 depicts a hypothetical situation where the
student just performed some programming actions, then gets stuck and asks for completion
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proposals. According to the IM, there is a knowledge gap on the coding level, and after
filling it, the student would be able to proceed (shaded part of the arrow in the upper right
of Figure 14). Now there are several possibilities to react to the gap: The information
provided might vary in grain size and amount (on the left of Figure 14).

Impasse: Student demands

completion proposal by the sysiem Programming actions the student is able
Programmin to perform (according to the IM) after
acti%ns just pirfor- the knowledge gap is filled and
megl by the spudept missing domain cor'espondin'g actions are [ierformed
PP L Sowicdee e i i 1 P
i (according to IM): (time)
HCIPI how 1o fill know]edge gap
lh.c kl?owla.dgc sap Hypotheses: how the student reacts to help
grain size amount
fine fits gap ! ! l ! ! ! ! helpful
. — passively accepling
coarse fits gap polanz.m;,< self explanation
fine too much I O O O I O O O filtering required: burdensome
LI 1 1 1 ] LI L L
coarse loo much ! self explanation + fillering
fine not enough _l_.l_l_l_‘__l_l helpful + small induction step required
(small gap left)
passively accepting
coarse notenough | polarizin - self explanation
(small gap left) ” + small induction step required
fine not enough _l_I_l_l_l helpful + large induction step requircd
(large gap left)
passively accepting
coarse notenough ___l polarizip% < self explanation
(large gap left) + large induction step required: annoying

Figure 14. Types of information possibly provided in response to a knowledge gap
diagnosed by the IM, and hypotheses concerning the student’s reaction to this information

e Grainsize concerns the rules underlying the completion proposal. If the grain size is fine,
then the completion proposal may rest on a chain of simple rules which covers the gap.
In this case, the completion proposal may consist of an ABSYNT subtree with an
explanation of each programming step needed to construct this subtree, where the
explanation is based on the goal structure of the chain of simple rules. If the grain size
is coarse, then the completion proposal may rest on a single composite (to take the other
extreme). The same subtree may be provided, but without an explanation.

s Amount concerns the relation between the completion and the gap. The completion
proposal might exactly fill the gap, so subsequently the student can proceed by relying
on her / his own knowledge. Alternatively, the completion proposal may contain foo
much information (more than necessary) or not enough information (the gap is not
completely covered).
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On the left and middle part of Figure 14, the different combinations of grain size and
amount of information are shown. They lead to different hypotheses (on the right of Figure
14). We will describe some of them:

o Ifthe information is fine-grained and exactly fills the gap (first row in Figure 14), then
we would expect that the student considers this information as helpful.

« If the information is coarse-grained and exactly fills the gap (second row), then the
student misses explanations. S/He might either passively accept what is being offered,
or engage in self~explanation (VanLe¢hn, 1991a).

« If the information is fine-grained but exceeds the knowledge gap (third row), then the
student has to”’filter’” the content relevant to the current situation. This might be
experienced as burdensome.

o Ifthe information leaves a small knowledge gap (fifth and sixth rows), then the student
might try to induce one new simple rule and thereby cover the rest of the gap. (This
situation seems similar to the induction of one subprocedure at a time by VanLehn's
[1987] SIERRA program.)

¢ Finally, the last case to be considered here is that there is a large gap left, and the
information offered is too coarse (last row). The student should experience such
information as very inadequate to his current problem. She or he, then, should feel
annoyed or even upset.

There remains much research, of course, to work out these hypotheses and put them to
empirical test. But we think we have shown that the IM is an empirically fruitful approach
to knowledge diagnosis and adaptive help generation which is testable and also touches
upon further important research problems, like motivation and emotion.
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