Interactive Support for Planning Visual Programs
in the Problem Solving Monitor ABSYNT? :
Giving Feedback to User Hypotheses
on the Language Level

Claus Miobus & Heinz-J. Thole2

University of Oldenburg
Department of Computational Science
D-2900 Oldenburg
F.R.Germany
Eunet: moebus@uniol.uucp

1. Introduction

For approximately ten years computer aided knowledge communication disappeared from the research
scene. Today it has been reestablished under the abbreviations of ICAI (Intelligent Computer Aided
Instruction), PSM (Problem Solving Monitors) or ITS (Intelligent Tutoring Systems) with regular
conferences, research journals and textbooks [1,2,3,4,5]. The difference between ICAI/ITS and CAI/TS
was pointed out by [6]:

"ICAI is an emerging field that is ill-defined at present. The distinction between intelligent CAI systems and
computer-based instruction programs cannot be sharply drawn. ICAI programs use Al programming
techniques and are implemented in languages as LISP and PROLOG. Developers of ICAI systems focus on
problems of knowledge representation, student misconceptions, and inferencing. By and large, they have
ignored instructional theory and past research findings in computer-based instruction.”

This paper offers a contribution to ICAI. We try to demonstrate the improvement of ICAI by the
development of an interactive help system, which checks hypotheses postulated by the user during the

1 This research was sponsored by the Deutsche Forschungsgemeinschaft (DFG) in the SPP Knowledge
Psychology undef contract no. MO 292/3.

2 We want to thank Klaus D. Frank for mapping verbal problem solving episodes to the goals in the goals-
means-relation (GMR) and Gabi Janke for teaching students ABSYNT. Polishing the interface was done by
Gabi Janke and Klaus Kohnert. Klaus succeeded in interfacing IF-Prolog to Interlisp/Loops, so that the
GMR could be used by the students.

37

problem solving process. The system is capable to recognize even incomplete proposals and contains the
knowledge to generate complete solutions of the programming tasks. Thus the interactive help system
adaptively supports the planning activities of the user. This is done by a goals-means-relation (GMR) which
contains the domain-knowledge to analyse and synthesize ABSYNT-programs. At the present moment
this knowledge is worked out for 37 tasks in our curriculum and is condensed into 462 rules. The
complexity of the solution space is rather astonishing. The system is capable to recognize and generate
several millions of solutions even if the height of ABSYNT-trees is restricted to five nodes.

It has been shown by our empirical research that especially novices develop rather unusal solutions if they
use local repairs or patches in order to debug their programs. Our psychological philosophy is to stimulate
explorative learning but guided by our help system. That is the PSM should first encourage the problem
solver to program a solution of the problem even when the program is suboptimal, In a second step this first
solution will be criticized and modified in a tutorial dialog according to efficiency and stylistic standards.
So, replanning is stimulated later.

The GMR will be improved in the near future. Under development is a rule-composition learning
mechanism [7] which will be useful in improving the speed of the help system and in identifying preferred
solution schemes of users. Furthermore we plan to integrate a student model which acquires knowledge
about the results of the hypothesis testing process. This knowledge will be used to select those
programming proposals from solution space which contain problem solving schemes the user has used
successful in the past.

Our results can easily be generalized to domains where means or actions can be represented by tree-like
terms: recursive action sequences [8].

In the last part of the paper we will demonstrate that the GMR can be used to describe problem solving
behavior of novice programmers, It is shown that it is possible to map problem solving means like
verbalizations and programming actions into goals of the GMR. The semantics of these structured nodes
and their psychological " reality” will be a research topic in the future because this could ease the
development of explanation and dialog components of the PSM.

2. The Problem-Solving Monitor ABSYNT

A special variant of ITS are PSMs that are designed with respect to certain tasks the user should learn to
solve. They provide the learner with a problem-solving environment including helps but no curricular
component. ABSYNT belongs to this category. Its task domain is functional programming comparable to
pure LISP without the list-data structure. ABSYNT is a visual tree-like programming language (ABstract
SYNtax Trees) based on ideas published in german school [9] and university text books [10]. Further
motivation for the design of ABSYNT is given in [11], [12].

38

Basic research dealing with the design of the system from a psychological point of view is described in
[13] - [17]. Figure 5 shows the interface of the programming environment when a student has programmed
a wrong "solution" of the problem even.

3. The Design of Helps in ABSYNT as a Twofold Synchronization Problem

The psychological efficiency of a PSM depends to a great extent on the quality of instructions and helps
built into the system [13]. To put it short: "When are helps useful and when are they distracting or
inhibiting."” The answer certainly dependends on the knowledge state of the problem solver and the state of
the problem solving process. Both content and application time of the information have to be chosen
carefully. Thus the design of helps is a paradigmatical research topic of cognitive and computer science
[18] - [24].

3.1 The Design of Helps when Acquiring Knowledge about the Semantics of the
ABSYNT Language

A necessary prerequisite of programming is some knowledge about the syntax and semantics of the
language. In the first period of our project we concentrated on the acquisition of semantic knowledge. The
semantics of programming languages can be defined in three ways [25]: (a) the operational approach, (b)
the denotational approach and (c) the axiomatic approach. We chose the operational approach because it
seemed to us more suitable for novices than the other approaches. The behavior of the ABSYNT interpreter
computing ABSYNT programs was represented by two-dimensional visual rules which served as
instruction and help material for ABSYNT users [16].

In a study of the instruction-based knowledge acquisition process [26] we found that the acquisition of
semantic knowledge could be described by a two-stage process:

1) Knowledge enlargement through impasse-driven learning (IDL) [27]
2) Knowledge optimization through success-driven learning(SDL) [28] - [31].

According to IDL- and SDL-theory and our results we have strong evidence that problem solvers prefer to
accept help information in problem solving situations where an impasse occurs. During the knowledge
optimization phase new information is usually ignored.

39

3.2 The Design of Helps to Acquire Planning Knowledge when Programming in
ABSYNT

Even more important for the programming novice is a help system which embodies planning knowledge.
Here too, we face the twofold synchronization problem : content and application time of feedback
information <---> knowledge state of the student.

The present status of the help system implemented so far is a consequence of some postulates. The help
system should:

» diagnose goals, intentions and the knowledge state of the problem solver

. communicate new knowledge (helps) only in sensitive time periods, where the problem
solver is willing to accept such information [27]

. gather user data online to adapt the user model continuously
. embody expert knowledge to check user proposals and generate helps or solutions

. deliver only minimal information so that the student is able to leave the impasse
situation by improving his problem solving skills

. offer the environment to check various hypothesis about the usefulness of several parts of
the program

The Jast point is rather important, Contrary to some authors (e.g.[32]) we think that semantic errors often
can not be localized to a line. Most times the proposal of the user as a whole is inconsistent with the
problem due to its goal structure. Repairs should depend on those parts of the program which the user
wants to retain. So we developed our help system which is driven by hypotheses of the student about the
correctness or usefulness of program fragments. This interactive hypothesis driven approach is rather
different from other systems known from literature [32] - [37].

Our answer to the above described postulates is a help system based on the GMR. This relation can be
looked at as a rule-based inference system [38], a grammar [39], [40] or an AND/OR-Graph [41] with
structured nodes.

A small excerpt of the AND/OR graph for the goal even(Subgoal) is shown in figure 1. The square nodes
contain goals which correspond to ABSYNT operators or operands. The round shaped nodes are
parametrized goals or schemas which have to be further elaborated in the programming process. Because
nodes of the AND/OR graph can be parametrized for subgoals, the relation enables analysis and synthesis
of partial and total solutions.

evan(S)
*
N N .
§ EVEN § 5 branching(stop_zero(S),const{true},
N H branching(stap_one(S),canst(false),

even_fast_recursion{

\ N

branching{stop_zero{S},const{true),
even_slow_recursion(S})

T [

branching(stop_one(S),const(false), . IR
even_slow_recursion(8)) .

nching(stop_minusone{S),const{false),
branching(stop_zero{S),const{true)},).
even_fast_recursion(S)}}

\

: anching{one{S},ccnst{lalse),
branching(stop_zero(S},const{true),

branching{stop_minusone{S),canst{false), s £
even_tast_recursion(S)

aven_slow_recurslon(3))

branching{double_stop_zero_one(S), ", anehingtstap. zaro{S) cansilirus),
value_zero_t_one_[{S), z Badiaten domn. ohel St .
even_fast_recursion(S) . s tommnc e = ______...»--"'

....................... neg(una(mod2{8m

branching{double_stop_minusone_zero(S),
value_minusone_f_zero_t(S),
even_fast_recursion

/

zaro{mod?2

Figure 1

It is possible to derive rules from the graph. A rule consists of a source node (upper node in the graph),
sink node(s) and the connecting link(s). For demonstration purposes we marked two subgraphs in figure 1.
The corresponding rules are shown in "animation style" in figures 2a and 3.

Rule: "Planni ion on the L vel’

SUBGOAL
| SUBTREE
even |
NAVE SUBGOAL SUBTREE

(o)
(=]
=]
-

Constraint:
Higher operator é

NAME must have
the meaning of
the even

pradicate

Figure 2a

41

IF the main goal is to program the even predicate which can be applied to a
subgoal
THEN the solution of this goal comprises the following steps:

. select for the root of the ABSYNT tree a higher operator with an optional NAME (e.g. foo)
which must possess the meaning (semantics) of the even predicate , cither as an already
programmed function or as an yet to be programmed function

. leave space in the worksheet of the ABSYNT environment for the yet to be programmed

subtree
AND
IF your next planning step is to program the subgoal
THEN the solution of this new goal is a subtree which can be inserted in the solution of the main
goal
Figure 2b
Rule: "Plannin ion on the Goal Level”
SUBGOAL true step_down_cne
SJBIGM |
avan ABSYNT stop_zero copst odd ABSYNT
TREE TREE
branching . /V'
&}
oY

IF the main goal is to program the even predicate which can be applied to a
subgoal

THEN the solution of this goal comprises the following step:

. leave space in the worksheet of the ABSYNT environment for the yet 1o be programmed

ABSYNT tree

AND

IF your next planning step creates the more differentiated AND-goal tree branching(...)

THEN the solution of this new goal is a ABSYNT tree which can be inserted in the solution of the
main goal

Figure 3

42

This approach is different from other systems with similar aims [32] - [37]. Due to its flexibility it seems
to promise some positive consequences for the motivation of the problem solver and as will be described
below, for the acquisition of problem solving skills.

Our work rests on the impasse-driven learning theory (IDLT) [27], [30], [42]. When the student
programs a proposal, which is diagnosed by the ITS as wrong, s/he is trapped in an impasse. According to
IDLT s/he is now sensitive to acquire help information. This should be assimilated in an active act of
problem solving. So s/he has to propose an hypothesis about the usefulness of parts of her/his program.
The feedback of the system to this hypothesis can then be regarded as help information which can be used
by the student to circumvent his/her impasse.

Errors in functional programs are often difficult to localize. This is true for most nonsyntactic bugs. Often
the only possible diagnosis is : The goals various parts of the program compute are inconsistent with the
main goal. In figure 4a we have the impasse situation of a student. It is an inconsistent implementation of
the "even” goal. There are several possibilities to localize bugs and to repair this program. The

programmer's knowledge and beliefs can be used by our help system.

Figure 4a

The programmer has to put forward positive or negative hypotheses like: "] presume that this marked
subtree of the program can be embedded in a correct solution!" or "I suspect that this marked subtree can
not be embedded in a correct solution!"

S/he then has to mark this hypothesis with the mouse (bold lines in figure 4a). This corresponds to the
hypothesis: "Is it possible to embed this marked part of my proposal in a correct solution?”

1. proposal for completion
TASK = even

]
-t

w

—t
_-—C
o

roe Ie\mmyn"t
ite

45. proposal for completion
TASK = even| 5 1

Figure 4b

The system is able to generate complete solutions constrained to this hypothesis. In figure 4b we see the
1st and the 45th synthesized solution of the problem. To avoid passiveness of the problem solver and to
restrict the number of proposals the programmer actually sees only small parts of the complete feedback.

The first answer to the hypothesis is "Yes/No". If this does not resolve the difficulty, the student is given
more information on demand. S/he is asked to choose one of the nodes of the solution which has a link with
an embeddable hypothesis.

4. A Session with the Hypothesis-Driven Help System

To demonstrate the system we choose the impasse situation of figure 4a. Local patches and repairs led to
this program. The student knows from earlier steps of the hypothesis testing sequence that the complete
proposal is incorrect. The student suspects that the predicate is in error. He believes that the THEN and
ELSE-branch are correct. S/He marks her/his hypothesis according to figure 5. S/He receives the message ;
"No: Your hypothesis cannot be completed to a solution known by the system”,

|Gy s bl ke Al e T Gt el ceenwen -l f—

no: Cannat be completed to a solution known by the system

C

|
|
[

[
L

=
=S S

[]

===

Figure 5

Because the student is quite certain that the recursion step in the ELSE-branch is correct s/he restricts her/his
hypothesis even further (Figure 6, upper window). Now, s/he sees the copy of the hypothesis in the
feedback window as a positive response (Figure 6, lower window).

The student knows that dependent on this hypothesis the error/errors are either in the predicate or in the
THEN-branch of the IE-THEN-ELSE operator. S/He can start to repair the program in the workbench
window (upper window). If s/he is still in an impasse, s/he can ask for further information. The hypothesis
contains two open links. The student can mark one of these links. S/he chooses the THEN-branch. The
feedback of the system is: the main operator of the THEN-branch could be the EQUAL-Operator

(Figure 7).

The student hopes that this was the only error. To affirm this belief it is up to her/him to propose further
hypotheses (e.g. Figure 4a). Now the student has some information to replan the program.

—_—— == = =

Figure 7

46

5. Further Research Topics
5.1 The Psychological "Reality" of the Goals in the GMR

We are interested in the question whether the goals in the GMR are pure symbols or bear some
psychological reality [43]. In the latter case it would be possible to interpret the AND/OR graph of the
GMR as a problem space [44]. The problem solving process can be viewed as a path through the AND/OR
graph. This assumption is not unreasonable [45] but has to be further investigated. In figure 8 we have a
small excerpt of a problem solving protocol of a subject programming the "absdiff” problem.

Beginnin ver rotocol % iff" i

"Construct an ABSYNT program which returns the difference between two numbers as a positive value”

Segment Protocol

Number

1 Ok, first we put the parameters, with the - values

2 then a minus-operator node --

3 and now -- ah, now we take the if-then-else node.

4 Then, if the result is negative,

5 then you can multiply by minus 1, - I am not sure if we can do that with this node, but
6 and when the result is positive, then - you just say minus -

7 hm - now we only have to decide, how does he decide between minus and plus --

8 if it is negative,

9 then we have times minus 1,

and else - nothing, just take the result
- how can we reach a decision here - how can he do that, with minus --

JE——
L

The screen remains empty during this sequence.

Figure 8

The protocol is partitioned into episodes which are mapped into the AND/OR graph of the GMR (figure 9).
If this mapping could be done automatically as proposed by [46] the quality of helps could be improved due
1o information about the intentions of the problem solver.

47

branching...

Screen is empty.

Figure 9
5.2 Rule Composition and Solution Schemas

As can be seen from figures 2 and 3 the planning rules are highly standardized. It is easy to use the learning
mechanism of automatic rule composition [7] to speed up the system and diagnose typical problem solving
schemes in only a few steps.

5.3 Individualized Helps and Student Models

To restrict further the number 0}' alternative solution proposals we need a user model which filters the
proposals, so that the feedback information is helpful and does not generate new subproblems. This can be
achieved by storing the hypothesis, their results and the corresponding actions and repairs of the problem
solver.

5.4 Further development of the Planning Helps

The present implementation of the help system shows feedback only on the language level . In the near
future these "low level” helps will be accompanied by "high level” helps on the goal level.

6. References

1]

(2]
3]
4]
8
[7]
[8]

[91
[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18)
[19]
[20]

[21]

WENGER, E., Artificial Intelligence and Tutoring Systems: Computational and Cognitive
Approaches to the Communication of Knowledge, Los Altos Calfornia: Morgan Kaufman
Publishers, Inc., 1987

POLSON, M.C. & RICHARDSON, J. (ed), Foundations of Intelligent Tutoring Systems,
Hillsdale, N.J.: Lawrence Erlbaum Press, 1988

PSOTKA, J., MASSEY, L.D. & MUTTER, S.A. (eds), Intelligent Tutoring Systems: Lessons
Learned, Hillsdale, N.J.: Lawrence Erlbaum Press, 1988

BIERMAN, D., BREUKER, I. & SANDBERG, I. (eds), Artificial Intelligence and Education,
Amsterdam: I0S, 1989, ISBN 5051990146

MAURER, H. (¢d), Computer Assisted Learning, Berlin: Springer, 1989

KQEARSLEY, G.P. (ed), Artificial Intelligence & Instruction, Reading, Mass.: Addison Wesley
1987

LEWIS, C., Composition of Productions, in: D.KLAHR, P.LANGLEY & R.NECHES

(eds), Production System Models of Learning and Development, 329-358, Cambridge, Mass.: MIT
Press, 1987

WYSOTZKI, F., Representation and Induction of Infinite Concepts and Recursive Action
Sequences, Proceedings of the 8th International Joint Conference on Artificial Intelligence,

1983, Karlsruhe, Palo Alto,Ca.: Morgan Kaufman Publisher

SCHMITT, H. & WOHLFARTH, P., Mathematikbuch 5N, Miinchen: Bayerischer
Schulbuchverlag, 1978; i

BAUER, F.L. & GOOS, G., Informatik: Eine einfiihrende Ubersicht, Erster Teil, Berlin:

Springer 1982

DOSCH, W., New Prospects of Teaching Programming Languages, in: F.B. LOVIS & ED.
TAGG (eds), Informatics Education for All Students, Elsevier Science Publishers B.V. (North-
Holland), IFIP 1984, 153-169

DOSCH, W., Principles of Teaching Programming Languages, in: E. SCERRI (ed), Proceedings of
the 2nd Biennal Meeting of the Community of Mediterranean Universities, Malta, 17-21, October
1988 (in press)

MOBUS, C. & THOLE, H.-J. Tutors, Instructions and Helps. In: CHRISTALLER, Th. (ed):
Kﬂnstéighc Intelligenz KIFS 1987, Informatik-Fachberichte 202,Heidelberg, Springer 1989,

S. 336-385

MOBUS, C. & SCHRODER, 0., Knowledge Specification and Instructions for a Visual Computer
Language. In: KLIX, F., STREITZ, N.A., WAERN,Y.& WANDKE, N. (eds): Man-Computer
Interaction Research Macinter I1, Proceedings of the second Network Seminar of Macinter held in
Berlin /GDR, 21. - 25. Miirz 1988, Amsterdam: North Holland, 1989, 5. 535-565

JANKE, G., & KOHNERT, K., Interface Design of a Visual Programming Language: Evaluating
Runnable Specifications. In: KLIX, F., STREITZ, N.A., WAERN, Y, & WANDKE, N. (eds):
Man Computer Interaction Research Macinter II, Proceedings of the second Network Seminar of
Macinter held in Berlin/GDR, 21. - 25. Mirz 1988, Amsterdam: North Holland, 1989,5. 567-581
MOBUS, C. & SCHRODER, O., Representing Semantic Knowledge with 2-Dimensional Rules in
the Domain of Functional Programming, in:TAUBER, M., GORNY, P. (eds), Visualization in
Human-Computer Interaction. Heidelberg, Springer: Lecture Notes in Computer Science, Berlin (in
press)

JANKE, G, MOBUS, C & THOLE, H-J, Empirische Pilotstudie zur Konstruktion eines
problemlsezentrierten Hilfesystems fiir einen Problemlésemonitor, in: STETTER, F. (ed),
Informatik und Schule, Informatik-Fachberichte, Berlin: Springer (in press)

HOUGHTON, R.C., Online Help Systems: A Conspectus, Communications of the ACM, 1984,27,
126-133

SHNEIDERMAN, B., Designing the User Interface, Reading Mass., 1987

McKENDREE, 1., Feedback Content During Complex Skill Acquisition, in: G.SALVENDY,

S L.SAUTER & J.J.HURRELL (eds), Social, Ergonmic and Stress Aspects of Work with
Computers, 181-188, Amsterdam: Elsevier Science Publ., 1987

HARTLEY, J.R. & PILKINGTON, R., Software Tools for Supporting Learning in Intelligent On-
Line Help Systems, in: PERCOLI & R.LEWIS (eds), Artificial Intelligence Tools in Education, 39-
65, Amsterdam: North-Holland, 1988

[22]

[23]
[24]
[25]
[26]

[27]
[28]

[29]
(30]
(31]
[32]
[33]
[34]

[35]
[36]

[37]

[38]
[39]
[40]

[41]
[42]
[43]
[44]
[45]

[46].

49

HARTLEY, I.R. & SMITH, M.J., Question Answering and Explanation Giving in Online Help

Systems, in; J.SELF (ed), Artificial Intelligence and Human Learning: Intelligent Computer-Aided

Instruction, 338-360, London, 1988

KEARSLEY, G., Online Help Systems: Design and Implementation, Norwood, N.J., 1988

MOLL, Th. & FISCHBACHER, K., Uber die Verbesserung der Benutzerunterstiitzung durch ein

Online-Tutorial, in: $.MAASS & H OBERQUELLE (Hrsgb), Software-Ergonomie '89, 223-232,

Stuttgart 1989

gz;&lGAN, F.G., Formal Specification of Programming Languages, Englewood Cliffs,N.J.: Prentice
1, 1981

SCHRODER, O., FRANK, K.D., KOHNERT, K., MOBUS, C., RAUTERBERG, M,,

Instruction-Based Knowledge Acquisition and Modification: The Operational Knowledge for a

Functional, Visual Programming Language, Computers in Human Behavior (in press)

van LEHN, K., Towards a Theory of Impasse-Driven Learning. In: MANDL, H., LESGOLD, A.

(eds), Learning Issues for Intelligent Tutoring Systems, Springer, New York, 1988, §. 19-41;

NEVES, D.M., ANDERSON, J.R., Knowledge Compilation: Mechanisms for the Automatization

of Cognitive Skills, in;: ANDERSON, LR. (ed): Cognitive Skills and their Acquisition, Hillsdale:

Erlbaum, 1981, 8. 57-84;

LEWIS, C., Composition of Productions, in KLAHR, LANGLEY & NECHES (eds), Production

System Models of Learning and Development, 329-358, Cambridge, Mass.: MIT Press, 1987

LAIRD, J.E., ROSENBLOOM, P.S. & NEWELL, A., Chunking in SOAR: The Anatomy of a

General Learning Meachnism, Machine Learning, 1986, 1,11-46;

WOLFF, J.G., Cognitive Development as Optimisation, in: L. BOLC (ed), Computational Models

of Learning, 161-205, Berlin: Springer, 1987

KATZ, LR. & ANDERSON, J.R., Debugging: An Analysis of Bug-Location Strategies, Human-

Computer Interaction, 1987-1988,3,351-399

JOHNSON, W.L., Intention-Based Diagnosis of Novice Programming Errors, Research Notes in

Artificial Intelligence, London: Pitman, 1986

ANDERSON, I.R.: Production Systems, Learning, and Tutoring, in: KLAHR, D., LANGLEY,

P., NECHES, R., Production System Models of Learning and Development, 437-458,

Cambridge,Mass.: 1987

MURRAY, W.R., Automated Program Debugging for Intelligent Tutoring Systems, Research

Notes in Artificial Intelligence, London: Pitman, 1988

GREER, J.E., MARK, M.A. & McCALLA, G.L: Incorporating Granularity-Based Recognition

into SCENT. In: BIERMANN, D., BREUKER, I.,SANDBERG, J. (eds): Artificial Intelligence

and Education, Amsterdam: IOS, 1989, S. 107-115

WEBER, G., WALOSZEK, G. & WENDER, K.F., The Role of Episodic Memory in an Intelligent

Tutoring System, in: SELF, J. (ed), Antificial Intelligence and Human Learning: Intelligent

Computer-Aided Instruction, London: Chapman & Hall, 1989

NILSSON, N.I., Principles of Artificial Intelligence, Palo Alto, CA; Tioga Publishing Co., 1980

ABRAMSON, H. & DAHL, V., Logic Grammars, New York: Springer 1989

SABATIER, P., Quantifier Hierarchy in a Semantic Representation of Natural Language Sentences,

in: V.DAHL & P.SAINT-DIZIER (eds), Natural Language Understanding and Logic Programming,

North Holland, 1985 (op.cit. in [39])

LEVL G. & SIROVICH, F., Generalized And/Or-Graphs, Artificial Intelligence, 1976, 7, 243-259

LAIRD,] E. NEWELL, A. & ROSENBLOOM, P.S., SOAR: An Architecture for General

Intelligence, Artificial Intelligence, 33, 1987, 1-64

HARNAD, St., Minds, Machines and Searle, Journal of Experimental and Theoretical Artificial

Intelligence, 1989,1, 5 - 25

NEWELL, A. & SIMON, H., Human Problem Solving, Englewood Cliffs, N.I.: Prentice Hall

1972

ERICSSON, K.A. & SIMON, H.A., Protocol Analysis: Verbal Reports as Data, Cambridge,

Mass.: MIT Press, 1984

WATERMAN, D.A. & NEWELL, A., Protocol Analysis as a Task for Artificial Intelligence,

Artificial Intelligence, 1971, 2, 285-318

Lecture Notes in
Computer Science

Edited by G. Goos and J. Hartmanis

438

D.H. Norrie H.-W. Six (Eds.)

Computer Assisted Learning

3rd International Conference, ICCAL '90
Hagen, FRG, June 11-13, 1990
Proceedings

A SpringerVerlag

- New York Berlin Heidelberg London Paris Tokyo HongKong

I 2 i
N 4

Editorial Board
D. Barstow W.Brauer P Brinch Hansen D. Gries D. Luckham
C. Moler A.Pnueli G. Seegmiiller J. Stoer N. Wirth

Editors

Douglas H. Norrie

The University of Calgary

2500 University Drive N.W.
Calgary, Alberta T2N 1N4, Canada

Hans-Werner Six

Fachbereich Mathematik und Informatik
FernUniversitit Hagen

FeithstraBe 140, D-5800 Hagen, FRG

Lr21

CR Subject Classification (1987): K.3.1, 1.2

ISBN 3-540-52699-4 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-52699-4 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation,
broadcasting, reproduction on microfilms or in other ways, and storage in data banks, Duplication
of this publication or parts thereof is only permitted under the provisions of the German Copyright
Law of September 9, 1965, in its version of June 24, 1985, and a copyright fee must always be
paid. Violations fall under the prosecution act of the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1990
Printed in Germany

Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr.
2145/3140-543210 — Printed on acid-free paper

