A Model of the Acquisition of Rule Knowledge with Visual Helps:
The Operational Knowledge for a Functional, Visual Programming Language*

Olaf Schrider

University of Oldenburg
Department of Computational Science
D-2900 Oldenburg
F.R. Germany

Abstract

A simulation model of the acquisition of rule knowledge with visual helps is described in the domain of the
operational knowledge for ABSYNT, a functional, visual programming language. The knowledge
acquisition process is viewed as an iterative two-stage process:

a) acquiring new knowledge by making use of the supplied visual help material in response to difficulties:
that is, in new situations for which the current knowledge is not sufficient;
b) improving existing knowledge by dealing with familiar types of situations.

The simulation model was developed by protocol analysis of one single subject. The model describes 60%
of a continuous portion of the protocol. Some more coarse data from other subjects are analyzed in the light
of predictions of the model. The model further suggests how to continuously change the help material in
order to adapt it to the actual knowledge state of the leamner during the knowledge acquisition process.

1. Introduction

This paper describes a simulation model of a help-guided knowledge acquisition process in the domain of
the operational knowledge about the interpreter of ABSYNT. This is the kmowledge about how the
ABSYNT-interpreter works. ABSYNT (Abstract Syntax Trees) is a purely functional, visual programming
language developed in our project [12, 18, 19, 21, 22, 23]. ABSYNT is aimed at supporting the acquisition
of functional programming concepts up to recursion.

The goal of our project is to build an adaptive problem solving monitor for programming in ABSYNT.
Currently the problem solving monitor analyzes the students” blueprints, gives helps and error feedback,
[11], [20], and [24], this volume. Qur future work is aimed at tailoring analysis, helps, error-feedback and
reason-giving closely to the actual knowledge state of the student. For this we persue modeling help-guided

* This work is sponsored by the Deutsche Forschungsgemeinschaft (DFG) in the SPP Psychology of
Knowledge, Grant-no, MO 292/3-3.

143

knowledge acquisition processes of real learners. This is important within intelligent help or tutoring
systems [14, 28] for constraining hypotheses about the actnal knowledge state of a learner [9], and for
improving the timing and content of helps [24] in order to enhance the learners” construction of a mental
model [13] of "how-it-works"-knowledge and "how-to-do-it"-knowledge [15].

As the domain for modeling help-guided knowledge acquisition, we chose the operational knowledge at
first because a) it is less complex than the programming knowledge, and b) we developed visual help
material for it (see below). But we plan to transfer aspects of the model to the domain of programming in
ABSYNT.

2. The Domain

The model to be described deals with the hypothetical operational knowledge of a subject and the acquisition
of this knowledge while the subject simulates the ABSYNT-interpreter at the terminal, having access to
abstract, visual helps. This section serves to explain this activity.

An ABSYNT-program consists of a head tree and a body tree. Also, there is a start tree from which
programs can be called. The nodes of the trees are constants, parameters, and primitive and self-defined
operators. The connections between the nodes are the "pipelines” for control and data flow. Programs are
edited by taking nodes with the mouse from a menu bar (see the lower and right margin in figure 1) and
comnecting them. ABSYNT-programs are illustrated in [24], this volumne.

Another ABSYNT-environment consists of a visual trace which was implemented according to the runnable
specification [8] of the interpreter [23]. The trace makes every computational step of the interpreter visible.
In the trace, computation goals (symbolized by question marks) and obtained values are represented within
each node. Figure 1 shows an example.

Figures 2a to d show different states of the trace for a very simple ABSYNT-start tree without function
calls.

Besides editor and trace, there is also a prediction environment where the learner may predict the single
steps of the ABSYNT-interpreter by simulating it with the help of mouse and keybord.
In a fourth environment, the student can test hypotheses about the correctess of her/his program [20, 24].

Thus ABSYNT provides an iconic environment in the sense of [10]. An analysis of ABSYNT in terms of
properties of visual languages is provided in [23]. We will briefly describe some relationships between the
ABSYNT-environments and some other iconic programming environments:

The ABSYNT-environments differ from PICT/D [10], for example, in that ABSYNT is purely functional,
and there are individual connected icons (nodes) for operators, parameters, and constants. In PICT/D, the
icons contain operators together with their variable(s) and constants; the system is flowchart based.
BridgeTalk [4] differs from ABSYNT in that its icons are interrelated plan pieces, whereas ABSYNT-
programs are actual code. Planning rules are used for analyzing and synthesizing ABSYNT-programs [24].
One of our efforts will be to convert these rules into visual planning aids.

144

= - = =t——- -

Figure 1: A snapshot of the visual trace of an ABSYNT-program

=
-
=
=
=
5

GIL (Graphical Instruction in LISP; [26]) differs from ABSYNT in that in GIL, program code and
intermediate computational results are both represented in a program graph. ABSYNT-code does not
contain computational results, computation is visualized (figures 1 and 2) in separate environments. The
flexibility in GIL to work top-down, bottom-up or middle-out is also a property of ABSYNT.

In addition to the ABSYNT-environments, the runnable specifications of the ABSYNT-interpreter were
translated into sets of visual rules (according to design principles explained in [23]). Each visual rule
describes some set of computational steps of the ABSYNT-interpreter, including branching, function calls,
abstraction, and recursion. The visual rules serve as the help material the learner may use while simulating
the ABSYNT-interpreter in the ABSYNT-prediction environment.

For example, figures 3 to 5* show the visual rules which describe the computational steps depicted in
figures 2a to d. One application of the visual rule in figure 3 to the sitnation depicted in figure 2a leads to
figure 2b. Then, three applications of the visual rule in figure 4 lead to figure 2c. Finally, applying the
visual rule in figure 5 leads to the situation shown in figure 2d.

* The visual rules were implemented in HYPERCARD by Klaus-Dieter Frank, but they are not so depicted
here for space reasons. [22] contains HYPERCARD presentations of all visual rules.

145

Figure 2b: after application of the
visual rule in figure 3

Figure 2c: after three applications Figure 2d: after application of the
of the visual rule in figure 4 visual rule in figure 5

Figure 2: ABSYNT start tree without function calls and with only one primitive operator node

146

Rule 1: Computing primitive opérator node (no IF-THEN-ELSE-nod

Situation: Action:
1. The output stripe of a primitive
operator node contains a "?".
2. The primitive operator node is
not an IF-THEN-ELSE-node.
3. The input stripe of the
primitive operator node is empty.

< —

<hame> <hame>
? ?
(|) (|)

Figure 3: A visual rule of the help material

Write a "?" into every input field
of the primitive operator node.

Rule 4: Fetching Input value for operator node

Situation: Action:
1. The output stripe of an operator node contains a "?". Write the output value of the node
2. Any input field of the operator node contains a "?" connected to the input field
3. The Input field of the operator node is connected into that input field.

to another node which output stripe contains a value.

<value» \, /
\r I 1/ i .
..... ? kvalues| ...,
<name:» <hame>

?
(?l} (|)

Figure 4: A visual rule of the help material

3. An Earlier Study as the Starting Point for the Model

In an earlier study [27], 12 programming novices simulated the ABSYNT-interpreter, provided with the
visual rules as helps on paper. The subjects worked in dyades. Each dyade computed 33 ABSYNT-

147

Rule 2: Computing primitive operator node (no IF-THEN-ELSE-node

Situation: Action:
1. The output stripe of a primitive _—
operator node contains a "?". 1. Compute the primitive operator node.
not an IF-THEN-ELSE-node. of the primitive operator node.

3. The input stripe of the primitive
operatornode contains values only.

kval x»{<val..> leval xq <val..>

<names:> <name>
? <value»
\ (: J \ (a ue}

Figure 5: A visual rule of the help material

T

programs in this way at the terminal. The ABSYNT-programs were ordered in 7 sequences of equally
difficult programs, that is, programs which computation is described by the same set of visual rules. From
one sequence to the next, difficulty increased: The ABSYNT-programs contained some new concept (like
branching, abstraction and, finally, recursion), and the supplied set of visual rules was augmented
accordingly. The subjects were free to make or not make use of the helps (visual rules). In case of a
mistake, feedback was provided by the experimenter that the last computational step performed was wrong.
There were no time limits. The subjects were video- and audiotaped.

The subjects acquired the operational knowledge for ABSYNT and got skilled with this task. Typically,
within a sequence of equally difficult ABSYNT-programs, the subjects start with much problem solving
and make much use of the helps. Then the use of the help material decreases, and finally most of the
computational steps are done quickly and without verbalizing, until a more difficult ABSYNT-program is
presented (the first program of the next sequence. A computational step is every change of the content of an
ABSYNT-node, like filling in a computation goal or a value, and creating and deleting an incarnation of an
ABSYNT-program.) Within this new level of difficulty, the same pattern then starts again. There were only
about 1 % mistakes.

So first there are situations causing problems. They lead to gathering of new information with the helps.
Second, afterwards there are non-problematical situations, leading to quick performance where the help
material is not needed any more.

Starting from this observation, we view the acquisition of the operational knowledge as an iterative two-
stage-process, which is the framework for the model:

1. Acquisition of new knowledge. This is triggered by difficulties [16], or impasses, [3, 29, 30]. In order
to overcome a difficulty, problem solving steps are performed by applying weak heuristics [16] with the use
of the helps. The problem solving steps may lead to new information. Thus the acquisition of new
knowledge is viewed als impasse-driven learning.

148

2. Improvement of existing knowledge. Due to practise, the existing knowledge is reorganized so it can be
used more efficiently. Thus the improvement of existing knowledge is viewed als success-driven learning.

4. The Model

In developing the model, we performed the following steps:

1. A continuous part of the protocol of one single subject of a dyade was analyzed within the framework of

impasse-driven and success-driven learning.

2. A set of hypotheses about the content and structure of the hypothetical domain-specific (operational)

knowledge of the subject at each point in the knowledge acquisition process was stated.

3. Based on the categories of the protocol, three sets of hypotheses were stated which were aimed at wholly

covering the analyzed part of the protocol, leading to a verbal model:

. Hypotheses about the use of domain-specific knowledge: When are the helps needed / not needed?
When do difficulties arise?

. Hypotheses about problem solving steps (= application of weak heuristics) in response to
difficulties, and about their results, including the acquisition of new domain-specific knowledge.

. Hypotheses about when what domain-specific knowledge is improved.

4. Most aspects of the verbal model were implemented, obtaining the simulation model.

Thus the model incorporates the regularities extracted from the protocol within the framework of impasse-
driven and success-driven learning. The knowledge acquisition process is viewed as a continuous change in
structure and content of domain-specific knowledge, while the domain independent knowledge (i.e.:
making use of and improving domain-specific knowledge; weak heuristics for dealing with domain-specific
problems) remains unchanged. We will now take up the four steps listed above.

4.1 Protocol Analysis

The analyzed protocol covers about four hours of continuous working of one single subject of a dyade.
Several conventions were introduced in order to handle her interactions with the other subject of the dyade.
The protocol analysis resulted in a set of protocol categories for coding. The main protocol categories are:

. seven different kinds of difficulties which the subject encounters. For example, three difficulties are:
D1: Applicability of a rule is unclear. (The subject is uncertain whether the condition of some rule is
satisfied or not.)
D2: Rule condition is not satisfied, but satisfiable by some other rule. That is, the subject is aware of
the fact that the condition of some rule is violated, but it is possible to satisfy this condition by
applying some other rule first.
D3: Same as D2, except that the rule condition is not satisfiable by any other rule. (For example, the
rule in figure 3 is not applicable to an if-then-else-node)
The other four difficulties are: no rule for a goal; tie; action unclear; and negative feedback.

. seiting a goal to apply a rule with or without making use of the helps.

149

. rule applications with or without making use of the helps. Any continuous sequence of
computational steps that can be described by one visual rule is called a rule application,

In actual coding, each protocol category carries additional information about a) the part of the screen it refers
t0, b) the change of this screen part as considered by the subject, c) the rule describing this change, and d)
whether the subject makes use of the helps by looking at visual rules. For example, if the subject would say
in the situation depicted in figure 2a: "Maybe we can put “?” into the input stripe of the “<"-node" without
using helps, then this would be coded as a difficulty D1, refering to a) the “<™-node with an empty input
stripe, which is b) considered to be filled with ?*. This change is ¢) described by rule 1 (figure 3), but d)
the actual visnal rule is not looked at.

4.2 The Hypothetical Domain-specific Knowledge

The hypothetical operational knowledge acquired by the subject at any given point is represented as a set of
internal rules: an internal compound rule and possibly additional internal simple rules.

An internal simple rule represents acquired, but not yet improved knowledge and is an abstract
representation of the corresponding visual rule. The acquisition of new knowledge results in the creation of
a new internal simple rule. .

An internal compound rule represents improved knowledge. Knowledge improvement results in chunking
an internal simple rule into the compound rule. There are two different forms of an internal compound rule:
As long as the individual action steps of the compound rule can be applied in the same order for all tasks of
the current sequence of equally difficult ABSYNT-programs, the internal compound rule is represented as
the composite [1, 2, 17, 25] of two or more internal simple rules. Figure 6 shows the visual representation
of the composite built from abstract representations of the visual rules in figures 3 to 5. The application of
this composite to the situation in figure 2a leads to the situation in figure 2d.

But if the action steps are to be applied in variable order (depending on the actual task at hand) for the tasks
of the current sequence of equally difficult ABSYNT-programs, then the action part of the internal
compound rule consists of subrules (a simple version of the proposal of [7]). This "rule net" allows for
iterative action sequences [31], it describes the computation of ABSYNT-trees of varying size by a single
compound rule. Figure 7 shows the visual representation of the rule net built from abstract representations
of the visual rules in figures 3 to 3, plus another visual rule (visual rule 3) not depicted which passes
computation goals between connected nodes within an ABSYNT-tree.

Internal simple rules may be merged as new subrules into the rule net. We view this as proceduralization [1,
2, 25], since we represent internal simple rules as facts, but subrules as rules.

In order to tie these hypothetical knowledge forms to the protocol, the following assignments were made:

. There is no internal representation of a rule never applied yet.

. If a rule application is performed which is described by a new visual rule never encountered before,
then a corresponding internal simple rule is created.

. If a rule application is performed without a lookup in the helps for the first time, then the respective

internal simple rule has been integrated into the internal compound rule (composite or rule net). Thus
as long as applying a rule always requires the helps, the mle is viewed as an internal simple rule.

150

Composite of visual rules 1, 4+, 2

Situation: Action:

1. The output stripe of a primitive 1. Write a "?" into every input field
operator node contains a "?". of the primitive operator node.

2. The primitive operator node is 2. Write the output values of the
not an IF-THEN-ELSE-node. connected nodes into each connected

3. The input stripe of the primitive input field of the primitive operator node.
operator node is empty. 3. Compute the primitive aperator node.

4. All input fields of the primitive 4. Write the value into the output stripe
operator node are connected to of the primitive operator node.

another node which output stripe
contains a value.

| | | B

<val x> <val...>

«<name:> =name>»
\ ? Y, \ <value> /
(") (")

Figure 6: Visual representation of the composite built from abstract representations of the visual rules in

figures 3 to 5: Rules 1, 4+, and 2. ("+" is an abbreviation for one or more rule firings.)

4.3 The Yerbal Model

As mentioned, three sets of hypotheses about the knowledge acquisition process were extracted. Table 1
shows an example from each set, stated as if-then-rules. For each hypothesis shown, the number of
supporting and disconfirming cases ([6], Ch. 5) in the protocol is given. Altogether, there are 20 such
hypotheses, supported by 397 of 474 cases.

The first set of hypotheses (6 "application hypotheses") is concerned with the activity just after a rule
application: Depending on the actual hypothetical operational knowledge, does another rule application
occur with or without making use of the helps? Does a difficulty arise?

The second set of hypotheses (8 "problem solving hypotheses") is concerned with problem solving steps
and their results in response to different difficultics. We hypothesized problem solving steps as
"connectors” between certain protocol categories. For example, if a difficulty D2 is followed by another
difficulty or by setting a goal which is concerned with satisfying the violated condition, then the problem
solving step "working backward” was assigned. A problem solving step may remove a difficulty, resulting
in a goal to apply a certain rule to a certain part of the screen. Additionally, new knowledge may be acquired
(see the "knowledge acquisition hypothesis" below). But a problem solving step may also lead to yet
another difficulty.

151

Rule net, bullt from visual rules 1, 2, 3, and 4

Situation: Start

The currently focussed tree

is the start tree, <val x>
and it contains only
« primitive operator nodes \

(no IF-THEN-ELSE-nodes)

= and constant nodes. /_k...é

<name>
. s y
Action: Do the following steps as long as possible:
subrule 3: subrule 4:
subrule 1: subrule 2: If an input field If an input field
If an output stripe contains a “?" and contains a “?” and
If an output stripe contains a ‘2" and the connected out- the connected out-
contains a “?” and the input stripe of put stripe is empty, put stripe contains
the input stripe of this node contains 1 2 value,

|
this node is empty, values only, <values> }

S < T = R

<names» <names <name:x» <name:>
—2_J 2z J = _J .z J
then compute the then write a *?” into then write this

result and write this output stripe. value into this

then write 2 2" into 4 into the , output stripe. |

each input field. output stripe.
; ? l ? \
<names <nhamex> <namex> <hame>

\, ? J \ <valuex» } 2 2

Figure 7: Visual representation of the rule net built from abstract representations of the visual rules in
figures 3 to 5: Rules 1, 4, 2, plus the additional rule 3 (not depicted)

162

Table 1: An Application, Problem solving and Knowledge Improvement Hypothesis
If .. then ... supp. disc.

An If the internal compound rule then the next rule application 191 21
application allows for a sequence of two or will be performed without helps.
hypothesis: more rule applications,

A If there is a difficulty D2: then the problem solving step 18 3
problem a rule condition is not satisfied "work backward" is applied
solving but will be satisfied if some in order to find a rule satis-
hypothesis: other rule is applied first, fying the violated condition,
resulting either in setting
a goal or in a new difficulty
D2 or D3 for this other rule.
A If an internal simple rule has just then the new internal simple 8 1
Knowledge been created (a new, not yet rule becomes also part of the
improve- encountered visual rule has just compound rule (next application
ment been applied), and another rule of this rule without nsing helps).

hypothesis: differing only in the required type
of ABSYNT-node or tree is already
part of the internal compound rule,

The third set of hypotheses (6 "knowledge improvement hypotheses") is concerned with the question when
an internal simple rule, supposed to require a lookup in the helps, is made part of the internal compound
rule, so the next time it is applied without making use of the helps.

Finally, another hypothesis ("knowledge acquisition hypothesis") states that if a goal has been set to apply a
new visual rule of the helps never encountered before, then this rule will become an internal simple rule.

4.4 The Implementation

Although a composition method has been implemented, the simulation model (in PROLOG) currently
contains only the rule net. The model predicts different difficulties, set goals and rule applications with or
without helps, based on the hypothetical actual knowledge and the application, problem solving, knowledge
improvement and knowledge acquisition hypotheses. The model proceeds roughly as follows (see figure 8):

a) A plan is created (or angmented, if already existing). It consists of a sequence of planned rule
applications, containing internal simple rules, subrules of the rule net, or new visual rules.

b) Depending on the properties of the plan, the next planned rule application is performed without or with
helps, or a difficulty arises, as specified by the application hypotheses. There might also be more planning.
¢1) After a rule application without helps, the model resumes with step a) or b) (depending on whether
computation of the current ABSYNT-program is finished).

¢2) If a rule is applied with helps, the rule may be improved by proceduralization (= become a subrule of the
rule net), as specified by the knowledge improvement hypotheses. Then the model continues as in step ¢1).
¢3) A difficulty triggers a problem solving step (e.g. "working backward”, "trial and error”), as specified
by the problem solving hypotheses. This results in setting a goal (step d) or in yet another difficulty.

153

First task is presented
ask is done. + -
a)

augmenting plan by
@ further planning

s

depending on properties
of the plan (specified by
application hypotheses):

s

' S

apending on the difficulty an
further aspects (specified by
problem solving hypotheses)

nding on aspects
specified by knowledge
improvement hypotheses:

0 _apply rula
NN
NN

Hule is a new

visual rule (knowledge
acquisition hyp.

g
' acquiring new knowledge:
corresp. internal simple \

O States: properties of current hypothetical knowledge and of task-specific information,
including the computational state currently visible on the screen

[] Processes / activities for which there are no protocol categories

g
internal simple rule
becomes subrule of rule net

D Processes / activities corresponding to protocal categories

\\\\\\ Knowledge acqusistion

hypothesis

Application
hypotheses

Problem solving

Knowledge improvement hypotheses

hypotheses

The labels a), b}, c1), ... refer to the text.

Figure 8: Basic processing cycles of the simulation model

154

d) If a goal refers to a new, not yet encountered visual rule, then the knowledge acquisition hypothesis
applies, creating a corresponding internal simple rule applied with helps. So the model continues with step
¢2), leading to possible improvement of the newly acquired internal simple rule.

Thus, during computation of the ABSYNT-program, the hypothetical operational knowledge changes
because new visual rules will become internal simple rules, and internal simple rules will become subrules
of the rule net. So computation of the next ABS YNT-program of a given level will involve fewer difficulties
and fewer use of the helps. There will be more rule applications without helps.

Another feature of the model is that if the rule net is augmented by a new subrule, then the condition of the
rule net is generalized if necessary. There is also a memory for certain difficulties encountered in the past.
Thus knowledge about what not to do is gained, allowing the model to avoid certain difficulties later on.
For illustration, table 2 shows the PROLOG representation of the problem solving hypothesis of table 1.

5. Evaluation of Aspects of the Model

We compared a run of the model to a continuous portion of the protocol of the computation of two
ABSYNT-programs including function calls. The programs were the first two programs within a sequence
of equally difficult programs, and many difficulties and problem solving steps arose. A prediction of a
protacol category by the model was considered as correct if the protocol category and the additional
information about it (see the section on protocol analysis above) were predicted correctly. The analyzed
portion of the protocol contained 96 protocol categories. 22 of them were excluded from this consideration,
since they were not predicted correctly only because of an immediately preceding misprediction. 45 of the
remaining 74 categories (61%) were predicted, leaving 4 commission errors and 25 omission errors.

The deviations of the model from the protocol are due to mainly three reasons. First, as noted, not all
aspects of the verbal model are implemented yet. Second, long problem solving sequences where the
subject struggles for some time, running into several difficulties, cause trouble. In particular, the model has
trouble if the subject "jumps around” in the ABSYNT-tree, focussing rapidly on different parts of the
screen. Third, the issue of a memory for difficulties encountered earlier is not yet resolved.

We also assessed the generalizeability of aspects of the model over subjects by evaluating some model
predictions with more coarse data from different subjects of the investigation. Since the application
hypotheses predict difficulties and rule applications with / without helps, we expected that

. in a situation where an application hypothesis applies which predicts a difficulty, much time is
needed (following [5], p. 411). Also, the helps are used.
. in a situation where an application hypothesis applies which predicts a rule application with or

without helps, less time is needed. The helps are used or not used, respectively.
Table 3 shows some aggregated results. They match with these predictions.
A similar analysis was done with the knowledge improvement hypotheses. They predict that certain rules
are applied without helps very soon (see the knowledge improvement hypothesis of table 1, which predicts
positive transfer, based on similarity of a new and an already improved rule), while other rules require the
helps for a long time. Across subjects, for 14 of 22 rules the data corresponded to these expectations.

155

Table 2: PROLOG-representation of the problem solving hypothesis of table 1

PROLOG-Code:

Comments:

situation(d2,[Node 1 ,Rule,Node2]) :-

subgoal(Nodel ,Rule,Node2,Subgoal),

nule(rule_name(R),condition(C),action{A)),
on(change_to(Node_before_change,
Node_after_change),A),
compare(Nodel,Node_before_change,[]),
compare(Subgoal Node_after change,[]),
test_condition(Nodel,
rule(rule_name(R),condition(C),
action(A)),Difference),
result_of_problem_solving(d2,
[Nodel,Rule,Node2],
[Nodel,rule(IS,R),Node2],
Difference).

result_of_problem_solving(Difficulty,Old,
[Nodel,rule(V,R_name),Kn2],[]) :-
change(difficnlty_or_goal(Difficulty,Old),
difficulty_cr_goal(goal,
[Nodel,rule(V,R_name),Node2])),
generalize_cond_of rule_net(V,R_name),

situation(goal,[Node1,rule(V,R_name),Node2]).

result_of_problem_solving(D,0ld, New,Difference) :-
on([X,node_type(Y,Z)],Difference),

change(difficulty_or_goal(D,0ld),
difficulty_or_goal(d3,New)),
situation(d3,New).

result_of_problem_solving(D,0ld,New,Difference) :-

content_of_field(Difference,Binding_list),
on([Element,X],Binding_list),
on(Element,[empty,question_mark,value]),

change(difficulty_or_goal(D,0Old),
difficulty_or_goal(d2,New)),
situation(d2,New).

If a difficulty D2 has been noticed

(applying "Rule" to "Node1" would lead to
"Node2", but "Nodel" does not satisfy "Rule"),
- then set as subgoal a modified version

of "Nodel" (= "Subgoal") such that "Subgoal"
will satisfy the Condition of "Rule";

- find some visual rule,

which in its action part changes some
ABSYNT-node such that

this action is applicable to "Node 1"

and "Subgoal” can then be reached;

- and if such a visual rule has been found,

then test its condition part, obtaining a
difference list between condition and "Nodel",
and this problem solving step may lead

to some further result, depending on the
nature of the difference.

(see "result_of_problem_solving(...)").

If there is no difference ([]) between a rule
condition and an ABSYNT-node,

then replace the current difficulty by

setting a goal to apply this rule to this node,

and generalize the condition of the rule net,
and persue the goal just set.

If there is a difference between a rule
condition and an ABSYNT-node, such that the
type of the node (e.g., IF-THEN-ELSE-node)
cannot possibly satisfy the rule condition,

then replace the current difficulty

by another difficulty, D3,

and persue this difficulty.

If there is a difference between a rule
condition and an ABSYNT-node,

such that some content of the node does not
fit the rule conditon (the rule is satisfiable
by obtaining the required content,

applying some other rule),

then replace the current difficulty

by another difficulty, D2,

and persue this difficulty.

Table 3: Predictions of the application hypotheses on a coarse level of analysis (difficulty; rule application
with / without helps), and corresponding results (helps used; time needed)

application difficulty
hypothesis rule application with helps
predicts... rule application without helps

number helps used in time

of cases these cases (%) needed

analyzed (median)
67 80% 114 sec.
87 57% 26.4 sec.

158 18% 13.3 sec.

156
6. Discussion

The simulation model describes a continuous knowledge acquisition and problem solving process of a
single subject in terms of impasse-driven and success-driven learning. Comparing the model to a portion of
the protocol showed the degree of fit, but also the current weaknesses. A coarse analysis of the
generalizeability of the model across subjects led to results which seem to be encouraging both for
continuing the work on the model, and for experimentally testing aspects of the model.

How does the model relate 10 some other work? Concemning impasse-driven learning, the main similarity to
Brown & van Lehns repair theory [5] is that difficulties ("impasses") lead to the application of weak
methods which are aimed at overcoming the difficulty (see also [16, 30]), followed by some overt action as
well as a secondary impasse. Brown & van Lehn do not directly adress the acquisition of new knowledge
(but [29]) and knowledge improvement. But repair theory is constrained by more general principles.
Concerning success-driven learning, we tried to incorparate aspects of knowledge compilation [1, 2, 3, 25]:
composition, proceduralization and generalization. Proceduralization differs from Andersons
conceptualization due to the rule net in our model. Our model does not contain rule strengths, as proposed
by Anderson. But some of the mispredictions of the model suggest that this is useful.

A further implication of the model is that it suggests how the help material might be improved. If the learner
is not sure about applying the compound rule in a new situation, then it would seem appropriate if the helps
are adapted to his / her current knowledge state. This would mean to augment the helps by a visual
compound rules as the ones depicted in figures 6 and 7. Thus it is possible to tailor the help material to the
knowledge state of the leamer, and to empirically test whether tailored helps are really more helpful.
Another implication comes from the idea that the acquisition of new knowledge is difficulty-driven. If there
is a hypothesis about the knowledge state of a subject at a given point (for example, whether a difficulty is
encountered), then it can be predicted whether the subject will accept or even actively search for new
information [20, 24, 30]. This is important for timing helps in mtorial dialogues.

7. References

[1] Anderson, J.R., The Architecture of Cognition. Harvard University Press, Cambridge, 1983

[2] Anderson, JR., Knowledge Compilation: The General Learning Mechanism. In: Michalski, R.S.;
Carbonell, J.G.; Mitchell, T.M.: Machine Learning, Vol. II. Los Altos: Kaufman, 1986, 289-310

[3] Anderson, I.R.; Greeno, J.G.; Kline, P.I.; Neves, D.M.: Acquisition of Problem-Solving Skill. In:
Anderson, J.R. (ed): Cognitive Skills and their Acquisition. Hillsdale, Erlbaum, 1981, 191-230

[4] Bonar, J.G., Liffick, B,W., A Visual Programming Language for Novices. In: Chang, S.K. (ed):
Principles of Visual Programming Systems. Englewood Cliffs: Prentice Hall, 1990, 326-366

[51 Brown,].S.; van Lehn, K., Repair Theory: A Generative Theory of Bugs in Procedural Skills.
Cognitive Science, 1980, 4, 379-426

[6] Card, $.K., Moran T.P., Newell, A., The Psychology of Human-Computer Interaction. Hillsdale:
Erlbaum, 1983

[71 Cheng, P., Carbonell, .G., The FERMI System: Inducing Iterative Macro-operators from
Experience. Proceedings of the fifth National Conference on Artificial Intelligence. Cambridge:
Morgan Kaufman, 1986, 490-495

[8] Davis, R.E., Runnable Specifications as a Design Tool. In: Clark, K.L.; Témlund, S.A. (eds),
Logic Programming, New York, Academic Press, 1982, 141-149

19

[10]
(11]

(12]

(13]

[14]
[15]

[16]
(17
[18]

[19]

[20]

[21]

[22]

[23]

(24]
[25]

[26]

(27]

[28]
[29]
[30]

[31]

157

Goldstein, LP., The Genetic Graph: A Representation for the Evolution of Procedural Knowledge.
In: Sleeman, D, Brown, J.S. (eds): Intelligent Tutoring Systems. New York: Academic Press,
1982, 51-77

Glinert, E.P., Nontextual Programming Environments. In: Chang, 5.K. (ed): Principles of Visual
Programming Systems. Englewood Cliffs: Prentice Hall, 1990, 144-230

Janke, G., Mobus, C., Thole, H.-J., Konzeptualisierung eines problemlésezentrierten
Hilfesystems. In: Stetter, F., Brauer, W, (ed), Informatik und Schule, Informatik-Fachberichte 220,
Berlin, Springer, 1989, 44-55

Janke, G., Kohnert, K., Interface Design of a Visual Programming Language: Evaluating Runnable
Specifications. In: F. Klix, N.A. Streitz, Y. Waern & N, Wandke (eds), Man-Computer-Interaction
Research MACINTER-II, Proceedings of the Second Network Seminar of MACINTER held in
Berlin/GDR, March 21 - 25, 1988, Amsterdam: Elsevier, 1989, 567-581

Johnson-Laird, P.N., Mental Models. In Aitkenhead, A.M., Slack, J.M. (eds): Issues in Cognitive
Modeling. Hillsdale: Erlbaum, 1985, 81-99

Kearsley, G., Online Help Systems. Norwood: Ablex, 1988

Kieras, D, Polson, P.G., An Approach to the Formal Analysis of User Complexity. Int. Journal of
Man-Machine Studies, 1985, 22, 365-394

Laird, J., Rosenbloom, P.S. & Newell, A. (eds), Universal Subgoaling and Chunking, Boston:
Kluwer Academic Publ. 1986

Lewis, C., Composition of Productions, In: Klahr, D., Langley, P., Neches, R. (eds), Production
System Models of Learning and Development, Cambridge, MIT press, 1987, 329-358

Méibus, C.: Die Entwicklung zum Programmierexperten durch das Problemldsen mit Automaten. In:
Mandl, H.; Fischer, P.M. (Hg): Lernen im Dialog mit dem Computer. Miinchen: Urban &
Schwarzenberg, 1985, 140-154

Mbibus, C., Logic Programs as a Specification and Description Tool in the Design Processes of an
Intelligent Tutoring System, in Salvendy, G. (ed), Abridged Proceedings of the HCI International
87, 1987, 119

Mibus, C., Toward the Design of Adaptive Instructions and Helps for Knowledge Communication
with the Problem Solving Monitor ABSYNT. To appear in: Stepankova, O., Marik, V. (eds):
Proceedings of the CEPES UNESCO Workshop "The Advent of Higher Education”, Prague, Oct.
23-25, 1989, Berlin-Heidelberg-New York: Springer (in press)

Mbbus, C.; Schrisder, O., Knowledge Specification and Instruction for a Visual Computer
Language. In: Klix, F.; Wandke, H; Streitz, N.A.; Waern, Y. (eds): Man-Computer-Interaction
Research MACINTER-II, 1989, 535-565

Mbbus, C.; Schrider, O., Representing Semantic Knowledge with 2-Dimensional Rules in the
Domain of Functional Programming. In: Tauber, M; Gorny, P. (eds), Visualization in Human-
Computer Interaction, Heidelberg, Springer Computer Science Lecture Series, in press

Mbbus, C.; Thole, H.J., Tutors, Instructions, and Helps. In: Christaller, Th. (ed), Kiinstliche
Intelligenz, KIFS87, Proceedings, Informatik-Fachberichte 202, Heidelberg: Springer, 1989, 336-
385

Mobus, C, Thole, H.J., Interactive Support for Planning Visual Programs in the Problem Solving
Monitor ABSYNT: Giving Feedback to User Hypotheses on the Language Level (this volume)
Neves, D.M.; Anderson, J.R., Knowledge Compilation: Mechanisms for the Automatization of
Cognitive Skills. In: Anderson, J.R. (ed): Cognitive Skills and their Acquisition, Hillsdale,
Erlbaum, 1981, 57-84

Reiser, B.J., Ranney, M., Lovett, M.C., Kimberg, D.Y., Facilitationg Students’ Reasoning with
Causal Explanations and Visual Representations. In: Bierman, D., Breuker, J., Sandberg, I. (eds),
Artificial Intelligence and Education. Amsterdam: 108, 1989, 228-235

Schrader, O., Frank, K.D., Kohnert, K., Mébus, C., Rauterberg, M., Instruction-Based
Knowledge Acquisition and Modification: The Operational Knowledge for a Functional, Visual
Programming Language, Computers in Human Behavior, in press

Sleeman, D., Brown, J.S., Intelligent Tutoring Systems, New York: Academic Press, 1982

van Lehn, K., Learning One Subprocedure per Lesson, Artificial Intelligence, 1987, 31, 1 - 40

van Lehn, K., Towards a Theory of Impasse-Driven Learning. In: Mandl, H; Lesgold, A.: Learning
Issues for Intelligent Tutoring Systems, Springer, New York, 1988, 19-41

Wolff, J.G., Cognitive Development as Optimization, In: Bolc, L., (ed), Computational Models of
Learning, Heidelberg: Springer, 1987, 161-205

Lecture Notes In
Computer Science

(VAL w2t 7

Lecture Notes In
Computer Science

Edited by G. Goos and J. Hartmanis

438

D.H. Norrie H.-W. Six (Eds.)

Computer Assisted Learning

3rd International Conference, ICCAL '90
Hagen, FRG, June 11-13, 1990
Proceedings

SpringerVerlag

New York Berlin Heidelberg London Paris Tokyo HongKong

