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Abstract

The goals of this paper are threefold. First we want to present a review of the literature on computer assisted
instruction, second we want to discuss the quality of instructions in some texts and human-computer dialogs concerning
computer programming. Third we want to demonstrate the cognitive-science-based development of our programming
environment ABSYNT. This includes the construction of iconic instructions and helps which promise to be superior to verbal
instructions and helps when properly designed.

This paper consists of three parts. In the first part (1.-3.) we give a short introduction to computer aided instruction
(CAI), intelligent computer aided instruction (ICAI) and a special variant, namely intelligent tutoring systems (ITS).

One of the most underestimated problems in the development of an ITS is the proper design of instruction. We prefer
to discuss this problem not on an abstract but on a rather concrete level. So the second part (4.) documents two examples of
instructions and helps typically given in textbooks and intelligent tutoring systems concerning computer science education.
These examples show that at present the construction of instructions is more art than science. They are an uncontrolled source
for errors and misconceptions of the students, This causes severe problems in CAI and ICAL, especially for the design of help

components.
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In the third part (5.) we want to demonstrate how to derive instructions and helps for a problem solving monitor
(PSM) presently under construction. This approach rests on production based learning theory (ANDERSON, 1983, 1987a;
ANDERSON, GREENQ, KLINE & NEVES, 1981; ANDERSON, KLINE & BEASLEY, 1980; EGAN & GREENO, 1974,
SIMON & LEA, 1974; VanLEHN, 1987a,b). We used rule sets to formalize the knowledge about the operational semantics
of a graphical virtnal machine, which is driven by graphical programs in the ABSYNT language (ABstract SYNtax Trees).
Abstract facts and rule sets, which can be conceived as a runnable specification of the virtual machine, are related to concrete

counterparts: icons and iconic rules, Thus diagrammatic information forms the core of our instructional and help system.
1. Introduction

ICAI has two predecessors: machine based teaching and CAIL Machine based teaching was a direct consequence of
principles developed under the influence of SKINNER's theory of operant conditioning. According to this behavioristic
learning theory an operant is a unit of behavior which is conditioned by reinforcement. This reinforcement was not given by
human teachers but by teaching machines. Instructional programs were at first implemented on nonelectronic equipment. But
since the early 1960s (with the rise of electronic computers) the notion of CAI emerged. Many systems were developed in the
hope of constructing tutors who could support human teachers or relieve them from routine work. But the development of
this field showed some parallelism to machine translation and natural language processing. Excessively high expectations
were nourished by researchers {e.g. KLING, 1979; TAUBER, 1980) but research showed only slow progress due to
deficiencies of instructional theories and shortcomings in computational media and programming techniques. The
disappointment of the nonscientific community led to a cut in funding. For instance, in the midseventies nearly all third party
sponsored projects in Germany were cancelled.

Today the international and national scene has changed somehow, which is partly attributable to new developments in
computer science (KAWAI, MIZOGUCHI, KAKUSHO & TOYODA, 1987) and partly to progress in cognitive science and
cognitive psychology (SLEEMAN & BROWN 1982; MANDL & FISCHER, 1985; KEARSLEY, 1987, WENGER, 1987).
Progress in the design of hardware {workstations with bitmapped high resolution displays) and software {object- and rulebased
programming languages) made it seem possible to meet the challenge of designing intelligent tutor systems realizable. The
perfarmance of these systems should equal that of a human tutor (ANDERSON, 1987). Admittedly, progress is still not rapid
and there are nearly no commercial systems available, which would justify the predicate "intelligent”. KEARSLEY pointed
out clearly that:

"ICAl is an emerging field that is ill-defined at praesent. The distinction between intelligent CAl systems
and computer-based instruction programs cannot be sharply drawn. ICAl programs use Al programming
techniques and are implementad In languages as LISP and PROLOG. Davelopers of ICAl systems focus on
problems of knowledge representation, student misconceptions, and inferencing. By and large, they have
ignored instructional theory and past research findings in computer-based instruction.”

Another obstacle to fast progress in this field is due to the fact that a successful design, development and evaluation of
an ICAI-System or ITS has 1o be a joint effort of researchers from cognitive psychology, cognitive, educational and computer
science, Different backgrounds and goal strctures can stimulate scientific discussions (BODEN, 1981; SCHEERER, in
press), but usually do not provide a fertile environment for the development of software under time and budget constraints,
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2. Early Teaching Machines, Computer Aided Instruction (CAI) and Intelligent Computer Aided
Instruction (ICAI)

2.1 Behaviorism and Teaching Machines

Manually operated drill or teaching machines (PRESSEY, 1926, 1927; SKINNER, 1958) were the forerunners of
today's CAI and ITS systems. They presented the instructional material as a lingar sequence of frames (frames meaning pages
here, not the MINSKYan knowledge structure (MINSKY, 1975)). Each frame required a response from the student. Even after
an incorrect response the student had 1 move to the next problem. The theoretical position of this kind of teaching style was
based on a theory of instruction which descended from operant learning theory (GALANTER, 1959; HOLLAND, 1960, 1564,
SKINNER, 1954, 1958, 1968). From the introduction of programmed instruction researchers expected more optimal
planning, scheduling and individualization of the learning process with immediate feedback of success or failure, and a more
economical expenditure of teaching resources (WEINERT, 1967).  These early efforts culminated in the book "Analysis of
Behavior” {(HOLLAND & SKINNER, 1961), which is an attempt to teach the underlying behavioristic leaming theery with
“linear programs”. The instructions and a short excerpt of the program are included in appendix A. It is interesting to see
that still today some computer scientists with a strong inclination to artificial intelligence are following the behavioristic
tradition when teaching the state-of-art symbolic computer language SCHEME (FRIEDMAN & FELLEISEN, 1987). We
included the pages 3 and 4 of their textbook in appendix B.

It was the pioneer PRESSEY (1963}, who anticipated the failure of programmed instruction due te the atomization of
knowledge structures and due to the lack of a supportive and friendly environment for selfpaced and autonomous explorative
leaming,

Today we know that because of its inherent inability to provide individualization and rich feedback programmed
instruction could fulfill teaching purposes only when students were highly motivated. It is thus not useful for large scale
applications with heterogenous student populations, but only for short-time "crash-courses”,

2.2  Computer Based Instruction (CAI)

Soon it was realized that to provide the necessary individualization and feedback linear programs had to be abandoned in favor
of branching programs which could provide remedial loops in case of student errors or jumps in case of student competence.
These control structures could not be managed efficiently by mechanic devices. So researchers who had access to computer
resources wrote branching programs in a computer language. This meant that to provide branches for individualized
instruction the implementer and the courseware author had to anticipate every response or misconception of the swudent
(ATKINSON & WILSON, 1969; BARR & ATKINSON, 1977). This is nearly impossible to achieve and led 1o the demand
of ICAI, which should relieve courseware authors from the burden of explosive branching. Today we recognize a three phase
sequence in the history of CAI
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2.2.1 Basic Research and Prototypes

The first phase was characterized by basic research for laboratory prototypes (SUPPES, JERMAN & BRIAN, 1968;
SUPPES & MORNINGSTAR, 1972). Researchers had become more modest than SKINNER and his group, who could not
imagine any complexity barriers for programmed instruction. To facilitate the development of learning aids and feedback
helps, domains of teaching were confined to basic skills in mathematics, reading and computer programming (BARR &
ATKINSON, 1977).

Branching programs were written in conventional imperative programming style with nested IF-statements or
conditional jumps. So rather sophisticated decision structures evolved {(ATKINSON, 1972; SMALLWOOD, 1962, 1970). But
to achiave a high response-sensivity to idiosyncratic patterns of student behavior, courseware authors had to face the well
known problem of combinatorial explosion of alternative paths in the discrimination tree of system responses to student
inputs.

In the same period fell some early developments concerning detailed behavioral assessment to model the learner and
learning processes (BARR & ATKINSON, 1977; FLETCHER, 1975; SMITH & BLAINE, 1976; SMITH, GRAVES,
BLAINE & MARINOV, 1975; SUPPES, 1981; SUPPES, FLETCHER & ZANOTTI, 1975, 1976; ) and the use of
personal{-ized) computers (DYWER, 1974),

2.2.2 Large Scale Applications and Commercial Systems

The second phase showed larger systems with author languages and selfguided primitive problem and item generators
(UTTAL, ROGERS, H]ERON‘I_’MOUS & PASICH, 1969; WEXLER, 1970; KOFFMAN & BLOUNT, 1975) to develop
cost-effective teaching environments. Some of these systems (LEKAN, 1971) became familiar outside academic institutions.
Two of them are even known today. These are PLATO (with author language TUTOR) and TICCIT (with language APT).

PLATO (Programmed Logic for Automatic Teaching Operation) was developed by CDC (Control Data Corporation)
and the author language TUTOR by researchers at CERL (Computer-based Education Research Laboratory). Similar to
TICCIT (Time-shared Interactive Computer Controlled Information Television) terminals with graphic capabilities were
served by a mainframe computer. PLATO was used for lessons in genetics, elementary mathematics and game playing
(DAYVIS, DUGDALE, KIBBEY & WEAVER, 1977). The educational game WEST (RESNICK, 1975) for example, which
became a famous paradigma in ICAI (BURTON & BROWN, 1979) was taught in PLATO lessons, too. Even experiments in
the microworld style with direct manipulation of the user-interface could be conducted (SHNEIDERMAN, 1983, 1987).
Contrary to PLATO TICCIT claimed to have an instructional design framework which led to some evaluation studies
(BUNDERSON, 1974; ALDERMAN, 1977; MERRILL, SCHNEIDER. & FLETCHER, 1980; BORK, 1981, 1986).

Al the present moment we see a revival of author languages under the name of "stackware”. This revival was started by
bundling the personal computer MACINTOSH with the new object-orientated HYPERCARD database system from
ATKINSON (GOODMAN, 1987; WILLIAMS, 1987).
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2.2.3 The Demand for Al in CAI

In the third phase of CAI the shortcomings of the CAI systems became more and more apparent. On the one side
software engineering techniques {requirement analysis, specifications, evaluations elc.) came into use to remedy design flaws.
On the other hand, it was realized that tutoring devices which should show a similar competence as human tutors needed a
stronger theoretical, methodological and empirical basis (CARBONELL, 1970; BROWN, 1977; FORD, 1986, 1987:
SPADA & OPWIS, 1985). This requires to improve cognitive science theories on knowledge acquisition, retrieval and
deduction and to implement separable knowledge components in the computer tutors to overcome "theoretical frontiers in
building a machine tutor" (WOOLF, 1987). These frontiers are due to the complexity of the domain of discourse, to specific
unexpected events in the tutoring sitation and to idiosyncrasies of the student concerning his learning history, his knowledge
state, his problem solutions, his failures and misconceptions. These insights led to the world-wide demand of "intelligent”
computer aided instruction (ICAT) (TCHOGOVADZE, 1985; YAZDANI, 1986, 1987).

2.2.4 Summary

CAI systems are characterized by the goal of teaching a large bedy of knowledge. Their theoretical basis rests on
classical psychological learning and instructional theory. Lessons are structured into sequences of frames, The system
responses are largely prespecified. Instructional methodology ranges from direct instruction to discovery or exploratory
learning. Domain knowledge is not explicitly represented in the system. Instead of that the design phase of the system is
sometimes started with a careful task-analysis thus delivering a hierarchical organisation of subtasks and learning prerequisites
(BLOOM, 1962, 1972; GAGNE, 1974). There is only rudimentary student modelling. Quantitative measures of student
behavior such as test scores and solution times are used as a description of the learner personality. This is in accordance with
psychological test theory (FRICKE, 1972; FISCHER, 1974; SPADA, 1976). Instructional formats show broad variation:
"slide shows", drill & practice lessons with multiple choice answer capabilities, games and simulations of microworlds
(FEURZEIG, 1987; LAWLER, 1984, 1987; PAPERT, 1987). The subject matters and discourse themes are not constrained
to formalized knowledge domains. It is even tried to teach such difficult and fuzzy-structured domains as natural languages
(LAWLER & LAWLER, 1987). Some computer based curricula were empirically evaluated according to well established
statistical methods developed in educational psychology (GAGE, 1967; KLAUSMEIER, 1971; STRITTMATTER, 1973;
FRICKE, 1974; ANDERSON, BALL, MURPHY & Associates, 1976; CRONBACH & SNOW, 1977; KRAUSE & SEEL,
1979). The systems were implemented mostly on general purpose hardware in general purpose or special author languages.

2.3 ICAIL: Reactive Environments, Problem-solving Monitors and Intelligent Tutoring

Systems

ICAI comes in various styles and forms, The main categories of ICAI systems are (1) reactive environments
(BROWN, 1977) or reactive microworlds, (2) problem-solving monitors (SLEEMAN, 1975) and (3) intelligent tutoring and
learning systems (CARBONELL, 1970). They differ with respect to goals, theoretical bases, instructional processes and
principles, methods of knowledge representation, student modelling, subject matter area, evaluation designs and last not least
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hardfsoftware requirements. However, they have a common denominator, which is their ability to represent knowledge of
various sources,

The most important thing for an ICAT system is to show adaptability with respect to idicsyncrasies of the leamer and
1o his competence level. This is a function of metaknowledge concerning declarative, diagnostic and procedural knowledge.
This means that the ICAI system knows what, whom, and how to teach (SELF, 1974; DEDE, 1986). There is a vast body of
literature on how to implement this kind of metaknowledge. The most clear-cut structure is threefold: an expert, a teacher and
a student module. The expert module represents and delivers the domain knowledge. The teacher module diagnoses errors,
assesses knowledge states of the student, makes inferences concering the plans of the problem solver, explains errors, gives
helps and proposes new tasks. The student module represents the actual knowledge state and his misconceptions. The modules
can be elaborated, so that they are models of experts, teachers and smdents, respectively. It is hoped that such models show a
greater ability to explain their operations than simple modules do.

Their identification in current systems is difficult or even impossible to obtain because their knowledge bases are ofien
not as clearly separated as theory postulates.

Intelligent tutoring systems will only become popular if they outperform old and well established educational
technology. Their performance must not be inferior to books or classroom instruction and should equal that of individual
lessons given by a human tutor, Both criteria require powerful workstations with bitmapped high resolution graphic displays
(SMITH, IRBY, KIMBALL, VERPLANK & HARSLEM, 1982; WILLIAMS, G., 1983; WILLIAMS, G., 1984), direct
manipulation facilities (HUTCHINS, HOLLAN & NORMAN, 1986; SHNEIDERMAN, 1983), sophisticated software tools
and elaborated psychological guidelines (ANDERSON, BOYLE, FARRELL & REISER, 1987) concerning the optimization
of the knowledge acquisition process. The software tools have to support object orientated programming for the development
of courseware and rule-based programming for error diagnosis, student modelling and helps {(KAWAI, MIZOGUCHI,
KAKUSHO & TOYODA, 1987).

Reactive environments and problem monitoring systems (PSMs) do not instruct explicitly. They deliver a friendly and
supporting problem solving environment (e.g. a structure editor), so that the working memory load of the problem solver is
kept at a minimum and certain classes of errors (e.g. syntactic errors in writing computer programs) cannot occur. Instructions
appear only in the form of helps after diagnosis of an error. If the diagnosis is based on plan diagnosis we will talk of a PSM,
PROUST (JOHNSON, 1986; JOHNSON & SOLOWAY, 1985, 1987) and ABSYNT which is presently under construction
(COLONIUS, FRANK, JANKE, KOHNERT, MOBUS, SCHRODER, THOLE, 1987, JANKE & KOHNERT, 1988;
KOHNERT & JANKE, 1988; MOBUS, 1985, 1987) belong to this group of ICAI environments.

2.3.1 Some Classic ICAI Systems

There is a core of laboratory systems which are regarded as classics by various authors (BARR & FEIGENBAUM,
1982: PARK, PEREZ & SEIDEL, 1987; SHAPIRO, 1987; SLEEMAN & BROWN, 1982; WENGER, 1987; YAZDANI,
1986):

(1) the Problem Solving Monitor ACE (= Analyzer of Complex Explanations). The system accepts interpretations of
nuclear magnetic resonance spectra. But more important is that it analyzes the explanations and justifications of students in
natural langnage dialogs (SLEEMAN, 1975; SLEEMAN & HENDLEY, 1982). SLEEMAN & HENDLEY argue that this
"teaching back” is becanse of the greater involvement on behalf of the student educationally much more valuable than simple

"learning”.
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(2) the BASIC Instructional Program BIP (BARR, BEARD & ATKINSON, 1975,.1976), which used as a very early
system the structuring of the gurriculum in an jnformation petwork (CIN) according to required skills and tasks. It was one of
the first systemns which used the notion of a student model, which consisted of a set of scores representing the mastery of a
skill,

(3) the diagnostic modelling scheme BUGGY for the diagnosis and analysis of errors ("bugs®) in the field of place-
value subtraction (BROWN & BURTON, 1978; BURTON, 1982). The system was based on a skill-subskill lattice, which
was derived from empirical error statistics. It showed that a careful analysis could demonstrate the nonrandomness of many
errors which would otherwise have been regarded as random errors. It was even possible to use the occurence of errors 1o derive
the knowledge structure of the task domain, which was formalized as a skill lattice.

(4) the medical diagnosis tutor GUIDON (CLANCEY, 1982, 1983, 1987) which used knowledge of the expert systems
MYCIN, EMYCIN and NEOMYCIN as a databasis (CLANCEY, 1986a). The goal was to develop and improve diagnostic
skills of medical students in the domain of bacterial infections. The development of the tutor showed the inadequacy of the
compiled knowledge of MYCIN for teaching purposes and the need for restructuring and decompiling the knowledge basis
when it should be used for instructional purposes,

(3) the tutor INTEGRATE for symbolic integration (KIMBALL, 1982). The tutor communicated judgmental
knowledge about to choose an approach or a heuristic for a given integration problem. Expert and student models are
represented by probability matrices, which describe the preference of solution approaches {columns) in problem solving states
(rows). So the marices contain compiled knowledge in a very condensed form. Example problems are chosen in such a way
that the discrepancies between expert and student model are minimized. The tutor is able to learn from the student, if the
student's solution is superior to its own proposal. Student and expert models are changed by updating the entries of the
underlying probability matrices according to bayesian methodology. Thus the tutor is able to improve its competence,

(6) the MACSYMA Advisor (GENESERETH, 1982) is conceptualized as an intelligent help system for MACSYMA
users, MACSYMA is a large package for symbolic mathematics developed at MIT, Because users had some difficulties with
MACSYMA's cryptic messages and syntax a friendly help system seemed to be a good idea. In reality the Advisor remained
an experimental system. Nevertheless some interesting concepts were introduced which are still relevant.

So a plan generator MUSER, that should mimic the problem solving behavior of a MACSYMA pser was constructed.
Plan recognition was treated as the inverse of plan generation. It was treated as a parsing problem. Student's actions constitute
the terminal vocabulary and the planning methods the rewrite rules of the planning grammar, The plan recognition procedure
of the Advisor is working in a hybrid top-down, bottom-up methodology: from overt actions corresponding goals are inferred
and from goals subgoal expectations are computed. The search space is controlled by propagation of dataflow and expectation
constraints,

(7) the first artificial intelligence based tutor SCHOLAR. It was designed by CARBONELL (1970) to mark explicitly
a change in paradigm from frame-based CAI to a knowledge-based ICAI approach. The teaching domain was chosen to be
rather simple: South American geography. The new methodological concepts were a) a mixed-initiative instructional dialog
on the basis of a case grammar, b} the representation of domain knowledge by the semantic network formalism, ¢} an agenda
of conversaticnal topics to allow the switching of the focus of the dialog and d) default inference strategies to cope with
incomplete knowledge on the mitor and the leamner side.

(8) the reactive leaming environment SOPHIE (Sophisticated Instructional Environment) was dedicated to electronics
touble-shooting. The development period ranged from 1973 1o 1979, Three systems were conceptualized and partly
implemented: SOPHIE-I (BROWN & BURTON, 1975), SOPHIE-II (BROWN & BURTON, 1986) and SOPHIE-III
(BROWN, BURTON & de KLEER, 1982),
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The main goal was 1o provide a reactive learning environment which could in the course of the project be extended to
an expert system useful for online repairs. But this was an unrealistic goal as the results of the project clearly showed. Both
the pragmatic need for greater computing resources and the theoretical necessity of representing the qualitative and not only
the quantitative reasoning processes of the students forced BROWN, BURTON and de KLEER 1o change their research
priorities and SOPHIE to a premature stop,

SOPHIE-I consisted of an automatic laboratory instructor and a simulated laboratory workbench. This made it possible
to run experiments to understand the workings of the faulted circuit. The student was to find the fault by taking
measurements, A simple coach, which was made of procedural specialists, criticized the trouble-shooting behavior of the
student. It checked the redundancy of the proposed measurements of the circuit, the optimality and consistency of the students'
hypotheses. The coach even answered questions and hypothetical questions and worked out all hypotheses compatible with the
set of measurements performed so far. To provide an easy interaction mode with SOPHIE a namral language interface based
on a semantic grammar (BURTON & BROWN, 1979) was implemented as an ATN.

SOPHIE-II is an attempt to improve the poor explanation capabilities of SOPHIE-I, So a trouble-shooting expert
implemented as an annotated and parameterized decision tree and a referee module were added. The expert demonstrated
diagnostic strategies given a fault proposed by the student. Expert reasoning was done in a qualitative mode, which could be
betrer explained and verbalized thus giving causally meaningful information, The students’ personal experimentations allernate
with observations of expent behavior. In case of uncertain knowledge they consult the referee which runs the simulated
laboratory of SOPHIE-I. Trouble-shooting was later wrapped into a gaming environment to stimulate the verbalization of
thought processes.

SOPHIE-1II should combine the support for student initiatives and the powerful inference strategy from SOPHIE-I
with the quality of the explanation capability from SOPHIE-II . So the inference machine was redesigned according to
empirical observations of the cognitive strategies used by experts and students. The architecture consisted of three major
expert modules: the electronic expert, the trouble-shooter and the coach, which was only mdimentarily implemented. The
electronic expert utilized general electronic knowledge and some circuit-specific knowledge. Information flows upwards
through the layers: 1) propagation of constraints (of the form: IF A = x, THEN B = ¥) to reason upon the quantitative
measurements and the circuit topology, These inferences are modified into qualitative assertions which are 2) vsed by a
production system drawing inferences about the module behavior, This is 3) further analyzed on the background of circuit-
specific knowledge. The trouble-shooting expert works on top of this three-layered system. It proposes new measurements
according to the deductions of the electronics expert.

(9} the Structured Planning and Debugging Environment (SPADE) for elementary LOGO programming (MILLER,
1979, 1982). The system rests on the assumption that the problem solving process is describable as a hierarchically organized
decision process (MILLER & GOLDSTEIN, 1976; 1977a,b). Only the leafs of this tree consist of the application of manifest
observable problem solving operators. So the development of computer programs is to a great deal a planning and decision
problem which could in principle be described by a planning grammar. Only in the end it is a coding problem. An intelligent
help system should thus give support for choosing optimal planning steps.

SPADE-0 was constructed as a "limited didactic” system which wasused as an explorative testbed for this grammatical
approach. It's purpose could best be described as a plan-oriented programming editor, The editor is driven by a context-free
problem solving grammar whose nonterminals stand for goals or planning decisions and whose terminal vocabulary consists
of LOGO code. The program is developed in a liberal top-down mixed-initiative dialog: proposals of the system are discussed
with the student, who has the freedom to defer decisions and to move frecly between the nodes of the tres in the problem
solving grammar.
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(10) the tutor WHY (STEVENS & COLLINS, 1977, 1980 ; STEVENS, COLLINS & GOLDIN, 1979, 1982) which
tried to help the student develop a causal model of a complex physical process: meteorological conditions for rainfall. The
student should be enabled to answer questions, give explanations and make predictions. The knowledge domain of weather
conditions was chosen to study a) tutorial dialogs between human teachers and students, b} to classify, explain and correci
typical misconceptions (e.g. bugs concerning facts, relationships and rules: overgeneralization, overdifferentiation etc.) abow
the physical processes, c) to look for a control regime that is scheduling tutorial dialogs with the aim of achieving a socratic
interaction style. This style is characterized by a mixed-initiative interaction stimulating on the learner side the autonomons
development of hypotheses, the discovery of contradictions and the drawing of inferences by issueing from the tutor side
successive questions, counterexamples, generalizations and specializations. To support the goal of controlling a socratic
dialog the authors collected a large set of heuristics (COLLINS, WARNOCK, AIELLO & M]l.LER, 1975; COLLINS, 1976,
1985; COLLINS & STEVENS, 1982; 1983).

2.3.2 Actual Problems in ICAI: Student Models, Plan Diagnostics and Cognitive Design Principles

2.3.2.1 Student Modelling and Plan Recognition

As was mentioned earlier, the "intelligence" of an ICAI system depends on the metaknowledge what, whom, how to
teach. There is general agreement among researchers and practicians (CLANCEY, 1986b) that to this end we need
information about the knowledge state of the student and his/her intentions. Thus, student modelling and plan recognition
become important research goals.

Unfortunately the notion student model is used with three different meanings: as a model of the

(1) ideal swdent. This is a normative concept prescribing the knowledge to be acquired up to a specified time point.
Deviations from this ideal path can be measured and remedial actions are to be derived. This approach called "model tracing” is
chosen by ANDERSON (1987).

(2) wypical student. The student is conceptualized as a collection of facts, rules, malfacts and malrules, The latter are
sometimes called "bugs”. This kind of modelling was mainly explored in the domain of simple arithmetic (BROWN &
BURTON, 1978; BUNDY, 1983; BURTON, 1982; YOUNG & O'SHEA, 1981) algebraic skills (SLEEMAN, 1982, 1983,
1984, 1985; SLEEMAN & SMITH, 1981) and mathematical games (GOLDSTEIN, 1980, 1982) with probabilistic
inferences.

The domains had to be simple because the collection of bug catalogues was a time-zonsuming enterprise as was shown
by BROWN & BURTON (1978) and BURTON (1982). So student-modelling was confined to domains where procedural
skills but not problem solving abilities were responsible for success.

(3) the conerete student. The idea behind this model is that student modelling should be done with the help of inductive
learning processes cenceming rules and concepts, There is a vast body of published research on this topic from the view of
experimental psychology (BOURNE, 1966, 1974; BOURNE, EKSTRAND & DOMINOWSKI, 1971; EGAN & GREENO,
1974; GOEDE & KLIX, 1972; HAYGOOD & BOURNE, 1965; HUNT, MARTINE & STONE, 1966: MEDIN & SMITH,
1984; MEDIN, WATTENMAKER & MICHALSKI, 1987; SIMON & LEA, 1974). The same is true for mathematical
systems theory (UNGER & WYSOTZKI, 1981) and artificial intelligence. Here research goes under the heading of inductive



345

machine leaming (DIETTERICH, LONDON, CLARKSON, DROMEY, 1982; BUNDY, SILVER & PLUMMER, 1985;
MICHALSKI, 1987; vanLEHN & BALL, 1987, CARBONELL & LANGLEY, 1987).

The application of basic results of research on human and machine learning to student modelling has just begun. So
there are only a few papers on the inductive construction of learner models (GILMORE & SELF, 1988; KAWAL
MIZOGUCHI, KAKUSHO & TOYODA, 1987; SELF, 1986). Results based on implementations of learning algorithms
have been reported by KAWAT et al. (1987), LANGLEY, OHLSSON & SAGE (1984) and SLEEMAN (1986).

Work on computational models of plan recognition started to be widely known with the article of SCHMIDT,
SRIDHARAN & GOODSON (1978). In contrast to classical work on student modelling, the research on plan recognition
was focused on problem solving. Here, we are assuming complex goal hierarchies. These could be used explicitly as a help
guiding the problem solving process (MILLER, 1982; MILLER & GOLDSTEIN, 1976, 1977a,b). These authors showed
that plan recognition and problem solving could be described by using the framework of parsing. The problem solving
grammars for planning purposes is used in a generative way. The student is offered a goal tree, In dialogical situations the
student chooses solution paths. Thus the parsing process is inverted to generate proposals and provide guidance in the
problem solving process.

Plan recognition as a variation of parsing has a rather short tradition. Though in linguistics it is a standard approach to
describe and explain verbal and written behavior by rule-based grammars, early attempts to extend the grammatical approach
1o nonverbal behavior and problem-solving (POHL, 1973; SKVORETZ, 1984: SKVORETZ & FARAROQ, 1980) are less
known. Nevertheless various studies describing human-computer interaction by taskgrammars have become rather popular in
recent years (REISNER, 1981, 1984; HOPPE, TAUBER & ZIEGLER, 1986; GREEN, SCHIELE & PAYNE, 1985;
HOFPE, 1987a, b; PAYNE & GREEN, 1986). Similar ideas were applied to problem solving domains (DESMARAIS,
LAROCHELLE & GIROUX, 1987; GILMORE & GREEN, 1987; JOHNSON, 1986: JOHNSON & SOLOWAY, 1984;
ROSS & LEWIS, 1987).

At the present moment there are only a few attempts to integrate student modelling into plan recognition, though the
benefits of an integrative approach are abvious (LLOYD, 1986). It supports the development of adaplive context-sensitive
helps and the resolution of ambiguities during the diagnostic process. This includes for example the ability to explain an error
by one of several alternative goal-action sequences. The selection of one path should be based on the diagnostic information
gathered so far in the student model.

2.3.2.2 Cognitive Design Principles

Up 10 now we presented some design considerations mainly from an artificial intelligence point of view. This has to
be completed by arguments from cognitive science or cognitive psychology. Becauss there is no single theory about human
information processing we restrict ourselves to computational cognitive theories. The most general of them is ANDERSON's
ACT" - theory (ANDERSON, 1983),

On the basis of the ACT* (Adaptive Control of Thought) - theory ANDERSON, BOYLE, FARRELL & REISER
(1987) propose eight design principles which are relevant for the construction of intelligent tutoring systems. Some of them
have a rather solid empirical basis,

The underlying ACT*-theory (ANDERSON, 1983) can be subsumed under a few main principles:

1} Human cognition can be hypothesized 1o work as pattern-action sequences which can be modelled on a symbolic

description level by goal-triggered rules (production systems),
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2) The productions operate on the content of a working memory with limited capacity.
3) Procedural learning takes place as production strengthening and knowledge compilation (NEVES & ANDERSON,
1981; ANDERSON, 1986).
The later process can be subdivided into proceduralization and composition. Proceduralization is some kind of
instantiation of parameters in production-rules thus producing specialized rules. Composition involves the building of macro-

operators out of a number of successful single operators.

The derived principles are:
nt a5 a P ion

Some arguments in favor of production systems are: 1) The ideal and the current student should be modelled by process
models, so that at each instance in time the deviation from the desired state is measurable, 2) Each production is a package of
knowledge that can be communicated easily. 3) Student misconceptions and bugs can be organized as production rules which
are perturbation of correct rules.

2 i nderlyin Problem- Solvin

According to ACT* and other cognitive theories successful problem-solving behavior is organized as AND/OR trees
of goals and subgoals. ANDERSON stresses the observation that traditional textbooks do not provide sufficient information
about the goal strucmre and the search processes necessary to solve the problem.

Provide In. ion i -Solvi

ACT™ hypothesizes that production compilation only takes place during problem solving. They cannot be learned in
the abstract. Thus, instructions are more effective for the learning process, when the student is forming the productions. A
similar line of argumentation was put forward by vanLEHN (1987). Instructions and helps are most effective, when they are
provided at the time of impasse in the problem solving process. Another reason for the importance of the context is the
human storage mechanism of packing and retrieving information in episodes (TULVING, 1983).

4 Promote an Abstract Understanding of the Problem-Solving Knowledge

The general finding is that students encode concrete knowledge far more easily than abstract knowledge. But in the case
of generality the productions should be parameterized to have abstract principles at hand.

S.Minimize Working Memory Load

Working memory errors degrade the speed of learning and restrict the amount of learning. To a high percentage errors
of novices can be explained as working memory errors.

vi mediate F E

This design principle is in accordance to classical learning theory (BILODEAU, 1969; SKINNER, 1958) and repair
theory (BROWN & Van LEHN, 1980; Van LEHN, 1983a,b, 1987). According to repair theory an impasse occurs, when the
problem-solving skills fail to propel the solution. If the application of general weak domain independent heuristics (repairs)
also fails, the student needs help and feedback.

i in Size of In i

The productions in the student model should define the grain size of the instructions. Because of the compilation
process, this grain size is changing permanently. This argument is also supported by a different production based learning
theory which is based on the chunking concept (NEWELL & ROSENBLOOM, 1981; LAIRD, ROSENBLOOM &
NEWELL, 1986).

8. Facilitate Successive Approximalions to the Target Skill

As nobody gets an expert by solving one problem of the task domain a careful sequence of training lessons has to be
designed, so that the production set can be compiled, augmented and tuned in a smooth way. The construction of a production-
based training sequence was demonstrated by vanLEHN (1987a).
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2.3.3 Summary

There is general agreement that it is metaknowledge that makes an tutor "intelligent”, This metaknowledge schedules
what, whom, how to teach. To include this knowledge we need expert and teacher knowlsdge and knowledge about the mental
state of the student. The diagnosis of the student has been done through modelling procedural skills and goal hierarchies.
Though the construction of a tutor has some engineering phases, design decisions have to be restricted by cognitive principles
which have a rather strong empirical evidence. So the development of an ICAI system has to be the result of an

interdisciplinary approach.

3. ICAI in the Domain of Computer Programming

In recent years many new ICAI systems appeared on the scene. The relevant american literature is compiled in
KEARSLEY (1987), LAWLER & YAZDANI (1987) and WENGER (1987). European authors describe their work in
MANDL & FISCHER (1985) and SELF (1988).

In the following we will focus our atiention on the domain of computer programming which is a well established

research area in ICAIL We only discuss systems which have a strong relevance for our own project ABSYNT.

3.1 Problem Solving Monitor: From PHENARETTE to The PROgram Understander for
Students (PROUST)

We will now review some work which runs under the title of help systems or problem solving monitors. The aim of
these systems is to give more specific, detailed and "intelligent” feedback on programmer's errors than an ordinary compiler or
interpreter conld do (BACKHOUSE, 1979, Ch.5,6; EFE, 1987).

One of these systems is WERTZ' PHENARETTE (WERTZ, 1982, 1985, 1987) which has become quite wellknown
though it was originally implemented in France. The program debugs LISP code with the help of syntax and semantic
"specialists”, which are represented by heuristic rules. Though these heuristics contain general programming knowledge, no
attempt is made to include knowledge about the problems or the intentions of the programmer. This is the reason why
WERTZ (1982) calls PHENARETTE a stereotyped debugging aid which could in principle be a backend of every LISP
interpreter or compiler. Thus depth of understanding programs was sacrificed in favor of general applicability of the system,

The next step in the direction of deeper understanding of programs was made by the development of PROUST
(JOHNSON, 1986; JOHNSON & SOLOWAY, 1985, 1987). It was designed to help novice programmers find and understand
bugs in PASCAL programs, which are usually written in an imperative style. PROUST does not teach directly, but gives
feedback, so that students are encouraged to formulate ideas, see relationships, draw conclusions and discover their own
misconceptions, This is in complete agreement with ANDERSON's design principles 3 and 6. In contrast to PHENARETTE
PROUST finds enly nonsyntactic bugs. These semantic bugs are partly due to working memory errors and partly due to
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planning errors. It determines how the bug could be corrected and even suggests why the bug arose in the program and the
problem context. To cope with various types of errors PROUST contains three knowledge bases: a description of the problem
and its requirements, general programming knowledge (programming schemes or stereotyped plans) and situation-specific
intentions of the programmer (goals), PROUST parses the syntactically correct blueprints of the student and generates from
the requirement (goal) structure of the problem description a proposal for a plan structure which can be transformed to
PASCAL code. The predicted code is matched against the actual code which was originated by the student. Discrepancies are
explained with bug rules. Natural language explanations and recommendations are put forward after the diagnosis phase,

In contrast to PHENARETTE PROUST puts great emphasis on plans and intentions of the programmer, The
diagnosis of both latent constructs seems to be very sophisticated because the authors report high error recovery rates on
nonselected PASCAL programs. But because both systems are not teaching explicitly they are not very much concerned with
teaching sequences and the building of knowledge structures. So they are lacking individualized explanations for errors, which
can cnly be derived from the learning history of the person and their formalization in a background student model. Such a
model could collect (like a special short term memory) data and hypotheses about the swdents previous problem solving
episodes (WEBER, WALOSZEK & WENDER, 1988).

3.2  An ITS System: ANDERSON's LISP Tutor

The development of PHENARETTE and PROUST has shown how much work has to be conducted in developing a
high quality debugging environment. This is absolutely indispensable for an ITS teaching a complete non-toy programming
language. So only a few groups are known for taking such an endeavor.

In Germany there is only one ITS for a complete programming language (LISP) in progress (WALOSZEK, WEBER
& WENDER, 1986; KOHNE & WEBER, 1987; WEBER, WALOSZEK & WENDER, 1988; WALOSZEK, WEBER &
WENDER, in press). In the United Kingdom the favourite language is PROLOG (ROSS, 1987; RAJAN, 1987).

Quite wellknown and even obtainable as a commercial system (BOYLE, 1986) is ANDERSON's LISP tutor
(ANDERSON, 1987; ANDERSON, BOYLE, FARRELL & REISER, 1987; ANDERSON & REISER, 1985;
ANDERSON & SKWARECKI, 1986). The tutor teaches a full semester course in LISP and is field tested at the Carnegie-
Mellon University since 1984, Its theoretical foundations were ANDERSON's cognitive theory ACT* (ANDERSON, 1983a;
ANDERSON, BOYLE, FARRELL & REISER, 1987) and several empirical psychological studies of LISP programming
(ANDERSON, 1983b; ANDERSON, FARRELL & SAUERS, 1982, 1984). Though there exists much published work
describing the tutor, the construction of the system is not as transparent as the design of PROUST. Therefore we do not want
to reconstruct the architecture of the tutor. Instead of that we will analyze the flow of dialog communicating knowledge
between the tutor and the user in chapter 4. We think that this is more important from a cognitive science perspective than
the analysis of the software layers.

The tutor teaches 18 lessons ranging from ‘Basic LISP Functions' (lesson 1) over Tnteger Based Recursion' {lesson 7)
to *‘Advanced Topic: Implementing Production Systems' (lesson 18). Conceming instructions ANDERSON (1985, p.164)
writes:

"Each topic involves a small instructional booklet and many problems practicing the skills taught
in that lesson. Qur goal in designing these booklets was to keep the written instruction to a minimum.
There is considerable evidence that written technical instruction is most effective when it is brief."
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This instructional material which is used to build up the knowledge structure has been published in modified form as a
textbook (ANDERSON, CORBETT & REISER, 1586).

4. Examples For Instructions and Helps in Teaching Programming

We agree with FORD (1987) and PEACHEY & McCALLA (1986) that the emphasis of ICAI research on student
models has impeded the research on other more tractable goals. Our first goals should be concerned with making teaching
strategies and tactics less ad hoc. According to FORD teaching strategies involve decisions which have to be made at each
cycle of the student-computer interaction. Each decision determines the next communication and learning steps. The decisions
have to be derived by educational "philosophies” like discovery learning or learning by instruction. Even smdent modelling
{CLANCEY, 1987) should not be seen independent of the strategies of teaching which should be seen as a concept with a
higher priority.

In ANDERSON's LISP tutor there seems to be nothing that could be called a model of the learning history of the
individual student though ANDERSON et al. use the terms "current student”, "ideal student” and "model tracing”
(ANDERSON, BOYLE, FARRELL & REISER, 1987). The last concept subsumes the four features of his tutoring
methodology (ANDERSON, 1987, p. 443):

1 The tutor constantly monitors the student's problem solving and provides direction whenever the student
wanders off path.
2 The tutor tries to provide help with both the overt parts of the problem solution and the planning. However,

10 address the planning, a mechanism had to be introduced in the interface (in this case menus) to allow the
student to communicate the steps of planning,

3. The interface tries 1o eliminate aspects like syntax checking, which are irrelevant to the problem-solving skill
being tutored.
4. The interface is highly reactive in that it does make some response 1o every symbol the student enters.

This strategy is accomplished by a 1000 production rules. 40% of these rules model correct generation of LISP code
(the expert model) and 60% medel various bugs, which were collected by empirical observation of stndent errors. The first
rough copy of a student's program is parsed by the production rule system. A tutorial rule is associated with each buggy or
correct production. If it seems that the student has hypothetically "used” a production, the appropriate tutorial rule can be
riggered. Also, if a student shows an impasse, the system can automatically determine the next step and an appropriate
mtorial rule.

ANDERSON described some tutorial implications which resulted from his research, The more important ones for our
work are the advices (ANDERSON, 1987, p. 454):

“In addition to basing instruction on a production-system analysis and emphasing communication
of goal structures, there are a number of other general recommendations to make about the design of
instructional activities. It makes sense to provide the instruction in the context where it should be used
to maximize the probability that the student will retrieve and try 1o use the knowledge. Also, it makes
sense 1o provide that knowledge in a form that can be most easily used by weak methods. For instancs,
we try to fashion our instruction to take the form of rules for means-ends solutions or of examples for
use by analogy.”
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We will now look at the realization of these statements. We quote an original dialog with the tutor. This dialog is
published identically type-setted in three independent articles (ANDERSON & REISER, 1985; ANDERSON &
SKWARECKI, 1986; ANDERSON, 1987) so that the possibility of misprints is ruled out.

4.1 A Dialog with ANDERSON's LISP Tutor

The dialog represents (appendix C), as ANDERSON points out, the linearized teletype version of the original
dialog. The original dialog takes place on a screen split into three dialog windows, which are reserved for instructions, code of
the stndent and plan dialogs. The output of the tutor is given in normal type while the student's input is printed in bold
characters.

Before the first line appears some interaction has already taken place. The dialog starts with an instruction, how the
factorial is to be computed. We want to criticize two things. First, all parentheses are left out so that the definition is wrong
{1}, and second, the instruction gives a definition which makes the student induce an iterative solution,

After the student read the instruction "Define the function fact ....". he typed into the machine " (defun ". The tutor
responded with the template "(defun <name> <parameters> <body>)". Then the student filled the <name> slot with "fact”
and the parameters slot with "(n)" and started to fill in the <body> slot with "(cond ((equal)”. At this moment a new
template is offered to the student. The rest of the template "<action> ) <recursivecase>)" can be seen in episode 1. The

student has forgotten to provide arguments for equal. At that moment the buggy production

'IF the goal is to test if a value is equal 1o zero

THEN use the function EQUAL and set as subgoals to code the value and zero”

matches with its right side the student's code (ANDERSON & SKWARECKI, 1986, p.845). The tutor issues the natural
language comment "I assume that .... writing a predicate.” which is anached to the buggy production. There is a production
whose left side matches the same goals the buggy production matches, but which could generate correct code (ANDERSON,
1987, p445):

"IF the goal is to test if argl is zero

THEN use the LISP function ZEROP, and set a subgoal to code argl.”

We think that the student had the correct but somewhat inefficient idea to use the function equal. The explanation
why zerop is the better choice is not sufficient

In line episode 3 the tutor enters a planning dialog with the smdent. The tutor offers a menu with two distractors that
are answer categories which are not to be considered comect. The student chose the third category which is correct (1) according
10 the instruction given before line 1. But the tutor squeszes the smdent to program a recursive solution. 5o a subdialog with
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some concrete examples is entered. What we see here is a mixture of notations. The column headings of the EXAMPLES are
written in the mathematical notation fact(n), but the table entries are function calls in LISP ! The same notational confusion
can be seen in the definition of the factorial function. The language SCHEME shows how to avoid this kind of
terminological mix up.

Later on in the "IF YOU WANT TO:" menu the tutor dees not use the operator "minus” in phrases like "n minus 1"
as he did before but introduces the predicate "less". The student is for instance offered option 2 "Multiply n by fact of one
less than n". We know from the psychology of memory that if the concept LESS is primed, then similar concepts are
activated. But, if the student would later use the LISP function LESS he would get an error message. The same is true when
he uses the LISP function MINUS, which is used for multiplication with -1.

We do not want to pursue the dialog any further because it has become obvious that the information the tutor gives
may be confusing to a novice. It shows that the instructional component of the tutor is suboptimal and does not show

compatibility with ANDERSON's own eight cognitive design principles.

4.2  The Description of an Abstract Machine: the "Calculation Sheet" Machine

In this section we will present other pieces of instructional texts, whose purpose is to explain the operational
semantics of an abstract machine, This machine is used in a modified form in our ABSYNT (ABstract Syntax Trees) project
(COLONIUS, FRANK, JANKE, KOHNERT, MOBUS, SCHRODER, THOLE, 1987). The notion "abstract syntax" is used
to define the program structure relevant for translation, interpretation and transformation {AHO; SETHI & ULLMAN, 1986;
DOSCH, 1984, p.154; PAGAN, 1981). Our goal is to implement the problem solving monitor ABSYNT as a functional
visual programming language. In the rest of the paper we want 10 show how to use informal texts (BAUER & GOOS,
19823, p. 110 - 116; BERGHAMMER, DOSCH & OBERMEIER, 1985, p.55; DOSCH, 1984, p.163f; ) and diagrams
(SCHMITT-WOHLFARTH, 1978; BAUER & GOOS, 1982, ch. 2) to develop visual instructions and a graphical help
system. This will be used in our problem solving monitor according to ANDERSON's cognitive design principles and in
agreement with BROWN & vanLEHN's repair theory when impasses in the problem solving behavior of the leamer occur.

This means that we formalize the operational semantics of the machine as a set of production rules which are
represented visually as iconic rules. We will show that the specification process of the iconic rules should be guided by
principles derived from cognitive psychology and cognitive science.

There is a rather long tradition in using artificial or abstract machines and diagrams for the demonstration of logical and
computational processes (GARDNER, 19822). The idea to write the result of computations onto sheeis of paper which show
a spatial arrangement in form of trees was introduced in school books by SCHMITT-WOHLFARTH (1978). The idea of
using trees for computations is ubiquitous in computer science (ABELSON, SUSSMAN & SUSSMAN, 1985: BAUER &
WOSSNER, 1981; 1984; KANTOROVIC, 1957; LUTZE, 1987) and even rather well known in psychology (EGAN &
GREENO, 1974; PAVEL, MARCOVICI, SHERMAN & FALMAGNE, 1983). The abstract syntax of purely applicative
expressions can graphically be represented by KANTOROVIC trees (DOSCH, 1984, p.160).

Our purely functional tree-like programming language is a toy language compared to SCHEME or PASCAL. In spite
of this the language is powerful through its facilities which allow abstraction and chunking of thought processes (GREEN,
1980, 1983; GREEN & PAYNE, 1984). The reason for the preference of a "small" language is motivated by the intention to
use the programming environment ABSYNT as a testbed for research in planning diagnostics, help messages, student

modelling and learning research.
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An English description of the “"calculation sheet" machine appeared in DOSCH (1984, p.1636):

"The course of computation is - up to the freedom in the evaluation - fixed by the calculation shest associated with an
expression. If in expressions additionally calls of (recursive) routines occur, this computational medel can be extended to the
calculation sheet machine.

For every routine there is a supply of calculation sheets for the expression forming its body. Assuming a call-by-value
semantics for routines, upon a call the argument values are entered into a new sheet. Every such form is called an incamation
of the routine. In general, of course, the next {recursive) routine call occurs before the calculation on the present sheet is
finished; this leads to the notion of pending operations, When the computation terminates on a sheet, the result value is
transferred back to the previous sheet, that is, 1o the dynamic predecessor. There pending operations are evaluated, and so on.
In the sequential conditional, after calculating the condition the not chosen branch is truncated. Note that this Jeads to the
termination of recursive routines."

The German description of the machine and various diagrams from the university level computer science textbook
(BAUER & GOOS, 19823) are included in appendix D.

Empirical studies (COLONIUS, FRANK, JANKE, KOHNERT, MOBUS, SCHRODER & THOLE, 1987;
SCHRODER, FRANK & COLONIUS, 1987) have shown that these informations have to be modified a great deal, if
computer novices are to gain sufficient knowledge about the behavior of the machine so that they are able to predict it. It has
to be assured that prediction errors are not attributable to misinterpretations of the instructional material.

5. The Design of our Reactive Graphical Programming Environment ABSYNT

5.1 Psychological Arguments in Favor of a Functional Visual Programming Language

The main research goal of ABSYNT is the construction of a problem solving moritor (PSM). Some PSM-relevant
research has been reported about solving problems in simple arithmetic tasks (ATTISHA, 1984; ATTISHA & YAZDANI,
1983; BROWN & BURTON, 1978; BUNDY, 1983; BURTON, 1982; VanLEHN & BROWN, 1980; YOUNG & O'SHEA,
1981), in quadratic equations (O'SHEA, 1979, 1982), in simple algebra problems (SLEEMAN, 1982, 1983, 1984, 1985,
1986), in geometry (ANDERSON, 1983c; ANDERSON, BOYLE, FARRELL & REISER, 1987; ANDERSON, GREENO,
KLINE & NEVES, 1981} and in computer programming (ANDERSON, 1983b, 1987; ANDERSON, FARRELL &
SAUERS, 1982, 1984; ANDERSON & REISER, 1985; ANDERSON & SKWARECKI, 1986; JOHNSON, 1986;
JOHNSON & SOLOWAY, 1985, 1987; SOLOWAY, 1986; WERTZ, 1982, 1985, 1987).

We chose the domain of computer programming because problem solving is the main activity of each programmer.
Furthermore, errors can be diagnosed easily. We had to make some more design decisions. Because the PSM should mainly
supervise the planning processes of the programmer, we decided to use a simple programming language, the syntax and
semantics of which can be learned in a few hours. We decided to take a purely functional language. From the view of
cognitive science functional languages have some beneficial characteristics. So less working memory load on the side of the
programmer is obtainable by their properties, referential transparency and modularity (ABELSON, SUSSMAN &
SUSSMAN, 1985; GHEZZI & JAZAYERI, 19872; HENDERSON, 1980, 1986). Furthermore, there is some evidence that
there is a strong correspondency between programmer's goals and use of functions (PENNINGTON, 1987; SOLOWAY,
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1986; JOHNSON & SOLOWAY, 1985, 1987). So we avoid the difficult problem of interleaving plans in the code which
show up in imperative programming languages because it makes the diagnosis of programmer’s plans rather difficult
{(SOLOWAY, 1986). If we take for granted that a goal can be represented by a function, we can gain a great flexibility in the
PSM concerning the programming style of the student. We can offer him facilities to program in a bottom-up, top-down or
middle-out style. The strategy of building up a goal hierarchy can correspond to the development of the functional program.

There are some similar psychological reasons for the use of a visual programming language, too. There is some
evidence that less working memory load is obtainable through the use of diagrams if they support encoding of information or
if they can be used as an external memory (FITTER & GREEN, 1981; GREEN, SIME & FITTER, 1981; PAYNE, SIME &
GREEN, 1984; LARKIN & SIMON, 1987). Especially if we demand the total visibility .of control and data flow the
diagrams can serve as external memories.

The diagrammatic structuring of information should also reduce the amount of verbal information which is known to
produce a higher cognitive processing load than "good" diagrams (LARKIN & SIMON, 1987). "Good" diagrams preduce
automatic control of attention with the help of location objects. These are in our case object icons, which are made of two
sorts: straight connection lines and convex objects. Iconic objects of these types are known to control perceptual grouping and
simultaneous visual information processing (POMERANZ, 1985; CHASE, 1986).

5.2 Computer Science Based Design Guidelines for Visual Languages

Work on the design of visual languages has just started twenty years ago (e.g. LAKIN, 1980), but some results have
been obtained which are not controversial among scientists. Visual programming languages can be described by a profile in
a three-dimensional system according to 1) visual extent, 2) scope and 3) language level (SHU, 1986). A language has a high
visual extent if graphics are not mere illustrations but play a central role in programming, They must be "executable
graphics” (LAKIN, 1986). The scope of a language is a measure of the generality of their applicability. The language level
gives a hint how abstract and hardware independent the constructs of the language are.

The design of a visual language has to be based on the concept of generalized icons (CHANG, 1987), which are dual
representations of abstract and visual parts. The type of generalized icons can be divided into object icons and process icons.
Object icons define the representation of static language constructs, whereas process icons specify the representation of
dataflow and controlflow. We want to quote CHANG (1987, p.9f) on this subject:

An lconic system is a structured set of related icons. A complex icon can be composed from
other icons in the iconic system, and therefore express a more complex visual concept. An iconic
sentence ... is a spatial arrangement of icons from an iconic system. A visual language is a set of
visual sentences constructed with given syntax and semantics. Syntactic analysis of visual
language (spatial parsing) is the analysis of the spatial arrangement of icons (i.e. visual sentences)
to determine the underlying syntactic structure. Finally, semantic analysis of visual language
{spatial interpretation) is the interpretation of a visual sentence to determing its underlying meaning.

From the view point of system implementation, 1o design an iconic system and a visual language,
two major software tools are required: a) an iconic editor to edit a generalized icon; and b) an icon
interpreter to perform syntactic analysis and semantic analysis of the visual system."

Similar ideas stem from GLINERT & GONCZAROWSKI (1987) and GLINERT, GONCZAROWSKI & SMITH
(1987). CHANG (1986) proposed a specification cycle in the language design (Figure 1). We used this cycle for our design.
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The abstract parts of the language were specified in PROLOG according to some ideas of (PEREIRA, 1986) as a runnable

specification (DAVIS, 1982). The corresponding visual parts were specified obeying results of cur own empirical research or
generalizing findings and standards from cognitive psychology and cognitive science.

abstract representation

a - ) =N
of visual objects
—>
+——
visual representation
\. J

of abstract objects

Figure 1: The Specification Cycle of a Visual Language (CHANG, 1986)

The complete programming environment is implemented in INTERLISP and the object-orientated language LOOPS
(JANKE & KOHNERT, 1988; KOHNERT & JAHNKE, 1988) to have a system with direct manipulation capabilities which
is an absolutely necessary prerequisite for our system (FAHNRICH & ZIEGLER, 1985a,b; HUTCHINS, HOLLAN &
NORMAN, 1986; SHNEIDERMAN, 1983, 1987). Following SHU's dimensional analysis, ABSYNT is a langnage with
high visual extent, low scope and medinm level.

5.3 Cognitive Science and Psychology Based Guidelines for the Design of Graphical Objects

and Diagrams

Though through decades research in psychelogy, physiology and computer science has been devoted to human, animal
and machine perception, results which conld guide decisions in building tutorial applications have remained on a rather
informal level of "gestalt laws" or phenomenological principles (BERTIN, 1981, 1983: CAMPBELL & ROSS, 1987;
CLEVELAND, 1985; FITTER & GREEN, 1979; LUTZE, 1987; TUFTE, 1980; WOOD & WOOD, 1987).

In our work we relied on empirical studies partly done by others (e.g. WEBER & KOSSLYN, 1986) and partly
conducted by ourselves. The former gave us hints conceming the synchronisation of the properties of graphics and the mental
imagery system. The latter dealt with the memory representation of the tree programs (SCHRODER, COLONIUS &
FRANK, 1987) and errors which resulted from misinterpretations of the syntax and the semantics of the original language as
appeared in BAUER & GOOS (1982). The last version of the language which is used for ABSYNT was strongly influenced
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by an empirical study of POMERANTZ (1985) and a theoretically orientated article by LARKIN & SIMON (1987).
POMERANTZ made some carcful studies about selective and divided attention information processing, One consequence for
our design was that time-indexed information had o be spatial indexed by locations, too, Information with the same time
index should have the same spatial index. This means that this information should appear in the same location.In our design a
Iocation is identical with a visual object. These insights were supported by the formal analysis of LARKIN & SIMON
(1987). They showed under what circumstances a diagrammatic representation of information consumes less computational

resources as an informational equivalent sentential representation.

5.4  The Iterative Specification Cycle for the Derivation of Iconic Objects and Iconic Rules
Concerning the Operational Semantics of ABSYNT

Though our main research goals lie in the exploration and debugging of planning processes we have to deal with the
computational knowledge of the programmer, too. It is our opinion that a user of our language should have sufficient
knowledge about the interpreter so that he/she is able to predict the set of the successor states from knowledge of the current
state. To get and maintain this expertise we have to implement an instructional component and a help system. The
specification of the operational knowledge was made in an iterative specification cycle (MOBUS, 1987a,b,c) (Figure 2),
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Figure 2: The Iterative Specification Cycle for Computational or Operational Semantic Knowledge

The first step consisted of the knowledge acquisition phase. The next step led to a ruleset A of 9 main Hom clauses

(plus some operator-specific rules). The set contained the minimal abstract knowledge about the interpretation of ABSYNT

programs. The abstract structure of a program was formalized by a set of PROLOG facts similar to an approach of

GENESERETH & NILSSON (1987, ch. 2.5).
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Then we tried an. iconic representation of the facts and Horn clauses. Soon we realized that a visual representation
according to the recommendations of LARKIN & SIMON (1987) was only possible, if we "enriched” the iconic structure.
This means that we had to add iconic elements which were not present in the abstract structure. This lead to an iconic
structure which remained unchanged and was used as the interface of the programming environment (FIGURE 3).

Problems occured if we wanted to keep the number of iconic objects fixed during a computation of a recursive
program. The postulate of total visibility led to a visual trace with an information overload (FIGURE 6). Time indexed
information was not location indexed. So selective attention according to POMERANTZ (1985) was not possible:
computional errors were inevitable.

This forced us to relax our requirement to use only a minimal number of object icons. We came up with a relaxed rule
set B with 14 main rules (plus operator-specific rules).

The behavior of these rules lead to a new visual trace. Time indexed information was now location indexed so that
undesired perceptual grouping could not occur. But computational goals and intermediate results were kept visible only as
long as the were absolutely necessary for the ongoing computation. )

Empirical considerations showed that the programmer had to reconstruct former computations mentally, because their
result disappeared from the screen. So we had to relax the minimum assumption a second time and intraduce even more visnal
redundancy. This was e.g. in accordance with the third principle of FITTER & GREEN (1975).

But there were some other reasons which influenced the decision to modify the ruleset a third time. First, rules were
still recursive, This leads in computations to pending rules. The derivation of instructions from recursive rules forces a higher
working memory load becanse of the mental maintanance of a goal stack with return points. Second, if we had derived iconic
rules from the abstract rule set B we would have gotten two disjunctive rules. But there is a fair amount of experimental
evidence that for humans conjunctive rules are easier to process than disjunctive rules (BOURNE, 1974; HAYGOOD &
BOURNE, 1965; MEDIN, WATTENMAKER & MICHALSKI, 1987). So we decided to avoid disjunctive iconic rules.

A third mleset C was developed with 29 (plus operator specific) rules. Now there was even more redundant iconic
information on the screen. This computational behavior was "frozen" in our INTERLIPS/LOOPS implementation.

5.5 The Programming Environment of ABSYNT

The programming environment (KOHNERT & JANKE, 1988) as the resnlt of our specification cycle is shown in
figure 3. The screen is split into several regions. On the right and below we have a menu bar for nodes. A typical node is
divided into three stripes: an input stripe (top), a name stripe (middle) and an output stripe (bottom). These nodes can be made
10 constants or variables {with black input stripe) or arelanguage supplied primitive operators or user defined functions.
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Figure 3: The programming Environment of ABSYNT

The programmer sces in the upper half of the scresn the main worksheet and in the lower half another one. Each
worksheet is called frame, The restriction on two visible worksheets led to corresponding psychologically motivated
restrictions in the computational freedom of the interpreter ( 5.7.2 ). The frame is split into a left part: "head” (in german:
"Kopf"} and into a right part "body" (in german: "Kérper"). The head contains the local environment with parameter-value
bindings and the function name. The body contains the body of the function.

Programming is done by making up trees from nodes and links. The programmer enters the menu bar with the mouse,
chooses one node and drags the node to the desired position in the frame. Beneath the frame is a covered grid which orders the
arrangements of the nodes so that everything looks tidy. Connections between the nodes are drawn with the mouse. The
connection lines are the “pipelines” for the control and data flow. If a node is missed the programmer is reminded with a
phantom node that there is something missing. The editor warns with flashes if unsyntactic programs are going to be
constructed: crossing of connections, hiding of nodes etc. The function name is entered by the programmer with the help of
pop-up-menus in the root node of the head and the parameters in the leaves of the head.

If the function is syntactically correct, the name of the function appears in the frame title and in one of the nodes in the
menu bar so that it can be used as a higher operator. When a problem has to be solved a computation has to be initialised by
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the call of a function. This call is programmed into the "Start"-Tree, Initial numbers are entered by pop-up-menus in constant

nodes in the start tree. This tree has a frame without a name, so that the iconic bars are consistent.

5.6 The integration of rules in the architecture of an PSM or ITS

A very crucial point concerning the "intelligence” of an PSM lies in the quality of the design for the feedback system.
In literature two approaches have been proposed. One proposal is the explicit "debugging” approach (BURTON, 1982;
VanLEHN, 1981): tracing an error with the help of a diagnostic procedure and an extensive bug collection back te underlying
malrules or misconceptions. The other idea rests solely on the specified expert knowledge and a model of human learning
(EGAN & GREENO, 1974; SIMON & LEA, 1974; ANDERSON, 1983; VanLEHN, 1987a,b). According to these rule-based
theories of human skill acquisition a leamer has to be aware of at least two types of information: the current goal within the
problem and the conditions under which rules apply. McKENDREE (1987) could show in three experiments, that "goal"
information is even more important than “condition” information in promoting learning of skill. This type of feedback
design is more simple to implement than the "debugging” strategy. But there are still no experimental comparisons between
the two methods.

Either way, we have to specify goals and rules an expert would use when predicting the computational behavior of the
ABSYNT interpreter. So in the last part of our paper we show how we try 1o achieve the design of iconic rules and visnal
helps.

‘When should the tutor administer feedback? Our wtorial strategy is guided by "repair theory” (BROWN & VanLEHN,
1980) and follows the "minimalist design philosophy" (CARROLL, 1984ab).

This means, that if the learner is given less (less to read, less overhead, less to get tangled in), the learner will achieve
more. Explorative learning should be supported as long as there is preknowledge on the learner side. Only if an error occurs
feedback becomes necessary and information should be given for error recovery.,

According to repair theory an impasse occurs, when the student notices that his solution path shows no progress or is
blocked. In that sitvation the person tries to make local patches in his problem solving strategy with general weak heuristics
to "repair” the problem situation. In our tutorial strategy we plan to give feedback and helps only, when this repair leads to a
second error,

5.7  The Genealogy of Rule Sets Concerning the Operational Semantics of ABSYNT

5.7.1 The First Rule Set A: a Minimal Interpreter in PROLOG for ABSYNT Programs

The specification cycle (Figure 2} led to the first ruleset A, The program is described abstractly by a set of nodes and a
set of connections which are represented by PROLOG facts. The nodes possess the attributes frame-name, tree-type, instance-
number, name and value. These attributes determine the location, the within stmcture and the value of the node.
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The connections possess the attributes frame, tree, out-instance, in-instance and input-number. They link the
outputfield of a node with the inputfield of another node.

Semantic knowledge is moulded into two types of rules, One consists only of one “input" rule and the other of several
"output” rules. The "input” rule (Figure 4) contains the knowledge about the migration of computation goals and data
between the nodes. The “output” rules contain the knowledge about computations within one node. Becansa the nodes have
different meanings, we need different "output” rules. There is one for each primitive operator, one for the parameters in the
tree "head", one for constant nodes, one for parameter nodes in the tree "body”, one for the root in the tree "head" and one for
the computation of higher (self defined) operators. In the last rule parameters are bound in a paraliel fashion to their arguments
{call by value) and the new leaves of the tree "head" are put onto the stack. Furthermore we have rules which contain the
knowledge to generate roots and leafs or to check nodes with respect to their root or leaf status.

input(ﬁ'mne(Frame),tree(l‘rce),instanoe{[nsmncc).inpumo('fnpumn),\ra]ue(Valus))
- cennection(frame(Frame},tree(T) ree),out_inst{Qut_inst),in_inst(Instance),in_inst_no({Inputno)),
owpui{frame(Frame),tree(Tree) instance(Out_inst),name(Name),value( Value)).

/* IF there is the goal to compute the value of the input with number Inputno in node Instance in the
tree Tree in the frame Frame,
THEN there is a subgoal to look for a connection, which leads to this input from a yet unknown node
Qut-inst,which is the source of this connection
AND there is another subgoal to compute the value of the node Qut-Inst
(this value is then the value of the goal in the IF part of this rule). *f

FIGURE 4: The Abstract Input Rule
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As a further example we include the "output”-rule for a higher operator (FIGURE 5). This rule describes the call-by-

value mechanism.

output{frame(Frame),ree(Tree),instance(Instance),name(Name), value( Value))
- node_name(frame(Frame),tree(Tree),instance (Instance),name(Name)),
findall{ Argument,input{frame(Frame), tree{ Tree), instance(Instance),
inputno(Inputno),value(Argument)),List_of_arguments),
set_of(Parameter,(leaf(frame(Name),tree(head),instance(Inst_leaf)),
node_name(frame(Name),tree{head),instance{Inst_leaf),name(Parameter))),
List_of parameters),
forall(parm_arg_pair(Parm,Arg List_of_parameters,List_of arguments),
{node_name(frame(Name),tree(head),instance(Inst_parm),name(Parm}),
asserta(node(frame(Name),ree(head), instance(Inst_parm),name(Parm),value(Arg))))),
root{frame(Name),tree(head},instance(Inst_root_head)), ! ,
output(frame{Name),iree(head),instance(Inst_root_head),name(Name),value(Value)),
forall(parm_arg_ pair(Parm,ArgList of parameters,List of arguments),
{node_name(frame(Name),tree(head),instance(Inst_parm),name(Parm)),
retract(node(frame(Name).tree(head),instance(Inst_parm),name(Parm),value(Arg))))),.

* IF there is the goal to compute the output value of a higher operator node,
THEN the following subgoals have to be solved:
- determine the node name
- compute all input values of the node
- determine all parameters of the frame whose name is identical 10 the node name
- put the parameter-argument bindings into the new local environment
- find the head root of the frame
- compute the output value of the head root
(this value is then the value of the goal in the IF part of this rule)
- destroy the local environment *f

FIGURE 5: The Abstract OQutput Rule for a Higher Operator

As we wrote in 5.4 it is not possible to make a visual represention of facts and rules from set A, We "enriched” the
iconic  structure by adding some iconic elements. FIGURE 6 demonstrates how the computation of the well-known factorial
would look like, if we keep the number of object icons to a minimum: there is onely one frame for recursive computations
and intermediate results and computation goals (represented by "?") disappear when no longer needed for the computation.
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We sce that value and goal stacks are collapsed into the various fields of a node. For the application of an operator we
have to select all numbers with the same time index. POMERANTZ (1985) showed that this kind of selective attention is
extremely difficult and not trainable. If the function gets more complicated like a tree recursive function, a diagrammatic
information of this kind would be completely mizleading,
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5.7.2 The second rule set B

We had to modify rule set A because of the following reasons, which result from constraints in the human information
processor:

1) any undesired perceptual grouping of information in operator nodes ,

2) iconic rules with disjunctive conditions , and

3) visual hiding of dynamic successor frames already put on the linear stack
This required varions medifications of the abstract rules,

Iconic rules with disjunctive conditions require selective attention, which causes matching errors and longer processing
time (BOURNE, 1974; HAYGOOD & BOURNE, 1965; MEDIN, WATTENMAKER & MICHALSKI, 1987).

Also the "output” rule for a higher operator had to be modified. When a higher operator is called, a fresh copy of the
original frame is created. Because we wanted 10 avoid a only partly visible "spaghetti"-stack in the sense that from one frame
several new successor frames could be opened by calling “higher” operators, we allowed only one call per frame at the
moment. This results in a depth first search in the call tree. The copies of the frames are ordered by frame number and are put
on a frame stack. The arguments are copied in parallel into the parameter leaves of the head. Nodes and connections get the
new attribute frame number, too. This allows to location-index time-indexed information. The "output” rule for higher
operators is split into two rules corresponding to the call location (start tree, body tree).

Because we used recursive rules, the control and data flow occured through the parameters. An iconic representation
would require that intermediate results should be visible only when they belong to a pending operation. So intermediate
results "die” before the corresponding frame "dies”, This is not optimal from a cognitive science point of view, because a
programmer who wants to recapitulate the computation history has to reconstruct mentally the already obtained results. This
leads to higher working memory load for the programmer.

5.7.3 The third set C: objects and rules

The third rule set was motivated by the postulate, that the extent of the intermediate result should not end before the
life of a frame ends. This seemed 10 require only a few changes to the visual interface. But the abstract rules had to be
rewritten completely. There is no "input” rule any longer. We have 18 "output” rules instead which all lost their parameters.
Like production rules they manipulate the nodes directly via the databasis. Computation goals ("?") and input and output
values are wrilten into the nodes, For this purpose a new attribute input-stripe is added to the node description.

We have included examples for abstract parts of object icons in FIGURE 7 and examples for abstract rules in
FIGURES 8 and 9. The PROLOG facts in FIGURE 7 describe two nodes and two connections in the incomplete program of
FIGURE 3. Both nodes are in the root position of the head and the body of the program, respectively.

node(frame_name(fac),frame_no(0),tree_type(head),instance_no(2),
input-stripe{[empty]),name_stripe(fac),output_stripe(empty)).

node(frame_name(fac), frame_no(0), tree_type(body), instance_no(11),
input-slﬁpe([mply,emp{y.emptyl)»nm&stripe(if), output-stripe(empty)).

FIGURE 7: An example for Abstract Nodes and Connections
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connection{frame_name(fac).frame_no{0), tree_typethead), out_instance_no(1),
in_instance_no(2), input_no{1)).

connection(frame_name(fac).frame_no(0), tree_type(body).out_instance(10),
in_instance_no(11),input_no(3)).

FIGURE 7: An example for Abstract Nodes and Connections

output ;-
node(frame_name(Frame_name).frame_no(Frame_no),tree_type(Tree_type),
instance_no(Instance_no),input_stripe(Input_stripe),name_stripe(Name,_stripe),
output_stripe(Output_stripe)),
higher_operator(name(Name_stripe)),Tree_type = start,
not(inverted_name_stripe(frame_name(Frame_name).frame_no(Frame_no},
tree_type(Tree_type).instance no(Any_instance_nc))),
Output_stripe = ? forall(on{Element,Input_stripe},value(Element)),
copy_frame_on_top{frame_name(Name_stripe),top_frame_no{Top_frame_no)),
assert(inverted name_stripe(frame_name(Frame_name),frame_no{Frame_no),
tree_type(Tree_type).instance_no{Instance_nc))),
root(frame._name(Name_stripe).frame_no{Top_frame_no),ree_type(head),
instance no(Instance_na_root_head)),
modify(frame_name(Name_stripe),frame_no(Top_frame_no),iree_type(head),
instance_no(Instance no_root_head),input_stripe(Input_stripe)),
bind_parameter_of_top_frame(input_stripe{Input_stripe)),
modify(frame_name(Name_stripe),frame_no(Top_frame_no),tree._type(head),
instance_no{Instance_no_root_head),output_stripe( ? )),
output.

IF there is a node which has the following features:
(1) The node name is a higher operator.
(2) The node is located in the start tree.
(3) The name stripe of the node is the only inverted one in the tree which contains the node
(4) The output_stripe of the node contains a "?".
(5) The input_stripe of the node contains all input values.
THEN create the frame with the operators name and place it on top of the frame stack.
Invert the name stripe of the-node.
Determine it's head root, transfer the input_stripe of the node to the head root .
Bind the parameters and put a "?" into the cutput_stripe.of the head root.*/

FIGURE 8: Abstract Rule 8 (First part of Call-by-Value, call in start tree )
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output :-
node(frame_name(Frame_name),frame_no(Frame_no),tree_type(Tres_type),
instance_no(Instance_no),input_stripe(Input_stripe),name_stripe(Name_stripe),
output_stripe(Output_stripe)),
higher_operator(name(Name_stripe)), Tree_type = start,
inverted_name_stripe(frame_name(Frame_name),frame_no(Frame._no),iree_type(Tree_type),
instance_no(Instance_no)),
Output_stripe = ? forall{on(Element,Input_stripe),value(Element)),
value_of_upper_visible frame(Output_stripe_root_head),not_exist lower_visible_frame,
modify(frame(Frame_name),frame_no(Frame_no),tree_type{Tree_type),
instance_no(Instance_no),output_stripe{Output_stripe_root_head)),
delete_frame from_top,
retract(inverted_name._stripe(frame_name(Frame_name),frame_no(Frame_no),
tree_type(Tree_type),insiance_no(Instance_no}))),
output.

1* IF there is a node which has the following features:
(1) The node name is a higher operator.
(2) The node is located in the start tree.
(3) The name stripe of the node is inverted.
{4} The ontput_stripe of the node contains a "?".
(5) The input_stripe of the node contains all input values.
and the head root of the upper visible frame contains a value and there is no other
visible frame
THEN transfer this value into the output_stripe of the node.
Delete the upper visible frame.Turn the invertation of the name stripe of the node back. */

FIGURE 9: Abstract rule 9 (Second part of Call-by-Value, call in start tree )

5.8 Iconic Rules for the Instructional Component and a Help System

On the basis of rule set B and C we developed iconic rules to describe the operational behavior of the interpreter.
Because of space restrictions we can only show the rules from set C (FIGUREs 10, 11), which are representation of the
production-like PROLOG rules of FIGUREs 8 and 9. At the present moment these rules are not implemented in an
instructional or help component. But they are used successfully in experiments where novices are requested 1o predict the
computation steps of the interpreter. Each rule consists of a description of the triggering situation and a description of the
situation after the rules has been applied. We tried to make the mles self-explanatory as much as possible. So we need only a
short introduction to explain the syntax of the iconic rules.
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Rule 8: Computing higher operator node In start tree.

Situation

1)A higher operator node is part of the
start tree.

2)There is no node with inverted name
stripe in the start tree.

3)The output stripe of the higher operator
node contains a "?".

4)The input stripe of the higher operator
node contains values only.

Instruction

Start

:<"r:(>§(v...>;

Rule 8: Computing higher operator node in start tree.

Action

1}Invert the name stripe of the higher
operator node.

2)Create a frame at the top with the name
of the higher operator node.

3)Write each input value of the higher
operator node into the corresponding
input field of the head root of the frame.

4)Write each input value of the head root
into the output stripe of the connected
head leaf.

5)Write a "7" into the output stripe of the
head root of the frame.

Body

Overview Situation

Instruction

FIGURE 1{: Iconic Rule on the Basis of Abstract Rule § in FIGURE 8
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Rule 9: Fetching output value for higher operator node in start tree.

Situation
1)A higher operator node is part of the <Name>
start tree. Head ] Body

2}The name stripe of the higher operator
node is inverted.

|

|

|

3)The output stripe of the higher operator I
node containg a "?". |
|

|

|

4)The input stripe of the higheroperator H | @ ¢ ' o
node contains values only. prTE—
5)There is a frame at the top with the name B
of the higher operator node.

Start
6)The output stripe of the head root "
contains a value.

7)There is no frame at the bottom. SHame?

Overview Action

Rule 9: Fetching output value for higher operator node in start tree.

Action

1)Write the output value of the head root
into the output stripe of the higher
operator node with the inverted name
stripe in the start tree.

2)Delete the upper frame.

3)Undo the inversion of the name stripe of
the higher operator node.

Start

;d':ozé."..);

<Hame>

>
D

Overview J Situation

FIGURE 11: Iconic Rule on the Basis of Abstract Rule 9 in FIGURE 9
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We found that the sentential information is used only in situations when an impasse in the computational process
occurs. Novices were able to predict the interpreter in less than five hours learning time.
The next step is to implement the rules for instructional purposes so that the interpreter becomes selfexplaining. This

situation can arise when the student is uncertain about the calculation process of the machine.

6. Summary

We reviewed the literature on CAI and ICAI systems and discussed some design principles from a cognitive science
view. We discussed student models and plan recognition as important research goals but also stressed the importance of a
rather neglected topic: design of the "student input”. We need very careful and knowledge-crafted instructions, interfaces and
helps so that our plan diagnosis and student modelling components get the opportunity to work satisfactorily. As an example
we introduced iconic rules which transmit information in a diagrammatic form. Only if no phase of the design process is

omitted we will achieve true "intelligent” CAL

7. References

ABELSON, H., SUSSMAN, G.J. & SUSSMAN, J., Structure and Interpretation of Computer Programs, Cambridge,
Massachusetts: MIT Press, 1985

AHO, AV, SETHI, R. & ULLMAN, 1.D., Compilers: Principles, Techniques & Tools, Reading, Massachusetts: Addison-
‘Wesley Publ. Co., 1986

ALDERMAN, D.L., Evaluation of the TICCIT Computer-assisted instructional system in the community college, SIGCUE
Bulletin, 1979, 13, 5-17

ANDERSON, J.R., The Architecture of Cognition, Cambridge, Mass.: Harvard University Press, 1983a

ANDERSON, J.R., Learning to Program, Proceedings of the Eighth Internaticnal Joint Conference on Artificial Intelligence,
Los Altos, California: Morgan Kaufman, 1983b

ANDERSON, J.R., Acquisition of Proof Skills in Geometry, in: R.5. MICHALSKI, J.G.CARBONELL, TM.MITCHELL
(eds), Machine Leamning: An Artificial Intelligence Approach, Plao Alto: Tioga Publ. Co., 1983c, 191 - 219

ANDERSON, JR., Knowledge Compilation: The General Leaming Mechanism, in: R.S. MICHALSKI, 1.G.
CARBONELL, T.M. MITCHELL (eds), Machine Learning: An Artificial Intelligence Approach, Vol. I, Los Altos,
California: Morgan Kaufman Publ., 1986, 289 - 310

ANDERSON, I.R., Production Systems, Learning, and Tutoring, in: D.KLAHR, P.LANGLEY & R.NECHES (eds),
Production System Models of Learning and Development, Cambridge, Mass.: MIT Press, 1987, 437458

ANDERSON, §.B., BALL, 5., MURPHY, R.T. & Associates, Encyclopedia of Educational Evaluation, San Francisco:
Jossey-Bass Publ., 1976

ANDERSON, I.R,, BOYLE, CF, FARRELL, R. & REISER, B.]., Cognitive Principles in the Design of Computer
Tutors, in; P.MORRIS (ed), Modelling Cognition, Chichester, Snssex: J.Wiley, 1987, 93-133

ANDERSON, J.R., CORBETT, A.T. & REISER, B.J,, Essential LISP, Reading, Mass.: Addison-Wesley Publ.Co., 1986

ANDERSON, IL.R., FARRELL, R. & SAUERS, R., Learning to Plan in LISP, Technical Report ONR-82-2, Department of
Psychology, Carnegie-Mellon University, Pittsburgh, PA , 1982

ANDERSON, J.R, FARRELL, R. & SAUERS, R., Leamning to Program in LISP, Cognitive Science, 1984, 8, 87-129

ANDERSON, I.R., GREENO, 1.G., KLINE, P.J. & NEVES, D.M., Acquisition of Problem-Solving Skill, in:
LR.ANDERSON (ed), Cognitive Skills and their Acquisition, Hillsdale, New Jersey: Erlbaum Ass., 1981, 191-230

ANDERSON, J.R., KLINE, PJ. & BEASLEY, C.M., Complex Leaming Processes, in: RE.SNOW, P.AFEDERICO &
W.E. MONTAGUE (eds}, Aptitude, Learning and Instruction: Cognitive Process Analyses of Leamning and Problem
Solving, Hillsdale, New Jersey: Erlbaum Associates, 1980, 199-235

ANDERSON, J.R, & REISER, B.],, The LISP Tutor, BYTE, 1985, 4, 159-175

ANDERSON, J.R, & SKWARECKI, E,, The Automated Tutoring of Introductory Computer Programming,
Communications of the ACM, 1986, 29(9), 842-849

ATKINSON, R.C., Ingredients for a Theory of Instruction, American Psychologist, 1972, 27, 921-931

ATKINSON, R.C. & WILSON, H.A. (eds), Computer-assisted Instruction, New York: Academic Press, 1969

ATTISHA, M., Non-borrow Subtraction Algorithm, Working Paper W-119, Computer Science Dept., University of Exeler,
1984



370

ATTISHA, M. & YAZDANI, M., An Expert System for Diagnosing Children's Multiplication Errors, Research Report R-
117, Computer Science Dept., University of Exeter, 1983

BACKHOUSE, R.C., Syntax of Programming Languages, Englewood Cliffs, New Jersey: Prentice Hall, 1979

BARR, A.. & ATKINSON, R.C., Adaptive Instructional Strategics, in: H. SPADA & W F.KEMPF (eds), Structural
Models of Thinking and Learning, §3 - 112, Bern: Hans Huber Publ,, 1977

BARR, A., BEARD, M. & ATKINSON, R.C., A Rationale and Description of a CAl Program te Teach the BASIC
Programming Language, Instructional Science, 1975, 4, 1-31

BARR, A., BEARD, M. & ATKINSON, R.C., The Computer as a Tutorial Laboratory: The Stanford BIP Project,
International Journal of Man-Machine Studies, 1976, 8, 567-596

BARR, A, & FEIGENBAUM, E.A. (cds), The Handbook of Artificial Intelligence, Vol. II, Los Altos, Calif,; W.Kauffmann,
Inc., 1982

BAUER, F.L. & GOOS, G., Informatik, Bd. I, Berlin: Springer Verlag, 1982; Bd. II, Berlin: Springer Verlag, 1984

BAUER, F.L. & WOSSNER, H., Algorithmische Sprache und Programmentwicklung, Berlin: Springer Verlag, 1981

BAUER, FL. & WOSSNER, H., Algorithmic Language and Program Development, Berlin: Springer Publ., 1984

BERGHAMMER, R., DOSCH, W. & OBERMEIER, R., CIP-LS: Pascal Variante (Ubersicht itber Sprache, Ubersetzer und
Formularmaschine), Miinchen: Institut fiir Informatik der TU Miinchen, Dezember 1985

BERTIN, J., Graphics and Graphics Information Processing, Berlin:Walter de Gruyter, 1981

BERTIN, J., The Semioclogy of Graphics, Madison, Wisconsin: The University of Wisconsin Press, 1983

BLOOM, B.S., Taxonomie von Lernzielen im kognitiven Bereich, Weinheim: Beltz, 1972

BODEN, M., Minds and Mechanism: Philosophical Psychology and Computational Models, Brighton, Sussex: The
Harvester Press, 1981

BORK, A., Learning with Computers, Bedford, Massachusetts: Digital Press, 1981

BORK, A., Learning with Personal Computers, New York: Harper & Row, 1986

BOURNE, L.E., Human Conceptual Behavior, Boston: Allyn & Bacon, 1966

BOURNE, LE., An Inference Model of Conceptual Rule Learning, in: R. SOLSO (ed), Theories in Cognitive Psychology,
Washington, DC.;: LAWRENCE ERLBAUM, 1974, 231 - 256

BOURNE, L.E., EKSTRAND, B.R. & DOMINOWSKI, R.L., The Psychology of Thinking, Englewood Cliffs, N.JI.:
Prentice Hall, 1971

BOYLE, CF.,1986, Advanced Computer Tutoring, Inc., 701 Amberson Avenue, Pittsburgh, PA 15232, USA

BROWN, 1.5., Uses of Artificial Intelligence and Advanced Computer Technology in Education, in: R.J. SEIDEL & M.
RUBIN (eds), Computers and Communications: Implications for Education, New York; Academic Press, 1977, 253-
270

BROWN, J.5. & BURTON, R.R., Multiple Representation of Knowledge for Tutorial Reasoning, in D. BOBROW & A,
COLLINS (eds), Represenation and Understanding: Studies in Cognitive Science, New York: Academic Press, 1975

BROWN, 1.5. & BURTON, R.R., Diagnostic Models for Procedural Bugs in Basic Mathematical Skills, Cognitive Science,
1978, 2, 155-192

BROWN, J.S. & BURTON, R.R., Reactive Learning Environments for Teaching Environments for Teaching Electronic
Troubleshooting, in W.B. ROUSE (ed), Advances in Man-Machine Systems Research, Greenwich, Connecticut; JAT
Press, 1986

BROWN, 1.5., BURTON, R.R. & BELL, A.G., SOPHIE: A Step Towards a Reactive Learning Environment, International
Journal of Man Machine Studies, 1975, 7, 675-696

BROWN, I.5,, BURTON, R.R. & de KLEER, J., Pedagogical, Natural Language and Knowledge Engineering Techniques in
SOPHIE I, II and III, in: D.SLEEMAN & J.5.BROWN (eds}, Intelligent Tutoring Systems, New York: Academic
Press, 1982

BROWN, 1.5. & Van LEHN, K., Repair Theory: A Generative Theory of Bugs in Procedural Skills, Cognitive Science,
1980, 4, 379 - 426

BUNDERSON, C.V., The Design and Production of Learner-controlled Courseware for the TICCIT System, International
Journal of Man Machine Studies, 1974, 6, 479-491

BUNDY, A., Computer Modelling of Mathematical Reasoning, New York: Academic Press, 1983

BUNDY, A., SILVER, B. & PLUMMER, D., An Analytical Comparison of Some Rule Learning Programs, Artificial
Intelligence, 1985, 27, 137 - 181

BURTON, R.R., Diagnosing Bugs in a Simple Procedural Skill, in: D.SLEEMAN & J.S.BROWN (eds), Intelligent
Tutoring Systems, New York: Academic Press, 1982, 157-183

BURTON, R.R. & BROWN, 1.S., A Tutoring and Student Modelling Paradigm for Gaming Environments, SIGCSE
Bulletin, 1976, 8, 236-246

BURTON, R.R. & BROWN, 1.5., Toward a Natural Langnage Capability for Computer-assisted Instruction, in: H. O'NEIL
(ed), Procedures for Instructional Systems Development, New York; Academic Press, 1979

BURTON, RR. & BROWN, 1.5., An Investigation of Computer Coaching for Informal Learning Activities, International
Journal of Man-Machine Studies, 1979b, 11, 5-24

CAMPBELL, J.A. & ROSS, 5.P., Issues in Computer-assisted Interpretation of Graphs and Quantitative Information, in:
G.SALVENDY (ed), Cognitive Engineering in the Design of Human-Computer Interaction and Expert Systems,
Amsterdam: Elsevier Science Publ., 1987, 473-480

CARBONELL, JR., Al in CAIL: An Artificial Intelligence Approach to Computer-assisted Instruction, IEEE Transactions on
Man-Machine Systems, 1970, 11, 190-202

CARBONELL, J. & LANGLEY, P., Machine Leaming, in: St.C. SHAPIRQ (ed), Encyclopedia of Artificial Intelligence,
Vol.1, 464 - 488, 1987

CARROLL, J.M., Minimalist Design for Active Users, in: B.SHACKLE (ed), Interact '84, First IFIP Conference on
Human-Computer Interaction, Amsterdam: Elsevier/North-Holland, 1984a



n

CARROLL, I.M., Minimalist Training, Datamation, 1984b, 125 - 136

CAWSEY, A., Bugs in Decimal Addition: Model, Applications and Explanations, Artificial Intelligence and Simulation of
Behavior Quarterly, 1986, 59, 12-13

CHANG, S.K., Visual Languages: A Tutorial and Survey, in: P. GORNY & M.J. TAUBER {eds), Visualization in
Programming, Lecture Notes in Computer Science, Nr. 282, Berlin: Springer, 1987, 1-23

CHASE, W. G., Visual Information Processing, in: K.R. BOFF, L. KAUFMAN & J.P. THOMAS (eds), Handbook of
Perception and Human Performance, Vol. II, Cognitive Processes and Performance, New York: Wiley, 1986, 28-1 -
28-71

CLANCEY, W.1., Dialogue Management for Rule-Based Tutorials, IICAI, 1979, 6, 155-161

CLANCEY, W.J,, Methodology for Building an Intelligent Tutoring System, in: W.KINTSCH, I.R. MILLER & P.G.
POLSON (eds), Methods and Tactics in Cognitive Science, Hillsdale, N.J.: Lawrence Erlbaum Ass., 1984

CLANCEY, W.I., Tutoring Rules for Guiding a Case Method Dialogue, in: D.SLEEMAN & J.5. BROWN (eds), Intelligent
Tutoring Systems, New York: Academic Press, 1982, 201-225

CLANCEY, W.J., GUIDON, Joumnal of Computer-based Instruction, 10, 8-14, 1983

CLANCEY, W.J., From GUIDON to NEOMYCIN and HERACLES in Twenty Short Lessons: ORN Final Report, 1979 -
1985, Al Magazine, 1986a, 7(3), 40 - 60 & 187

CLANCEY, W.I., Qualitative Student Models, in: J.F.TRAUB (ed), Annual Review of Computer Science, 1986b, 1, 381-
450

CLANCEY, W.J., Knowledge-based Tutoring: The GUIDON Program, Cambridge, Mass.: 1987

CLEVELAND, W.5., The Elements of Graphing Data, Belmont, California: Wadsworth, 1985

COLLINS, A., Processes in Acquiring Knowledge, in: R.C.ANDERSON, RJ.SPIRO & W. MONTAGUE (eds), Schooling
and the Acquisition of Knowledge, Hillsdale, N.I.: Lawrence Erlbaum Press, 1976

COLLINS, A., Teaching Reasoning Skills, in: $,F. CHIPMAN, I.W, SEGAL & R. GLASER (eds), Thinking and Learning
Skills: Research and Open Questions, Hillsdale, N.J.: Lawrence Erlbaum Ass., 1985

COLLINS, A. & STEVENS, AL., Goals and Strategies for Inquiry Teachers, in: R. GLASER (ed), Advances in
Instructional Psychology, I1, Hillsdale, N.J.: Lawrence Erlbaum Ass., 1982

COLLINS, A. & STEVENS, A L., A Cognitive Theory of Interactive Teaching, in: C.M. REIGELUTH (ed), Instructional
Design Theories and Models: An Overview, Hillsdale, N.J.: Lawrence Erlbaum Ass., 1983

COLLINS, A., WARNOCK, E.H., AIELLO, N. & MILLER, M.L., Reasoning from Incomplete Knowledge, in:
BOBROW, D.G. & COLLINS, A. (eds), Representation and Understanding, New York: Academic Press, 1975

COLONIUS, H., FRANK, K.D., JANKE, G., KOHNERT, K., MOBUS, C., SCHRODER, O. & THOLE, HJ,,
Entwicklung einer Wissensdiagnostik- und Fehlererklirungskomponente beim Erwerb von Programmierwissen fiir
ABSYNT, paper presented on the workshop "Intelligente Lemsysteme”, Titbingen, DIFF, 1987

COLONIUS, H., FRANK, K.D., JANKE, G., KOHNERT, K., MOBUS, C., SCHRODER, O. & THOLE, HJ.,
Syntaktische und semantische Fehler in funktionalen graphischen Programmen, ABSYNT-Report 2/87, Projekt
ABSYNT, FB 10, Arbeitsgruppe Lehr-Lemsysteme, Universitit Oldenburg, 1987

DAVIS, R.E., Runnable Specification as a Design Tool, in: K.L. CLARK & S.A. TARNLUND (eds), Logic Programming,
New York; Academic Press, 1982, 141 - 149

DAVIS, R.B,, DUGDALE, §., KIBBEY, D. & WEAVER, Ch., Representing Knowledge about Mathematics for Computer-
Aided Teaching, Part II - The Diversity of Roles that a Computer Can Play in Assisting Learning, in: E-W.ELCOCK
& D.MICHIE (eds), Machine Intelligence 8, Chichester, Sussex: Ellis Horwood Lid, 1977, 387-421

DEDE, C., A Review and Synthesis of Recent Research in Intelligent Computer-assisied Instruction, Intemational Joumnal of
Man-Machine Studies, 1986, 24, 329-353

DESMARAIS, M.C.,, LAROCHELLE, S. & GIROUX, L., The Diagnosis of User Strategies, in: H.J. BULLINGER & B,
SHACKEL (eds), INTERACT '87, Amsterdam: Elsevier Science Publ., 1987, 185 - 189

DIETTERICH, T.G., LONDON, B,, CLARKSON, K., DROMEY, G., Learning and Inductive Inference, in: P.R. COHEN
& E.A. FEIGENBAUM (eds), The Handbook of Artificial Intelligence, Vol.3, 323 - 511, London: Pitman Books Ltd.,
1982

DOSCH, W., New Prospects of Teaching Programming Languages, in: F.B.LOVIS & E.D.TAGG (eds), Informatics
Education for all Students at University Level, IFIP, Amsterdam: Elsevier Science Publishers, 1984, 153 -169

DUGDALE, S. & KIBBEY, D., Elementary Mathematics with PLATO, Urbana, Illinois: Computer-based Education
Laboratory (op.cit.in: O'SHEA, 1982)

DYWER, T.A., Heuristic Strategies for Using Computers to Enrich Education, International Journal of Man-Machine
Studies, 1974, 6, 137-154

EFE, K., A Proposed Solution to the Problem of Levels in Error-message Generation, Communications of the ACM, 1987,
30(11), 948 - 955

EGAN, D.E. & GREENQ, 1.G., Theory of Rule Induction: Knowledge Acquired in Concept Learning, Serial Pattern
Learning, and Problem Solving, in: L.W.GREGG (ed), Knowledge and Cognition, Potomac, Maryland: L.Erlbaum
Ass Publ., 1974, 43-103

FAHNRICH, K.P. & ZIEGLER, J., Workstation Using Direct Manipulation as Interaction Mode, in: Proceedings of
INTERACT '84, VolII, 1985a, 203 - 208 (in german: Dirckte Manipulation als Interaktionsform an
Arbeitsplatzrechnern, in: HJ. BULLINGER (Hrsgb), Software-Ergonomie '85 -Mensch-Computer- Interaktion,
Stuttgart: Teubner, 1985, 75 - 85

FEURZEIG, W., Algebra Slaves and Agents in a LOGO-based Mathematics Curriculum, in: RW. LAWLER & M.
YAZDANI (eds), Arificial Intelligence and Education: Learning Environments and Tutoring Systems, 27 - 54,
Norwood, NJ.: Ablex Publ. Co., 1987

FISCHER, G., Einfithrung in die Theorie psychologischer Tests, Bern: Hans Huber, 1974



372

FITTER, M. & GREEN, T.R.G., When Do Diagrams Make Good Computer Languages?, International Journal of Man-
Machine Studies, 1979, 11, 235-261 and in: M.J. COOMBS & J.L, ALTY (eds), Computing Skills and the User
Interface, New York: Academic Press, 1981, 253 - 287

FLETCHER, 1.D., Modeling the Learner in Computer-assisted Instruction, Journal of Computer-based Instruction,
1975,1,118-126

FORD, L., Intelligent Computer Aided Instruction, Research Report, R.121, Computer Science Dept., University of Exeter,
1986

FORD, L., Teaching Strategies and Tactics in Intelligent Computer Aided Instruction, Artificial Intelligence Review, 1987,
1, 201-215

FRICKE, R., Uber Memodelle in der Schulleismngsdiagnostik, Diisseldorf: Pédagogischer Verlag Schwann, 1972

FRICKE, R., Kriteriumsorientierte Leistungsmessung, Stuttgart: W.Kohlhammer, 1974

FRIEDMAN, D.P. & FELLEISEN, M., The Little LISPer, Cambridge, Massachussets: MIT Press, 1987

GAGE, N.L.(ed), Handbook of Research on Teaching, Chicago: Rand McNally & Co, 19677

GAGNE, R.M., The Acquisition of Knowledge, Psychological Review, 1962, 69, 355-365 (german translation in:
M.HOFER & FE.WEINERT (eds), Padagogische Psychologie, Bd.2, Lernen und Instruktion, 1973, 106-123

GAGNE, R.M., Task Analysis - Its Relation to Content Analysis, Educational Psychology, 1974, 11, 11-18

GALANTER, E.H. (ed.), Automatic Teaching: the State of Art, N.Y.: Wiley, 1959

GENESERETH, M.R., The Role of Plans in Intelligent Teaching Systems, in; D.SLEEMAN & J.8.BROWN (eds),
Intelligent Tutoring Systems, New York: Academic Press, 1982, 137 - 155

GENESERETH, M.R. & NILSSON, N.I., Logical Foundations of Artificial Intelligence, Los Altos, California: Morgan
Kanfman Publ,, 1987

GHEZZI, C. & JAZAYERI, M., Programming Language Concepts 2/E, New York: Wiley, 1987

GILMORE, D.J. & GREEN, T.R.G., Are "programming plans" psychological real - outside PASCAL?, in: H.JL.
BULLINGER & B. SHACKEL (eds), INTERACT '87, Amsterdam: Elsevier Science Publ., 1987, 497 - 503

GILMORE, D. & SELF, J.A., The Application of Machine Leaming to Intelligent Tutoring Systems, in: J.A.SELF (ed),
Intelligent Computer-Aided Instruction, London: Chapman & Hall (in press)

GLINERT, E.P. & GONCZAROWSKI, I., A (Formal) Model for (Iconic) Programming Environments, in H.J,
BULLINGER & B. SHACKEL (eds), Human - Computer Interaction - INTERACT ‘87, Amsterdam: Elsevier Science
Publ., 1987, 283 - 290

GLINERT, E.P. & GONCZAROWSK]I, J. & SMITH, C.D., An Integrated Approach to Solving Visual Programming's
Problems, in: G. SALVENDY (ed), Cognitive Engineering in the Design of Human - Computer Interaction and
Expert Systems, Amsterdam: Elsevier Science Publ., 1987, 341 - 348

GOEDE, K. & KLIX, F., Lernabhéngige Strategien der Merkmalsgewinnung und der Klassenbildung beim Menschen, in:
FKLIX, WKRAUSE & H.SYDOW (Hrsgb), Kybemetik-Forschung, H.l1, Zeichenerkennungs- ond
Klassifikationsprozesse bei biologischen und technischen Systemen, VEB Deutscher Verlag der Wissenschaften, Berlin
1972

GOLDSTEIN, LP., The Genetic Epistemology of Rule Systems, Intemnational Journal of Man-Machine Studies, 1979, 11,
51-77

GOLDSTEIN, LP., Developing a Computational Representation for Problem-Solving Skills, in: D.T.TUMA & F.REIF
(eds), Problem Solving and Education: Issues in Teaching and Research, Hillsdale, N.J.: Erlbaum Ass. Publ., 1980,
53-79

GOLDSTEIN, LP., The Genetic Graph: A Representation for the Evolution of Procedural Knowledge, in: D.SLEEMAN &
J.S. BROWN (eds), Intelligent Tutoring Systems, New York: Academic Press, 1982

GOODMAN, D., The Complete HyperCard Handbook, Teronto: Bantam Books, 1987

GREEN, TR.G., Programming as a Cognitive Activity, in: H.T. SMITH & T.R.G. GREEN (eds), Human Interaction with
Computers, New York: Academic Press, 1980, 271 - 319

GREEN, T.R.G., Leaming Big and Little Programming Languages, in: A.C. WILKINSON (ed), Classroom Computers and
Cognitive Science, New York: Academic Press, 1983, 71 - 83

GREEN, T.R.G. & PAYNE, §.J., Organization and Learnability in Computer Languages, International Journal of Man-
Machine Stndies, 1984, 21,7 - 18

GREEN, T.R.G., SCHIELE, F, & PAYNE, 5.1., Formalizable Models of User Knowledge in Human Computer Interaction,
1983, to appear in: GREEN, HOC, MURRAY & VEER (eds), Theory and Outcomes in Human Computer
Interaction, London: Academic Press (in press)

GREEN, T.R.G., SIME, ME. & FITTER, M.]., The Art of Notation, in; M.J. COOMBS & J.L. ALTY (eds),
Computing Skills and the User Interface, New York: Academic Press, 1981, 221 - 251

HAYGOOD, R.C. & BOURNE, LE., Attribute- and Rule-learning Aspects of Conceptual Behaviour, Psychological
Review, 1965, 72, 175 - 195

HENDERSON, P., Functional Programming: Application and Implementation, Englewood Cliffs, N.J.: Prentice Hall, 1980

HENDERSON, P., Functional Programming, Formal Specification and Rapid Prototyping, [EEE Transactions on Software
Engineering SE-12 2, 1986, 241 - 250

HOLLAN, 1.D., HUTCHINS, E.L. & WEITERMAN, L.M., STEAMER: An Interactive, Inspectable, Simulation-based
Training System, in: GKEARSLEY (ed), Artificial Intelligence and Instruction: Applications and Methods, Reading,
Masss.: Addison-Wesley, 1987, 113-134

HOLLAND, 1.G., Teaching Machines: an Application of Principles from the Laboratory, Journal of Experimental Analysis
of Behavior, 1960, 3, 275 - 286 (german translation in: W.CORRELL({ed), Programmiertes Lernen und
Lehrmaschinen, Braunschweig, 1965)

HOLLAND, J.G., Response Contingencies in Teaching Machine Programs, Journal of Programmed Instruction, 1964, 3, 1-8



373

HOLLAND, I.G. & SKINNER, B.F, The Analysis of Behavior, New York:McGraw Hill, 1961 {german translation: Analyse
des Verhaltens Miinchen: Urban & Schwarzenberg, 1974)

HOPPE, H.U., A Grammar-based Approach to Unifying Task-oriented and System-oriented Interface Descriptions, in: D.
ACKERMAN & M.TAUBER (eds}, Mental Models and Computer Interaction, Amsterdam: North-Holland (in press)

HOPPE, H.U., Task-oriented Parsing - A Diagnostic Method 10 be Used by Adaptive Systems, working paper, GMD, 1987

HOPPE, H.U., TAUBER, M. & ZIEGLER, J.E., A Survey of Models and Formal Description Methods in HCI with
Example Applications, ESPRIT Project 385, HUFIT Report B.3.2.a, Fraunhofer Institute (FHG-1IAQ), 1986

HUNT, E.B., MARTIN, J. & STONE, P.I., Experiments in Induction, New York: Academic Press, 1966

HUTCHINS, E.L., HOLLAN, J.D. & NORMAN, D.A., Direct Manipulation Interfaces, in: D.ANORMAN &
S5.W.DRAPER ({eds), User Centered System Design - New Perspectives on Human Computer Interaction, Hillsdale,
N.I.: Lawrence Erlbaum Ass,, 1986, 87-124

JANKE, G. & KOHNERT, K., Interface Design of a Visnal Programming Language: Evaluating Runnable Specifications
According to Psychological Criteria, paper to be presented at MACINTER, 1988, Berlin/GDR

JOHNSON, W.L., Intention-Based Diagnosis of Novice Programming Errors, Los Altos, California: Morgan Kaufman
Publ., 1986

JOHNSON, WL, & SOLOWAY, E., Intention-based Diagnosis of Programming Errors, Proceedings of the AAAI-84, 1984,
162 -168

JOHNSON, W.L. & SOLOWAY, E., PROUST: An Automatic Debugger for Pascal Programs, BYTE, 1985, April, 179-
190 and in: GP.KEARSLEY (ed), Arificial Intelligence & Instruction, Reading, Mass,: Addison Wesley Publ.Co.,
1987, 49-67

KAHNEY, H., The Behaviour of Novice and Expert Problem Solvers, Arificial Intelligence and Simulation of Behaviour
Quarterly, 1983, No.48, 20 - 24

KANTOROVIC, L.V., Ob odnoi matematischeskoi cimbolike, udobnoi pri prowedenii witschiclenii na maschinach (On a
Mathematical Symbolism Convenient for Performing Machine Calculations), Doklady Akademii Nauk CCCP, 1957,
113, 738 -741

KASS, R., The Role of User Modelling in Intelligent Tutoring Systems, Department of Computer and Information Science,
School of Engineering and Applied Science, Philadelphia, PA,, LINC LAB 41, MS-CIS-86-58, 1987

KAWAI K., MIZOGUCHI, R., KAKUSHO, O, & TOYODA, I., A Framework for ICAI Systems Based on Inductive
Inference and Logic Programming, New Generation Computing, 1987, 5, 115 - 129

KEARSLEY, G.P. (ed), Artificial Intelligence & Instruction, Reading, Mass.: Addison-Wesley, 1987

KIMBALL, R., A Self Improving Tutor for Symbolic Integration, in: D.SLEEMAN & J.S.BROWN (eds), Intelligent
Tutoring Systems, New York: Academic Press, 1982

KLAUSMEIER, H.J., Learning and Human Abilities, New York: Harper & Row, 1971

KLING, U., Kognitive Aspekte bei Mensch/Maschine-Interaktionsformen im Bereich des Lernens und Problemldsens, in:
H.UECKERT & D.RHENIUS (eds), Komplexe menschliche Informationsverarbeitung, Bern: Hans Huber, 1979

KOHNE, A. & WEBER, G., STRUEDI: A Lisp-Structure Editor for Novice Programmers, in: H.J.BULLINGER &
B.SHACKEL {eds), Elsevier Science Publ., 1987, 125-129

KOFFMAN, E.B. & BLOUNT, S.E., Arificial Intelligence and Automatic Programming in CAIL Artificial Intelligence,
1975, 6, 215-234

KOHNERT, K. & JANKE, G., The Object-oriented Implementation of the ABSYNT Environments, ABSYNT-Report 4/38,
FB 10 Informatik, Arbeitsgruppe Lehr-Lemnsysteme, University of Oldenburg

KRAUSE, M.U. & SEEL, B.R. (eds), Lernerfolgsmessung: Beitriige zur computerunterstiitzten Auswertung von
Lemerfolgsdaten, Miinchen: Oldenbourg Verlag, 1979

LAIRD, LE,, ROSENBLOOM, P.S. & NEWELL, A., Chunking in SOAR: The Anatomy of a General Learning
Mechanism, Machine Leamning, 1986, 1, 11 - 46

LAKIN, F.H., Computing with Text-Graphic Forms, in: J. ALLEN (ed), Records of the LISP Conference, 1980, 100 - 105

LAKIN, F.H., Spatial Parsing for Visual Languages, in: §. CHANG, T. ICHIKAWA & P.A. LIGOMENIDES {eds), Visual
Languages, New York: Plenum Press, 1986

LANGLEY, P., OHLSSON, 5. & SAGE, S$t., A Machine Learning Approach to Student Modelling, Pittsburgh, PA.:
Camnegie-Mellon University, The Robotics Institute, Tech.Rep., CMU-RI-TR-84-7, 1984

LARKIN, J.H. & SIMON, H.A., Why a Diagram is (Sometimes) Worth Ten Thousand Words, Cognitive Science, 1987, 11,
63 - 99

LAWLER, R.W., Designing Computer-based Microworlds, in: M. YAZDANI (ed), New Horizons in Educational
Computing, Chichester, England: Ellis Horwood, Litd., New York: John Wiley, 1984

LAWLER, R.W., Learning Environments: Now, Then, and Someday, in: RW. LAWLER & M. YAZDANI (eds), Artficial
Intelligence and Education, Norwood, N.J.: Ablex Publ. Co., 1987

LAWLER, R.W. & LAWLER, G.P., Computer Microworlds and Reading: An Analysis for their Systematic Application, in:
R.W.LAWLER & M. YAZDANI (eds), Artificial Intelligence and Education, Norwood, N.J.: Ablex Publ. Co., 1987,
95-115

LAWLER, R.W. & M. YAZDANI (eds), Artificial Intelligence and Education: Learning Environments and Tutoring
Systems, Norwood, NJ.: Ablex Publ. Co., 1987

LEKAN, H.A., Index to Computer-assisted Instruction, New York: Harcourt Brace, 1971

LEVESQUE, HJ., Knowledge Representation and Reasoning, Annual Review of Computer Science, 1986, 1, 255-287

LLOYD, C.J., Integrating Plan Recognition and User Modelling, Centre for Research on Computers and Leaming,
Department of Computing, The University of Lancaster, 1986

LUTZE, R., The Gestalt Analysis of Programs, in: P. GORNY & M.J. TAUBER (eds}, Visualization in Programming, 5th
Interdisciplinary Workshop in Informatics and Psychology, Schiirding, Austria, May 1986, Berlin: Springer-Verlag,
1987, 24 - 36



374

MANDL, H. & FISCHER, P.M. (eds), Lernen im Dialog mit dem Computer, Miinchen: Urban & Schwarzenberg Publ,,
1985

MATZ, M., Towards a Process Model for High School Algebra Errors, in D. SLEEMAN & 1.S. BROWN (eds), Intelligent
Tutoring Systems, New York: Academic Press, 1982, 25 - 50

McKENDREE, Jean, Feedback Content During Complex Skill Acquisition, 181-188, in: G.SALVENDY, SL.SAUTER &
J.JHURRELL (eds), Social, Ergonomic and Stress Aspects of Work with Computers, Amsterdam; Elsevier Science
Publ., 1987

MEDIN, D.L. & SMITH, E.E., Concepts and Concept Formation, Annual Review of Psychology, 1984, 35, 113 - 138

MEDIN, D.L., WATTENMAKER, W.D. & MICHALSKI, R.S., Constraints and Preferences in Inductive Learning: An
Experimental Study of Human and Machine Performance, Cognitive Science, 1987, 11, 299 - 339

MERRILL, M.D., SCHNEIDER, E.W, & FLETCHER, K.A. TICCIT, EnglewoodCliffs,N.J.: Educational
Technclogy, 1980

MICHALSKI, R.S., Learning Strategies and Automated Knowledge Acquisition: An Overview, in: L.BOLC (ed),
Computational Models of Learning, Springer: Berlin, 1987, 1 - 19

MILLER, M.L., A Structural Planning and Debugging Environment for Elementary Programming, International Jonrnal of
Man Machine Studies, 1979, 11,79 - 95 and in: D.SLEEMAN & I1.S. BROWN (eds), Intelligent Tutoring Systems,
New York: Academic Press, 1982, 119 - 135

MILLER, M.L. & GOLDSTEIN, LP,, SPADE: A Grammar Based Editor for Planning and Debugging Programs, Al Memo
386, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Dec. 1976

MILLER, M.L. & GOLDSTEIN, LP., Problem Sclving Grammars as Formal Tools for Intelligent CAI, Proceedings of the
ACM Conference, 1977a, 220 - 226

MILLER, M.L. & GOLDSTEIN, LP,, Structured Planning and Debugging, Proceedings of the 5th International Joint
Conference on Arificial Intelligence (ITJCAI), 1977b, 773 - 779

MINSKY, M., A Framework for Representing Knowledge, in: P, WINSTON (ed), The Psychology of Computer Vision, New
York: McGrawHill, 1975, 211-277

MITRE Corporation, An Qverview of the TICCIT Program, McLean, Virginia: MITRE Corporation, 1974 {op.cit.in:
O'SHEA, 1982)

MOBUS, C., Die Entwicklung zum Programmierexperten durch das Problemldsen mit Automaten, in: HMANDL &
P.M_FISCHER (eds), Lemen im Dialog mit dem Computer, Mitnchen: Urban & Schwarzenberg Publ., 1985, 140-154

MOBUS, C., Knowledge Specification and Instructions for a Visual Computer Language, paper presented on the "Workshop
on Knowledge Representation and Information Processing”, Institute of Cybernetics and Information Processes,
Academy of Sciences, Berlin/GDR, 24.-28, June, 1987a

MOBUS, C., Logic Programs as a Specification and Description Tool in Designing an Intelligent Tutoring System,in:

Abridged Proceedings of the HCI International Conference on Human-Computer Interaction, Honolulu, Hawaii 1987b, p.119f

MOBUS, C., Specifications of Instructions and Helps for an ICAI-System in the Field of Graphical Programming, paper
presented at the First European Seminar on Intelligent Tutoring Systems, Commission of the European Communities,
Rotienburg, 25.-31. October, 1987¢

NEVES, D.M. & ANDERSON, J.R., Knowledge Compilation: Mechanisms for the Automatization of Cognitive Skills, in:
J.R. ANDERSON (ed), Cognitive Skills and their Acquisition, Hillsdale, N.J.: Lawrence Erlbaum Ass., 1981, 57 - 84

NEWELL, A. & ROSENBLOOM, P.S., Mechanisms of Skill Acquisition and the Law of Practice, in JR. ANDERSON
(ed), Cognitive Skills and their Acquisition, Hillsdale, N.J.: Lawrence Erlbaum, 1981

O'SHEA, T., Self Improving Teaching Systems, Basel: Birkh#user Verlag, 1979

O'SHEA, T., A Self-improving Quadratic Tutor, International Journal of Man-Machine Studies, 1979a, 11, 97-124 and in:
D.SLEEMAN & J.5.BROWN (eds), Intelligent Tutoring Systems, New York: Academic Press, 1982, 309 - 336

O'SHEA, T., Intelligent Systems in Education, in: D.MICHIE (ed), Introductory Readings in Expert Systems, New York;
Gordon & Breach Science Publ., 194#, 147-176

PAGAN, F.G., Formal Specification of Programming Languages: A Pancramic Primer, Englewood Cliffs: Prentice Hall,
1981

PAPERT, S., Microworlds: Transforming Education, in: R.W. LAWLER & M. YAZDANI (eds), Artificial Intelligence and
Education, Norwood, N.J.: Ablex Publ. Co., 1987, 79 - 94

PARK, O.C., PEREZ, R.S. & SEIDEL, R.J., Intelligent CAL Old Wine in New Bottles or a New Vintage? in: G.P.
KEARSLEY (eds), Artificial Intelligence & Instruction, Reading, Mass.: Addison-Wesley, 1987, 11-45

PAVEL, M., MARCOVICI, S., SHERMAN, A. & FALMAGNE, J.C., ARIS: A Computer-assisted Instruction System,
Behaviour Research Methods and Instrumentation, 1983, 15, 138-141

PAYNE, 8.J. & GREEN, TR.G., Task-action Grammars: A Model of the Mental Representation of Task Languages,
Human Computer Interaction, 1986, 2, 93 - 133

PAYNE, 5.J., SIME, ME. & GREEN, T R.G., Perceptual Structure Cuneing in a Simple Command Language, International
Journal of Man-Machine Studies, 1984, 21, 19 - 29

PEACHEY, DR. & McCALLA, G.I, Using Planning Techniques in Intelligent Tutoring Systems, International Journal of
Man-Machine Studies, 1986, 24, 77-98 .

PENNINGTON, N., Stimulus Structures and Mental Representations in Expert Comprehension of Computer Programs,
Cognitive Psychology, 1987, 19, 295 - 341

PEREIRA, F.C.N., Can Drawing Be Liberated from the von NEUMANN Style?, in: M.V. CANEGHEM & D.H.D.
WARREN {(eds), Logic Programming and its Applications, Norwood, N.J.: Ablex Publ., 1986, 175 - 187

POHL, 1, Syntactic Models of Cognitive Behavior, in: A. ELITHORN & D, JONES (ed), Artificial and Human Thinking,
Amsterdam: Elsevier Scientific Publ, Ce., 1973, 34 - 44

POMERANTZ, JR., Perceptual Organization in Information Processing, in; A.M, AITKENHEAD & J.M. SLACK (eds),
Issnes in Cognitive Modelling, Hillsdale, N.J.: LAWRENCE ERLBAUM Ass., 1985, 127 - 158



375

PRESSEY, S.L., A Simple Apparatus Which Gives Tests and Scores and Teaches, School and Society, 1926, 23 (german
translation in; W.CORRELL (ed.), Programmiertes Lernen und Lehrmaschinen, Braunschweig, 1965)

PRESSEY, S.L., A Machine for Automatic Teaching of Drill Material, School and Society, 1927, 25, 1-14 {german
translation in:W.CORRELL (ed), Programmiertes Lernen und Lehrmaschinen, Braunschweig, 1965)

PRESSEY, §.L., Teaching Machine (and Learning Theory} Crisis, Journal of Applied Psychology, 1963, 47, 1-6 (german
translation in: FWEINERT (ed), P4dagogische Psychologie, Kéln: Kiepenheuer & Witsch, 1961)

RAJAN, T, APT: A Principled Design of an Animated View of Program Execution for Novice Programmers, in: H.J.
BULLINGER & B. SHACKEL (eds), Human - Computer Interaction - INTERACT '87, Amsterdam: Elsevier Science
Publishers, 1987, 291 - 296

RESNICK, C.A., Computational Models of Learners forComputer- assisted Leaming, Doctorial Dissertation, University of
Illinois, Urbana-Champaign, Illinois, 1975

REISNER, P., Formal Grammar as a Tool for Analyzing Ease of Use: Some Fundamental Concepts, in: J.C. THOMAS &
M.L. SCHNEIDER {eds), Human Factors in Computer Systems, Norwood, N.J.: Ablex Publ, Co.,1984

REISNER, P., Formal Grammar and Human Factors Design of Interactive Graphics System, IEEE Transactions on Software
Engineering, Vol. SE-7,No.2, 229 - 240, 1981

ROSS, P., Some Thoughts on the Design of an Intelligent Teaching System for PROLOG, Arnificial Intelligence and
Simulation of Behavior Quarterly, 1987, No. 62, 6 - 10

ROSS, P. & LEWIS, J., Plan Recognition and Chart Parsing, Department of Artificial Intelligence, University of
Edinburgh, DAI- Rescarch Paper, No. 309, 1987

SCHEERER, E., Notes Toward a History of Cognitive Science, International Social Science Journal, in press

SCHMIDT, C.F., SRIDHARAN, N.§, & GOODSON, J.L., The Plan Recognition Problem: An Intersection of Psychology
and Artificial Intelligence, Artificial Intelligence, 1978, 11, 45-83

SCHMITT, H. & WOHLFARTH, P., Mathematikbuch 5N., Miinchen: Bayerischer Schulbuchverlag, 1978

SCHRODER, O., FRANK, K.D, & COLONIUS, H., Gedichtnisrepréisentation funktionaler, graphischer Programme,
ABSYNT-Report 1/87, Projekt ABSYNT, FB 10, Arbeitsgruppe Lehr-Lemnsysteme, Universitit Oldenburg, 1987

SELF, ].A., Student Models in Computer-aided Instruction, International Journal of Man-Machine Studies, 1974, 6, 261-276

SELF, I.A,, The Application of Machine Learning to Student Modelling, Instructional Science, 1986, 14, 327 - 338

SELF, J.A., Artificial Intelligence and Human Learning: Intelligent Computer-aided Instruction, London: Chapman & Hall,
1988

SHAPIRO, St.C. (ed), Encyclopedia of Artificial Intelligence, New York: John Wiley, 1987

SHNEIDERMAN, B., Direct Manipulation: A Step Beyond Programming Languages, IEEE Computer, 1983, 16(8),57 - 9

SHEIDERMAN, B., Designing the User Interface: Sirategies for Effective Human-Computer Interaction, Reading, Mass.:
Addison-Wesley, 1987

SHU, N.C., Visual Programming Languages: A Perspective and a Dimensional Analysis, in: §. CHANG, T. ICHIKAWA &
P.A, LIGOMENIDES (eds), Visual Languages, New York: Plenum Press, 1986, 11 - 34

SIMON, H.A, & LEA, G., Problem Solving and Rule Induction: A UnifiedView, in: L.W.GREGG (ed), Knowledge and
Cognition, Potomac, Maryland: L.Erlbaum Ass.Publ., 1974, 105-127

SKINNER, B.F., The Science of Learning and the Art of Teaching, Harvard Educational Review, 1954, 24, 86-97 (german
translation in: F.WEINERT (ed), Pidagogische Psychologie, 247-258, K6In: Kiepenheuer & Witsch, 1967

SKINNER, B.F., Teaching Machines, Science, 1958, 128, 969-977 (german translation in: W.CORRELL (ed),
Programmiertes Lernen und Lehrmaschinen, Braunschweig, 1965)

SKINNER, B.F., The Technology of Teaching, N.Y.: Appleton Century Crofts, 1968

SKVORETZ, J., Languages and Grammars of Action and Interaction: Some Further Results, Behavioral Science, 1984, 29,
81-97

SKVORETZ, J. & FARARO, ThJ., Languages and Grammars of Action and Interaction: A Contribution to the Formal
Theory of Action, Behavioral Science, 1980, 25,9 - 22

SLEEMAN, D.H., A Problem Solving Monitor for a Deductive Reasoning Task, International Journal of Man-Machine
Studies, 1975, 7, 183-211

SLEEMAN, D.H., Assessing Aspects of Competence in Basic Algebra, in: D.SLEEMAN & J.S. BROWN (eds), Intelligent
Tutoring Systems, New York: Academic Press, 1982

SLEEMAN, D.H., Inferring Student Models for Intelligent Computer-aided Instruction, in: R.S. MICHALSKI,
J.G.CARBONELL, T.M. MITCHELL (eds), Machine Leaming: An Artificial Intelligence Approach, Plao Alto: Tioga
Publ.Co., 1983, 483-510

SLEEMAN, D.H., An Attempt to Understand Student's Understanding of Basic Algebra, Cognitive Science, 1984, 8, 387-
412

SLEEMAN, D.H., Basic Algebra Revisited: A Study with 14-year-olds, International Journal of

Man-Machine-Studies, 1985, 22, 127-149

SLEEMAN, D.H., Inferring (Mal)rules from Pupil's Protocols, in: L.STEELS & J.A, CAMPBELL (eds), Progress in
Artificial Intelligence, Chichester, Sussex: Ellis Horwood Lid, 1986

SLEEMAN, D.H. & BROWN, 1.5. (eds), Intelligent Tutoring Systems, New York: Academic Press, 1982

SLEEMAN, D. & HENDLEY, R.J., ACE: A System which Analyses Complex Explanations, in: D. SLEEMAN & J.S.
BROWN (eds), Intelligent Tutoring Systems, New York: Academic Press, 1982, 99 - 118

SLEEMAN, D.H. & SMITH, M.I., Modelling Pupil's Problem Solving, Artificial Intelligence, 1981, 16, 171 - 187

SMALLWOOD, R.D., A Decision Structure for Teaching Machines, Cambridge, Massachusetts: MIT Press, 1962

SMALLWOOD, R.D., Optimal Policy Regions for Computer-directed Teaching Systems, in: W.H.HOLTZMAN (ed),
Computer-assisted Instruction, Testing and Guidance, New York: Harper & Row, 1970

SMITH, D.C., IRBY, C., KIMBALL, R., VERPLANK, B., & HARSLEM, B., Designing the STAR User Interface, BYTE,
1982, 7(4), 242-282



376

SMITH, RL. & BLAINE, L.H., A Generalized System for University Mathematics Instruction, SIGCUE Bulletin, 1976, 1,
280-288

SMITH, R.L., GRAVES, W.H., BLAINE, L.H. & MARINOV, V.G., Computer-assisted Axiomatic Mathematics: Informal
Rigor, in: O.LACARME & RLEWIS (eds), Computers in Education, IFIPS (PL.2), Amsterdam: North-Holland,
1975, 803-809

SOLOWAY, E., Learning to Program = Learning to Construct Mechanisms and Explorations, Communications of the
ACM, 1986, 29(9), 850-858

SOLOWAY, E., I Can't Tell What in the Code Implements What in the Specs, in: G.SALVENDY {ed), Cognitive
Engineering in the Design of Human-Computer Interaction and Expert Systems, Amsterdam: Elsevier Science Publ.,
1987, 317-328

SPADA, H. Modelle des Denkens und Lemens: Thre Theorie, empirische Untersuchung und Anwendung in der
Unterrichtsforschung, Bern: Hans Huber, 1976

SPADA, H. & OPWIS, K., Intelligente tutorielle Systeme aus psychologischer Sicht, in: HLMANDL & P.M.FISCHER
(eds), Lernen im Dialog mit dem Computer, Miinchen: Urban & Schwarzenberg, 1985, 13 - 23

STEVENS, A.L. & COLLINS, A., The Goal Structure of a Socratic Tutor, Proceedings of the ACM

Conference, Seattle, Washington, New York: Association for Computing Machinery, 1977, 256 - 263

STEVENS, A.L. & COLLINS, A., Multiple Conceptual Models of a Complex System, in: R.E. SNOW, P.A, FEDERICO
& W.E. MONTAGUE (eds), Aptitude, Learning and Instruction, Vol. 2: Cognitive Process Analyses of Learning and
Problem Solving, Hillsdale, N.J.: 1980, 177 - 197

STEVENS, A.L., COLLINS, A. & GOLDIN, $.E., Misconceptions in Students’ Understanding, International

Journal of Man-Machine Studies, 1979, 11, 145 - 156 and in: D, SLEEMAN & 1.S. BROWN (eds}, Intelligent Tutoring
Systems, New York: Academic Press, 1982, 13 - 24

STRITTMATTER, P.(ed), Lemzielorientierte Leistungsmessung, Weinheim: Beltz Verlag, 1973

SUPPES, P., University-level Computer-assisted Instruction at Stanford: 1968-1980, Stanford, Calif.: Institute for
Mathematical Studies in the Social Sciences, Stanford University, 1981

SUPPES, P., FLETCHER, J.D. & ZANOTTI, M., Performance Models of American Indian Students on Computer-assisted
Instruction in Elementary Mathematics, Instructional Science, 1975, 4, 303-313

SUPPES, P., FLETCHER, 1.D, & ZANOTTI, M., Models of Individnal Trajectories in Computer-assisted Instruction for
Deaf Students, Journal of Educational Psychology, 1976, 68, 117 - 127

SUPPES, P., JERMAN, M. & BRIAND, D., Computer Assisted Instruction; The 1965-66 Stanford Arithmetic Program,
N.Y.: Academic Press, 1968

SUPPES, P. & MORNINGSTAR, M., Computer-Assisted Instruction at Stanford 1966-68: Data, Models and Evaluation of
Arithmetic Programs, N.Y.: Academic Press, 1972

TAUBER, M., A Computer-aided Management System in Distance Education, European Joumnal of Education, 15, 285 - 297,
1980

TCHOGOVADZE, G.G., Some Steps Towards Intelligent Computer Tutoring Systems, Microprocessing and
Microprogramming, 1985, 16, 1-5

TUFTE, E., The Visual Display of Quantitative Information, Cheshire, Connecticut: Graphics Press, 19855

TULVING, E., Elements of Episodic Memory, London: Oxford University Press, 1983

UNGER, 8. & WYSOTZKL, F., Lemf4hige Klassifizierungssysteme, Berlin: Akademie-Verlag, 1981

UTTAL, W.R,, ROGERS, M. HIERONYMOUS, R. & PASICH, T. Generative Computer Assisted Instruction in Analytic
Geometry, Newburyport, MA : Entelek, Inc., 1968

VanLEHN, K., Bugs are not Enough: Empirical Studies of Bugs, Impasses and Repairs in Procedural Skills, XEROX Parc,
Cognitive and Instructional Sciences Group, 1981, CIS-11 (SSL-81-2) and Journal of Mathematical Behavior, 1982,
3,3-72

VanLEHN, K., On the Representation of Procedures in Repair Theory, in: H.P, GINSBURG (ed), The Development

of Mathematical Thinking, New York: Academic Press, 1983, 197 -252

VanLEHN, K., Learning One Subprocedure per Lesson, Artificial Intelligence, 1987a, 31, 1-40

VanLEHN, K., Towards a Theory of Impasse-driven Learning, ONR.Techn.Rep., CMU-University, Pittsburgh, USA, 1987b

VanLEHN, K. & BALL, W., A Version Space Approach to Learning Context-free Grammars, Machine Learning, 1987c, 2,
39-74

VanLEHN, K. & BROWN, 1.5, Planning Nets: A Representation for Formalizing Analogies and Semantic Models of
Procedural Skills, in: R.E, SNOW, P.-A. FEDERICO & W.E. MONTAGUE (eds), Aptitude, Learning and
Instruction, Vol. I, Cognitive Process Analyses of Leamning and Problem Solving, Hillsdale, N.J.: Lawrence Erlbaum
Ass., 1980, 95 - 137

WALOSZEK, G., WEBER, G. & WENDER, K.F., Entwicklung eines intelligenten LISP-Tutors, Institut fiir Psychologie,
1986/2, Technische Universitit Braunschweig

WALOSZEK, G., WEBER, G. & WENDER, K.F,, Probleme der Wissensrepriisentation in einem intelligenten LISP-Tutor,
in: HEYER & KREMS (eds), Wissensarten und ihre Darstellung, Informatik Fachberichte, Heidelberg: Springer (in

press)

WEBER, R.J. & KOSSLYN, 5.M., Computer Graphics and Mental Imagery, in: 5. CHANG, T. ICHIKAWA & P.A.
LIGOMENIDES (eds}, Visual Languages, New York: Plenum Press, 1986, 305 - 324

WEBER, G., WALOSZEK, G. & WENDER, K.F., The Role of Episodic Memory in an Intelligent Tutoring System,in:
J.A. SELF (ed), Arificial Intelligence and Human Leaming: Intelligent Computer-aided Instruction, London:

Chapman & Hall, 1988

WEINERT, F. {ed), Pidagogische Psychologie, Kéln: Kiepenheuer & Witsch, 1967



377

WENGER, E., Artificial Intelligence and Tutoring Systems: Computational and Cognitive Approaches to the
Communication of Knowledge, Los Altos: Morgan Kaufman Publishers, Inc., 1987

WERTZ, H., Stereotyped Program Debugging: An Aid for Novice Programmers, International Journal of Man-Machine
Studies, 1982, 16, 379-392

WERTZ, H., Inielligence Artificielle: Application 4 I'Analyse de Programmes, Paris: Masson, 1985

WERTZ, H., Automatic Correction and Improvement of Programs, Chichester, West Sussex: Ellis Horwood Ltd, 1987

WEXLER, 1.D., Information Networks in Generative Computer-assisted Instruction, IEEE Transactions on Man-Machine
Systems, 1970, 11, 181-190

WILLIAMS, G., The LISA Computer System, BYTE, 1983, 8(2), 33-50

WILLIAMS, G., The Apple MACINTOSH Computer, BYTE, 1984, 9(2), 30-54

WILLIAMS, G., HyperCard, BYTE, Vel.12, 109 - 117, 1987

WILLIAMS, M., HOLLAN, J. & STEVENS, A., Human Reasoning About a Simple Physical System, in: D.GENTNER &
A.STEVENS (eds), Mental Models, Hillsdale, N.J.: Erlbaum Press, 1983

WOOD, W.T & WOOD, 5.K., Icons in Everyday Life, in: G.SALVENDY, S.L.SAUTER & J.J.HURRELL (eds), Social,
Ergonomic and Stress Aspects of Work with Computers, Amsterdam: Elsevier Science Publ., 1987, 97-104

WOOLF, B.P., Theoretical Frontiers in Building a Machine Tutor, in:G.P.KEARSLEY (ed), Artificial Intelligence &
Instruction, Reading: Mass., 1987, 229-267

YAZDANI, M., Intelligent Tutoring Systems Survey, Anificial Intelligence Review, 1986,1, 43-532

YAZDANI, M., Intelligent Tutoring Systems: An Overview, in: RW, LAWLER & M. YAZDANI (eds), Artificial
Intelligence and Education, Vol. I, 183 - 201, 1987

YOB, G., Hunt the Wumpus, Creative Computing, Sept./Oct., 1975, 51 - 54

YOUNG, R.M. & O'SHEA, T., Errors in Children's Subtraction, Cognitive Science, 1981, 5, 153-177

8. Appendices

8.1 Appendix A: Instructions for reading the book "Analysis of Behavior" (HOLLAND & SKINNER, 1961 ,p.viif.,
p.1£.) with an excerpt of
part L

To the Student

With this book the student should be able to instruct himself in that substantial part of psychology which deals with
the analysis of behavior - in particular the explicit prediction and control of behavior of people. The practical importance of
such a science scarcely needs to be pointed ont, but understanding and effective use of the science require fairly detailed
knowledge. This program is designed to present the basic terms and principles of the science. It is also designed to reveal the
inadequacy of popular explanations of behavior and to prepare the student for rapidly expanding extensions into such diverse
fields as social behavior and psychopharmacology, space flight and child care, education and psychotherapy, This book is
itself one application of the science.

How to Use the Book

The material was designed for use in a teaching machine. The teaching machine presents each item automatically. The
student writes his response on a sirip of paper revealed through a window in the machine. He the operates the machine to
make his written response inaccessible, though visible, and to uncover the correct response for comparison.

Where machines are not available, a programmed textbook such as this may be used. The correct response to each item
appears on the following page, along with the next item in the sequence, Read each item, write your response on a separate
sheet of paper, and then turn the page to see whether your answer is correct. If it is incorrect, mark an "x" beside it. Then read
and answer the next question, and tum the page again to check your answer.
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Writing out the answer is essential. It is also essential to write it before looking at the correct answer, When the
student, though well-intentioned, glances ahead without first putting down an answer of his own, he commits himself to only
a vague and poorly formulated guess. This is not effective and in the long run makes the total task more difficolt.

It is important to do each item in its proper tum. The sequence has been carefully designed, and occasional apparent
repetitions or redundancies are there for good reason. Do not skip. If you have undue difficolty with a set, repeat it before
going on 1o the text. A good rule is to repeat any set in which you answer more than 10 per cent of the items incorrectly.
Avoid careless answers. If you begin to make mistakes because you are tired or not looking at the material carefully, take a
break. If you are not able to work on the material for a period of several days, it may be advisable to review the last set
completed.

The review sets will help you to find your weaknesses. When you miss an item in a review set, jot down the set
number given in the answer space and review that set after you have completed the review set,



379

2 abed | abed
6v-1 ev-1 8b-1 Lb-1
‘asuodsal ay) jo uoneueldxa sienbape ue s| P S X
Bl 9SNEDRY 'IBASMOL ‘IOIABUSQ Xeyel Io] sy (ule woy om eyl "esucds ucwﬂm_ (2)
SB0p WOPIES BH .'|I# 88, 1O .PUILL, JO UORESS ECTIED] -al B jo 85ne3, 8yl sl SNINWAS B jo  ucheuesaly apnyubew (1)
-do eul se Jowmeyeq sulejdxe Ajusnbey; uewde| ay)
Le-L ov-1 ov-1 6E-1
T pue (2} Joas . (-gns ‘ployselll ayl 51 SniNWNS eyl J| fousre|
-uo usemiaq — (L) ayi s xeyal & jo Aousie| ey uey; ssai} UONBAIES 1OI8 JOU ||IM 82In[ LoWe| Jo uciNjos
mojeq
EE-} ZE- L ZE-1 Le-1
R
{Ansusiul) yse); yeem B uey, —  uejealb Jo esuodses B syoie wole
(uje asudwoo sninwis Bumicile sl pue esucdse. y spnyubew B jo ysey wbug Asea e ‘xayel te|dnd ey u) ’
szl L (e s PE-1 (16618 r2-1 E2-L
sjuana jo esuanbas [esned sy Cpuelb Pwliyoe 1ey6iy) ‘gsuodses eyl jo epnyubew ey ey} ‘{snin plouseiu
8yl Ag siesl jo ucheres sUl sHole BdIn] UG Jelealf -wis) sonl uojuo jo uciequedsuos Byl jelealb By|
L-1 : 81 jo Allsusiul e uo spuadep e gL-l “xe|yel Sk-1
SNy, esuodsel jo epmiuben b yeem E SiDje oy jo T ey sl Mulg, pue ,eke eyl Buwsni, ploysei
ploysea. eyl eaoqe Ajeieq dey B oy Buojs e fousye usBMIBG SesUEld LDIUM PUCDSS € JO LORDRI eyl
suoiede] |njedio) B ‘xejes ucpusl-le|Eled ey U
61 . — | 8-t . L1
) mmcon_m..m: e 8k ‘asucdsel B snInwns {oauy
~._ ey, ing ‘esuodses e ,sesneo, Jo .mEm_:E_E. siolfe V¥ -uonelole ps|eo sssooid e Ul snnuwys Buy ay) uo dey)
«'siefbu, snnups e jeyl Aes Jou op em ‘spiom o Dlle uUe seajoAu|] xeyes e ‘Gupeads Ajeouyse] snnWnsS

Iejndod ) Bujueslu jo SBOUENU PBIUEMUN PICAR Of

-

nof 15e] o} Jewlley leqqnl
e Uim (uopual Je|laled) sesuy inoA sdey Jopop v

Q._ Baq pue ebed xeu o} wWin]  seNUIW £2 lawl pajews]
soxapjey @dung
olnelyag xelay | IHVd

I 189S

HOLLAND & SKINNER, The Analysis of Behavior, New York:McGraw Hill, 1961 | pages 1+ 2



(L861) ,43dSIT T 241, SNASIATIAA Pue SNVWAHIYA moy jdmoxy :g xipuaddy  z°§

380

T Fdey) ¥ £ sdaf,
“sasatpjuared Aq
P3S0|3UA SWIOJE JO UOTIIA[03 B BT | 96NEIAG (40 Aayany wione)
‘B9, A180] ® S BIT TR Shdy U
‘sasayaed Aq pasopma A £381] ® 81 B1Y} Y01} B0y 91 5]
1dxa-g 0 HORH|0d B Sf 9 ) (1e} ({os Buiop) (no4)) (ase (moy)})
‘s 81 ¥ 6] 1Y) 181 a0y 3 6] ‘sesajuared
Ag PaIs0[IUR WOTE WE §T (Wole) 8NBIAQ {woge)
‘B8R £398} © 81 BIYY B3 anay 3 B]
48y are yeqm poe
gy pue ‘os ‘Guiop ‘nok ‘aie ‘moy {183 05 Buwop nok ase moy)
s 381 a1 Ul e pUOlssAIdxDg {wer MOH ‘gesyuaTed

‘sasatared £q pesopua
F01E5aIdXR-G J0 UOTYIA[|03 ¥ 51 7] IEMEIRG

‘sag,

{4y 05 Fuiop nok ase moy)
4IET[ ® BT BIN3 JRAY I0a) 9 B

‘BROISEXS-G 20w 181 [[B IFNeIVq
‘sax

(z (Ax))
{uotesaIdxa-g 1 8L 13 J¥G) SN } 9

“I81] ® 51 9 25NE29Q
Sy

(z A x}
juoissaadia-g o el Sl TRY] A0) 3 6]

“sunissaudxa-g are swWoTe [[e senedsang
‘sag,

ZAX
imotesaldXa-g e el sUQ Jeq) SN1) 3 8]

sasanared Aq pesolous
HOU 3% suoissasdsa-5 oMy A1

..
‘s,

{10 (Aaopiny wore))
L1978t SIy Jey) a0y o o

‘WOE T 5] AU0
PU0DaS 3} pue ‘smoje om) Sumreinos ey
® 81 auo 511 [, “sasaqyuared g pasopua
10U suotedasdea-g omy L|ENI2% 81 EIY) JIUIE
‘oN

0 (KM wole)
L7817 ® 8l B1Y) Jwy aney 1 os]

uln WAL 20 ), 1) © weyy Jagi0 Jarereyd

ewads 10 ‘9Z1p “Je13a[ ® Yy JummBag

BI210BIRYD J0 SUTIIS B S gIqes 28NRIAQ
‘sap

$oges
JWoe e 51 1q3 J8Y) ans 1 ]

EBIp 10 1199] € s S
-3¢ JajreIeyd suo jo uiris € €1 n asnelaq
‘way

n
Lm0 OB 51 61 JRq1 3001 U 6]

“381p 7 s durmodaq
s13)3erey? jo Jaus v s1 shaynig 2ams
"sax

sARInIE
JWoe UE Bl §1Y) jeq) a0t ) sf

NBp ® gy Buru
-mifieq S191IRTRYD 0 BULNS B 51 ZEp] S0UIS
‘sag

60
JWOTe UE §] §[7) jE) a01} 3t §]

"13139] ' s Amuatdaq
sixerel jo Fous v 1 Aowan) asnedaq
‘sax

Aaspany

JWOTE e ST 9IY ) aNA 3] 9]

"2 13133 33 q3tm FunmBaq
£131291813 Jo JULIE ¥ §1 WOTR ISNEIIG
.Wﬂ»ﬁ

wale
Jwore e S Sty JRMY AN 3 5]




381

A dialog with ANDERSON's LISP tutor

.

Appendix C
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8. (defun fact (n}
fcond ((zeropn) 1)
{t (times n (fact (subl n)) } )}
«.. YOU ARE DONE. TYPE NEXT TO GO ON AFTER ...
... TESTING THE FUNCTIONS YOU HAVE DEFINED ...
THE LISP WINDOW
= = {trace fact)
(fact)
=> (fact 3)
1 {Enter) fact (3}
2 {Enter) fact (2)
3 ¢Enter) fact (1}
4 {Enter} fact (0)
4 (EXIT fact 1
3 YEXIT) fact |
2 ¢EXIT) fact 2
1 ¢EXIT) fact 6
6

Figwre 9,1 continued

(ANDERSON & REISER, 1985; ANDERSON & SKWARECKI, 1986; ANDERSON, 1987)

8.4 Appendix D: A verbal description of the operational semantics of the recursive "calculation sheet” machine,
an example of a diagrammatic form program and the corresponding trace
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8.4.1 A verbal instruction
2.3.3 Die (rekursive) Formularmaschine

Der Gang der Berechnung einer Rechenvorschrift ist bis auf Kollateralitit
durch ein zugehdriges Formular festgelegt. Kommt im Formular selbst wie-
der eine Rechenvorschrift als Operation vor*, so ist ein Formular dieser Re-
chenvorschrift anzulegen (,Aufruf’) und deren Ergebnis schlieBlich riickzu-
dbertragen. Dies gilt auch Ffilr eine rekursiv definierte Rechenvorschrift - mit
der Besonderheit, daB im Lauf der Berechnung entsprechend den rekursiven
Aufrufen weitere Exemplare des Formulars eben dieser Rechenvorschrift be-
nétigt werden.

Zu jedem Aufruf werden in ein neues Exemplar des Formulars zunéchst
linksseitig die jeweiligen Argumentwerte eingetragen (‘call by value’). Man
nennt jedes solche Exemplar eine Inkarnation der Rechenvorschrift; um die
Ubersicht zu behalten, kann man die Inkarnationen und die entsprechenden
Aufrufe im Verlauf der Berechnung durchnumereren.

Fiir den rekursiven Fall ist es nun besonders bedeutsam, daB die Fallun-
terscheidung eine arbeitssparende Auswahl trifft: nachdem die Parameterbe-
zeichnungen durch die linksseitig festgestellten Argumentwerte ersetzt sind,
werden daher auf dem Urformular und allen folgenden Inkarnationen mog-
lichst zuerst die Bedingungen ausgewertet und sodann die unzuliissigen
Zweige gekappt. Die Rekursion endet mit Inkarnationen, in denen kein
Zweig mehr verbleibt, der einen rekursiven Aufruf enthilt. Die ganze Berech-
nung terminiert (fiir einen bestimmten Parametersatz), wenn sie nur endlich
viele Inkarnationen bendtigt.

Die Titigkeit eines Menschen, der auf diese Weise mit Formularen arbei-
tet, kann in einsichtiger Weise auch mechanisiert werden. Man gelangt so
zum Begriff einer rekursiven (Gedanken-)Maschine, der Formularmaschine,
in der die volle Freiheit der Berechnung noch erhalten ist. Man beachte, daB
ein neues Exemplar eines Formulars auch dann angelegt wird, wenn die glei-
chen Argumente schon einmal aufgetreten sind: die Formularmaschine
macht (auf der hier geschilderten Stufe) von einer moglichen Mehrfachver-
wendung eines Ergebnisses keinen Gebrauch.

Das oben erwihnte Kappen von Zweigen ist insbesondere dann ohne wei-
teres moglich, wenn in den Bedingungen keine rekursiven Aufrufe vorkom-
men. Noch iibersichtlicher ist der Fall der linearen Rekursion, bei der auBer-
dem in den einzelnen Zweigen der Fallunterscheidung hochstens ein rekursi-
ver Aufruf vorkommt; dann wird nimlich in jeder Inkarmation héchstens
eine neve Inkarnation angestoBen. Fast alle bisher behandelten Beispiele
fallen iibrigens in diese Klasse.

Fiir fac von 2.3.2 arbeitet eine Formularmaschine wie in Abb. 59 angege-
ben. Typisch fiir die Rekursion ist das ,Nachklappern' der Berechnung: Erst
wenn die Rekursion mit der Inkarnation fac'*’ geendet hat, werden die zu-
riickgestellten Berechnungen in fac®, fac'"! und fac'® durchfiithrbar und auch
durchgefiihn*®; das Urformular fac'™ liefert schlieBlich das Endergebnis.
-Das Nachklappern kann in besonders gelagerten Fillen von Aufrufen zu ei-
nem bloBen Riickiibertragen der Ergebnisse der einzelnen Inkarnationen de-
generieren, wie Abb. 60 fiir das Beispiel geds(15,9), vgl. 2.3.2 zeigt. Ein sol-
cher Aufruf heiBt schlicht. Wenn in linearer Rekursion ausschlieBlich
schlichte Aufrufe vorliegen, spricht man von repetitiver Rekursion.

Bei linear rekursiven Rechenvorschriften ist - abgesehen von der sonsti-
gen Kollateralitat des Formulars - die Reihenfolge, in der die benétigten In-
karnationen angestofien werden, eindeutig bestimmt. Dies ist nicht notwen-
dig so im allgemeinen Fall: wenn in einem Zweig mehrere Aufrufe vorkom-
men, so erlaubt die Kollateralitdt unter Umstinden verschiedene Reihenfol-
gen und sogar Parallelarbeit.

“ Fiir primitive, d. h. den zugrundeliegenden Rechenstrukturen entstammende Operatio-
nen ist kein Formular erforderlich.

The verbal instruction stems from the pages 110-113 of BAUER & GOOS (1982).
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8.4.2 A "calculation sheet"” program

Abb. 54. Formular von fac

This program is shown on page 104 of BAUER & GOOS (1982).
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$.4.2 A trace in computing the factorial(3)

it
N

%E” .' %mx
g i

-3

Abb,

$

Arbeitsweise der Formularmaschine am Beispiel fac(3)

This trace can be found on page 112 of BAUER & GOOS (1982).
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