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Statistical analysis of single-case experimental designs:

Conditional equivalence of the general-linear-model approach of GLASS, WILLSON &
GOTTMAN with the intervention model of Box & TiAO

C. Mdbus, G. Goricke and P. A. Kréh

Summary

In single case diagnostics the researcher has often to evaluate the
influence of his intervention. If the data are at the level of the
interval-scales the impact assessment can be pursued by the
GLASS, WILLSON & GOTTMAN (1975) approach, which can be
regarded as a mixture of the general linear model and time series
modelling of the error component, or by the intervention model
of Box & Tido (1975), which is a descendant of Box &
JENKINS' transfer model (1970).

In clinical research only the former method is used for impact
assessment. The latter model Is up to now not widely known.
Even in statistical literature there is no unified treatment’ of both
approaches. We want to show that they are equivalent under
certain conditions. But in spite of this, researchers are advised to
abandon the GLASS, WILLSON & GOTTMAN method in favor of
the intervention model because of its greater elegance and
practicability. This means that the danger of misspecifying the
intervention effects is far more negligible in the intervention
model than in the GLASS, WILLSON & GOTTMAN method.

Zusammenfassung

In der Einzelfalldiagnostik sollen oft Interventionseffekte evalu-
iert werden. Sind die Daten intervallskaliert, kann das nach dem
Ansatz von Grass, WiLLSON & GOTTMANN (1975) erfolgen.
Er beinhaltet die Modellierung des Effektes nach dem allgemei-
nen linearen Modell und die des Fehlers nach dem ARIMA-
Modell von Box & JENKINS. Eine andere Moglichkeit der
Interventionsevaluation bietet das Interventionsmodell von Box
& Tiao (1975), das sich aus dem Transfermodell von Box &
JENKINS (1970} herleitet.

In der klinischen Forschung wird meist nur die erste Methode
verwendet. Das zweite Modell ist bis jeizt nicht sehr bekannt.
Sogar in der statistischen Literatur gibt es keine einheitliche
Darstellung® beider Ansitze. Wir wollen zeigen, daf sie unter

' JENKINS (1979) does not mention the GLM approach. Only
KEESER (1979, p. 268) gives a short informal hint concerning possible
parallelism in both approaches. Even the new book of GOTTMAN
(1981, p. 365ff) treats both approaches separately without any refe-
rence to their partial identity.

¥ JENKINS (1979) erwihnt nicht den Ansatz von GLASS, WILLSON &
GoTTMAN. Nur KEESER (1979, S. 268) gibt einen kurzen informellen
Hinweis auf mégliche Parallelen zwischen den beiden Modellen. Sogar
das neue Buch von Gorrman (1981, S. 365 ff.) behandelt beide
Ansitze separat, ohne einen Hinweis auf ihre particlle Identitat zu
geben.
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bestimmiten Bedingungen dquivalent sind. Dennoch sollte in
Untersuchungen das Interventionsmodell wegen seiner grofle-
ren Eleganz und Praktikabilitit vorgezogen werden. Auflerdem
ist im Interventionsmodell die Gefahr von Fehlspezifikationen
des Interventionseffektes kleiner als im Ansatz von GLASS,
WILLSON & GOTTMANN,

1. The general linear model and many-case experimental
designs

The analysis of cross-sectional data arising from N>1-experi-
ments with the general linear model is well known (WoT-
TAWA, 1974; MOOSBRUGGER, 1978; TiMMm, 1975; BOCK,
1975). The structure of the model is in the univariate case

(1.1) N¥1 = nXmBr + NE
where: N = number of subjects
M = number of variables
n¥1 = N x 1 vector of the dependent variable

nXm = N x M matrix of M predictors
(= design matrix)
mP1 = M x 1 vector of parameters
nEr = N x 1 vector of error variables
To obtain the best linear unbiased (blue) estimators of B it is
usual to formulate a »weak« set of assumptions (1.2a-1.2¢):

(123) Yi = _;E = £;
where the g (i=1,...,N) are independent random variables
with

(1.2b) E(g) =0 or E(g) =0

and variance
(1.2¢) var(g) = o or E(eg) =021

Two additional assumptions are often not stated explicitly,
though they will be important in this context:

(1.3a) X must not contain measurement errors (GOLD-
BERGER, 1973). Especially X must not contain
estimators of parameters.

and
(1.3b) X has to be known apriori and must not contain

unknown parameters.

As an example we want to write down the familiar t-test
with the two hypotheses Hy: pa = pp and Hy: py = pg in terms
of (1.1). The full model representing the alternative H, hypo-
thesis can be written
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1 Y 1 0f]Lg |- ElE

2 Y2 1 0 Pe EpoF

3 Y]j 1 0 E3F
group A : ; .

Na Ym,\ 1 0 EINLF
(1.4a) = e B R e + —---

1 Y2] 1 1 €nF

2 Yzz 1 1 €10

3 Y 1 1 E23F
group B : .

Np Yon, 1 1 EINgF J
or ) - - - -
(1.4b) ¥y = Xebr + g5

with: L = levelparameter

fr = stepparameter

Xr = designmatrix

Pr = vector of parameters in full model

The erdinary least squares (OLS) estimator is
(1.5) Br = (X X 'Xi y

and the estimate of the residual vector

(1.6) B =er=y— XePr

Under Hy we expect the equality of population means:
ua=pg. The equivalent hypothesis for our model (1.4) is:

¢ = 0. To check the hypothesis, we insert B¢ = 0 in (1.4) and
formulate the reduced model

or
(1.7b) y = Xgfr * &r

The OLS-estimator is

(1.8) Br = (X Xg) Xy
and the estimate of the residual vector
(1.9) Er ==Y~ }_(RER
Now we can test H;, with the F-ratio

_ lerer — erer)/(Pr — Pr)

(110} Fanar = == zeVN — p)
where: N = number of subjects
pr = number of linear independent
columns in Xg (here: 2)
pr = number of linear independent
columns in Xg (here: 1)
df; = pp — pr
df;, =N —pr
If we take the square root of (1.10) we get the t-ratio with
df = N — pg.

2. The general linear model and single-case experimental
designs

In the single-case experimental design, which is not a cross-
sectional but a longitudinal design, one subject is observed
under various experimental conditions (CHASSAN, 1972). The
impact of the experimental conditions should be assessed by

1 Yu 1 [LR] EnR statistical methods (BARLOW & HERSEN, 1973; HERSON &
2 Y 1 EnR BARLOW, 1976; KAzDIN, 1976; FICHTER, 1979; TYLER &
3 Yi 1 E13R BROWN, 1968).
group A, . : One of the most familiar designs is the A;B,A,B,-design.
i‘I Y 1 ' The observation time is partitioned into four intervals. Two
(1.72) S Mt I Nl + o intervals (A;,A;) are without experimental intervention. A, is
) 1 Y, 1 . sometimes called »base line«. B, represents the first interven-
5 Y, 1 E;ﬂ{ tion phase. An §xampl_e for an even _more complicated
3 Y; 1 N A1B1'C]B2C2-expcr1mem is demonstrated in Elgure 1 .
group A R Wlthf_)ut loss of generality we want to restrict our attention
: ' : : to the simple AB-design. The impact of the intervention can
Np Yo, 1 J E2N;R be analyzed according the general linear model along
L L B J (1.1)—(1.9) if the statistical assumptions (1.2a)-(1.3b) are met
Base Line Reinforcement & Feedback Feedback
; i : ;
L4 A Iwm'shl — | I - 4,000
il | .r
Intake o-=--g I |
| i !
g 43 ! i ! F 3000 £
2 | | £
A 5 A ! is
Fig. 1. Data from an experiment =4 { % I =33
examining the effect of feedback on the =42 A 4 !f “of o J.J‘*n“i 2,000 &
eating behaviour of a patient with anor- g : :
exia nervosa (Patient 4). (Fig. 3, p. 283, l |
from: AGras, W. S., BarLow, D. H., I I
CuariN, H. N., Arer, G, G., and LEL- 41 | ] - 1,000
TENBERG, H. Behaviour modification of l{ [ i
anorexia nervosa. Archives of General 0 10 20
Psychiatry, 1974, 30, 279-286. Repro-
duced by permission.)
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by the data. In that case the full model is (1.4) and the reduced
model is {1.7). N, and Ng are now the number of time points,
where measurements are taken in phase A and B so that
N4 +Ng=T. Whereas in a cross-sectional design it is assumed
that the ¢ and Y; are independent, in a time-series experiment
it is possible to test this assumption. We have to prove that the
time-series of estimated residuals & = e, is sampled from a
time-discrete white-neise process a,. For »diagnostic checks
applied to residuals« we refer to Box & JENKINS (1976,
p. 287-299).

If the residuals g are dependent and not a white-noise
process, then

(2.1) Eeg)=0 -Q+d¢ 1

and the estimators are no longer blue. But more important for
impact assessment is the fact, that the F-value (1.10) is »too
large« or »too small«, depending on the correlation structure
of the e-process (HiBBS, 1974). Nonsignificant effects could
appear to be significant and vice versal

In the case of (2.1) it is at least in principle possible to
estimate the parametervector B with the generalized least
squares (GLS)-method (AITKEN, 1935). The linear model
(1.1), (1.4) and (1.7) must be transformed, so that the new
residuals £f will be independent and will follow a white-noise
process. We have to look for a T X T transformation matrix
A, with

(2.2a) A-Q-A=1
(2.2b) Ay=AXB+Ace

y* = X*p +¢'

with: y* = Ay, X*"=AX, eg"=A¢
and
2.3) E(e*e*) = E(Aeg’A’) = A-E(e£)A’
=Ad:QA = FAQA =0l

Because of the positive-definiteness of &, A is a triangular
matrix (HIBBS, 1974; REVENSTORFF & KEESER, 1979). The

GLS-estimator of f is

24 B = (XTX*)'X*y*

= XAAX)XAAY = (XQIX)XQYY
The GLS-model is equivalent to transformation (2.2) and
successive OLS. But usually the autocovariance matrix Q of
the residuals is unknown and has to be estimated. The estima-
tion is impossible, if all parameters in Q are free and if the
time-series is finite. So we have to assume some simplifying
structure in £, so that the number of unknown parameters
decreases sharply. It is the merit of GLASS, WILLSON &
GOTTMAN (1975) who provided us with a wide variety of new
design matrices X* for various g-processes.

3. The approach of GLAsS, WILLSON & GOTTMAN

On the basis of an early article of Box & T1a0 (1965), GLASS,
WILLSON & GOoTTMAN (1975) expanded the GLS-approach
covering a wide variety of intervention designs and autocorre-
lation structures of Y, and &,.

3.1 If e.g. the raw data follow a moving-average-process of
order 1 (= ARIMA (0,0,1) in the BOX & JENKINS termino-
logy), we expect the data for the preintervention phase A to be
construed in accordance with the model
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Yl =L - 9131_1 + a = f(L,Bl,at_l,aL)
a ~ N(0,0*])

and for the intervention-phase B along the model
(3.1b) Yy = (L +B) = &aq + a = f(L.B.81.a,4, a)
with -1 < @&, < +1

(3.1a)
with

which can be combined with the linear model (full model):

t1 [ya | [1ol[w] [oa] [

2 2 Y12 1 0 BF al/ag 1
phase A 3 3 Yis 1 0 4" as
(e.g.: :
baseline)

TA TA YITA 1 0 3
(3.2a) ---- - | = ---- + [ -==-—-

o1 Yo 11

.2 Yo 11
phase B . 3 Y 11
(e.g.:
inter-
vention) T Ty | Yar, 11 ar; at

N
E
or _
(3.2b) y =XpB+e
with: g, =—tha + a, = (1 - 6;B)a,
where B is the backshift operator
Ba, =a.; andin general B¥a, = a

and:
(3.3) E(ee) = orQ *ol']

The dependence of the residuals (3.3) can be seen very quickly

in (3.2a). & and ¢, share a common term, which is a,_;.
Now we want to determine the matrices o2-Q, A and

X*. The variance of the correlated residuals is

(3.4) var(e) = var(-9ja_;) + var(a) = (1 + 090

and the covariance of lag k=1

(3.5) cov(e, k1) = cov(-Bja.+a;, Hao+a )

= 1Va

so the autocorrelation of both time series Y, and &, with their
lagged counterparts Y., and g, is

-8

1+67
(3.6) Ok = :
0 k>1

The autocovariance matrix of the residuals can be written as
the symmetric matrix

1 1 c- <]
"81
2 1467 !
310 —2'91 1 g, (1+6})
RRE :
(3.7) E(eg)= . g a e .'
: g
T I 7 S 0 e Y
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(3.7) shows that only in the case of 8, = 0, the residuals are
independent and the familiar t-test is justified to test the
intervention hypothesis Hy: Bg = 0.

The transformation matrix A is (REVENSTORFF & KEESER,
1979):

1 |1
2 |6 1
3 T 6 1
(38 A=, :
T |6 e o 1
1 2 3 T

For the transformed designmatrix X* = A X we get:

(.9 X*=
1 1 [ 0 ]
2 2 1+6; 0
3 3 1+6,+6; 0
Ta Ta 1+6,+6+. . 4670 g
1 140, +6+, . .+6» 1
2 1+9,+82+. . . +6i™D 149,
T Tg [ 1+6,+8+. . . +6™"  1+0,+60+. . .+6{™D)

and as the transformed vector of the dependent variable
(= timeseries Y,):

(3.10a)
T Y
Yz Yp+6, Yy
Y| = [ Yia+0, Yz +01 Yy,
Y% Y+, Y+ . .. oo +9—{_1Y11

(3.10b) y'=Ay

The transformed residual factor £*
form

(3.11) gf=Ag=a
As a result we get the transformed linear model (2.2) with
independent errors
(312)  y=XP+e=XP+a
with a ~ N(0,aI)

If we estimate the full and reduced models, we can test the
intervention hypothesis with the familiar F-ratio (1.10).
Higher order moving average processes (ARIMA(0,0,q)-
models) can be transformed in a similar fashion.

=AE€ takes the simple

3.2 Now the general transformation method will be demon-
strated for the general nonstationary ARIMA(p,d,q)-model.
In literature three alternative formulations of the same
ARIMA-process (version I, IT, TIT) are used.

3.2.1 Three formulations for the general ARIMA(p.d,q)-
model: We postulate that the preintervention data are con-
strued in accordance with the ARIMA(p,d,q)-model (HiBBS,
1977, p. 140; MOBUS & NAGL 1983)

(3.13a)  [Qy(B)(1-B)*Y, = 8,+0,(B)a,

Version |
_ 8, +0,B)a,_ 6.B) 0,
G.130) Y= B BGB) ~ BEIB™ " OB (BN

where: a) @, (B) is the autoregressive operator:
Oy (B) = (1= OB — ... — OB
b) 8, (B) is the moving average operator:
8 B)=(1-6B-...-96B
c) (1—B)d is the difference operator:
e.g.: (I-BYY, = (1 - 2B + BYY,
=Y, —2¥ 1 + Y
which is exactly taking differences of differ-
ences
e.g.: (I-BYY, = VY, = (VY, — VY.
= (Y: - Yl—l) — (Y1 — Yo))
d) 8, is an unknown constant
¢) and the inverse of the differenceoperator is
e.g. for (1-B) defined as:
(—1-_1-]5= (1-B)'=(1+B+B*+...) = 5 B*
as can be shown by multiplication:
(1+B+B*+.)(1-B)=1
f) and the inverse of e.g. ®; (B) is (1 — O;B)™

=(1+®B+ B+ .= é;n LB

as can be shown too:

1+OB+PB+.)(1-0OB) =1

Coefficients of a general O;'(B) an (1-B)™ can be obtained
by equating coefficients.

Various authors use a second model formulation. If we put
the differencing operator (1-B)® on the left side of the equality
sign of (3.13b), we can express the nonstationary model in
differences w, = (1-B)?Y, (JENKINS, 1977, p. 98):

_ 8(B) 0,
(3.14a) (1-B)’Y, = a+
Versiim II gpggg ®p(B)
3. = .
( l4b) w 6:@ a4+ Py

B, _ mean of the d-th

[6) p(B) " differences

A third representation is preferred by GrLass, WILLSON &
GOTTMAN (1975). They choose

where: p, = E(w,) =

M _ 8,

~ B ~ O (B)(I-B)
and put L on the left side of (3.13b), so that we may write

8,(B)
(3.152) = S ET
Version 111 Op(B) (1-B)
(3.15b) . |Op(B)(1-B)X(Y, — L) = 6,(B)a,

(3.15) is an infinite polynominal in B for d>0 and/or p>0.
This means, that the deviation (Y, — L) can be expressed as an
infinite moving average process. This is called the »random
shock« form (Box & JENKINS, 1976, p. 95 ff).
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- 9(B) -
Y. - L= W(qua‘ a = Y(B)a,

where: Y(B) = v, + ;B + y,B* +...
with ¢, = 1 ’

(3.16a)

or
(3.16b) Yoo Tk ki::l Vasp fear=Til ki::ﬂ Vi
To get the unknown y-weights we multiply (3.16a) on both
sides with (1-B)*®,(B).

(3.17) Dp(BY1-B)! (Y, — L) = Op(B)(1-B)(B)a,
Following (3.15b), the left side of (3.17) is 8,(B)a;. So we get
(3.18) 8,(B)a; = Op(B)(1-B)*y(B)a, = @(B)p(B)a,
The equation of operators is

(3.19a) 8,(B) = g(B)y(B)

where: q(B) is the general autoregressive operator
(Box & JENKINS, 1976, p. 95):

P(B) = Op(B)(1-B)* = g, — 9B — @B’ —
AT (pp+dBP+d

with ¢, = 1
and can be written explicitly as:

(3.19b) (1-6,B-...-6,BY)
= (1-9,B—..~p BP (1 4y, B+y,B’+ .

Therefore, the 1-weights can be obtained by equating coeffi-
cients in B on the left side of (3.19) to the coefficients in B of
the right side.

Theoretically there are countably infinite coefficients .
GLass et al. (1975, p. 152) argue,that the values of unob-
served time series Yy, a, (k = 0) should be set to their
expected value, so that only ;,..., Y, ; have to be derived (1,
is set to 1).

(3.20)

The derivation of the -weights is shown explicitly in appendix
A, because the treatment of GLASS et al. (1975, p. 153-154) is
confusing.

t=1
Yt =L+ kz{] YWk + a,

3,2.2. Transformation of the yp-weight form of the interven-
tion-model to the general linear model
The linear intervention-model (full model) in y-weight form is

1o ]
[vi oLl o o ... ol[a
Y]2 1 0 B] 4 1 | I 0 dy
phase A Y13 1 0 WYy 1 ... 0 da
YlTA 1 0 .
(3.21a) |----| =|---- +].
Yy 11
Yoo 11
phase B Yo3 11
Yor, 11 Yoo Y2 Yrs e Y 1 I_aTJ
(3.21b) Y=XB + Wa
where e=¥a

Some authors prefer instead of using matrix ¥, the formula-
tion with the operator y(B)
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(3.21c) Y
or

(3.21d) Y, = f(L,B1,....Pes1) + W(B)a

The residuals g are not independent

(3.22) E(eg) *+oll

which is due to the overlap of common terms in .

wnal

Pia; + YPoaz

Py + Yna + Yoy

Paay + Ypa; + Piay + Yy

X B+ y(Ba

(3.23) e

1S:

(3.24) cov(\g E)=08Q =
1 2 3 1 oo
Hw oy Vo2 RETRUS .o
7 3 7
2( wowr Wi+ wi iglwz-ill!yi El'lpz-i%-i i ﬂigllpz-t
) 3 3 3
31 oy i;ﬂ’z—i‘i’;&-i '],;11!1'12-1 e i;"l’s-ﬂpl-i 7]},;“4’3—'1
2 3 - 4 3
41 popz i§11i12-t1|14_i i§11IJ3—i1PH i§1w4—i'lpl-i ﬂi;%a
02a.
2 3 minlk, 1} k
k| ol i§1'¢2-{1|’k-{ iEIWS-ETPk-i iglwk-iwl-i T]i;l"*l’k-i
2 3 1 @ 5
@ | Yo ﬂi;%-i ﬂing—i . T]igllh-i -E}‘Pm
where: n = lim yy
j—»oo

The intervention-model with correlated residuals (3.21) can
be transformed to one with uncorrelated residuals. This can be
done either by multiplying (3.21) by ¥

(3.25) wl= fl(l -y
(3.26a) WY = wrix B+a
(3.26b) Y*=X*B+a

or by using the recursive relationships
(3.27a) Yi=Y, - ;gijzt]-

t=1
(3.27b) Xk = Xk — jgllwixi'ij,k

1=1
(3.27¢) a =& — j;wjan-i

For T=35 time points we get the following matrix ¥, where
Ts=2 and Tz=3:

(328) W5 =

111 0 0 0 0
2 |- 1 0 00
31 vy = 1 00
4 -9+ 299y Y-y -y 10
5 Lwi-3vivnt 2yt —WiH20eys pi-yn Py 1
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The burden of computations is taken by computer programs,
distributed by BOWER, PADIA & GLASS (1974) and GOTTMAN
(1981) and will thus not be demonstrated here.

4. The intervention-model-approach of Box & Tiao

Box & Tiao (1975) developed their intervention model on

the basis of BOX & JENKINS' transfer function model (BOX &

JENKINS, 1970). Their intervention model is given by:~

(4.1)  S(B)YY, = Q(B), + 8(B)g,

where g, is assumed to be an ordinary ARIMA(p,d,q)-model

according (3.13b)

_ 8 0B
(I-B)*Dy(B)  (1-B)'Dy(B)

: 8,
with L = —H—(I—B) ,(8)

(4.2a) &

According (3.16a) we obtain

(4.2b) g = L + y(B)g,

Substituting equation (4.2b) into (4.1), we get the form:
(4.3a) B(B)Y, = Q(B)I, + 3(B}-{L + y(B)a,}

or equivalently

(4.3b) i %‘II +L+yB)
A N

or equivalently

effects noncontrollable
(4.3c) Y,—L = of intervention ; + effects
Y. N,

?/t is that part of time-dependent data, which is controlled by
the experimenter. The intervention variable L, is at apriori
determined time points set to ‘1" (=»on«) or ‘0 (=»off«).
The aim of intervention analysis is the splitting of the time-
series 44 and N, and the estimation of the parameters of the
Y-process. These parameters are effect-parameters which
can be tested.

»The function %4 represents the additional effects of the
intervention over the noise. In particular, when N, is nonsta-
tionary, large changes could occur in the output even with no
intervention. Fitting the model can make it possible to distin-
guish between what can and what cannot be explained by the
noise.« (BoxX & TiAao, 1975, p. 72), HiBBs (1975) calls the
transfer function model

(4.42) Y, = %-L

or equivalently

(4.4b) B(B)#, = Q(B)L,
or equivalently

(4.4c) B3(B) = w(B)B"L,
or equivalently

(4.4d) (1 — 8B — ... — B") % |

= (w, — ;B — ... — 0,B)B,

or equivalently

@de) Y= 0%~ o — 8.

= Welip — lipy — .o — o0

the »general intervention effects model«. The indices reflect
the »memory« of the intervention component. If we have a
nonintervention phase A and an intervention phase B, the
intervention variable I, takes the values

t 1 2 ... T, 1 2 ... Ty

I, 0 0 .. 0 : J S

If there is an abrupt change in level of Y, without time-delay,
we use the intervention model of order zero

(4.5) %4 = w,]; step change without time-delay
(Fig. 2a)

If there is a step change with time delay, we use
(4.6) 24 = 0,1y, step change with time delay b
(Fig. 2b)

In the case of a nonstationary N, the level of Y, shows a
different reaction.

Is the effect_ 44 changing slowly, we use the transferfunction
of order one

(4.7a) =0 Y1 + ool

i ramp change
i with

(4.70) (1 - 8B)Y = wolus time delay b

o5 (Fig. 2¢)

We

(4.7¢c) % = _(-iT@ 0 PS

Is 8 = 0 and b = 0, we get again the step change (Fig. 2d)
and in the case of 8; = 1, we get the model

(4.8) Y, = ﬁ I, nondamped increase (Fig. 2e)

which is not stable,
The modelling of various other intervention effects is shown in
MOBUS & NAGL (1983).
The stability of the intervention model (4.4) is guaranteed, if
the roots By,...,B;....,B, of the characteristic equation
dB)=(1—-8B -8B -..-8B)=0

satisfy the conditions IBJ' > 1 for j =1,...,r.
For the intervention model of order two

(1 - 51B - éng)‘;% b {J.lolt
the roots B; of the polynomial

(.I. = a]B s 63]32) =0

have to be of absolute value IB]| >1

V& + 48,

with B =2V
2

The conditions tB,| > 1 can only be met, if the parameters lie in
these regions:

-1 < & < +1
6 + 6. < +1
& — & < +1

If the Intervention variable I, is held constant I, = 1 for t >
Ta, % will reach the steady state:
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Fig. 2. Various deterministic
Tesponses % to step input .

Fig. 3. Addition of deterministic
responses to one response 44,

s
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(49) ( ) = yw _ ((,00 Wy _ — (JJS)

Box & TiAo (1975) and other authors distinguish between
two forms of the indicator variable I;;

the step input

=
(4.10) L =S, ={ 0 fort =T,

1 fort > TA
and the pulse input

0 fort=+ Ts+1

@l L=E ={ 1 fort=Ta+1

where the pulse input P, can be derived by differencing the
step input §,

(4.12) P, = (1-B)S,

If there are k intervention variables acting simultaneously,
the general intervention-effects-model can be extended simi-
lar to the statistical model of a multifactorial anova-model

@13) Y=L % E;g {E-E(BB))}'I"'

For example it is reasonable to hypothesize two effects on the
deterministic component of perceptual speed of a person in a
drug experiment (Figure 3)

(4.14) _ W= Y+ Yo =1i(1L1) + £2(Iy)  see (5.1c)

I, is a step input: »no drug« vs. »druge

I is a pulse input: {1-B)I;,, which can be
interpreted as the change of experimental
conditions

where:

The observable time series »perceptual speed« is contami-
nated by noncontrollable effects N, so that we get the time
series model according to (4.3c)

Yi_L=%+NI

In practical data analysis it is advised to test a fixed sequence
of intervention models. Hints can be found into CLEARY &
Hay (1980) and MOBUS & NAGL (1983).

5. The comparison of the GLS-approach of GLaAss, WILL-
SON & GOTTMAN with the Intervention-model of Box &
Tiao

As shown in (3.21) the approach of GLass et al. (1975) is
given as a matrix equation by

(512) Y=Xp+W¥a
with: ¥ = lower triangular matrix with y-weights

or in operator form either as
(5.1b) Y =XB +y(B)a
or for a single observation

(5'10) YI = fl(Ljaﬁla“'3ﬁs+1) i Ip(B)at

with: L’ = L only in the case of nontruncated white
noise process a,. If a, is set to E(a,} for t < 0, we have a
truncated y-weight form and L’ # L. In the further
derivation it is not important wether we assume L = L’
or L+ L

Equation (5.1) represents the general form for testing s+1
effects of one or more interventions. The approach of Box &
Tiao (1975) for testing s+1 effects of one intervention is
(4.3)

(B)

: Q2
(52)  Yi-L=%+y(B)a= 5B) L+ w(Ba

If therg are more than one interventions, with more than s+1
effects, we are allowed to extend the model as was done in
(4.13). We want to show the equality of the functions f, and
L + % for fixed parameters &, (i = 1,...,r) of 8(B):’

(5.3a) L+ % =1(LB,....B1)

or in matrix form

(5:3b) 1L+ % = Xoop

Without loss of generality we suppose that we have to test s+1
effects of one intervention-variable I,. The general interven-
tion-effect model 44 can be written in the form (4.4d) or

(54) f/t i 61%—1 T e T 6r%—r = Ut—b Il—b—I It—b—s] w
where @' = [, —w; ... —0]

or as

GBS =l . Ln o+, %+ ...+ 8 /-

In analogy to (5.4) we can write
(5.50) %1 = [l Lpo o Jopsa]lo 48, 20+ .. 48, %y

(5.50) %—2 = lt—b—s—2] w + 61%—3
' +ot 8. s

It~b—q r w + 5 :&—r—
-t 6r:;%—lr

In principle we need for the computatlon of % an infinite

Mo Lps ...

= [It—b—r Il—b—r—l gy

number of previous %/’s. But in practice 24 = 0 for t £
Ta+b, because I, = 0 for t = T,.
As an example we’ll compute %4 = h(I,I_j,...) for t =

Ta+b+3 and r = 2,

(5.62) Y1 4043 = [Tz In,sa 1,10 ... 0] @ + 8, %A, 1042
+ 8 b1

(5.60) % h042 = [Iryazlr,n0 0. 0] @ + T2

(5.60) % ios1 = [Ir.n0 0 0..0]w

(5.72) ZA, 1043 = [In,e3lp 2 l7, 400 ... 0] @

+ 0 [Inez2Ir, 10 0..0]w
+8 [, 0 0 0.0]lo
48 [lr0 0 0. 0]w

Collecting terms of w:

IT§+3' IT,\+2I :
+ & ITA+2:+ 8 ITA+1|IT +1 EU s ) w
+ (62 + az)ITA+]l | :
Equation (5.7b) can be written shortly

(5:8) Dhpeois

In general we can express % similar to the example (5.8)

(5.9) U,

(S-Tb) %A+h+3 =

[g'r,\+b+31 BT 4+b+32 Br +b433 « gT,\+b+3,s+l] (1]

Il

[gl.l L R gl_.s+l] w for all t > TA +b
=ga
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The k—th component g,y (k = 1,...,5+1) of the vector g; can
be computed as

I
(5.10)  gix = Lipan +]§16Egt—l,k
where g, = O0fort =T, +b+ k-1

Now we define B, = L, 1 = w, and f; = —wi; (j = 2,...,5+1)
and are able to write down the matrix equation (5.11)

(5.11a) 1L + % = 1Geiib

or explicitly

L+ | [1 o0 0 .0 [ L
: L ] B
L+ %, 1 0 0 0 :
(5.11b) e ] R e PBs+1
L+ %,ﬁhﬂ 1 g‘I‘,\+b+1,10 sl ]
L+ ZA, b2 1 gr,+ve2,18r,+0022--- 0
_L 7 ?/r 1 g, Er2 oo BT+

The elements g, of the matrix G are fixed, because we
assumed that the &'s are known a priori. In this case the
design-matrix X can be set to G and (5.3} holds. Therefore
the approaches of GLASS, WILLSON & GOTTMAN (1975) and
Box & TiAo (1975) are conditionally equivalent. This means
that equivalence can be met only in the case of fixed &
parameters.

When testing intervention hypothesis with the approach of
Box & Tiac (1975) we don’t need any a priori information
about the 8’s. We estimate both the &’s and the w’s. If we try to
evaluate the intervention-effect along GLASS et al., we have to
know the estimates d, to specify the design-matrix X. This is
shown in the following example.

The transfer function model

7 . W, N
Y=138 0

with0<61<landP,={

(5.12)

Ofort=+=Ts+1
lfort=Ta+1

describes an abrupt but temporary intervention effect. It fol-
lows from equation (5.12)

(5.13) Y =5%, + ol
and we get

_ 0 fort=T
(5.14) H-= { 8T . @, for t > Ty

The pattern of effect may be called a »decaying spike«. The
parameter &; is to be interpreted as the momentary rate of
decay. When 8, is large, say 8, = 0.9, the effect persists for a
long period of time (1.0, 0.9, 0.81, ...). If §; = 0.5 the decay is
faster (1.0, 0.5, 0.25, ...). Testing the same hypothesis with the
approach of GLASS et al. (1975) we have to know a priori the
exact value of d; in the design-matrix X:

1 1 0 7
T 1 0
B R | e
1 1
1 8,
1 8
T 1 6;['—1'.-\—1

This example has shown that the statistical hypothesis in the
approach of GLASS, WILLSON & GOTTMAN (1975) has to be
formulated more precisely than in the approach of Box &
Tiao (1975).

6. lllustrative analysis for an ARIMA(0,1,1)-model

The data set to illustrate the testing of intervention effects
stems from a study by Meffert (see HOLTZMANN, 1963). One
single schizophrenic patient’s performance on a perceptual
speed task was observed for 245 days (Fig. 4).

Fig. 4. Perceptual speed of a schizophrenic before, during and after drug administration.

placebo chlorpromazine electroshock placebo
| 11 chlorpromazine v
’ I
140 140
120+ 1120
100 T100
80 T80
Y
60 T60
40 +40
20+ +20
0 ! } } i . l I l t I 0
0 20 40 60 80 100 120 140 160 180 200 220 240
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During the first 60 days (phase I}, the patient daily received a
placebo drug, and during the second 60 days (phase II)
chlorpromazine. From day 120 to day 180 (phase III) chlor-
promazine was continued but with electroshock therapy super-
imposed. The final 65-day period (phase IV) was similar to the
first. The analysis of the autocorrelations and partial correla-
tions of every single phase shows that we can suggest an
ARIMA(0,1,1)-model:

(6.1) (I-B)(Y. - L) = (1 - 6,B)a

The maximum likelihood (ML) estimation of 8; in phase I to
III is approximately (.76. Only for the last 65-day period 6,
was estimated with 0.22,

The last estimation of 6, is significantly different from 6, =
0.76. This is an indication for a change in the model. Therefore
we restrict the analysis to the effects of the first and second
intervention.

The graph of the data shows some instability of level, which is
typical for a nonstationary process. It seems also obvious that
the treatments had markedly different effects upon the client.
The introduction of the tranquilizer led to a downward shift in
level of the series. The second intervention shows two effects,
first a transient upward shift in level over a time period of 11
days and second a dynamic decreasing effect. Now we are
testing the described intervention hypothesis with the model

(6.2)  (I-BY(Y:— L) = @,8{*” + ) (§{*” - s{"V)

0

+ ﬁ-B”-SPM) + (1 — 8;B)a,
Because of (1-B}(Y~L) = (1-B)Y, we need not estimate the
levelparameter L or the constant 8,. The ML estimation of the

parameters are given In: MLE t-statistic

6, 0.764 15.570
@, -21.986 -3.656
(6.3) ol 9.137 2.040
@ -3.071 -3.120
5 0.922 14.931

With the a priori information about & we can estimate the
parameters L, w,, w;, w; of the model (6.2) with the general
linear model approach of GrLass et al. (1975). The design-
matrix X is given by:

L W, W

61 1 1 0 0

120 1 1 0 0

121 1 1 1 0

(6.4) X

131
132
133
134

e e B e RS

+ &

’ ) q
180 1 1 0 Y,

i=o  _

Table (6.5) shows the results of the estimation with a priori

known §; = 0.92:
MLE | t-statistic

i 54.06 8.98
b, -21.83 -3.63
(6.5) oy 9.09 2.00
@ -3.09 3,03

All the parameters are significantly different from zero on the
a = 0.05 level.

Appendix A

The derivation of the y-weights:
The general autoregressive operator @(B) is a polynominal in
B of degree p+d:

(A1) ¢(B) = ¢, — @B — @:B> — ... — @, BPYY
with @, =1

We have to derive the coefficients of this polynominal. Using
the Binominal Expansion Theorem, we are able to express the
difference operator as:

(A2) (1-B)!'= () = (DB + DB’ — (HB® + ...+ (-)YHB?
d
= X (1B
The autoregressive operator can be expanded as:
p :
(A3) <DP(B) =(1-¢B - QB — ... - $,B") =_§U(—<Dj)B‘
with -, = 1 '

We may combine (A2) with (A3), to get the general autore-
gressive operator

& o= (S0 crm) - £ o)

If we collect the coefficients of BX in (A4), we get

Qo= Py =1
and for k = 1,...,p+d
o= 0 + (%)
=0 = (OO - &)
(A5) 3= O3 — D + O + O

= Qs = HD; + O — OO -

Cok
qu = rgo(_l)r-“](?)(_ k—r) k = 0!151p+d
where: (§) = 0 for r>d and -Qy_, = 0 for k-t > p

Now we know the coefficients in 8,(B) and ¢(B). Using (3.19)
we can collect the coefficients of B* on the left and right side of
(3.19) in a similar fashion as we did in (A1) — (AS5). The
coefficients of B* can be arranged to a recursive equation-
system:

9] [1 0o o o o 0] e

—61 = 1 0 0 0 0 4

0 | e 1 0 0 0| | w

(A6) |-O|=|-9 ¢ - 1 0 O | s
- 1 0

8 ~Qy —P3 - g
b | “Pn Pt —Pn2~Phs ~Pna--- 1| | Y
where: -8, = 0 for h>q, Y, =1and 6, =1
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Now the 1-weights can be obtained recursively
Yo =—Hp =1

P =0 + Yoy

Y2 = -0, + Y@ + P2

AT

(A7) Yy = =0 + Y + Pz + Polps
e -
Pp = —eh * iglwh—iqji h= .la'"'t_‘l

with g; = 0 for i > p+d
As an example we want to derive the 1-weights for the
nonstationary ARIMA(1,1,1)-process
(1 = ¢BY(I-B)(Y, — L) = (1 - 6,B)a,

(A8) (1I - (1+®B + OB)(Y, - L) = (1 - 8:B)a,

(o — 9B - @B (Y — L) = (1 — 8;B)
The coefficients of the general autoregressive operator are
P =1
(A92) @ =(1+ Oy
¢ = -0,

The same results could be obtained by (AS5)
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