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3.1 Abstract

An Intelligent Problem Solving Environment (IPSE) is described that supporls novices in
learning to construct models of time-discrete distributed systems with Condition-Event
Petri nets. The system, PETRI-IIELP, is based on a theoretical framework recommending
that a help system should offer help, let the learner use pre-knowledge, and supporl
different problem solving phases. In PETRI-HELP the learner creates Petri nets for given
tasks, tests hypotheses about the solutions (or fragments of them), and receives feedback,
completions, and correction proposals.

In PETRI-HELP, tasks are stated to the learner as sets of temporal logic formulas. On
request, the system analyzes the Petri net fragment created by the learner and informs
the learner about the actual (sub-) set of task formulas fulfilled by the current solution
proposal. In addition, the system represents rules that reflect learners’ successlul steps
towards task solutions. These rules are used for offering completions and correction
proposals. So the system constantly improves itself by learning from its users.

According to our theoretical framework of help system design as well as empirical work
done with PETRI-HELP, the system should also supporl planning, i.e., creating an ab-
stract solution idea and postponing implementation decisions, and the construction of
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tasks, not only solutions for tasks. Some additional work will be described that is aimed
at extending PETREIIELP into these two directions. PETRI-HELP led to the develop-
ment of another system: an IPSE for the design of pneumatic circuits. This system will
be briefly described in the closing section.

3.2 Introduction

Intelligent help systems and knowledge communication systems are expected to supply
the user with information that is sensitive to the actual problem solving situation and-
to the actual knowledge and intentions of the user. Developing this kind of systems
requires a variety of design decisions, like when to supply remedial information, what
to supply (what determines "good” help?), and how to present it. The acceptance of

knowledge communication systems by users critically depends on salisfactory solutions to
these probiems.

In order to support design decisions for the development of an intelligent help system,
a theoretical framework of problem solving and learning is needed. Without such a fra-
mework, design decisions will be largely unmotivated and ad hoc, resulting in a aystem
which tends to be inconsistent, difficult to work with, and not accepted by its users. Qur
ISP-DL Theory (impasse — success ~ problem solving ~ driven learning theory) is such a
theoretical framework. Figures 3.1 and 3.2 give a brief overview of it. The ISP-DL Theory
atlempts to integrate impasse-driven learning [22, 23, 28, 38, 42, 43], success-driven lear-
ning {e.g., {2, 3, 4, 46, 47]), and phases of problem solving [14, 17]. According to the
ISP-DL ‘Theory [26, 27, 24], if the problem solver is faced with a set of possible goals,
he or she will construct a solution for a goal, and the knowledge used in this problem
solving process will be deductively optimized (success-driven learning) so it will be used
more efliciently in future (Figure 3.1).

The problem solving process consists of four phases (Figure 3.2): The problem solver (PS)
deliberales with the result of choosing or crealing a goal to pursue. Then a plan to reach
the goal is synthesized or trausferred from an earlier problem by analoguous reasoning.
Next, the plan is ezeculed, and the obtained result is evaluated. Impasses might result at
several points in this process: The PS might not be able to choose or to create a goal,
or the plan cannot be created, or execution may not be possible, or the obiained result
may not be satisfying. The P'S reacts to an impasse by entering a new problem solving
process, using weak heuristics like looking for help, asking, and cheating. As a result, the
IS may acquire new knowledge inductively (impasse-driven learning) so he may overcome
the impasse and continue with the original problem solving process. But alternatively, the

information obtained may not be helpful but confusing, so the learner might encounter a
secondary impasse [5].

The ISP-DL Theory leads to several design principles for a knowledge comm 57 unication
system (Figure 3.3):

¢ According to the theory, the learner will look for and appreciate help if he or she is
caught in an impasse. Without an impasse there is no need for help. So the system
should not interrupt the learner but offer help only on request.
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Figure 3.1: ISP-DL Theory: Problem solving and deductive knowledge optimization

e The learner should be prevented from trapping into secondary impasses that may
lead away from the original problem solving. So pre-knowledge should be usable at
impasses as much as possible. Tlelp should be adapted fo the knowledge state of
the learner, i.e., help should be user-oriented. This requires either a learner model
or the possibility to test hypotheses about the solution created (see below).

e According to the ISP-DL Theory, help should be provided at different phases of
problem solving because impasses may arise in all phases. So a help system should
support deliberating, planning, executing, and evaluating solution proposals. Help
should be problem phase oriented.

These three requirements are well met by letting the learner test hypotheses about her or
his solutions or solution fragments, and get help and proposals from the system [24]. This
leaves the activity on the learner’s side, the learner is not disturbed by unwanted system
comments, but information is offered to the leamer and may be obtained on request.

Secondly, hypotheses testing means that the system takes account of the user’s ideas
and intentions, that is, of his pre-knowledge, without leading him away onto dilferent
problem solving paths. Thirdly, the hypotheses testing approach takes account of different
problem solving phases (Figure 3.2, this will be discussed below). We call systems designed
according to these criteria Intelligent Problem Solving Environments (IPSEs, [24]).

PETRI-IIELP [25, 30, 39] is an IPSE designed to support novices modelling with Condi-
tion-Event Petri nets. According to the 1SP-DL Theory, modelling with Petri nets is a
problem solving activity consisting of the following sub-activities!

1Each of these phases can again be considered as consisting of the four subphases. For examnple, the
task of developing a specification of a system may consist of the subphases ” deliberating” (deciding what
to specify), "planning” steps to perform in order to create a specification, "executing” this plan, and

46

Goals

16

problem solving

deliberate
Know-

ledge

[ analogize | [_synthesize

incductive

acquisition of
m new k 1 '_=

IR

m Subgoal

solution

D

Figure 3.2: ISP-DL Theory: Problem solving phases and inductive knowledge acquisition
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to develop .speciﬁca.tions of systems or processes to be modelled (® defiberating”)
e to plan a Petri net solulion for a given specification (" plarning”)

¢ to actually construct a Petri net (" ezecuting”)

to evaluale the resulting net, for example whether it meets the specification (" eva-

lualing”).

So the skill of modelling with Petri nets may be decomposed into foﬁr subskills. The first
subskill does not directly refer to the construction of Petri nets but to the development of
specificalions for them. The other three subskills refer directly to Petri net construction.

"evaluatling” Lhe result (for example, finding out whether the specification contains contradictions). So
the concept of different phases of problem solving activities has a recursive structure.
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Figure 3.3: Design principles following from the ISP-DL Theory for intelligent knowledge
communication systems

In PETRI-HELP, the learner can create Condition Event Petri nets for given tasks, test
hypotheses, and ask for help and proposals. In the next section we will describe our
preliminary empirical studies which we did in order to investigate the design principles
for the development of PETRI-HELP. Then we will describe the main components of
PETRI-HELP. After that some empirical work with PETRI-HELP is presented. The
results indicate how PETRI-HELP should be extended. The fifth section describes work
aimed at these extensions: The incorporation of a user model, explanations, the systematic
construction of net solutions, and support of specification devclopment (the first of the
four subskills mentioned above). Finally, the cooperations of the PETRI-HELP project
and its extension leading to a new system in the domain of pneumatic circuits will be

described.

3.3 Empirical Work Supporting the Development of
PETRI-HELP

During the initial phase of the development of PETRI-HELP, several questions were raised
which had to be solved empirically. Our preliminary empirical investigations were aimed
at the following questions:

e What difficulties do especially novices have while constructing Petri nets? Where
do they need assistance?

¢ In order for a system to analyze learners’ Petri net solution proposals, a lask des-
cription or specification is necessary. Temporal logic [21] is a convenient means for
specifying time-discrete systems. Furthermore, specifying modelling tasks as sets
of temporal logic formulas allows to analyze Petri net solution proposals by model
checking (see below in more detail). But before pursuing this approach, we had lo
investigate empirically whether it is feasible for novices at all to work with temporal
logic task specifications, and whether users accept temporal logic task specifications
or reject themn as incomprehensible, for example.
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e What kinds of strategics do subjects pursue in construcling Petri nets?

In these studies we made use of the Petri net editor developed by the MOBY Project
Group [12]. Fourteen subjects worked in single-subject sessions. Bach temporal loglc task
formula was written on a card. Figure 3.4 gives an example.

The subjecis received a short informal descriplion of the temporal logic operators. The
subjjects were asked to put each card at a certain place as soon as they considered the
formula as being fullilled by the current state of their Petri net solution. Some of the
subjects’ inleractions with the system were videotaped, so it was possible to find out the
subjects’ associations of formulas to Petri net fragments.

Progress conditions:
O {(Wro - 0 (Ws A K))

Abbreviations:
Ws: Waiter is sleeping
Wro: Waiter is ready to accept order

OK-—- ¢P) K: Kitchen got order
P: Meal gets prepared
OP- ¢R) R: Meal is ready

Exclusion conditions:

I O- (Ws A Wro)

Figure 3.4: Cards with temporal logic formulas as part of the material used in our preli-
minary empirical studies

As stated carlier, viewed from our ISP-DL Theory the construction of a Peiri net to a given
task can be described as consisting of synthesizing a plan, executing it, and evaluating
the result. Analyses of the video protocols showed that the sirategy pursued by novices
can be summarized by the following steps:

s Clioose a [ormula

Synthesize a Pelri nel fragment that might fulfill the formula

Execute this plan
s [ivaluale the result by net simulation
e I necessary: Change the net

e Repeal the process with another formula
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The following kinds of impasses were observed most frequently:

e In the synthesize phase, subjects encountered the impasse that the realization of a
formula seemed to invalidate another formula already realized earlier, so they had
to reconsider the earlier formula(s). Another common impasse was that they did
not know how to proceed, especially in the initial phase of problem solving. For
example, they did not know how to express a disjunction in a Petri net, and some
of them asked for hints in these situations.

» In the evaluate phase, subjects tended to lose track of the simulation so they were
very uncertain about whether to consider a formula fulfilled or not. A related
impasse was that subjects felt uncertain in deciding when the net was complete,
i.e., the task finished.

None of our subjects had serious problems with reading the formulas, so we did not
consider it necessary 1o develop additional material for explaining the task specifications.

The novices did not seem to follow a special strategy in selecting and realizing the task
formulas. But with more expertise, the subject’s net construction processes tended to
become more systematical. When becoming "intermediates”, the subjects started to fol-
low the design strategy: *First implement the temporal logic implications. Then check
the exclusion conditions.” {i.e., the co-occurrence of two states is excluded, like - (Ws A
Wro), sce Figure 3.4). Within this design strategy, we were able to identify several design
heuristics that the subjects seemed to follow. Each design heuristic links a progress con-
dition to a Petri net fragment. Figure 3.5 shows the nine most frequent design heuristics
identified. {For example, the design heuristic "nerging” says that a progress condition
with the pattern "O(z; A -+ A £, = Oy)” can be implemented in PETRI-HELP as a
set of places labeled zi,- -,z leading to a transition leading to a state y.) The design
heuristics fully explained 40 of 54 solutions created hy our subjects.

Another observation was that with the use of design heuristics, subjecta tended to encoun-
ter less impasses in the evaluation phase. They considered their solulion as complete as
soon as a net fragment had been constructed for each progress condition. Consequently,
they tended to make less use of the net simulation. But the design heuristics worked only
as long as after applying them the exclusion conditions did not require the consideralion
of any additional constraints. One of the tasks requiring special attention to the evalua-
tion conditions was "traffic lights”: In addition to applying design heuristics, the subjects
had to make sure that one traffic light is always red. With the task "traffic lights”, the
subjects had serious problems, and based on the formulas there was no way to assist them.
They did a lot of trial and error in this situation, making much use of the net simulalion
facility.

Onc of our subjects was an expert: a computer scientist who had much experience with
Petri nets. Our main observations were:

¢ The expert also followed the design strategy: "First implement the temporal logic
implications. Then check the exclusion conditions.”
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® As to be expecled from ISP-DL Theory, the expert aggregated certain steps. For
example, novices and intermediates checked the exclusion conditions one by one,

bt the expert took all cards containing exclusion conditions at once and checked
them "in one glance”.

o The expert did not work according to the design heuristics (Figure 3.5) as clearly as
the intermediates. For example, he tried to keep the nets as simple as possible. In
some cases he skipped progress conditions containing the " operator, because he

considered Lhese formulas to be {fulfilled as a by-product of the realization of other
formulas,

So the main results of these preliminary studies with respect to the design of PETRI-
HELP were:

¢ In some situations, novices have problems in expressing logical operators, especially
disjunction, as Petri net fragmentis. So there should be inforination available about

how to do this, i.e., hints about the next few editing steps should help to overcome
this impasse.

e Novices have problems in deciding when task formulas are fulfilled, and when the
task is finished. So the subjects should he provided with information concerning

the evaluation of solution proposals, like information about fulfilled and unfulfilled
formulas.

These empirical results are in accordance with our design principles for PETRI-HELP:
The first problem novices have could be addressed by providing completion or correction
proposals. This takes account of the learner’s solution proposal as much as possible, so
the learner has Lo make only minimal changes to his proposal. The second problem could
be addressed by tesling hypotheses about fullilled and unfulfilled formulas, In this way,
the learner may make use of her [ his pre-knowledge because the learner specifies what
formulas lic or she considers fulfilled by the proposal.

3.4 The Main Components of PETRI-HELP

PETRI-HELP consists of the following components:

e A sequence of modelling tasks. Each task requires the creation of a Petri net model
for a time-discrete distribuled system. Each task is specified as a set of temporal
logic formulas so Petri net solution proposals can be analyzed by model checking.

o A net editor for constructing and simulating Petri nets.
e A hypotheses lest environment where the PS may slate hypotheses about the task

formulas fulfilled by the current state of the solution. The system gives feedback
about the hypotheses.
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Figure 3.5: Empirically observed design heuristics

o A completion and correction component which on the PS's request delivers proposals
how to complete or to correct the current state of a Petri net. This component is
based on rules learned by the system from the solution proposals of other learners.

We will describe each component in turn.

3.4.1 Modelling Tasks

In order for a system to give help and support to a P, it must be able to analyze the PS's
solution to a given task. So a task specification is necessary. Specifications for Petri net
modelling tasks are nel very common, even in textbooks (e.g., [35, 36)) Petri nets tend
to be presented as solutions to tasks described informally. Exceptions are for example
Josko [19] where Petri nets are used to specify the semantics of computer architecture
descriptions, and Olderog [29], where Petri nets define the semantics of process terms
derived from irace specifications.

PETRIIELP conlains a sequence of ten modelling tasks. (The list of tasks could be
cxtended casily.) The learner may create Petri net solulions to these given tasks. Each
task is specified as a set of temporal logic formulas [21]. As mentioned before, this allows
to verify Petri net solution proposals by model checking [8, 10, 19]. This is done by
interpreting the temnporal logic formulas on the case graph of the PS’s Petri nel proposal
[25].

Figure 3.6 (left side) shows the temporal logic specification to the modelling task "Re-
staurant” [20]. Initially, the waiter is sleeping (starting condition: Ws). 0,<, O are the
temporal logic operalors. Informally, O means "always” (it is always true that ..."), ©
means "eventually” ("now or at some point in future it will be true that ..”), and O
means "nexttime (”at the next point in time it will be true that ..”). So for example
"O(Ws — OWro)" means informally: "It is always true that if the waiter slecps then
he will eventually be ready to accept an order.” The window on the right of Figure 3.6
coutains the descriptions of the abbreviations used in the formulas.

E Formulas : Restaurant == Description : Restaurant
uts
Storting Condition : >l Description of Places :
s Ws © Waiter is sleeping
Progress Conditions : Wro £ Waiter is ready to eccept order
{n] ( YWro -)(0 ( Ws A K ))) Wrs 2 Waiter ia readg to serve

Kitchen got arder
Meal gets prepared
Meal i3 reedy

O{K->(<¢ P))
O(pP=3(SRY
O(RAWs=2>({ Wrs))
O{R AWro>(< Wrs))
O wrs->{< Ws))

O ws->(< Wro))

o X
D o> >

Exclusion Conditions :
O{-~{Ws ~Wra))
O(~{WsAWrs))
O{={Wro ~¥rs))

0O { Wsa + Wro~Wrs)

Bl =

Figure 3.6: Temporal-logic specification of the modelling task "Restaurant” of the task

sequence of PETRI-HELP

IR

The tasks in PETRLI-IIELP are partially ordered according lo five modelling goals. This
partial order reflects our preliminary view about psychological task complexity. Increasing
task complexity should also lead to an increase in task diflicully. Although we did not
pursue this empirical hypothesis within the project, it could be investigated with a test
theorclic approach (i.e. Rasch model as used by [40], with a cognitive complexity analysis
(i.e., [33, 34]), or with a set theoretic approach (i.e., [11]).

The five modellings goals are:




a) " Atomicformulas”: to create nets for implications with an atomic formula in premise
and conclusio. Example: O(Ws — OWro)

b) "Conjunctions”: to create nets for implications with conjunclions in premise and
conclusio. Examples: O((RA Ws) — OWrs), O{(a Ab) = O (cAdAe))

¢) "Contexi™: to create nets for implications with the same atomic formulas in premise
and conclusio. Example: O{(a A b) = ${a A e))

d) "Disjunctions”: to create nets for implications containing disjunctions in premise
and / or conclusio as well. Example: O{{a V 3) — QO (cAeVdVaAc))

e) "Additional constraints™: to create nets for sets of formulas requiring special at-
tention to the exclusion conditions (example: two traffic lights. In addition to the

succession of colors for each traffic light, there is the constraint that one traffic light
must always be red.)

The partial order of modelling goals incorporated in the sequence of PETRI-HELP mo-
delling tasks is shown in Figure 3.7. As can be seen, there are tasks for modelling natural
systems (four seasons, photosynthesis), technical systems (railroad, thermostat, automatic
lock differential, traffic lights), social systems (restaurant, library), and systems contai-
ning technical as well as social aspects (telephone, garage). It would be no difliculty to
extend the task set.

context (c)
libras
@b,
thermostat :E
automatic lock differential At
(b, c} -3

i'mn‘-"I =l {a)

atomic formulas (a)

Figure 3.7: Partial order of the PETRI-TIELP modelling tasks

3.4.2 WNet Editor

Figure 3.8 depicts a snapshot of the PETRI-HELP net editor: a solution proposal of the
"ltestaurant” task. In a Condition-Event Petri net, circles represent places (conditions,
states), and rectangles represent iransitions (events). The condition represented by a
place is true if the place contains a token. On the left of Figure 3.8 the tools for editing
arc shown: deleting, moving, naming, creating places, transitions, and arcs, and setting
tokens. In addition, there is a tool for simulation.

——————— Net : Restaurant

m,
Fs

|Gl

@
0
v

R

Bl >
Figure 3.8: The PETRI-HELP net editor

3.4.3 Hypotheses Test Environment

When the PS is constructing a Petri net to a given task, he may state hypotheses about
which subset of the formulas is fulfilled by the actual state of the solution. This is done
by sclecting the respective task formulas (Figure 3.9).

The system then analyzes the task formulas by model checking. As the result, it relurns
the formulas fulfilled and not fulfilled by the current state of the solution (Figure 3.10),
i.¢., it partitions the selected formulas into the largest subset of formulas the Petri net
solulion proposal is a model of, and the set of remaining formulas.

Our lemporal logic allows for branching time and makes use of step semantics (cf. [10]).
Iis semantics is defined in Table 1. The temporal-logic formulas are interpreted on the
case graph ol the Petri net solution proposal. A part of the case graph of the net of
Figure 3.8 is shown in Figure 3.11. Furthermore, since PETRI-HELP is restricted to
Condition-Event Petri nets, the models are always finite and usually cyclic.



3.4.4 Completion and Correction Component

Based on the model checking approach, PETRI-HELP can inform the PS about what
parts of the task specification are fulfilled by the current state of the solution. The model
checking component does not tell the PS how to continue with the proposal or how to
correct it, if the PS is caught in an impasse and does not know how to proceed. Therefore
in PETRI-HELP there is also a completion / correction component. '

When a PS is creating a correct Petri net to a given task, for example, by applying design
heuristics like those in Figure 3.5, the sequence of intermediate Petri net solution stales
occuring is nonmonotenic with respect to the set of fulfilled formulas. That is, a formula
fulfilled at a certain stale may be unfulfilled at a later state. In general, any change of
the Petri net proposal will require the whole set of task formulas to be verified again. So
if the aystem would offer completion proposals based on cinpirical design heuristics, it
could happen that previously fulfilled formulas would be unfulfilled again at later stages
of solution development.

Def: o K;is node #4 in the case graph, K; is .a set of atoms
o 5(K;) := {K; | K; is immediate successor of node #i in the case graph}
o Path(K.) :={ (1, .. ,Jn) | Kj=K; A
Kj1 € 5(K;,) A
Kiwt € {K;, . Kz} A
(5(Ks) =19 v

3K, € 8(Ks) | Kp € {K; ... K.)))

K;(atom) = t iff atom € K;

Ki(a Ab) =t if Ki(a) =t A Ki(b) = ¢
KiaVvb)=t i Kia) =t VKi(b) =t
Ki(a—b) =t i Kia)=1VKib) =t

Ki(-a) = t i Ki(a) =f

Ki(Oa)=t iff if S(K:) = 0 then [

(nexttime a) else V K; | K; € S(KJ): K;(a)
Ki(Ca) =t i VP e Path(K;) 3j € P: K;(a)

(eventually a)

Ki(Da) =1 iff ¥ P e Palh(K,) Vj€ P: Kifa)
{always a)

Table 1: Semantics of the tempeoral logic used in PETRI-HELP

Selected Task : "Restaurant”

Select Formula :

a (Y
SAD)

O(R AWs3({{ Wrs))

U(R:Wrua(o;;tfrs))
[n]

D -

D (- (Ws A Wro))
I:IE-(Waa‘w'ra);)

a W W

0 (Ws v Wro v Wrs) 2

Net : Restaurant
Wro Ws
ABC P
K
O
L

Figure 3.9: Stating a hypothesis: The PS marks the task formulas he considers {ulfilled
by the current stale of the solution proposal

This is undesirable because it will canse sccondary jmpasses and confuse the novice.
PETRI-IIELP's approach Lo this problem is Lo identily solution states that fulfill a super-
sel of the task formulas that were fulfilled by the previous state. When a PS constructs
a Potri net, we call a solution state safe

e if it is the starting state (the emptiy net), or

o if the task formulas fulfilled by it are a proper superset of the task formulas fulfilled
by the previous safe state created by the PS.
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Based

on safe states, we can define design rules which can be used for completion and

correction proposals. There are two kinds of design rules:

Selected Task : “Restaurant®

Fulfilled Formulas are :

O(K=2(C PY) its

0w >(< Wro)) =

O{—~{Ws ~¥ro)}) m
[
4

Not Fulfilled Formulas are :

O wro (O (Ws AK)))
W
&

Figure 3.10: Feedback to the hypothesis of Figure 3.9

Figure 3.11: Part of the case graph of the Petri net of Figure 3.8
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a) net; — net;, where net; and net; are safe solution states obtained Ly the PS.
net; |= Fy, net; = F; and F; O Fi
T;, F'j are subsets of the task specification.
After reaching net;, net; is the very next safe state reached by
that PS. That is, the S did not reach a net, net, &= Fy, such that
IF; D F D Fe

If the actual solution state of the I'S is net;, then the diflerence between net; and net;
can be used to propose a net completion.

b) nei; |= F,.

If the actual solution state of the PS is net;, and there is a rule "net; = F;” and F; D T,
then

e the difference between net; and net; (the part of net; not contained in net;) can
be used for a correction proposal: places, transitions, and arrows that have to be

deleted.

o the difference between net; and net; (the part of net; not contained in net;) can
be used to propose a completion: places, transitions, and arrows that have to be

added.

These two types of design rules are learned by the system from interactions of PSs with the
system while constructing Petri nets. In one mode, PETRI-HELP does model checking
after each editing step of the PS. If a new safe solution state is identified, the two types
of rules stated above are created

¢ by associating the last safe state with the current safe state (rule type a), and

o by associating the current safe state with the set of formulas it is a model of (rule
type b).

These two kinds of rules learned by the system are the basis of the completion and
correclion proposals given by the system. By making use of these rules, completion and
correclion proposals make sure that previously fulfilled formulas remain satisfied, thus
avoiding secondary impasses and confusion of the learner.

Figure 3.12 shows a completion proposal generated during the development of the net of
Figure 3.8. The recommendation is to add a transition connected to the place P by an
arrow leaving from P. The right of Figure 3.13 shows an example for a completion and

correction proposal. If the PS asks for information for the net on the left of Figure 3.13,
tlie system recommends
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)
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from Place(s) to Place(s)
P2

I

<Al
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Figure 3.12: Completion proposal

Met : Restaurant

E==—= complete : Hestaurant

K P

Wy

Wro

e NIDoNEE

[

Complete Place :
Wra

Complete Transitions -
from Place(s) to Place(s)
¥rs > ¥
s 3 ¥Wro

Complete Arrows :

from Trensition(s) to Place(s)
[{R ~ ¥} > [ + ¥rs
[{R ~ Wra} 5 1 3 ¥rs

Delete Arrows :

from Place(s) to Transition(s)
ws 3 [(K A Wa) » Pl
¥ro 3 [(R ~ Wro) 3 |

=&

G =

Figure 3.13: Completion and correction proposal

completing a place:
to add a place Wrs

compleling transitions:

to add a transition wilth the preéet {Wrs} and the postset {Ws} ("Wrs — Ws”
on the right of Figure 3.13), and another transition with the preset {Ws} and the

postset {Wro} ("Ws — Wro” on the right of Figure 3.13)

completing arrows: to add an arrow from the transition with the preset {R, Ws}
and an empty postset (denoted on the right of Figure 3.13 by "[(R A Ws) — ") to
the new place Wrs, and another arrow from the transition with the preset {R, Wro}
and an empty postset (denoted on the right of Figure 3.13 by "[(R A Wro) — ]")

to the new place Wrs

delcting arrows: to delete the arrow from the place Ws to the transition with presct
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{K, Ws} and postsel {P} (denoted on Lhe right of Figure 3.13 by "[(K A Ws) —
P]”), and to delete the arrow from the place Wro to the transition with preset R,
Wro and an emply postset (denoted on the right of Figure 3.13 by *[(R A Wro) —

1)

PETRI-IELY gencrates completion and correction proposals such that the smallest pos-
sible proper superset of the actually fulfilled formulas is fulfilled. The reason for this is
that the PS should receive only minimal help information that is sufficient for him to
overcome Lhe actual impasse. Figure 3.12 shows a situation where the learner gels only a
small ammount of information, whereas in Figure 3.13 a lot more information is given. The
reason for this is that Figure 3.13 shows a less common situation where only few rules
have been learned for by the system. In general, the amount of information delivered to
the 'S on request depends on the amount of learning of the system: As long as PETRI-
HELP has not learned much, the rules tend to bridge large gaps in the development of a
Petri net solution. But the more PETRI-HELP learns, the smaller the gaps bridged by
the rules tend to get, and so less information tends to be delivered to the P'S at a time.

3.5 Empirical Work Supporting the Development of
PETRI-HELP

Witl the first version of the implemented system, we conducted empirical investigations
within a compuler science postqualification course for teachers, and a practice course for
students. With the implemented system, our main questions were Lo find out

s how the subjects made use of and accepted the possibility to test hypotheses and
to get feedback about fulfilled and unfulfilled formulas,

» liow the subjects made use of and accepted the completion / correction proposals.

The subjects participating in the practice course filled out an evaluation sheet where they
were asked to comment on their impasses and on their use of the various PETRI-HELP
featurcs. Most subjects were able to solve the whole scquence of PETRI-HELP tasks
within a few hours. We found that testing hypotheses was made use of and accepted
widely, even after the subjects acquired some expertise. We propose that the reason for
this is that receiving feedback about fulfilled and unfulfilled parts of the task specification
directs the subjects’ attention to where to proceed with the task, but without forestalling
the solution.

In contrast, the completion and correction proposals were less widely used and accepted.
Tle subjecls' comments indicated that there seemed to be three reasons for this:

e In several cases, the subjects did not consider the information received as plausible.
They had problems to see why the proposal would take them a step further. In some
cases they tried to self-explain the information given [7], but sometimes they just
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integrated the proposal into their solution without understanding it, and sometimes
they were even upset. These effects of feedback and help information have also been
expected by our ISP-DL Theory [27].

e Proposing parts of the solution takes away part of the problem solving from the
PS. In some cases the information delivered is too detailed. Probably, sometimes
2 more abstract hint instead of a Petri net fragment would have been sufficient as
help information.

In some cases, more information was given in the proposals than actually needed by
the subject. But as mentioned earlier, this is a problem that diminishes when the
system learns more rules.

These results suggest the following directions of further development of PETRI-HELP:

e According to the ISP-DL Theory, completion and correction proposals should not
cause a big surprise and thereby lead to another impasse. So these proposals should
be adapted to the actual knowledge state of the PS.

s The system should be able to ezplain its completion and correction proposals.

o Completion and correction proposals should not only be given as parts of the final
solution, but also at a more abstract "planning” level. This is also what our ISP-DL
Theory recommends: Help information should be given at the "synthesize” phase

as well (Figure 3.3).

Subsequent work on PETRI-HELP was aimed at these three directions. The next sub-
section describes work aimed at the design of a user model. After that, the explanation
facilities of PETRI-IELP are described, and an approach for supporting abstract plan-
ning. Finally, as mentioned before, the task of modelling does not only consist of crealing
net models for given specifications of time-discretized distributed systems, but also of
specifying such systems as well. So we also show Low PETRI-HELP supports the deve-
lopment of specifications.

3.6 Extensions of PETRI-HELP

3.6.1 Modelling the User

Up to now, there was no possibility in PETRI-HELP to adapt the system’s help facilities to
the actual user’s needs. The following section describes our approach to system behavior
adapted to the user [30].

For this objective is necessary to know what the user is planning to do. A plan is consi-
dered Lo be a sequence of actions that transforms a certain state to a final state (1]. Plan
recognition means identilying well known planning operations in a given sequence of acli-
ons. Planning as well as plan recognition requires a planning space and knowledge about
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the planning domain, Our approach, being designed to detect plans in PETRI-HELP, is
applicable to every planning domain where no explicit domain knowledge is available , It
only requires an oracle (in the sence of Valiant, 1984) to classify the user's so]utiuns- as
correct or incorrect. In PETRI-IIELP, this is done by model checking. Since in the Petri
net domain there is no explicite design theory for developing a net for a specification
our approa.ch is to let the system learn the search space of possible goals and solution:;
(Petri net proposals) from problem solving sessions of users. The idea is to identify a
user’s solutjon path in this search space to derive predictions about next steps from the

identified path, and to use these predictions for giving help information how to preceed
with the net proposal.

Therelore, goals of the user as well as their realizations have to be detected by the sy-
stem. Every hypothesis the user states about his (sub-)net is interpreted as a subgoal
‘The hiypotheses consist of (sub-)scts of the temporal logic specification formulas. Thest.a
subgoals form the goal graph (problem space). '

Every subgcu:x! the user tesls by model checking corresponds to a Petri net developed by
the user. T ]1'15 net is expected to solve the tested goal. If the hypothesis holds, the net is
associated with the staled subgoal. From these nets, the so called aclion graph is created.

It cousists of all nets fulfilling subgoals, and all the nets tlie user traverses to reach neis
fullilling subgoals.

Thus two search spaces are established (Figure 3.14): one for the goals and one for their
rea!izatifms‘ Both are linked by correspondences between nets and the goals they fulfill
(som.e kind of goals-means-relation, [26]. These spaces are built up by observing users
rangiug from novices to experts. In these graphs, all the information that can be dctccteci

during the problem solving sessions, like all user actions, times the actions require, and
the frequency of decisions are stored. ’

Tor the purpose of prediction of goals and actions, the actual user is identified within these
graphs. The system’s prediction is that the goals or aclions with the highest probability.
will be performed by the user, given the observed actions and goals (or their genera.liza:
tions) of the user as a precondition. So there is no actual user model with assumptions
about the user and conclusions drawn from them [37, 6], but a kind of usage model [16]

with user identification.The process of generating help using this model is split into two
steps:

e [Mirst the a.ct.u_al goal of ihe user must be identified. The system predicts the current
goal by relaling the user’s history to the goal graph and choosing the goal with

the highest probability. The probabilities are derived from the recorded behavior of
former users.

o The second step predicis the action that the PS will most likely take for reaching that
gl':}al. As on the goal lf:vel, the next net with the highest probability is identified. The
difference between this net and the user’s net is used for generating help information.

S’iuce in this approach help is based on the most probable continuation of the proposal
given the actual state of the solution (that is, the user’s path through the goal grapl;

and action graph), the information delivered takes account of the actual problem solvin
behavior of the user. .

63



goal graph

action graph

Figure 3.14: Correspondence between the two learned graphs. Each nodf‘: 'ml the IE?:II‘
raph consists of a subset of the st of specification formulas, each node in t ?cka.c i :
iraph is a Peiri net created by the user. The links belween these two graphs link goals

to nets fulfilling them.

3.6.2 Model Checking Based Explanations

In PETRI-HELP, the following two kinds of situations require explanations:

s Why is an unfulfilled formula of the task specification in fact unfulfilled?

. ; 5
¢ Why is the actual completion [ correction proposal in fact proposed?

The approach implemented in PETRI-HELP is concerned with the ﬁrs‘t kind of explml}a—
tions {p"Why not” explanations). It would be easy though to extend this approach to the

second kind of explanations.

In order to do this, it would be necessary to show

o what additional formulas would be fulfilled if the user aceepts the completion [

correction proposal

e why these formulas would in fact be fulfilled after accepting the proposal

« why these formulas are not fulfilled by the present net.

In our empirical studies, we observed that human tutors t.enfled tofexi)ltz:::tlingzlglhe‘;}
formulas to the learner by simulating (parts of} the Pet. That is, the a: b; o
is not satisfied is verified by showing that a marking state c!f the ne cant = pr.-'f'm_
that violates the formula. The model checking based e?{pla:natlaon c?mpm::n g mJa I.mer
HELP implements this explanation pattern. Inl'orm_at.lon is given in a S] pwi A
{see [32] for detail). This corresponds to our theoretical position th:ﬂ;) onl };fns nlanat&on

information should be given as needed to resolve the actual impasse by sell exp :
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For any unfulfilled formula of a hypothesis, the learner may ask for an explanation (*Why

is this formula not satisfied?”). The explanaiion component assumes always-quantified
{formulas.

e On the first level of explanation, the system informs the learner that it is possible
to reach a marking state of the net where the formula is not true. This information
may already suffice for the learner to see why the formula is in fact unfulfilled, so
he might stop asking for further information here.

e On the second level of explanation, the formula is decomposed. In case of an im-
plication, the learner is informed that a marking state of the net might be reached
that with respect Lo the formula is to be interpreted such that tlie premise of the
formula is true, but its comclusio is noi. In case of a conjunction, the learner is
informed that a state can be reached where at least on conjunct is false. In case of a

disjunciion, the learner is informed that a state can be reached where all disjuncts
are false.

e On the third level of explanation, the learner is informed about the reasons for the
situation described on the second level. This level of explanation makes use of three
basic concepls: deadlock, circle, and alternative-possible. ”Deadlock™ means that
the reason for the formula being unfulfilled is thal the net may reach a state where
no transition is able to fire. In case of an implication, this means that a state can be
reached that corresponds to the formula’s premise being true, it’s conclusio being
false, and no transition able to fire. "Circle” means that that the reason for the
formula being unfulfilled is that a circular sequence of marking states is possible so
thal cerlain places mnay never get tokens. In case of an implication, this means that
all states of this sequence correspond to the formula’s premise being true but it’s
conclusio being false, ” Alternative possible” only applies for implications containing
the *nexttime” operator. It says that the reason for the formula being unfulfilled
is that a marking state is possible that corresponds o the formula's premise being
true bul it’s conclusio being false because it may not necessarily true in the next
time step (only al some later time step).

e Finally, on the fourth level of explanation, the sequence of marking states leading
to the situation decribed at the third level (that is, deadlock, circle, or allernative-
possible) is visualized to the learner by net simulation so the learner can see how
the critical marking stale(s) may be brought about.

3.6.3 Incorporating Viewpoint Centered Planning into PETRI-
HELP

As stated, the ISP-DL Theory and empirical studies led to a common implication for
PETRI-IIELP: Uelp information should be provided on a level more abstract than places,
transitions, and links. This information should support planning and hypotheses testing of
plans especially at the early stages of problem solving, and it should support the stepwise
transformation of plans inlo more detailed ones, until a solution is reached.
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We investigated an approach developed by Olderog [29] that allows to transform a task
description (a specification) into a condition-event Petri net by making use of intermediate
specifications as well as "mixed terms” (terms composed of specification fragments and
Petri net fragments). Basically, the intention of Olderog is to derive a description of
the operational behavior of concurrent processes from a set of logical formulas specifying
these processes. A transformation begins with a set of formulas and constructs a process
term from it by transformation rules. The process term expresses & possibly concurrent
process in an abstract programming language. A Petri net, with an explicit representation
of concurrency, defines the semantics of the process term. It can be derived from the term
by net construction rules. Soa derivation chain can be constructed from the specification
to the Petri net.

Based on Olderog, Wedig [44] recently developed a method for the derivalion of Petri
nets from trace specifications directly without using process terms. Based on this work
transformational steps were integrated into PETRI-HELP [15].

3.6.3.1 Viewpoint Centered Specification

The specification of a process is stated in trace logic (i.e., [18]. As a simple example,
Table 2 shows a possible trace-logic specification of (a variant of) the "Restaurant” task
which we will call ”Bavarian Biergarten”:

Trace of events in the ”Bavarian Biergarten”:
Ws. @. @ Wro. K. P. @. R. Wrs. Ws. @. Wro. K. @. P ...

Trace logic specification of the »Ravarian Biergarten™:
trace | {K, P, R} € pref(K.P.R)* A
trace | {Ws, Wro, K, R, Wrs} € pref(Ws.Wro.K.R.Wrs)*

View of kitchen: K.P.R.K.P.R....
View of waiter: Ws.Wro. KR Wrs. Ws.Wro. K.R.Wrs...

Table 2: Trace and trace logic specification of the "Bavarian Biergarten”

The upper part of Table 2 shows a possible trace. Ws, Wro, K, P, R, Wrs have the same
meaning as in Figure 3.4. @ denotes things that may happen but are of no concern here.

From the kitchen's viewpoint, there are only three relevant events: K, P, R. This is
expressed by "trace | {K, P, R} € pref(K.P.R)*”, where | is the projection operator,
and "pref(IK.P.R)*" is {¢, K, K.P, KPR, K.P.RX, K.P.RKP KPRKPR, ...} (€18 the
empty trace). Similarly, the waiter’s point of view is a succession of sleeping (Ws), taking
orders (Wro), passing them to the kitchen (K), being told that a meal is ready (R}, and
serving it (Wrs).

From a knowledge acquisition perspective, an attractive feature of trace specifications
is that they emphasize the acquisition of the knowledge needed for specifying a system
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b}.r Iook_ing‘ at it from different viewpoints (like the kitchen’s viewpoint and the waiter's
viewpoint in our examnple, see the lower part of Table 2). Thus specifications of complex

?yst.cms can be constructed by acquiring the knowledge from the agents parlicipating in
it.

3.6.3.2 Viewpoint Centered Planning and Implementation

I order Lo use the transformational approach within PETRI-HELD, several simplifications
were made. Figure 3.15 shows our graphical representations of some transformation rules
In these representations, each rule has three parts. The upper part contains the name oi
the rule, the middle part may contain conditions, and the lower part contains a statement
The parallelism rule has no condition. It visualizes the equivalence of a conjunction ui.'
terms S and T (S A T) to two specifications § and T that have to be implemented as
parallel nets. On the PETRI-HELP screen, we may create two goal regions labeled by
S and T, whick have yet to be implemented by Petri nel fragments. Thus a goal region
represents a specification of a task or subtask: the goal to create a Petri net fragment that
is.cquivalent to that specification. The dotted crossing lines between the goal regions in
TFigure 3.15 mean that these nels will have to be synchronized (which is specified by the net
combination rule). For example, applying the parallelism rule to the trace specification
of the Bavarian Biergarten in Table 2 leads to the goal regions shown in Figure 3.16.

Now Llie iwo nels for the kitchen and for the waiter can be constructed separately and
synchronized later. Figure 3.17 shows steps in the construction of the kilchen net”
Figure 3.17a shows its specification as a goal region. "init(5)”, the set of next possib]e;
events of a process specified by §, might be empty (deadlock, not shown), contain one
element (then the prefix rule is applicable), or more than one element, (ha,ndled by the
expa‘nsiou rule). Since init(trace | {K, P, R} € pref(K.P.R)*) = {K}, the prefix rule
applies, generating a place leading to a transition labeled with K leading to a goal region
agai 73 n (Figure 3.17b). The new goal region represents the kitchen afier having received
an order from the waiter: "K.trace | {K, P, R} € pref(K.P.R)*". Figure 3.17b represents a
mixed expression. Next, the prefix rule is applicable again, leading to Figure 3.17c. After
three applications of the prefix rule (Figure 3.17d), the expression "K.P.R.trace | {K, P.
R} € pref(I{.P.R)*" will be obtained which is equivalent to the original expression ”t.r;c;
1 K, P, R € pref(I{.P.R)*". Thus the recursion rule is applicable {with § substituted
by "trace | K, P, R € pref(K.P.R)*", and § substituted by "K.P.R.trace | {K, P, It}
€ .pref[K‘P.R)*“). The recursion rule states that if a specification 5 is cquiva.le‘nt. ‘t.o a
m;xed. expression containing a specification §, and S and §' are equivalent as well, then
chal.lgmg that mixed expression by removing 5’ and introducing recursion still ke‘r,ps it
equivalent to 8. Figure 3.17e shows the result of its application.

trace | {K, P, R} trace | {Ws, Wro, K, R, Wrs}
€ pref(K.P.R)* € pref(Ws.Wro.K.R. Wrs)*
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3.6.3.3 Viewpoint Centered Synchronization

When nets have been created for different viewpoints, they can be glll(ifi together to one
single net by the net combination rule (Figure 3.15). The net combination rule combines
nets for the two views in Table 2 to the net shown in Figure 3.18b. (K and R are the
synchronizing transitions.)

Using the transformation approach, different stralegies are possible, bec.ause we can t.'ake
2 look at the two different views of Table 2 simultaneously and thus avoid the parallelism
rule. The result is shown in TFigure 3.18a. Alternatively, the components of a net can
be developed in parallel and combined later (Figure 3.18b). In more complex examp-
les, intermediate strategies between maximal sequentiality and maximal parallelisin are
possible too.
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3.6.3.4 Supporting planning of Petri nets in PETRI-HELP

This section describes how the transformational approach can support learners in con-
structing Petri nets:

1. If the learner does not know how to proceed and asks for a completion proposal, the
system may offer goal regions {as illustrated in Figures 3.16 and 3.17 as belp). So the
learner is provided with descriptions of sublasks yel to be solved, and with recommenda-
tions how to decompose the task into subtasks. Thus the system will not be restricted to
help ou the level of places, transitions, and links.

2. The learner may state hypotheses about goal regions, not only about Petri net fragments.
So the learner may get information whether he or she is "on the right track” at very early
planning stages. For example, the learner may ask the system if it is appropriate to
structure the problem of Table 2 into two parallel components (Figure 3.16) withoul
bothering ahout what ihe components will exactly look like at this planning stage. Se

the learner may postpone implementalion considerations and work with pariial plans and
mixed expressions.

3. The learner may receive direct gnidance in Petri net construction by using the transfor-
mation rules as help. While our model checking approach allows for free, unconstrained
problem solving because every solution proposal can be analyzed by the system, the
transformational approach allows the learner lo create a Petri net solution by stepwise
application of the rules, that is, in a systematical, derivational way. Alternatively, the

transformation rules can also be offered as explanations for completion proposals genera-
ted by the system.

In order to find out whether it is feasable for novices to use the transformation rules for the
derivation of a Pelri net, we carried out a single subject study. The subject was a novice
concerning Petri nets. Her task was to create the "restaurant” net with paper and pencil,
using graphical representations of the transformation rules as shown in Figure 3.15. The
subject adopted a maximally parallel strategy. She needed some assistance for applying
the parallelism and recursion rule, she did not immediately realize their applicability. But
in general, she had no serious problems with this task. This preliminary result suggests
that the approach is feasable as a basis for supporting novices in Petri net design.

So the transformation approach is a sound basis for letting the learner express initial ideas,
partial plans, test hypotheses about them, and receive proposals from the system at the
same level. The learner is enabled to think about specifications (and "mixed terms”)
without bothering about their implementation from the beginning. The transformational

approach as stated here was implemented for the purposes of PETRI-HELP [15] but has
not yet been tested empirically.

3.6.4 Supporting the creation of task specifications

In PETRI-HELP, the temporal logic approach allows the analysis of any solution proposal
created by a PS by medel checking, so it supports free, explorative, unguided problem
solving. The trace logic approach allows the derivation of a solution and thus allows
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systematic, rule-guided problem solving. Thus according to our theory, both approaches

Liave their merits.

But neither approach addresses the problem of specification development. Thus, with
respect to our theoretical framework (see Figures 3.2 and 3.3), the problem solving level
of deliberation remains still uncovered. This means that the learner should be supported
by PETRI-HELP in generating the specification of some system or process. Then the
Petri net solution created by the learner would be checked against this specification. In
assisting the learner to create a specification, the system may help the learner and help
in a dialog to acquire and to integrate the knowledge needed.

We explored the possibility that the system’s assistance in the development of a task
specification may be organized as a Socratic dialog. Collins [9] developed a set of dialog
rules that we think can be used to govern this process. Applied to the task of creating a
task specification, some of Collins’ rules can be restated in the following way:

1. Ask the user what agents will be involved in the system to be specified.

9. Ask the user about the states each agent can be in. This will lead to a set of
agent-stale-pairs.

3. Ask the user about which agent-state-pairs are mutually exclusive.

4. Ask the user about what agent-state-pairs, or conjunctions ot disjunctions of agent-
state-pairs, lead to what consequent agent-state-pairs, or conjunctions or disjuncti-
ons of agent-state-pairs.

(=1

. For any agent-state-pair or conjunction or disjunction of agent-state-pairs that has
been specified as being a consequence of some other agent-state-pair (s), ask the user
whether the consequence is expected to be true in the next time step, or whether it
is expecied to be true at some later point in time.

6. Ask the user about the conjunct of agent-state-pairs expected to be true in the first
time step.

The first two questions are used to establish the atomic formulas of the task specification.
The third question delivers information about the exclusion conditions. The answers lo
questions 4 and 5 are used to establish the progress conditions of the task specification.
Question 5§ tries to acquire information needed for specifying the temporal logic operators.
Finally, question 6 establishes the slarting condition.

3.7 Cooperations

From the MOBY Project Group we received a lot of support especially in the earlier
phases of the project. They provided us with their Petri net editor so we were able to
do our empirical investigations. Especially Hans Fleischhack gave us a lot of support
concerning theoretical problems which had to be solved for the design and development

of PETRI-HELP.
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Furthermore, there was cooperation with Bernhard Josko and the group of Werner Damm
7

concerning theoretical discussions as well as i i i
: practical support in t i
menlation of the model checking approach. RRERSA i B

There was also cooperalion with Ernst-Ridi i

. : - ger Olderog, concerning the integration of L
Lra.nsform‘at.lon a.pproac.h into PETRI-HELP. In several ’discuséions he patiengtly arlllz-::rerelz
our questions and provided us with a lot of additional material.

We thank Werner Damm, Hans Fleischhack, Bernhard J idi
. 3 i osko, and Ernst-
for their support and for the very helpful discussions. REC e L

Qutside the universily, there was cooperation with the Competence Center Informatik
.(CCI), Meppen, concerning the development of help for medical personell being tr;ined
in the use of special medical equipment. Based on specifications of medic.'ﬂ equipment
for surgery we received from the CCI, we developed temporal logic task descri tigns

Petri nct‘ solution proposals can be constructed, and feedback and completion 1:'1'0 os:lo
can be given. In cooperation with the educational institute of the chamber ofpincIlJust y
and commerce (Bildungswerk des Deutschen Industrie- und Handelstages), we ¢ tliy
develop P.ULSE (Eneumatic Learning and Simulating Environment), an Ix‘xtc]]i ur:ell; A
}3](3":1 solvmg Eﬁ\:ironment for the domain of pneumatic_circuits, base(i on the fol.lg:zllati(:;
;-y; UfS;;El:e PETRI-HELP project. The following section will provide a brief description

3.8 PULSE: An Intelligent Problem Solving Envi-
ronment for the Domain of Pneumatics

Sev:el:al chambers of industry and commerce (including Oldenburg’s) offer a three year
training fO}' those being employed as metalworkers leading to a master craftsman’sy di-
ploma. This course includes a 50 hours section imparting the basic concepts of hydra.uli;s
and pneluna.tlce:. Due to the fact that only few laboratories exist where the participants
can make practical experience in those subjects, we were asked to develop an intelfi‘ ent
problem solving environment for the domain of pneumatic circuit development. Th .

stem should offer lask descriptions in the way the participants are used fn a.ncl sl . 5}’;
the development of related pneumatic circuits. It should offer the opport,,unit.y t: I:.Z:t.

hypotheses about the correctness of it
the: 1e developed pneumatie circuit: i
descriptions, and it should ofler feedback and help. conE it

:ln these training courses‘hydraulics and pneumatics are taught as time discrete and state
iscrete systems. No differential equations are used to describe the behaviour of the

system’s components. This level of abstraction fost: i
5 ' P cred the adaption of ti
in PETRI-HELP for task description and hypotheses testing. i of the methods used
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3.8.1 Task Description and Solution Development in the Do-
main of Pneumatics

In the training section of these courses, task descriptions in the domain of pneumatics
are presented twofold. A description of the situation the problem arises in is supported
by a formal functional diagram which describes the intended dynamic behaviour of the
pneumatic circuit to be developed. The solution is to be developed as a pneumatic circuit
including several pneumatic elements like valves, pumps, cylindes, switches, and pipes
connecting these elements.

Like PETRI-HELP, PULSE offers several tasks the problem solver may choose from.
These tasks are presented in the way the problem solvers are used to. This includes
a formal functional specification (as shown in Figure 3.19), and a text describing the
situation. For the development of a solution a graphical editor is used which offers tools
to insert, delete, manipulate, and compose elements of a pneumatic circuit (see Figure

3.20).

3.8.2 Hypotheses Testing

In accordance with the ISP-DL theory, the problem solver has the opportunity to state
a hypothesis about his solution proposal at any time. This is done by marking these
parts of the functional diagram which describe the behaviour, the problem solver assumes
his circuit proposal should have. As a feedback the hypothesis is returned in a seperate
window with the fulfilled behaviour marked in green, and the unfulfilled marked in red.

For checking hypotheses the functional description is transformed to temporal logic for-
mulae and the pneumatic circuit is transformed to a finite state automaton [13]. This is
done by composing the finite state automata which describe the possible behavior of the
pneumatic elements. After that, model checking takes place checking the validity of the
formulas according to the finite state automaton. So it was possible to apply the approach
developed in PETRI-HELP to the domain of pneumatic circuits.

3.8.3 State of Development, Experiences, and Further Com-
ponents

To date, PULSE includes several task descriptions problem solvers may choose and work
on. This is supported by an editing environment that offers exactly the pneumatic ele-
ments’ symbols (DIN ISO 1219) he is used to work with. At any time a hypothesis
specifying the intended behaviour of the developed circuit can be stated, Feedback is
given about the behaviour already shown by the solution proposal, and the behaviour
that could not yet be observed. Furthermore, PULSE has an explanation component
that explains the system’s feedback and information on a conceptual level [45].

At the end of 1995, a first version of PULSE has been delivered to the DIHT-Bildungsge-
sellschaft, Bonn. It was distributed among several chambers of industry and commerce
where it is tested with participants of the training courses.
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At the moment several components are under development that are designed to support
the problem solver as well as the lecturers. A simulation tool will suppori the problem
solvers by highlighting the behaviour of the developed pneumatic circuit step by step.
This helps detecting problems especially after a hypothesis was rejected. Especially the
lecturers indicated their interest in a task editing tool to develop formal task descriptions.

Such a tool is currently being developed to support the development of formal functional
diagramms.
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Figure 3.16: Applying the parallelism rule to the trace specification in Table 2
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Preface

This report gives an overview of the work done by the ¢ Arbeitsgruppe Informatik-Systeme’
(AIS) at the Department of Computer Science of the University of Oldenburg during the
years 1990 to 1995. The ‘Arbeitsgruppe Informatik-Systeme’ has been supported by the
‘Niedersachsisches Vorab der Volkswagen-Stiltung’ (Az. 210-70631/9-13-14/89).

The AIS was founded to invesligate principles, methods and prototypical tool imple-
mentations for the development of complex soflware and hardware systems. Eight main
projecis have been supported by the AlS:

1. MOBY: Modelling and analysis of office procedures by Petri Nels
(Prof. Dr. V. Claus, Dr. 1. Fleischback),

2. DNS: Distributed simulation of high-level Petri Nets
(Prof. Dr. M, Sonnenschein),

3. Petri-Help: Intelligent support for modelling time-discrete distributed systems with
Petri Neis
(Prof. Dr. C. Mébus),

4. COMDES: Specification, verification and simulation of computer architecture design
(Prof. Dr. W. Damm),

5. Structure and behaviour of finite distributed automata

(Prof. Dr. V. Claus, Prof. Dr. E. R. Olderog),

6. X-Fantasy: Interface design and implementation for multimedia applications
{(Prof. Dr. H.-J. Appelrath),

7. MUSE 11: User interface design with respect to software-ergonomic criteria
(Prol. Dr. . Gorny),

8. Integrated ISDN Systems Concepts: Computer supported cooperative work l-.lSiI‘lg
ISDN technology
(Prof. Dr. P. Jensch).

Cenerally spoken, the first five projects work on modelling and analysis of complex sy-
stems, while the last three projects orientate towards multimedia applications. Thus,
AIS projects dealt with topics like modelling of business processes, computer supported
cooperative work, user interface design, distributed computing or hardware design.



The Department of Computer Science at the University of Oldenburg was officially foun-
ded in 1988. So, the opportunity of basic research in AIS projects was essential for
its development and establishment. As one result of this process, the institute OFFIS
was founded at Oldenburg, where many ideas, attempts and results of AIS projects still
influence research activities and applications.

The editor wants to give his best thanks to Anja Gronewold who was responsible for the
set up and layout of this report.

Oldenburg, November 1996 Michael Sonnenschein
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