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Abstract. The Human Centered Design (HCD) of Partial Autonomous Driver 

Assistance Systems (PADAS) requires Digital Human Models (DHMs) of 

human control strategies for simulations of traffic scenarios. The scenarios can 

be regarded as problem situations with one or more (partial) cooperative 

problem solvers. According to their roles models can be descriptive or 

normative. We present new model architectures and applications and discuss 

the suitability of dynamic Bayesian networks as control models of traffic 

agents: Bayesian Autonomous Driver (BAD) models. Descriptive BAD models 

can be used for simulating human agents in conventional traffic scenarios with 

Between-Vehicle-Cooperation (BVC) and in new scenarios with In-Vehicle-

Cooperation (IVC). Normative BAD models representing error free behavior of 

ideal human drivers (e.g. driving instructors) may be used in these new IVC 

scenarios as a first Bayesian approximation or prototype of a PADAS. 
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1 Introduction 

We discuss the suitability of a new type of real-time probabilistic control models for 

the psychological valid representation of traffic agent (e.g.: driver) behavior: 

Bayesian Autonomous Driver (BAD) models.  
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These models [1, 2] are developed in the tradition of Bayesian expert systems and 

Bayesian robot programming [3, 4]. Descriptive BAD models can be used for 

simulating agents in conventional traffic scenarios with Between-Vehicle- 

Cooperation (BVC). Furthermore, when modeling normative correct behavior of ideal 

human drivers (e.g. driving instructors) they may be used for a conceptual new kind 

of systems: Bayesian Assistance Systems (BAS). These may be used for In-Vehicle-

Cooperation (IVC) between the human driver and the BAS. Thus a BAS may be 

regarded as a first Bayesian approximation or prototype of a PADAS.  Due to their 

probabilistic nature BAS can not only be used for real-time control but also for real-

time detection of anomalies in driver behavior and real-time generation of supportive 

interventions. 

Traffic scenarios can be regarded as problem situations with one or more (partial) 

cooperative problem solvers. A scenario is called cooperative, when all problem-

solving agents try to solve a goal specified by one single principal. Thus, a scenario is 

partial cooperative, when goals are defined by several different principals [5]. 

Successful problem solutions require (nonverbal) communication and distributed 

cognition. This is especially true when traffic scenarios are deregulated as in the IVC 

(driver – PADAS – interaction) or in the BVC (e.g. shared space) type.  

In most cases, traffic maneuvers are run without risk. Though, risky situations can 

occur anytime. We call risky maneuvers anomalies which only experienced drivers 

are able to prevent or to anticipate automatically. Other drivers probably cannot and 

therefore might need support generated by a PADAS. It is expected that assistance 

systems will enhance situation awareness, cooperation and driving competence of 

unskilled or non-cooperative drivers in the near future. Thus the design challenge of 

intelligent assistance systems should aim at modeling traffic agents with their beliefs, 

expectations, behavior, situation awareness, and their skills to recognize situations, to 

diagnose and prevent anomalies. We think that dynamic probabilistic models are 

appropriate for these challenges. We review some types of models and propose a new 

mixture-of-expert architecture with attention allocation stemming from our current 

research [1, 2]. 

2 Distributed Cognition and Traffic Scenarios 

The concept of distributed cognition was introduced in the mid 1980s by Edwin 

Hutchins [6]. His theory proposes that human knowledge and cognition are not 

confined to the individual.  Instead, they are distributed by placing cognitive skills on 

the objects, individuals, and tools in the environment. Cognitive processes may be 

distributed across the members of a social group or may be distributed in the sense 

that the operation of the cognitive system involves coordination between internal and 

external (material or environmental) structure. 

2.1 Cooperative Scenarios: Crews and In-Vehicle-Dyads 

Hutchins [6] studied crews with an emphasis on anthropological and non-

experimental methods. These methods then became popular. The question raised was 
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how crews of ships can function as a distributed machine, offloading the cognitive 

burden of ship navigation onto each member of the crew. Hutchins approach 

questioned disembodied views of cognition and alternatively suggested studying 

cognitive systems that are composed of multiple agents and the material world. Later 

studies generalized the domains and put an emphasis on airline cockpits crews and 

human-computer interaction scenarios. 

Members of a public traffic scenario with BVC do not form a stable social group 

but rather an ad hoc group with a limited life time and a limited communication 

vocabulary. Whereas members in a nonpublic traffic scenario (novice driver and 

driving instructor; Fig. 1) with IVC form a stable social group which resembles a 

crew. 

 

Fig. 1: Cooperative driving scenario with in-vehicle-cooperation (background graphics from 

[7] with kind permission of the publisher) 

2.2 Partial Cooperative Scenarios: Ad-hoc groups and Shared Space 

Crews on navigation bridges or in aircraft cockpits work in agreement with a single 

principal. They form a cohesive group whose members normally cooperate for hours 

in solving the problems arising during ship or aircraft operation. This cooperation 

includes exchange of complex verbal messages which require a high dimensional 

state space for the agent models.  

Public traffic scenarios are of a fundamentally different kind. Communication, 

cooperation and the action repertoire is limited in amount and complexity. Agents are 

their own principals and do not belong to a formal cohesive group. They come 

together by chance and (might) try to maximize their personal utilities; sometimes 

ignoring the needs of others. Internal group norms are substituted by traffic rules 

which are expected to accelerate negotiations between the traffic agents in a scenario. 

The solution to a traffic coordination problem is a distributed but synchronized 

sequence of sets of actions (e.g. collision-free crossing an intersection) emitted by 

autonomous agents. 

Shared space describes an approach to the design, management and maintenance 

of public spaces which reduces the adverse effects of conventional traffic engineering 
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by stimulating the situation awareness of all traffic agents. The shared space approach 

is based on the observation that individuals' behavior in traffic is more positively 

affected by the built environment of the public space than by conventional traffic 

control devices (signals, signs, road markings, etc.) or regulations. An explanation for 

the apparent paradox that a reduction in regulation leads to safer roads may be found 

by studying the risk compensation effect: ―Shared Space is successful because the 

perception of risk may be a means or even a prerequisite for increasing public traffic 

safety. Because when a situation feels unsafe, people are more alert and there are 

fewer accidents.‖ (http://www.shared-space.org/; visited 23.02.2009). 

3 Modeling Agents in (Partial) Cooperative Scenarios 

Skilled agents differ from novices in their competence of risk perception thus 

increasing their personal safety. Computational agent models have to represent these 

and other kinds of perceptions, beliefs, goals and actions of the ego agent and alter 

agents. Driver models should 

 

 predict and generate driver behavior emitted by individual drivers sometimes in 

interaction with assistance systems 

 identify situations or maneuvers and classify behavior (e.g. anomalous vs. 

normal) of ego driver 

 provide a robust and valid mapping from human sensory data to human control 

actions 

 be learnt from time series of raw data or empirical probability distributions with 

statistical sound (machine-learning) procedures with only a few non-testable 

ad hoc or axiomatic assumptions 

 should be able to learn new patterns of behavior without forgetting already 

learnt skills (stability-plasticity dilemma) 

 

A driver is a human agent whose skills can be described by the cognitive, associative, 

and autonomous stage. Accordingly various modeling approaches are adequate: 

production-system (e.g. models in a rule-based architecture [8 - 10]), control-theoretic 

[11, 12], and probabilistic models [13, 14]. The advantage of probabilistic models is 

that they fulfill the above criteria especially that they are more robust than other 

approaches. This is a great advantage due to the irreducible incompleteness of 

knowledge about the environment and the underlying psychological mechanisms [4]. 

3.1 Bayesian Assistance Models in In-Vehicle-Dyads 

As an example we present a result of Rizzo et al. [15]. The authors studied the 

behavior of drivers suffering from Alzheimer disease. At a lane crossing a car 

incurred from the right (Fig. 2). Many maneuvers of the Alzheimer patients ended in a 

collision, as they suffered from the looking without seeing syndrome. The modeling 

task should lead to a probabilistic BAS model, which is diagnosing and correcting the 

anomalous behavior of the inexperienced driver. Fig. 2 demonstrates the behavioral 
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risk assessment in probabilistic terms and Fig. 3 the replacement of the real driving 

inspector by the corresponding BAS model an intended Bayesian prototype of a 

PADAS.  

 

Fig. 2: Driving behavior of an Alzheimer driver in a simulated intersection incursion [15] and 

risk assessment by a probabilistic normative Bayesian driver model residing in the subject 

vehicle. 

 

Fig. 3: Cooperative driving scenario with in-vehicle-cooperation between non-expert driver and 

Bayesian normative driver model (BAS prototype) (background graphics from [7] with kind 

permission of the publisher) 

How can this model be derived by methods of Bayesian driver modeling and what 

is the use of it? The best way to explain this is an obstacle scenario which is known to 

generate intention conflicts within the driver (Fig. 4). When an obstacle (animal, car) 

is appearing unexpectedly people autonomously react with a maneuver M-- which is 

not recommended by experts. M-- drivers try to avoid collisions even at high 

velocities by steering to the left or right risking a fatal turnover. The recommended 

maneuver M+ includes the hold and brake sub-maneuvers. When drivers are 
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instructed to drive M+ these data provide the learning data for the BAS version of the 

PADAS according the methods of 3.2. 

With an existing BAS model a worst-case scenario is planned to test the services of 

the BAS. Drivers are instructed not to drive according to M+ (not M+ = M--). 

Because of the probabilistic nature of the BAS it is possible to compute the 

conditional probability P(Actiont | M+). This is a measure of the anomaly of the driver 

behavior under the hypothesis that the observed actions are generated by following 

the correct maneuver M+. 

 

 

Fig. 4: Scenario with conflicting maneuvers 

3.2 Bayesian Autonomous Driver (BAD) Models  

Due to the variability of human cognition and behavior and the present time 

irreducible lack of knowledge about cognitive mechanisms it seems rational to 

conceptualizes, estimate and implement probabilistic models when modeling traffic 

agents. In contrast to other models probabilistic models could be derived objectively 

from the empirical distributions of the random variables of interest with only a few 

axiomatic assumptions. Model validity is thus included in the modeling process by 

model-driven data-analysis without any ex-post validation. BAD models describe 

phenomena on the basis of variables and conditional probability distributions (JPDs).  

This is in contrast to models in cognitive architectures (e.g. ACT-R) which try to 

simulate cognitive algorithms and processes on a granular basis which are difficult to 

identify with e.g. functional magnetic resonance imaging (FMRI) methods [16, 17]. 

Instead a more abstract mapping is possible: the mapping of the activation of entire 

ACT-R-modules into the states of a Hidden Markov Model (Fig. 5). At present these 

activations are the only dynamic aspects of ACT-R-models which could be 

empirically identified by brain imaging techniques [16, 17]. 

3.2.1 Hidden Markov Models (HMMs) 

Currently we are evaluating the suitability of static and dynamic graphical models 

known as Hidden Markov Models (HMMs) or Bayesian Belief Nets (BBNs). With the 

static type it is possible to generate reactive models [3] and inverse (naïve) [18] 

models. Currently our research [1, 2] has shown that static models generate behavior 
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which is too erratic for human behavior. As a consequence we focus ourselves on the 

dynamic type of real-time control for simulated cars [2].  

The dynamic type enables the creation of Markov Models (MMs), Hidden Markov 

Models (HMMs) [19-21], Input-Output-HMMs (IOHMMs) [22], Reactive IOHMMs 

(RIOHMMs; Fig. 5), Coupled RIOHMMs (CRIOHMMs; Fig. 6), [23]. HMMs allow 

the recognition of situations, goals and intentions and the generation of behavior of 

Belief-Desire-Intention (BDI-) Agents. RIOHMMs implement driver models e.g. with 

ACT-R module activations. The two arrows into the random variable nodes Zj denote 

the combined dependence of actions on sensory inputs and activations of hidden 

ACT-R modules or brain regions. Even if module activations were known sensory 

inputs are still necessary to propose actions. CRIOHMMs model dyads of agents with 

mutual belief influences. The belief state of each agent depends only on his own 

history and on the belief state of his partner. Whether it is plausible has to be tested by 

conditional independence hypotheses. Within each agent the model is of the 

RIOHMM-type. 

 

 

 

Fig. 5. Reactive Input-Output HMM 

(RIOHMM) slightly simplified version of 

Bengio and Frasconi [22]  

Fig. 6. Coupled Reactive Input-Output Hidden 

Markov Models (CRIOHMM)  

There is a trade-off between HMMs and DBNs. Inferences in HMMs are more 

efficient than in DBNs, whereas the state-space in HMMs grows more rapidly than in 

corresponding DBNs. This is especially true, when the HMM is used not only for 

situation recognition but also for real-time control of behavior.  

3.2.2 Dynamic Bayes Net Models (DBNs) 

In our current research [2] we strive for the realization of the dynamic Bayesian 

model (Fig. 7). It implements the sensory-motor system of human drivers in the 

functional autonomous layer or stage of Anderson [24]. It is a psychological 

motivated mixture-of-experts (= mixture-of-schema) model with autonomous and 

goal-based attention allocation processes. It implements the autonomous layer of a 

cognitive agent, is distributed across two time slices, and avoids the latent state 

assumptions of HMMs. Learning data are time series of relevant variables: percepts, 

goals, and actions. We can model individual or groups of human and artificial agents.  
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The model propagates information in various directions. When working top-down, 

goals emitted by the associative layer select a corresponding expert (schema), which 

propagates actions, relevance of areas of interest (AoIs) and perceptions. When 

working bottom-up, percepts trigger AoIs, actions, experts and goals. When the task 

or goal is defined and the model has certain percepts evidence can be propagated 

simultaneously top-down and bottom-up and the appropriate expert (schema) and its 

behavior can be activated. Thus, the model can be easily extended to implement a 

modified version of the SEEV visual scanning or attention allocation model of 

Horrey, Wickens, and Consalus [25]. Please note that due to our modification the 

indices have changed. In contrast to Horrey et al. the model can predict the 

probability of attending a certain AoI on the basis of single, mixed, and even 

incomplete evidence (goal priorities, percepts, effort to switch between AoIs). 

 

 

Fig. 7: Mixture-of-Experts (= Mixture-of-Schema) Architecture of Bayesian Autonomous 

Driver (BAD) Model with visual attention allocation extension (mapping ideas of Horrey et al. 

[25] into the Bayesian network domain). 

There are various scientific challenges designing and implementing BAD Models. 

The first main challenge is to generate driver behavior by a mixture-of-expert 

architecture. While mixture-of-experts approaches are known from pattern 

classification [26] it is the first time that this approach is used in human modeling. 

The second main challenge is that we want to integrate from psychological action 

control theory various perceptional invariants known as tau-measures [27] into a 

computational human model. In conventional models variables with different 

dimensions (distances, angles, times, changes, etc) are input to the models. Tau 

measures transform all non-time measures into the time domain. Some measures are 

already used in engineering (TTC, TTLC). 

The role of these invariants for the psychology of motion control is discussed since 

Lee [28]. Now it is the first time that these measures are used to generate behavior in 
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a probabilistic mixture-of-expert (MoE) model. In a MoE model it is assumed that the 

behavior can be context dependent generated as a mixture of ideal schematic 

behaviors (= experts). Thus the stability/plasticity dilemma [29] of neural network 

models is avoided. New behavior can be learnt by adding a new expert to the library 

of expert. Experts do not influence each other directly. Pure expert behavior without 

any additional mixture component is shown only in typical pure situations (e.g. the 

perception of a hair pin triggers the hair pin model expert). 

All probabilistic models presented here can be constructed by data mining single or 

aggregated driver’s behavior traces in experimental settings with or without 

experimental induced goals.  

 

4 Summary 

We discussed two kinds of (partial) cooperative traffic scenarios with within-vehicle- 

(driving school) and between-vehicle-cooperation (Shared Space). Either individual 

or groups of human agents can be modeled by Bayesian Autonomous Agent (BAD) 

models according to the Bayesian Programming Approach. Learning data are time 

series of pertinent variables: percepts, goals, and actions. Modeling ideal correct 

behavior may provide the basis for Bayesian prototypes for partial autonomous 

assistance systems (BAS Models). Because of the probabilistic nature of the BAS it is 

possible to compute the conditional probability P(Actiont | M+) of the anomaly of the 

driver behavior under the hypothesis that the observed actions are generated by 

interpreting the correct maneuver  M+. This makes it possible to define thresholds for 

PADAS interventions. 
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