
Towards the Theory-Guided Design of Help Systems
for Programming and Modelling Tasks

Claus Möbus, Knut Pitschke, Olaf Schröder

University of Oldenburg, Dept. of Computational Science
Unit on Tutoring and Learning Systems,

D - W2900 Oldenburg, Germany
Claus.Moebus@arbi.informatik.uni-oldenburg.de

Abstract. This paper describes an approach to the design of online help for
programming tasks and modelling tasks, based on a theoretical framework of
problem solving and learning. The framework leads to several design principles
which are important to the problem of when and how to supply help information
to a learner who is constructing a solution to a given problem. We will describe
two example domains where we apply these design principles: The ABSYNT
problem solving monitor supports learners with help and proposals for
functional programming. The PETRI-HELP system currently under development
is intended to support the learning of modelling with Petri nets.

1. Introduction

It has been well recognized that developing intelligent help systems raises difficult
questions, like: How is help and instructional material to be designed? When should
remedial information be supplied, and not be supplied? Why might the same information
be useless to one person and helpful to another? Existing intelligent tutorial and help
systems have not always provided satisfactory answers to such questions. For example, the
information delivered to the learner may assume too little or too much knowledge, or the
user interaction is too restrictive, or tutoring and help strategies are unprincipled and ad
hoc [25]. These shortcomings are basically still true [24, 31]. In order to move forward, a
theoretical framework is necessary which incorporates problem solving and learning. It
should be detailed enough to enable specific design decisions and predictions. At the same
time it should be general enough to be applicable to different domains.
We work on such a framework, ISPDL Theory (impasse - success - problem solving -
driven learning). It is an attempt to integrate the theoretical concepts of impasse-driven
learning [7, 14, 15, 26, 27], success driven learning [1, 2, 4, 16, 33], and problem solving
phases or action phases [11, 12]. One purpose of ISPDL Theory is to obtain a set of
design criteria for intelligent help systems which support problem solvers while planning
and constructing solutions. In order to make these design criteria as domain independent as
possible, we apply them to two different domains: The ABSYNT problem solving
monitor supplies help for functional programming. The PETRI-HELP system is designed
to support Petri net planners. In this paper we will describe ISPDL Theory, the design
principles implied, and how they are to be realized in ABSYNT and PETRI-HELP.

2. The ISPDL Theory of Problem Solving, Acquisition and
Improvement of Knowledge

From empirical investigations we concluded that it is fruitful to describe learning in the
domain of functional programming as an interplay of impasse- and success-driven learning.
In particular, we developed a model based on these concepts which closely simulates the
continuous stream of actions and verbalizations of a single subject while acquiring the

interpreter knowledge about functional programs [23]. Further development led to the
ISPDL Theory [20] which is intended to describe the stream of actions and cognitive
processes occurring in problem solving situations. ISPDL Theory has three aspects:
• The distinction of different problem solving phases [11]. In the deliberate phase the
problem solver considers several goals and finally chooses one. In the plan phase a
solution plan is developed to obtain the goal. Subgoals are created and sequenced. Then the
plan is executed, or implemented. Finally the problem solver evaluates the result.
• The impasse driven acquisition of new knowledge. In response to an impasse, the
problem solver applies weak heuristics, like asking questions and looking for help [26,
27, 28]. Thus the learner obtains new information. As a result of this, the learner may
overcome the impasse and acquire new knowledge. Thus impasses trigger the acquisition
of knowledge. But the new information may cause a secondary problem [7, 10].
• The success driven improvement of existing knowledge. Successfully used knowledge is
improved. By rule composition [2, 16, 22, 30], which can be based on the resolution
method [20], the number of control decisions and subgoals to be set is reduced.

3. Principles for Help Design Based on ISPDL Theory

The ISPDL Theory motivates the following principles for providing help to the learner:
1. The help system should not interrupt the learner (see also [32]) but offer information,
because according to the theory, information is only helpful at impasse time [26]. So
information is only to be supplied on request by the learner. This principle is somewhat
opposed to the principle of immediate feedback [3, 5]. But it is implied by the theory, and
we think that it is important to let the learner develop her /his own solution ideas even if
they seem strange from an expert point of view.
2. The learner must have the opportunity to obtain detailed feedback and information at
every time impasses may arise in problem solving. Since different impasses are possible
at different levels of problem solving, the system must offer support in the problem
solving phases of planning, implementation, and evaluation.
3. The learner should be enabled to make use of her/his pre-knowledge as much as possib-
le when asking for help, so the information provided as help does not suggest different
solution plans and thus cause secondary impasses. Rather, help should accept the learner´s
solution plan and provide the learner with requested information as precisely as possible.
4. The provided information should be tailored to the actual knowledge state of the learner.
If the information presupposes too much pre-knowledge, the learner will encounter a
secondary impasse. This might lead to self explanation [8, 29] of the information
obtained, but also to non-understanding and to negative emotions. If the information
assumes too little pre-knowledge, then the learner will get bored by things already known.
So whether information is helpful depends on the actual knowledge state of the learner. A
state model is needed to represent online the actual hypothetical domain knowledge state of
the learner. Its two main functions are to control the analysis of solution proposals of the
learner, and to determine which help information to choose in case of several possibilities.
5. The state model should be embedded in a process model. The latter models the processes
of knowledge acquisition and modification, the application of weak heuristics and control
processes. It may make use of additional data, like verbalizations. One of the functions of
the process model is to support the development of the more restricted state model which
must be empirically valid since it is used for diagnosis and help generation.
6. It is necessary that the learner is free in the choice and sequencing of her/his interactions
with the system. The more restricted the range of the learner´s actions is, the less
information can be obtained for inferring cognitive states (modelled by the state model) and
processes.

4. Two Examples

The six design principles and the ISPDL Theory were developed in the context of
ABSYNT, a visual language and a help system for functional programming. We started to
apply them to the design of PETRI-HELP as a second domain.

4.1. ABSYNT

ABSYNT ("Abstract Syntax Trees") [17, 19, 21] was developed from ideas stated in a
computer science textbook [6]. It consists of a functional, visual programming language
(comparable to pure LISP without the data list structure) and a Problem Solving Monitor
supporting programming novices with help and proposals while they acquire functional
programming concepts up to recursion. ABSYNT was designed to encourage explorative
but help-guided learning. The ABSYNT system consists of four main parts [19, 21]:
• A visual editor for constructing programs. ABSYNT programs consist of trees built from
connected primitive and self-defined operator nodes, parameters, and constants.
• A visual trace makes each computational step of the ABSYNT interpreter visible.
• In a diagnosis-, hypotheses- and help environment the learner may state the hypothesis
that her/his solution proposal (or part of that proposal) to a programming task is correct.
The system then analyzes the part of the solution proposal chosen by the student as a
hypothesis. As the result, the system gives help and error feedback on the implementation
level by synthesizing complete solutions for the given programming tasks, starting from
the learner´s hypothesis. If the hypothesis is embeddable within a complete solution, the
learner may ask for completion proposals. Figure 1 shows
• a learner´s wrong solution proposal to the "even" task (upper window)
• a hypothesis stated by the learner (bold parts of the proposal in the upper window)
• feedback that this hypothesis is embeddable within a correct solution (copy of the

hypothesis in the lower window), and
• a completion proposal generated by the system (bold parts of lower window, i.e.,

the "¬" operator node in Figure 1). The system generates a complete solution but
only one node is shown to the learner in order not to terminate problem solving.
The amount and content of completions will depend on the state model (see below).

A set of currently 622 diagnostic rules defining a goals-means-relation [17, 21] analyzes
and synthesizes several millions of solution proposals for 40 programming tasks. The
rules generate complete solutions, recognize incomplete proposals, and complete them.
One reason for the hypotheses approach [17, 20, 21] is that in programs bugs cannot be
absolutely localized. Thus we leave the decision which parts of a buggy solution proposal
to keep to the learner. Single subject sessions with the ABSYNT Problem Solving
Monitor revealed that hypotheses testing was heavily used. It was almost the only means
of debugging wrong solution proposals, despite the fact that the subjects had also the
visual trace available. We work on a process model to simulate the protocol of a single
subject, in order to shed light on the structure of sequences of hypotheses and their role in
the knowledge acquisition process.
Currently we extend the ABSYNT language to support program construction and help
generation on the planning level by introducing goal nodes. The learner will be able to test
hypotheses and receive error and completion feedback on this planning level in a similar
way as on the implementation level, as described above. Thus the learner may first plan a
goal tree for the task at hand, test hypotheses about it and debug it, if necessary.
Afterwards the learner may implement the goals by replacing them with ABSYNT nodes.
So mixed trees containing goal nodes and ABSYNT nodes will be possible as well.

• A learner model ("state model", [20]) controls knowledge diagnosis and help generation.
It is implemented but not yet integrated into the system. It represents the hypothetical
state of domain knowledge of the learner. It is updated based on the learner´s programming
actions and the times between them and gives rise to several empirical predictions [20].

Figure 1: A hypothesis and a completion proposal in the ABSYNT environment

How are the six design principles stated above incorporated into ABSYNT?
• Concerning design principle 1: The system does not interrupt the learner but offers help.
The learner is free to state hypotheses and ask for help at any time.
• Concerning design principle 2: The system is designed to deliver support at impasses on
different problem solving levels. Programming is possible at the implementation level
with operator nodes, parameters, and constants. It will be possible at the planning level
with goal nodes. The system provides help at the implementation level (hypothesis testing
and obtaining completion proposals) and will provide similar help at the planning level.
Testing hypotheses is also a powerful means for evaluating one´s solution proposal, as
empirical data have shown. The visual trace also supports evaluation. So ABSYNT
supports the three problem solving phases of planning, implementation, and evaluation.
• Concerning design principle 3: By stating hypotheses, the learner is enabled to make use
of her/his pre-knowledge. The learner, not the system selects the parts of the solution
proposal to be retained if corrections are necessary.
• Concerning design principle 4: Help information is tailored to the actual knowledge state
of the learner since help is based on the state model of the learner´s actual domain

knowledge. In accordance with ISPDL Theory, the state model contains knowledge
acquired by heuristics (not in the state model) and knowledge optimized by composition.
• Concerning design principle 5: We work on a process model to simulate two single
subjects´ knowledge acquisition, impasses, and subsequent problem solving heuristics.
• Concerning design principle 6: Due to the two dimensional layout of the ABSYNT
editor, positioning, naming, moving, deleting, connecting and unconnecting nodes are
freely arrangeable actions in the visual ABSYNT editor.

4.2. PETRI-HELP

In the PETRI-HELP project [18], a system is developed for supporting problem solvers in
the domain of modelling with condition-event Petri nets. Like in ABSYNT, the system
will provide help sensitive to the actual knowledge state of the learner. But there are
differences to ABSYNT due to the special demands of the Petri net domain:

• specification of the tasks the user is supposed to solve
• the kind of analysis of the learner´s solution proposals
• creation of design rules on which the help information is based

• Specification of tasks. For Petri nets the task specification is more complicated than in
ABSYNT. Furthermore, in the domain of Petri nets it is unusual to formally specify the
problem to be solved. An exception is e.g. [13] where temporal-logic formulae are used to
verify computer architecture descriptions, the semantics of which are specified by Petri
nets. Temporal logic specifications enable the verification of learners´ Petri net proposals
by model checking [9]. So we developed 15 task descriptions by sets of temporal-logic
formulae. Figure 2 shows the temporal logic specification and an empirical solution
proposal for one task, "Bavarian biergarten".

• Analyzing the learners´ solution proposals. We developed a simple model checker for the
diagnosis of the user´s solutions in PETRI-HELP. The diagnosis is based on the case
graph of the Petri net. In that graph, the temporal-logic formulae of the specification are
verified. Thus it is possible to detect the set of formulae which is fulfilled by a user-created
net. The model checker may be used after every editing step done by the user in order to
determine the set of formulae fulfilled. Figure 3 shows a part of the case graph for the net
in Figure 2. The paths in the graph describe the different orders of firing transitions in the
net. The user specifies an initial set of tokens spread over the places. This set corresponds
to the initial state of the case graph, where interpretation of the formulae starts:
- If the formula contains no temporal-logic operator (O, ◊, [], see Figure 2), then it is a
propositional-logic formula and will be evaluated inside the current node of the case graph.
- If the formula has the pattern O F (F is a formula), then F must hold in every immediate
successor of the current state in the case-graph.
- ◊ F is true iff in every path leaving the current node F will be true at least in one node.
- Finally, [] F holds iff F holds in every state on every path leaving the current state.

• Design rules and help information. We developed two kinds of design rules to support
learners. This help will be created by the system in response to the learners´ actions:
- Based on the model checker, there are design rules proposing completions to the existing
net such that a superset of the currently fulfilled formulae is fulfilled.
- Empirical design rules relate formulae to net parts. They result from empirical studies
with 14 subjects working in single-subject sessions on our tasks. For each task, the set of
formulae was given to the subjects with the instruction to create a Petri net. The subjects
indicated whenever they considered fomulae as fulfilled while constructing the nets.

In the help system the learner will be able to choose from design rules. The actual
solution proposal will be completed by the system according to the choice of the learner.
A third kind of rules will incorporate a goal level. The learner will be enabled to plan
aspects such as "parallelism", "mutual exclusion" etc. The learner will also be able to state
hypotheses. The system then lists the satisfied formulae and completes the net. A learner
model representing the actual knowledge state will control which help is actually offered.
__
Ws : Waiter is sleeping [] (Ws → ◊ Wro) [] (¬(Ws Λ Wro))
Wro : Waiter is ready [] (R Λ Ws → ◊ Wrs) [] (¬(Ws Λ Wrs))

to accept order [] (Wro → ◊ (Ws Λ K)) [] (¬(Wro Λ Wrs))
Wrs : Waiter is ready [] (K → ◊ P) [] (Ws v Wro v Wrs)

to serve [] (R Λ Wro → ◊ Wrs) [] (Wrs → ◊ Ws)
K : Kitchen got order [] (P → ◊ R)
P : Preparation
R : Meal is ready O means "nexttime", ◊ means "eventually", [] means "always"

Ws

Wro

K P

R

Wrs

__
Figure 2: Specification and solution to the task "Bavarian biergarten"

Ws
Wro

Ws, K

Ws, P Wro, K

Wro, P

Figure 3: A part of the case graph for the solution of Figure 2

How are the six design principles stated above incorporated into PETRI-HELP?
• Concerning design principle 1: Like ABSYNT, PETRI-HELP is intended to offer help.
• Concerning design principle 2: Detailed feedback concerning planning, implementation,
and evaluation of nets are to be provided after every editing step. Rules for intermediate
concepts (i.e., parallelism) address planning. Design rules suggesting completions or
revisions to the current net address implementation. Model checking (to determine the
formulae that hold in the current net) and hypotheses testing address evaluation.
• Concerning design principle 3: The selection of rules, hypothesis testing, and receiving
proposals of possible completions are to be under control of the learner.
• Concerning design principles 4 and 5: The system will learn rules from the learners´
actions. Thus a state model is constructed in order to determine the actual information to

be offered to the learner. Like in ABSYNT, a process model will simulate the evolution of
knowledge structures as contained in the state model.
• Concerning design principle 6: Due to the two dimensional layout, the user freely
chooses net editing actions. He may let the system create places, arcs, and transitions by
choosing among design rules. But he may also perform these editing actions by himself.

5. Conclusions

The table summarizes the design principles following from ISPDL Theory, and the
features of the design of ABSYNT and PETRI-HELP corresponding to these principles.
We think that ISPDL Theory is a promising approach to the design of help systems.

ISPDL Design Principles: ABSYNT: PETRI-HELP:
1. "Do not interrupt the Learner can always Learner can always
learner - offer help" ask for help ask for help
2. "Provide detailed Editing, hypoth. testing, Editing, hypotheses testing, and
information for phases and completion proposals completion proposals on the plan-
where impasses can occur:on the planning level and ning level (planning rules) and
planning, implementation level. implementation level (design
implementation, and Hypotheses testing and rules). Hypotheses testing and
evaluation" visual trace for evaluation model checking for evaluation
3. "Let the learner use Stating hypotheses Stating hypotheses
her/his pre-knowledge" Selecting design rules
4. "Tailor information State model controlled State model controlled com-
to the knowledge state completions to hypo- pletions and design rules
of the learner" theses offered to the learner
5. "Embed the state Process model: Impasses, Process model: Impasses,
model in a process heuristics, knowledge heuristics, knowledge
model" acquisition processes acquisition processes
6. "Provide freedom in Free arrangement of posi- Free arrangement of positi-
the learner´s actions" tioning, naming, moving, oning, naming, moving,

deleting, connecting, deleting, connecting, unconnec-
unconnecting nodes ting places and transitions

 (two dimensional layout) (two dimensional layout)

References

1 . J.R. Anderson: The Architecture of Cognition. Cambridge: Harvard University Press, 1983
2 . J.R. Anderson: Knowledge Compilation: The General Learning Mechanism. In: R.S.

Michalski, J.G. Carbonell, T.M. Mitchell, Machine Learning II. Kaufman, 1986, 289-310
3 . J.R. Anderson: Production Systems, Learning, and Tutoring, in D. Klahr, P. Langley, R.

Neches (eds): Production System Models of Learning and Development. Cambridge: MIT
Press, 1987, 437-458

4 . J.R. Anderson: A Theory of the Origins of Human Knowledge, Artificial Intelligence,
1989, 40, 313-351

5 . J.R. Anderson, F.G. Conrad, A.T. Corbett: Skill Acquisition and the LISP Tutor, Cognitive
Science, 1989, 13, 467-505

6 . F.L. Bauer, G. Goos: Informatik, 1. Teil, Berlin: Springer, 1982 (third ed.)
7 . J.S. Brown, K. van Lehn: Repair Theory: A Generative Theory of Bugs in Procedural

Skills. Cognitive Science, 1980, 4, 379-426
8 . M.T.H. Chi, M. Bassok, M.W. Lewis, P. Reimann, R. Glaser: Self-Explanations: How

Students Study and Use Examples in Learning to Solve Problems, Cognitive Science,
1989, 13, 145-182

9 . E.M. Clarke, F.A. Emerson, A.P. Sistla: Automatic Verification of Finite-State Concurrent
Systems Using Temporal Logic Specifications. ACM Transactions on Programming
Languages and Systems, 1986, Vol. 8, No. 2, 244-263

10. G.W. Ernst, A. Newell: GPS: A Case Study in Generality and Problem Solving, New York:
Academic Press, 1969

11. P.M. Gollwitzer: Action Phases and Mind-Sets, in: E.T. Higgins, R.M. Sorrentino (eds),
Handbook of Motivation and Cognition, 1990, Vol.2, 53-92

12. H. Heckhausen: Motivation und Handeln , Heidelberg: Springer, 1989 (second ed.)
13. B. Josko: Verifying the Correctness of AADL Modules using Model Checking. In: de

Bakker, de Roever, Rozenberg (eds): Proceedings REX-Workshop on Stepwise Refinement
of Distributed Systems: Models, Formalisms, Correctness. Springer LNCS 430, 1990

14. J.E. Laird, P.S. Rosenbloom, A. Newell: Universal Subgoaling and Chunking. The
Automatic Generation and Learning of Goal Hierarchies, Boston: Kluwer, 1986

15. J.E. Laird, P.S. Rosenbloom, A. Newell: SOAR: An Architecture for General
Intelligence, Artificial Intelligence, 1987, 33, 1-64

16. C. Lewis: Composition of Productions, in D. Klahr, P. Langley, R. Neches (eds), Produc-
tion System Models of Learning and Development. Cambridge: MIT Press, 1987, 329-358

17. C. Möbus: The Relevance of Computational Models of Knowledge Acquisition for the
Design of Helps in the Problem Solving Monitor ABSYNT, in R.Lewis, S.Otsuki (eds),
Advanced Research on Computers in Education, IFIP TC3, North-Holland, 1991, 137-144

18. C. Möbus, K. Pitschke, O. Schröder: Ein wissensstandsbezogenes Hilfesystem für
Petrinetzmodellierer, in: V. Claus, U. Lichtblau (eds): 2. Kolloquium der Arbeitsgruppe
Informatiksysteme, Bericht AIS-3, Universität Oldenburg, 1991

19. C. Möbus, O. Schröder: Representing Semantic Knowledge with 2-dimensional
Rules in the Domain of Functional Programming, in: P.Gorny, M. Tauber (eds),
Visualization in Human-Computer Interaction, Springer, 1990 (LNCS 439), 47-81

20. C. Möbus, O. Schröder, H.-J. Thole: Runtime Modeling the Novice-Expert Shift in
Programming Skills on a Rule-Schema-Case Continuum, in: J. Kay; A. Quilici (eds),
Proc IJCAI Workshop W.4 Agent Modelling for Intelligent Interaction, 1991, 137-143

21. C. Möbus, H.-J. Thole: Interactive Support for Planning Visual Programs in the
Problem Solving Monitor ABSYNT: Giving Feedback to User Hypotheses on the Basis of
a Goals-Means-Relation, in: D.H. Norrie, H.-W. Six (eds), Proc. 3rd Int. Conf on
Computer-Assisted Learning ICCAL 90, Heidelberg: Springer, 1990 (LNCS 438), 36-49

22. D.M. Neves, J.R. Anderson: Knowledge Compilation: Mechanisms for the
Automatization of, Cognitive Skills, in J.R. Anderson (ed), Cognitive Skills and
their Acquisition. Hillsdale, Erlbaum, 1981, 57-84

23. O. Schröder: A Model of the Acquisition of Rule Knowledge with Visual Helps: The
Operational Knowledge for a Functional Visual Programming Language, in: D.H. Norrie,
H.-W. Six (eds), ICCAL 90, Heidelberg: Springer, 1990 (LNCS 438), 142-157

24. J.A. Self: Bypassing the Intractable Problem of Student Modelling, in C. Frasson, G.
Gauthier (eds), Intelligent Tutoring Systems, Norwood: Ablex, 1990, 107-123

25. D. Sleeman, J.S. Brown (eds), Intelligent Tutoring Systems, New York: Acad Press, 1982
26. K. van Lehn: Toward a Theory of Impasse-Driven Learning, in H. Mandl, A. Lesgold (eds),

Learning Issues for Intelligent Tutoring Systems. New York: Springer, 1988, 19-41
27. K. van Lehn: Mind Bugs: The Origins of Procedural Misconceptions, MIT Press, 1990
28. K. van Lehn: Rule Acquisition Events in the Discovery of Problem-Solving Strategies,

Cognitive Science, 1991, 15, 1-47
29. K. van Lehn:, R.M. Jones, M.T.H Chi: Modelling the Self-Explanation Effect with

Cascade 3, Learning Research and Development Center, University of Pittsburgh, 1991
30. S.A. Vere: Relational Production Systems, Artificial Intelligence, 1977, 8, 47-68
31. E. Wenger: Artificial Intelligence and Tutoring Systems, Los Altos: Kaufman, 1987
32. R. Winkels, J. Breuker: Discourse Planning in Intelligent Help Systems, in: C. Frasson,

G. Gauthier (eds), Intelligent Tutoring Systems, Norwood: Ablex, 1990, 124-139
33. J.G. Wolff: Cognitive Development as Optimisation, in L. Bolc (ed), Computational

Models of Learning. Berlin: Springer, 1987, 161-205

