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Abstract: Basedon a theoreticalframework of problem solving and knowledge
acquisition, criteria for intelligent knowledge communicationsystemsand help
design are described. The ABSYNT Probl8aiving Monitor for the acquisitionof
basic functional programming concepts in a visual languadesignedaccordingto
these criteria. It incorporatégypothesesesting of solution proposalsanda learner
model is designed to supplger-adapted help

Newis a third feature, which is presentiedthis paper:Planning programswith
goal nodes The learner can develop solution plans by postponing their
implementationandit is possibleto test hypotheseswith partial plans and with
"mixed trees", existing of operatorand goal nodes.The planning componentof
ABSYNT rests on a sound transformation approach (Bauat., 1987) that enables
the derivation of functional programs from specifications.We hope to make
derivational programmingaccessibleeven to beginnersin very early stages of
expertise.

Introduction

Intelligent knowledgecommunicationsystemssupply the userwith information which is sensitiveto
the actualproblemsolving situationandto the actualknowledgeandintentionsof the user. Developing such
systems requires a variety of design problems,dikento supply remedialinformation, whatto supply (what
determines'good" help?),how to presentthe help information, an so on. The acceptanceand effectivenes®f
knowledge communication systems critically depends on satisfactory solutions to these problems.

Two necessary requirements for developing an intelligent help system are:

« A theoretical framework based on detailed hypotheses about problem solving and learning. It is needed
to support the design decisions for the system.

« A model of the learner’s actual knowledge state and its changes during the knowledge acquisition
processes that occur while working with the system.

We work on a theoreticalframework, which we call ISP-DL Theory (impasse- success problem
solving - driven learning theory (M6bus, Schréder & Thole, 1991; 1992; Mdbus, Pitschke & Schrdder]t1992).
is intended to describe continuous problem solving and knowledge acquisition processes of learners by integratin
the theoreticatonceptsof impasse-driverlearning(Laird, Rosenbloom& Newell, 1986; 1987;Newell, 1990;
Rosenbloom eal., 1991; van Lehn, 1988; 1989; 19901991), success-drivetearning(e.g., Anderson,1983;
1986; 1989; Wolff, 1987; 1991), and different problem solving phasstagesaccordingto Gollwitzer, 1990;
1991). Briefly, thelSP-DL Theory statesthat a problemsolving processmay be structuredinto the following
phases: The problem solver (RigJiberateswith the result of choosing a goal to persue; thplaato reachthe
goal is created, the planégecutedand finally the obtained result évaluated Impassesnight result at several
points in this process: The PS might not be able to choose a goal, or the plarbessreatedor executionis
not possible or the obtainedresultis not satisfying. The PS reactsto animpasseby problemsolving, using
weakheuristics looking for help, askingcheating,andso on. As a result, the PS may overcomethe impasse



andacquirenew knowledge(impasse-driverearning).But alternatively, the information obtainedmay not be
helpful butconfusing,complicatingthings, andso on. So insteadof resolvingthe impasse the learnermight
encountera secondanimpasse(Brown & van Lehn 1980). Finally, if a problemhasbeensuccessfullysolved
without impasses, then the knowledge used is optimized (success-driven learning).

Thus according to ISP-DL Theory there is a threefold synchronization problem for help information:
 Accordingto the theory, the learnerwill look for andappreciatehelp if sheor he is caughtin an
impasse. Sdelp shouldbe given at impassetime (thatis, offeredto the learnerwithout interrupting
him).

« In order to be helpful at impasses, hslpuldacknowledgehe actualknowledgestate of the learner.
Help should beiser-oriented

« Help should be provided at different phaseprblem solving (deliberating, planning, executing,and
evaluating because impasses may arise at all phases. Help shquriobiem phase oriented

Centeredaroundthe ISP-DL Theory and modelsof knowledgeacquisition, we developedtwo help
systems: The ABSYNT Problem Solving Monitor (PSM) supports functional programming in a visual language
(Mébus, Schréder& Thole, 1991; 1992), and PETRI-HELP supports modelling concurrentor distributed
processes with condition-event Petri nets (M6bus, Pitschke & Schrdder, 199#).t§oto realizethe ISP-DL
Theory and its implications for help system design in two different domains. Our work related to e fiingt
second help synchronization problem has been described elsewhere (Mdbus, Schréder & Thole, 1992).

This paper focuses on the incorporation of the problem solving phagelibefratingand planninginto
ABSYNT. We will demonstrateand discussan approachto supply interactivesupportand help for the user’s
processes of deliberating and planning while constructing functional programs in ABSYNT.

The ABSYNT Problem Solving Monitor

ABSYNT ("Abstract Syntax Trees") is a functional, visual programntémguagebasedon ideasstated
in an introductory computesciencetextbook (Bauer& Goos,1982). ABSYNT is a treerepresentatiomf pure
LISP andis aimedat supportingthe acquisitionof basic functionaprogrammingskills, including abstraction
and recursive systems. The motivation and analysB&YNT with respectto propertiesof visual languages
and cognitive science principles is described in (M6bus & Schroder, 1990).

The ABSYNT PSM providesan iconic programmingenvironmentlts main componentsarea visual
editor, a visual trace, anda help componenta hypothesedesting environment The designof the ABSYNT
PSM is motivated by the ISP-DL Theory in several respects:

« As recommended by the ISP-DL Theory, the ABSYNT PSM does not interrupt the P8etaitelp
for the PS to overcome impasses.

« According to the ISP-DL Theory, the PS should be able to make use of his pre-knoatledgasses
as much as possible. the ABSYNT PSM, this principle is realizedby the hypothesesesting approach The
learner may state hypotheses about which part afurigntsolution proposalhe considerscorrect. The system
then analyzes the hypothesis and gifeesiback The studentcanalso ask the systemfor completionproposals
(see below). Another reason for the hypotheses testing approach is that in proggamsgally not possibleto
absolutely localize bugs. Often the bug consists of an inconsistency between program pHreseareiseveral
ways to fix it. The hypotheses testing approach leaves the decision how to change a buggy progfas to the

« According to thd SP-DL Theory, help shouldbe aimedat the actualphaseof problemsolving. The
ABSYNT PSM supports the problem solving phaseplafning executing and evaluatingsolution proposals.
A solution proposalmay be plannedfirst by using goal nodes.So the learnermay createa plan and test
hypotheses about it without bothering about its implementatiahis stage.The implementatiorof the goals
(thus creating an executable program) may be done Eataluationis again supported by hypothesis testing.

Figure 1 depicts snapshots from the ABSYNT PSM. Figure la showsstia editorwhere ABSYNT
programs can be created. There is a head window badyavindow. On the left side of Figure 1a, thereis the
tool bar of the editor: Nodes are connected with the line. The budietdeletingnodesandlinks. The handis
for moving, and the pen for naming nodes. Next, there is a constant, parameter and tipigtatotnode (to be
named by the learner, usitige pentool). Constantand parametenodesarethe leavesof ABSYNT trees.The



"goal" nodewill be explainedbelow. Thenthe primitive operatornodesfollow. Editing is done by selecting
nodeswith the mouseandplacingthemin the windows, andby linking, moving, naming, or deleting them.
Nodesandlinks canbe createdndependentlylf alink is createdbeforethe to-be-linkednodesare edited, then
shadows are automatically created at the link ends. They serve as place holders for nodes to be edited later.

Constant,parameteiand operatornodesare implementationnodes.A syntactically correct ABSYNT
programis runnableif it consistsonly of implementationnodes.Implementatiomnodeshave three horizontal
parts: an input stripe, a name stripe, anaatput stripe. (Constantnodeshaveonly two stripesbecausename
andoutput areidentical.)In the visual trace of the ABSYNT PSM (not depicted),input and output stripesare
filled with computation goals and obtained values, so each computational step of the ABSYNT inteaprister
visualized (M6bus & Schrdder, 1990).

Making help adaptive to the actual phase of problem solving

As already indicated, in ABSYNT there are ajg@l nodes designed to support the hypotheficablem
solving phases afeliberatingand planning Clicking on the "goal" symbolin the tool bar (Figure 1a, on the
left) causes the tool bar to switch to the actual goal nodes. In general, goals are facts the problem soteer wants
becometrue. Here, goal nodesrepresentbstractplan fragmentswhich areto be implementedlater in several
possibleways by implementationnodesor subtreesGoal nodeshavea different shapeand no iconic internal
structure. In Figurd.a, "LIST EMPTY" and"CASE" areexamplesof goal nodes.Eachgoal nodeis precisely
defined as a predicative description for the yet tinffgementedprogramfragments. ThéLIST EMPTY" node
represents the goal to test if a list is empty (Formally: goal IESIPTY (list I) bool: thatbool x : x = (1 =
nil). So LIST EMPTY representdhe goal to determinefor a list | that booleanvalue which results from
evaluating"l = nil"). The"CASE" noderepresentghe goal to program conditionalizedexpressionsthat is,
condition-expression pairs (Formally: goal CASE (bpg| valueaz, bool pp, valueay,..., bool pp, value an)
value: if p then g else if p then @ else ... if g then @ fi ... fi fi ).
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Figure 1a. Student’s erroneous and overly complicated proposal to the "reverse" problem in the visual editor
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Figure 1b. Student’s hypothesis (bold nodes and links)
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Figure 1c. Positive Feedback of the ABSYNT system to student’s hypothesis
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Figure 1d. Completion proposals of the ABSYNT system on student demand

The ABSYNT goal nodesare basedon a task analysiswhich applies the transformation approach
developed in the MunicIP Project(Baueret al., 1987; Partsch,1990). The transformatiorapproachensures
that a solution canbe derivedto a given task that is correctwith respectto the task description.Currently
ABSYNT supports 42 programming tasks. For each task, there is a top level goal nodmkectian of lower
goal nodes with predicative and verbal descriptions. Data types are numbers, truth values, and lists.

In Figure 1a, a wrong solution proposal for an ABSYNT programwersinga list is just being created.
There are nodes not yet linked or even completely unspecified (shaded areas). As Figure 1a shuwigsgodl
implementationnodescan be mixed ("mixed trees") within a proposal. The solution proposalin Figure l1a
means:

If L is equal to the value of a yet unknown expression,

then the value of REVERSE is NIL,

else if L is an empty list,

then if the value of a yet unknown expression is the empty list,
then the value of REVERSE is the value of L,
else the value of REVERSE is obtained by CONSing the values of two yet
unknown expressions together.

In the hypothesedesting environment the learnermay state hypotheseqby marking parts of the
program so they get bold) about the correctness of a solution prapqsasitsthereoffor a given programming
task. The hypothesis is: "It is possible to embed the boldly marked fragment of the progreomrécizolution
to the current task!". In Figure 1b the learner stated a hypothesis which covers a frafgtheproposalcreated
so far for the'reverse"programmingtask. The hypothesiscontainsgoal nodesandimplementationnodes.The
systemanalyzeghe hypothesisand recognizesit as embeddableindicating this by returning a copy of the



hypothesis to the stude(figure 1c). If this informationis not sufficientfor solving the impassethe student
may ask the system for completion proposals at the open ImiSgure 1d, the studentaskedfor andreceived
six completions(bold). Two of them are goal nodes the othersare implementationnodes.The "REVERSE"
goal node represents the task goalf&sas possible,the systemtries to generatecompletionsconsistentwith
the student sproposal.At one point, the systemdisagreesvith the student sproposal: The system proposes
"LIST NOT EMPTY" at the third input link of the CASE node, whereas the student’s orgimabsalcontains
"LIST EMPTY" at this point (Figure 1a). Internally, the system has cremtzimpletesolution but the student
alwaysgetsonly minimal information. If the learnerstatesa hypothesisthat cannotbe embeddedn a correct
solution (not shown here),then the learnerreceivesthe messagehat the hypothesiscannotbe completedto a
solution known by the system.

The hypotheses testing environment allows to test and get completions for piamograan fragments.
It is the most significantaspectwherethe ABSYNT PSM differs from other systemsdesignedo supportthe
acquisition of functional programming knowledge, like th8P tutor (Anderson& Swarecki,1986; Anderson,
Conrad& Corbett,1989; Corbett& Anderson,1992), the SCENT advisor (Greer, 1992; Greer, McCalla &
Mark, 1989), and the ELM system (Weber, 1989; 1992). This is true also for the diffefeABSYNT andthe
visual data flow programmingsystem "Function Machines" (Feuerzeig,Richards& Roberts, 1989). As
indicated, one reasonfor the hypothesedesting approachis that in programminga bug usually cannot be
absolutely localized. Hypotheses testing leaves the decision which parts of asblgn proposalto keepto
the student and thereby providesich datasourceaboutthe learner’sknowledgeandintentions. Single subject
sessionswith the ABSYNT PSM revealedthat hypothesedestingwas heavily used.It was almost the only
means of debugging, despite the fact that the subjects had also the visual trace available. This is fwattlg due
fact thatin contrastto the trace,hypothesegesting doesnot requirea complete ABSYNT programsolution.
Hypothesedesting is possiblewith incompletesolutions, with goal nodes,and with mixed terms. So the
student may obtain feedback whether he is on the right track at very early planning stages.

The answergo the learner shypothesesre generatedy rules defining a goals-means-relatiofGMR)
(Levi & Sirovich, 1976; Nilsson, 1980). A subsetof theserules may be viewed as "pure" expert domain
knowledge not influenced by learninghus we call this setof rulesEXPERT. Theserules areableto analyze
andto synthesizeseveralmillions of plans and solutions for the 42 tasks (M6bus, 1991; M6bus& Thole,
1990). We think that such a large solution spaceecessarpecausave observedhat especiallynovicesoften
constructunusualsolutionsdueto local repairs.Currently, EXPERT containsabout1300 planning rules and
implementation rules. The planning rulelsiborategoals, andthe implementationrules describehow to realize
goals by ABSYNT implementation nodes. The goal decompositime by the planningrulesfollows the CIP
transformation approach mentioned earlier. The formal description of a tagkagramminggoal consistsof a
specification, which is transformed stepwise into a solution plan. Figilissatesone transformatiorstepto
obtain a solution plan for the task "add by add 1: Add two natural numbers using only addition and subtraction by
one." The ABSYNT tree corresponding to the resulihig transformationstepis also shownin Figure 2. The
dots in Figure 2 indicate several necessary transformationsiepss caseintroduction, predicateintroduction,
and folding. TheA-symbol means sequential conjunction.

Making help adaptive to the problem solver’s actual knowledge

The completionsshown in Figure 1d (bold programfragments)were generatecoy EXPERT rules.
EXPERT analyzesand synthesizesolution proposalsbut is not adaptiveto the learner’sknowledge.Usually
EXPERT is able to generate a large agepossiblecompletions.For example,EXPERT could generatea large
number of alternatives for the "LIST NOT EMPTYjbal nodein Figure 1d. Thusthe problemis to selectthe
most appropriate completion proposal. This is the function of a modké& déarner sactualknowledgestatein
ABSYNT.

We developeducha modelwhich we call a StateModel sinceit representshe successivéknowledge
states of a PS as he moves from a novice to an expert in the ABSYNT dtntainsistsof rules derivedfrom
EXPERT. The State Model should offer a complefwaposalto the PS which is maximally consistent with
the learner’scurrentknowledgestate. This shouldminimize the learner’ssurpriseto feedbackand completion
proposals.The StateModel is designedas an integratedpart of the ABSYNT PSM. It representghe actual
hypotheticaldomain knowledgeof the learnerat different points in the knowledgeacquisition process.The
hypothetical domain knowledge is organized as a partial oraeicod rules schemasand specific cases Micro
rules represent knowledge newly acquirednbyasse-driven learninigut not yet optimized. Theydescribesmall



planning or implementation stepstime ABSYNT domain. Schemaand casesare createdby rule composition
according to the resolution method. The State Model is created and updated by automatically inspecting the singl
editing steps performed by the user while constructing ABSYNT programs.

Detailed descriptions of the State Model are provided in (M6bus, Schréder & Thole, 1991; 1992).

task: add by add 1'add two natural numbers using only add1 und subl1”
task specification: that nat x: x=a + b

CIP-Rule “choice and quantification®:

[ ) .
case introduction that n x: exists my:(P(y)A f(y) = x)
° A

conditional inference under constraint b >0 : [l | EQUIV(m,=)
I |="is
expression: funct addadd_Znat a,b)nat: I | equal predicate
if b = Othena I |of sort m
if b > Othen that nat x: \

exists natx: [a+ (b- 1) = XA [x' + 1 =] fthat m y: P(y))
with bindings: rule /derivation

applying theCIP-Rule “choice and quantification® X /X
y IX
gives the expression:funct addadd_JInat a,b nat: P(y)/a+(b-1)=x
ifo =0 thena fly)/x +1 or addl(x’)
ifo >0
themddl(that nat x"; x'=a + subl1(b) subl(b) or b- 1

specification of subtask

This expression corresponds to the following ABSYNT head and body tree:

SEQUALDS

°
folding
°

Figure 2. One transformation step on the way to a solution plan for the task "add by add 1 "

Conclusions

The ISP-DL Theoryis a theoreticalframeworkof problemsolving and knowledgemodification which
has important implications for the designd developmenbf knowledgecommunicationsystems.Specifically,
accordingto the theorytherearethreerequirementdor informationif it is intendedto be helpful: Information
will only be appreciated if received at impasse time, information has to be aimedatréreéphaseof problem
solving, and itmust be consistentwith the actualknowledgestateof the PS. We describecbur realizationsof
theserequirementswithin the ABSYNT Problem Solving Monitor designedto support the acquisition of
functional programming skilldn ABSYNT, the PS may statehypothesesnd get completionproposalsfrom



the systemon demand(= help at impassetime). The PS may plan with goal nodes, implement the plan
afterwards and get goal nodecompletionsand implementationnode completionsas well (= help at different
problem solving phasgsFurthermore completionproposalsare designedo be adaptiveto the actuallearner’s
knowledgeby being controlledby a modelof the actuallearner’sknowledgestate (= knowledgestate adapted
help).

In this paper we focussed on planningh ABSYNT which is basedon the transformationabpproach
of the Munich CIP Project. Incorporating planning into ABSYNT has benefits from three perspectives:

. From the learner’s point of view, the benefitplanningwith goal nodesis that hypothesegestingis
possible already in the planning phase, aneggt early stagesf solution development in general. So the learner
will getinformationwhethersheor heis "on the right track" before starting with the implementation.For
example, the learner may make use of the recursion concept by creating a recursiithplarbotheringabout
its runnable implementation at this stage.

. In a preliminary empirical investigationa single subjectworked through the sequenceof ABSYNT
tasks, using the goal nodes.Our observationgare that she mademuch use of the goal nodes,judgedthem as
convenientin many casesanddid much hypothesegesting basedon partial plansand (sometimes)on mixed
trees. More empirical work concerning the acceptability and usefulness of goal nodes is under progress.
. From a help system design point of view, the benefit of integrating goal nodekém8SYNT PSM
is that in addition to hypotheses testingh goal nodesandreceivinggoal completions,it will be possibleto
offer planning rulesas help to the learner.

. Finally, from a psychological poindf view, the benefitof planningwith goal nodesis that objective
data about the planning procesanbe obtainedin additionto verbalizationsUsually suchdataaboutplanning
and reasoning "before" the implementation areawatilable.We work on the augmentatiorof our State Model
so it will be able to account for the use of goal nodesseo-orienteccompletion proposals wilbe possibleon
the planning level.
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