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Abstract: Intelligent problem solving environments (IPSEs) offer students the
opportunity to acquire knowledge while working on a sequence of problems chosen
from the domain. Up to now we have developed several IPSEs for various curricula
and applications (computer science, configuration problems, pneumatics, economic
simulation games, causal modelling, and chemistry). On the surface being very
different all IPSEs follow a common design theory: the student is encouraged to
acquire knowledge by stating and testing hypotheses.

One of these differences is the structure of domain knowledge. The aim of this
paper is to show different realizations of the hypotheses testing approach for
differently structured domain knowledge. The domains differ in their knowledge
representation, tree-like structure vs. graph-like structure, and their possibility to
absolutely locate errors. The interrelations between the domain knowledge, the
representation of the diagnostic knowledge, and the contents of the help information
are described. First we give a brief overview of our knowledge acquisition theory.
Two IPSEs with differently structured knowledge follow. The diagnostic components
and their relationships to hypothesis testing are discussed and a comparison is made
that points at the commonalities and the differences between the systems that can be
traced back to different domain structures.

1. Introduction

The long-term success of Computer-Based Training depends on a variety of factors. One of
them is the communication of qualitatively outstanding knowledge that is lasting, applicable,
transferable, and cost-effective. One approach to achieve this is to enable and encourage free,
only weakly constrained problem solving by presenting problem solving tasks from the domain
of interest, by enabling the learner to state and test hypotheses, and by offering feedback and
explanations, if necessary.

We developed systems with these features in the domains of functional programming,
time-dicrete distributed systems, room configurations [8] creation of pneumatic circuits,
business simulation games, and modelling and diagnosing in medical domains [9]. We call
these systems intelligent problem solving environments (IPSEs). From our point of view IPSEs
seem to be the most cost effective intelligent systems for the communication of problem
solving knowledge.

In this paper, we want to address the question how differences in domain structure effect
the construction of IPSEs. We will introduce a new IPSE, called TAT ("Try and Test"), designed
to support the construction of constitutional formulas of reaction equations in the domain of
plastics chemistry. We will compare TAT to our IPSE for functional programming, ABSYNT,
because in ABSYNT the relevant domain knowledge is tree-like structured, wheras in TAT it is
graph-like structured. In contrast to the domain of constructing structural formulas in
chemistry, it is usually not possible to absolutely locate errors in the domain of functional
programming. The discussion will show how these domain differences affect the architectures
of the two systems.

The paper is organized as follows: First we give a brief overview of problem solving and
knowledge acquisition and its implications for design decisions for IPSEs. Then we will
describe two case studies: ABSYNT and TAT. Then we will discuss the commonalities and
differences between the systems and show how they can be traced back to structural features of



the domains and their distinction relating to the possibility of error location. We think that this
discussion can contribute towards an epistemology and domain structure related taxonomy of
IPSEs.

2. The ISP-DL Knowledge AcquisitionTheory

Our own empirical investigations [10] led to the ISP-DL Theory [11] which is intended to
describe processes occurring while problem solving. ISP-DL Theory has three aspects:

• The distinction of different problem solving phases [6]. In the deliberation phase the
problem solver considers several goals and finally chooses one. In the planning phase a
solution plan is developed to obtain the goal. Then the plan is executed, or implemented.
Finally the problem solver evaluates the result.

• The impasse driven acquisition of new knowledge [7, 13, 14]. When knowledge is not
sufficient an impasse occurs. In response to an impasse, the problem solver applies weak
heuristics, like asking questions and looking for help. Thus the learner obtains new
information. As a result of this, the learner may overcome the impasse and acquire new
knowledge. Thus impasses trigger the acquisition of knowledge.

• The success driven improvement of existing knowledge. Successfully used knowledge
will be improved so that the number of control decisions and subgoals can be reduced [1, 7].

The ISP-DL Theory motivates the following design principles for IPSEs:
(1) The IPSE should enable free and unconstrained problem solving.
(2) The IPSE should not interrupt the problem solver but offer information only on 

demand ("just in time").
(3) The student should have the opportunity to obtain detailed feedback and 

information any time at the different phases of problem solving.
(4) The learner should be enabled to make use of her/his pre-knowledge  as much as 

possible when asking for help.

3. First Case Study: ABSYNT

ABSYNT ("Abstract Syntax Trees") supports programming novices with help and proposals
while they acquire functional programming concepts including recursion. ABSYNT was
designed to encourage explorative learning. The ABSYNT system provides a visual editor for
constructing programs. ABSYNT programs consist of trees built from connected primitive and
self-defined operator nodes, parameters, and constants. In addition program plans can be
constructed using goal nodes. In a diagnosis-, hypotheses- and help environment the learner
may state the hypothesis that her/his solution proposal (or part of that proposal) to a
programming task is correct. The system then analyzes the part of the solution proposal chosen
by the student as a hypothesis. As the result, the system gives help and error feedback on the
implementation and planning level by synthesizing complete solutions for the given
programming tasks, starting from the learner´s hypothesis. If the hypothesis is embeddable
within a complete solution, the learner may ask for completion proposals.

Figure 1 shows a stage of a solution for the programming task "list-reversal". The
learner may construct tree representations of mixed terms. Trees represent mixed terms when
they contain runnable nodes (rounded operator nodes like "REVERSE" and the parameter "L"
in Figure 1) and specification nodes or "goal" nodes (cloud-like shaped nodes like "LIST
EMPTY" in Figure 1). These "clouds" represent plans which have to be implemented later by
runnable nodes. The learner may state a hypothesis by highlighting (parts of) her/his actual
solution proposal. The hypothesis is: "The highlighted part of my solution proposal is
embeddable in a correct solution!" The system´s diagnosis component analyzes the hypothesis.

On the first level of feedback, ABSYNT informs the learner whether her/his hypothesis
is correct (embeddable). In case of a correct hypothesis, the learner may further ask the system
for completion proposals. ABSYNT offers only minimal information, that is, one node at a time
for completion in order to stimulate problem solving and self explanation [3]. "How"- and
"Why"- explanations are available on demand, too.

One important reason for stating hypothesis about the embeddability of the solution
proposals is dependent on the domain. In functional programs, it is usually not possible to
absolutely locate errors. Rather, errors consist of inconsistencies between program parts. In
ABSYNT hypotheses testing leaves the question what part of a solution proposal to keep and
what part to change to the learner in order to avoid additional burden.
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Figure 1: The Intelligent Problem Solving Environment ABSYNT

The diagnostic knowledge of ABSYNT consists of a goals-means-relation GMR. The
GMR consists of about 1100 rules which contains the knowledge about correct solutions for 42
tasks in ABSYNT. With these rules the diagnosis component of ABSYNT is able to parse and
generate several millions of solutions. This knowledge can be represented in a tree structure
which determines the start of the diagnosis process. During diagnosing the trees are handled
from the root to the leaves and from left to right (depth first, left first strategy). Figure 2 shows
examples for GMR rules depicted in their visual representations. Each rule has a rule head (left
hand side, pointed to by the arrow) and a rule body (right hand side). The rule head contains a
goals-means-pair  where the goal is contained in the ellipse and the means (implementation of
the goal) is contained in the rectangle. The rule body contains one goals-means-pair or a
conjunction of pairs, or a primitive predicate (is_parm, is_const).

The first rule of Figure 2, E1, is a goal elaboration rule. It can be read:

If  (rule head): your main goal is "absdiff" with two subgoals S1 and S2,
then leave space for a Program Tree yet to be implemented, and (rule body):
If in the next planning step you create the new goal "branching" with the three 

subgoals  "less_than (S1, S2)", "difference (S2, S1)", and "difference (S1, S2)",
then the Program Tree solving this new goal will also be the solution for the main goal"

Rule O1 in Figure 2 is an example of a rule implementing one runnable node:

If  (rule head): your main goal is "branching" with
three subgoals (IF, THEN, ELSE),

then implement an "if-then-else"-node (or "if-"-node) with three links leaving from its 
input, and leave space above these links for three program trees P1, P2, P3 yet to
be implemented; and (rule body):

If in the next planning step you pursue the goal IF,
then its solution P1 will also be at P1 in the solution of the main goal, and
if in the next planning step you pursue the goal THEN,
then its solution P2 will also be at P2 in the solution of the main goal, and
if in the next planning step you pursue the goal ELSE,
then its solution P3 will also be at P3 in the solution of the main goal.
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Figure 2:
A goal elaboration rule (E1) and a rule implementing the ABSYNT IF-operator (O1)

In order to analyze the hypotheses of the learners the diagnosis component of ABSYNT is
capable not only to parse solution proposals, but also to generate and to complete missing parts
of a partial solution. Therefore some control knowledge has to be added to the GMR rules. For
example, there has to be some restriction on the number of repeated applications of the
commutative law of addition. In ABSYNT the control knowledge is encoded in a meta-
interpreter applied to the GMR rules. For efficiency purposes, the knowledge contained in the
meta-interpreter is inserted into the GMR rules by a compilation process before runtime.

4. Second Case Study: TAT

TAT ("Try and Test") is an IPSE for training problem solving in the chemistry on plastics and
synthetic substances. It is designed as an addendum to a standard book for working on and
studying the chemistry of plastics [5] Unlike other systems that support the construction of
chemical structural formulas (e.g. ChemLab, [2]), TAT encourages hypotheses testing and
delivers knowledged-based help information on demand. TAT contains 61 tasks concerning
the theoretical foundations of polymerization. For getting started, there are some introductory
tasks for constructing the chemical structural formulas of some simple synthetic substances,
called monomers. In constructing the formulas for these molecules, the learner acquires the
concepts of partial charge and ionic charge. These concepts are necessary in order to
understand the chemical reaction processes going on in the construction of the molecule
chains, called polymers. Now the learner is prepared to construct chemical structural formulas
of the reaction equations of the initiating-, growth-, and final reaction processes. TAT contains
tasks about different types of polymerization: Radical, anionic, and cationic polymerization,
ionic polymerization of heterocycles, addition and condensation polymerization,
polymerization by oxidative coupling, and copolymerization. Furthermore the distinct results
of stereospecific polymerization are considered.

The learner contructs the structural formulas of the molecules and the reaction
equations in a two dimensional graphical editor. In the domain of constructing structural
formulas it is possible to locate errors absolutely. Therefore, in contrast to ABSYNT, in the
system TAT the learner may state hypotheses about the correctness of his solution proposals
(and not only about their embeddability). TAT analyzes the hypotheses and gives feedback to
the learner on an increasingly detailed level in order to favor self explanation and problem
solving. Firstly, the learner is informed whether his hypothesis contains invalid elements or
bonds without depicting the errors by detail. TAT gives the feedback: The hypothesis contains
wrong elements or bonds (if any). Now the learner may try to find these errors by himself. In
the case of missing knowledge the learner may ask TAT for further help. Next, the learner is
informed whether the solution contains errors concerning the charge and the lone pairs of
electrons. Again, the learner may decide to self explain the information given and return to
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Figure 3: The Intelligent Problem Solving Environment TAT

problem solving, or ask for more information. The last level of feedback consists of four kinds
of information:

• Correct parts of the hypothesis are presented in the feedback window.
• The positions of some elements of the hypothesis may have to be changed. These elements

are marked by a green square with a diagonal in it.
• Elements of the hypothesis that have to be deleted are marked by a red square with cross.
• Missing elements are indicated by empty green squares.

Figure 3 shows the feedback window to a hypothesis on this level (task: "Polymerization
by oxidative coupling of 2,6-dimethylphenole with oxygen"). The left part of the feedback
window shows the correct structures of the learner´s hypothesis. The chlorine element on the
lower left is wrong, so it is marked by a (red) square with cross. The right part of the feedback
window indicates yet missing structure. By clicking onto the empty (green) squares, the learner
may uncover the rest of the chemical structural formula step by step.

In contrast to ABSYNT, the diagnostic knowledge for analyzing the learner´s structures
of the chemical reaction equations is represented by graphs rather than by trees. The graphs are
coded by lists of atoms and bonds. The diagnostic component of TAT is composed of a
bibliography of solution patterns and a set of grammar rules, expressing equivalence
transformations [4, 12].

task_solution('Vinyl chlorid', 
	[atom(1, _, carbon, delta_plus, 0), 
		atom(2, _, carbon, delta_minus, 0),  
		atom(3, _, hydrogen, delta_plus, 0), 	
		atom(4, _, hydrogen, delta_plus, 0), 
		atom(5, _, hydrogen, delta_plus, 0), 
		atom(6, _, chlorine, delta_minus, 0),
	 bond(7, _, sigma_pi, 1, 2), 
		bond(9, _, sigma, 1, 3), 
		bond(10, _, sigma, 1, 4), 
		bond(11, _, sigma, 2, 5), 
  bond(12, _, sigma, 2, 6)]).

equivalence transformation 

CH
2

C H

H

Figure 4: Solution Pattern and Equivalence Transformation Rule



Figure 4 shows a solution pattern list (left hand side) and a graphical representation of an
equivalence tranformation rule (right hand side). The atoms are the nodes and the bonds are
the links of the graph. The first number in the atom and bond terms is simply an instance
number. The "0" in the atom terms indicates the number of lone electron pairs, relevant for the
polymerization reactions according to A. FRANCK (Franck, 1996). The last two numbers in
the bond terms indicate the atoms linked by the bond, "sigma_pi" is a double bond, "sigma" is a
single bond. The example of a transformation rule expresses the equivalence between the
structure (one carbon atom, two hydrogens, two sigma bonds) and the group symbol (CH2).

When TAT analyzes a learner´s hypothesis, the atoms and the bonds of the hypothesis
are matched to the atoms and bonds of the stored solution representation(s) like the one just
shown. The order of processing is not predefined. For example, any C-atom of the learner´s
hypothesis may be matched to any C-atom of the system´s solution list. TAT creates all
possible matchings of the polyvalent atoms between the hypothesis and the solution
representation until it detects that the hypothesis is embeddable in one of the solution
representations for the given task, or until it has found that embedding that leads to the minimal
deviation between the hypothesis and the solution representation. This graph matching process
has to take care of the fact that the position of bonds is not determined in most cases, except for
stereoisomeres like malein acid (cis-form) and fumar acid (trans-form). For example, if the
chlorine atom and the upper right hydrogen atom in the rightmost structure of Figure 5 switch
their position, the graphical formula is still correct.

Incorrect sketch of the student Feedback of TAT with Error Marks Correction Proposal of TAT

Figure 5: Hypothesis to vinyl chloride with feedback of TAT on most detailed level

In aromatic hydrocarbons, the bonds at benzene rings need special handling. There are ortho-,
meta- and para-positions of substituents. These different positions have to be distinguished
(Figure 6, methyl group "CH3", any organic group "R"). In ortho-position, two substituents are
"neighbors". In meta-position, there is one C-atom with unsubstituted hydrogen atom (or
another different substituent) in between. In para-position, the substituents are located in
opposite position. Each position can be constructed in several ways. For example, there are six
graphical structures for the para-position at a benzene ring. In TAT, substituents at benzene
rings are consecutively numbered, starting from an arbitrary point. In the stored graph
representations of the solutions this starting point is represented as a variable, so each possibility
can be matched.

ortho meta para

Figure 6: Benzene rings with ortho- meta- und para-positions of substituted groups

5. Comparison of the Diagnostic Processes of ABSYNT and TAT

In this section, we want to point out the commonalities and differences of diagnostic processes
for two domains differing in two respects: (i) the domain structure is tree structured vs. graph



structured, (ii) errors cannot vs. can be absolutely localized. In ABSYNT, functional
programming, we have tree structures without absolute error location. In TAT, constructing
graphical formulas in chemistry, we have graph structures with absolute error location. Table 1
points out these differences.

Table 1: Differences in task domains between ABSYNT and TAT

                                                        ABSYNT                                                       TAT                                    ____
number of solutions high low
for a task

number of ways to low high
graphically represent
one solution

representation of tree-like graph-like
solutions

possibility of general not given given
error location

kind of error inconsistency "absolute"
detection errors errors
________________________________________________________________________________________

In ABSYNT, even under simple restrictions there are often several millions of solutions to one
task. This huge solution space is based on different planning steps. The aims of ABSYNT are to
adaptively support any problem solving phase on any grainsize of help information and to put
explanations at the leaners disposal. This is the reason why the diagnostic component of
ABSYNT is developed as a derivation system consisting of rules containing only one planning
step or one implementation step. In TAT, there are only a few ways (sometimes even only one
way) to express the structural formulas of the chemical reaction processes. The aims of TAT
are to locate errors in structure formulas and to give completion proposals on the "atom &
bond"-level. Solution cases and equivalence rules are appropriate for these tasks.

In ABSYNT, every solution is topologically unique, with the exception of the
commutative laws of some operations like addition. In TAT, we may rotate the graphical
representation of a structural formula in many ways without changing it semantically, with the
expection of stereoisomerism and substituents of benzene rings. Functional programs are tree-
like, chemical structural formulas are graph-like. Finally, as stated, in functional programming
we have inconsistency errors (parts of a program do not "fit together"). The learner may choose
the part of his non-embeddable hypothesis to maintain by himself. In TAT is possible to
determine the error locations (if any), so we might have "absolute" errors. For example, vinyl
chloride must not contain a bromide atom. These kinds of hard restrictions do not hold for
functional programs (A solution for "list-reverse" is not necessary wrong just because it
contains an addition operator). On demand ABSYNT offers "why"- and "how"-explanations
generated from the GMR rules. TAT is not able to explain the detected errors  or the
completion proposals. These differences of task domains lead to differences in the diagnosis
process which are shown in Table 2.

Table 2: Differences in diagnosis between ABSYNT and TAT

                                          ABSYNT                           _                           TAT                                                  ____
representation of rules defining a stored solution patterns and
domain knowledge goals-means-relation equivalence transformation rules

diagnosis process application of fitting stored solution
goals-means-relation patterns to actual
to actual solution graphical orientation

diagnosis results statement about statement about
embeddability of hypothesis correctness of hypothesis

If true: Complete If true: Complete
solution containing solution containing



                                          ABSYNT                           _                           TAT                                                  ____
the hypothesis the hypothesis

If false: The learner may choose If false: Minimal list of
the part of his hypothesis errors
to maintain

explanations "Why"- and "How"- explanations not available
________________________________________________________________________________________

6. Summary

This paper has shown again that the design of IPSEs [8, 9] including the hypotheses testing
approach is feasable for very diverse domains. Mainly the comparison shows that every domain
needs special care to some changes. In the first place, these necessary changes and extensions
depend on the special aims of the intelligent problem solving environment. Some of these
requirements may depend on features of the domain (e.g. the error location), others are
domain independent (e. g. supporting the planning phase). So, the knowledge acquisition
process and the specification of the system´s capabilities have to be done precisely with a high
amount of accuracy to be able to choose the appropriate knowledge representation.
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