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Abstract

This paper describes an approach to model students” knowledge growth from
novice to expert within the framework of a help system, ABSYNT, in the domain of
functional programming. The help system has expert knowledge about a large solution
space. On the other hand, in order to provide learner-centered help there is a model of
the students” actual state of domain knowledge. The model is continuously updated
based on the learner’s actions. It distinguishes between newly acquired and improved
knowledge Newly acquired knowledge represented by augmenting the model with
rules from the expert knowledge bakeowledge improvemend represented by rule
composition. In this way, the knowledge contained in the model is partially ordered
from general rules to more specific schemas for solution fragments to specific cases (=
example solutions).

The model is implemented but not yet actually used for help generation within
the help system. This paper focuses on knowledge diagnosis as accomplished by the
model, and on an empirical analysis of some of its predictions.

Keywords: Knowledge acquisition, knowledge optimization, schema identification, empirical
validation of student models, analysis of time-based and correction-based data

1. Introduction

The problem of student modelling has become an important research topic especially witl
the context of help and tutoring systems (Anderson et al., 1987; Brown & Burton, 1982; Frasson
Gauthier, 1990; Kearsley, 1988; Sleeman, 1984; Sleeman & Brown, 1982; Wenger, 1987) beca
the design of such systems raises questions like: Which order is the best for a set of tasks tt
worked on? Why is information useless to one person and helpful to another? How is help materia
be designed? Advance in these questions seems to be possible only if the actual knowledge ste
the learner can be diagnosadinein an efficient and valid way. This is difficult (Self, 1990; 1991)
but necessary for a system in order to react adequately to the student’s activities. Furthermore, i
been well recognized that progress in student modelling depends much on understanding what
student is doing (and why). Thus detailed assumptions about problem solving, knowled:
representation and acquisition processes are needed.

We face the student modelling problem within the context of a help system in the domain
functional programming: The ABSYNT Problem Solving Monitor. ABSYNAlStractSyntax
Trees") is a functional visual programming language designed to support the acquisition of basic

* We thank Jorg Folckers for reimplementing ABSYNT in LPA-PROLOG for Macintosh computer.
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functional programming knowledge. The ABSYNT Problem Solving Monitor provides help anc

proposals for the student while constructing ABSYNT programs to given tasks. In order to make t

system’s actions adaptive to the student, we model the student’s knowledge. Our basic approach

on three principles:

. To try to "understand what the student is doing", and why. This amounts to constructing
theoretical frameworlwhich is powerful enough to describe the continuous stream of

hypothetical problem solving, knowledge acquisition and utilization events, and to explain tt
stream of observable actions and verbalizations of the student.

. To use a subset of this theoretical framework in order to construct a student model contain
the actual hypothetical state of domain knowledge of the studentstalessmodemust be
(and can be) simpler than the theoretical framework because its ghcient online
diagnosis of domain knowleddmsed on the computer-assessable data provided by thi
student’s interactions with the system.

. To fill the gap between the theoretical framework and the state model by constructing
offline model of knowledge acquisition, knowledge modification, and problem solving
processes. Thigsrocess modegbrovides hypotheticaleasonsfor the changing knowledge
states as represented in the state model.

In accordance with these principles, we persue a three-level approach:

. A theoretical framework of problem solving and learning serves as a base for interpreting a
understanding the student’s actions and verbalizations. We call this fram&SRaBL
Theory (Impasse Success Problem - Solving DrivenLearning Theory).

. An internal model(IM) diagnoses the actual domain knowledge of the learner at differen
states in the knowledge acquisition procestaté model It is designed to be an integrated
part of the help system ("internal” to it) in order to provide user-centered feedback.

. An external mode(EM) is designed to simulate the knowledge acquisifoocesse®f
learners on a level of detail not available to the IM (for example, including verbalizations’
Thus the EM is not part of the help system ("external” to it) but supports the design of the I\

Thus ISP-DL Theory, IM, and EM are designed to be mutually consistent but serve differe
purposes. This paper is concerned with the IM. It is organized as follows: First we will briefl
describe the ISP-DL Theory, our help system, the ABSYNT problem solving monitor, and th
domain of functional programming knowledge as incorporated in ABSYNT. Then the IM is
described and illustrated in some detail. Empirical predictions and a first evaluation are present
Finally we will discuss some possible extensions and the role of the IM for adaptive help generatio

2. The ISP-DL Knowledge Acquisition Theory

As indicated, the ISP-DL Theory is intended to describe the continuous flow of probler
solving and learning of the student as it occurs in a sequence of, for example, programming sessi
In our view, existing approaches touch upon main aspects of this process but do not cover al
them. Consequently, the ISP-DL Theory is an attempt to integrate several approaches. Bef
describing it, we will briefly discuss three theoretical approaches relevant here:
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In van Lehn’s (1988; 1990; 1991b) theory of Impasse Driven Learning, the concept of ¢
impasse is of central importance to the acquisition of new knowledge. Roughly, an impasse
a situation where "the architecture cannot decide what to do next given the knowledge and
situation that are its current focus of attention" (van Lehn, 1991b, p. 19). Impasses trigg
problem solving processes which may lead to new information. Thus impasses are
important source for the acquisition of new knowledge, though probably not the only on
(van Lehn, 1989; 1991b). Impasses are also situations where the learner is likely to activ:
look for and to acceyttelp (van Lehn, 1988). There is also empirical evidence that uncertainty
leads to active search for information (Lanzetta & Driscoll, 1968). But problem solving o
trying to understand remedial information might as well lead to secondary impasses (Brown
van Lehn, 1980).

The idea of impasse-driven learning is also found elsewhere. As an example from machi
learning, Prodigy (Carbonell & Gil, 1987; Minton & Carbonell, 1987) acquires new domair
knowledge and new heuristics in response to noticing differences between expected ¢
obtained outcomes. As an example from memory research, scripts may be augmented v
information about exceptions in response to mispredicted events (Lehnert, 1978; Schal
1982). Refining hypotheses in the context of concept learning (i.e., Egan & Greeno, 197
may be considered another instance.

Impasse Driven Learning Theory is concerned abouatitionsfor problem solving, using
help, and thereby acquiring new knowledge. It is not concerned about optimizing knowled
already acquired. "Knowledge compilation ... is not the kind of learning that the theor
describes" (van Lehn, 1988, p. 32). Thus Impasse Driven Learning Theory covers i
importatnt part of the processes we are interested in, but not all of them.

In SOAR (Laird, Rosenbloom & Newell, 1986; 1987; Rosenbloom et al., 1991) the concej
of impasse driven learning is elaborated by different types of impasses and weak heurist
performed in response to them. Impasses trigger the creation of subgoals and heuristic se.
in corresponding problem spaces. If a solution is found, a chunk is created acting as a n
operator in the original problem space.

In SOAR all learning is triggered by impasses. But these impases are more fine-grained tf
in van Lehn’s theory. Since our intention is to describe and understand students”actions :
verbalizations, we are interested in coarse-grained impasses corresponding to observz
behavior. On this level of analysis, it seems questionable whether all knowledge acquisiti
events can reasonably be described as resulting from impasses (van Lehn, 1989; 1991b).
example, existing knowledge may be deductively improved as a result of its successi
application without changing the problem space.

ACT* (Anderson, 1983; 1986; 1989) focuses on the success-driven optimization of alreac
existing knowledge by knowledge compilation but pays less attention to the problem whe
new knowledge comes from. This is a main topic of PUPS (Anderson & Thompson, 198;
Anderson, 1987; 1989) which provides mechanisms for the inductive acquisition of rule
from the perception of causal relationships and from analogy. But conditions for knowledc
acquisition events (like impasses) is less focused on.

We think that for our purposes it is necessary to cover problem solving, impasse-drive

learning, and success-driven learning as well. Thus ISP-DL Theory incorporates the followir
aspects:

The distinction of different problem solving phases (according to Gollwitzer, 1990):
Deliberatingwith the result of choosing a goalanninga solution to itexecutingthe plan
andevaluatingthe result.

Theimpasse-driven acquisition of new knowledlyeresponse to impasses, the problem
solver applies weak heuristics, like asking questions, looking for help, etc.(Laird, Newell ¢
Rosenbloom, 1987; van Lehn, 1988; 1989; 1990; 1991b). mbusknowledge may be
acquired
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. The success-driven improvement of acquired knowle8gecessfully usekhowledge is

improvedso it can be used more effectively. More specifically,rbfe composition
(Anderson, 1983; 1986; Lewis, 1987; Neves & Anderson, 1981; Vere, 1977), the number
control decisions and subgoals to be set is reduced. In our approach, composition is base:
the resolution and unfolding method (Hogger, 1990).

We describe the ISP-DL Theory hierarchical higher Petri net@Huber et al., 1990), though
alternative modelling formalisms are possible, esggamcommunication (Gregory, 1987). Petri
nets show temporal constraints on the order of processing steps more clearly than a purely ve
presentation. Thus they emphasize empirical predictions. The whole process is divided intc
recursive subprocessgsages: "Problem Processing”, "Goal Processing”, "Nonoperational Goal
processing" and "Operational Goal Processing" (Figures Ridyes(circles/ellipses) represent
states (e.g., the content of data memortemysitions(rectangles) represent events or process steps.



24.09.1996 11:36
Goal Processing

. | ON-0DE
operatlonar rational?

Problem Processing

Go

deliberate *
FG FG Fc|(Knowledg
FQ operationa| Environ EES
memory Goal
trace oa ment hon-op
i rational
Environ-
ment oal
operational .
Goal Processirfl Problem Processifl FronTop
: rational
Goal Processin Foperational "‘é‘b ..... I _,lﬁt'_l_:l Goal
! Goal -> Goal | Goal -> Goal | SUPdOFS e Proces
; : ‘Result -> | 1 fistics ->Goals,
Solution -> | } i [ H.based Solut.; | |
Solution | {Resultof & A" . i R
B et ! { evaluation ;_I?_S.QIFUQ_Q_S““J : :
Rhiatets . 1 non-op. ¢
ubgoars;/Heuristity |} Goal ->
memory\Heuristic4 based )i Goal
trace olutiong/|: go:Ut_ >
T ¢ Solution:
deductive know- FG e
ledge optimizatiol . )
e Res [ Reaction {d inductive know
of eva Impasse| | ledge acquisitigl
- uatio .
Figure 1 @ ; Reaction to succe Solution
Figure 2 Out

Operational Goal Processing

=

analogizeI synthesize

execute: operatti execute: heurist

Non-oper ational
Goal Processing

memor
trace

Rest of Goal
-> Goals

evaluate

_ Result o

Figures 1 - 4: The ISP-DL Theory of problem solving and learning

First Solutiong
-> Solution !

5



24.09.1996 11:36
Places may contain tokens which represent mental objects (goals, memory traces, heuris

etc.) or real objects (eg. a solution or a behaviour protocol). Places can be marked withftags (
entering,Out for exiting placeFG for global fusion set). An FG tagged place is common to several
nets (eg. the Knowledge Base). Transitions can be tagged with HI (HI for hierarchical invocatic
transition). This means that the process is continued in the called subnet. The dotted boxes s
which places are corresponding in the calling net and in the called net. Shaded transitions and pl:
are taken into account by the IM (see below).

Problem Solving is started in the padgrrdblem ProcessiigFigure 1). The problem solver
(PS) strives for one goal to choose out of the set of gakdbbératé.

A goal may be viewed as a set of facts about the environment which the problem solver wa
to become true (Newell, 1982). A goal can be expressegpesimative descriptiomvhich is to be
achieved by a problem solution. For example, the goal to create a program which tests if a nat
number is even, "even(n)", can be expressed by the description: "funct even = (nat n) bool: ex
((nat k) 2 * k =n)". The "even" problem can be implemented by a function with the same name, o
parameter "n" which has the typeatural numbel, the output type of the function isbaoleantruth
value, and the body of the function has to meet the declarative specification: "There exists a nat
number k such that 2 * k = n". The goal is achieved when a program is created which satisfies 1
description.

The goal is processed in the pa@oal Processing(Figure 2). If the PS comes up with a
solution, the used knowledge is optimizettductive knowledge optimizatiowhen the PS
encounters a similar problem, the solution time will be shorter. The net is left when there are
tokens in Goals', "Goal' and "Solutions.

In the page "Goal Processsing" (Figure 2) the PS checks whether his set of problem solv
operators is sufficient for a solutioraperational?"/"non-operational?

An operational goal is processed according to the pagerational Goal ProcessifigFigure
3). A plan issynthesizedy applying problem solving operators, or it is createcabglogical
reasoning. The plan is a partially ordered sequence or hierarchy of domain-specific problem solv
goals (or of domain-unspecific heuristic goals, this will be explained in a moment). In either case, 1
goals in the plan arexecutedusing domain-specific or heuristic operators. Execution leads to &
problem solvingprotocol which is used in combination with the knowledge baseveduatethe
outcome. Theesult of the evaluatiogenerates an impasse or a success. The result of the evaluatic
Is transferred back to the padgedal Processing

Within the page "Goal Processing”, impasses may arise at different points. For example, 1
"synthesize" process may fail to proceed with the plan because of missing planning knowledge
insufficient control knowledge to make a decision. An impasse might also arise during tr
"execution" process if there are no operators or heuristics to execute a particular plan fragment.

Thereactionof the PS tsuccesss: leave Goal Processingwith asolution The reaction to
animpasses the creation of subgoals to use weak heuristics for problem solving. Now there is

recursive call to "Problem Processing". "Goal Processing” and "Operational Goal Processing" .
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called again. This time, within Operational Goal Processing a plan to use heuristics is synthesized

executed. (Simple examples for these weak heuristics are to use a dictionary, to find an expel

consult, and so on.) A memory trace of the situation which led to the impasse is kept. If the use

heuristics is successful, the resulivwefold

. The heuristically based solution is transferred back further to the instance of the page "Gt
Processing” where the impasse arose. Now the impasse is solved. The obtained solutio

related to the memory trace of the impasse situation. Thus wi#oal"Processinggnew
domain-specifiproblem solving operators araluctivelyacquired

. The obtained heuristically based solution is transferred back to "Problem Processing". Thus
"Problem Processirighe domain-unspecifibieuristic knowledge is deductivebptimized
So next time the PS encounters an impasse, he or she will be more skilled and efficient
using a dictionary, finding someone to consult, etc.

Finally, a non-operational goal is processed according to the paoyedperational Goal
Processing (Figure 4). The problem is decomposed and the subsolutions are composed to a fil
solution.

It is possible and necessary to refine the theory’s transitions and places. For our purpose
simple theory is sufficient. Important for the rest of the paper are the theoretically and empirical
validated statements:

. New knowledge is acquired only at impasse time after the successful application of we
heuristics and on the basis of memory traces.

. Information is helpful only in impasses and if it is synchronized with the knowledge state
the PS.

3. The ABSYNT Problem Solving Monitor

The visual language ABSYNT is based on ideas stated in an introductory computer scier
textbook (Bauer & Goos, 1982). ABSYNT is a tree representation of pure LISP without the list da
structure (but we currently incorporate it) and is aimed at supporting the acquisition of bas
functional programming skills, including abstraction and recursive systems. The motivation at
analysis of ABSYNT with respect to properties of visual languages is described in Mébus & Thol
1989. The ABSYNT Problem Solving Monitor provides @onic programming environment
(Chang, 1990). Its main components are a visual editor, trace,lsid aomponenthypotheses
testing environment

In the editor (Figure 5) ABSYNT programs can be constructed. There is a head window anc
body window. The left part of Figure 5 shows the tool bar of the editor: The bucket is for deletir
nodes and links. The hand is for moving, the pen for naming, and the line for connecting nod
Next, there is a constant, parameter and "higher", self-defined operator node (to be named by
learner, using the pen tool). Constant and parameter nodes &awbsof ABSYNT trees. Then
several primitive operator nodes follow ("if", "+", "-", ™", ...). Editing is done by selecting nodes
with the mouse and placing them in the windows, and by linking, moving, naming, or deleting thel

7
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Nodes and links can be creaiadependentlylf a link is created before the to-be-linked nodes are

edited, then shadows are automatically created at the link ends. They serve as place holders for r
to be edited later. Shadows may also be created by clicking into a free region of a window. In Fig
5, a program is actually under development by a student. There are subtrees not yet linked and n
not yet named or completely unspecified (shaded areas). The upper part of Figure 5 shows the !
window for calling programs. This is also where the visual trace starts if selected by the student.
the visual trace, each computational step is made visible by representing computation goals

results within the upper and lower region of operator nodes, and within the lower region of parame
nodes (see Mobus & Schrdoder, 1990).

® Absynt Frame Start

Start

) G
Nwl= ABSYNT
@ : Head S Body

N =—

=5 L

= —

Figure 5: A snapshot of the visual editor of ABSYNT

In thehypotheses testing environméRigure 6), the PS may state hypotheses (bold parts of
the program in the upper worksheet in Figure 6) about the correctness of programs or parts the
for given programming tasks. The hypothesis is: "It is possible to embed the boldly marked fragm«
of the program in a correct solution to the current task!". The PS then selects the current task fro
menu, and the system analyzes the hypothesis. If the hypothesis can be confirmed the PS is shc
copy of the hypothesis. If this information is not sufficient to resolve the impasse, the PS may ask
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more information (completion proposals). If the hypothesis cannot be confirmed the PS receives

message that the hypothesis cannot be completed to a solution known by the system.

The upper part of Figure 6 shows a solution proposal to the "even" problem just construct
by a student: "Construct a program that determines whether a number is even!" This solution does
terminate for odd arguments. Despite of thatyy@othesigbold program fragment in the upper part
of Figure 6) is embeddable in a correct solution. So the hypothesis is returned as feedback to
student (thin program fragment in the middle part of Figure 6). The student then may ask foi
completion proposal generated by the system. In the example the system completes the hypothesi
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Figure 6: Snapshot of the ABSYNT Hypotheses Testing Environment
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successively with the constant "true" and with the "="-operator (bold program fragments in tt

middle part of Figure 6). Internally, the system has generated a complete solution visible in the lov
part of Figure 6. So the student’s solution in the upper part of Figure 6 may be corrected by
interchange of program parts.

The hypotheses testing environment is the most significant aspect where the ABSYN
Problem Solving Monitor differs from other systems designed to support the acquisition of function
programming knowledge, like the LISP tutor (Anderson & Swarecki, 1986; Anderson, Conrad «
Corbett, 1989; Corbett & Anderson, 1992), the SCENT advisor (Greer, 1992; Greer, McCalla
Mark, 1989), and the ELM system (Weber, 1988; 1989). One reason for the hypotheses test
approach is that in programming a bug usuzdignot be absolutely localizeaind there is a variety of
ways to debug a wrong solution. Hypotheses testing leaves the decision which parts of a bui
solution proposal to keep to the PS and thereby provides a rich data source about the PS’s knowl
state. Single subject sessions with the ABSYNT Problem Solving Monitor revealed that hypothes
testing was heavily used. It was almost the only means of debugging wrong solution propos:
despite the fact that the subjects had also the visual trace available. This is partly due to the fact th
contrast to the trace, hypotheses testing does not require a complete ABSYNT program solution.

The answers to the learner’s hypotheses are generated by rules defjoialg-aneans-
relation (GMR) These rules may be viewed as "pure" expert domain knowledge not influenced t
learning. Thus we will call this set of rules EXPERT in the remainder of the paper. Currentl
EXPERT contains about 650 rules and analyzes and synthesizes several millions of solutions fol
tasks (Mobus, 1990; 1991; M6bus & Thole, 1990). One of them is the "even" task just introduce
more tasks will be presented later (see Figure 14). We think that such a large solution spac
necessary because we observed that especially novices often construct unusual solutions due to
repairs. (This is exemplified by the clumsy-looking student proposal in the upper part of Figure 6.)

The completions shown in the middle part of Figure 6 (bold program fragments) and tt
complete solution in the lower part of Figure 6 were generated by EXPERT rules. EXPERT analy:
and synthesizes solution proposals but isadafptiveto the learner’s knowledge. Usually EXPERT
is able to generate a large sepoksiblecompletions. Thus the main function of tiM (internal
student model), which rules are derived from EXPERT, setecta completion from this set which
is maximallyconsistentvith the learner’s current knowledge state. This should minimize the learner
surprise to feedback and completion proposals.

4. GMR Rules

This section describes the goals-means-relation GMR. The set of GMR rules may be split
two ways:rule type(simple, composed) vdatabaseof the rules (EXPERT, POSS, IM).

. There are three kinds simple rulesgoal elaboration rulesrules implementing one
ABSYNT nodeandrules implementing ABSYNT program heads

11
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. Composite rulesre created by merging at least two successive rules parsing a solutio

Composites may be produced from simple rules and composites. A composite is callec

schemaf it contains at least one pair of variables which can be bound to a goal tree and

corresponding ABSYNT program subtree. But if a composite is fully instantiated (i.e., it
variables can only be bound to node names or node values), then it is called a

The other way to partition the set GMR is theta baseof the rules. As stated, EXPERT
contains the expert domain knowledge. The sets IM and POSS will be described below.

Figure 7 shows examples for simple rules depicted in their visual representations. Each r
has arule head(left hand side, pointed to by the arrow) andile body(right hand side, where the
arrow is pointing from). The rule head contairgoals-means-paiwhere the goal is contained in the
ellipse and the means (implementation of the goal) is contained in the rectangle. The rule bc
contains one goals-means-pair or a conjunction of pairs, or a primitive predicate (is_parm, is_cons
El

Program Ies\s{than difference difference P[ﬁi;am
free branchinc
~fem
gmr gmr
o1
IF THEN ELS P1 P2 P3

N/

branching

if-the\ln-/elsc P1 P2 P3

agmr gmr gmr agmr

Figure 7: A goal elaboration rule (E1) and a rule (O1) implementing the ABSYNT node "if-then-else

The first rule of Figure 7, E1, is a goal elaboration rule. It can be read:

If (rule head:
your main goal is "absdiff" with two subgoals S1 and S2,
then leave space for a program tree yet to be implementedrdadOdy:
If in the next planning step you create the new goal "branching" with the three subgoals
"less_than (S1, S2)", "difference (S2, S1)", and "difference (S1, S2)",
then the program tree solving this new goal will also be the solution for the main goal”

Ol in Figure 7 is an example of a simple rule implementing one ABSYNT node (operato
parameter, or constant):

If (rule head:
your main goal is "branching" with three subgoals (IF, THEN, ELSE),

12
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then implemengn "if-then-else"-node (or "if-"-node) with three links leaving from its
input, and leave space above these links for three program trees P1, P2, P3 yet to
be implemented; andule body:

if in the next planning step you persue the goal IF,

then its solution P1 will also be at P1 in the solution of the main goal, and
if in the next planning step you persue the goal THEN,

then its solution P2 will also be at P2 in the solution of the main goal, and
if in the next planning step you persue the goal ELSE,

then its solution P3 will also be at P3 in the solution of the main goal.
5. Composition of Rules

In our theory, composites represent improved sped-up knowledge. Together with the simj
rules, they constitute a partial order from simple rules ("micro rules") to solution schemata to speci
cases representing solution examples for tasks. In this section we will define rule composition.

If we view the rules as Horn clauses (Kowalski, 1979), then the composite RIJ of two rule
RI and RJ can be described by the inference rule:

Rl:(F<- P & C) RJ: (P' <- A)

RIJ:(F<- A & Cp

The two clauses above the line resolve to the resolvent below the line. A, C are conjunctic
of atomic formulas. P, P', and F are atomic formuais. the most general unifier of P and P'. RIJ

Is the result of unfolding RI and RJ - a sound operation (Hogger, 1990).
For example we can compose gahemaC7 (Figure 8) out of the set of simple rules {O1,
O5, L1, L2}, where:

0O1. gmr(branching(IF,THEN,ELSE),if-pop(P1,P2,P3)):-
gmr(IF,P1),gmr(THEN,P2),gmr(ELSE,P3).

O5. gmr(equal(S1,S2), eg-pop(P1,P2)):- gmr(S1,P1),gmr(S2,P2).

L1:  gmr(parm(P), P-pl):- is_parm(P).

L2:  gmr(const(C), C-cl):- is_const(C).

C7. gmr(branching(equal(parm(Y),const(C)),parm(X),ELSE),

if-pop(eqg-pop(Y-pl,C-cl),X-pl,P)):-

is_parm(Y),is_const(C),is_parm(X),gmr(ELSE,P).

where:

if-pop = primitive ABSYNT operator "if-then-else" (or "if")
eq-pop = primitive ABSYNT operator "="

P-pl, X-pl, Y-pl = unnamed ABSYNTparameteteaves

C-cl = empty ABSYNTconstanteaf

We also can describe the composition of node implementing rules Rl and RJ with a shorthe
notation:
RIJ = Rlk - RJ
The index k denotes the place k in the goal tree of the head of RI. A place k is the k-th varial
leaf numbered from left to right (e.g.: % ELSE). The semantics of "" can be described in three
13
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steps. First, the variable in place k in the goal term in the head of RI is substituted by the goal tern

the head of RJ. Second the call term P in the body of RI which contains the to be substituted variz
unifies with the head of RJ and is replaced by the body of RJ. Third the unifeapplied to the
term resulting from the second step, leading to the composed rule RIJ. Thus the variables effecte:
the unification in step two are replaced by their bindings.

For example O41 « L1 = gmr(branching(lF, parm(P), ELSE), if-pop(P1,P-pl,P3)):-
gmr(IF,P1), is_parm(P), gmr(ELSE, P3). C7 can be composed from the rule set {O1, O5, L1, L.
in 16 different ways. Two possibilities are:

C7=(0beL1)1+((OL2)1L1)
C7=(((Oh « 053+ L1)p+L2)1 L1

C7 : Composite of the rules O1, O5, L1, anc

Y C
Y C
\/ & &
IS_paramete IS_constan
if-then-elst

branching

&
IS_paramete gmr

- o (el

gmr

Figure 8: The composite C7

6. Empirical Constraints of Simple Rules, Chains, Schemata and Cases

Rules, rule chains and schemata give rise to diffenentirical predictionsThe purpose of
this section is twofold:

. To introduce hypotheses about the application of novice and expert knowledge, viewed
simple GMR rules and composites. These hypotheses will be used in the Internal Model.

. To show which specific predictions follow from these hypotheses.

Any approach designed to represent changing knowledge states must mirror the shift frc
novice to expert. In general, novices wedguentially set more subgoals, and need more control
decisions, while experts work parallel, set less subgoals, and need less control decisions (Chase «
Simon, 1973; Elio & Scharf, 1990; Gugerty & Olson, 1986; Simon & Simon, 1978). Here thit
difference is reflected in the partial order from simple rules to schemata to specific cases.

In order to demonstrate this difference, it is necessary to specify hypotheses about |
problem solving behavior. According to the ISP-DL Theory, a plan is synthesized from a goal, al
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execution of operators leads to a protocol of actions and verbalizations (Figure 3). Thus with resg

to the theory we make a distinction between the problem solving phgdasmhgandexecutionA

plan synthesizeor "planner” synthesizeplans, and awperator executoor "coder" executes
operators to implement the plans. The coder has domain specific knowledge (GMR rules) f
implementing ABSYNT trees, but no planning knowledge. The coder also has very limited executi
knowledge: pattern matching without unification (except for parameter and higher operator nam
and constant values). More complex processes are left to the planner whose job is to guide the c«
based on domain-specific planning knowledge and on weak heuristics (to be specified by the Exte
Model, as stated earlier).

For illustration of a hypothetical interaction sequence between planner and coder, we assL
that the goal "branching (equal (parm(y), const(0)), parm(x), ELSE)" is to be implemented, and ti
the coder has knowledge about the set of simple GMR rules {O1, O5, L1, L2}. Figure 9 shows hc
the interaction might proceed: At timg the planner delivers the goal. The coder has no rule for it so
he rejects the goal. So the planner chops the goal into subgoals. Next, he may present the sut
"parm(y)" to the coder. The coder now has a rule, L1, instantiates it to L1', and edits an ABSY}
parameter node with the name "y". Next, the planner delivers the subgoal "parm(x)". The planr
uses L1 again, leading to the instantiation L1", and programs a parameter x. Then the planner cc
up with "const(0)". The coder uses L2, applying L2' and programming a constant node 0. Next, 1
subgoal "equal(S1,S2)" is given. The planner instantiates O5 to O5' and creates a "=" node with -
open links: their upper ends are shadows (place holders for nodes). Aftgr tiragotanner tells the
coder that "equal(S1,S2)" has "parm(y)" as its first subgoal. So the coder connects the first input |
of the "=" node to the parameter y. Next, the planner tells the coder that "equal(S1,52)" r
"const(0)" as its second subgoal, so the coder connects the second input link of the "=" node to
constant 0. Thus the coder has to rearrange the position of the nodes and/or the orientation o
links. This is symbolized by the hand in Figure 9. Next, the planner comes up with th
"branching(IF,THEN,ELSE)" subgoal. The coder implements it, instantiating O1 to O1'. After timq
tm, the planner tells the coder that "branching(IF,THEN,ELSE)" has "parm(x)" as its second subgc
and "equal(S1, S2)" as its first subgoal. So the coder connects the second and first input link of
"if-then-else" node to the parameter x and to the "=" node, respectively. Again, the position of lin
and/or nodes on the screen may have to be rearranged. Now the goal is solved.

Thus the planner does not know about the coder’s knowledge, and vice versa. There is
fixed order of application of GMR rules. The order solely depends on how the goals are delivered
the coder by the planner. In the example the coder created the sequence of rule instantiations
L1", L2', O5', O1') depending on the goals delivered by the planner.

In contrast to this sequence, if the same goal "branching (equal (parm(y), const(0)), parm(
ELSE)" is given and the coder knows the schema C7, then the interaction shown in Figure 10 will
produced. Again, at time the planner delivers the goal. This time the coder instantiates C7 to C’
and implements the ABSYNT tree contained in C7' without requiring subgoals and linkini
instructions from the planner.
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If we compare the first interaction (Figure 9) where the coder knows {O1, O5, L1, L2} with

the second one (Figure 10) where the coder knows C7, we observe:

The planner stream

this goal, he asks th
planner to decompogt m 0
the goal. SR S S

The coder stream
The planner stream

The coder can’t sol\F

branching(IF,

goal_subgoal_relation
THEN,ELSE)

(equal(S1, S2), S2,
const(0))

goal_subgoal_relation
(equal(S1, S2), S1,
parm(y))

ma
[

The coder stream T— S

The planner stream

oal_subgoal_relatio
(branching(IF, THEN,
ELSE), THEN, parm

@~

//: RS

goal_subgoal_relation
(branching(IF, THEN,
ELSE), IF, equal(S1, S

m m The task Is
|->*="~ =
T . K . B
. /. ST
The coder stream /Z/ II

Figure 9: Squence of interactions between planner and coder while solving the goal "branching (ec
(parm(y), const(0)), parm(x), ELSE)" with the set {O1, O5, L1, L2} of simple rules

v

. In the first sequence the coder implements five program fragments corresponding to t
subgoals delivered by the planner. In the second sequence the coder implements just

program tree corresponding to the goal.
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In the first sequence the planner gives explicit information about linking program fragment
and the coder rearranges program fragments accordingly, if necessary. In the second sequ

there is no such information.
The planner stream

branching(equal(parm(})
const(0)), parm(x),
EL

0 more
goals
SE) t
to ; i ; i ; i i i :

The coder stream

V The task i
o done

Figure 10: Sequence of interactions between planner and coder while solving the goal "branch

(equal (parm(y), const(0)), parm(x), ELSE)" with the schema C7

In order to enablempirical predictionswe associate the following empirical claims with

these observations:

Implementatiorof ABSYNT program fragments:

If the coder applies a certain GMR rule, then exactly the ABSYNT program fragmen
contained in it is implemented in an uninterrupted sequence of programming actions (lit
positioning a node, drawing a link, etc.). We do not postulate order consti#ims this
sequence, but we expect the sequence not to be interrupted by programming actions stemr
from differentrule instantiations.

Verbalizationof goals:

Following the theoretically motivated distinction of a planner and a coder, selecting goals ai
subgoals for implementation by the coder is an act of planning involving control decisions. ¢
is seems reasonable that at these decision points the selected goals may be verbalized (Eric
& Simon, 1984). The verbalizations explained by the selection of a certain GMR rule may
intermixed with the rule’s programming actions, but not with verbalizations and action
stemming from different rule instantiations.

Correctionof positions:

If the just implemented program fragment solves a dangling call or calls for another fragme
already implemented, then it is to be connected with this existing fragment. Now correctiv
programming actions are likely: lengthening links, changing their orientation, and movini
nodes.

If we compare the application of a single composite to the application of a set of simple rul

(like C7 vs. {O1, O5, L1, L2}), then the following empirical consequences are assumed to result:

Implementatiorof ABSYNT program fragmentsi¢-interleaving hypothegis

For the set of simple rules, the order of rule applications is indeterminate, but th
programming actions described by each rule should be continctisns of different rule
instantiations should not interleavin contrast, when applying the composite there are no
order constraints on the programming actions at all since just one rule is applied.
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Verbalizationof goals Yerbalization hypothesis

In the example, if the coder’s knowledge contains C7 the planner has to make one cont
decision. If the coder knows only {O1, O5, L1, L2}, the planner has to make at least fiv
control decisions (depending on how the goal is decomposed). Thus we expect that apply
composites is accompanied legs goal verbalizationghan applying corresponding sets of
simple rules.

Correctionof positions {earrangement hypothegis

In case of the composite there are no open GMR calls to be implemented, and there are nc
be-linked program fragments left by earlier rule applications. Thus we expect that applyir
composites leads tess position correctionsf ABSYNT nodes and links than applying the
corresponding sets of simple rules.

Performancéime (time hypothes)s

Planning, selecting, and verbalizing goals, and correcting positions of nodes and links ¢
internal or external actions that are expected to need time (i.e. Rosenbloom & Newell, 198
Thus we expect that applying compositefasterthan applying the corresponding sets of
simple rules.

These relationships are illustrated in Figure 11 (suppressing the location information fi

composites) for the rule set {O1, O5, L1, L2}, the composite C7 which may be generated from
and different sets in between, containing composites and simple rules. The rule sets are organizec
partial order which reflects thadegree of predictability of the ordef programming actions, the
degree of verbalization, position corrections, and performance time

{O1+050L.2,L1} {O1°05¢L1,L2} {O1+05¢L1,L1,L2} {O1eL1,05¢L2,L1} {O1,05¢L2¢L1,L1}

moreA

« degree of order predictability
{01, 05, L1, L2} « number of verbalizations
* number of position correction
* performance time

{0105, L1, L2} {O1, O5eL2, L1} {O1-L1, O5, L2, L1} {O1, O5sL1, L1, L2}

C7 := {O1+05¢L1L2}

* means compositio lesy

Figure 11: Rule sets partially ordered according to expected degree of order predictability, numbe
verbalizations, position corrections, and performance time

For example, if the rule set {O1, O5, L1, L2} is applied to the goal "branching (equa

(parm(y), const(0)), parm(x), ELSE)", the planner has to chop this goal tree because the cod
knowledge contained in the set {O1, O5, L1, L2} is not sufficient to implement this highly structure:
goal. If the goal tree is chopped to the stream of goals and goal-subgoal-relations

(branching(IF, THEN, ELSE),
18
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equal(S1, S2),

goal_subgoal_relation(branching(IF, THEN, ELSE), IF, equal(S1, S2)),

parm(y),

goal_subgoal_relation(equal(S1, S2), S1, parm(y)),

parm(x),

goal_subgoal_relation(branching(lIF, THEN, ELSE), THEN, parm(x)),

const(0),

goal_subgoal_relation(equal(S1, S2), S2, const(0))),

then the stream oévent setqevents(O1l') < events(O5') < events(connect(O1l', 1, O5Y)) <
events(L1') < events(connect(O5', 1, L1")) < events(L1") < events(connect(O1', 2, L1"))
events(L2") < events(connect(O5', 2, L2")) should be observed empirically, where

» events(01") =  {verb(branching(IF, THEN, ELSE), act(if-then-else),
act(link(if-then-else, 1)), act(link(if-then-else, 2)),
act(link(if-then-else, 3))}

* events(05) = {verb(equal(S1, S2)), act(=), act(link(=, 1)), act(link(=, 2))}

* events(connect(O1',1 05); {verb(connect(branching(lIF,THEN,ELSE), IF, equal(S1,S2))),
act(connect(link(if-then-else), 1, =))}

» events(L1") =  {verb(parm(y)), act(parameter(y))}

 events(connect(O5',1 Ll);r {verb(connect(equal(S1, S2), S1, parm(y))),
act(connect(link(=), 1, parameter(y)))}

» events(L1") = {verb(parm(x)), act(parameter(x))}

 events(connect(O1',2,L1' 9:) {verb(connect(branching(IF,THEN,ELSE), THEN, parm(x))),
act(connect(link(if-then-else), 2, parameter(x)))}

 events(L2") =  {verb(const(0)), act(constant(0))}

 events(connect(O5',2, L2)§ {verb(connect(equal(S1, S2), S2, const(0))),
act(connect(link(=), 2, constant(0)))}

* A < B means that the events in set A are followed by the events in set B.

The empirical meaning of the terms is:

« verb(Goal): The Goal igpossiblyverbalized.

 verb(connect(Goall, S, Goal2): It is possiblyverbalized that the subgoal S of Goall is Goal2.

* act(Node): The Node is1ecessarilymplemented in ABSYNT in a free
region or on a link shadow.

« act(link(Node, 1)): An ABSYNT link entering the I-th input of Node imecessarily

implemented. Its other end is connected to another node or left
as a shadow to be filled later.

* act(connect(link(N1),I,N2)): The ABSYNT link entering the I-th input of node N1 is
connected to node N2. (That is, N2 is dragged onto the shadow
at the upper end of the link, and/or the link is lengthened to N2.)

The planner may deliver the stream of goals and goal-subgoal-relations in a different ord
like the one depicted in Figure 9. Then the order of the empirical event sets should char
accordingly. But in any case, the actions and verbalizatuthen each event set should occur in an
uninterrupted sequencén contrast, there is no order predictability for the actions and verbalization:
corresponding to thechemaC7, and there is no information about goal-subgoal-relations. Just oni
set of events can be predicted:

» events(C7") = {verb(branching(lF, THEN, ELSE), verb(equal(S1, S2)),
verb(parm(x)), verb(parm(y)), verb(const(0)), act(if-then-else), act(=),

act(parameter(y)), act(parameter(x)), act(constant(0)),
act(link(if-then-else, 1)), act(link(if-then-else, 2)),

19



24.09.1996 11:36
act(link(if-then-else, 3)), act(link(=, 1)), act(link(=, 2))}

We started to investigate some of these predictions empirically (see below). In addition, t

no-interleaving hypothesis and the time hypothesis are used in the construction of the Internal Mc
to be described now.

7.

The Internal Model (IM)

The IM is a set of domain specific knowledge (simple GMR rules and composites) which a

utilized and continuously updated. As stated earlier, the IM covers the subset of the ISP-DL The:
shaded in Figures 1 to 4. So before describing it in detail, we will sketch it in terms of the ISP-C
Theory.

Concerning Figure 1The PS is faced with a programming tagkdl) and constructs a
solution proposalgplution). The solution is parsed, using tkikowledge bas@ules in the

IM and - as far as needed - in EXPERT). Subsequently, the rules just used for parsing .
optimizedoy composition.

Since these new composites may be based on EXPERT rules, they are not directly insel
into the IM: According to ISP-DL Theory, a rule can only be improved after it is successfully
applied. This implies for the IM that it cannot at the same time be augmented by a new sim
rule (from EXPERT) and by composites built from the same simple rule. For this reason,
addition to the IM there is a set POSS of possible candidates for future composites of the |
Composites of the rules used for parsing a solution proposal are generated and kept in P(
as candidates. Only those surviving a later test are moved into the IM.

Concerning Figure 2If parsing the solution is possible solely with rules in the IM, then the
IM is considered as sufficient to construct the solution, and "Goal Processing" is terminatt
("reaction to succe8p But if parsing the solution requires additional EXPERT rules, then the
IM may be augmented by these (simple) rulesd(ictive knowledge acquisitiyn

Thus, in accordance with ISP-DL-Theory, the IM contaimsple rulesrepresenting newly
acquired but not yet improved knowledge, @othpositesepresenting various degrees of
expertise.

Concerning Figure 3The parse tree represents the student’s hypothetical sqilaimpmvhich
executionled to aprotocol the sequence of programming actions, verbalizations, and
corrections exhibited by the student. We call that part of the protocol consisting only of tr
student’s programming actions (creating nodes and links, naming nodes) the saatient’s
sequenceThe action sequence is used to evaluate the parse rules:

. Since knowledge improvement should result in sped-up performamaeee (
hypothesiy a composite is moved from POSS to IM only if the PS shosgeeadup
from an earlier to a later action sequenelere both sequences can be produced by the
composite.

. The IM contains only GMR rules (simple rules and composites) which proved to b
plausiblewith respect to an action sequence at least once. This is defined now. Wil
respect to some action sequence, GMR rules form four subsets:

1. Rules not containing any program fragments ("goal elaboration rules") are
nondecisivewith respect to the action sequence. (But verbalizations can be
related to the goal elaboration rules; Mobus & Thole, 1990).

2. Rules whose head contains a program fragment which is part of the final rest
produced by the action sequence, and which was programmed in
noninterruptedtemporally continuous subsequence (seethaterleaving
hypothesis These rules amgausiblewith respect to the action sequence.
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3. Rules also containing a program fragment which is part of the final result of
the action sequence, but this fragment corresponds only to the result of
noncontinuous action subsequenoéerruptedby other action steps. These
rules aramplausiblewith respect to the action sequence.

4. Rules whose head contains a program fragment which is not part of the fine
result produced by the action sequence. These rulasedegantto the action
sequence.

. A credit scheme rewards the usefulness of the rules in the IM. The credit of a rule

the total number of action steps explained by this rule in the problem solving proce:
of the PS. It is the product of the length of the action sequence explained by the rL
and the number of its successful applications. Thus the credit depends on the empiri
evidence gathered for a rule.

During the knowledge acquisition process the IM is utilized and continuously update

according to a processing cycle shown in Figure 12:

Start: First task IS present
IM empty, POSS empty

- j Next tash

earnersaction sequen is presen

andsolutlgl;l(() presented ted to the
* learner

updated POS!
updated |

TEST: GENERATE:

4. Credit of all plausible rules in IM is updated

1. Each composite in POSS 1. The plausible parse EXPERT ry

- which is plausible in the present action sequg| are putinto IM and get credit
- which actual execution time is shorter than thg| 2. The plausible composites of all
time attached parse rules are put into POSS.

is moved from POSS to IM Execution times of the correspondi
2. Each irrelevant composite is kept in POSS | |_action sequences are attached.
3. All other composites in POSS are skipped

-

PARSE

Solution is parsed with rules in I
ordered by credit, and (as neede
with other EXPERT rules

updated POS! set of par
updated IM rules

Figure 12: The utilizing and updating cycle of the IM during the knowledge acquisition process

Start(Top of Figure 12): The first programming task is presented. Initially, both sets IM anc
POSS are empty.

Now the learner solves the first task presented. Thastion sequences produced, leading
to asolutionto the task. The action sequence is saved in a log file.

First Test:IM and POSS are empty, so nothing happens.

First Parse:The learner’'s ABSYNT program solution to the actual task is parsed with the
EXPERT rules, leading to a set of parse rules.
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First Generate The EXPERT rules just used for parsing are compared to the action sequenc
The plausible parse EXPERT rules are put into the IM and get credit. These rules ar
hypothesized as newly acquired by the PS while solving the first task.

Next, the composites of all parse rules are created and compared to the action sequence.
plausible composites are kept in POSS. These rules are hypothesized as newly created
result of success-driven learning, but not yet actually used. Thus they are candidates
improved knowledge useful for future tasks. For each plausible composite, the time need
by the PS to perform the corresponding action sequence is attached.

So the Generate phase results in an updated POSS and IM.

Now the next task is presented to the PS. The PS creates an ABSYNT action sequence
solution to it.

Second TesEach composite in POSS is checked if

a) it is plausible with respect to the action sequence, and

b) the time needed by the PS to perform the respective continuous action sequence is shc
than the time attached to the composite. This means that the PS performs the detter set
than the previous corresponding action set which led to the creation of the composite.

The composites meeting these requirements are put into the IM. Composites irrelevant to
action sequence of the solution just created are left in POSS. They might prove as use
composites on future tasks. All other composites violate the two requirements. They a
skipped: that is, composites implausible to the actual sequence, or composites which predi
more speedy action sequence than observed. This means that the PS performs the actio
slowerthan the previous corresponding action set which led to the creation of the composi
This slow-down is inconsistent with our model assumption that the PS prefers composites
simple rules, thus the composite is not transfered to the IM but skipped. Finally, the credits
all rules in the IM which are plausible with respect to the present action sequence are updal
Thus the second test leads to an updated POSS and IM.

Second ParseéNow the solution of the second task is parsed with the rules of the IM ordere
by their credits. As far as needed, EXPERT rules are also used for parsing.

Second Generatd@ he plausibility of EXPERT rules which have just been used for parsing is
checked. The plausible EXPERT parse rules are again put into the IM and get credit. As in 1
first Generate Phase, they are hypothesized as the newly acquired knowledge in respons
impasses on the task just performed. Furthermore, the composites of all actual parse rules
created. The plausible composites are put into POSS, they will be tested on the next t
phase. Again the time needed for the corresponding action sequence is stored with e
composite.

[llustrations of the IM

To illustrate, Figure 13 shows a continuous fragment of the action sequence of a PS, Sub

2 (S2), on a programming task. Again we will restrict our attention to the rules O1, O5, L1, L2, ar
C7 (see Figures 7 and 8). When S2 performs the sequence of Figure 13, O1, L1 and L2 are alre
in the IM from earlier tasks. O5 is not yet in the IM but only in the set of EXPERT rules. C7 has n
yet been created.

After S2 has solved the task, thest Phas¢Figure 12) starts. Since the only composite we

look at here (C7) has not been created, we only consider the fourth subphase: Credit updating. C
implausiblewith respect to Figure 13 because the actions corresponding to the rule head of O1 are
continuous buinterrupted They are performed at 11:15:52, 11:15:58, 11:16:46, and 11:16:5¢
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(Figure 13). Thus the action sequence corresponding to the rule head of O1 is interrupted at 11:1!
and 11:16:50.

11:14:40 Start of task

11:15:08 11:15:16 11:15:22

£

11:15:29 11:15:34 11:15:38
O =y I =

= = =

11:15:43 11:15:52 11:15:58
T T T
Eo] o] (B o [fl o

11:16:42 11:16:46 11:16:50

R M R R R R R R R R R R R R AT R R R R R R R R R R R R R

11:16:5" % lﬁ'ﬁ%ﬁil

The rule O1 (Figure 7) corresponds

\/ to the four boldly lined programming
T actions: placing the if-then-else-node
= lﬁl drawing the three input links. In the

_\/_/ sequence these actions are interrupte
twice (dotted lined actions): Placing a

& naming a parameter node.These acti
; , correspond to the rule L1.

Figure 13: A continuous fragment of a sequence of programming actions of Subject S2

L1 and L2 are also implausible. Actions corresponding to L1 are performed the first time

11:15:08 and 11:15:29. Thus this sequence is interrupted at 11:15:16 and 11:15:22. L1-like acti
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are shown a second time by the PS at 11:16:42 and 11:16:50. These are interrupted, too. Act

corresponding to L2 are performed at 11:15:16 and 11:15:34, with interruptions at 11:15:22 a
11:15:29. So since O1, L1, and L2 are implausible, their credits are not changed.

Now S2’s solution iparsedwith rules in the IM and, as needed, with additional EXPERT
rules (Figure 12). O1, O5, L1, and L2 are among the parse rules in this case, as no other rules he¢
higher credit and are able to parse the solution.

After the Parse Phase, tBenerate Phas@~igure 12) starts. O5 is an EXPERT rule used for
parsing. But O5 is implausible, since its corresponding actions were performed at 11:15:Z
11:15:38, and 11:15:43, with interruptions at 11:15:29 and 11:15:34. So O5 is not put into the I
Then the composites of the parse rules are formed. C7 (Figure 8) is a composite formed from !
O5, L1 and L2. This composite is plausible because it describes the uninterrupted sequenct
programming actions from 11:15:08 to 11:16:55 (see Figure 13) - despite the fact that its compone
01, O5, L1, and L2 are all implausible. Starting from the beginning of the task (at 11:14:40), the tir
for this action sequence is 135 seconds. Thus the composite C7 is stored in POSS with "
seconds" attached to it.

After S2 has solved the next task, the now following Test phase reveals that C7 is plausil
again. The corresponding action sequence (not depicted) was performed in 92 seconds, which is
than 135. So C7 is moved into the IM and gets a credit of 13 since it describes 13 programming si
(see Figure 13). This credit will be incremented by 13 each time the composite is plausible again.

What does the IM look like after several tasks are solved? Figure 14 depicts the body trees
the solutions of 6 ABSYNT programming tasks: "diffmaxmin” (subtraction of the smaller from the
larger of two numbers), "quot" (division of the larger by the smaller of two numbers), "abs
(absolute value of a number), "absdiff* (like "diffmaxmin": absolute difference of two numbers)
addaddone (expressing addition by "+ 1"), diffdiffone (expressing subtraction by "- 1"). Some of ti
programming actions leading to these solutions are labeled with the time when they were perforn
For example, the "<"-node in the solution to the task "diffmaxmin" was programmed at 9:08:06. Tl
link between the "<"-node and the "if-then-else"-node was created at 9:07:20. The times of t
actions of writing a value or name into a node are writtéalins.

After solving the last task of this sequence, "diffdiffone", the IM contains simple ("micro")
rules, schemata, and cases. They can be ordered as a specialization graph, as shown in Figui
The circled numbers are the credits. Each composite in Figure 15 is connected to the rules itis t
from. For example, the "(less_than & if-then-else) & parameter & constant” composite in Figure :

IS:
gmr(branching (less_than (parm (), const (C)), parm (X), Else),
if-pop (It-pop (Y-pl, C-cl), X-pl, P)) :-
is_parm (Y), is_const (C), is_parm (X), gmr (Else, P).

("lt-pop™ is the primitive ABSYNT operator "<".)
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1. diffmaxmin

2.quot
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Figure 14: Simulated action streams and solution proposals to 6 ABSYNT programming tasks

According to Figure 15, this composite is the result of composing the "less_than & if-ther
else" composite with the with the parameter node rule L1 and the constant node rule L2 preser

earlier:
"less_than & if-then-else" composite:
gmr(branching (less_than (S1, S2), Then, Else), if-pop (It-pop (P1, P2), P3, P4)) :-
gmr (S1, P1), gmr (S2, P2), gmr (Then, P3), gmr (Else, P4).
L1:  gmr(parm(P), P-pl):- is_parm(P).
L2:  gmr(const(C), C-cl):- is_const(C).

25



24.09.1996 11:36
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Figure 15: Specialization graph showing the partial order of simple (micro) rules, schemata, a

cases built up in to the artificial programming sequence of Figure 14

This composition can be expressed by

A few examples will demonstrate how the IM in Figure 15 develops for the simulatec

"(less_than & if-then-else) & parameter & constant" composite =

(("less_than & if-then-else" composjtelL1)] * L2)1  L13.

programming sequence of Figure 14:

. Initially the IM is empty, so the solution to the first task (diffmaxmin) is parsed with
EXPERT micro rules. The if-then-else-node rule (rule O1 shown earlier) and the less_thi
node rule are among the parse rules of the solution of the first task. The times attached to
solution in Figure 14 show that these rules are plausible. For example, the "if-then-else"-nc
and the three links leaving it were programmed in a continuous uninterrupted sequence (f
programming actions from 9:07:13 to 9:07:29). The same is true for the "<"-node and the tv
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links leaving it (three programming actions from 9:08:06 to 9:08:19). So these two rules g
into the IM and get the credits 4 and 3, respectively.

. Among the composites built from the parse rules of the solution to diffmaxmin, there is
schema, the "less_than & if-then-else composite". It is also plausible so it is moved in
POSS. The action sequence explained by this composite starts at 9:07:13 and ends at 9:0¢
so the time "66 seconds" is attached to it.

. After solving "quot", the "less_than & if-then-else composite" is plausible again.
Additionally, the corresponding action sequence is faster than 66 seconds (from 9:12:04
9:12:51, which is 47 seconds). So this composite is moved into the IM and gets a credit o
since it describes 7 programming actions.

. Another example is the "(less_than & if-then-else) & parameter & constant composite”. Tt
corresponding 13 actions are performed at the task "addaddone” in a continuous seque
(from 9:22:01 to 9:23:46, which is 105 seconds). Thus this schema is plausible and is
into POSS. On the next task, diffdiffone, this composite is plausible again, and th
corresponding action sequence is sped up (from 9:31:01 to 9:32:34, which is 93 seconds).
the schema gets part of the IM with a credit of 13.

Figure 15 also shows that composites may be in the IM but not the micro rules they orig
from. For example, the product node rule is not part of the IM but has been used for creating a ¢
which is in the IM.

9. An Empirical Analysis of the IM

The IM represents the actual hypothetical knowledge of the PS. In this section we wi
investigate the no-interleaving hypothesis stating that the programming actions described by a rul
the IM are performed in a continuous uninterrupted temporal sequence. We will also take a look
some verbalizations, position corrections, and performance times. The analysis is based on
programming actions performed by a single subject, S2, solving seven consecutive nonrecurs
ABSYNT programming tasks. The IM was run offline based on the action sequences exhibited
S2.

. Material and procedureln a "getting-started" phase, S2 constructed an ABSYNT Start tree
for each primitive ABSYNT operator node, and reconstructed given programs. The purpo:
of this phase was to introduce S2 to the ABSYNT interface and language. Then she solved
following tasks: "diffmaxmin”, "interval" (program that tests if a number lies between 1 anc
2), "absdiff", "quot", "quotzero" (like quot, but preventing division by zero), "abs", and
"volume" (program that computes the difference between the volume of a cube and a sphe
where the diameter of the sphere is equal to the length of the edge of the cube).

. Creating subsequent states of the Bdibsequent states of the IM were created by creating ar
initial state of the IM and then running it on S2’s solution sequence. We created an initial |
based on the following assumption: Since the subject was introduced to all ABSYNT nod
before she worked on the first programming task, "diffmaxmin”, it seemed reasonable to p
the primitive node rules, the constant node rule, and the parameter node rule into the IM. Tt
the IM was run on the sequence of solutions from "diffmaxmin” to "volume" constructed b
S2. This produced a sequence of seven subsequent states of the IM.

. Analyzing S2’s protocollhe protocol of S2°s solutions to the seven programming tasks
(S2’s completsubject tracgwas analyzed according to the following categories of actions
and verbalizations:
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- placing a node

- haming a parameter, constant, or higher operator node

- creating a link

- deleting a node or a link

- replacing a node by another node, or changing a parameter name or a constant value
- correcting the position of a node or a link

- verbalizing a goal to place, name, or replace a node, or to create a link

- verbalizing uncertainty ("maybe | should ...") or negations ("I don’t know whether ...")

The actions and verbalizations of S2 while working in the Hypotheses Testing Environme
were not included in this analysis because our hypotheses are not aimed at this activity.

Predicting action and verbalization sequendgassed on

- the state of the IM right before each task, and

- S2’s action and verbalization sequence leading to a solution of this task,

the following predictions for this action and verbalization sequence are possible:

» Setscontaining actions of placing and naming nodes, creating links, and verbalizin
respective goalénodel trace)Each set corresponds to the application of one IM rule. Thus
the model trace consists of sets where each set contains actions and verbalizations expect
occur in a continuous uninterrupted sequence within S2°s subject t@detérleaving
hypothesis

* Position correctionslf the position of a node is corrected, the IM rule explaining the
corrected node shouldgot explain the nodes connected to this node. Rather, these linke:
nodes should be explained by different rules. If the position of a link is corrected, the IM rul
explaining it should not explain the node at the upper end of this dgdrangement
hypothesis

» Performance timesAn action sequence explained by a composite should be shorter than tt
earlier action sequence which led to the creation of the comptosigehypothes)s

Evaluation of the subject trace with respect to the model tr82és subject trace was

compared to the model trace in the following way: For each pair of actions / verbalizations

"+" was denoted if

- this pair was explained by the same IM rule (both actions / verbalizations are contain
within one set of the model trace), and

- this pair wasubsequent the subject trace.

For each pair of actions / verbalizations a "-" was denoted if

- this pair was explained by the same IM rule, and

- this pair wasnterruptedby some action(s) not explained by this IM rule.

Thus "+" denote correspondencies to the predictions, and "-" denote contradictions.

Figures 16 and 17 show the state of the IM, S2"s solution, subject trace, model trace, ¢
correspondencies / contradictions for two consecutive tasks of the sequence, "absdiff" ¢
"quot”. Figure 16 shows:

a) a subset of the rules in the IM after solving the task "interval" (second task of th
sequence). Here only the rule names are given. The actual rules are shown in Appendix B.
b) S2's solution to "absdiff", which is the third task in the sequence.

c) S2's subject trace of the solution to "absdiff".

d) The predicted model trace, given this subject trace and the state of the IM.

e) The cases corresponding (+) and contradicting (-) to these predictions.

Figure 17 shows the same information for the next task, "quot".

Results

» Comparison of model trace and subject tra€er S2°s complete subject trace (for all seven
tasks), there were 84 "+" and 52 "-". Since more "+" should lead to longer and thus few
runs than an equal distribution of "+" and "-", we applied the Runs-test. There were 46 rur
significantly less than to be expected by chance (p < 0.001).
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* Position correctionsS2’s complete subject trace contained six position corrections. One ¢
them occurs in the subject trace of "quot” (Figure 17c). There were three node corrections
parameters and constants. They were explained by different rules than the nodes connecte
them. There were also three corrections of operator nodes and one of their input links.
Figure 17c, the "if-then-else" node and its first input link are rearranged.) They were als
explained by different rules than the node at the upper end of the respective link. (In FigL
17c, the "if-then-else" node and th€''node are explained by different IM rules.) So all
position corrections are consistent with the rearrangement hypothesis.

 Performance timeOnly two action sequences of S2°s complete subject trace are explaine
by composites. One of them shows a speedup (from 387 to 211 seconds) which is consist
with the time hypothesis, but the other one shows a slowdown (from 26 to 34 seconds).

Discussion

The results indicate that the IM adequately describes a considerable portion of the protoco
S2’s actions and verbalizations with respect to the no-interleaving and rearrangeme
hypotheses. There were only two action sequences relevant to the time hypothesis. We
briefly discuss five points:

» There is another observation about time. It is concerned with the action sequences of S
subject trace which completely correspond to a set of the model trace. (For example, in Fig!
17c, placing operator nodg @ndcreating its left and right link is such a sequence since it is
uninterrupted, as expected by the set {plagelihk(/1,1,parameter®, link(/1,2,parameter
b2)} of the model trace). The complete subject trace contains 24 such sequences. For 1¢
them their first action takes more time than each of the other actions. This is exactly what \
would expect since the coder has to look for and select a rule before execititisigaitsion.

» Another observation is that with respect to the no-interleaving hypothesis, a large portion
the discrepancies ("-") seems to be caused by parameters and constants. Tabel 1 show:
distribution of "+" and "-" across different types of rules in the IM:

Parameter Constant Primitive operator Composites

node rule node rule node rules
"+" cases 3 4 51 26
"-" cases 28 7 15 2

Thus the parameter node rule, for example, is responsible for 3 "+" and for 28 "-": S2 usua
does not place and name a parameter node in sequence. The same seems true for the co
node rule. Obviously, given that this result will be reproduced with other subjects, it shoul
be possible to enhance the IM by splitting the parameter node rule (and the constant node

as well) into two new rules: One for positioning and one for naming a parameter node. Th
the current parameter node rule would be considered@spositeof these two new rules.

* As already noted, by the end of the last task ("volume"), there were only two composites
the IM. The virtually created programming sequence shown in the preceding section led to :
composites (three schemata, three cases: Figure 15) after solving six tasks, and even n
composites would have been possible. Thus according to the IM, subject S2 does not mi
much use of her own previous solutions but does much problem solving. This conclusion
supported by an inspection of the solutions of S2 to the seven tasks. For example, she so
"diffmaxmin” by "maximum of a and b minus minimum of a and b", but she solves the
essentially identical task "absdiff* by "if b less than a then a minus b else (a minus b) tim
-1". Subsequently, the task "quot" is solved in yet another way by interchanging paramete
Thus the diversity in solution approaches is reflected in the IM by the fact that it contains on
few composites.

* Finally, what about impasses? Based on S2°s IM we cannot predict impasses because

- the IM currently containenly implementation knowledge (“the coder’s knowledge™) but no

planning knowledge. (We work on extending the IM in this way.)

- the IM containssufficientimplementation knowledge because, as stated, it contains al
primitive node rules and parameter and constant rule from the beginning.

So there should be no impasses based on insufficient implementation knowledg
Consequently, all impasses in the protocol should be attributable to insufficient plannir
knowledge. If we propose verbalizations of uncertainty and negative comments as o
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empirical criterion for an impasse (similar to van Lehn, 1989; 1991b), then the protocc
contains five impasses (without the hypotheses testing episodes). In three of these case:
considers different implementations ("if-then-else" or a logic operator; ">" or "<", and so on
and is uncertain about them. Thus there appears to be a planning problem. In a fourth case
impasse arises because S2 thinks that the solution just created will deliver a wrong result fc
critical input value. In response to this, S2 switches parameter names. This does not seer
be an implementation problem either.

We are working on extending the ABSYNT Problem Solving Monitor and the IM by a
planning level (see below). Then it should be possible also to predict impasses based
missing planning knowledge.
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a) Subset of the rules in the IM before S2 solves the task "quot" (after solving "al
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place parameter bl
place parameter al
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create left link intas
create right link intee
name parameter bl
name parameter al
place op. if-then-else
create left link

into if-then-else

place parameter a2
place parameter b2
place operator /1
create left link into /1
create right link into /1
name parameter a2
name parameter b2
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if-then-else and
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create middle link into

if-then-else

place parameter b3
place parameter a3
place operator /2
create left link into /2
create right link into /2
create right link into

if-then-else

name parameter b3
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d) model trace

{place parameter b1,
name parameter b1}
{place parameter al,
name parameter al}
{place operatok,
create left link intcg,
create right link intas}
{place op. if-then-else,
create left link
into if-then-else,
create middle link into
if-then-else,
create right link into
if-then-else}
{place parameter a2,
name parameter a2}
{place parameter b2,
name parameter b2}
{place operator /1,
create left link into /1,
create right link into /1}
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if-then-else and
its first input link}
{place parameter b3,
name parameter b3}
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model trace, e) correspondencies (+) and contradictions (-)

11. Discussion
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We presented an approach to online diagnosis of students” knowledge which is aimed

meeting the following requirements:

to be based on a theoretical framework on problem solving and learning,
to be computationally effective and empirically valid,

to support adaptive help generation.
We will now discuss how far the IM meets these requirements and how we plan to improve

Foundation on a theoretical framework section 7 we showed how in our view the IM is

related to the ISP-DL Theory. We tried to motivate the features of the IM by the theory. But sti
many aspects of the theory remain uncovered by the IM. Two of them are:

Generalizationof knowledge. Our observations from single-subject sessions with ABSYNT
indicated use of previous solutions and positive transfer especially for recursive tasks. Tr
composites in the IM should be generaliz8dneralization of compositesay be viewed as
another way of knowledge optimization (e.g., Anderson, 1983; Wolff, 1987) in response 1
the successful utilization of knowledge (Figure 1). Additionally, generalized knowledge
should also result froranalogizingas an alternative to synthesizing a plan (Figure 3).

Synthesizing glan. Currently the IM takes only account of the implementation level, but
there is no representation of planning knowledge within the IM.

We will sketch our current work on these two aspects:

Concerninggeneralizationwe will consider a simple example. We suppose that

a) The two fragments shown in Figure 18 were programmed on two consecutive tasks

\/ _\/_ o o
ddaddone |diffdiffone rﬂr‘]
—
= Figure 18: Two ABSYNT fragments

b) The following two corresponding composites were plausible and thus moved into POSS:

C1: gmr (sum (const(C), addaddone (S1, S2)), add-pop (C-cl, Addaddone -hop (P1, P2)))
is_const (C), gmr (S1, P1), gmr (S2, P2).

C2: gmr (diff (diffdiffone (S1, S2), const(C)), sub pop (Diffdiffone-hop (P1, P2), C-cl)) :-
gmr (S1, P1), gmr (S2, P2), is_const (C).

("add-pop is therimitive ABSYNT operator "+",

"sub-pop" is thgrimitive ABSYNT operator "-"

"Addaddone-hop" and "Diffdiffone-hop" are self- -defindigher”
ABSYNT operators with names given by the user.)

Furthermore, C1 was composed from the node rules:

02: gmr(sum(S1, S2), add-pop(P1, P2)) :- gmr(S1, P1), gmr(S2, P2).
L2: gmr(const(C), C-cl) :- is_const(C).
03: gmr(addaddone(S1, S2), Addaddone-hop(P1, P2)) :-
gmr(S1, P1), gmr(S2, P2).
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The composite C1 can be described by the formula ¢@2)1 « O3.

In order to obtain a generalization of these two composites, first the two solution fragmer
have to be syntactically aligned by goal elaboration rules. For example, by using the gc
elaboration rule

E2: gmr (sum (S1, S2), P) :- gmr (sum (S2, S1), P).

expressing commutativity of addition, together with O2, L2, and O3 the program fragment ¢
the left of Figure 18 can be generated. This syntactically aligned program fragmei
corresponds to the compositedxl'ex" for exchange):

Clex: gmr (sum (addaddone (S1, S2), const(C)), add-pop(Addaddone-hop(P1, P2),C-cl)):
gmr (S1, P1), gmr (S2, P2), is_const (C).

which is based on the same node rules as C1 and can be described 982 L2.

~
—W‘ ad - Fﬂ%mﬁ Elﬁ@lﬁon; IW'
Figure 19: Syntactically aligned solution fragments of Figure 18

Now a new generalized rulenfggcan be created from C2 anddxby replacing the different
goals and operators correspondlng to the two program fragments (Figure 19) by variabl
The possible values of the new variables are restricted by constraints. These constraints
built from the constants and their relations of the two original rules C2 age C1

Gmsg gmr (Goal_1 (Goal_2 (S1, S2), const(C)),
Op_Name_1-pop (Op_Name_2-hop (P1, P2), C-cl)) :-
constraints([on(Goal_1, [sum, diff]),
on (Goal_2, [dlffdlffone addaddone]),
on(Op_Name_l [add, sub]),
gmr(Goal_1(_, ), Op_Name_1(_, ),

gmr(Goal_2(_, ), Op_Name_2(_, ).,
gmr (S1, P1), gmr (S2, P2), is_const (C).

This is an example for a most specific generalization{sg). The rule Gnsgis not able to
parse or to generate similar problems. For example if the root goal is t %e goal to progran
product the rule gsgwill fail, because the constraints are not satisfied. If the problem solver
has no knowledge to program a product then there will be an impasse. One way to overco
this impasse would be to extend the constraints of the flgy@ccordingly by inserting the
"product” goal into the list [sum, diff] and the "mult" node into the list [add, sub].

It is also possible to generate another ruffifg from C2 and Cdx. This most general
generalization of the constraints differs from the example above by the missing variab
restrictions:

Gmgg gmr (Goal_1 (Goal_2 (S1, S2), const(C)),
Op_Name_1-pop (Op_Name_2-hop (P1, P2), C-cl)) :-
gmr (S1, P1), gmr (S2, P2), is_const (C).

This rule is an overgeneralization so it may produce errors, that is impasses. Remec
information (i.e. error feedback to hypotheses) may lead to a stepwise restriction of tl
variables by contraints.
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. As mentioned, introducing@anning levels another topic of our current research. Currently
the learner’s hypothetical solution plan is the parse tree of the solution. It is reconstruct
retrospectively by the system after the solution is complete. We want the learner to be able
construct plans with an extension of the ABSYNT language by new goal nodesrsix#tht
ABSYNT programs containing operator nodes and goal nodes will be possible. The learr
will be able to test hypotheses and to receive error and completion feedbaclkkinthiisg
level even if the learner has no idea yet about the implementation. Thus the learner may f
plan a goal tree for the task at hand, test hypotheses about it, and debug it, if necess:
Afterwards the learner maynplementthe goals by replacing them with operator nodes or
subtrees.

For the user’s point of view, the benefit of using goal nodes will be that hypotheses testi
will be possible at theplanningstage not just at the implementation stage. From a
psychological point of view, the benefit is tludjectivedata about the planning process can
be obtained in addition to the verbalizations. Finally, from a help system design point of vie\
the benefit is that in addition to hypotheses testing it will be possible tqtdfering rulesas

help to the learner. The planning rules will be visual representations of GMR goal elaboratit
rules.

Computational feasibility and empirical validitA current problem with the IM is that
composites are first generated, based on the parse rules of a solution, and then tested for plausit
Generation of composites can be time-consuming for very complicated ABSYNT program solutior
It is possible to change this situation by generating composites only for program fragments whi
were created by the student in temporal sequence. In this way many composites which would
pass the plausibility test would not be created in the first place.

Another problem is that the IM currently does not deal with program modifications performe
by the student, like deleting and replacing nodes and links. Despite of these shortcomings, we tt
that it is possible to extend the IM in appropriate ways. As we have also shown, it is possible to |
the IM to empirical test and to draw conclusions for its improvement. For example, the stuc
described above suggested changing simple parameter node rules. Some more testable hypot
will be presented below. Thus advance towards an empirically validated knowledge diagnosis se¢
possible.

Adaptive help generatiomhe ultimate goal of the IM is to provi@elaptivehelp or, more
generally, to have an impact on the user-system-interaction in a way that takes account of
individual. In the ABSYNT Problem Solving Monitor, the need for the IM is very clear:

. There is a large solution space (the system is able to analyze and generate many solutior

given tasks) which is necessary because we want to be able to take care of novices” o
unusual or unnecessarily complicated solutions (see Figure 6).

. Because of the large solution space, there is usually a large amount of completion propos
that can be generated by the system. So the problem is which one to select. The task of the
IS to enableiser-centeredelection.

But as indicated, the role of the IM will not be restricted to the completion of ABSYNT nodes
Extending completion to the planning level and offering visual planning rules as help will impos
additional demands to the IM. Additionally, the IM does more than just help selection. Th

information provided to the student may be varied in several ways, and this gives rise to empiri
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predictions which in turn might support or weaken the IM. Figure 22 illustrates how informatiol

intended as help can be varied, and what can be predicted. Basically, when the student is caught
impasse and asks for a completion proposal, according to the IM there are two possible situations

. The student has knowledge how to proceed but does not make use of it. Thus with respec
the interaction of planning and coding described earlier, thenglamaingproblem.

. The student lacks domain-specific implementation knowledge, theoodiragproblem.

The latter situation is depicted in Figure 22: The student just performed some programmi
actions, then gets stuck, and asks for completion proposals. According to the IM, there is
knowledge gap on the coding level, and after filling it the student would be able to proceed (shac
part of the horizontal arrow in the upper right of Figure 22). Now there are several possibilities
react to the gap: The information provided might vargrain sizeandamount(on the left of Figure
22).

. Grain sizeconcerns the rules underlying the completion proposal. If the grain dine,is
then the completion proposal may rest on a chain of simple rules which covers the gap. In t
case the completion proposal may consist of an ABSYNT subtree with an explanation of ea
programming step needed to construct this subtree, where the explanation is based on the
structure of the chain of simple rules. If the grain sizmé&se then the completion proposal
may rest on a single composite (to take the other extreme). Thus the same subtree ma
provided, but without an explanation.

. Amountconcerns the relation between the completion and the gap. The completion propo:
mightexactly fillthe gap, so subsequently the student can proceed by relying on her / his o\
knowledge. Alternatively, the completion proposal may corttsmmuchinformation (more
than necessary) oot enoughnformation (the gap is not completely covered).
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Impasse: Student demands
completion proposal by the system

Programming
actions just perfor

Programming actions the student is ab}

to perform (according to the IM) after
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Figure 22: Types of information possibly provided in response to a knowledge gap diagnosed by
IM, and hypotheses conserning the student’s reaction to this information

On the left and middle part of Figure 22, the different combinations of grain size and amou
of information are shown. They lead to different hypotheses (on the right of Figure 22). We wi
describe some of them:

. If the information is fine-grained and exactly fills the gap (first row in Figure 22), then we
would expect that the student considers this informatidrelgsul

. If the information is coarse-grained and exactly fills the gap (second row), then the stude
misses explanations. So s/he might eiffessively accepthat is being offered, or engage in
self-explanatior{van Lehn, 1991a).

. If the information is fine-grained but exceeds the knowledge gap (third row), then the stude
has tofilter" the content relevant to the current situation. This might be experienced a
burdonsome

. If the information leaves a small knowledge gap (fifth and sixth row), then the student migt

try to induce one new simple rule and thereby cover the rest of the gap. (This situation see
similar to the induction of one subprocedure at a time by van Lehn’s (1987) SIERR.
program.)
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. Finally, the last case to be considered here is that there is a large gap left, and the informa
offered is too coarse (last row). The student should experience such an information as v
inadequate to his current problem. Thus she or he should feel annoyed or even upset.

There remains much work, of course, to work out these hypotheses and put them to empiri
test. But we think we have shown that the IM is an empirically fruitful approach to knowledg
diagnosis and adaptive help generation which is testable and also touches upon further impor
research problems, like motivation and emotion.
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