
Toward the Design of Adaptive Instructions and Helps
for Knowledge Communication with the

Problem Solving Monitor 1 ABSYNT 2

Claus M6bus

University of Oldenburg
Dept. of Computational Sciences

D-2900 Oldenburg
W. Germany

Eunet: moebus@uniol.uucp

O. Abstract

For approximately ten years computer aided knowledge communication disappeared from the research
scene. Today, it has been reestablished under the abbreviations of ICAI (Intelligent Computer Aided
Instruction) and ITS (Intelligent Tutoring Systems) with regular conferences, research journals and
textbooks [1,2,3,4,5].

This paper offers contributions to CAI and ICAI in the framework of the problem solving monitor
(PSM) ABSYNT. Our system - a special variant of an ITS - is designed with respect to a sequence of
programming tasks in the visual functional computer language ABSYNT (ABstract SYNtax Trees). It
provides the learner with a friendly environment including a help but no curricular component.

First, we show that conventional instructions and helps can be improved by using existing AI
methodology, visualization of information and cognitive modelling to make them adaptive to the knowledge
state of the user. Second, we demonstrate the improvement of ICAI by an interactive help system which
supports planning tasks of the user. It checks hypotheses postulated by the user, and gives feedback
concerning imcomplete proposals.

1. Introduction

The "Advent of AI in Higher Education" is a positive event, but we should not overlook that [6]:

"ICAI is an emerging field that is ill-defined at present. The distinction between intelligent CAI systems

and computer-based instruction programs cannot be sharply drawn. ICAI programs use AI programming

techniques ... Developers of ICAI systems focus on problems of knowledge representation, student

misconceptions, and inferencing. By and large, the have ignored instructional theory and past research

findings in computer-based instruction."

In our project we try to avoid these omissions. To a great extent the psychological efficiency of a PSM

depends on the quality of instructions and helps built into the system. To put it short: "When are helps

useful and when do they confuse or inhibit the probIem solver?" The answer certainly depends on the

knowledge state of the problem solver and is a research problem of cognitive psychology. The

implementation of helps requires AI methodology, and thus the design of helps is a paradigmatical research

topic of AI, Cognitive Science and Cognitive Psychology.

1 This research was sponsored by the Deutsche Forschungsgemeinschaft (DFG) in the SPP
Knowledge Psychology under contract no MO 292/3
2 ABSYNT was transformed from an idea to reality by K.D.FRANK, G.JANKE, K.KOHNERT,
O.SCHRODER & H.J.THOLE

139

2. The Problem-Solving Monitor ABSYNT

PSMs provide the learner with a problem-solving environment including an error diagnosis and a help

module but no curricular component. ABSYNT is used to communicate knowledge about a visual,

functional, tree-like programming language based on ideas published in german school [7] and university

text books [8]. Further motivation for the design of ABSYNT is given in [9] and [10]. Basic research

dealing with the design of the system from a psychological point of view is described in [11] - [14]. Figure

1 shows the interface of the programming environment after a student programmed a wrong solution to the

"even" predicate. The program does not terminated for odd arguments.

81art

E

I I I

nQ: C*antmt be c(~=~pteted t~ a so lu t ion k r ~ w n by t he sys te~ l

5

5

Figure 1: wrong implementa t ion of the "even" p red ica te in ABSYNT with a
nonembedable hypothesis (bold lines)

3. Programming Knowledge and Corresponding Helps

Programming requires several knowledge sources, see e.g. [15] and [16]:

1. mathematical and algorithmical preknowledge

2. knowledge about the syntax of the language

140

3. knowledge about the semantics of the language
4. planning knowledge about the pragmatical use of the language

It would be quite natural to design helps accordingly. In our system we confined ourselves to knowledge

sources 3 and 4. We designed:

ad3: 2-D-Rules [14] explaining the operational semantics of the ABSYNT-language (the behavior

of the ABSYNT-Interpreter)

ad4: aHypothesis-DrivenHelpSystem to support plarming steps in programming [17]

By and large, the design of helps is a twofold synchronization problem. We have to choose both content

and application time of the given information very carefully so that it is accepted as help [18] - [24].

3.1 The Design of Helps when Acquiring Knowledge about the Semantics of ABSYNT

The behavior of the ABSYNT-Interpreter computing ABSYNT programs is represented by two sets of 2-1)-

Rules which serve as instruction and help material for ABSYNT-users [14]. In a study of the help-based

knowledge acquisition process [25] we found that the acquisition of semantic knowledge can be described

by a two-stage process:

1. Knowledge enlargement through impasse-driven learning 0DL) [26]

2. Knowledge optimization through success-driven learning (SDL) [27]-[31]

The inability of the student to predict the behavior of the ABSYNT interpreter leads to an impasse which in

turn leads to problem solving by applying weak heuristics: new knowledge about the ABSYNT semantics is

generated by looking into the 2-D-Helps. Otherwise the student optimizes his/her knowledge similar to

[27],[28],[31]. A specification of a computational model for this two-stage process is given in [32].

The data show that in the course of time the subjects predict the behavior of the interpreter on the basis of

mental rules which first were representations of the visual rules. Then, during the process of skill

acquisition the mental rules are composed. The question arises whether to compose the visual 2oD-rules in

the help material accordingly. The evaluation ABSYNT programs requires the firing of the rule chains.

Composition of these chains yields the new help rules, which have lost some - for a more skilled person

unimportant - details.

The idea of adaptive helps seems to be ingenious. But, will the problem solver assimilate the new

information quickly even if we are able to synchronize the generation of new help information with the

mental proceduralization process? It is a problem with adaptive helps that the students get unexpected new

information the equivalence of which with old information has to be checked. The solution of this problem

will certmnly improve the acceptance of ICAI considerably.

141

3.2 The Design of Planning Helps when Programming in ABSYNT

Even more important is a help system for the programming novice which embodies planning knowledge.

Here too, we face the twofold synchronization problem. The status of the help system implemented so far

derives from the following postulates.

The help system should:

1. diagnose goals, intentions, and the knowledge state of the problem solver

2. communicate new knowledge (helps) only in sensitive time periods, where the problem solver is

willing to accept such information

3. gather user data online to adapt the user model continuously

4. embody expert knowledge to check user proposals and generate helps

5. give only minimal feedback so that the student is able to leave the impasse situation by improving

his/her problem solving skills

6. check various hypothesis about the usefulness of program fragments

The last postulate is rather important. In contrast to some authors (e.g.[33]) we think that semantic errors

often cannot be localized in a line of code (or here in a subtree). Most often the whole proposal of the user is

inconsistent with the problem. Repairs depend on those parts of the program which the user wants to retain

as correct. So we developed our help system, which is driven by hypotheses of the student about the

correcmess or usefulness of program fragments. This interactive hypothesis-driven approach is rather

different from other systems known from literature [16] and [33] - [37].

Our help system is based on a goals-means-relation (GMR). This relation can be viewed as a rule-based-

inference system [38], a grammar [39], or an AND/OR-Graph [40] with parametrized nodes. As nodes of

the AND/OR graph can be parametrized by subgoals, the relation enables analysis and synthesis of

incomplete as well as complete program proposals and even recursive systems of programs. At present the

relation is defined for 21 programming tasks. The system is able to generate and parse over several million

solutions if the height of the ABSYNT-trees is less than 6 nodes. This can be achieved with approximately

only 330 rules.

Due to its flexibility the help system promises some positive consequences for the motivation of the

problem solver. When the student programs a proposal which is diagnosed by the ITS as wrong, s/he is

trapped in an impasse. According to IDL-theory s/he is now sensitive to help information. This could be

assimilated by problem solving actions. The student may ask the system to check a hypothesis about the

usefulness of her/his program or program fragments. There is hope that the feedback of the system to this

hypothesis is sufficient help information to overcome the impasse without further help.

Errors in functional programs are often difficult to localize. This is true for most nonsyntactic bugs.

Often the only possibility is to argue that the goals various parts of the program compute are inconsistent

with the main goal. In figure 1 (upper half) we have the impasse situation of subject 8. It is an inconsistent

implementation of the "even" goal. There are several possibilities to localize bugs and to repair the program.

The programmer is supposed to put forward positive (or negative) hypotheses like: "I presume that the

bold marked subtree of the program can be (cannot be) embedded in a correct solution!"

Then the student has to mark this hypothesis with the mouse (bold lines in upper half of figures 1 and 2).

The feedback of the system is given in the lower window of the ABSYNT environment. In figure 1 the

142

student gets a "nonembedable" response. In figure 2 the hypothesis is more restricted. Now, the hypothesis

is embedable. For further study it is copied into the feedback window. The student can now select one link

(bold in lower feedback window in figure 3) to uncover one node of the proposed solution and to program

the correct solution (figure 4).

. f l od

Start '3__ G

III IIIIIIII I I I I I I I IIII I I II II II I III III

I

I

I

li!-

Figure 2: wrong implementation of the "even" predicate in ABSYNT with an embedable
hypothesis (bold lines) and a copy of the hypothesis in the feedback window (lower half)

4. Further Research Topics

The rules of the GMR are highly standardized, so that it will be easy to use the learning mechanism of

automatic rule composition [28] to speed up the system and diagnose typical problem solving schemes in

only a few steps.

To further restrict the number of alternative solution proposals we need a user model which filters the

proposals, so that the feedback information is helpful and does not generate new subproblems. This can be

achieved by storing the hypotheses, their results, and the corresponding actions and repairs of the problem

solver.

As our helps are at present helps on the low operator level we work on explanations and helps on the

higher goal level. One possibility is the study of goal conflicts between task and student proposal and how

this goal conflict can be reduced.

143

I l l l

I

T
I

I

t
t
±

I

I

I

,

b~

Figure 3: feedback of the help system: first the student selects an open link of the
hypothesis (bold line in lower feedback window), then the machine uncovers one node of
a solution

t

I
I

n

m

#4eaa r~l~

- k ~ , r "~lr u r 1It d . I If iLr d r

~-]l~-tt-~l~-41~l~-~1½~}!t~ 4 ~ ~1[--'-]1[-~ ~ l ~ r ~ E ~ ! [~ -] ! [-~] ~
Figure 4: correct implementation of "even" predicate

144

5. Summary

From a theoretical point of view the optimal selection of the moment when help should be given does not

seem to be a hard problem: IDL- and SDL-theory and our results provide strong evidence that problem

solvers prefer to accept help information during impasses, whereas during the knowledge optimization

phase new information is usually ignored.

Still an active research question in the design of 1TSs and PSMs, though, is the content synchronization

of help information and knowledge state of the problem solver. We tried to solve this problem by offering a

mixed-initafive dialogue in case of an impasse: the student selects information, proposes a hypothesis and

its outcome which is checked by the PSM.

References

[1] WENGER, E., Artificial Intelligence and Tutoring Systems: Computational and Cognitive
Approaches to the Communication of Knowledge, Los Altos California: Morgan Kaufman Publishers, Inc.,
1987
[2] POLSON, M.C. & RICHARDSON, J. (ed), Foundations of Intelligent Tutoring Systems, Hillsdale,
N.J.: Lawrence Erlbaurn Press, 1988
[3] PSOTKA, J., MASSEY, L.D. & MUTTER, S.A. (eds), Intelligent Tutoring Systems: Lessons
Learned, HiUsdale, N.J.: Lawrence Erlbanm Press, 1988
[4] BIERMAN, D., BREUKER, J. & SANDBERG, J. (eds), Artificial Intelligence and Education,
Amsterdam: IOS, 1989, ISBN 9051990146
[5] MAURER, H. (ed), Computer Assisted Learning, Lecture Notes in Computer Science, Berlin-
Heidelberg-New York: Springer 1989
[6] KEARSLEY, G.P. (ed), Artificial Intelligence & Instruction, Reading, Mass.: Addison-Wesley 1987
[7] SCHMITr, H. & WOHLFARTH, P., Mathematikbuch 5N, MIlnchen: Bayerischer Schulbuchverlag,
1978
[8] BAUER, F.L. & GOOS, G., Informatik: Eine einfiihrende Obersicht, Erster Teil, Berlin: Springer
1982
[9] DOSCH, W., New Prospects of Teaching Programming Languages, in:F.B. LOVIS & E.D. TAGG
(eds), Informatics Education for All Students, Elsevier Science Publishers B.V. (North-HoUand), IFIP
1984, 153-169
[10] DOSCH, W., Principles of Teaching Programming Languages, in: E. SCERRI (ed), Proceedings of
the 2nd Biennal Meeting of the Community of Mediterranean Universities, Malta, 17-21, October 1988 (in
press)
[11] MOBUS, C. & THOLE, H.-J. Tutors, Instructions and Helps. In: CHRISTALLER, Th. (ed):
Ktinstliche Intelligenz KIFS 1987, Informatik-Fachberichte 202, Heidelberg, Springer 1989, S. 336-385
[12] MOBUS, C. & SCHRODER, O., Knowledge Specification and Instructions for a Visual Computer
Language. In: KLIX, F., STREITZ, N.A., WAERN, Y. & WANDKE, N. (eds): Man-Computer
Interaction Research Macinter II, Preceexiings of the second Network Seminar of Macinter held in Berlin
/GDR, 21. - 25. M~'z 1988, Amsterdam: North Holland, 1989, S. 535-565
[13] JANKE, G., & KOHNERT, K., Interface Design of a Visual Programming Language: Evaluating
Runnable Specifications. In: KLIX, F., STREITZ, N.A., WAERN, Y. & WANDKE, N. (eds): Man
Computer Interaction Research Macinter II, Proceedings of the second Network Seminar of Macinter held
in Berli~GDR, 21. - 25. M~z 1988, Amsterdam: North Holland, 1989, S. 567-581
[14] MOBUS, C. & SCHRODER, O., Representing Semantic Knowlexlg¢ with 2-Dimensional Rules in
the Domain of Functional Programming, in: TAUBER, M., GORNY, P. (eds), Visualization in Human-
Computer Interaction. Heidelberg, Springer: Lecture Notes in Computer Science, Berlin (in press)
[15]. SHNEIDERMAN, B, Empirical Studies of Programmers: The Territory, Paths, and Destinations, 1-
~2~n: E. SOLOWAY & S. IYENGAR (eds), Empirical Studies of Progranmaers, Norwood,N.J.: Ablex,

145

[16] WEBER,G.,WALOSZEK,G. & WENDER, K.F., The Role of Episodic Memory in an Intelligent
Tutoring System, in: J.SELF(ed), Artificial Intelligence and Human Learning: Intelligent Computer-Aided
Instruction, London: Ch..apman & Hall, 1989
[17] JANKE, G., MOBUS, C., & THOLE, H.J., Empirische Pilotstudie zur Konstruktion eines
problemlSsezentrierten Hilfesystems fiir einen ProblemlOsemonitor, 44-55, in: F.STETTER &
W.BRAUER (eds), Informatik und Schuie 1989: Zukunfts-perspektiven der Informatik f'tir Schule und
Ausbildung, Informatik-Fachberichte Nr.220, Berlin-Heidelberg-New York: Springer 1989
[18] HOUGHTON, R.C., Online Help Systems: A Conspectus, Communications of the ACM,
1984,27,126-133
[19] SHNEIDERMAN, B., Designing the User Interface, Reading Mass., 1987
[20] McKENDREE, J., Feedback Content During Complex Skill Acquisition, in: G.SALVENDY,
S.L.SAUTER & LJ.HURRELL (eds), Social, Ergonomic and Stress Aspects of Work with Computers,
181-188, Amsterdam: Elsevier Science Publ., 1987
[21] HARTLEY, J.R. & PILKINGTON, R., Software Tools for Supporting Learning in Intelligent On-
Line Help Systems, in: P.ERCOLI & R.LEWIS (eds), Artificial Intelligence Tools in Education, 39-65,
Amsterdam: North-Holland, 1988
[22] HARTLEY, J.R. & SMITH, M.J., Question Answering and Explanation Giving in Online Help
Systems, in: J.SELF (ed), Artificial Intelligence and Human Learning: Intelligent Computer-Aided
Instruction, 338-360, London, 1988
[23] KEARSLEY, G., Online Help Systems.." Design and Implementation, Norwood, N.J., 1988
[24] MOLL, Th. & FISCHBACHER, K., Uber die Verbesserung der Benutzeruntersttitzung durch ein
Online-Tutorial, in: S.MAASS & H.OBERQUELLE (Hrsgb), Software-Ergonornie '89, 223-232, Stuttgart
1989
[25] SCHRODER, O., FRANK, K.D., KOHNERT, K., MOBUS, C., RAUTERBERG, M.,
Instruction-Based Knowledge Acquisition and Modification: The Operational Knowledge for a Functional,
Visual Programming Language, Computers in Human Behavior (in press)
[26] van LEHN, K., Towards a Theory of Impasse-Driven Learning. In: MANDL, H., LESGOLD~ A.
(eds), Learning Issues for InteUigent Tutoring Systems, Springer, New York, 1988, S. 19-41
[27] NEVES, D.M., ANDERSON, J.R., Knowledge Compilation: Mechanisms for the Automatization of
Cognitive Skills, in: ANDERSON, J.R. (ed): Cognitive Skills and their Acquisition, Hillsdale: Erlbaum,
1981, S. 57-84
[28] LEWIS, C., Composition of Productions, in KLAHR, LANGLEY & NECHES (eds), Production
System Models of Learning and Development, 329-358, Cambridge, Mass.: MIT Press, 1987
[29] LAIRD, J.E., ROSENBLOOM, P.S. & NEWELL, A., Chunking in SOAR: The Anatomy of a
General Learning Meachnism, Machine Learning, 1986, 1, 11-46
[30] WOLFF, J.G., Cognitive Development as Optirnisation, in: L.BOLC (ed), Computational Models of
Learning, 161-205, Berlin: Springer, 1987
[31] ANDERSON, J.R., A Theory of the Origins of Human Knowledge, Artificial Intelligence, 1989, 40,
313-351
[32] SCHRODER, O., KOHNERT, K., Toward a Model of Instruction-Based Knowledge Acquisition:
The Operational Knowledge for a Functional Visual Progr~tmming Language, Journal of Artificial
Intelligence in Education (in press)
[33] KATZ, I.R. & ANDERSON, J.R., Debugging: An Analysis of Bug-I.x~cation Strategies, Human-
Computer Interaction, 1987-1988,3,351-399
[34] JOHNSON, W.L., Intention-Based Diagnosis of Novice Programming Errors, Research Notes in
Artificial Intelligence, London: Pitman, 1986
[35] ANDERSON, J.R.: Production Systems, Learning, and Tutoring, in: KLAHR, D., LANGLEY, P.,
NECHES, R., Production System Models of Learning and Development, 437-458, Cambridge,Mass.:
1987
[36] MURRAY, W.R., Automated Program Debugging for Intelligent Tutoring Systems, Research Notes
in Artificial Intelligence, London: Pitman, 1988
[37] GREER, J.E., MARK, M.A. & McCALLA, G.I.: Incorporating Granularity-Based
Recognition into SCENT. In: BIERMANN, D., BREUKER, J.,SANDBERG, J. (eds): Artificial
Intelligence and Education, Amsterdam: IOS, 1989, S. 107-115
[38] NILSSON, N.J., Principles of Artificial Intelligence, Palo Alto, CA; Tioga
Publishing Co., 1980
[39] ABRAMSON, H. & DAHL, V., Logic Grammars, New York: Springer 1989
[40] LEVI, G. & SIROVICH, F., Generalized And/Or-Graphs, Artificial Intelligence, 1976, 7, 243-259

