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Résumés

A new nonmetric multidimensional scaling technique is presented. The method is
transformation-free (no monotonic data transformations) and operates directly on
distances and data-rankorders. Numeric examples demonstrate that this method is
not inferior to the classical nonmetric techniques. An analysis of LinGoEs & RoskaM’s
(1973} order-4 matrices produced results with a still improved rank-order-isomorphy.

Fine nene nonmetrische multidimensionale Skalierungstechnik wird vorgestellt. Die

Methode verzichtet auf monotone Datentransformationen und benutzt nur Distanzen

und Rangordnungen innerhalb der Daten. Numerische Beispiele demonsttieren, dal3

die Methode den klassischen nonmetrischen Skalierverfahren nicht unterlegen ist,

Eine Analyse von Lincoes und Roskau (1973) Ordnungs-4 Matrizen brachte Ergeb-
nisse mit einer noch besseren Rangordnungsisomorphie.

Background

Nonmetric multidimensional scaling as proposed by Kruskar (1964a,
1964b) and GurrMan (1968) involves minimization of a badness-of-fit measure.
Minimization is done iteratively, Each iteration consists of two stages:

Stage 1: £ = &+1
1Lk (dklgk-l) = min! (1)
Stage 2:
ng (gkldk) = min! (2)
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where: & = number of iteration
L(d|d) means minimization of L with fixed 4 and variable 4
(L = statistical loss-function)
set of distances (derived from the model)
d = set of disparities (detived from the data by means of monotone
regression or rankimage transformation).
The disparities ate “close” to the 4 but constrained to some
criterion of monotonicity with the data.

Convergence of this process is obtained if 1Ly = 2Ly of dy = di41 oOr
dx = dp11. We realize that the set 4 is absolutely necessary for this kind of non-
metric “two-stage”-scaling. In our “one-stage” algorithm we can omit the
disparitics without any loss of information.

There remains still one point of criticism: implicit weighting of “error”
by quadratic “error” terms. L is in most programs a quadratic “error” func-
tion (least-squares principle): each “‘crrot” (dyy — dy;) is weighted by a factor
(diy —dy). Larger departures from monotonicity are weighted more than
really necessary.

If we look at L as an euclidean distance function, which measures the
distance of the configuration from the ideal configuration, we can use the same
arguments which were written about the problem of implicit weighting in Min-
kowsky-distance-functions (Cross, 1965; WENDER, 1969; CooMss, Dawrs &
TveERsKY, 1970; Aurens, 1972, 1973). An L with greater sensivity and without
implicit weighting of departures from monotonicity should look like the
city-block-distance {L;-approximation).Look at (3) and (4).

R,
I

Tmplicit weighting of discrepancies by MiNkoOwSKY-distance-formula :

. 1 — X -1
dr(t,j) = [% | ek —x;uc|”] r_ % B;H] . [o¢sr — %x] 3
r = metric-parameter
(1<r<C o0)

- weight of dimension-
specific-distance specific-distance

Implicit weighting of departures from monotonicity by two-stage lossfanction L:

dy —di| | r1
L J,d:z[—i—k- Ny —d 4
r(@d) = & NL G |dss — dis €
= o _ | departure from
o Z { weight } {monotonicity }
if r = 2, then least-squares-method (L g-approximation)
N = normalization factor which is specific for

the chosen algorithm
L, = L,-approximation

Axch. Psychol., Bd. 128, Heft 314 16
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Oanly in the case of Li-approximation (SeAtH, 1973, 1974) are the errors
|dij~di;| weighted equally with a factor 1. Because of the lack of a statistical
error theory the desirable statistical properties of Lz-approximation (least
squares estimators) do not hold in nonmetric scaling contexts. Therefore, the
only reason for using Lp-approximation lies in the smoothness of the loss
function, so that one can use standard gradient techniques for minimization.

A further point to improve is the wonmetric aggregation of individual data
which is treated rather cumbersomely in the classical approaches. We shall
show below (20) how this can be done very easily and efficiently, even for large
data samples.

The degree of approximation is evaluated in most “two-stage” programs
by means of three measures of fit: KruskaL’s stress 1 and stress 2 and Gurr-
MaN’s @,

KRruskAL’s sfress 1:

i=i
L=35i= - (5)
g‘j d?;r' jgi df

2 (dy —dy)? gf |dsy — dig| | i — dg|

KruskaL's stress 2:

gj (diy — dy)? iéjlgii — dyg| | s — ]

L=s53= = (©)
igf (iy—aJR ﬁgj (dy—e)?
where: dy = disparities as a result of KRUSKAL’s monotone regtession
d = mean of all distances
dyy = dissimilarity

GUTTMAN's mormalized phi:

2 (dy—dy 2| A —dy| |y — dy]

i1
L=0= % = 23 (7)
2 2
i 4y > 43
where: 353‘ = disparities as a result of GurrMaN’s rank-image transformation.

The distinction between 57 and §5 is only relevant in the case of “off-diagonal”’
data matrices.
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A remarkable step in a new “one-stage” was taken by Jornson! (1973) by
introducing a type of stress (loss), which operates only on distances and rank-
otrders derived from the data. Monctone data-transforms are not used any
longer. Minimization reduces to an one-stage process with no iterations:

Stage 1: £ =1
Ly (dy) = min!

JouNsoN’s measure of stress is free of disparities and depends solely on
distances and data-rankorders. His algorithm is restricted to the euclidean
metric and symmetric proximity matrices.

JOHNSONr stress:

i 2 LRY:
;;}; dy, fcl(d” T dm)z

Lis ¥ ayrl ot — min! (8)

2@l -y
IJ<KL
where:
1, if sign (4 — dgr)
8, kit = # sign (dy — dw)
0, otherwise and if dj; = di
IJ=G—20— 12+
KL =(k —2)(£ — 124/
di; = dissimilarity between / and ;
dy; = distance between { and

The restriction // <2 KL was not introduced by Jonnson, but it is helpful
because it halves computer time for evaluation of L. If the distances are in the
wrong order (= inversion of distances), the numerator is increased by a “well-
defined” amount. Are on the other hand the distances in the right order (pro-
version of distances) the numerator is not increased. Ties are treated according
to two options: KruskaL’s PRIMARY (distances may differ even in the case of
tied proximities) and SECONDARY (distances may not differ in the case of tied
proximities) approach, In the first case the term (47 — dir)? should be added to
neither numerator nor denominator of L. In the second case (45 — d3)2 should
be added to both numerator and denominator, If 4;; is unknown all comparisons
involving iy are completely left out {missing data option). In JoHNsON’s stress
(8) we notice an even greater weighting of error than in (5)—(7).

1 T am very grateful to Ian SpEncE and Forrest W. Younc for reading an
earlier draft of the manuscript. They also informed me that Gurryan (at the XIXth
Congress for Psychology in 1969 in London) and pE Leeuw (unpublished manu-
scripts} were the very first to introduce the concept of transformation-free scaling.

16*
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We think, that only the discrepancy |4y — dgi| should be of any interest,
if di; and dy; show an inversion. This discrepancy is hidden in JoHNsoN’s stress.
It is weighted by a factor, which deteriorates the orderisomorphy between the
dissimilarity data and the distances. In a later section we will sce that this is
true at least for order-4 matrices which were used by LiNgors & RoskaM
(1973) comparing various scaling algorithms. If we look at the numerator we
can factor out:

2
(d%; — i)t = |dis — il |(diy — dra) (g + dt)?| )
discrepancy  weighting factor
=amount of
inversion

Discrepancies are weighted much more in the case of great distances. The algo-
rithm tends to reduce the weighting factor first. Reducing the amount of
discrepancies is not of primary interest. This will sometimes happen at the cost
of::

.Y— z[si}. kI

I STFS T Shym+ ey ke =

whete: ¥, = Sum of proversions
S_ = Sum of inversions
4 = 1, if an inversion occurs; 0, otherwise
& = 1, if an proversion occurs; 0, otherwise

8p possesses a strong connection to KENDALL’s 7, to KENDALL-SILLITTO’s Tand
Goopuman-Kruskar’s » (Kenpar, 1948; Sicurrro, 1947; 1959) as will be
shown in the “Method”-section. Jounson’s algorithm pulls and pushes points
with great distances into a “best” position even at the cost of an increasing
number of inversions. Thus orderisomorphy between data and model (one of the
main goals of nonmetric MDS) is deteriorated. Although S_p reflects the
number of violations of rankisomorphy it is not appropriate for a loss function.
Being a step-function it is awkward to minimize: one needs special algorithms
for integer programming. Further, §_, only takes the occarrence but not the
severity of each inversion into account. But, becausc we are provided with
metric information on the model side, we can extract more information than
§_, does. Thus we can improve 5.5, which leads us to (10),

Method

On the basis of SHEPARD’s verbal definition of nonmetric MDS we want
to propose a badness-of-fit measure for a “one-stage” procedure without any
implicit weighting of “error” or discrepancy (Mozus, 1974).



Nonmettic Multidimensional Scaling without Disparities and Derivatives 245

SuepaRD (1972) gave the clear and distinctive definition of nonmetric
scaling:

“We seek, simply, that configuration of # points in the (Euclidean) space
of smallest possible dimension such that, to an acceptable degree of approxima-
tion, the resulting interpoint distances 4j; are monotonically related to the
given proximity data in the sense that

dyy < dy whenever dy < dy; .

Our stress can be looked at an nonmetric analogue of §_p, which plays a
prominent role in rank-correlation methodology (at least in the KenDALL-
tradition). Thus minimizing out sttess is equivalent to maximizing a nonmetric
analogue to KENDALL’s (purely ordinal) rank-correlation coefficient r. Thus
being a “pairwise” method at the first glance it is now obvious that this kind
of stress uses information from the full rank-orders. Our algorithm can be used
for all meaningful distance-formulas. We extend the stress-measure to the case
of square nonsymmetric un/conditional matrices and show how to aggregate
individual data the nonmetric way.

Our type of stress: “Proportion of weighted inversions S, p:

i

wor Ou, wldiy — dul
1J<KE
Lo=Sup=""23 = (10)
iig dig, klldﬁ = dkll] -+ [ ;i{ 14, k{]di}' — dm|
I7<KL . IT<KL
where:
d E : if (a’%- —tfm) and (a’ij —dk;)
0 t =0
0 0 >0
1 0 =0
| PRIMARY (SECONDARY)
0 0 =0
0 0 i =
L0 (1) 0@ =0
1 0 <0 =0
0 <0 =0
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In our method we compare pairs of dissimilarities with pairs of distances.
(10 is simple to read. The inequalities # > 7 and & = / restrict us to the lower
half of the symmetric dissimilarity matrix. The inequality I7 < KL saves us
from unnecessary comparisons. If the distances are not in the same order as the
dissimilatities, we notice an inversion and § = 1. The severity of the in-
version is equal to |di — dyg|. This amount is added to the numerator, In the
case of orderisomorphy, (distances and dissimilarities show the correct order),
we notice a proversion and ¢ = 1, The actual errors are added in the numerator
and the maximum possible errors are added in the denominator, Thus 5y, p is
normalized and lies between 0 and 1,

Transforming Sy,—; we get a coefficient y which shows a strong tesem-
blance to KEnpaLL's ¥ and which can be looked at its nonmetric analogue:

—lZp=1-25p =< +1.

This can be seen very easy if we transform S_, (or d;) into Kenparr’s = (no
ties) or into GoopMaN & Kruskar’s p (ties and PRIMARY approach) just
the same way;

—l<t=1-25_,< 41
We can summarize the comparison between Sy, §_p and JoHNSON’s stress as

follows:

desirable weighting : undesirable weighting:  transformation
of inversion & . oferror |a’g d;c:,| g to

S_p ; no no ! KENDALLS 7
: : (\uthout ties)
¢ GOODMAN &
| Kruskar’s p (with
: ties and PRIMARY
: approach)
Sy (10) { yes: |di—dil no ¢ nonmetric analogue
: : i to KENDALL's T
Jounson’s Poyes: |di—dg| i but: | (dij~drt)
stress (8) i (drj+di)?|

We hope that statistical inferences in nonmetric multidimensional scaling will
be facilitated in the future by . Minimization has to be done under the side-
condition

Normalisation of
2
Rl configuration (1)

which leaves stress invariant.
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There is still another interpretation of stress. (4), (5)—(7) define the
euclidean distance of the configuration from the ideal configuration in a
stimulus-pair space and (8) shows similarity to an euclidean distance of an
empirically derived configuration to the ideal configuration in a “complete
compatison space”. Qur stress can be interpreted as a city-block distance in
that space.

Despite the conceptual advantages of (10) it cannot be minimized with
standard gradient methods, This is due to the fact that L cannot be differentiat-
ed at each point. In some areas where no further orderviolations have been
found, L is constant and the gradient is zero. In some other areas where dy,
switches over from zero to one the gradient is undetermined. These ate reasons
for using a gradient-free hill-climbing method.

The original version of the gradient-free hill-climbing method was
published by NELpER & MEeap (1965). An improved and corrected version
was published by TiEDE (1973). We used the latter version but with some
modifications in the starting simplex.

Starting configuration: To save computer-time we choose the approach
which was recommended by LinGoEs & Roskam (1973, p. 18). We transform
the dissimilarity matrix in a matrix of ranks. Computing scalar products
according to the formula;

r=unn—1)2
!
by =172+ 0 — {(n—')z_'iﬁ ‘+ oy } 07; = rank of afi.j
p; = mean of i-th tow

and solving for the roots and vectors of B offers us the initial configuration,

Starting simplex : The function we want to minimize is: F= F(X1, X5, ...,

Xiy ooy Xp). The side condition is; Zx? =1. The argument vector is a vector
in configuration space (Kruskar, 1964b). We choose a starting point
Po=(x1, x2, ..., Xy, ..., Xp) in configuration space under the side condition,

which means that Py lies in minimization space (= surface of a hypersphere in
configuration space with radius 1). Py consists of the components of the
normalized cigenvectors of the matrix 8. Later in the algorithm Po can be a
result of a step in optimizing the starting simplex. We are now moving parallel
to the first coordinate axis with a step-width 41 # 0 in order to get the point

P'yy = (21 +-di, %2, ..., x4 .., xp) and the corresponding values Fy = F
(Po) and F'1; = F(P'11). If we move backwards we get P’y = (x1 — 41,
Xgy ooy Xpy o00y X)) and F'ya = F(P'15). Now we choose the smaller value

F'y=min(F'11, F'12) and the corresponding point for P'y. If F'y > F(Py)
we turn over to the next dimension and move along the sccond coordinate
axis with a Py being replaced by the best point on the previous path aleng the
axis. In this case Py = Py(p1ay. The movement along the second axis produces
Play = (pey, %9 fds, o0, x4, ..., Xp) et
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Otherwise, in the case of F'y < F(Py), it seems to be promising to take a
further step parallel to the first coordinate axis in a favorable direction. We
seek the point P*y = (x'1+4d"1, X2, ..., X4 « .., xn). 4’1 = SIGN(d1 441,
x'y —x1). If F'y<< F'y. Py is replaced by P’';, othetwise, Py is replaced by
P'1. Now we possess a better Po. We can take this Py and go along axis 2. All
described steps are computed for the higher dimensions ceteris paribus, with
Pomew) = best point we found by moving along the previous axis. Each path
along the i-th of the # coordinate axes produces a “best” point Py;. At the end
of our search through the axes we get a set of #+ 1 points {Py, Poy,- .-, Pos,
...» Pon} in configuration space, which we call the starting simplex.

Evatuation of function: After collecting and compating all values of the
starting simplex we look for the highest ( Fp), the second highest ( F;) and the
lowest (F1) values: Fp = F(Py), Fs = F(Py), F1 = F(P1). Because Py, is
the worst point of the starting simplex it would be wise to substitute it by a
better one.

Reflexcion: For this purpose it is necessary to calculate a weighted centroid
of the reduced starting simplex, which does not contain Pp:

56 7
j%— = P (=centroid of simplex) (12)
Gy = (Fp — F)) + 0.7-(Fp — Fy). (13)

Numerical experimentation has shown, that (12) is mobile, so that the danger of
being trapped in local minima is reduced. The “jumpy” character and the great
number of function evaluations are good zaid in this respect. Points with smaller
function values attract the centroid with a “greater force” than points with
greater function values will do,

Now we have to substitute P, by that point we get by a “reflexion”
opetration:

F— (1 +a)P — Py where a > 0 (= coefficient of reflection: (14)
in this program = 1),

If the result is Fy << F << F; we replace Pp by P, butif F < F weare encouraged
to continue our search in this direction and perform an “expansion” operation
on the simplex.

1 FORTRAN-IV function
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Expansion: By an expansion we get the point:

P = (1 4+ y)za — yf_” where ¢ = 1 (= coefficient of expansion: (13)
in this program = 2),

Then we compute F and compare this value with the previously obtained 77,
Fy,and Fp. If Fr<C F we substitute Py, by P. If on the other hand F%Fl,
Py, will be replaced by P if F(P )< F(P)and by P if F(P)< F(P ). In cases
of Fy= F our reflexion was not very successful. We now proceed to make a
contraction:

Contraction: We distinguish two cases. If Fy < Fj << F we advance directly
to a contraction, othetwise, if F, < F < Fy, we substitute (before the con-

traction) Py by P. The contraction formula is:

P = (1 —B):P + BPr whete 1 = f = 0 (= cocfficient of contraction:
in this program = 0.5) (16)
P “as the result of the contraction is always pushed away from the point with the
highest value (either P or Pk) This result seems to be very desirable. We now
compare F with . If F < F;,, we replace Py, by "Pand start with a new

iteration. If, howevet, F), < F reflection and contraction showed no improve-
ment and we have to shrink the whole simplex.

Shrinkage of the whole simplex: The center of shrinkage is ;. All other
points are moved toward this “best™ point:

= (Py + Py (17

Then a new iteration is started.

Program

The most important thing we have to consider in a computer program
for our version of nonmetric MDS is the speed of a FUNCTION, which
computes the distances and 5. For this purpose all arrays are stored one-
dimensionally, Index computation is made only by additions and subtractions,
“Slow” operations such as multiplications and divisions or |/ are used only in
absolutely necessary instances,

Each time we calculate F (this is done by calling FUNCTION), we nor-
malize the configuration, Thus minimization is done on a surface of a
p-dimensional hypersphere (p=number of stimuli-number of stimulus-
dimensions) with radius 1 in configuration space. For mote details look into
the flow chart (Fig. 1).
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Some people will hesitate in using a “search™ technique. However, one
ought to keep in mind that these techniques as well as gradient-methods belong
to the hill-climbing algorithms. All hill-climbing methods are in fact search-
techniques, some of them using gradients. It is interesting to know that the
more advanced gradient techniques (e.g. the conjugate gradient method)
include gradient-free Zmear searches to improve results. Nearly all numetrical
studies have shown that without a good initial configuration one often gets
trapped in a local minimum when using a gradient-method. This is not ttue
for the repised simplex. But in order to get even more safety we estimate the
initial configuration (= Pp) by TorGERsoN-scaling the matrix of rankscalar-
products. The numerical precision of the method can be seen in Table 1
where coordinates of points coincide at least for two decimals. This is true
for points 1, 3, 7, 9 (dimension 1) for 1, 3, 7, 9 (dimension 2, for 2, 8 (dimension
1), for 4, 6 (dimension 2), for 4, 6 (dimension 1), for 2, 8 (dimension 2) and
for 5 (dimension 1 and 2) in the two-dimensional solution.

Computer time for stress evaluations increases very fast with a growing
number of comparisons. At the present time we recommend this method only
up to 20 points. It is however possible to compare the proximity matrix with
a chess-board. Each “white” matrix entry is completely left out in stress
evaluation thus simulating the missing-data approach. Further research is
needed in evaluating the relation between “precision of scaling solution™ and
“number of orderrelations”.

At the same time this apparent drawback of one-stage scaling is compen-
sated by the rapid aggregation of individual data matrices. Thiswas not possible
with the same efficiency in classical nonmetric scaling.

Handling ties, missing data, nonsymmetric conditional
and unconditional ‘diagonal® data

Missing data and ties are handled according to Jomnsow’s proposals
(1973, p. 14). If dj; is unknown, all comparisons which involve d;; are left out,
In the case of tied data the values of § and e are taken from the table on page 245.

In order to analyse a nonsymmetric ‘diagonal’ matrix in which all ele-
ments are comparable (=intact, wnconditional asymmetric proximity matrix,
GREEN & CarRMONE, 1970, p. 31) we minimize (18):

”%{L 85, wt| s — At

S ddy—du|+ T e|dy—dyl
IJZKEL 1JZKL

IL = Syp = = min!  (18)

whete: Ij =({F—1)-n+7
KL =(k—-1)n+{
# = number of points.
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When we have a nonsymmettic ‘diagonal’ matrix whose elements are
compatable only within a row (= #ntact, conditional matrix) we use (19):

> i, ity — dul

J<t
Z (5|d§j L du| + Z S|dij _'dﬁ.i
i<t i<t

L= §yp= — min! (19)

Nonmetric aggregation of individual data

If there is ome dis/similarity matrix for each petson, it is not cotrect to
aggregate individual information by averaging, when the data are less than
intervalscaled. Nonmetric aggregation can be handled very easy (under the
assumption of homogenity of individuals) by redefinition of 8y s and ey, z1:

N N
Zlf5£;f. KL leij, Kt n
. n=. B
OU, K= —T Eif, kI — N (20)
= ptoportion of order-isomorphy = proportion of proversions
violations for comparison (&, &/) for comparison {7, £/)
in the whole sample in the whole sample

Local minima and ‘Clustered’ solutions

Each numeric minimization technique has to face local minimum problems.
However, the danger of getting trapped into a local minimum is reduced by
various features of the algorithm: choosing a quasimetric initial configuration
by TorGersoN-scaling the matrix of rank-scalar products (= initial Py in
configuration space); fast changing directions of search; switching between
contractions and expansions.

In some cases we get a clustered solution. If all dis/similarities of one
stimulus to the remaining stimuli are greatetfsmaller than the remaining Znser-
stimuli dis/similarities we get a “clustered” configuration. The corresponding
point is moved far away and the rest of the stimuli is collapsed into one point.

Numerical examples

We scaled Messick & ABeLsoN’s (1956) famous example with (8) and (10)
to demonstrate the numeric precision of the search procedure (SECONDARY
approach). The “data™ consisted of the interpoint distances of a unit squate.

Results can be seen in Table 1 and Figure 2,
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8 7 654 1 2
&) Jownson's Stress ( SECONDARY approach): one dim.
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¢} Our Stress (SECONDARY approach): one dim.

Fig. 2. Scaling solutions of MEessick’s and ABELsON’s “Square” Data (1956) on the
basis of an intact unconditional symmetric proximity matrix

a: Jounson's Stress (SECONDARY approach) Minkowsky R = 2§ = 36222 one-
dimensional solution

b: Jonnson’s Stress (SECONDARY approach) Minkowsky R =2 .5 = .00085
two-dimensional solution

¢: Our Stress (SECONDARY approach) Minkowsky R =2 § = 30286 one-
dimensional solution

d: Our Stress (SECONDARY approach) Minkowsky R =2 § = .00001 two-
dimensional solution

The analysis of nonsymmetric square proximity matrices is demonstrated
with an example from Coomss, Dawes & TvERsky (1970, p. 731L.). See Table 2
and Figure 3. “Clustered” solutions are shown in Table 3.
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Fig. 3. Scaling solutions of Coomes, DAWEs & TVERSKY’S (1970, p. 73 L.} data (matrix

i:

R T

of residuals, Table 2)
KruskaL’s configuration (Coowmss ef al., 1970, p. 75) based on the ‘conditional’
approach

: GUTTMAN-LINGOES’ configuration (op. cit,) based on the ‘conditional’ approach
; Our configuration based on Jonnson-type stress and on the ‘conditional’ approach
: Our configuration based on JoHNsON-type stress and on the ‘unconditional’

approach

: Our configuration based on our (18) stress and on the ‘unconditional’ approach
: Our configuration based on the our (19} s#ress and on the ‘conditional’ approach
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Distinct order-4 matrices

In Tables 4—7 we comparte our scaling results with results obtained by
LinGoEs & Roskam (1973, p. 56) who evaluated the Krusgar- and GurrMan-
Lingors-scaling approaches. L.iNGoEs & Roskam explain their motivation for
analysing distinct order-4 matrices (L1NGoEs & Roskam, 1973, p. 55):

*“We shall be concerned ... with a fairly detailed analysis of the behavior of
various algorithms on all possible order-4 distinct matrices (without ties). While
admittedly of slight substantive import, such analyses could shed some further light
on such issues as robustness, convergence problems, the role of the initial con-
figuration in obtaining minimal sclutions, the relationships among conv erged
solutions based on different constraints, etc. One of the chief advantages of working
with such smal matrices is that we can investigate rather exhaustively z large number
of possibilities at a low cost and provide a criterion set of results that might be used
by others for testing different algorithms. While some of our results would seem to
be a function of small #, the main conclusions are consonant with those obtained
from analyses of much larger matrices (since, without the latter, there would be
little ground for generalization). It is our opinion that, if anything, these analyses of
order-4 matrices hlghh ght some of the problems that are only hinted at in the analyses
of larger matrices,”

LiNGoEs & Roskam divided the 30 order-4 matrices into three groups:
group A with matrices which have a perfect strongly monotonic fit in one
dimension and group B with 14 matrices which produce zero stress solutions
(the number of different distances (#4) is less than six which occurred by either
collapsing stimuli into one point or by tying distances) and group C with
matrices which possess a non-zero one dimensional fit (Table 4). We use the
same partition to facilitate comparisons. Qur original scaling solutions are
given in Table 5a and the rounded and normed solutions in Table 5b. For the
matrices in section A and B we obtained zero stress solutions which fairly
agree with those from Lincors & Roskam. Main differences occur only in
section C. We analysed matrices 20—30 (Lincoes & Roskam’s rounded and
normed solutions, our original and our rounded and normed solutions) with
Jonxson’s (8) and our stress (10) (= J-Stress and O-Stress), percentage of
order-violations or invetsions (DELTAP), SpEARMAN’s rank correlation
coefficient rho, KENDALL’s tau (in the case of untied distances) or Goopman &
KruUskaL’s y (in the case of tied distances). The results can be seen in Table
6a—c.

K and § solutions have been alrcady compared by Lincors & Roskaw.
Taking S_; (= DELTAP/100) and 7 as accompanying measures of goodness
of orderisomorphy a certain superiority of our algorithm (at least with these
data sets) cannot be denied. Tt seems to be better to tic distances than leaving
them inverted and facing a deteriorated orderisomorphy. Let us take matrix
30, where the greatest discrepancy between our stress solution and the §-
solution can be obscrved, as an example. For the S-solution 7 is .20, for our
original selution .60 and for the rounded and normed solution .78. What

Arch. Psychol., Bd. 128, Heft 34 17
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Table 4. AJ distinct order-4 matrices and their minimum confignrations obtained by
Lingoes & Roskam

259

Group A(K=5 =0;n3=06)

No. Matrix

L S S
-
=]
o
)

Group B (K = § = 0; ng < 6)

No. Matrix

6 136,452

7 126,35,4
| 8 124,35,6
9 126,453
123,54, 6
123, 45,6
134, 65,2
13 135,64,2
136, 54, 2
124, 36, 5
126, 34, 5
17 124,53,6
134, 56, 2
19 124,56, 3

Group C(K, S =

Matrix
125, 63, 4
126, 53,

| No.

20
21

22
23
24
25

Configurations
— 429, — 14,3, —100.0,
— 333, 11.1, —100.0,
— T71.4, —100.0, — 14.3,
— 55.5, —100,0, 131,
— 66,7, —100,0, 33.3;

Configurations
—100.0, —100.0, 54.4,
—100.0, —100.0, — 55.3,
— 757, — 75.7, —100.0,
—100.0, —100.0, 0.0,
0.0, 0.0, —100,0,
0.0, 0,0, —100,0,
—100.0, —100.0, 100.0,
—100.0, —100,0, 100.0,
—100.0, —100,0, 100.0,
—100.0, —100,0, —100.0,
—100.0, —100,0, —100.0,
— 247, 24,7, —100.0,
— 70.1, —100,0,  70.1,
— 333 —100,0, 33.3,

0)

K-solution
— 429, 429, —100.0,
— 414, 414, —100.0,
— 62,8, —49, —100.0,
— 23.1, 53.8, —100.0,
— 23.8, —100.0, 55.1,
— 41.5, —100.0, 45,1,
— 52,2, —100.0, 35.6,
— 40.4, —100.0, —0.7,
— 38.0, —100.0, 53
— 25.7, —100.0, 100.0,
— 30,2, —100,0 100.0,

et}

100.0
100.0
100.0
100.0
100.0

100.0
100.0
100.0
100.0
100,0
100.0
100.0
100.0
100.0
100.0
100.0

100.0
100.0
100.0

100.0
100,0

100.0
100.0
100.0
100.0
100.0
100.0
100.0

22.4

28.2

S-solution
41.4, —100.0,
41.4, —100.0,
—4.9, —100.0,
51.0, —100.0,
—100.0, 51.0,
—100.0, 38.1,
—100.0, 38.1,
—100.0, 5.9,
—100.0, 6.0,
—100.0, 100.0,
100.0, —100.0,

100.0
100.0

100.0
100.0
100.0
100.0
100.0
100.0
100,0

46.2

46.3

This matrix is adapted from Lincors & Roskam (1973, p. 56). Matrix entries for
ranks are listed for upper-half of matrix, i.e.: pz2» = 1, p1g = 2, prga = 5, paz = 3,
pas = 4, pgs = 6 for matrix No. 1. The scale values of the configurations are com-
puted and rounded by: yi, = 200 (2tia — Xmin’ o){@max — 100 where: dmax = max(xia)
— min (x4,) on dimension «. X is the coefficient of alienation in GurrMan & LiNcoes’
SSA-I-program and § is stress 1 in Kruskar’s M-D-SCAL program (LiNGOES &
Rosxawm, 1973, p. vii).

17+
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Table 5a. AN distinct order-4 matrices and their minimum configurations as a result of * Nonmetric
scaling without disparities and derivatives” (original scale values: Sum of squares = 1)

No.
1 —.11005
2 —.10683
3 —.34132
4 —=26773
5 —.41387
6 —.48146
7 —.31357
8 —.28175
9 —.45203
10 .00042
11 —.00004
12 —.49437
13 —.49987
14 —.49837
15  —.28867
16 —.26102
17  —.15101
18 —.43528
19 —.22317
20 —.00119
21 —.70703
22 —.42013
23 —,15002
24 —,15589
25 —.,39845
26 —.44830
27 —.D7940
28 —.DB524
29  —.12956
30 —.11612

Jounson’s Stress

—.04381

.09077
—.47635
—.63169
—.55390

—.48108
—.31331
—.28224
—.45116
—.00082

00054
—.50181
—.50010
—.49825
—.28867
—.25929

15107
—.55076
—.67081

—. 70677
—.00047

.10596

42456
—.74473
—.55848
—.53077
—.67580
—.68311
—. 76264

43020

—.61685
—.69170
00741
20527
32015

.34629
—.22929
—.28243

15029
—.70683
—.70711

49819

.50019

49858
—.28867
—.26102
—.69082

43330

22331

70727
.00031
—.46053
—.74821
42637
38701
—.35169
03045
04482
44668
—.75827

Original configurations

7071
70776
81027
69416
64762

61625
85617
84643
75289
70723

.70661

49800 |
49978
49804

86602

78133 -
69076
55274
67066

00069
70718
T7470
47367
47424
56993
—.62739
T2475
72363 |
44552 |
44419

—.21062
—.21980
—.34132
—.28561
—.41387

—.34899
—.28867
—.04406
—.45231

.00002

00011
—.49970
—.49992
—.49982
—.28867
—.28867
—.16435
—.34020
—.22348

—.22361
—.24098
—.25274
—.22357
—.22361
—.49992
—.45004
—.25320
—.22358
—.22351
—.00019

Our Stress
05015 —.60102
13389 —.63851
—.47635 00741
—.61367 19035
—.55390 32015
—.34897 19404
—.28867 —.28867
—.04404 —.65834
—.45295 15222
—.00001 —,70703
—.00062 —.70673
—.49991 49949
—.49992 49986
—.49993 49990
—.28867 —.28867
—.28867 —.2B867

16457 —.68783
—.61984 .34018
—.66982 22337

22359 —.67081

14858  —.63040

08423 —.58072

22357 —.67074
—.67081 .22361
—.49996 49979
—.45003 15004
—.59178 .08435
—.67074 22358
—.66830 66913

00020 —.70582

76149
72442
81027
70893
64762

.50392
.86602
74644
.75304
70702
70724
.50012
49998
49985
.B6602
.86602
68761
.61987
.66993

.67083
12280
75823
67074
.67081
.50009
75003
76063
67075
22267
70581

Stress-values in Table 6b are based on these original configurations.
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Table 5b. AN distinct order-4 matrices and their minimum confignrations as a result of * Nonmetric
scaling without disparities and derivatives”

Group A (Stress = 0; ng = 6) Rounded and normed configurations

No. Matrix Jouwnson’s Stress Qur Stress

1 125,34, 6 — 27.0, — 17.4, —100.0, 100.0 — 427, — 4.4, —100.0, 100.0
2 125, 43, 6 16.4, 11.8, —100.0, 100.0 — 38.6, 13.3, —100.0, 100.0
3 125, 36, 4 — 79.0, —100.0, — 24.8, 100.0 — 79.0, —100.0, — 24.8, 100.0
4 125, 46, 3 — 45.1, —100.0, 26.3, 100.0 — 50.4, —100.0, 21.6, 100.0
5 135, 46, 2 — 76.7, —100.0, 45,6, 100.0 — 76.7, —100.0, 45.5, 100.0

Group B (Stress = 0; ng < 6)
No. Matrix

6 136, 45, 2 —100.0, —100.0, 50.8, 100.0 —100.0, —100.0, 27.3, 100.0
7 126, 35, 4 —100.0, —100.0, — 85.6, 100.0 —100.0, —100.0, —100.0, 100.0
8 124, 35, 6 —100.0, —100.0, —100.0, 100.0 — 12,5, — 12.5, —100.0, 100.0
9 126, 45,3 —100.0, —100.0, — 0.0, 100.0 —100.0, —100.0, 0.3, 100.0
10 123, 54, 6 0.0, — 0.1, —100.0, 100.0 0.0, 0.0, —100.0, 100.0
11 123, 45, 6 0.0, 0.0, —100.0, 100.0 0.0, 0.0, —100.0, 100.0
12 134, 65, 2 —100.0, —100.0, 1000, 100.0 —100,0, —100.0, 100.,0, 100.0
13 135, 64, 2 —100.0, —100.0, 100.0, 100.0 —100.0, —100.0, 100.0, 100.0
14 136, 54, 2 —100.0, —100.0, 100.0, 100.0 —100.0, —100.0, 1000, 100.0
15 124, 36, 5 —100.0, —100.0, —100.0, 100.0 —100.0, —100.0, —100.0, 100.0
16 126, 34, 5 —100.0, —100.0, —100.0, 100.0 —100,0, —100.0, —100.0, 100.0
17 124, 53, 6 — 21.9, 21.9, —100.0, 100.0 — 239, 23.9, —100.0, 100.0
18 134, 56, 2 — 79.1, —100.0, 78.4, 100.0 — 54,9, —100.0, 54.9, 100.0
19 124, 56, 3 — 33.3, —100.0, 33.3, 100.0 — 33,3, —100.0, 333, 100.0
Group C (Stress = 0)

No. Matrix

200 125, 63,4 — 0.2, —100.0, 100.0, 0.1 — 33.3, 33.3, —100.0, 100.0
21 126, 53, 4 —100.0, — 0.1, 0.1, 100.0 — 42.4, 15.1, —100.0, 100.0
22 126, 43, 5 — 93,5, — 8.3, —100.0, 100.0 — 50.0, 0.0, —100.0, 100.0
23 124, 63, 5 — 21, 92.0, —100.0, 100.0 — 333, 33,3, —100.0, 100.0
24 124, 65, 3 — 3.4, —100.0, 92.2, 100.0 — 33.3, —100.0, 33.3, 100.0
25 125, 64, 3 — 7l6, —100.0, 67.6, 100.0 —100.0, —100.0, 100.0, 100.0
26 126, 54, 3 — 85,7, —100.0, 52.4, 100.0 —100.0, —100.0, 0.0, 100.0
27 123, 46, 5 - 14.8, —100.0, 0.9, 100.0 — 499, —100.0, 0.0, 100.0
28 123, 56, 4 15.0, —100.0, 3.5, 100.0 — 33.3, —100.0, 33.3, 100.0
29 123, 65, 4 4.7, —100.0, 100.0, 100.0 — 33,5, —100.0, 100.0, 33.2
30 123, 64, 5 6.8, 97.7, —100.0, 100.0 — 0.0, 0.0, —100.0, 100.0

#g=number of different distances; there are 30 unique matrices of untied values, when we
have 4 stimuli/points: Theorem (Lincoes & Roskan, 1973, p. 58): There are exactly {3}!/x!
inequivalent (distinct) symmetric matrices with constant diagonal elements and one each of
the integers (ranking numbers) 1, 2, 3, ... #{n —1)/2 in the off-diagonal cells; where A is
not equivalent to B iff there is no permutation matrix P such that PAP" =B and # =3 for
as; # ag (i #J). The original scale values where normed the way Lincoes & Rosxam did
(lock at the bottom of Table 4).
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Table 6a. LincoEes' and RoskaM’s wormed

No. Matrix K-solution OS ]S DELTAP Rhorx, y
20 125634 —429 42,9 —100.0 100.0 17 .36 30.77 .62 .38
21 126534 —41.4 414 —100.0 1000 .16 .37 30.77 .62 .38
22 126435 —62.8 —4,9 —100.0 100.0 .06 .17 20.00 .83 .60
23 124635 —23.1 53.8 —100.0 100.0 10 .22 20.00 17 .60
24 124653 —23.8 1000 55.1 100.0 10 .21 20.00 a7 .60
25 125643 —41,5 —100.0 451 100.0 14 .35 26.67 .66 .47
26 126543 522 —100.0 35.6 100.0 13 .35 20.00 T7 .60
27 123465  —40.4 —100.0 —0.7 1000 .10 .18 20.00 77 .60
28 123564 —-38.0 —100.0 63 1000 .09 .17 20.00 77 .60
29 123654 257 —100.0 100.0 224 16 .22 26.67 .54 47
30 123645 -30.2 —100.0 100.0  28.2 21 .28 33.33 49 .33
OS5 = Our Stress
JS = Jonnson's Stress

Table 6b. Confignrations as a
No. Matrix J-solution OS5 JS DELTAP Rhor, y
20 125634 —0.0012 —0.7068  0.7073 0.0007 .40 .27 46.67 .20 .07
21 126534 —0.7070 —0.0005 00003 0.7072 .40 .27 40.00 26 .20
22 126435 —0.4201  0.1060 —0.4605 0.7747 08 .09 20.00 .83 .60
23 124635 —0.1500 0.4246 —0.7482 0.4737 .15 .15 20.00 77 .60
24 124653 —0.6559 —0.7447 0.4264 04742 .12 .31 20.00 77 .60
25 125643 —0.3984 —0.5585  (0.3870 0.5699 13 .28 26.67 TJ1 47
26 126543 —0.4483 —0.5308  0.3517 0.6274 .11 .27 20.00 7 .60
27 123465 —0.0794 —0.6758  0.0304 0.7247 .10 .11 26.67 1 .47
28 123564 —0.0852 —0.6831 00448 0.7235 .10 .11 20.00 a7 .60
29 123654 —0.1296 —0.7626  0.4467 0.4455 .24 .18 40.00 43 .20
30 123645 —0.1161  0.4302 --0.7583 0.4442 .23 .18 33.33 .54 .33

J-solution = Solution on the Basis of Jounson’s Stress (8)
O-solution = Solution on the Basis of Qur Stress (10)

Table 6c. Normed and ronnded configurations

No. Matrix J-solution OS5 ]S DELTAP Rhor, y
20 125634 —0.2 —100.0 100.0 0.1 .40 .27 46.67 .20 .07
21 126534 —1000 —0.1 0.1 1000 .40 .27 46.15 15 .08
22 126435 —935 —83 —100.0 100.0 .08 .09 20.00 .83 .60
23 124635 —2.1 92.0 —100.0 100.0 15 .15 20.00 F7 .60
24 124653 —3.4 —100.0 92.2 100.0 15 .15 26.67 g1 .47
25 125643 —71.6 —100.0 67.6  100.0 13 .28 26.67 1 47
26 126543 —85.7 —100.0 52.4 100.0 .11 .27 20.00 77 .60
27 123465 —14.8 —100.0 09 1000 .10 .11 26.67 71 47
28 123564 —15.0 —100.0 3.5 100.0 10 .11 20.00 77 .60
29 123654 47 —-100.0 100.0 1000 .24 .18 3846 44 .23
30 123645 6.8 97.7 —100.0 100.0 .23 .18 33.33 .54 .33
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and rounded configrrations

S-solution Os Js DELTAP Rho 1=,y
—41.4 41.4 —100.0  100.0 A6 37 3077 .62 38
—41.4 41.4 —100.0  100.0 A6 37 3077 .62 38
—62.7 —4.9 —100,0  100.0 .06 A7 20.00 .83 .60
—25.6 51.0 —100.0  100.0 10 23 26.67 | A7
—25.6 —100.0 51,0 100.0 A0 .23 20.00 7 .60
—54.1 —100.0 38.1 100.0 A4 35 26.67 | 47
—54.1 —100.0 381 100.0 A3 34 20,00 77 .60
—359 —100.0 59 100.0 A0 16 26.67 71 47
—35.9 —100.0 6.0 100.0 09 16 20,00 g7 .60
—11.2 —100.0 100.0 46.2 A8 19 3333 49 .33
—11.2 100.0 -100.0 46.2 .20 20 40,00 43 .20

restilt of our algorithm

Our-solution os ]8 DELTAP Rho =,y

—0.2236  0.2236 —0.6708 0.6708 A4 41 20.00 g7 .60
—0.2410  0.1486 —0.6304 0.7228 A4 43 20.00 g7 .60
—0.2527  0.0842 —0.5897  0.7582 05 .22 1333 89 .73
—0.2236  0.2236 —0.6707  0.6707 07 .29 7.69 .88 .85
—0.2021 —0.6064 0.2021 0.6064 07 .29 1538 79 .69
—0.4999 —0.5000 0.4998 0.5001 A3 35 26.67 g1 .47
—0.4500 —0.4500 0.1500 0.7500 08 .32 1538 a7 .69
—0.2532 —0.5918 0.0843  0.7606 a0 .22 20.00 J7 .60
—0.2236 —0.6707 0.2236  0.6707 07 17 20.00 g7 .60
0.2235  0.6683 —0.6691 —0.2227 A4 .25 20.00 66 60
—0,0002 0.0002 —0.7058  0.7058 10 .40 20.00 g7 .60

as a resuli of our algovithm

Oznr-solution 0s 5 DELTAP Rho =,y
— 333 333 —100.0  100.0 14 41 1538 79 .69
— 424 15.1 —100.0  100.0 14 43 1333 83 .73
— 500 0.0 —100.0  100.0 05 22 7.69 91 .85
— 333 333 —100.0  100.0 07 .29 7.69 .88 .85
— 333 —100.0 333 100.0 07 .29 1538 79 69
—100.0 —100.0 100.0  100.0 A3 .35 1250 .62 75
—100.0 —100.0 0.0 100.0 .08 .32 9.09 JgJ7 0 .82
— 499 —100.0 0.0 100.0 d0 22 21.43 75 57
— 333 —100.0 33.3 100.0 07 .17 1538 g7 69
— 335 —100.0 100.0 33.2 14 25 20.00 .66 .60

0.0 0.0 —100.0  100.0 d0 0 400 1111 .68 78
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Table 7. Comparison of S-solution and vur stress solution for matrix 30

S-solution Qur stress solution
(rounded and normed)
Pair  Rank of Disparity di; Rank 5 Rank  Pair
of dissimi- of of of
points larity dij dij points
3-2 & 200.0 2000 6 100.0 35 3-2
4-3 5 146.3 1463 5 2000 6 4-3
4-2 4 77.8 53,7 1 100.0 3.5 4-2
4—-1 3 77.8 57.5 2 100.0 35 4-—1
3-1 2 77.8 88.8 3 100.0 3.5 3-1
2-1 1 77.8 111.2 4 0.0 1 2—1
in S-solution in our siress solution
d;; shows inversions proversions di; shows inversions proversions
with 4y with dig with dri with g
dz1 d3 daa d21 ds1
da d3z dg
daz daz
dy3
d32
ds1 da1 dag da1 daz
daz dga
dq daz daa da das
d3e
dyz diz daz daz
d3z
das daz dy3 d3z
§ipi= - = 0.40 = DELTAP/100 S_p = ! = 0.11 = DELTAP/100
_p_m— : — f _p—S—-—'—l— = =l Il'(
y» = 0.20 y = 0.78

happened? This can be seen in Table 7. After selecting matrix 30 we compared
the S-solution {last line in Table 6a) with our solution (last line in Table 6¢).
The results in the lower half in Table 7 show that the number of inversions in
our solution is lower (1194) than in the S-solution (40%,). This is a result of
tying distances. If the rankorder of the dissimilarities is so “complicated” that
one can not find a tankpreserving isomorphic mapping, it scems to be better
to tie distances than to leave them wrongly inverted. This means that the
algorithm tends to reduce the number of “group C” solutions and to increase
the number of “group B” solutions. The postulation that a good nonmetric
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algorithm should avoid tied distances has to be modified: A good algorithm
should not tie distances as long as it does not create new inversions. It seems
not to make sense in multidimensional scaling to demand different distances
at the cost of lower order isomorphy.

Relations between one-stage and two-stage stress

It is possible to transform our stress (10) into a classical two-stage measure
(1, 2) similar to KruskaL’s stress (5).

For a two-stage stress we need a set of disparities, which can be inter-
preted as deal distances with the same rankorder as the dissimilarities. It is inter-
esting to see which parts of our stress can be looked at “disparities™ or ideal
orderpresetving distances. If we reorder the numerator of (10), we get a “two-
stage’ stress with disparites, as follows:

JZJ. {cfzj—rfi;f-i-% 8ij, xt | dis —dnal
denominator D
{}Z {diy— dyy}
ol B

(21) = (10)

Swp =

where: 355: = a'gj = % 61:_-;’,};; |d§j = dml is the “disparity”.

The disparity (ideal distance) is equal to the distance minus that amount
(38| dyy — dra]) which destroys the rankisomorphy with the data. Because the
disparity is never greater than the distance there is no need for squaring error
terms in the numerator to get positive values (Li-approximation).
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