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Abstract: In this paper we describe a knowledge acquisition method which makes
it possible to teach novices to construct Bayesian network models of their own
domain. We and others had to realize that there is a severe knowledge acquisition
bottleneck. It is nearly impossible to teach novices how to construct Bayesian net
models of their own domain because of the huge number of conditional probabilities
that are needed to describe the links of the Bayesian directed acyclic graph (dag).
Because of this you have to use "toy" data from textbook examples. This leads to
motivational problems because novices are often willing to adapt a new
methodology only when it promises an efficiency gain in solving problems without
imposing new ones. They expect at least in principle a solution sketch which
feasibility can be demonstrated. So we offer the possibility that the students can
describe a model of their own domain in verbal terms. The system compiles these
statements into a dag. Furthermore, in this paper two methods are proposed that
allow the acquisition of quantitative data from the verbally stated qualitative
information. The former is needed for the application of the Bayesian network for
inference tasks. One of the methods is based on likelihoods, the other one is based
on frequency distributions. An important advantage of the latter method is that it
substantially reduces the number of necessary knowledge acquisition steps.
Both methods enable the plugin of probability tables which denotate the links of the
dag, and which are a necessary part of a Bayesian net. Thus the tables are solely
derived from verbal statements about stochastic relations. It is no problem to obtain
these verbalizations from domain experts

1. Introduction

Many real-world domains are complex, dynamic, and uncertain. For example, in areas as
diverse as business and medicine, the problem solver often has to make decisions when
knowledge about the actual situation is incomplete, when relations about important variables are
stochastic (or not exactly known), and when unexpected events are possible. This situation is
further complicated by the fact that information about stochastic facts and relations is often
only stated in verbal form, like for example: "It is well likely that a dislocation of intracranial
blood vessels may lead to permanent headache." Even domain experts often hesitate to state
numerical relationships, as for example in medicine [9].

On the other hand, domain models should be stated as precisely as possible if they are to
be used for further problem solving and inferencing tasks. For example, in medicine a
precisely stated domain model is a prerequisite for efficient and effective diagnosis,
consultation, and therapy planning. We are currently developing MEDICUS (modelling,
explanation, and diagnosis support for complex, uncertain subject matters [3]), a system that
supports model building as well as the application of models for diagnosis, consultation, and
therapy planning. But MEDICUS can also be applied to stochastic domains other than
medicine. An actual example is decision support in the domain of business (project SHAFT).
In MEDICUS, uncertainty is handled by the Bayesian network approach. In SHAFT this is
extended by influence diagrams [10, 11].



The acquisition and communication of knowledge is a major bottleneck for the
construction of complex models in uncertain domains. This problem is exacerbated for novices
in probability and uncertainty theory, and for persons (novices or experts) who want to
construct uncertain domain models where objective probability data are missing. We think that
this problem often even prevents people from building adequate models in uncertain domains.
In this paper we want to look at the problem how to support novices in building stochastic
models: Is it possible to acquire the quantitative stochastic knowledge necessary for these
models from verbally stated "fuzzy" concepts and relations? This means that the quantitative
knowledge needed for the specification of a Bayesian network has to be acquired from the
verbally stated qualitative knowledge alone. This feature is especially necessary if the user wants
to create a Bayesian network model for his own domain with some objective probabilities
missing. This task can only be efficiently supported if the necessary quantitative knowledge can
be acquired in a nonreactive way. There are techniques for acquiring quantitative knowledge
from subjects [12] but they are too time-consuming for large domain models. No user will be
willing to answer questions about hundreds of conditional probabilities. A more economic
method has been developed by Heckerman [4] but it also requires lots of judgements.
Approaches trying to assess the (probability) semantics of adverb phrases like "probably",
"perhaps", "maybe" etc., and modal verb forms like "should", "will", "may" etc. [7, 15, 16, 18,
19] do not address multivariate distributions which is necessary when we are interested in the
semantics of relational terms such as assertions about influences, covariances, or conditional
probabilities.

If the semantics of "fuzzy" descriptions of relations can be acquired in the way sketched,
then the creation of domain models can be supported by the following steps:

• Letting the user (novice or expert) state verbal assertions about the domain of interest
• Converting these assertions into numerical relationships between the domain variables
• Validating these numerical relationships, and allowing the user criticize and change them
• Letting the user apply the model for diagnosis tasks, consultation tasks, and other 

inferential applications.

We think that this approach is valuable especially for novices because in this way they can
communicate their own model assumptions in a qualitative way and yet make use of the
quantitative model for interesting tasks of diagnosis, forecasting, etc. But the approach should
also be valuable for experts, at least in those situations where quantitative information is not
available.

In this paper, we firstly will give a short overview of MEDICUS. In the main part of the
paper, we will focus on the problem of acquiring quantitative information from qualitative
relational statements. First we will present an extension of an existing approach based on
"fuzzy" membership functions to multivariate situations ("likelihood approach"). We will show
that this runs into some problems. Then we will present an alternative methodology
("distribution approach") that stays within the Bayesian network approach from the beginning.
It allows to acquire the semantics of verbal relational terms with a limited number of
judgements. It can be shown though that the likelihood approach can also be seen from a
Bayesian view. (Figure 9 summarises both approaches.) We will end with a discussion of the
open points and directions of further work.

2. An Overview of MEDICUS

MEDICUS is an environment for supporting model building and inference tasks like diagnosis,
forecasting, action planning, and consultation in complex, uncertain domains. Uncertainty of
knowledge is handled by the Bayesian network approach. A Bayesian network [10, 11]
represents knowledge as a set of propositional variables and probabilistic interrelationships
between them by a directed acyclic graph (dag). The variables are represented by the nodes of
the graph, and the relations by directed arcs. The relations are quantitatively described by
conditional probability matrices (each variable conditioned on its parents in the network) that
define a joint probability distribution of the variables. Independencies between variables are
represented by omitting arcs, which simplifies the corresponding conditional distributions. 

An important reason for choosing the Bayesian network approach is that it supports
qualitative reasoning. For example, a physician engaged in medical diagnosis proceeds in a
highly selective manner [2]. This selectivity can be described by the independencies also
present in Bayesian networks. Qualitative reasoning as supported by Bayesian networks seems
to correspond closely to human reasoning patterns [5, 6, 17].



One of the main goals of MEDICUS is to assist the learner in developing a model of
perceived causes, effects, and other relationships in a domain of interest with Bayesian
networks. Bayesian networks provide a precise base for reasoning and communication, and for
deriving consequences (in-/dependencies, aposteriori distributions) useful for applications. But
especially for novices, it is necessary that the learner is able to state ideas in an informal way
which he is used to. Therefore, we developed a simplified-natural-language linguistic model
editor. After stating his model in this editor, the system can generate an initial graph
automatically.

Figure 1 shows a small example with four sentences. The learner creates sentences with
the help of a menu. Relational terms are classified based on i) probabilistic concepts of
causality [13] organised according to "kind of influence" (positive / negative) and "direction of
influence" (forward, backward, or undirected), and ii) has-part / is-a hierarchies. For example,
the verb "causes" (second sentence in Figure 1) expresses a forward, positive influence between
two variables A and B: tA ≤ tB, p(B | A) > p(B). If the learner uses a verb not yet available in
the linguistic model editor, he may classify it according to these dimensions. The sentences
created by the learner are checked by a definite clause grammar that gives feedback if it detects
errors.

The learner may ask the system to create a graph representation for the model specified
(Figure 2). In creating the graph, relations are represented by links whose directions depend on
the features of the verb being used in the linguistic model editor. For example, if the relation
between variables A and B is expressed by a verb designating a forward, positive influence
between A and B, then a link is created that points from node A to node B. For relations
describing undirected relations (like "corresponds to"), a dialog is evoked where the learner is
asked to specify the direction, or to specify another variable as the common cause or effect of
the variables in question.

The graph is an initial heuristic proposal. After the initial formulation of the model, it has
to be analysed and revised on a qualitative level. It has to be verified that the dependencies and
independencis implied by the graph correspond to the assertions stated by the modeller. In
Bayesian networks independencies are expressed by missing links. For example, the graph in
Figure 2 states that space requirement and haemodynamic irritation are independent, given
injury (that is, p(space requirement | injury) = p(space requirement | injury, haemodynamic
irritation)).

The qualitative knowledge of the modeller is acquired in three steps:
1. For a case, the modeller specifies the actually known information (for example, "dislocation
of vessels" and "injury", see Figure 2). Next, he specifies a diagnostic hypothesis (for example,
the hypothesis that the patient might suffer from a "space requirement" process, like for
example inner bleeding). Thirdly, he specifies what information he would look for next (for
example, "haemodynamic irritation" and "vomiting"). Independencies are obtained from this
dialog in the following way: Information not considered relevant to the hypothesis by the
modeller, given the history data and symptoms, is independent of the hypothesis. In our
example, "permanent headache" was not selected, so "permanent headache" and "space
requirement" are considered independent, given "injury" and "dislocation of vessels": p(space
requirement | injury, dislocation of vessels, permanent headache) = p(space requirement |
injury, dislocation of vessels).
2. The modeller states the hypothesis that the graph is consistent with the information specified
by her or him in the diagnostic dialog. The system analyses this hypothesis using the d-
separation criterion [11]. This may lead to one of the following results: a) the graph and the in-
/ dependencies are consistent, b) edges have to be removed from the graph in order to be
consistent with the in-/ dependencies, c) edges have to be added to the graph, or d) edges have
to be removed from and added to the graph as well.
3. On further request, the modeller may ask the system for modification proposals and an
explanation of these proposals. In the example stated, the system proposes for Figure 2 to add
an edge from "space requirement" to "haemodynamic irritation" because the modeller specified
that "haemodynamic irritation" is informative for "space requirement" given information about
"dislocation of vessels" and "injury".

After qualitative refinement of the model, numerical probability tables can be entered,
and the model may be applied to inference tasks. Quantification is a major knowledge
acquisition bottleneck (see next section). With respect to applications MEDICUS generates
qualitative recommendations based on quantitative propagation for diagnosis, consulting, and
therapy planning in selected subdomains of environmental medicine. The models are currently
developed together with our cooperation partners who are domain experts but not statisticians.
The system lists the syndrome hypotheses most probable in the light of actual evidence, and it
recommends what symptoms, external factors, and actions to consider next.



1. sometimes brings aboutinfection of meninges

2. causes andinjury haemodynamic irritation

3.

space requirement

space requirement causes andvomiting

4.

dislocation of vessels

dislocation of vessels certainly brings about

permanent headache

permanent headache

Figure 1: Four sentences created in the linguistic model editor

injury
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haemodynamic
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permanent
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Figure 2: Graph representation generated for the sentences of Figure 1

3. The Compilation of Qualitative Fuzzy Statements about Stochastic Relations into their
Quantitative Counterparts

As already indicated, methods have to be developed and applied that enable, encourage, and
support novices to model in uncertain domains. The most nonreactive way would be to exploit
the information already given by the modeller in natural language modelling assertions stated
in the linguistic model editor (Figure 1). Many empirical investigations of the semantics of
adverb phrases like "probably", "perhaps", "maybe", etc., and modal verb forms like "should",
"will", "may", etc. (as already mentioned above) try to assign membership functions to these
linguistic forms, for example by presenting different "wheel of fortune" configurations to
subjects. For a list of linguistic terms, the subjects then have to indicate how well each term
describes the "wheel of fortune" configuration presented. For example, a wheel of fortune with
a winning area of 20% and a loosing area of 80% is better described by the statement "It is
possible that I will win" than by the statement "It is very likely that I will win."
But as indicated, these studies do not address the multivariate case. We see two approaches to do
this:
• an extension of the membership functions approach to multivariate distributions. This 

leads to what we call a "likelihood approach".
• a solely probability-based approach ("distribution approach").

4. Extending membership functions to relational terms in the form of likelihoods

We can apply the "wheel of fortune paradigm" to conditional events. This can be achieved by a
wheel of fortune configuration as depicted in Figure 3: If spinning wheel A leads to the event
"A+", then the wheel "B after A+" is spun, otherwise the wheel "B after A-" is spun. (For
simplicity, we only consider binary variables here, although MEDICUS handles multivalued
variables as well.).

Next, membership functions of these wheel-of-fortune configurations to a linguistic
characterisation like for example "B is a typical consequence of A" have to be obtained
empirically. It is possible to assign a probabilistic semantics to these membership functions:
"voting semantics" [1]. This means that you can interpret the values of the fuzzy membership
function after some normalization as conditional probabilities representing the subjective view
of a voting committee. The values of the fuzzy membership function are after some



normalization equivalent to the conditional (voting) probability p(hypothesis | evidence).
Under a bayesian view this conditional voting probability is equivalent to the subjective estimate
of the aposteriori probability for the hypothesis when some evidence has been observed.

A B after A+

+ + +

B after A-

- -

-

p(A+) = 0.8
p(A-)  = 0.2

p(B+|A+) = 0.9
p(B-|A+)  = 0.1

p(B+|A-) = 0.5
p(B-|A-)  = 0.5

Figure 3: Wheel of fortune for relations between two binary variables A and B

According to probabilistic concepts of causality [13], a positive influence of variable A on
variable B can be expressed by p(B+ | A+) > p(B+ | A-), and a negative influence as p(B- | A+)
> p(B- | A-). Thus it seems reasonable to hypothesise that fuzzy relations express a certain
relationship between p(B+ | A+) and p(B+ | A-), or between p(B- | A+) and p(B- | A-),
respectively. This relation can be expressed by the likelihood p(B+ | A+) / p(B+ | A-). Thus the
idea seems reasonable that the values of membership to a "fuzzy" concept describing the
relation between two variables A and B can be expressed as a function of the likelihood p(B+ |
A+) / p(B+ | A-). Furthermore, by taking the likelihood fraction we achieve a reduction by one
dimension compared to the number of the underlying conditional probabilities or "wheels of
fortunes".

Thus the likelihood ratio that can be derived from two wheels of fortune ("B after A+"
and "B after A-") is a bivariate analogue to the univariate situation with one wheel of fortune
pursued in the studies mentioned above. This straightforward extension to multivariate
distributions was proposed and sketched in [14].

If we interpret membership functions as probabilities according to the voting semantics,
then the probability that a certain matter of facts F is expressed by the verbal phrase V, p(V | F),
is proportional to the membership value µV(F) of F for V. If we interpret V as evidence E and
F as the hypothesis H, then p(V | F) = p(E | H) is the "causal" probability in Bayesian terms, and
µE(H) is the corresponding membership function in fuzzy terms.

Using this assumption, probabilities p(verbal phrase | likelihood) = p(V | F) can be
obtained, like for example p("B+ is considered a cue for A+" | p(B+ | A+) / p(B+ | A-) = x). In
addition, an apriori distribution of the likelihood, p(p(B+ | A+) / p(B+ | A-) = x), is needed.
Then the desired "diagnostic" probabilities p(H | E) = p(F | V) = p(likelihood | verbal phrase) =
p([p(B+ | A+) / p(B+ | A-)] | "B+ is considered a cue for A+") can be obtained. The mode of
this "diagnostic" probability distribution is the likelihood ratio that best represents the verbal
phrase in question: pmax (H | E).

If there is more than one verbal phrase for a certain relationship, for example verbal
descriptions provided by different experts (like "B+ is considered a cue for A+", "A+ may cause
B+" and so on), then we can combine evidence by the aposteriori probabilities p(H | E1, E2) =
p([p(B+ | A+) / p(B+ | A-)] | "B+ is considered a cue for A+", "A+ may cause B+", ...).

In the binary case, the conditional probabilities p(B+ | A+), p(B+ | A-) etc. needed for the
Bayesian network can be obtained from the desired aposteriori "diagnostic" probabilities pmax
(likelihood | verbal phrase) = pmax (H | E). (For example, if p(B+ | A+) / p(B+ | A-) is known
to be c1 and p(B- | A+) / p(B- | A-) is known to be c2, then p(B+ | A-) = (1-c2) / (c1-c2), p(B+ |
A+) = (c1-c1c2) / (c1-c2), and so on).

This "likelihood" approach has a serious drawback so that it becomes infeasible in
multivariate situations. You have to try many different angles of the "wheels of fortune" and
likelihoods to get the most "typical" diagnostic probability pmax (H | E). and the most "typical"
likelihood H.

5. An alternative Bayesian-net-based approach with distributional hypotheses

The second approach is based on Bayesian networks and on distributions. The basic idea is i) to
let subjects rate the adequacy of selected verbal relational terms as descriptions for some
preselected distributions or frequency tables, ii) to backpropagate verbal evidence for
distributions of hypotheses, and iii) to compute expected values for their cells with the help of
the aposteriori probabilities of those distributions, thus obtaining a "tailored" distribution
representing the given set of verbal statements most adequately. (This is of course a hypothesis
that can be and has to be tested empirically.) The main advantage of this approach - and its



main difference to the approach described above - is that it saves lots of assessment steps: Only
a few, selected frequency distributions have to be judged by the subjects.

The other difference between the approaches - likelihoods based on the "wheel of fortune
paradigm" vs. distributions - is less fundamental because we could use the wheel of fortune for
generating distributions as well, or use distributions instead of fortune wheels for computing
likelihoods. But we think that distributions have some empirical advantages over the "wheel of
fortune" approach. In the knowledge acquisition and model construction phase, they might be
easier to understand for subjects used to work with data material.

We start by assuming several distribution hypotheses (see Figure 4) about the stochastic
relation between two binary variables. We assume a set of minimal independent hypotheses so
that we can span the whole distribution space. This means that we can generate all distributions
by a linear combination of our hypotheses exhaustively. We assume that hypotheses have equal
apriori probabilities. The expected value of the apriori hypotheses is a noninformative
stochastic relation between the stochastic variables: a distribution of independent variables. The
hypotheses are realisations of the hypothesis variable which is the root node in a two-layered
Bayesian net.

Figure 5 shows some example distribution hypotheses for two binary variables X and Y.
(In this example we used probabilities.) On the right of Figure 5 the expected distribution H is
depicted.

The leaf nodes of the net of Figure 4 represent the various empirical evidences for the
hypotheses. The evidences are the various verbal statements which can be used to describe
stochastic relations: "X correlates rather high with Y", "X has a strong influence on Y", "X
weakens the influence from Y on Z",... The root node is linked to leaf nodes by arcs which have
to be denoted by conditional probabilities p(evidence | hypothesis). These "causal" probabilities
have to be acquired by empirical studies before it is possible to use the Bayes net for the
calculation of the expected distribution conditional to the empirical evidence. In fuzzy terms
these probabilities correspond to some realisations of the membership function µV(F).

X influences 
Y somewhat

X weakly 
corresponds to Y

X strongly 
influences Y 

... ...Ej

Hyp
H1 H2 Hi H7... ...

Figure 4: Bayesian network with a concept node (root node) containing seven distribution hypotheses,
and nodes representing various verbal relational terms (leaf nodes)

In summary, the expected aposteriori distribution (EAD) can be computed by a three step
procedure: (1) acquiring empirical verbal evidence about the stochastic relation between
variables (by letting subjects confirm or disconfirm sentences like for example: "It is true that
'X strongly influences Y' describes the situation in hypothesis H2."), (2) propagating this
evidence back to the root hypothesis node, (3) combining the hypotheses distributions with
their aposteriori probabilities so that the resulting EAD is the expected value H' of the
hypothesis distributions computed with the aposteriori probabilities of these hypotheses. This
EAD is a subjective estimate. Conditional probabilities obtained from it are plugged into the
Bayesian dag as long as we do not have better and objective estimates for the quantitative
information. Note that we only need a small number of distributions Hi to be judged by
subjects (step (1)).

But there is a problem with this approach: If the distributional hypotheses look like the
ones in Figure 5, then not all possible EADs can be generated. If we do not want to constrain
the space of possible EADs apriori, we need the four canonical distributions shown in Figure 6.

But it seems reasonable that subjects would have severe trouble judging the adequacy of
sentences like the ones in Figure 4 for these distributions. Therefore we propose a three-layerd
network as shown in Figure 7. The topmost node contains the hypotheses H' of Figure 6. The
middle node contains the hypotheses H of Figure 5. The relationships between the upper two
layers again have to be determined empirically by having subjects rate the similarity of each of
the hypotheses H to one hypothesis H'i at a time. This information would fully specify the net
of Figure 7, and we can compute our EAD by calculating the expected distribution on H'.
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Fig. 5: Bivariate distribution hypotheses. Fig. 6: Distributions necessary for generating all possible EADs
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Figure 7: Net of Figure 4 extended by a second concept node

6. Summary and what to do

Figure 8 summarises the last two sections. The input to our approach consists of a given
stochastic relation and a (set of) verbal description(s) of this relation. The stochastic relation
may be represented by "wheels of fortune" or by a multidimensional probability / frequency
table. The table can of course also be generated from the wheel-of-fortune configurations. The
information given in the table may be expressed by likelihoods, leading to a dimension
reduction. The multidimensional table (or likelihood information as well) is part of a minimal
and exhaustive set of hypotheses of a two-layered or three-layered Bayesian net. After
acquiring causal probability estimates empirically (the probabilities of verbal statements given
each of the hypotheses) for this minimal exhaustive set, aposteriori distributions are computed
for the hypotheses that are used for generating an expected hypothesis ("expected table" or
"expected likelihood"). This expected hypothesis serves as the base for computing the
conditional probabilities needed for the Bayesian network of the modelled domain.

We performed initial empirical studies with the "distribution approach" as depicted in
Figure 7. The results seem promising. We found out that a modified approach according to
figure 4 with the canonical set hypotheses (figure 6) is empirically tractable and sufficient for
our purposes. One of the next steps is to validate the expected distributions generated. This
could for example be done by letting subjects specify distributions for given verbal relational
statements, or by having them select the most suitable distribution from a set containing the
generated expected distribution.

The approach sketched above should of course not be restricted to bivariate distributions
of binary variables. We are working at extensions in these directions too.
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