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Abstract. Condition-event Petri nets are a means to model technical, social, and
natural processes and organizations in order to unterstand their behavior, to identify
bottlenecks and resource shortcomings, and to propose appropriate changes. PETRI-
HELP is an intelligent problem solving environment that supports this modelling
activity. Since there is no clear-cut domain theory of Petri net modelling, net design
processes can be supported only in limited ways. In order to overcome this situation,
a cognitive model of problem solving, knowledge acquisition, and knowledge
modification was developed which is an instance of a general theoretical framework.
The main results of the model can be summarized in three hypotheses: Problem
solving and knowledge acquisition in a domain without a worked-out domain theory
1. consists of i) applying weak heuristics and acquiring new knowledge in response
to impasses, and ii) knowledge optimization
2. involves few simple, fairly general heuristics which seem to be important also to
other design and configuration domains
3. can be supported by giving feedback and help information sensitive and adaptive to
the actual needs of the learner, if appropriate behavioral indicators are provided.

1. Introduction

Petri nets are a powerful formalism for modelling time-discrete distributed systems. Many natural, social and
technical systems can be conveniently modelled by them, and the dynamic behavior of these systems can be
studied by simulation: for example, technical devices (like machines, mechanical or electrical devices, electric or
hydraulic circuits), production lines, office networks, organizational processes in a factory, in administration, etc.
With Petri nets, systems of this kind can be described and analyzed in order to identify faults, bottlenecks, or
resource shortcomings. Petri nets are an especially convenient, easy to understand formalism because they
visually represent concurrency and synchronization. Their algebraic representation has a clear semantics. So they
are also used as semantics of abstract formalisms like process terms (Olderog, 1989), hardware description
languages (Damm et al., 1990), and nonsequential programming languages.
For a novice, working with Petri nets can cause several difficulties. Features like the distributedness of processes
and the synchronization of concurrent subprocesses are sometimes hard to understand. So design problems in the
net domain are rather different from "classical" ITS-problems, like arithmetic, geometry, or functional
programming, which for example is supported by our intelligent problem solving environment ABSYNT
(Möbus et.al., 1994; 1995). But there are similarities to the domain of parallel programming. Another source of
problems for novices is the fact that there are not many approaches to support Petri net design in a systematical
way. Even in introductory textbooks (e.g. Reisig, 1985; 1992), Petri nets tend to be presented as ready-made
solutions to modelling tasks described informally, but there is no clear cut methodology for their construction.
Furthermore, we think that students need to have an opportunity to practice design and problem solving in the
net domain. So a computer-based intelligent problem solving environment (Möbus, 1995) should be valuable.
We developed such an environment, PETRI-HELP (Möbus et al., 1992; Pitschke, 1994; Schröder et al., 1993),
that enables the learner to create condition-event Petri nets to given specifications of distributed systems, to state



and test hypotheses about the correctness of the given solution proposal with respect to (parts of) the
specification, to receive feedback and to ask for completion and correction proposals. PETRI-HELP was created
using guidelines which were derived from our ISP-DL Theory (impasse - success - problem solving - driven
learning, e.g., Möbus et al., 1992; 1994) which is a theoretical framework of problem solving, knowledge
acquisition, and knowledge modification. It attempts to integrate impasse-driven learning (Laird et al., 1986;
Newell, 1990; van Lehn, 1991), success-driven learning (e.g. Anderson, 1989), and phases of problem solving
(Gollwitzer, 1990). Briefly, it states that the problem solving process may consist of four phases: The problem
solver deliberates with the result of choosing or creating a goal to pursue, then a plan to reach the goal is created,
the plan is executed, and the result obtained is evaluated. Impasses might result because the problem solver is not
able to choose a goal, or a plan cannot be created, or execution is not possible, or the result is not satisfying.
The problem solver reacts to an impasse by applying weak heuristics like asking for help. As a result, the
problem solver may overcome the impasse and acquire new knowledge (impasse-driven learning). Knowledge
applied successfully is optimized (success-driven learning) so it can be used more efficiently in future.
The ISP-DL approach implies several design principles for an intelligent problem solving environment (see e.g.
Möbus et al., 1992): Firstly, free, unconstrained problem solving should be enabled. The learner should not be
interrupted because he or she will actively look for help as a weak heuristic when caught at an impasse.
Secondly, the learner should be encouraged to make use of her/his own solution ideas. So the system should be
able to deal with a large solution space and to tailor the information provided to the actual problem solving phase
and knowledge state. Thirdly, help information should be directed to the actual problem solving phase. PETRI-
HELP is designed according to these criteria. It offers help but does not interrupt the learner. The learner may
state hypotheses about the correctness of her/his solution proposals, and PETRI-HELP gives feedback and, on
further request, completion and correction proposals and explanations. PETRI-HELP supports even unusual
solution ideas by being able to analyze and comment on any solution proposal of the learner. This is possible
because Petri net solution proposals are analyzed with respect to temporal logic task specifications by model
checking (see below). Concerning the problem solving phases described above, PETRI-HELP supports the
following sub-activities of Petri net modelling: i) to develop specifications of systems or processes to be
modelled ("deliberating"), ii) to plan a Petri net solution for a specification ("planning"), iii) to actually construct
a Petri net ("executing"), and iv) to check whether the resulting net meets the specification ("evaluating").
In the "classical" ITS domains, there is a domain theory where help and explanations are usually based on. But as
mentioned, for Petri nets such a design theory is lacking. Therefore, the completion and correction proposals
delivered by PETRI-HELP are based on "ad hoc" rules learned by the system from the actions of its users. These
rules are not based on a theoretical and empirical account of Petri net design. A consequence of this is that
PETRI-HELP proposes what to add and to delete from the actual Petri net proposal, but does not give enough
support to the construction process. A related problem is that a general understanding of learners' cognitive
processes in constructing models of distributed systems (i.e., Petri nets) is missing. Therefore, the design
processes of subjects were investigated empirically by single-subject protocol studies, and based on them a
cognitive model of Petri net design was developed which is described in this paper. The model intends to put
forward an empirically based design theory. More specifically, it is aimed at the following research questions:

• In a domain without a worked-out domain theory, is it feasible to model problem solving and knowledge
acquisition processes within the ISP-DL framework, i.e., consisting of i) applying weak heuristics and
acquiring new knowledge in response to impasses, and ii) the optimization of knowledge already acquired?
• In a domain without a worked-out domain theory, is it feasible to model problem solving and knowledge
acquisition processes by simple and general, "weak" heuristics requiring not much domain knowledge?
• In a domain without a worked-out domain theory, is it possible to dynamically diagnose online the domain
knowledge, heuristic knowledge, and knowledge acquisition processes of the learner?
• In a domain without a worked-out domain theory, how is feedback and help information to be designed that
is sensitive and adaptive to the actual problem solving and knowledge acquisition processes of the learner?

Answers to these questions should provide i) hypotheses about problem solving, heuristics, and knowledge
acquisition processes of Petri net modellers and, more generally, hypotheses about processes in design of models
of distributed systems, ii) (parts of) a domain theory of Petri net design that can be used for improved feedback
and help information, and iii) a basis for adapting the information offered by PETRI-HELP to the actual
knowledge of the user. In the next section we will sketch PETRI-HELP. Then we will describe the model. Most
of it is implemented but not yet integrated into PETRI-HELP. We will end the paper with some conclusions.

2. The problem solving environment PETRI-HELP

PETRI-HELP (Möbus et al., 1992; Pitschke, 1994; Schröder et al., 1993) is designed to support novices
modelling time-discrete and distributed systems with condition-event Petri nets. PETRI-HELP contains a



sequence of twelve modelling tasks partially ordered according to several modelling goals. The learner may create
Petri net solutions to these tasks. Each task is specified as a set of temporal logic formulas (Kröger, 1987). This
allows the analysis and verification of Petri net solution proposals by model checking (Clarke et al., 1986;
Damm et al., 1990).
Figure 1 is a snapshot of some of the environments of PETRI-HELP. The upper left shows the temporal logic
specification to the modelling task "Restaurant". Initially, the waiter is sleeping (starting condition: Ws). The
window on the upper right of Figure 1 explains the abbreviations used in the formulas.

Figure 1: A snapshot of the environments of PETRI-HELP

The temporal logic formulas consist of progress conditions specifying time relations between states, and
exclusion conditions specifying that certain states cannot be present (or absent) at the same time. O, ◊, O are
the temporal logic operators. Informally, O means "always" ("it is always true that ..."), ◊ means "eventually"
("now or at some point in future it will be true that ..."), and O means "nexttime" ("at any next point in time it
will be true that ..."). So for example  O(Wro → (◊ (Ws ∧ K)))  means: "It is always true that if the waiter
is ready to accept an order then the waiter will eventually be sleeping, and the kitchen has the order."



The window "Net: Restaurant" of Figure 1 depicts a snapshot of the PETRI-HELP net editor: a condition-event
Petri net solution proposal to the "Restaurant" task. A condition-event net consists of a set of places P
representing states (depicted as circles), a set of transitions T representing events or processes (depicted as
rectangles), and a set of directed edges (depicted as arrows) connecting places with transitions and vice versa. A
place may contain a token indicating that the state represented by the place is actually true at a given time. A
transition t is able to fire iff every place of its preset (i.e., the set of places p with an arrow pointing to t)
contains a token and every place of its postset (i.e., the set of places q where an arrow from t points to) is empty.
After firing a transition, each place of its preset is empty  (i.e., the corresponding states are not true any more),
and each place of its postset contains a token (the corresponding states are true now). In PETRI-HELP,
transitions able to fire are marked boldly. So in Figure 1, the transition with the preset {Ws} and the postset
{Wro} is able to fire since "Ws" contains a token and "Wro" is empty.
When the learner is constructing a Petri net to a given task, he or she may state hypotheses about which subset
of the formulas is fulfilled by the actual state of the solution. Hypotheses are stated by simply marking the
respective task formulas. The system then analyzes the selected formulas (the hypothesis) by model checking. As
the result, it returns the formulas fulfilled and not fulfilled by the current state of the solution (see the window
"Selected Task: Restaurant" on the lower left of Figure 1). In model checking, the formulas are interpreted on the
case graph of the Petri net proposal. Each node of a case graph represents a possible state of the net, i.e., a set of
places containing tokens at the same time. An arc represents the transition from one set of places containing
tokens to another set. For example, when analyzing the formula O(K → (◊ P)) the model checker verifies
whether from each node of the case graph of the Petri net containing "K", a node containing "P" is reachable.
In addition, the learner may receive why-not explanations for the unfulfilled formulas. For example, the fact that
(Wro → (◊ (Ws ∧ K))) is not fulfilled by the net in the window "Net: Restaurant" is explained by showing
that a state is reachable where "Wro" has a token, but "Ws" has not, and no transition is able to fire.
PETRI-HELP also offers completion and correction proposals. The lower right of Figure 1 shows a completion
proposal: two places and four transitions. These proposals are based on rules the system learns from its users.
These rules associate i) successive stages of a Petri net solution proposal, or ii) Petri net fragments and the
formulas fulfilled by them.

3. A cognitive model of the process of creating Petri nets

In the first subsection, we will state the kinds of hypothetical design knowledge to model distributed systems
with Petri nets. Then the runnable model will be described.

3.1 A taxonomy of design knowledge

Figure 2 depicts the hypothetical design knowledge for modelling distributed systems with Petri nets. It is a
summary of ISP-DL guided protocol analyses of single subjects working with PETRI-HELP.

design knowledge

specification knowledge construction knowledge

domain  knowledge domain independent knowledge

design 
fragments

repair 
heuristics

control knowledge:
selection heuristics

weak heuristics
for impasses

design 
heuristics

Figure 2: A taxonomy of design knowledge for modelling distributed systems with Petri nets

Specification knowledge is the knowledge utilized in specifying a distributed system. PETRI-HELP has a
component supporting the specification process, but it will not be considered here.
Construction knowledge is the knowledge to construct a runnable model of a distributed system (i.e., a Petri net)
from a specification. It consists of domain knowledge and domain independent knowledge. The domain
knowledge consists of i) design fragments which relate pieces of temporal logic formulas to Petri net fragments,
ii) design heuristics relating temporal logic progress conditions to Petri net fragments (they can be viewed as the



result of chunking of design fragments, thus they represent optimized knowledge), and iii) repair heuristics
coming into play if design fragments and design heuristics turn out to be not sufficient for constructing a net
solution. The domain independent knowledge consists of control knowledge, specifically selection heuristics for
selecting the next formula to work on, or for moving to the next problem solving phase (deliberating, planning,
executing, evaluating), and weak heuristics utilized at impasse situations, like looking for help information.
Figure 3 shows some design fragments and corresponding design heuristics. The four design fragments on the
upper left of Figure 3 describe the stepwise construction of a net fragment for the progress condition schema
O(X → ◊ Y). The corresponding design heuristic represents a chunk relating this progess condition to the
result of the four steps on the left. The name heuristic indicates that it does not necessarily lead to a solution.
The design fragments and heuristics were obtained from video-taped single-subject studies. For example, if a
subject tests hypothesis Hi and later tests hypothesis Hi+1, and Hi+1 differs from Hi by one additional formula
F, and between these two tests the subject creates the net fragment N, then it seems reasonable that the subject
considers N to be a realization of F. This assumption was supported by the verbal comments we obtained from
our subjects. The F-N-associations obtained in this way correspond to the design heuristics.
We also extracted design fragments for more complex progress condition schemata containing conjunctions
and/or disjunctions. The design fragments in the lower left part of Figure 3 can be viewed as the result of
generalizations of design fragments of the upper left. The design heuristics are related by embeddability. Thus,
the net fragment of the upper design heuristic in Figure 3 is part of the lower one.
Design fragments or design heuristics may not always be sufficient to create a solution that satisfies a given
specification. If after applying them for each progress condition, there are still unsatisfied formulas, then repair
heuristics come into play. Based on protocol analyses, the following repair heuristics were identified:

• Heuristics for unfulfilled progress conditions. Progress conditions may be unfulfilled for two reasons:
Firstly, the places representing the premise may not be reachable. The heuristic tries to find another formula with
the same premise. If such a formula is found, the corresponding Petri net fragment is identified, and edges are
created that lead from the transition of this net fragment to the places representing the premise in question. So
these places will receive tokens again. The upper part of Figure 4 shows an example. Suppose the unfulfilled
formula is O(X → ◊ Z). After the transition with preset {W, X} and postset {Y} has fired, the place X is not
reachable any more. The heuristic mends this situation by proposing the bold edge on the right.
Secondly, the places representing the conclusion of the progress condition may not be reachable because of a
deadlock (no transition is able to fire). In this case the heuristic identifies the places containing tokens in the
deadlock situation. Then edges are created from these places to the transitions which postsets contain the places
representing the premise of the progress condition. The lower part of Figure 4 shows an example: The formula
O((W ∧ X)→ (◊ (Y ∧ Z))) is not fulfilled: When the transition with postset {W, X} fires, the premise of the
formula holds. Now the transition with the preset {W, X} and postset {Y, Z} fires, leading to tokens on Y and Z.
If now the transition with preset {Z} fires, V receives a token. Again the transition with postset {W, X} may fire
so the premise of the formula is true. But now the transition with preset {W, X} and postset {Y, Z} cannot fire
since the place Y is not empty. The conclusio of the formula cannot be fulfilled, thus the formula is not true. A
deadlock has occurred. The heuristic mends this situation by proposing the bold edges on the right.

• Heuristics for unfulfilled exclusion conditions. If an exclusion condition schema O¬ (X ∧ Y) is not satisfied,
then for each transition having Y  in its postset, an edge is created from X  to this transition, and vice versa
(Figure 5, upper part). Thus X can only receive a token if Y loses its token, and vice versa. If a formula O(X v
Y) is not satisfied (thus excluding the absence of both X and Y), then edges are created such that the transitions t
with X in their postset have Y in their preset. The transitions with Y in their preset are removed, and edges are
created from the transitions t to the places in the postset of the just removed transition. This is also done vice
versa (Figure 5, lower part). Thus X can only lose its token if Y receives one, and vice versa.

3.2 The model

The model is generic in that it is intended to represent the domain dependent and domain independent knowledge,
heuristics, and knowledge acquisition and modification processes of Petri net modellers of varying expertise.
Thus it is supposed to model novices as well as experts. The problem solving and knowledge acquisition
processes of specific Petri net modellers are viewed as instantiations of the model. Figure 6 gives an overview.
The model is structured according to the ISP-DL Theory. A run starts with the presentation of a task: a temporal
logic specification of a distributed system. The first action ("deliberate") consists of selecting a formula to work
on. We extracted different strategies from the protocols: selecting formulas in the order they are stated, selecting
the formula with the minimum number of logical operators, or selecting a formula that can be handled by a
design heuristic. When a formula is selected, a goal is set to implement it. A Petri net fragment for this formula
has to be planned using the available knowledge: design heuristics, design fragments, or repair heuristics.
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The plan is executed, leading to a Petri net fragment ("protocol") which is evaluated by hypotheses testing or by
simulation. If the formula is fulfilled ("reaction to success") then the goal is set to implement another formula. If
a solution is reached, the knowledge used is optimized (design fragments are chunked, leading to design heuris-
tics, see Figure 3). There are two sources of impasses in the model: Planning might fail because of missing
domain knowledge, and evaluation might reveal that a formula is not fulfilled. In both cases, a subgoal is created
to overcome the impasse by weak heuristics. This is represented by a recursive call of "problem solving":
• If the impasse arose because of missing domain knowledge, a generalization of the design fragments (see Figure
3) is tried. If this solves the impasse, new knowledge (i.e. the generalized design fragment) is acquired. If not,
another formula is selected, or completion / correction proposals are asked for.
• If the impasse arose because of an unfulfilled formula, the repair heuristics described above are considered. An
applicable heuristic is applied, and it is checked whether the previously unfulfilled formula is fulfilled. If so, then
a rule is created that associates the net where the impasse arose with the actual net where the impasse is solved
(acquisition of new knowledge). If not, hypotheses are tested, and again completions/corrections are asked for.

plan

deliberate: select formula(s)

task

goal: formula(s)

plan:

using
design

heuristics

using
design 
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impasse:
no domain 
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Figure 6: The model as a higher-order Petri net

4. Conclusions

We presented a model of problem solving, knowledge acquisition, and knowledge optimization in the domain of
modelling distributed systems with condition-event Petri nets, a domain without a worked-out design theory. The



model attempts to describe these processes by simple, weak heuristics within the general framework of the ISP-
DL Theory. The heuristics should be of interest also to other areas of design problems.
The model seems to provide a feasible basis for dynamically diagnosing the changing knowledge states of Petri
net modellers online, and to supply appropriate feedback and help information (see Möbus et al., 1994, for the
domain of functional programming). Help information would consist of i) proposing the actually needed design
fragments and design heuristics, and by motivating them by showing how they can be derived from the already
acquired knowledge by generalization or chunking, and of ii) proposing repair heuristics and explaining how they
resolve the actual impasse. A necessary condition for dynamic diagnosis and adaptive help is to define empirical
indicators for the hypothetical knowledge, heuristics, and impasses that can be registered automatically. For
example, a reasonable indicator for design fragments is the piecemeal construction of places, transitions, and
edges, interrupted by cursor movements and by pointing to the formula to be implemented. In contrast, a design
heuristic should be implemeted fast and uninterruptedly (see also Möbus et al., 1994).
Since the model is not yet fully implemented and integrated into PETRI-HELP, it has not been empirically
tested. This will involve testing predictions derived from the model's use for dynamic diagnosis, and testing the
effectiveness and acceptance of the help information. A preliminary analysis of 171 solutions of subjects
working with PETRI-HELP showed that 153 (89,5%) could be explained by the heuristics stated by the model.
The model is not yet complete. Heuristics not yet handled by it are: realizing more than one formula at a time
(thus applying large chunks), and trying to be parsimonious, i.e., deliberately not implementing all formulas.
Currently we work on extending PETRI-HELP to other domains. For example, in the domain of hydraulic
circuits, task specifications consist of function diagrams (which can be transformed into temporal logic
formulas), and the solutions consist of hydraulic circuits which may be translated into Petri nets or case graphs.
Problem solving in this area should be similar in many respects to problem solving in PETRI-HELP.
Hypotheses about problem solving and knowledge acquisition could be utilized in this domain as well.
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