First results on nonlinear hybrid reachability combining interval Taylor method and IBEX library

M. Maiga^{1,2}, N. Ramdani¹, and L. Travé-Massuyès²

¹ Université d'Orléans, PRISME, 18020 Bourges, France
 ² CNRS, LAAS, 31400 Toulouse, France
 (e-mail: mmaiga@laas.fr, nacim.ramdani@univ-orleans.fr, louise@laas.fr)

SWIM, Oldenburg, Germany June 4-6, 2012

Introduction

- 2 Hybrid System
- Interval Taylor Methods
- Hybrid Transitions
- 5 IBEX library
- 6 Evaluation on Benchmarks
 - A simple illustrative exemple : 2 modes, continuous state dim=2
 - Benchmark 1
 - Benchmark 2
 - Benchmark 3

ANR-Project : MAGIC-SPS

- Goal : To develop guaranteed methods and algorithms for integrity control and preventive monitoring of systems
- Different work package :
 - * WP1 : Modelling and identification of systems with bounded uncertainties;
 - * WP2 : Identifiability and diagnosability of systems with bounded uncertainties;
 - * WP3 : Preventive monitoring of continuous systems with bounded uncertainties;
 - * WP4 : Preventive monitoring of hybrid systems with bounded uncertainties ;
 - * WP5 : Dissemination
- Project duration = october 2012 to december 2014
- Partners

Introduction

ANR-Project : MAGIC-SPS

Our work package : WP4

- * Computing nonlinear hybrid reachability;
- * State estimation of HDS;
- * Feasibility of a fault prognosis for HDS

Introduction

- 2 Hybrid System
 - 3 Interval Taylor Methods
- 4 Hybrid Transitions
- IBEX library

Evaluation on Benchmarks

- A simple illustrative exemple : 2 modes, continuous state dim=2
- Benchmark 1
- Benchmark 2
- Benchmark 3

Hybrid System example : Bouncing ball

 $\bullet\,$ Continuous dynamic (Free fall) \to Condition 1

$$x \ge 0$$
$$\dot{x} = v$$
$$\dot{v} = -g$$

- Discrete dynamic (Bouncing) → Condition 2 if x = 0 and v < 0; v := -cv
 - * Velocity change direction
 - * loss of velocity (deformation, friction)
 - * $0 \le c \le 1$

Hybrid System

Hybrid System example : Boucing ball

Condition 1 \oplus Condition 2

$$\mathbf{x}_0 \in [5, 5.1], \mathbf{v}_0 = 0$$

 $c = 0.8, \ g = 9.8, \ t \in [0, 4.5]$

크

- 4 同 ト 4 ヨ ト - 4 ヨ ト - -

Hybrid Reachability Computation

Hybrid automaton (Alur, et al., 95)

$$H = (Q, D, P, \Sigma, A, Inv, F),$$

$$egin{aligned} \mathsf{flow}(q) &: & \dot{\mathbf{x}}(t) = f_q(\mathbf{x},\mathbf{p},t), \ \mathsf{Inv}(q) &: &
u_q(\mathbf{x}(t),\mathbf{p},t) < 0, \end{aligned}$$

$$egin{aligned} e:&(q
ightarrow q')=(q, ext{guard}, \sigma,
ho, q'),\ ext{guard}(e):&\gamma_e(\mathbf{x}(t), \mathbf{p}, t)=0, \end{aligned}$$

$$t_0 \leq t \leq t_N, \quad \mathbf{x}(t_0) \in \mathbb{X}_0 \subseteq \mathbb{R}^n, \quad \mathbf{p} \in \mathbb{P}$$

Hybrid System

Hybrid Reachability Computation

Set reachable in finite time

- 3 →

Introduction

2 Hybrid System

Interval Taylor Methods

- 4 Hybrid Transitions
- 5 IBEX library

6 Evaluation on Benchmarks

- A simple illustrative exemple : 2 modes, continuous state dim=2
- Benchmark 1
- Benchmark 2
- Benchmark 3

Interval Taylor Methods

Guaranteed set integration with Taylor methods (Moore,66) (Eijgenraam,81) (Lohner,88) (Rihm,94) (Berz,98) (Nedialkov,99)

$$\dot{\mathbf{x}}(t) = f(\mathbf{x},\mathbf{p},t), \quad t_0 \leq t \leq t_N, \, \mathbf{x}(t_0) \in [\mathbf{x}_0] \,, \, \mathbf{p} \in [\mathbf{p}]$$

Time grid \rightarrow $t_0 < t_1 < t_2 < \cdots < t_N$

• Analytical solution for $[\mathbf{x}](t)$, $t \in [t_j, t_{j+1}]$

$$[\mathbf{x}](t) = [\mathbf{x}_j] + \sum_{i=1}^{k-1} (t - t_j)^i \mathbf{f}^{[i]}([\mathbf{x}_j], [\mathbf{p}]) + (t - t_j)^k \mathbf{f}^{[k]}([\mathbf{\tilde{x}}_j], [\mathbf{p}])$$

Guaranteed set integration with Taylor methods (Moore, 66) (Eijgenraam, 81) (Lohner, 88) (Rihm, 94) (Berz, 98) (Nedialkov, 99)

$$\dot{\mathbf{x}}(t) = f(\mathbf{x}, \mathbf{p}, t), \quad t_0 \leq t \leq t_N, \, \mathbf{x}(t_0) \in [\mathbf{x}_0], \, \mathbf{p} \in [\mathbf{p}]$$

Mean-value approach

mean value forms + matrice preconditioning+ linear transforms $[\mathbf{x}](t) \in \{\mathbf{v}(t) + \mathbf{A}^{a}(t)\mathbf{r}(t) \mid \mathbf{v}(t) \in [\mathbf{v}](t), \ \mathbf{r}(t) \in [\mathbf{r}](t)\}.$

a. Several methods

- Introduction
- 2 Hybrid System
- 3 Interval Taylor Methods
- 4 Hybrid Transitions
 - 5 IBEX library
 - 6 Evaluation on Benchmarks
 - A simple illustrative exemple : 2 modes, continuous state dim=2
 - Benchmark 1
 - Benchmark 2
 - Benchmark 3

Hybrid Transitions

Computing flow/guards intersection

Time grid \rightarrow $t_0 < t_1 < t_2 < \cdots < t_N$

Compute $[\underline{t}^{\star}, \overline{t}^{\star}] \times [\mathcal{X}_{j}^{\star}]$

э

イロト イヨト イヨト イヨト

Computing flow/guards intersection

$$\mathsf{Time \ grid} \rightarrow \quad t_0 < t_1 < t_2 < \cdots < t_N$$

$$\Rightarrow \gamma \circ \mathsf{ITS}(t, \mathbf{x}_j, [\tilde{\mathbf{x}}_j]) \rightarrow \psi(t, \mathbf{x}_j)$$

To compute $[\underline{t}^{\star}, \overline{t}^{\star}] \times [\mathcal{X}_{j}^{\star}] \Rightarrow$ Solve CSP¹ $([t_{j}, t_{j+1}] \times [\mathbf{x}_{j}], \psi(., .) = 0)$

^{1.} Handbook of Constraint Programming, Rossi et al.,2006 () () () ()

Computing flow/guards intersection

$$\mathsf{Time \ grid} \rightarrow \quad t_0 < t_1 < t_2 < \cdots < t_N$$

$$\Rightarrow \gamma \circ \mathsf{ITS}(t, \mathbf{x}_j, [\tilde{\mathbf{x}}_j]) \rightarrow \psi(t, \mathbf{x}_j)$$

To compute $[\underline{t}^{\star}, \overline{t}^{\star}] \times [\mathcal{X}_{j}^{\star}] \Rightarrow$ Solve CSP¹ $([t_{j}, t_{j+1}] \times [\mathbf{x}_{j}], \psi(., .) = 0)$

How to solve this CSP?

^{1.} Handbook of Constraint Programming, Rossi et al.,2006 () () () ()

Hybrid Reachability

Ramdani & Nedialkov, 2011

• Interval Taylor methods

- \Rightarrow Analytical expressions for the boundaries of the continuous flows,
- \Rightarrow Controlling Wrapping effect

• Interval constraint propagation techniques

- \Rightarrow Solve event detection/localization problems
- \Rightarrow Flow/sets intersection with ALIAS ^a CSP solver.

a. http://www-sop.inria.fr/coprin/logiciels/ALIAS/

This talk

Use IBEX ^a

Test this new interface on benchmarks!

a. http://www.ibex-lib.org/

M. Maiga (PRISME & LAAS)

- Introduction
- 2 Hybrid System
- Interval Taylor Methods
- 4 Hybrid Transitions
- 5 IBEX library
 - Evaluation on Benchmarks
 - A simple illustrative exemple : 2 modes, continuous state dim=2
 - Benchmark 1
 - Benchmark 2
 - Benchmark 3

IBEX library (G. Chabert 2007)

▲□▶▲御▶▲콜▶▲콜▶ 콜 씨)였(

IBEX library (G. Chabert 2007)

Input IBEX = an interval vector XX (box) of dimension dim(XX)
 XX=(XX(1);XX(2);....;XX(dim(XX))

- Input IBEX = an interval vector XX (box) of dimension dim(XX)
 XX=(XX(1);XX(2);....;XX(dim(XX))
- build a symbolic box of dimension dim(XX)
 const Symbol & Xx=env.add_symbol("Xx",dim(XX));

- Input IBEX = an interval vector XX (box) of dimension dim(XX)
 XX=(XX(1);XX(2);....;XX(dim(XX))
- build a symbolic box of dimension dim(XX) const Symbol & Xx=env.add_symbol("Xx",dim(XX));
- Initialize rechearch domain of each variable space.box(1)=time; for(int ii=2;ii<=dim(XX);ii++) space.box(ii)=XX(ii);

- Input IBEX = an interval vector XX (box) of dimension dim(XX)
 XX=(XX(1);XX(2);....;XX(dim(XX))
- build a symbolic box of dimension dim(XX) const Symbol & Xx=env.add_symbol("Xx",dim(XX));
- Initialize rechearch domain of each variable space.box(1)=time; for(int ii=2;ii<=dim(XX);ii++) space.box(ii)=XX(ii);
- Solve CSP (Invariant and guard function) according to current location..

```
switch(mode)
{
```

index_contraint[1]=env_.add_ctr(G(Xx[1],Xx[2],...,Xx[n])=0);

```
index_contraint[2]=env.add_ctr(G(Xx[1],Xx[2],...,Xx[n])=0);
```

index_contraint[m]=env.add_ctr(G(Xx[1],Xx[2],...,Xx[n])=0);

vector<const Constraint*> vec_constraint;

vec_constraint.push_back(&env.constraint(index_contraint[1....m])); vector of Constraint

CSP csp(vec_constraint,space); Create a system of constraints (list of constraints) HC4 hc(csp); propagation with a system of constraints

RoundRobin rr(csp.space, seuiB); Create a bisector with round-robin heuristic

Paver paver(hc,rr, seuiP); a classical branch & bound algorithm

```
paver.explore();start research potential solutions
paver.report(); report all solutions find after exploration
```

3

IBEX library (G. Chabert 2007)

The output of Ibex :

Each solution of CSP is given by paver.box(i, j)(i=number of contractor², j³=jth box solution) which is an interval vector

IBEX library (G. Chabert 2007)

• For guard solving, time = $[t_j, t_{j+1}] \rightarrow [\underline{t}^{\star}, \overline{t}^{\star}] \times [\mathcal{X}_j^{\star}]$

- For guard solving, time = $[t_j, t_{j+1}] \rightarrow [\underline{t}^*, \overline{t}^*] \times [\mathcal{X}_j^*]$
- For invariant solving, time $=[t_j] \rightarrow [\mathcal{X}_j^{inv}]$

- Introduction
- 2 Hybrid System
- Interval Taylor Methods
- Hybrid Transitions
- 5 IBEX library

6 Evaluation on Benchmarks

- A simple illustrative exemple : 2 modes, continuous state dim=2
- Benchmark 1
- Benchmark 2
- Benchmark 3

Introduction

- 2 Hybrid System
- Interval Taylor Methods
- Hybrid Transitions
- 5 IBEX library

6 Evaluation on Benchmarks

- A simple illustrative exemple : 2 modes, continuous state dim=2
- Benchmark 1
- Benchmark 2
- Benchmark 3

Example

 $q = 1, 2 e = 1 \rightarrow 2$:

$$\begin{array}{rll} \mbox{flow}(1):& f_1(x_1,x_2)=(x_2,-\rho x_2-g\sin(x_1))\\ \mbox{inv}(1):& \nu_1(x_1,x_2)=x_2-1.5\\ \mbox{flow}(2):& f_2(x_1,x_2)=(x_2,-3\rho x_2-g\sin(x_1))\\ \mbox{inv}(2):& \nu_2(x_1,x_2)=-\nu_1(x_1,x_2)\\ \mbox{guard}(1):& \gamma_1(x_1,x_2)=\nu_1(x_1,x_2)\\ \mbox{reset}(1):& \rho_1(x_1,x_2)=(\alpha_1x_1,\alpha_2x_2) \end{array}$$

avec $\alpha_1 = -1$, $\alpha_2 \in [-2.05, -2]$, g = 10, $p \in [6, 6.3]$ et $x_0 \in [-0.9, -0.8] \times [3, 3.5]$.

크

→

Small comparison about CPU times

$$\begin{cases} \mathsf{flow}(1): & f_1(x_1, x_2) = (x_2, -px_2 - g\sin(x_1)) \\ \mathsf{inv}(1): & \nu_1(x_1, x_2) = \cos(x_1) - x_2/10 - 0.7 \\ \mathsf{flow}(2): & f_2(x_1, x_2) = (x_2, -3px_2 - g\sin(x_1)) \\ \mathsf{inv}(2): & \nu_2(x_1, x_2) = -\nu_1(x_1, x_2) \\ \mathsf{guard}(1): & \gamma_1(x_1, x_2) = \nu_1(x_1, x_2) \\ \mathsf{reset}(1): & \rho_1(x_1, x_2) = (\alpha_1 x_1, \alpha_2 x_2) \end{cases}$$

(1)

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

with $\alpha_1 = -1$, $\alpha_2 \in [-2.05, -2]$, g = 10, $p \in [6, 6.3]$ and $x_0 \in [-0.9, -0.8] \times [3, 3.5]$.

ALIAS ⁴	26 s
IBEX ⁵	0.204 s

- 4. PIV 2GHz
- 5. Core i5 2.4GHz

Introduction

- 2 Hybrid System
- Interval Taylor Methods
- 4 Hybrid Transitions
- 5 IBEX library

6 Evaluation on Benchmarks

• A simple illustrative exemple : 2 modes, continuous state dim=2

Benchmark 1

- Benchmark 2
- Benchmark 3

Evaluation on Benchmarks : Glycemic Control in Diabetic Patients (Type 1 diabetes)

Bergman minimal model : (G, I, X)

$$\frac{dG}{dt} = -p_1G - X(G + G_B) + g(t)$$
$$\frac{dX}{dt} = -p_2X + p_3I$$
$$\frac{dI}{dt} = -n(I + I_b) + \frac{1}{V_I}i(t)$$

initial conditions :

$$G(0) \in [-2,2]$$
 $X(0) = 0$ $I(0) = \in [-0.1,0.1]$

 $p_1 = 0.01, p_2 = 0.025, p_3 = 1.3.10 - 5, V_I = 12, n = 0.093, G_B = 4.5, I_b = 15.$

the goal of this benchmark⁶ is to compute the reacheable set over the time horizon $t \in [0, 360]$

6. Bench proposed by Xin Chen and Sriram Sankaranarayanan D + () + () + ()

M. Maiga (PRISME & LAAS)

Evaluation on Benchmarks : Glycemic Control in Diabetic Patients (Type 1 diabetes)

Model 1

$$i(t) = \begin{cases} 1 + \frac{2G(t)}{9} & G(t) < 6\\ \frac{50}{3} & G(t) \ge 6 \end{cases} \qquad g(t) = \begin{cases} \frac{t}{60} & t \le 30\\ \frac{120-t}{180} & t \in [30, 120]\\ 0 & t \ge 120 \end{cases}$$

Evaluation on Benchmarks : Glycemic Control in Diabetic Patients (Type <u>1 diabetes</u>)

Evaluation on Benchmarks : Glycemic Control in Diabetic Patients (Type <u>1 diabetes</u>)

CPU time = 1m11.500s core i5, 64 bits

M. Maiga (PRISME & LAAS)

Evaluation on Benchmarks : Glycemic Control in Diabetic Patients (Type 1 diabetes)

CPU time = 1m11.500s core i5, 64 bits

31 / 46

M. Maiga (PRISME & LAAS)

Evaluation on Benchmarks : Glycemic Control in Diabetic Patients (Type <u>1 diabetes</u>)

CPU time = 1m11.500s core i5, 64 bits

M. Maiga (PRISME & LAAS)

32 / 46

Introduction

- 2 Hybrid System
- Interval Taylor Methods
- Hybrid Transitions
- 5 IBEX library

6 Evaluation on Benchmarks

- A simple illustrative exemple : 2 modes, continuous state dim=2
- Benchmark 1
- Benchmark 2
- Benchmark 3

Evaluation on Benchmarks : Glycemic Control in Diabetic Patients (Type 1 diabetes)

Model 2

$$i(t) = \begin{cases} \frac{25}{3} & G(t) \le 4\\ \frac{25(G(t)-3)}{3} & G(t) \in [4,8] \\ \frac{125}{3} & G(t) \ge 8 \end{cases} \qquad g(t) = \begin{cases} \frac{t}{60} & t \le 30\\ \frac{120-t}{180} & t \in [30,120] \\ 0 & t \ge 120 \end{cases}$$

Evaluation on Benchmarks : Glycemic Control in Diabetic Patients (Type 1 diabetes)

Evaluation on Benchmarks : Glycemic Control in Diabetic Patients (Type 1 diabetes)

CPU time = 4m15.652s core i5, 64 bits

M. Maiga (PRISME & LAAS)

36 / 46

Evaluation on Benchmarks : Glycemic Control in Diabetic Patients (Type 1 diabetes)

CPU time = 4m15.652s core i5, 64 bits

M. Maiga (PRISME & LAAS)

Evaluation on Benchmarks : Glycemic Control in Diabetic Patients (Type 1 diabetes)

CPU time = 4m15.652s core i5, 64 bits

M. Maiga (PRISME & LAAS)

Introduction

- 2 Hybrid System
- Interval Taylor Methods
- 4 Hybrid Transitions
- 5 IBEX library

6 Evaluation on Benchmarks

- A simple illustrative exemple : 2 modes, continuous state dim=2
- Benchmark 1
- Benchmark 2
- Benchmark 3

Evaluation on Benchmarks : Vehicle Model

$$\frac{dx}{dt} = vc_t; \frac{dy}{dt} = vs_t; \frac{dv}{dt} = u_1$$
$$\frac{dc_t}{dt} = \sigma v^2 s_t; \frac{ds_t}{dt} = -\sigma v^2 c_t; \frac{d\sigma}{dt} = u_2$$

 $x \in [1, 1.2]$ $y \in [1, 1.2]$ $v \in [0.8, 0.81]$ $s_t \in [0.6, 0.61]$ $c_t \in [0.7, 0.71]$ $\sigma = [0, 0.05]$

the goal of this benchmark⁷ is to compute the reacheable set over the time horizon $t \in [0, 10]$

7. Bench proposed by Xin Chen and Sriram Sankaranarayanan M. Maiga (PRISME & LAAS) 40 / 46

Evaluation on Benchmarks : Vehicle Model

CPU time = 24.678 s core i5, 64 bits

 $\begin{array}{lll} x \in [1, 1.2] & y \in [1, 1.2] & v \in [0.8, 0.81] \\ s_t \in [0.6, 0.61] & c_t \in [0.7, 0.71] & \sigma = 0.05 \end{array}$

Evaluation on Benchmarks : Vehicle Model

CPU time = 16.885 s core i5, 64 bits

$$\begin{aligned} \frac{dx}{dt} &= vc_t; \ \frac{dy}{dt} &= vs_t; \ \frac{dv}{dt} &= u_1 \\ \frac{dc_t}{dt} &= \sigma v^2 s_t; \ \frac{ds_t}{dt} &= -\sigma v^2 c_t; \ \frac{d\sigma}{dt} &= u_2 \end{aligned}$$

$$\begin{array}{lll} x \in [1, 1.2] & y \in [1, 1.2] & v \in [0.8, 0.81] \\ s_t \in [0.6, 0.61] & c_t \in [0.7, 0.71] & \sigma = 0.05 \end{array}$$

ロトメ母トメヨトメヨト ヨークへで

Evaluation on Benchmarks : Vehicle Model

CPU time = 24.678 s core i5, 64 bits

$$\frac{dx}{dt} = vc_t; \frac{dy}{dt} = vs_t; \frac{dv}{dt} = u_1$$
$$\frac{dc_t}{dt} = \sigma v^2 s_t; \frac{ds_t}{dt} = -\sigma v^2 c_t; \frac{d\sigma}{dt} = u_2$$

 $\begin{array}{lll} x \in [1, 1.2] & y \in [1, 1.2] & v \in [0.8, 0.81] \\ s_t \in [0.6, 0.61] & c_t \in [0.7, 0.71] & \sigma \in [0.05, 0.05] \end{array}$

M. Maiga (PRISME & LAAS)

Bench	Ss	NM	NT	NET	CPU times
G M 1	3	6	10	4	1m11.500s
G M 2	3	9	16	6	4m15.652s
Vehicle model	6	3	4	3	0m24.678s

- Ss = Size of system (continuous state vector dimension).
- NM= Number of Modes .
- NT= Number of Transitions.
- **NET** = Number of Enabled Transitions (with initials conditions given).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- Introduction
- 2 Hybrid System
- Interval Taylor Methods
- 4 Hybrid Transitions
- 5 IBEX library
- 6 Evaluation on Benchmarks
 - A simple illustrative exemple : 2 modes, continuous state dim=2
 - Benchmark 1
 - Benchmark 2
 - Benchmark 3

- Analytical expression for the continuous flows
- Interval constraint programming for solving flow/guards intersection
- CSP solving IBEX

- Analytical expression for the continuous flows
- Interval constraint programming for solving flow/guards intersection
- CSP solving IBEX
- ightarrow Controlling the number of the box in the list

- Analytical expression for the continuous flows
- Interval constraint programming for solving flow/guards intersection
- CSP solving IBEX
- ightarrow Controlling the number of the box in the list
- \rightarrow Merging boxes without over-approximation (A Rauh, et al., 2006) (Benazera and Louise, 2009)

- Analytical expression for the continuous flows
- Interval constraint programming for solving flow/guards intersection
- CSP solving IBEX
- ightarrow Controlling the number of the box in the list
- \rightarrow Merging boxes without over-approximation (A Rauh, et al., 2006) (Benazera and Louise, 2009)
- \rightarrow Use VNODE-LP (N. Nedialkov, 2010)